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Consideration 

ABS TRAC T it  

is given to the performance 
t2-964 

charac te r i s t ics  

of an AC magnetohydrodynamic power generator, 

f i e l d  i s  imposed on the vortex flow of an e l e c t r i c a l l y  conducting 

-fluid, which is in3ected tangentdally inla an annuhs  -fc!rmed by 

two nonconducting concentric cylinders and two nonconduc t a g  end 

plates .  

dimensional veloci ty  and three dimensional electromagnetic f i e l d  

and current  d i s t r ibu t ions ,  Finally, the generated power, the ohmic 

losses,  the effective power and the e l e c t r i c a l  e f f ic iency  of the 

converter sys tern are calculated. 

A ro ta t ing  magnetic 

A perturbation technique is  used to  determine the two 

* This investigation was submitted in p a r t i a l  fu l f i l lment  of the 
requirements fo r  the Degree of Doctor of Philosophy. 
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I 
I 
I 
t 

MHD GENERATOR CONCEPT 

The d i r ec t  conversion of thermal energy in to  e l e c t r i c a l  

power by magnetohydrodynamic (MHD) power generators is a t t r ac t ing  

a great deal of a t tent ion presently. 

associated with such energy sources a s  nuclear reactors  and so la r  

furnaces prevent the d i rec t  application of the conventional 

energy converters such as gas o r  steam turbines. 

the development o f  new converter devices is highly motivated by 

the  f a c t  that the  thennal efficiency of the converter system 

increases with the temperature a t  which the power conversion 

The high temperatures 

Furthermore, 

takes  place. 

For the  MHD Generators the following general concept has 

been developed: 

Thermal. energy is transferred from a high temperature 

source t o  a working f l u i d  increasing its in t e rna l  and k ine t ic  

energies. 

by thermal ionizat ion o r  by seeding conducting plasma into it 

o r  by both processes simultaneously, and it i s  passed through 

a magnetic f i e ld .  

f i e l d  wi th  t he  conducting f luid an electromotive force i s  in- 

duced which in t u rn  produces an electric currect  d i s t r ibu t ion  

i n  the conducting medium. 

The f l u i d  is made e l s o t r i c a l l y  conducting either 

As the resu l t  of in te rac t ion  of the magnetic 

- 1 -  
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If the  magnetic f i e l d  and the f l o w  pa t te rn  a re  so chosen 

that the induced currents are steady i n  time DC power generation 

results and the energy can be extracted from the  f l u i d  through 

electrodes i n  the walls of the flow duct. 

If the  induced currents a r e  periodic functions of time, 

AC p x z r  l a  generated and it  caii be extracted either through 

electrodes or, by u t i l i z i n g  the magnetic flux linkage, through 

the  excit ing f i e l d  coi ls .  

operates on the pr inciples  of a conventional induction generator. 

I n  the  l a s t  case the MHD generator 

As the r e s u l t  of the  energy extract ion and some irre- 

vers ib le  processes inherent to the generator operation, the 

t o t a l  pressure of  the f l u i d  decreases,.and conventional con- 

v e r t e r  devices may become applicable a t  t he  lower energy (tempe- 

ra ture)  leve ls  . 
REXIEW OF PREVIOUS INVESTIGATIONS 

The concept of MHD power generator is not new; it was 

conceived first by Faraday, w h o  proposed t o  u t i l i z e  the motion 

of ocean-water i n  the ea r th ' s  magnetic f i e l d  f o r  power genera- 

Recently, w i t h  t h e  advent of high temperature energy 

sources, the idea of d i r ec t  conversion of flow-enthalpy i n t o  

electrical energy has begun to undergo a vigorous investigation, 

* Numbers i n  brackets indicate References, 
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From the beginning, most of the  a t ten t ion  was focused on 

Dc generators because of t h e i r  r e l a t ive  simplicity.  

DC generators have some operational advantage over the compara- 

t i v e  AC devices, especial ly  in  the case of large sca le  power 

generation, 

I n  addition, 

Among others, R. J. Rosa, A .  R. Kantrowitz and T. R. Brogzn 

have investigated t h e  general f e a s i b i l i t y  and performance cha- 

r a c t e r i s t i c s  of MHD DC generators (see r2 7 t o  f 5 7. ~n expe- 

rimental generator operating w i t h  plasma produced by an arc wind 

tunnel was b u i l t  and operated by them a t  AVCO Laboratory in 

Everett,  Massachusetts. G. W. Sutton of General Elec t r ic  Co. 

- -  f 6 7, [7 - 7 presented a detailed analysis  of a channel-type MHD 

DC generator i n  1959. 

cussion of the one-dimensional channel-type motion of an inviscid 

conducting f l u i d  i n  the presence of a normal magnetic f ield.  

- -  - -  

The analysis is r e s t r i c t e d  t o  the dis- 

Similar investigations were performed by S. Way of 

Westinghouse Research Laboratories [8 7, /-9 7, who used corn- 

bustion-product gases a s  the working medium i n  a channel-type 

l i n e a r  generator. 

him were about half of those theo re t i ca l ly  predicted. 

- - -  

The performance charac te r i s t ics  obtained by 

A d i f fe ren t  model f o r  Dc power generation was proposed 

by J. McCune of Aeronautical Research Associates of Princeton /iOz 

x!m csnducted bcth theoretical and eqez i i ien ta l  hves t igz t fons  

on a vor tex  flow formed between two concentric cylinders placed 

in a steady ax ia l  magnetic f ie ld .  

- -  

The end-plate e f f ec t s  were 
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neglected in this analysis. 

indicate  the general f e a s i b i l i t y  of t he  device f o r  power 

gene rat ion e 

The r e s u l t s  obtained by McCune 

DC-generation systems have some inherent disadvantages. 

F i r s t  of a l l ,  the  use of la rge  scale  M= generators wi th in  the 

ex is t ing  commercial power systems would require the in s t a l l a t ion  

of a number of large,  expensive DC-AC al ternators .  Furthermore, 

the  DC generator cycle i t s e l f  possesses a number of undesirable 

charac te r i s t ics  such as the  electron absorption by the  elec- 

trodes a t  the operational temperatures. 

e f fec t ive  electrode cooling ra i ses  some addi t ional  problems TZJ., 7. 
The necessity of 

- -  
In  view of these disadvantages more recent ly  a t ten t ion  

was given t o  the idea of electrodeless MHD &nerators producing 

d i r ec t ly  AC currents  and u t i l i z ing  magnetic flux linkage instead 

of electrodes. 

A r e l a t ive ly  s m a l l  amount of work has been done so far 

This is probably due on the development of AC-MHD generators. 

t o  the f a c t  that the  induction generators have a number of 

unfavorable operational character is t ics ,  too; some of them are 

considered t o  be ser ious enough t o  cause doubts about the general 

f e a s i b i l i t y  of such devices f o r  la rge  sca le  power generation. 

For example, it can be shown that t h e  power generated by any 

“D-device i s  i n  general proportional t o  the conductivity of the 

working f lu id ,  the  square of its ve loc i ty  and to the square of the 

magnetic f i e l d  s t rength interact ing w i t h  the f lu id :  



On the other hand, the reactive power (Pr) t o  be supplied f o r  

maintaining an a l te rna t ing  magnetic f i e l d  f o r  AC power genera- 

t i on  is proportional t o  WB2/fi ; where /y is t h e  mag- 

ne t i c  permeability of the conductor and Lb/2r is the  

frequency of the exciting f ie ld ,  

/ 

(One may note here t h a t  t h e  

react ive power inherent t o  AC generators has no counterpart 

in DC-devices.) 

react ive power supplied is given f o r  an AC generator as 

Thus the ra t io  o f  the power produced t o  the 

where Rm I B P V L  is defined a s  the  magnetic Reynolds number 

and W* I U L / V  i s  a dimensionless frequency parmetel: 

and L is a charac te r i s t ic  length i n  the system. Hence, for 

CLI* = 0(1) 

the  r a t i o  of the power prochced t o  the  react ive power is pro- 

port ional  t o  the magnitude of the magnetic Reynolds number. 

Prac t ica l  values of Rm i n  MHD generator application range from 

0.01 t o  0.1. 

unduly high, a s  compared t o  the amount of power generated within 

t h e  system, The large reactive power requires t h e  use of cos t ly  

capacit ive equipment on one hand, and it causes subs tan t ia l  

(a r e a l i s t i c  value f o r  commercial generator systems) 

Hence, t he  reactive power supplied t o  the  system is  
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reactive losses i n  the f i e l d  c o i l s  on the  other hand. These 

lo s ses  can p a r t i a l l y  be compensated by i n s t a l l i n g  capacitor- 

banks in the c i r cu i t .  

such compensation, however, is not i n  proportion t o  the  ne t  

power gained. 

The increase or" cap i t a l  cos t  due t o  

Recently, in connection with the appearance of super- 

conductors u i t h  astiociated high c r i t i c a l  f i e l d s  and high 

current carrying capaci t ies ,  and of cryogenic capacitors w i t h  

high qua l i t y  factors,  the in te res t  i n  MHD-AC generators has 

been renewed. A l imited number o f  papers have been published 

on the subject i n  more  recent times, 

I. Bernstein of the Forrestal  Research Center a t  

Princeton University, and others - -  r 1 2  7, investigated the  s lug 

motion (= constant velocity) of a conducting medium between 

two i n f i n i t e  p l a t e s  and, i n  par t icular ,  i t s  in te rac t ion  wi th  

a time dependent magnetic f i e l d  t rave l l ing  p a r a l l e l  t o  t he  

d i rec t ion  of motion of t he  conductorI The electrical  e f f i -  

ciency corresponding to m a r .  power output was found to be 1/2, 

H. Wocdson of Massachusetts I n s t i t u t e  of Technology r l 3  7 - -  
analyzed the in te rac t ion  of a plasma s lug  ( o r  a sequence of 

plasma slugs) t rave l l ing  downstream i n  a shock tube with sole- 

noidal  magnetic f ie ld .  

,d,rJ--gar?nr&ar act ion as applisd tc ?Izfl! gene rak r  devices. 

He obtained some basic requirements f o r  
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A comprehensive description of the basic pr inciples  

of MHD induction generators was given i n  the lec ture  series on 

Engineering 14HD offered by MIT i n  June 1961 r& 7. - -  

SUBJECT AND SCOPE OF 73-E PFtXSEXT WORK 

In the following, an induction type MHD generator w i l l  

be analyzed whose operation is based on the in te rac t ion  of a 

tlrotatingI1 magnetic f i e l d  with a vortex flow of a conducting 

f l u i d  ro ta t ing  in the plane of  t he  magnetic flux l ines .  

of this system is suggested by i t s  r e l a t ive  compactness and the 

l imited work done previously on the analysis of ro ta t ing  MHD 

fields . 

The choice 

The "rotating" magnetic f i e l d  is r e a l l y  the r e s u l t  of 

superposition of two pulsating f i e l d s  with a phase s h i f t  bet- 

ween them: 

BX 
Basin wt ; B = Bocos wt Y 

46 
0 

Superimposing Bx and B it appears t o  a s ta t ionary  
3 

Y Y  
observer that a f i e l d  vector of constant magnitude 

"rotates11 in the x-y plane with a frequency equal t o  
Bo 

W / 2 m  . 
The same induction f i e l d  can be described in  cylindrical-  

polar coordinate system as 

46 
A l l  symbols a re  defined i n  the %ist of 
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Bo = r^ Bo c o s ( u t  - 9 )  

Such a ro ta t ing  f i e l d  i s  produced, f o r  example, by poly- 

phase windings used i n  conventional induction generators. 

The generator chamber is formed by two nonconducting 

coaxial  cy l indr ica l  w a l l s  and two p a r a l l e l  non-conducting end 

pla tes  (Fig. 1). I =  

Fig, 1, 

The working f l u i d  is in jec ted  tangent ia l ly  a t  the  outer  

radius of the  cy l indr ica l  annulus and it leaves the chamber in 



I 
I 
I 
I 
I 
1 
1 
8 
I 
I 
I 
1 

- 9 -  

the r ad ia l  direct ion throughthe por t s  on the inner cylinder 

(Fig. 2) .  

Fig. 2. 

VT - - injecti-on 
ve loc i ty  

V, - exit 
ve loc i ty  

Rotation of' the i ' luid faster than the magnetic f i e l d  

w i l l  induce an a l te rna t ing  current d i s t r ibu t ion  i n  the " f lu id  

rotor" which w i l l  have its own magnetic f ie ld .  

f i e l d  in t e rac t s  d i r ec t ly  w i t h  t h e  exci t ing polyphase windings, 

thus the energy can be extracted f r o m  the  system thmugh the 

same f i e l d  c o i l s  which induce the  primary f ie ld .  

The induced 

In this 

sense the device ac t s  as a conventional AC induction generator. 

For the configuration described above, the three-dimen- 

sional electromagnetic fields, the  ve loc i ty  and the  current 

d i s t r ibu t ions  will be determined by approximate techniques 
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Following t h i s ,  the power generated and the  ohmic losses  

w i l l  be calculated. 

information about the  performance charac te r i s t ics  and the  in- 

t e r n a l  e l e c t r i c a l  efficiency of the generator cycle, 

This i n  tu rn  w i l l  furnish the  necessary 

Finally, an attempt will be made t o  determine the  optimal 

I___ parmeters of t'ne system corresponding t o  maximum operating 

eff ic iency . 

I 
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ASSUNPTIONS AND LIMITATIONS 

The complexity of t h e  three-dimensional problem described 

in the previous section necessitates the  introduction of a series 

of simplifying assumptions i n  t he  analytic, treatment. 

Since the in tens i ty  o f  interact ion between t h e  hydro- 

dynamic and electromagnetic f i e l d s  is determined by the  

mgnitude of the magnetic Reynolds number, I'im9 and Rm << 1 in 

the  case of MHD generators due t o  the low e l e c t r i c a l  conductivity 

of the available working media, the  appl icabi l i ty  and usefulness 

of perturbation technique with Rm as charac te r i s t ic  parameter 

becomes apparent. 

Thus the  analysis will be r e s t r i c t ed  t o  cases when the  

assumption Rm << 1 holds and series expansion in posi t ive 

powers of Rm w i l l  be applied t o  the  various fdeld quant i t ies .  

The  present work is  l imited t o  the computation of  the 

zeroth and first order terms where the zeroth order f i e l d  d i s t r i -  

butions correspond t o  the  complete absence of interact ion between 
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duce corrections t o  the zeroth order quant i t ies ,  

As will be shown la ter ,  f o r  acceptable corwergence of 

the higher order terms , res t r ic t ion .mst  be made on an addi t ional  

electromagnetic parameter; the magnetic pressure coef f ic ien t  

B i s  defined as  S f B o 2 p o 3  3 must be of unit-order ( 

the f l u i d  density and V is a charac te r i s t ic  ve loc i ty  i n  the 

hydrodynamic f i e l d )  

The above res t r ic t ions  imposed on Rm and S assure 

adequate accuracy in  the numerical computations even if only 

the zeroth and first order terms are considwed, as was shown by 

Although the e lec t r i ca l  conductivity of a plasma obtained 

by thermal ionization is a function of the temperature which 

changes as the  power is being extracted, i t  will be am.uned t h a t  

t he  generation cycle can be described in terms of an average 0- 

o r  effect ive e l e c t r i c a l  conductivity which can be considered as 

a constant during the process. Such an approximation yields 

reasonable r e s u l t s  if the  temperature change during a cycle is 

not very large. 

ximately equal t o  (or a t  l ea s t  o f  the same order as)  the ohmic 

losses  within the working substance, hence subs tan t ia l  tempera- 

t u re  changes may not be expected i n  general, 

In MHD generators the power extracted is appro- 

The Hall e f f e c t s  are completely neglected throughout the 

present analysis. muS the  e l e c t r i c a l  conductivity wiU be treated 
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as a sca la r  quantity. 

pressures f o r  t he  working medium so t h a t  t he  product of the 

electron Larmour frequency with the electron co l l i s ion  time 

w i l l  have a value small compared t o  unity (see Ref r 2  7) ., 
This is a reasonable approximation f o r  the  case of MHD generator 

This in  turn implies su f f i c i en t ly  high 

- -  

systems, 

Complete axial symmetry is assumed f o r  the  in jec t ion  and 

e x h a u s t  systems only, 

f o r  example, by inject ing the  plasma through the wal l  of a 

ro ta t ing  porous cylinder 

chamber through a s ta t ionary porous cylinder, t h e  last being 

coaxial  with the  first. 

Such systems can p rac t i ca l ly  bp obtained, 

and l e t t i n g  it t o  leave the  generator 

The present analysis w i l l  be restricted t o  the discussion 

of laminar flow regimes. 

r e a l i s t i c  by J. McCune (see Ref 

cate  a lso  the  general f e a s i b i l i t y  of laminar vortex flow pat terns  

i n  MHD generator application. 

Such an approach was shown t o  be 

r10 7), whose r e s u l t s  indi-  - -  

The presence of the  hydrodynamic boundary layers on the 

Although, due t o  this end p l a t e s  w i l l  be completely neglected, 

simplification, an exact solution f o r  the two-dimensional 

zeroth order hydrodynamic (Navier-Stokes) equations becomes 

avai lable  i n  the  (X , fd) plane, o n l y  the inviscid (potent ia l )  

s o l . t i c n  w i l l  be -pr ---l+ed -L h t h e  sl;bseqiazt datenr,-i,riitlon d t he  

electromagnetic f i e l d  distributions.  

d i f f i c u l t i e s  introduced in the  subsequent mathematical development 

This is necessi ta ted by the 
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by the  presence of terms containing the  hydrodynamic Reynolds 

number a s  a parameter. 

One has t o  make clear distThction a t  this pint between 

the  end-plate e f f ec t s  connected with the hydrodynamic f i e l d s  

and those connected with the elsctromagnetic f i e l d  dis t r ibut ions.  

The neglect of t h e  hydrodynanic boundary layers on the  

end-plates% j u s t i f i e d  by the fact t h a t  the  primary f l u i d  motion 

is a plane motion directed parallel t o  the end plates.  

the disturbance introduced on t h e  f l o w  f i e l d  by the presence of 

t he  end-plates can be localised t o  the v i c i n i t y  of those plates .  

Thus 

Since both the primary f l u i d  motion and the imposed 

magnetic induction f i e l d  a re  local ized t o  the 

t h e  induced electromotive force and a lso  the  primary current 

flow w i l l  be d i rec ted  norxnal.ko -the end-plates. 

l e c t  of the  influence of the  non-aonducting end-plates on the 

zeroth order electromagnetic f i e l d  and current d i s t r ibu t ions  

would be highly misleading. 

(k , 4 ) plane, 

Thus the  neg- 

Therefore, t he  three-dimensional zeroth order a e c t r o -  

magnetic f i e l d  and currevt  dis t r ibut ions w i l l  be determined with 

f u l l  account taken of the  presence of the non-conducting end- 

plates .  

connected w i t h  the  use of the  po ten t ia l  ve loc i ty  dis t r ibut ion.  

The only approximations involved here w i l l  be those 

Further approximations are required, however, f o r  the 

determination of the first order f i e l d  and current  d i s t r ibu t ions  

due t o  the  time-dependent, asymmetric character of the d i f f e r e n t i a l  



equations involved. 

omitting completely not o n l y t h e  viscous e f f e c t s  but also the 

end-plate e f f ec t s  on the electromagnetic f i e l d  dis t r ibut ions.  

Solutions to  these equations a re  obtained 

From the above discussion it becomes apparent that t h e  

hydrodynamic boundary layer  e f fec ts  a r e  completely omitted both 

i n  the zeroth and the first order solutions. 

mation is j u s t i f i e d  f o r  large hydrodynamic Reynolds' numbers o r  

f o r  large scale  generators because the  influence of the boundary 

layer on the various f i e l d  quant i t ies  is es sen t i a l ly  a surface 

exfect,  and as the r e l a t ive  thickness of the boundary layer 

decreases (as by increasing the s i z e  of the  generator o r  de- 

creasing the v iscos i ty  of  the working f l u i d  o r  by both applied 

simultaneously), its influence on the t o t a l  energy output 

becomes less signif icant .  

Such an approxi- 

It should be mentioned here, however, that the boundary 

layer losses in AC - MHD generators are more pronounced than in  

comparative DC-devices. 

In E-generators the emf within t h e  boundary layer st i l l  

has the  same sign as that in the poten t ia l  flow, but it is 

reduced i n  magnitude. 

generators forms simply a leakage path between the electrodes 

t o  shunt the load. 

Therefore, the boundary layer  i n  E- 

In AC-generators, on the  o ther  hand, power is generated 

in that pa r t  of the flow region only, where the ve loc i ty  of the 

conducting medium exceeds the propagation veloci ty  of the magnetic 
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f i e l d  ( t h i s  is the  case of ttnegative s l ip t t ,  where the  s l i p  

veloci ty  is defined in electrical. machinery as  t he  difference 

between the propagation velocity of t h e  magnetic f i e l d  and 

t he  veloci ty  of the  conductor). 

l ags  ,the propagating magnetic f i e ld ,  power is  consumed t o  

speed up the  f l u i d  to  the  synchronous veloci ty  and instead of 

power generation, pumping action t&s place, 

boundary layers the  veloci ty  is reduced t o  zero a t  s ta t ionary  

w a l l s ,  a t  least a pa r t  of the boundary layer w i l l  always a c t  

not only aa a leakage path f o r  eddy currents, but also as a 

power consuming region. 

a r e  not considered herein. 

In flow regions where the  f l u i d  

Since within the 

As has been indicated, these losses  

Since the  power supplied t o  the field coils f o r  main- 

taining the  applied magnetic, f i e l d  is much l a rge r  than the 

power transmitted tQ the load (as, has been shourl: 

the maximum power 'output t o  the power input is proportional to 

the magnitude of the magnetic Reynolds number), the d i s to r t ion  

of the applied magnetic f ie ld  by the charac te r i s t ics  of  the 

load c i r c u i t  w i l l  be completely neglected. 

t he  ratio. of 

Finally, in the process of the following analysis, the  

working fluid w i l l  be assumed t o  be incompressible. 

some l imitat ions on the magnitude of the inject ion veloci ty ,  

This implies 



PART A. FIELD D I S I I I I B U T I O N  

l e  MATHEMATICAL FOT1MULATION OF THE PROBLEM 

1. Basic Equations 

The laminar motion of an incompressible e l ec tr i ca l ly  conduct+ 

ing f l u i d  in the presence of a magnetic f i e l d  can be described in 

term:! of %e foll!?%ing eq?zticns: 

Mass conservation: 

v . ? =  o *  (1.1n1) 

Momentum conservation: 

P D t  

The generalized Ohm's Law, a f t e r  neglecting the Hall currents, 

can be written as 

* For the notation, see the L i s t  of Symbols. 

-16- 
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Since the divergence of the current density must vanish, 

The energy equation will be introduced and discussed 

in a later section. 

2. MHD Approximation 

One frequently encounters magnetohydrodynamic problems 

dealing with f l u i d s  and plasmas of low e l e c t r i c a l  conductivity 

and negl igible  net charge accumulation i n  the bulk of the f lu id .  

In such cases the applied e l ec t r i c  and magnetic f i e l d s  cause 

merely a r e l a t ive  motion of the charged pa r t i c l e s  i n  an almost 

neutralized s t a t e .  

i s  usually excluded except in t he  v i c in i ty  of non-conducting 

boundaries, and the  bulk of the f l u i d  can be considered as  an 

e l e c t r i c a l l y  neut ra l  medium. 

Thus the poss ib i l i t y  of charge accumulation 

The e l e c t r i c a l  charge densi ty  

is assumed t o  be zero in  most of the flow region. 

The magnetic permeability of the  f l u i d  can be approxi- 
9 

mated usual ly  by using the permeability of a vacuum space, 

Furthermore, the displacement and magnetization cur- 

ren ts  can also be neglectedusually,  



With the above approximation the Maxwell equations can 

be rewrit ten as 

(1.2 01) 

(1.202) 

Equations (1.2.1) and (1.2.2) define the magnetic f i e l d ;  the 

e l e c t r i c  f i e l d  can be determined subsequently using equations 

(1.2.3) and (1.2.4). The E t e r n  i n  (1.2.5) contains r e a l l y  

two parts: 

+ 

an induced e l ec t r i c  f i e l d  given by (1.2.3) and 

measured i n  a coordinate system where the magnetic induction 

f i e l d  has a non-vanishing time derivative,  and a s t a t i c  e l e c t r i c  

f i e l d  determined by the boundary conditions. The s t a t i c  f i e l d  

can be described usually in terms of a potent ia l  function, 

Careful consideration should be given t o  the use and 

l imi ta t ions  of equation (1.2.1). 

Reynolds number applications equation (102e1) is often neg- 

Although i n  small magnetic 

lec ted  and the current dis t r ibut ion i s  determined by using 
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equation (1.2.5) exclusively, it should be c lear ly  understood 

t h a t  equation 

meaning men if  the inducedxagnetic f i e l d  is m c h  smaller % h a  

a x ;  = 4 ? has a very well defined 

the applied induction f i e l d ,  

The ro le  of equation (1.2*1) in s m a l l  magnetic 

Reynolds number application can be seen from the  following 

argument e - 
If the in te rac t ion  o f  an applied magnetic f ie ld ,  Bo , 

w i t h  a conducting f l u i d  i s  considered, then the term 
-3 /Lis''V x 5 gives the  current d i s t r ibu t ion  Jo which 

induces the "outside" (= applied) magnetic f ield,  Hence 

0 x 7  0 = Ja 
relates the applied magnetic f i e l d  with the  current d i s t r ibu t ion  

maintaining the f i e l d  Bo , + 

+ 
Assuming now boundary conditions such tha t  E s 0 

i n  the  flow region, the current d i s t r ibu t ion  i n  the moving 

f l u i d  is  given by 

3 
I = 6( V"xT) , where 

B =  Bo + bi j 

f 

bi 
currents 

being the  magnetic induction f i e l d  generated by the induced 

Equation (1.2 1) yields now : 
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If the magnetic Reynolds number is su f f i c i en t ly  low, 
- 3  

- * 
then bi << Bo and Ohm’s Law can be rewrit ten as  I cV(Vx Bo), 

but  the equation ox?p, = MOT remains unchanged and 

valid, ~fnce *he condition (( B’ does not imply any res- 0 

t r i c t i o n  on the derivatives o f  

From t h e  above considerations follows that the  equation 

v X = 4 7  can always be used.. %For t h a t  par$ of 
----p ,. 

the  space where fo 5.0‘ ‘the above equation can be repladed .. 

The assumed 4ydrodynamic boundary conditions are as 

follows : 
azimuthal 

The f l u i d  of giveqveloc i ty  VI and pressure pI is 

injected tangent ia l ly  in to  the ver tex c h ~ ~ b s r  a t  the mtsr cy2.k- 

der Kith an approximate dsymmetr ica l  veloci ty  dis t r ibut ion.  

(This condition can be obtained, f o r  example, by in jec t ing  the  
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f l u i d  through a ro ta t ing  porous cylinder,)  

the  chamber through r a d i a l  ports on the inner cylinder ( a  

s ta t ionary  porous h e r  cylinder would correspond t o  the 

ideal ized examgle given above). 

outer cylinder is defined by the contfnuity condition. Sfrics 

the end-plate e f f ec t s  are neglected, no boundary conditions 

w i l l  be ascribed in the a-direction, Using cyl indr ica l  polar 

coordinates the above considerations imply that 

The f l u i d  leaves 

The r a d i a l  ve loc i ty  a t  the 

= Q$A, a t  r - R~ (18 3 3 ) i t  

where 40 is t he  tot.al volume flow and A. is the area of the  

e x i t  ports at r = Ro I n  addition, it is assumed that 

In  general, the  following boundary conditions can be 

applied t o  t he  electromagnetic fields: 

The tangent ia l  component of the e b c t r i c  f i e l d  is con- 
t 

tinuous a t  an interface (such as the wall of the generator 

chamber); Bt2 - Etl . ( 1  e 3 e 5)  
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The 

f i e ld  a t  an 

*2n 

The 

change of the normal component of the e l e c t r i c a l  

in te r face  is equal t o  the surface charge density: 

- E h  = - qk0 
normal component of  the magneticlfield In t ens i ty  

is continuous a t  the interface: Hn2 - Hnl - 0  (1.3.?) 

The change of the tangential component of the magnetic 

f i e l d  in t ens i ty  a t  the interface i s  equal to  the surface current 

density d is t r ibu ted  there  : 

Furthermore, considering a conducting medium bounded by f i n i t e  

nonconducting boundaries, the normal component of the current 

must vanish a t  t he  npnconducting envelope. 

e l e c t r i c  f i e l d  must have a vanishing normal component a t  the 

boundaries 

Thus the t o t a l  

4 e Nondimensionalisation of  the Equations 

The charac te r i s t ic  or reference values f o r  t he  physical 

quant i t ies  described by the  basic equations w i l l  be chosen as  

follows : 

The ac tua l  width of the flow duct 3 - Ro E AR 
shall be used as reference length. 
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Since the performance charac te r i s t ics  of a conventional 

induction generator are strongly influenced by t h e  magnitude 

of the so-called s l i p  velocity (defined i n  e l e c t r i c a l  engineering 

as the excess veloci ty  of the propagating magnetic f i e l d  over 

the  veloci ty  of the conductor), we s h a l l  choose f o r  a reference , 

veloc i ty  a quant i ty  numerically equal t o  the negative slip 

veloci ty  a t  the outer  radius: 

- wF$ s AV 

( Ci7/2p is the frequency of the  applied induction f i e ld . )  

The reference quantity f o r  the magnetic f i e l d  w i l l  be 

the  applied induction f i e l d  s t rength Bo j the e l e c t r i c  f i e l d  

w i l l  be nondimensionalized by the  product ( AV Bo ) . 
The following dimensionless quant i t ies  can be introduced 

now : 

xi xi 
' T R  ; 

m 
U 

% - Ro xi 
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With the  a id  of the nondimensional quant i t ies  presented 

here, the basic equauons can be wri t ten i n  the following form: 

-*  a;" 
a t* 

a * X E  - -- 

( l e 4 0  8) 
+* -* -* 4 u  

where I = E + V X B 

The dimensionless flow and f i e l d  parameters appearing 

i n  the above equations are  defined as 
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is the magnetic Reynolds number; 

( 1 oh. 10) 

is the magnetic in te rac t ion  parameter and it can be wr i t ten  a s  

is the  magnetic pressure coefficient. 

Equations ( lobob)  t o  (1.4.8) can be combined t o  give 

an a l te rna te  expression for the magnetic f ie ld :  

For the sake of simplicity,  we s h a l l  omit the a s t e r u k  from the  

dimensionless quant i t ies  throughout the following sections. 

sb Ser ies  Expansion in Term of Magnetic Reynolds Numbers 

Since to obtain an exact solution f o r  the basic s e t  of 

equations (given by (l.h,2j t o  (Lb.8) would be most d i f f i c u l t  

f o r  the given three-dimensional configuration, the application 
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of an approximate method, such as se r i e s  expansion i n  a charac- 

t e r i s t i c  f i e l d  parameter, becomes unavoidable. 

As it has been previously indicated, i n  "TI flows the 

magnitude of the magnetic Reynolds number indicates  the interac-  

t ion-intensi ty  of the hydrodynamic and electromagnetic f i e l d  

d is t r ibu t ions  and usual ly  Rm (( 1 in MHD generator applica- 

t ions.  The na tura l  choice is, therefore, the s e r i e s  expansion 

of the various f i e ld  variables i n  posi t ive powers of t h e  magnetic 

Reynolds number (Ref . [ 15J) : 

2 p = Po + Rm p1 + Rm p2 + 0 . .  

3 3 3 0- 

I = I* + Ebn.I1 + RmL12 + ... 

These quan t i t i e s  canbe  subs t i tu ted  now in the basic  

set of equations and equating then the terms containing l ike 

powers of Rm,ordered s e t s  o f  equations a re  obtained. Solution 

f o r  each set of equations is  obtained by u t i l i z i n g  the previous 

lower order solutions,  as w i l l  be seen later. 
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The complete solutions f o r  the various f i e l d  d is t r ibu-  

t ions  a re  obtained i n  the form of i n f i n i t e  series which a re  ex- 

pscted t o  converge f o r  mall v d u e s  of &. . Tie r a t e  of con- 

vergence, however, is  controlled by the magnitude of the 

magnetic pressure coeff ic ient  S as  can be seen from the 

momentum equation (104.3), where N s SRm . 
For small magnetic Reynolds numbers, d i s t inc t ion  should 

be made between the following cases: 

coef f ic ien t  S is much larger  than unity (strong magnetic 

fields coupled w i t h  mdera t e  ve loc i t ies ) ;  b) the  magnetic 

a) t h e  magnetic pressure 

pressure coef f ic ien t  is of  unit order o r  less. 

For large values of S (case ttart), the  product SRm 

i n  the momentum equation might be of u n i t  order o r  l a rge r  

(N 2, 0(1) ) even i f  the magnetic Reynolds number i tself  is small 

compared t o  unity; thus the omission of the electromagnetic term 

f r o m  the zeroth order equation could not be ju s t i f i ed .  

cases, performing the  se r i e s  expansion in  Rm the magnetic 

In such 

in te rac t ion  parameter N should be re tained i n  the momentum 

equation and t rea ted  as an independent parameter, As a r e s u l t  
$ 

of such procedure, t h e  zeroth order  momenturn equation w i l l  

already contain an electromagnetic Germ, 

If the  magnetic pressure coef f ic ien t  is of u n i t  order 

(case ltbt8), then the order of the magnetic in te rac t ion  parameter 

is defined by the magnitude of the magnetic Reynolds number: 

N -0 (Rm) , and the electromagnetic term i n  the momentum 
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equation becomes small compared t o  the  other  terms. If a s e r i e s  

expansion i n  Rm is made and S is retained now as independent 

parameter, the zeroth orcler hydrodynamic equations w i l l  be 

completely uncoupled from the electromagnetic f i e ld  equations. 

This is  i n  f u l l  accord with the physical nature of the phenomenon 

discussed here: f o r  N k O ( € & n )  << 1 the electromagnetic 

term i n  the momentum equation is small enough, so that i t s  in-  

fluence on t h e  veloci ty  dis t r ibut ion can be completely neglected 

i n  the first (= zeroth order) approximation, 

The magnetic pressure coeff ic ient ,  S , w i l l  be assumed 

t o  be of unit order throughout the present analysis so that f u l l  

advantage of the mathematical s implif icat ion offered by the  per- 

turbation techdaue  can be taken6 

t o  the determination of the  zeroth and first order f i e l d  distri- 

The analysis w i l l  be r e s t r i c t e d  

butions, i.e., the  first two terms i n  the se r i e s  expansion. 

It should be mentioned-here, however, that the same procedure 

could be applied t o  cases w i t h  moderately la rge  values of S , 
but a grea te r  number of terms o f  the  s e r i e s  expansion would have 

t o  be calculated f o r  sat isfactory accuracy o f  the  solution. 

Subst i tut ing now (1.5.1) into t h e  basic set  of equations 

(1.4.2) t o  (1.4,8), and equating the terms containing l i k e  

1 
I 
I 

powers of Rm 

el? taint? d : 

Zeroth 

v. 

the following ordered sets of equations are  

order: 

+ vo = 0 
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with 

where 
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* 3 4 3 
= Eo + Vo X Bo Io 

(105.5) 

(1.5.6) 

The zeroth order magnetic induction f i e l d  is completely 

determined by the applied magnetic f i e l d  and it need not be 

considered here. 

As can be seen, the hydrodynamic equations are  completely 

uncoupled from the r e s t  o f  the zeroth order s e t ,  

F i r s t  urder : 

( 1 1 5 e lo) 
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4 - 
with v* El = 0 or v. 11- 0 

where I1 = El + V O X  5 + ViX Bo 

The second order equations are as follows: 

a.T2 = 0 

( 1.5 . 11) 
(1.5.12 ) 

(1.S.U) 

* - + *  - + - 
X B 2  - El + Vo X B1 + V1 X Bo 

V ' T  = 0 

( 1.5.16) 

(1. S.18) 

--c * - 3  - 3  
where I2 = E2 + VOX BE + V1 X B1 + V2XBo (1 .6. 20) 

Using the same method higher order sets can also be obtained. 
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6, The Choice of Coordinate System 

There are two poss ib i l i t i e s  in choosing the coordinate 

system, nei ther  of them offers any par t icu lar  advantages re la -  

t i v e  t o  the other, 

One of the  poss ib i l i t i es  i s  a space-fixed coordinate 

system. 

here are axisymmetric, the obvious choice i s  the cylindrical-  

polar coordinate system fixed with respect t o  the inner (sta- 

t ionary) cylinder, The z-axis is directed along the  axis  of the 

concentric cylinders and the end-plates a re  given by the coordi- 

nates z = 0 and z - L . The applied magnetic f i e l d  is 

described i n  t h i s  system as 

Since the boundaries of the generator device discussed 

A 4 

*O = r cos(cut - # )  + dsin(wt - a( )  (1.6.1) 

where &/2p i s  the frequency of the "rotating" magnetic 

f ie ld .  

order hydrodynamic equations) are  time-dependent i n  t h i s  system 

a s  w e l l  as functions of the azimuthal coordinate " # # I .  

The f i e l d  equations (with the exception of the zeroth 

The second choice of the coordinate system is suggested 

by the nature of the  electromagnetic induction phenomenon. 

was pointed out previously, the various f i e l d  quant i t ies  depend 

sn t14a nagnitude of the !tsl.ipt! ----, V U I U G L ~ ~  - -' rather than on t i e  

absolute magnitude of the velocit ies,  

appears t o  "rotate" with a uniform velocity,  one can f i x  the 

As 

Since the magnetic f i e l d  
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coordinate system to th i s  rotating f ie ld  thus eliminating the 

time debendence from the basic equations. 

azimuthal dependence still rsmains as can be seen from the 

transformation formulas given below. If the quant i t ies  mea- 

sured i n  the ro ta t ing  system a r e  denoted by primes, then the 

following correlat ions hold (Fig. 3) : 

Unfortunately the 

_e 
rl = r I t  -- 

8' 

I 

v r  

I 

v* = vz Figure 3 

(1.6.2) 

and the time independent magnetic f i e l d  i n  the ro ta t ing  system 

is described as 

The c u r l  of the e l ec t r i c  f i e l d  vanishes i n  the ro ta t ing  

coordinate system (see Equation 1.4.6), thus the basic equations 

can be wri t ten i n  a somewhat simpler form, 

When the inverse transformation is made, however, from 

the ro ta t ing  t o  a space fixed coordinate system, an addi t ional  

e l e c t r i c  f i e l d  must be calculated due t o  the r e l a t ive  motion 

of the two coordinate system (Ref. r 1 6  7, /-17 7). Hence, - - - -  
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nei ther  of the coordinate systems of fe r s  pa r t i cu la r  advantages 

r e l a t ive  t o  the other i n  mathematical sense. 

In  d i f fe ren t  parts of the aalysis,  however, one coor- 

dinate system may be more convenient than the other  and each 

w i l l  be used accordingly. 
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11. THE ZEEtOTH ORDER FIELD DISTRIBUTIONS 

The solution of the zeroth order set  of equations w i l l  

be obtained in a space-fixed coordinate system. 

1 .> The Hydrodynamic F i e l d  

The zeroth order hydrodynamic equations corresponding to 

the conditions outlined in the introduction can be wri t ten i n  

expanded form as 

(2 e1.1) 

(2.1 -2) 

- 34 - 
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with the boundary conditions 

P O  = P I  f 
RO p. a t r = n a  

v#o 

'ro 

where VI, vo, P I  a re  dimensionless quant i t ies ;  Vo = w(Qo/Ao); 1 

Qo being the t o t a l  volume flow and A. the t o t a l  area of the 

e x i t  ports.  

Since the electromagnetic f i e l d  does not  a f f ec t  the zeroth 

order ve loc i ty  d is t r ibu t ion  and the boundary conditions imposed 

on the hydrodynamic f i e l d  are steady, dsymmetric, the quant i t ies  

described by (2.1.1) t o  (2.1.3) will depend ne i ther  on time nor 

the azimuthal coordinate. 

Under such conditions Eq (2.1.1) can be solved a t  once: 

, I  

. .  

const 
31 

vro r 

. .  

of applying the boundary condition ( 2  J.7) 

v - 9  , where Q I ro  r 

(2.1.8) 

(2.1.9) 
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Equation (2.1.3) can be written now: 

r) 

(1- QRe) -2 dc%o 1 dv$2fo + -  - 
r 2 r d r  d r  

(2.1 s o )  

The general  solution of (2  .lolo> is represented by: 

. .  
(2 01 011) 

where D E 1 + c&e 

The constants a and b can be determined by applying (2  J.4) . .  
and ( 2 J o 6 ) ~  

af” + b = VI 

(2.1 .E?) 

I “p.” + -1 D 0 

Hence 

where 

Thus the visoous solution f o r t h e  zeroth order azimuthal ve loc i ty  

can be wri t ten as 
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The expression f o r  V #  has the  fami l ia r  s t ruc ture  characterix- 

ing the cy l indr ica l  Couette-flows: 

terms, one being directly-,  and the o ther  inversely proportional 

t he  polynomial contains two 

t o  some power of r . 
The zeroth order pressure dis t r ibut ion is. determined by (2.1.2) . 

n n 

(2.1.16) 

Hence 

The complete solutkon can be obtained by applyhg the condition 
. .  

(2.1.5): 
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,2 

D+1 
+ 02(I)il),( - 1) - & (1 - r;-l) 1 (2.1.18) 

r, I J 

where r is  defined as I 

(2.1.19) 

A s  w i l l  be seen l a t e r ,  t he  presence of t he  ( r  D ) term i n  the 

expression f o r  the viscous velocity d is t r ibu t ion  (D is  a constant 

proportional t o  the hydrodynamic Reynolds number) introduces 

subs tan t ia l  d i f f i c u l t i e s  i n  the  procedure of determination of the  

corresponding electromagnetic f ie lds ,  especial ly  i n  case o f  large 

Reynolds numbers. 

Therefore, the  inviscid solution w i l l  be used and t h i s  

can be obtaimd f r o m  (2  .I .I) to ( 2  e1.3) by considering iiie 

l imit ing case when Re  - 00 . The above equations can be 

rewrit ten now as 
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%o dr dvdo + vroV#o r = o  

with 

(31 V + o  = VI a t  r = 

(The no-slip boundary condition is  dropped .) 

wi th  

(2.1.20) 

(2 01.21) 

The solution of the  zeroth order r ad ia l  velocity remains 

unaltered. 

Equations (2.1.20) and (2*1.21) are s a t i s f i e d  by the following 

solut ion : 

Equations (2.1.22) and (2.1 2 3 )  are the well-known potential 

vortex solutions. 
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2.) The Electric Field 

The dimensionless equations (1 .5.4), (1.5 -5) describing 

the zeroth order e l e c t r i c  f ie ld  can be wri t ten i n  expanded forn 

as follows: 

( 2  02.1) 

(2.2.2) 

We s h a l l  assume t h a t  the equation (2.2 2) i s  s a t i s f i e d  i n  the 

en t i r e  flow region except i n  a t h i n  layer a t  the boundaries 

where a charge accumulation i s  assumed t o  take place. As a 

consequence of t h i s  hypothetical charge d is t r ibu t ion ,  the  normal 

component of the current vanishes a t  the  non-conducting boundaries. 

The e l ec t ros t a t i c  f i e l d  generated by t h i s  charge d is t r ibu t ion  

i s  i r r o t a t i o n a l  hence it can be described by a po ten t i a l  function. 

Accordingly, it can be assumed t h a t  
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+ + 
where Eal is gbverned by (2.2.1), EO2 is  the  e l ec t ros t a t i c  

f i e l d  and is described as 

The boundary conditions on 

imposed on the  current dis t r ibut ion (1.5.6) a t  the  nonconducting 

boundaries : 

Po are defined by the  r e s t r i c t ions  

-E)@o + (Vo x + Bo) = 0 

v IrO = E r o l - c  

(2.2 -6)  

a t  z =  0 and z = L 

Thus the  boundary conditions on pj0 i n  exp l i c i t  form: 

EzOl + VroBpo '$oBro 
-6 
- =  (2.2.6a) 

at z = G  ; z = L  

Furthermore, f o r  #e given configuration, go cannot be a discon- 

tinuous function o f  the azimuthal coordinate # . 



I n  the following, solutions w i l l  be obtained f o r  the 

e l e c t r i c  f i e l d s  EO1 and EO2 . 
4 

The set of equations describing Eol (2.2 .I) is  sa t i s f ied  

by a solution of t he  following form: 

The two vanishing f i e l d  components are explained by the 

w e l l  known physical principle t h a t  the induced electromotive 

force  is perpendicular t o  the plane i n  which the  magnetic f lux  

l i n e s  tlcutlt the  conductor . 
--c 

Next, the  f i e l d  EO2 given by the po ten t i a l  function 

w i l l  be determined. 

The boundary conditions on 4 are rewri t ten now as 

= O a t  r =  Po ; r = PI (2.2.8) Q@O 

(2 02 091 

The boundary conditions (2.2.8) , (2.2.9) together with the basic  

equation 02@o = 0, define 

the  region yo ,L r PI , 0 B & L whose normal 

der ivat ives  are specif ied on the surfaces bounding the  region. 

go as .an analyt ic  function i n  
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The boundary value problem t h u s  defined i s  an example of the 

Neumann problem and i t s  solution is  straightforward i f  the  

corresponding modified Green's function (=  Neumann function) 

i s  found for t he  given configuration, 

The d i f f i c u l t i e s  connected with the construction of the  

Nemann function f o r  a f i n i t e  cylinder suggest the  use of some 

other  method f o r  the  solution of the given problem. 

application of some in t eg ra l  transformation appears t o  be most 

convenient, as well be seen later. 

The 

Since the boundary conditions contain both s in(cu t  - >d ) 

and c o s ( w t  - #) terms, it is  assumed t h a t  

where dl and gO2 m u s t  s a t i s f y  the  equations 
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Since the normal derivatives o f  the functions psOl and dO2 
are  given a t  t h e  endpoints o f t h e  z-interval, a f i n i t e  Fourier 

cosine transform w i l l  be applied wi th  respect t o  the z-coordinate. 

The transformation coordinates are defined as 

. .  

(2.2.13) 

The f i n i t e  Fourier cosine transforms of ";ol and 

be defined now as 
d;02 w i l l  

h 
/ I  

0' 
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Then the  functions @ol and @02 are given as 

(2 .2  .16) 

. .  

(2.2.17) 

Note that 

0 

P 

i.= 1 , 2 ,  

Fur the more, 
e II 

N 
2 = II 
1 

I 
2 

. .  
(2.2.18) 

(2 .2 .19)  

. .  

(2 .2 -20) 
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I n  the  present case 

Thus the  equations (2.2.31) and (2.2.12) can be transformed 

i n  t o  

A A 

with - - (2.2.22) 

The summation index appears as parameter; therefore,  th ree  

separate cases will be considered now. 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

a) For n = 0 

5 0  = 

c20 = 

- 47 - 

a r + borl -1 
0 1  

-1 
corl  + dorl 

with a. - b d y 0 - 2  = o  

-2 
a o - b d ? I  = O 

co - do y o  
-2 = 0 

-2 a 0 

Hence Cl0 = C20 0 

. . .  

b) For n = 2, 4, 6 ,  ... 2k 
. .  

k = 1, 2, 3, 4, ... 
1 - ( - l ) n  = 0 and the d i f f e r e n t i a l  equa t ions  

( 2  J . 2 2 )  and (2  L.23)  can be w r i t t e n  as 

(2.2.23) 

(2  -2.24) 

(2.2 .25) 

(2.2.26) 

(2.2.27) 
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I I 

(2.2.27 ) 
Cont d) 

The d i f f e r e n t i a l  equations with the corresponding boundary 

conditions given by (2.2.27) a re  examples of t he  general  

Sturm-Liouville problem (see Ref 1 1 8 7  and [19 - 7 ) .  
The d i f f e r e n t i a l  equation f o r  Cln and C2n together 

with the corresponding boundary conditions are a l l  homogeneous, 

thus unique solutions t o  these equations cannot be obtained 

without specifying additional, nonhomogenous boundary condi- 

t ions .  Furthermore, since the boundary conditions specified 

f o r  the e l ec t ros t a t i c  f i e l d  and represented a f t e r  the f i n i t e  

Fourier transforms by the RYS-s of equztions (2.2.21) and (2.2.22) 
. .  . .  

are  not included any more i n  the equations (2.2.27), a l l  even 

values of the  index n w i l l b e  omitted from fu r the r  

considerations. 

c.) For n = s e 2k + 1 = 1,3,5,7, ... 
k = 0,1,2,3, (2 02.28) 

equations (2.2.22) and (2.2.23) can be rewrit ten as follows: 



= o a t  r l = m  yo ; r l = m  with dCls 
drl 

dC2s 

drl 
with - = 0 a t  rl = m 

. ,  

(2.2.29) 

(2 .2 40) 

The complementary functions corresponding t o  the homo- 

geneous m-s of equations (2.2.29) and (2.2.30) are: 

(C2& = C S I l  (sr1) +De K1 (sr1)  

The par t icu lar  integrals corresponding t o  the  m-8 of 

(2.2.32) 

t h e  above equations can be computed f o r  each case as 

where 

i = 1 , 2  
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W being the Wronskian of I$ and s(2 

5 5 I l (sr)  

R2 f K1(sr) 

fi 5 HIS of equations ( 2 . 2 . 2 9 )  o r  (2.2.30), respectively. 

~ e n c e  the partictiiar in tegra i  of eqn. (2.2.291 contains 

; 

such terms as  

t Vpo(t) K1(st)dt (2.2.34) 1 t Vqo(t) I1(st)dt and 

rO 

’i 
Consequently if  the viscous velocity d is t r ibu t ion  is t o  be used 

i in tegra ls  such a s  

r’ 
0 

have t o  be evaluated, 

D = 1 + Q R e .  

The recurrence 

i n  general is given as 

tN Z ( t ) d t  = n 
r 

0 

tD” %( s t ) d t  and 7 tD’%l( s t ) d t  would 

rJ 
0 

fhere D is defined by (2.1.11) as 

fomula f o r  cy l indr ica l  function (Zn( r ) )  

r - (N2-n2) ( tN-’Z n ( t ) d t  + 

+ [plZn+l( r) - (N-n)Q’Zn( r )  1 , where N 
rO 

d 
0 

r 
1 

is an a rb i t r a ry  number. 

could be derived a l so  f o r  t h e  modified Bessel-functions,. 

Obviously the number of  terms required f o r  the evaluation of the  

One may assume t ha t  s imi la r  expression 
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above in tegra l  (see t h e  recurrence formula) approaches the numeri- 

c a l  value of the hydrodynamic Reynolds 

Thus f o r  flows with high Reynold$. nunbers t h e  integration process 

c l ea r ly  becomes impractical. 

number i n  the given case. 

Because of these d i f f i cu l t i e s  the llinviscidll veloci ty  

d is t r ibu t ion  w i l l  be used i n  the d e t e n i n a t i a n  of t he  electro- 

magnetic fields, 

gross resu l t s  as  f a r  as  t h e  overall power generation is concerned 

if the  hydrodynamic Reynold6 number characterizing the system 

Such an approximation must y ie ld  sa t i s fac tory  

is  su f f i c i en t ly  high and the flow region with pronounced surface 

effects (such a s  the  boundary layer) is  comparatively small (as 

i n  case of large sca le  generators). 

Taking advantage of the inviscid veloci ty  d is t r ibu t ion  

given by ( 2  . l . 9 ) ,  (2 .1 .22)  the par t icu lar  in tegra ls  of eqns . 
(2 .2 .29)  and (2 .2.30)  can be writ ten a s  

S 
( 2  . 2.36) 

Hence the  complete solutions f o r  ClS and C2s can be 

wri t ten as 

C2s = CsI1(srl) + DsK1(srl) - - 2 4 /' '. 9 
s 2  * ( 2 2 J 8  1 
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Cs and DS a r e  defined 
BS' 

The integrat ion constants As¶ 

f o r  each value of s by t he  following sets of equations: 

J 
Hence the  poten t ia l  function f o r  the  i r ro t a t iona l  part 

of the zeroth order e l ec t r i c  f i e l d  can be wr i t ten  i n  t h e  fol- 

lowing form: 
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$o = {psI1(smr)'+ BsK1(smr) - 
P I V I  

- 2  2 s m  
(wr - -11 r cos ( a t  - $1 + 

n 

(2.2.b)  

where! s = 1, 3, 5,  7, ...: = 2k + 1 

constants A,, Bs, Cg, and Ds a re  given by equations (2,2.39) and 

( 2 . 2 -40 ) 

: k* = 0, 1, 2, .... and the 

Thus the zeroth order e lec t r ic  f i e l d  can be computed on the 

basis of (2.2.3): 

A 
= krw cos ( u t  - 4) - q0 

, o  ( 2 . 2.1t2) 

One may notice a t  t h i s  point that t h e  solution obtained for  4 
form of an i n f i n i t e  s e r i e s  does , n o t  converge t o  ti;e value of the 

function To a t  the endpoints of the in te rva l  ( a t  z = 0 and z = L:), 

The exact solution requires 

in 
0 

(see equ. 2.2.6a). 

transform cannot s a t i s f y  this condition because sin 0 = sin sn = 0 

f o r  any integer  value of nstpr This re su l t s  from the  anplication of a 

Fourier cosine transform to a piecewise c o r t i n m s  finction. ( A  similar sit-  

ua t ion 

The solution obtained by a f i n i t e  Fourier cosine 
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occurs, for  example, when one t r i e s  to expand the u n i t  stepfunction 

i n t o  a Fourier s ine  ser ies .  

t ion everywhere except a t  %he end-points of the in te rva l . )  

The series will converge to the f'unc- 

Ejrlnmding the f i r s t  term on the  RHS of  (2,2.42) i n t o  an infin- 

i t e  Fourier s ine  ser ies :  

m cos (at - b )  = 4 c (ra cos(o t  - 4 ) )  sin (smz) 
s s  

( 2 . 2.43 ) 

s = 1, 3, 5, 7 ,  2k + 1 ; k = 0,  1, 2, .... 
The components of the zeroth order e l e c t r i c  f i e l d  can be writ ten a s  

follows : 

(2.2.44'.) . 



E = Z (sm) sin (smz) (smr) + BsK1(smr) + 
S 

a0 



111. THE FIRST ORaER FTELD DISTRIBUTIONS 

The first order or  perturbation f i e l d s  a r e  defined by equa- 

The mathematical analysis connected with the solution of 

these equations becomes qui te  involved due to the three-dimensional 

zeroth order electromagnetic fields and cur ren t  d i s t r ibu t ion  defin- 

ing some of the first order quantities. 

Since an exact solution t o  the s y s ~ n !  of equations described 

above does no t  appear t o  be available, approximate methods of solu- 

t ion will be used. 

I n  order t o  obtain a s ignif icant  reduction i n  the complexity 

o f  the problem, the end p l a t e  effects  Will be completely neglected 

i n  the first order solution. As was shown by I. Bernstein [12] 

such an approximation is  w e l l  j u s t i f i ed  if the duct ConfigWa%iSn 

i s  such that currents  a r e  deflected from their principa) direct ion 

( the  z-direction here) a f t e r  a considerable f low length only. This 

condition is  s a t i s f i e d  i n  the given case if the height of the gen- 

era tor  chamber i s  la rge  compared to  the width of the annulus, 

For suf f ic ien t ly  la rge  (L/%) r a t io s  the eddy currents (the 

r and $ current  components i n  the given case)  become negligible 

compared to the cur ren t  flow i n  the z-direction, Consequently 

the complete neglect  of end plate effects leads to a one-dimensional 

current d i s t r ibu t ion  thus reducing the d i f f i c u l t i e s  connected with 
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the mathematical treatment of the problem. 

The F i r s t  Order Velocity Field 1.) 

The d i f f e ren t i a l  equations describing the f irst  order veloci ty  

and pressure dis t r ibut ions can be writ ten i n  the following form: 

(3 .1e2)  

+ a t  r o  a r  r r l  a r  r + v  avO1 

3 4  R 2 - V  B B ) +  
+ vrl v$o = - r rs~p  + - voo ro  r o  ro $0 

(3.1.3) 

The momentum equation i n  the z-direction is completely mu%tfed 

i n  view of the assumticn described above, 

_ _  



Since the zeroth order solution s a t i s f i e s  the exact bound- 

ary conditions, the boundary conditions ascribed to the perturba- 

tion f i e ld  quant i t ies  must be homogeneous: 

v = 0 a t  r = p o ,  rl 

0 a t  

and for the pressure dis t r ibut ion 

The electromagnetic terms, appearing on the RHS-s of equ.-s 

(3.1.2) and (3.1.3) a re  periodic functions of the nondimensional 

time t and the &coordinate, 

an axisymmetric, time-independent flow pat tern as was done i n  the 

zeroth order solution, 

Therefore one cannot assume a p r i o r i  

The presence of time and 4 derivatives in eqyhtions (3.1.1) 

t o  (3.1.3) makes the attempt to obtain an exact solut ion f o r  the 

hydrodynamic f ie ld  dis t r ibut ions d i f f i c u l t ,  Thus tQe search far 

an approximate solut ion appears to be j u s t i f i ed  in the given case. 

&e way t o  obtain an approximate solut ion f o r  the above equa- 

t ions is t o  solve them f o r  the time average of the hydrodynamic 

quant i t ies  (velocity, pressure) taken over the period of the mag- 

ne t ic  f ield-rotation. This procedure, however, eliminates the 

periodic dependence of the physical quant i t ies  on the 4-coordin- 

ate. Since useful power is produced only by those current  compon- 



- 59- 

I 
' I  
I 
I 
I 
1 
i 
1 

ents which a re  i n  phase with the voltage (a Fhase s h i f t  between 

the two f i e l d  vectors I and E leads t o  the production of reac- 
-> -> 

t i ve  power) the phase relations among the various hydrodynamic 

and electromagnetic f i e l d  quant i t ies  have an important ro l e  i n  

the energy considerations. Therefore the elimination of the 

periodic dependence by computing the t i m e  average of the various 

quant i t ies  would be impractical and misleading. 

Another possible approach i s  to neglect the v iscos i ty  ef- 

f e c t s  and t o  transforn! the governirg equations i n t o  a coordinate 

system f ixed r e l a t ive  t o  and rotat ing with the magnetic f i e ld .  

In this way the physical quantit ies measured i n  the ro ta t ing  coor- 

dinate  system w i l l  not  be time dependent. The azimuthal dependence, 

however, will not  be eliminated by t h i s  transformation. 

Accepting the second approach for obtaining an approximate 

so lu t ion  f o r  the first order velocity-dis t r ibut ion the following 

transformation coordinates are introduced: 

rl = r ; v ( = v  

Q' = ( ) - u t  ; 

r r } (3.1.7) 

"0' = - 

The primed system is rotat ing with a constant  angular veloci ty  w. 

The direct ion of the x'-axis coincides with the direct ion of 

%>e L,csec! zerctr! srder r?.zgnet;ic field zr?d rct.at.es tcgetbe~. ~ci th  

it, 

The zeroth order nondimensional f i e l d  quant i t ies  transposed 
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i n t o  the ro ta t ing  coordinate sys t em can be expressed as follows: 

(3.1.8) 

As one may notice,  the zeroth-order e l e c t r i c  f i e l d  vanishes 

completely. 

ne t i c  f ie ld  is time-independent now and the absence of end-plates 

eliminates the build-up of an e lec t ros t a t i c  f ie ld ,  (See the d i s -  

cussion following equ. (2.2.2)). 

This follows from the f a c t  t h a t  the zeroth-order mag- 

Substi tuting (3.1.8) into the basic equations and neglecting 

the viscous terms the  following system of d i f f e ren t i a l  equations is 

obtained : 



PIVI = 

Next, the pressure term will be eliminated f rm the two equations 

above by cross different ia t ion.  

For sake of s implici ty  the primes w i l l  be omitted fron the 

d i f fe ren t  varia31es during the follcxdhg, but  it should be under- 

stood t h a t  a l l  quant i t ies  are expressed in the rotat ing coordinate 

sys t e m ,  

Performing the differentiation and subtracting (3.1.10) from 

3 3 
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2 2 2 = ~ ( 2 0 r  c o s  4 - WT cos  (I + WT s i n  Q + 

(3.1.12) 

Performing the p o s s i b l e  a l g e b r a i c  s i m p l i f i c a t i o n  and in t roduc ing  

a stream f u n c t i o n  $ such that  

equa t ion  (3.1.12) can be r e w r i t t e n  as 

a r  r 

(3.1.14) 
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bKLh the consideration of the following iden t i  t ies 

equation (3.1.1h) can be rewritten as 

Introducing the notat ion 

The above equation can be rewritten i n  the following form: 

( 3 .1.18 ) 
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%nee the first order stream functioE, defined by.eqGation 

(3,,le1'7) can be written as 

wl-l€!re $1' $2' and t3 satisfg the following s e t  of equations: 

i 
I 
I 
I 
I 
1 
i 
1 
I 
I 
I 
I 
I 
D 
D 
1 
I 
1 
1 

= F1 

= *2 

F3 

The velocity components a re  given then i n  the ro ta t ing  coordin- 

a te  system as 

(3.L22) 

= - 2 = -s, [*11 sin 24 + $ * 1  cos 24 + q 3 q  

The new veloci ty  components can now be expressed in a space-fixed 

coordinate system as  
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The boundarg conditions (equations 3.104 and 3,l.S) -1s 

a t  

a t  

a t  

a t  

PO' 
r =  

(3.1.24) 

r - Po 

PI r =  

Returning t o  equation (301019) now, the functions F1, F2 and F3 

m u s t  s a t i s f y  the following conditions: 

1 + 2M(r-' - 6 r )  F1 - - M ( 3 1 26 1 r F2 

F 1 = - 6Mr 3 (3.1.27) 

where the primes indicate differentiation w i t h  respect t o  r. 

(3.1,27) can be integrated a t  once: 

Equation 

F3 = - -  6M r2 + 5 2 

Introducing the notation 

g ( r >  2 ~ r - l  - 6 r )  

(301. 28) 
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equations (3.1.25) and (3.1.26) yield the following relat ions:  
._ 

w i t h  

and 

F2 = - 1 (Fl' +$)  
g 

(3 01 31) 

Equation (3.L31) is  a l i nea r  second order d i f f e ren t i a l  equation de- 

f in ing  the function Fl up to two integration constants and it can be 

writ ten i n  an expanded form as 

(3.1.32) 

The f inc t ion  F1, defined by equation (3.1.32), can be found by ap- 

plying the  series solution method known a s  the method of F'robenius 

t o  equation (3.1.32). (k fact, a complete solution f o r  the f irst  

order veloci ty  dis t r ibut ion has been found by applying the series 

expansion method. For brevity, however, the de ta i l s  of  the anal- 

y s i s  w i l l  no t  be given here). 

Another way of obtaining a solution for  F i s  t o  apply the 1 
method of successive approximations (Picard's method) t o  equation 

(3.~.3~). (See references [20], [21J ). 
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Thus defining F1 as 

the sequence of function f,(r) is given by (see equation (3.1-31)): 

n r  

With the choice of fo = 0, the indicated integrations a re  performed, 

and the f irst  two functions of the sequence fn a r e  found t o  be 

(3  -1.35) 

= M2hr ( fir2 - Lnr) + (el1 - l)j!nr fl 

2 2  - $ (cll + M >r + cI2 

f2 = M 2 & r  (br2 - hr) - $ M2r2 + Cl2(br2Inr - 
- - f2r4)  + $ M2(C, + M2)(r2 - 6 r 4  + 

+ 1 2 6  2 2 
6 r - M ~ ( c ~ ~  - - 6 r  g n r )  + 

+ 1 2 4  (7, r Lnr  - 3 3 6 2 b  r ) + M4(3 @nr)' - 2 g r 2  & ~ r ) ~  + 
3 

+ T 6 r  1 2 4  C e n r ) 2 - z b r  1 3 6 j  n r -  4 + $ a3r6) - j n r  + 

(3.1.36) 2 
+ c21 (enr - 4 r + c~~ j 

Cl1, CI2 and CZ1, C22 are the  integration constants corresponding to 

the first and second approximations, resDec t ively,  
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The integrat ion constants f o r  the n-th approximation a re  found 

by determining the corresponding stream functions + 
ing the boundary conditions (3.1.24), 

q2n and apply- In’ 

The stream function corresponding t o  the second approxima t ion  

can be writ ten aa 



= 
$3 

n 

(3.1.39) 

The integration constants of the second approximation A 1’ A2’ A y  B y  
B2, B3, C21 and C22 are foundby solving the e igh t  simultaneous alge- 

braic  equations (3.1.24)’ as was pointed ou t  previously, 
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2. ) 

The s e t  of equations describing the perturbation magnetic 

The F i r s t  Order Magne t i c  Field 

f i e l d  is: 

The inviscid veloci ty  dis t r ibut ion will be used throughout 

equations (3.2.1) t o  (3.2.4). 

In  order t o  obtain a solution f o r  the perturbation magnetic 

f i e l d  equations the  three f ie ld  cmponents will be separated now. 

DiffeKentiating equation (3.2.4) with respect to z and ex- 

pressing 3 and a2 (rBrl) through equations (3.2.1) and 

( 3 . 2.2 ) respec t ively,  the p a r t i a l  d i f f e ren t i a l  equation defining 

can be wri t ten as 
I 
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bl 
Next, the equation defining the magnetic f i e l d  component B 

w i l l  be derived. 

(I and eliminating ‘wr (rBrl) and 
and (3.2.1) respectively, the fol lowhg equation is obtained f o r  

B41 : 

Differentiating eq a t ion  (3.2.4) with respect to ’I! 
a2 ~ a c ~ a z ;  a Bel through equations (3.2.3) 

Finally, an equation f o r  Bn, is  derived by different ia t ing 
L.L 

(3.2.4) w i t h  respect to r and making the proper subst i tut ions : 

3 

Separating the variables, the solut ion fo r  the equation 

(3.3.5) can be w r i t t e n  as  

[ A n  cos ne + B sin ne . (3.2 8) n 1 



i, 
1 

An inspection of the zeroth o r d e r  quant i t ies  which define the 

perturbation magnetic f i e l d  (see equations (3.2.1) t o  (3 .2 .3)  to- 

gether With equations (2.2.b))SuggeStS the admissible values f o r  X 

and r! as  

Hence 

= FZ cos(smr) {[als I1(smr) + bls Kl(smr)] cos ( u t  - 4 )  
Bzl 9 

are l e f t  undefined. blsj c18# dls, where the constants ais, 

Next, a solution will be found for  equation (3.2.6) which can 

be rewrit ten i n  an expanded form as: 

+ - 2  s m  
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Assume now a solut ion of the form 

B = - 1 rfl(r ,z,s)  cos ( u t  - 4 )  + f2 ( r , z , s )  s i n  ( u t  - $11 
41 r L  

( 3  2.11) 

Equation ( 3 . 2 . 10) yields two independent correlat ion f o r  fl and f2: 

r) 

+ BoK1 

+ D K (smr) - +- F- 2 Q  1 
n r  s m  s l  (3.2.13 

The s t r x t u r e  of (3.2.12) and (3.2.13) suggests the appl icat ion of 

f i n i t e  Fourier s ine  transforms t o  these equations. Indeed, intro- 

ducing the transformation coordinates r = m r  ; 2; 

and defining the following transform f'unc t ions : 

= mz ; m = n/L 1 1 

S In c f ]  - 1 = \ l a ' J  f l s i n ( n z ) d z l  1 

0 

I 0 
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The functions fl and f are given by the inverae 4zknsforms t 2 
co 

fi = E 2 sin sin (nzi) 1 
, n=l  

One may note here that  

n 
and g ( r )  sin (ns,) del = (' - n (-'In ) g ( r )  

0 

n = 1, 2, 3, .... 
( 3 . 2.16) 

Then f o r  n = 2, 4, 6, .... 2k k = 1, 2, 3, 4, .... 

A I 

(3.2.17) 
I 

since (- l )n- l  E 0 f o r  even values of n. 

(3,2.17) denote the values of f and f on the boundaries e = 0; 

( f l )  and (I2) i n  
b b 

1 2 1 
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z, = n and t b y  w i l l  be l e f t  undefined a t  the present. 
I 

The solut ions t o  

responding t o  (3.2.17) 

- - 
'1( 2k)  

- - 
'2( 2k)  

the 

are  

OD 
e 

k = l  

00 
2 

k=1 

homogeneous d i f f e r e n t i a l  equations 

given by 

c or- 

(3.2.18 j 

Since the zeroth order f i e l d  quant i t ies  enter ing i n  the defi- 

n i t i on  of the perturbation magnetic field do not  ,contain terms with 

even values of the index n, the solut ions,  S1(2k) and S2(2k)  w i l l  be 

neglected again a l l  together. 

For odd values of n n S = 1, 3, 5, 7, .... and 

[(-1)'-1] = -2 equations (3.2.12) and (3.2.13) a r e  transformed into 

- + - - -  d2% 1 5 s  (s 2 1  + 7) SlS = - 2 S F ( f 1 )  + 
b rl drl rl &l 

( 3  . 2 . 19 ) 

b 1 r 
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(3.2.20) 

The general solutions f o r  the above equations can be presented i n  

the following form 

Sls = a I (smr) + b2s IC,, (smr) + g (s, m, r )  + 2 s  1 - 1  

(3.2.21 ) 

= c I (smr) + dps K1 (smr) + g2(s, m, r) + s2s 2 s  1 

(3.2.22) 

2s’ b2s, c2s3 

1 and 82 

I n  the equations (302.21) and (3.2.22) the constants a 

and dps a re  l e f t  undetermined Jus t  as  a re  the functions g 

defining the par t icu lar  integrals corresponding t o  the unknown func- 

t ions (fl)  and ( f 2 )  , respectively, 
b b 

Hence the general solution fo r  B i s  found to be 41 

g l  
r - 0  

*l(smr)) - Bs KO (smr ) - + - + A~ (I (smr) - ; r 
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s = 1, 3, 5, 7, .... (2k + 1) ( 3  . 2.23) 

Finally, the general solution of (3.2.7) defining the th i rd  pertur- 

bation f i e l d  component Brl w i l l  be found. 

Equation (3.2.7) can be rewrit ten i n  expanded form: 

Assume now a solution f o r  B o f  the following form: rl 

(r ,z ,s)  sin ( a t  - 4)  = Brll (r ,z ,s)  cos ( u t  - 4) + 'r12 Brl 
(3.3.25) 

Substi tuting this back into (3.2,24) two independent equations a re  
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ob ta ined  f o r  Brll and Br12: 

( 3  2 26) 

a r c  

. 

Defining 

Br12 as 

now the finite 

4. 

r 

Four i e r  

(3.2.27) 

sine transforms of B and rll 

(3.2.28) 

r l=*  where z 

Tile ‘Inverse traiisfoims yield: 

= mz ; m = n/.l: ; 1 
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( 3 . 2 . 24) 

The d i f f e r e n t i a l  equa t ions  (3.2.26), (3.2.27) can be t ransformed 

i n  t o  

( 3  . 2.30) 

f o r  n = 2, 4, 6, 8, ..*. 2k 

and 

A. 

for n 

+ -  3 4"ks - s 2 s4s = -2s 
r drl 1 

= s = 1 ,  3, ... 0 

+2S 

(2k + 

rll 
'1 

+ 

K1( 1 
+ b  1 

1 
( 3  . 2.31) 

IS r 

(3.2.32) 



where (Brll) and (Br12) b b 
are the values o f  Brll and Br12 on the 

boundaries 5 = 0 and z1 = tl. 

undefined a t  the present. 

Both these fbnctions w i l l  be l e f t  

On the basis of an argument s imi la r  to t h a t  presented i n  con- 

a l l  solutions S and Sh f o r  even 1(2k) and s2(2k! 3n nection with S 

numbers n: n = 2, 4, 6, 8, .... (2k) w i l l  be neglected again. 

The d i f fe ren t ia l  equations (3.2.31) and (3.2.32) are satis- 

f i e d  by the general solutions: 

(smr) - blsKo(smr) (3.2.33) 

w i l l  be l e f t  3s’ b3s’ c3s3 d3s where the constants of integrations a 

undetermined Jus t  a s  are the fhnctions g and g , representing the 

pa r t i cu la r  in tegra ls  corresponding t o  ( B  ) and (B ) in 

(3.2.31) and (3.2.32). 

3 4 

rll r12 b 



+ -  + g3 - Brl S m r = z sin (smz) 

- 3 2 ti> + alsIo(smr) - blsKo(smr)]os (at - 4 )  + 
s m  

I (smr) - K (smr1-J s i n  ( a t  - e,) (3.2.35) 
+ 5 s  0 4 s  0 

s = 1, 3, 5,  7, 9, .... (2k + 1) 

The next  step is to find those values of the integration con- 

s t an t s  als ’ a2s’ a3sJ bls’ b2s, b3s, %, c3s’ 43, d2s’ d3s’ 
fo r  which the basic correlations (3.2.1) to (3.2.4) will be sa t i s -  

f ied.  The undefined par t icular  in tegra ls  gl, g2, g and g will 
3 4 

be determined i n  the same manner. 

(3.2.1) the following correlations are obtained: 

a - sm c2s 1s 

bls - sm d2s 

c + sm a2s Is 

4 s  + Sm b2s 

g l  

g2 

( 3 . 2.36 ) 

( 3 . 2.36a) 
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Equation ( 3 . 2 . 2 ) with Brl and ‘B, given by (3.2.35) and (3.2.9) 

yields  a second se t  of correlations : 

b + s b  = D 1s 3s S 

39 -AS c + s c  1s 

( 3  . 2 -37 ) 1 
The correlat ions obtained by substitalting Brl and Bbl into (3.2.3) 

are as follows : 

mc + a = 2cs 2s  3s 

J = o  md2s - b3s 

The divergence equation (3.2,L) does not  yield new information, it, 

merely reproduces some of the correlat ions given above. 

Thus twelve equations (3.2.36, 3.2.37, 3.2.38) With twelve 
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unknowns a re  obtained. Four o f  these correlations,  however, a r e  

not  independent (equations 3.2.38 fo r  example can be obtained by 

combining equations 3.2.36 and 3.2.37) .  Hence the specif icat ion 

of an additional condition becomes necessary which must be based 

upon the physical nature of the  f ie ld  configuration discussed 

here and which yields  four additional correlations s imilar  to 

those presented above. 

There a re  various poss ib i l i t i es  f o r  specifying the addi- 

t iona l  condition needed b u t  n o t  a l l  of them are  of prac t ica l  value 

i f  the consistency of the solution is  to  be preserved. 

The choice of an additional condition is  governed by the as- 

sumption used i n  the solution of the perturbation veloci ty  f i e l d  

equations, t h a t  is by the neglect of the end p l a t e  effects.  In- 

deed, i f  the influence of end p la tes  is disregarded *e perturba- 

t ion  f i e l d  component B vanishes. 21 

means = bls = c Is = (3s O (3.2.40) . 

and the system of equations (3.2.36) t o  (3.2.38) yields the values 

of the remaining integrat ion cons t an t s  a t  once: 
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- 2s-1 

- -1 

- 2s-1 - - c  2s sm s 

-1 d2s = - 

- -  
a2s sm As 

b2s - - s m  BS 

C 

D sm s 

s s  

3s a 

b3s 

The complete solutions fo r  the f irst  order perturbation magnetic 

f i e l d  components can be written now as follows: 

C I (smr) Ds X1(smr) 
+ -  - 

Brl = Fz S sin(srn2) {[z lr s m  r 

2 4  - 2 3 2  Fr n 2  3 cos(o t  - 4 )  + 
s m  

As 11( smr) Bs K1( smr) - -  + [-= r s m  r 

v 
+ 2 F(o - a)] 2 s i n  (at - $)} (3.2.42) 

r 3 2  n s m  

2 

s m  r 

Bzl = o ;  

where S = 1, 3, 5, .... (2k + 1); 

( 3 e 2.44 ) 



the constants As, Bsy cs and Ds a re  given by equations (2.2.hl) and 

(2. ‘2.42 

3)  

Since the hown quantit ies entering i n  the def ini t ion of the 

The F i r s t  Order Electric Field 

f irst  order e l ec t r i c  f i e l d  (such as  the perturbation magnetic f ie ld  

components) were computed by neglecting the end p la te  effects ,  the 

same assumption will be used in the determination of the perturba- 

t ion e l e c t r i c  field. 

As a r e s u l t  of this  approximation no e l ec t ros t a t i c  f i e ld  

appears in the first order solution. Indeed, the e l ec t ros t a t i c  

f i e l d  denoted i n  the zeroth order solution a s  was the result 

of charge accumulation bui ld  up a t  the end p la tes  i n  such a manner 

that the normal current  component vanished a t  the nonconducting 

boundaries. 

I n  the f irst  order apmoxiylation the currents are  unrestric- 

ted i n  the z-direction hence the charge accumulation w i t h  the  cor- 

responding e l ec t ros t a t i c  f ie ld  a r e  omitted from consideration. 

complete f i r s t  order e lec t r ic  f i e l d  is  defined by th@ equations: 

The 



I 
I 
I 
I 
I 
B 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
B 

- 86- 

The assumption of vanishing divergence (equ. 3.3.4) i s  based 

now on the f a c t  t h a t  with the removal of the end p l a t e s  there is 

no charge accumulation i n  the en t i re  f l o w  region, 

Following the method applied i n  the solut ion of the f i r s t  

order magnetic f ie ld ,  thre.e separate second order p a r t i a l  differ-  

e n t i a l  equations can be derived f o r  the three perturbation e l ec t r i c  

f i e l d  components and the general solutions t o  these equations can 

be obtained by applying a finite Fourier s ine transform t o  the equa- 

t ion  defining E and f i n i t e  Fourier cosine transforms t o  the equa- 

t ions defining the f i e l d  components E and E$l. A number of cor- 

re la t ions  i s  obtained then among the various integrat ion constants 

by subst i tut ing the general solutions i n  the set  of equations 

(3.3.1) t o  (3.3.4). 

( t he  neglect of end pla te  effects  in the given case),  a l l  integra- 

21’ 

rl 

If one specifies now an additional condition 

t ion  constants can be determined uniquely. 

The procedure outlined here has been i n  f a c t  car r ied  out  bu t  

it will not  be presented here f o r  brevity. 

Instead, a solution for  the perturbation e l ec t r i c  f i e l d  w i l l  

be obtained by neglecting the end p l a t e  e f fec ts  a pr ior i ,  and the 

simplified s e t  of d i f fe ren t ia l  equations corresponding to this 

f i e l d  configuration w i l l  be solved. (The two procedures outlined 

above are  consistent a s  i s  evidenced by the f a c t  t h a t  the solutions 
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were found t o  be ident ical . )  

Indeed, the rad ia l  and azimuthal components of the e l ec t r i c  

f i e l d  vanish i n  the absence of the end p l a t e s  and the various f i e l d  

ccxpcnents cease t o  be &fwxtions of +&e z coordinate. 

Thus 

and the equations (3.3.1) t o  (3.3.4) can be rewrit ten a s  
' _ .  

(3.3.5) 

(3.3.6) 

I 

In  t h i s  approximation one should n o t  attempt t o  sat isfy the 

divergence equation (3.3.4) f o r  the following reason. The neglect  

of end p l a t e  e f f ec t s  implies that  the physical quant i t ies  do no t  

vary i n  the z-direction. However, as the r e s u l t  of the f i n i t e  

Fourier transforms applied during the previous derivations with re- 

spect  to the z-coordinate, a l l  f irst  order f i e l d  quant i t ies  a re  

expressed i n  i n f i n i t e  s ine  or cosine series 

ment. Thus the condition - = 0 cannot 

l a r  s i tua t ion  exists when one expresses the 

aEzl 
az 

containing z as argu- 

be s a t i s f i e d  (A simi- 

u n i t  s t ep  function 

through a Fourier series of argument X. Although the f inc t ion  it- 

self i s  constant, i ts  derivative with respect t o  x will not  vanish 

though it may numerically approach zero i f  a suf f ic ien t ly  la rge  
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number o f  terms of the Fourier series i s  taken.) 

Equations (3 .3 .6)  can be rewritten i n  expanded form as: 

p] cos ( a t  - 

(3 .3  7b) 

The solution f o r  E defined by equations (3.3.7a) and 
2 1  

(3.3.7b) can be wri t ten up a t  once: 
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+ A  u K (smr) - * 2 J.? TI '3 cos (cot - $1 + 

s m  sm 1 

P V  - ",I r sin (at - O)} (3 .3.8)  

e 0 defines the per- rl = E$l 
Equation ( 3.3.8) together with E 

turba t ion eleo t r i c  f ie ld .  



PART B. ENE;RGY CONSIDERATIONS 

I V .  THE: POWER GENERATiCON 

1, The Energy Equation 

The complete energy equation f o r  an e l e c t r i c a l l y  conducting 

f l u i d  moving i n  the presence of a magnetic f i e l d  can be writ ten a s  

n 

w h e r e  C is the specific heat of  the medium a t  constant pressure, 
P 
T is  the temperature, 

K is  the thermal conductivity of the medium, and 

$ is defined as the hydrodynamic diss ipat ion f'unction; 

( In  expression 4.1.2 the summation convention is used). 

Equation (4.1.1) introduces another f le ld  variable: the tem- 

perature, 

ter iz ing the generator-cycle, the change of energy content per  u n i t  

mass of the f l u i d  can be determined subsequently. 

yields  the necessary information about the power extracted from the 

f l u i d  i n  form of e l e c t r i c a l  energy. 

If one succeeds to compute the temperature change charac- 

This i n  txm 
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Although equation ( b * l . l )  i s  l i n e a r  in T i ts  solution i s  qui te  

d i f f i c u l t  f o r  the given case, due t o  the complicated expressions 

found fo r  the elec tromagne t i c  f i e l d  c omponents 

"he nature o f  the process discussed here, however, makes i t  

possible t o  determine the power density generated i n  the f lu id  With- 

out computing the temperature f i e l d  d is t r ibu t ion  expl ic i t ly .  

Indeed, the high e l ec t r i ca l  r e s i s t i v i t y  of the f l u i d  makes the 

ohmic losses dominant over the losses  due t o  viscous e f f ec t s  and 

thermal conduction. 

f e c t  thermal insulat ion hence there are no heat losses  to the en- 

vironment. Furthermore, the power extracted from the f l u i d  in mag- 

netohydrodynamic generators is usually of the same order of magni- 

tude as the hea t  gained by the medium through the ohmic heating be- 

cause of i t s  low e l e c t r i c a l  conductivity. 

l a rge  temperature gradients induced by the generator cycle. 

The generator chamber i s  assumed to have per- 

Hence there  w i l l  be no 

Under these conditions the energy balance of the working 

f l u i d  can be described by forming the sca l a r  product of the veloci ty  

with the momentum equation: 

or  neglecting the viscous term: 
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where 

(I) i s  the rate of change of the kinet ic  energy of  the f l u i d  

(posi t ive if the velocity increases) 

(11) i s  the r a t e  of work done by the pressure forces  on the f l u i d  

(posi t ive in case of  adverse pressure gradient)  

(111) i s  the r a t e  of work done by the electromagnetic forces  on 

the f l u i d  (posi t ive f o r  electromagnetic driving i .e,  pump- 

ing action).  

For steady, incompressible flow equation (4.1.3) can be re- 

written as 

= E  ($ v2 4- P) 

In case o f  generator action the power i s  extracted from the 

f lu id ,  thus ?, ( y x  -$f is a negative quantity. Hence the power 

where the subscr ip t  v indicates quant i t ies  per u n i t  volume and pT 

is the t o t a l  pressure defined as 

1 2  
rT = V V  ' p  

As could have been anticipated, the generated power density 
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is proportional t o  the t o t a l  pressure drop. 

The power density given by (h.l.5) i s  n o t  a l l  useful  power as 

can be seen from the following argument: 

- -7 v ( 7 x 3  = 7 .  ( 7 x 5 3  = 

(4.1.6) 

The useful  o r  effective power generated i s  given by the (-m 
term ( the  minus s ign indicates t h a t  the energy is being extracted 

frorr. the  f lu id) ,  and (I /a) is the ohmic dissipation. 2 

The basic performance charac te r i s t ics  of the converter system 

can be defined now as 

P effect ive power extracted 
rate of work done by the f l u i d  

= $ (4.1.7) “rl 

where 

v 

The in tegra ls  a r e  taken over the volume of th@ generator 

chamber, 

The t o t a l  ohmic losses a re  given by the in t eg ra l  
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The e l e c t r i c a l  efficiency defined by equation (4.1.7) is 

closely r e l a t ed  t o  the magnitude of the "slip" s, defined i n  elec- 

trical mgineering as 

v - v  h c  s =  (4.1.9 
V 
Ph 

where 

v is the conductor velocity and 

i s  the phase velocity (veloci ty  of 'propagation of the mag- 

C 

v 
Ph 

ne t i c  f i e l d )  . 
For the case of s lug  motion of a conducting f l u i d  between two 

i n f i n i t e  pa ra l l e l  p l a t e s  in a transverse mgne t i c  f ie ld  propagating 

i n  the direct ion of f l u i d  motion the following re la t ion  has been ob- 
- - . .  

tained by I. Rernstein (see ref,  [12]): 

q = -  1 
1 - s  

Hence under ideal ized conditions (uniform mokLon, zero s l ip ,  

absence of eddy currents)  the e l e c t r i c a l  eff ic iency may approach t o  

u n i t  value, 

I n  the following, dimensionless quant i t ies  will be used again 

and a l l  variables entering i n  the def in i t ion  of the various power 

dens i t ies  will be expanded i n  terms of the magnetic Reynolds number. 
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Hence 

'I x (T + R, + .... 

f3 = p + ? x F  and 
0 0 0 0 

the following expressions can be obtained: 

P vo = - ? * ( C x 3 - )  0 = 

+ bo 3 xq , .17  0 + ( ~ x T ? ) x l ? J  0 
0 (4.1.12) 



1 
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3 3  The ohmic losses  are represented by the term I I. Applying 

the se r i e s  expansion technique (ohmic losses  Lv): 

Equating the terms containing like powers of Rm: 

( h . l O 1 5 )  
Finally the ef fec t ive  power is defined as Pev = -ro 3 Ex- 

panding the terms in i n f i n i t e  series 

I 
I 
I 
I 
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= - (T + RmT + ....) . [(r + x p) + 
0 0 

(4.1.16) 
Thus the following correlations are obtained: 

r - r . F  = -F.(~+?xF) 
0 0 0 Pevo 0 0  

(4.1.17) 

I n  order t o  compute the e l e c t r i c a l  eff ic iency of the generator 

cycle (T )  the above expressions must be integrated over the total 

volume of the generator chamber. 

2, Zeroth Order Power 

Expanding equ. (4.1.10) and making the proper subst i tut ions 

the following expression is obtained f o r  the zeroth order power den- 

s i ty:  
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I1 K1 2 - + D -) sin (at - 4) + - Q (Cs s r  

')I S F n  2 (at - 4)) + B s  r (4.2.1) 

I 
1 
I 
I 
1 
I 

where the following symbols are introduced: 

I1 I I1 (smr) 

K1 = K1 (smr) 

s = 1, 3, 5, 7, .... (2k + 1) and as e a r l i e r  



-99- 

"he total  power generated i n  the generator chamber is given 

Since 

where 

(sm) sin (smz) dz = - coa (s z) /L = 2 
0 

0 

2n 2n r cos2 (ut  - $)db = r I sin2 (at - 4 )  do = n 
J 
0 

J 
0 

I si Io (mr) 
0 

R r KO (smr) 
0 

The in t eg ra l  (4.2.2) yields the following expression f o r  the 

zeroth order t o t a l  power: 



*lo+ 

Next, the total ohmic losses shall be computed. A s  given by 

equation (4.1.13) 

One may note that 

= E  I r o  ro 

= E  + V  B - V  B 
I20 zo ro Qo Qo ro  

Furthermore; 

+ 4 n (sm) cos (smz) F~~ ( r ) ]  cos (at - 4 )  . 
S 

. (sm) cos (smz) F~~ (r)] sin ( w t  - 4) j 
S 

(42.61 
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= 2 cos (smz) F cos2 (at - 0) + 1s 

+ 2 ( s m )  sin (sme) F~~ (2’7 sin2 (at - 0) + n 
S 

. ( s m )  s i n  (ma> F~~ ( Z ’ ]  sin (at - 0) (4.2.8) 
-S 

2 2  P I V I  K1 - (a + + 
r S Smr s m r  3 2 n  

T where 
(r)  I A (-Io + --) + Bs (KO + -1 + 

s m  
K1 2 2 8  

s m  r 

Fls 

F2s 

Fls 

F2s 

(r) ??F Cs (-I ,o + -) I1 smr + Ds ( K o + s m r ) - - 3 1 ; ;  -2 

I1 K1 2 2 Q  
7;2 ( 6 )  I C - + D S r - ~  

s m  r 

(9) e -A - - B  I1 - + T  K1 2 - TI 2 b - p - T .  P I V I )  (4.2.10) 

s r  

s r  s r  s m  r 

(4.2.9 1 

Fls E A,I~ + BsKl 
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F i r s t  of a l l ,  one notes that 

s i n  (at - 4 )  cos ( a t  - 0) do = 0 

0 

hence the non-quadratic terms drop out from equations (4.2.6) t o  

(4.2.8) after integrat ing w i ~  respect  t o  4. 
Furthermore, expanding the quadratures as, f o r  example : 

P =  (sm) cos (smz) F~~ 
S 

n 
i o  where z E me ; m = 1 

Since 

n 
r, 

0 f o r  s # n 

= i n  
J cos sz cos nzl d.% 1 

for s = n 2 0 

(sm) cos (smz) Fis f d z  = 

0 

1, 2, = ? m Z s  n 2 2  Fis ; i =  
S 

( 4.4. 12 ) 

Theref ore 
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I 
I 
1 
I 
I 
1 

I 
I 
I 
I 
1 

I 
1 
1 
I 
D 

L 2 n p  

J1 (1,; + $02 + I 2, r d r  d$ dz = 
eo 

PO 
0 0  

Substi tuting (4.2.9) t o  (b.2.11) into (4.2.13) and performing the 

algebraic simplification available; the zeroth order  ohmic losses 

can be computed a s  follows: 
n 

0 m f r {(A S + Cs2)[s2m2 (I: + 112) + 

2 I 1  
2 r S 

z 
211 2 s m s ~  + ( B 2  + D + K:) + 

S 
+ - -  

r 

+ 2(AsBs + C D ) s m (IIK1 - c" K K  

r r ? S  

sm '1% 16 ( 2 - I K ) + - ( I IKo  - IoK1) + 2 7 1  + '42 0 4  

r s m n  0 0  r 
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i 
I 
i 
i 
I 
1 
I 

2 2 2 = -  TI 
m bmr ((As2 + Cs ) IoIl - <Bs + Ds KoKl - 

S 

The coef f ic ien ts  AS, B , C and D are defined in Scc. (11.2). 
9 s  S 

3. The F i r s t  Order Power 

The expression f o r  the first order power production densi ty  

can be writ ten In expanded form as 
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The ohmic losses per u n i t  volume a re  given by the following 

expression : 

Finally, the n e t  power density generated can be w r i t t e n  as 

The above expressions w i l l  be rewritten now in a somewhat d i f f e ren t  

form: 

pv l  = ’ V l l  + ’v12 
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Lvl = L v l l  .P Lv12 

where 

= -2 'evil 

+ 

+ E  (V B - EzoEzl zo bo rl 

E 2;1 ('4oBro - V  r o  B 40 ) 

- V  B ) zo 'vOIBro r l 4 o  
= E  'ev12 

The equations defining Pvll, Lvll, Pevll, represent the power con- 

version due to the interact ion of the unperturbed ve loc i ty  f i e l d  

with the f i rs t  order electromagnetic f i e l d  componentso 

ing three equations defining PVl2, LVl2, and 'ev12 correspond to 

the interact ion of the perturbation ve loc i ty  f i e l d  with the unper- 

turbed elec tramagne t i c  E ie lds  

The remain- 

Since the above expressions represent power densi t ies ,  the 

t o t a l  power converted in  the generator chamber is given by the 

corresponding volume integrals  : 
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I n  f a c t  the three above quant i t ies  a r e  not independent s ince 

' lei  = Pli - Lli ; i = 1, 2 ( 4. j0  8) 

Thus calculating any two of the above in tegra ls  the t h i r d  

quant i ty  can be computed neing equation (4.3.8). 

Performing the integrations indicated the following expres- 

sions are obtained: 

pll c -  
S 

D -  
S 

1 2  2 2  
+ - 2s ( Q  + pI VI ) Cs r-' Io(smr) dr 
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The two in tegra ls  I (smrj dr and r-l Ko(smr) d r  

indicated i n  the above expression can be evaluated numerically, 
0 

using the series-definit ion of the modified Bessel fbnc tions, fo r  

example. 

p' - % 2s (AsI1(smr) + BsK,(smr)) 

PO 

k t h e r m o m ,  the integrals  expressing tbe interact ion o f  the per- 

turbation velocity f i e l d  with the unperturbed electromagnetic 

f i e l d  can be writ ten as follows: 

+ l l P I I  v s r2 - 2*JPI - 
P O  
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where the first order stream functions tl, q2 and 9 a re  given by 

equations (3.1.37) t o  (3,1*39). 
3 

Finally, the n e t  o r  effective power generated by the inter-  

action of  the perturbation velocity With the unperturbed electro- 

maee t i c  f i e lds  is given as 



V, EiESULTS AND CONCLUSIONS 

1. Numerical Computations 

The following dimensioniess quant i t ies  have been computed 

f o r  a number of basic hydrodynamic and geometric input parameters: 

a )  

b) 

c )  

the zeroth order average power densi ty  P 
the zeroth order average ohmic l o s s  density, To 
the zeroth order average n e t  ( L e .  e f f ec t ive )  power denc 

0 

sity, %, 
d) 

e )  

the first order average n e t  power densityFel 

the e l e c t r i c a l  efficiency of the power converter system 

based on zeroth order quant i t ies  7. 

The average power densit ies described above a re  defined as 

power produced in the generator chamber divided by the volume of 

the chamber: 

; where P - 
p = v o l l  

P = Pvdv 
v 

vol. = dv 
v s 

(5el.l) 

The average power densit ies ( i , e ,  average power generated per 

u n i t  volume of the generator chamber) give a convenient basis f o r  

comparison of the performance data obtained for  d i f f e ren t  geometric 

configurations and input  parameters. 

I 
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Since 

(P--) dimensional 

(Vol. ) dimensional Vol, = 
(AF,)3 

the dimensional average power density can be obtained f o r  each 

pa r t i cu la r  application by computing the following quantity: 

where ?i is  defined 

dimensional 

by equation (5.1.1) and is computed 

sets of input parameters. The numerical results a re  tabulated be- 

low. 

The eff ic iency computations a re  based on the zeroth order 

quantit ies.  

influence on the zeroth order quant i t ies  is, however, negligible. 

The following dimensionless quant i t ies  and r a t i o s  were 

The first order net  power has been a l so  computed, i t s  

chosen a s  basic parameters ( L e .  input  data f o r  the subsequent 

calculations : 

the inject ion velocity: <VI) 
non dim. 

the r a t i o  of the ex i t  velocity and the 

in jec t ion  velocity: 
v 0 4  



-112- 

the radius r a t i o  of the inside and 

the outside cylinders : 

the r a t i o  of the length of the annulus 

and the radius of  the outside cylinder: 

the angular velooity of the magnetic 

f i e l d  : 

Introducing the notation 

U- v 

the above 

I a. wilere p = 

The 

quant i t ies  can be written as 

- n - -  
n -  1 ' <VI) 

non dim. 

non dim. n -  1 (5.1.5) 

length ra t ios  LI, enters i n  the def ini t ion of the para- 
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meter applied throughout the f i n i t e  Fourier transformsand it 

can be writ ten now as  

m (5.1.6) 

The parameter n is closely re la ted  tn the s l i p  fac tor  s, 

I n  fac t ,  f o r  the s l i p  f ac to r  defined in the previous section. 

s, measured a t  the outside radius % the following re la t ion  can 

be derived: 

The zero s l i p  condition corresponds t o  Q = 1, 

ever, even if the R = l condition is s a t i s f i e d  a t  the outer radius,  

f o r  the present configuration the bulk of the f l u i d  will s t i l l  

One may note, how- 

have an excess velocity over the propagating magnetic f i e l d  due 

t o  the vortex type veloci ty  dis t r ibut ion given as  vb = (pIVI/r). 

The l a r g e r  the duct width, AR = 5 - Ro, is, the f a r the r  i s  

the bulk of the fluid from the no-slip condition, even if SI = 1. 

Throughout a l l  computation the magnitude of the exit  veloci ty  

was assumed t o  be 1% of  that of the in jec t ion  veloci ty  which cor- 

responds to A= ,01. 
The choice of is such that f o r  reasonable generator s i zes  

and commercially available frequencies (60 cycles per  seco ,  f o r  

example) the inject ion velocity would have a value a t  which the 

fluid can be st i l l  treated as an incompressible medium. Thiscon- 



I 
I 
I 
R 
I 
I 
I 
i 

d i t ion  i s  s a t i s f i e d  for& = 1.5. 
The length r a t i o  LI varies between the limits 1.0 and 4.0 

which correspond to reasonable design configurations. 

of input  data the length ratio LI = 50.0 was chosen t o  obtain in- 

formation about the performance charac te r i s t ics  corresponding t o  

reduced end-plate effects .  

For one s e t  

The magnetic pressure coeff ic ient  S i s  assumed t o  equal t o  

uni ty ,  

For a laboratory size generator (% = 0.5 m t o  1.0 m) o p e r a t  

ing on a working medium whose e l e c t r i c a l  conductivity does no t  ex- 

ceed 100 mho/m the above assumptions r e s t r i c t  the values of the 

magnetic Reynolds number so that  Ihn < .Ole 

first order power output was found t o  be of the same order of mag- 

nitude a s  the corresponding zeroth order power, i t s  e f f e c t  on the 

perfmmance charac te r i s t ics  is  negl igible ,  

Since the nondimensional 

A "Burroughs 220" d i g i t a l  computer was used f o r  the perform- 

anc e calculations * 

The numerical r e s u l t s  are tabulated as follows: 

I 
I 
I 



TABLE NO. 1 

05 
.6 

07 

.75 

08 

.85 

- F  
'09 eo 

1. 

.8 

.6 

e 4  

e 2  

e 5  

. 9634 
06259 

.4082 

43293. 

2651 

e 2135 

n = 1.5 L, 1.0 

e 1510 

2123 

2994 

3538 

LrS6 

e 4830 

.6 e 7  .8 .9 

The p l o t  of the average power density 
fec t ive  power density Pe0 v s s  the radiu8 r a t i o  p f o r  

and average ef- 
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n = 1.5 L, = 2.0 

B P 
(:2.”) 

.5 2.1204 

.6 1 . 4994 

.7 1.0466 

.75 4 8738 

-8 .7365 

.85 -6170 

- 
’e (ZF) 

* 549 5 

.4863 

-4251 

. 394s 
-3640 

e3333 

-2591 

e3273 

Lo61 

.4493 

. 4943 

. 5403 

3 
2.2 

1.8 

1.4 

1 e o  

0.6 

0.2 

.7 .8 -9 B .6 

The p l o t  o f  the average power density Po and awrage ef- 
fec t ive  power density Fe0 VS. the radius ratio $ f o r  

fi = 1.5 LI = 2.0 
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TABLE NO. 3 

B 

.6 

r.7 

.8 

. 85 

2,6173 

1,6927 

1.4595 

-11 7- 

n- 1.5 % = 4.0 

rl 

1,0688 e 3050 

o 9 705 .3708 

8600 4420 

. 8114 a4794 

0 7554 .5175 

,6980 5560 
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TABLE NO. 4 
J2 = 1 s  L, = 10-0 

B 

0 5  

.6 

.7 

.75 

.8 

. 85 

P (iz!?) 
4,5701 

3 5388 

2 7445 
2 a 4128 

2 1129 

1.8577 

1 e 3671 

1.2461 

1 1803 

1.lOg3 

1 * 0365 

.3224 

3863 

4540 
489 2 

e 5250 

e 5609 

50 

40 

3 0  

2. 

1. 

n = 1,5 LI = 10,o 



TABLE NO. 5 

= u 9 -  

n * 1.1 L, = 50.0 

8 0 
F eo P 

5lr.437 

39.69 

28.06 

23.39 

18.94 

1b.97 

11.35 

5.95 

22.65 

19.97 

16,78 

15.12 

13 . 22 
11 . 26 
9.14 

5019 

.s .6 ., . 7 4. e 0  e 9  1.0 p 

The plot of the average power density P 
power density pe0 VS. the radius rat io  

and average effective 
for  

n = 1.1 LI 5000 
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D 45 

TABLE NO. 6 

/ 
1 

I 
I 

I 

c 

I 

n = 1.5 

LI 

100 

2,o 

400 

10,o 
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2. Discussion of the Results. 

The numerical data tabulated i n  the previous section a re  

indicat ive of the performance charac te r i s t ics  of a vortex type 

MW induction generator and can also be used f o r  comparing the 

system discussed here with a l i n e a r  induction generator, analyzed 

by Bernstein (ref . [12] ) . 
An inspection of the tabulated r e s u l t s  reveals the follow- 

ing : 

As the width of the duct decreases (i.e. p increases) the 

average power generated per  unit  volume decreases, but a t  the 

same time the eff ic iency of the conversion cycle increases. 

the effect ive power decreases a t  a much smaller r a t e  Wan the 

t o t a l  power. Both the t o t a l  and the ef fec t ive  power decrease 

qui te  rapidly a t  small values of p, the slope of the power curves 

decreases a s  p -> 1, 

Thus 

Furthermore, With the increase of  the length of the annulus 

(i.e. of the LI r a t i o )  both the power output per u n i t  volume (in- 

cluding the total and tbe effect ive powers) and the cycle effi- 

ciency increase. The improvement of the performance character- 

i s t i c s  corresponding to  increasing LI r a t i o  is more pronounced 

a t  small values of LI (LI 0 (1)) .  For 1 <e L the e f f ic iency  

changes very slowly as can be seen from Table No. 60 
I 

The c-mges descrYued diove correspond t o  a given r a t i o  of 

in jec t ion  t0 phase velocity, no 
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The decrease of the power generated per  u n i t  volume and the 

increase of the efficiency corresponding to increasing $ can be 

explained as follows : as  the width of the duct decreases the 

l a r g e s t  value of the tangential velocity (v 

duced for a given (constant,) injection velocity. 

= p,V,/r) i s  re- 0 

!bus the bulk of the f lu id  moves with a reduced average vel- 

For a given n, where 1 < R ( tha t  is, given an inject ian ocity. 

ve loc i ty  exceeding the phase velocity) the reduction o f  the aver- 

age f l u i d  veloci ty  reduces the actual  s l i p  between the bulk of the 

f l u i d  and the propagating magnetic field, 

Equation (b.lD9a) indicates (see also ref, [12]), that  the 

smaller the s l i p  is the larger the eff ic iency of the energy-con- 

version process. 

minimum (i.e. zero) power production, the l a t t e r  being caused by 

the absence of in te rsec t ion  of the magnetic flu l i n e s  by the mov- 

ing conductore Hence, the reduction of the average f l u i d  velocity, 

corresponding t o  large values of $, causes an increase of the con- 

version eff ic iency due t o  the reduced s l i p  f ac to r  on m e  hand, and 

it reduces the power generated per  u n i t  volume due to the decreased 

in te rac t ion  between the velocity and electromagnetic f i e l d s  on the 

other  hand , 

Zero s l i p  corresponds to maximum eff ic iency and 

Furthermore, the above argument indicates  that fo r  a given 

value of the duct width (i,,eo fixed j3 r a t i o )  the power conversion 

densi ty  can be increased by increasing the injection t o  phase vel- 
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oc i ty  ra t io :  R. 

The general improvement of the operational charac te r i s t ics  

with the increase of the annulus length is explained by the f a c t  

t h a t  the r e l a t ive  magnitude of the eddy (or  closing) currents is 

reduced as the length of the cylinders increases. The end p l a t e  

e f fec ts  a re  more pronounced f o r  small values of the length r a t i o  

LI (LI 5 3,O) and they become p rac t i ca l ly  negligible when the 

r a t i o  LI = 6,0 is  exceeded. 

A t  this poin t  comparison between the l i n e a r  generator de- 

scribed in reference [12] by Elernstein and the l imit ing case of 

the vortex generator configuration discussed here can be made. 

Bernstein analyzed the motion of a conducting medium mov- 

ing i n  the x direction with a given, uniform velocity Vx between 

two i n f i n i t e ,  pa ra l l e l  planes placed a t  y = - + a and its interac-  

t ion with a traveling magnetic f i e l d  given by B - const, [exp 

(kx - at)] propagating i n  the x direct ion with a phase veloci ty  

equal t o  w/k. 

Y" 

The induced currents a re  directed along the z-axis 

and the i r  path is not  res t r ic ted  by any nonconducting end plates ,  

The present analysis d i f fe rs  in two s igni f icant  aspects 

from Bernsteinls in tha t  it i s  based upon a f i n i t e  configuration 

and a r e a l i s t i c  velocity dis t r ibut ion,  The currents a re  deflec- 

ted from their  pr incipal  direction by nonconducting end plates ,  

piaced a t  a finite distance from each oVner, 

In  the l i m i t i n g  case, however, when the vortex veloci ty  dis- 
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t r ihu t ion  approaches a uniform ve loc i ty  ( t h a t  is, when the width 

of the duct is  reduced t o  near zero) 

cyl indrical  annulus are separated by a considerable distance (the 

length of the cylinder approaches t o  in f in i ty )  ; the  characteris- 

t i c s  of the vortex generator should converge t o  those of a l i nea r  

generator e 

and the  end plates  of  t he  

Indeedg when L, 3 00, (3 + 1 .O and R -+ 1 .O, the  eff ic iency 
I I 

of the conversion cycle should approach 

1 e o ,  

In  order t o  cheek the consistency 

2 -  i ts  l imit ing value: 

of the  numerical computa- 

t ions  presented here, a s e t  of input parameters were chosen s o  

t h a t  the asymptotic value of the  eff ic iency could be approached, 

For LI = 50.09 r -  099 and fl = lol the  e l e c t r i c a l  effi- 

ciency computed is .a769 (see Table 5 ) .  For the corresponding 

l i nea r  generator with s = -,1 (s  = 1 -R) the eff ic iency can be 

computed using the  expression given by Bernstein: 

n = li 3 .909. The difference between the two ef f ic ienc ies  

i s  due t o  the end p la te  effects. Although the LI = 50.0 r a t i o  

reduces the relative importance of the  closing currents substan- 

t i a l ly ,  it does not eliminate them completely, 

Finally, the question as t o  which of the configurations ( l i nea r  

o r  vortex) is be t te r ,  cannot be answered u n t i l  the  charac te r i s t ics  

of a finite linear generator are known, 
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3. Summary 

The primary purpose of the present analysis was t o  gain in- 

formation about the performance charac te r i s t ics  of a vortex type 

magnetohydrodynamic AC generator, 

the analysis was suggested by i ts  compactness and the r e l a t ive ly  

small amount of work done so f a r  in  the f i e l d  of rotat ing magneto- 

hydrodynamic flows w i t h  emphasis on power conversion. 

has been car r ied  out by taking advantage of perturbation technique 

and other approximate methods used i n  operational mathematics. 

The numerical computations were ca r r i ed  out  on an electronic digi-  

t a l  computer; the obtained resul ts  a r e  consis tent  with data, pub- 

l i shed  by other  authors. 

ra t ios ,  the generator character is t ics  converge to those of a lin- 

ear generator, 

The conf igura tfon chosen f o r  

The analysis 

In  par t icular ,  for high length-radius 

For a given f i j ec t ion  to phase veloci ty  r a t i o  0, the power 

output is  l a r g e s t  a t  small radius r a t i o s  p9 but  the operation is  

the l e a s t  e f f f c i en t  there. 

bu t  the power output decreases, Thus the choice of design paramet- 

ers f o r  a p rac t i ca l  generator must be based on a compromise between 

e f f i c i e n t  operation and maximum power output. 

seems to be best  f o r  pract ical  applicatAons, 

Since the improvement of the efficiency w i t &  increasing the 

As fl increases the eff ic iency increases, 

The range .75 5 p 

length r a t i o  i is q u i t e  slow a f t e r  -the r a t i o  L - 6,O is exceecieci, I I -  
the prac t ica l  design values should be chosen i n  the in te rva l  3,O e 

LI 2 6.0, 

- 
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function obtained through a f i n i t e  
Fourier cosine transform 

constant defined by Eq, (2.1+11) 

electrical f i e l d  intensity ( v o l t / m  ) 

fn(d h a t i o n  defued kg (3,1.28) 
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F body force (Kg) 

F function defined by Eq. (3.1,17) 
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Fls ’ F2s 
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Fls ’ F2s 
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- 128 - 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

3 
I 
3 

JO 

K 

K 
+ 

L 

€ 

LI 
ws 
m 

M 

MHD 

N 

P 

PT 

pt; 

'ev - 
P 

Q 

r 

5 
r 1 

- 1.29 - 

current density (mp/m 2 ) 

current dehsity in f i e l d  coils 

thermal conductivity (Cal/m,sec .%) 
surf ace current density 

length of the generator chamber (m) 

oimic losses per u n i t  volume (dimensionXessj 

average ohmic losses per unit  volume 

length r a u o  (- "/"I) 
l e f t  hand side 

(amp/m2) 

(amp/m2 ) 

(dimensionless) 

constant (- ri/z") 
constant defined by Eq. (34.17) 

amagneto~drodpmmic~ 

magnetic interaction parameter 

inJection pressure (~g/m*) 

t o t a l  pegsure (Kg/m2) 

power per unit volume (dimensionless) 

effective power per unit volume (dimensionless) 

average power per unit volume (dfmensiofiess) 

average net power per uni t  volume (dimensionless ) 

constant related t o  the total volume flow 

radius (m) 

radius ra t io  defined by Eq* (2a1.19) 

radius ( - ms) 
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inside radius (m) 

outside rad5us ( V I )  

~droctynamfc Reynolds number, 

magnetic Reynolds number 

"right hand side" 

s l i p  factor defined by Eq, (,5+Ie9) 

magnetic pressure coefficient 

function obtained through a finite Fourier 
sine transform 

injection velocity (m/sec 0 1 
axit velociw (m/sec 1 
coordinate (m ~ 

coordinate ( = ma ) 

cylindrical function 

duct width ( l$ - % ) (m) 

velocity differential ( = vI - w%) (m> 
radius ra t io  ( 9 R& ) 

ra t io  defined @ Eq. (3.L17) 

electr ic  permittivity ( c m 1 2 / ~ g e 2 )  

electrical  efficiency 

index for Ressel functions 

magnetic permeability (volt, sec/amp.m) 

kiaetic viscosity em 2 /set ) 



hydrodynamic density (kgm/m 3 ) 

e l e c t r i c a l  charge density (cou k/m 3 ) 
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Pe 

Po 

PI 
0 e lec t r i ca l  conductivity (amp/volt m )  

4) azLmtha1 coordinate 

dimensionless radius ( = Ro/AR) 

dimensionless radius ( = RI/AR) 

potent ia l  function describing the zeroth order 
e lec t ros ta t ic  f i e ld  

hydrodynamic dissipation function 

stceam function for first order velocity 

$0 

4 
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w angular veloci ty  (l/sec ) 

Subscripts 

components &long t h e  corresponding coordinate axes 

zeroth order 

first order 

cornpl&mentary 

normal 

particular 

tangential  

Superscripts 

( p ) quantity expressed in a rotating coordinate system; 
o r  derivative w i t h  respect t o  -/ 

nondhensional quantity .K 


