
June 1964

NASA TECH BRIEF

This NASA Tech Brief is issued by the Technology Utilization Division to acquaint industry with the technical content of an innovation derived from the NASA space program.

Circuit Controls Transients in SCR Inverters

The problem: To eliminate starting difficulties encountered in d-c to d-c converters that employ an SCR (silicon controlled rectifier) d-c to a-c inversion stage with large output-filter capacitances.

The solution: A modified parallel inverter providing a full-wave rectified output that is applied to an L-C (inductive-capacitive) filter.

How it's done: In addition to a center tap, the output winding of the inverter has two other taps. On starting, or under transient loads the two additional taps deliver power through diodes D_1 and D_2 without requiring quenching of SCR currents appreciably in excess of normal starting load current. The converter

can be started, when the voltage across the filter capacitor C_1 is initially zero, with the first triggering pulse directed to the gate of SCR₁. When this SCR turns on, a large current will be initiated in the circuit consisting of the winding N₁, diode D₂, and filter capacitor C₁. This capacitor will be quickly charged through D₂ to a lower voltage than that appearing across the combined windings N₁ and N₂. Because of the low transient impedance of this "quick-charge" circuit, it is possible to complete the charging of C₁ so that the current through SCR₁ at the moment of quenching will nearly equal normal load current. As the current in the inductor L increases, the voltage

This document was prepared under the sponsorship of the National Aeronautics and Space Administration. Neither the United States Government, nor NASA, nor any person acting on behalf of NASA: A. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this document, or that the use of any information, apparatus, method, or process disclosed in this document may not infringe privately-owned rights; or B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, method, or process disclosed in this document. across C_1 ultimately rises to its steady-state value and consequently renders D_1 and D_2 nonconductive.

Excessive starting current transients through the SCR's are prevented by appropriately positioning the two off-center taps on the inverter, or by inserting small resistors.

Notes:

1. Although the primary purpose of this circuit is to eliminate starting difficulties in SCR inverters, it also eliminates the effects of large transient dips in the load voltage. In this instance, D_1 and D_2 become conductive as the output voltage drops, the reverse voltage across these diodes disappears,

and the quick-charge capacitor C_1 tends to offset transients.

2. For further information about this innovation inquiries may be directed to:

Technology Utilization Officer Goddard Space Flight Center Greenbelt, Maryland 20771 Reference: B63-10600

Patent status: NASA encourages commercial use of this innovation. No patent action is contemplated.

Source: Duke University under contract to Goddard Space Flight Center (GSFC-120)