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Abstract 

Dispersion strengthening is explained by utilizing two methods of attack. The 
first, a theoretical approach, predicts the yielding and creep behavior of these al- 
loys on the basis of dislocation theory. The second, an  experimental approach, 
shows the variarion of the yield and creep strength of these alloys with both the 
testing conditions and the structural parameters of these alloys. 

The combination of these two approaches leads to  a fundamental understanding 
of the mechanism involved in dispersion strengthening. In particular, require- 
ments can be set as to  the dispersion morphology required for achieving dispersion 
strengthening in an  alloy system, based upon the fundamental constants of the 
alloy phases. These morphological requirements are applicable to  dispersion- 
strengthened alloys in general. The additional requirement of high-temperature 
structural stability makes this treatment applicable t o  the SAP.-type alloys. 

I. INTRODUCTION 

A discussion of a theory of dispersion strengthening should properly 
begin with a definition of dispersion strengthening. When a finely 
divided second phase is distributed in a metallic matrix, an alloy is 
formed which is considerably stronger than the pure matrix metal by 
itself. This strengthening effect has long been recognized and made 
use of. Well-known examples are dispersions of cementite in a ferrite 
matrix, be it in the form of lamellar cementite in a pearlitic structure 
or of spheroidal cementite in tempered martensite structures. Leav- 
ing aside for the moment those precipitation-hardened alloys, in which 
the strengthening effect is attributed to the coherency strain between 
matrix and precipitate, there are many of these alloys which exhibit 
very marked dispersion-strengthening effects after coherency strains 
have been eliminated by overaging. 
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tendency to reduce its surface area, even a t  temperatures below those 
where it dissolves completely. The dispersion will therefore become 
increasingly coarser with increasing times and temperatures. Since 
the hardening and strengthening effect of dispersion-hardened ma- 
terials is strongly dependent upon the fineness of the dispersion, such 
coarsening will invariably cause a decrease in hardness and strength 
of the alloy. 

The development of dispersion-strengthened alloys with a more 
stable phase at  elevated temperatures has been primarily, although 
not exclusively, an accomplishment of powder metallurgy. This 
justifies a discussion of dispersion strengthening in this conference on 
powder metallurgy. The best known group of such alloys are the 
so-called “S.A.P. alloys,”’ which consist of a dispersion of aluminum 
oxide in an aluminum matrix and are produced by compacting, hot 
pressing, and extruding aluminum flake or atomized aluminum 
powders. 

A great deal of effort has been expended on developing dispersions 
of oxides in matrices other than aluminum, in the hope that these 
dispersions may be as stable up to the melting point of the matrix 
metal as the dispersions of aluminum oxide in aluminum are to the 
melting point of aluminum. Such oxide dispersions are produced by a 
number of methods. Finely divided metal powders and oxide pow- 
ders may be mixed Very thin oxide films may be deposited on the 
surface of metal powders or metal films on oxide particles. One of the 
oxides in a finely divided mixture of two or more oxides may be re- 
duced to the metal and the resulting powder consolidated. Finally, 
internal oxidation of alloys, in which the solute metal forms a more 
stable oxide than the solvent metal and in which oxygen has appreci- 
able solubility in the solvent metal, will lead to dispersions of a finely 
divided oxide in a metal matrix. The alloys may be internally 
oxidized as sheet or wire or in the form of powder which is subse- 
quently consolidated by powder metallurgy methods. 

The insoluble and stable second phase does not necessarily have to 
be an oxide. I t  may be an intermetallic compound such as the alu- 
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minum-zirconium intermetallic compound dispersed iQ a magnesium 
matrix which is precipitated when a mixture of magnesium-aluminum 
and magnesium-zirconium alloy powders is co-extruded. An- 
other example is an aluminum-iron intermetallic compound which is 
precipitated as a very fine dispersion in an aluminum matrix when a 
liquid aluminum-iron alloy is atomized. This atomized powder can 
then be hot pressed and extruded without effect upon the fineness 
of the dispersion. 

This listing indicates that there are a great many methods by which 
dispersion-strengthened alloys can be produced. However, this 
paper deals with the properties of these alloys and with the mecha- 
nisms by which these properties are achieved. The emphasis in this 
discussion will therefore not be on the methods of producing the 
alloys but upon their properties. The mechanical properties of an 
alloy are dependent only upon its microstructure and the interaction 
of dislocations with this microstructure and not upon the method of 
producing the alloy. Dispersion-strengthened alloys have several 
interesting properties. They have high yield strength; i.e., the 
stress necessary to cause incipient plastic deformation in the absence 
of any recovery process is high. They have a high rate of work 
hardening. Some of these alloys are quite ductile, i.e., their fracture 
stress i s  well above their yield stress; others are rather brittle, and 
ductility and brittleness depend strongly upon temperature. Disper- 
sion-strengthened alloys with a more or less stable second phase have 
remarkably low creep rates a t  temperatures near the melting point of 
the matrix metal. They also strongly resist recovery and recrystalliza- 
tion when they are cold worked and annealed. 

The theoretical treatment of strengthening in these alloys would bc 
easy if all their properties could be explained by one mechanism. 
However, this is not possible. When one is interested in treating 
fundamentally the mechanical properties of an alloy, i t  is important 
not to treat a general characteristic of a material such as strength 
but rather the particular mechanical property which is of interest. 
Any mechanical property involving plasticity has to be evaluated in 
terms of dislocation motion. However, the mode of dislocation 
motion responsible for one particular property may not be important 
for another property; e.g., a t  low temperatures one is not concerned 
with dislocation climb, whereas a t  high temperature climb is necessary 
to explain recovery. Therefore it is not possible to propose a single 

. 



c 
c 

270 POWDER METALLURGY 

fundamental theory to explain all the mechanical properties of dis- 
persion-strengthened alloys, but rather each mechanical property has 
to be treated individually. Several models have been suggested 
previously to account for the yield strength and flow stress of dis- 
persion-strengthened materials. They have been applied to steels l 

and to overaged precipitation-hardened alloys. These models ap- 
peared to be unable to explain the yield strength in the stable alloys of 
the S.A.P. type and a new model was, therefore, developed. If this 
model is correct, i t  should, of course, be valid for any dispersion- 
strengthened system which fits the model. In the first section of this 
paper, models previously suggested to explain the yielding and flow 
stress of dispersion-strengthened alloys are briefly reviewed, the new 
model for the yielding behavior of these alloys and the equations 
based on this model are presented, and some experimental data which 
support the new model are submitted. 

One outstanding characteristic of the S.A.P.-type dispersion- 
strengthened alloys is their low creep rate. Considerable efforts have 
therefore been made to develop theories for the steady state creep 
behavior of these alloys and to correlate the theories with experi- 
mental data for creep. In the second part of this paper, dislocation 
models for steady state creep in dispersion-strengthened alloys are 
presented. Calculations for creep rate based on these models are 
developed and their results compared with experimental data for creep 
rate in several S.A.P.-type alloys. 

For several other properties of dispersion-strengthened alloys no 
quantitative theory has yet been developed, notably their work- 
hardening behavior, their fracture properties, and their resistance to 
recovery when they are annealed. In a final section of this paper 
the directions are outlined which further theoretical and experimental 
work in this field should take. 

11. THEORIES FOR YIELD AND FLOW STRESS OF 
DISPERSION-STRENGTHENED MATERIALS 

Because of the great importance of precipitation strengthening in 
practical alloy development a great effort has been expended to 
further its understanding. An extensive review of dispersion- 
strengthened alloys formed by precipitation reactions was given by 
Geisler,2 who attributed the major part of the strengthening to the 
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effects of coherency strains set up in the matrix by the precipitated 
particles with only a minor contribution due to the dispersed particles. 
It will become apparent in a later section that coherency strains are 
probably important because they change the effective dispersion 
morphology rather than create a different type of dispersion strength- 
ening. Geisler's treatment of the problem therefore is more valuable 
as an adjunct to, rather than the basic strengthening mechanism for, 
dispersion-strengthened alloys. 

Gensamer et a1.,3 in order to account for the flow stress behavior 
observed in a series of steels, offered the following explanation for the 
strengthening effect of a dispersed second phase. The dispersed 
particles divide the material into blocks whose dimensions are equal 
to the interparticle spacing. These blocks then define the limit for 
the mean free path of dislocation motion. The number of disloca- 
tions moving over this mean dislocation path to produce a given 
strain is inversely proportional to the mean path. To produce strain 
at  a certain rate, dislocations must be generated at a rate which is 
also inversely proportional to this path length. If the relation be- 
tween the rate of formation of dislocations and the applied stress is 
known, then the effect of the mean dislocation path on the resistance 
to deformation a t  constant strain rate is also known. The relation 
between speed of deformation and stress is assumed to be semi- 
logarithmic, which appears to be the case for copper and steel a t  low 
temperatures. If the speed of deformation is proportional to the rate 
of generation of dislocations, then the stress should be proportional 
to the negative logarithm of the mean interparticle spacing. The 
formation of dislocations a t  a particular source is dependent only on 
the effective stress on the dislocation source. The effective stress on a 
dislocation source is the applied stress minus the back stress due to 
dislocation structure in the material. This back stress is the critical 
factor affecting the nucleation of dislocations. 

Any theory purporting to explain deformation has to  explain the 
effect of the change of dislocation structure by deformation on the 
variation of the back stress. In Gensamer's theory this area is side- 
stepped by assuming an arbitrary relationship between rate of de- 
formation and rate of generation of dislocations from a source. This 
side-stepping of the actual deformation mechanism makes the the- 
oretical explanation inadequate. The flow stress in many of the 
steels investigated by Gensamer was actually found to be inversely 
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proportional to the logarithm of the spacing, but this cannot be con- 
sidered a proof of the theory. The relationship between dispersion 
spacing and flow stress which Gensamer established has later been 
extended to the relationship between dispersioii spacing and yield 
~ t r e n g t h . ~  This extension is on even more uncertain footing, since 
there is no good theoretical reason to justify this extension. The fact 
that the data for yield strength of certain dispersion-strengthened 
alloys fit Gensamer’s relationship must be considered fortuitous. 
Later a theory is proposed which fits the data as reasonably as does 
Gensamer’s relationship. 

Orowan5z6 has proposed that the critical shear stress of a dispersion- 
strengthened crystal should be proportional to the reciprocal of the 
mean spacing between dispersed particles. He suggests that as a 
dislocation approaches two dispersed particles i t  will bow out between 
them, finally connecting with itself beyond them, and leaving a 
residual dislocation loop surrounding each particle. The stress re- 
quired to bow out the dislocation is inversely proportional to the 
radius of curvature assumed, and the maximum stress corresponds 
to the minimum radius of curvature through which the dislocation 
passes. This minimum radius of curvature is equal to half the dis- 
tance between the particles. The critical shear stress is therefore 
inversely proportional to the spacing between dispersed particles. 
The model for dislocation movement in a dispersion-strengthened 
alloy appears to be correct. I t  will be shown, however, that in a 
large class of dispersion-strengthened materials, even when the 
stress is great enough to satisfy the Orowan requirement for yielding, 
macroscopically observable yielding has not yet occurred. Ac- 
cording to the theory later developed in this paper, for actual yielding 
of dispersion-strengthened alloys it is necessary that the shear stress 
caused by the pile up of dislocations around or against the second 
phase particles increases to such an extent that the second phase 
particles are fractured or plastically deformed. 

Fisher et al.’ have formulated a theory in which the contribution 
of dispersed particles to workhardening is calculated. The theory 
does not attempt to account for the yielding behavior of the disper- 
sion-strengthened alloy, but assumes that the accumulation of 
residual dislocation loops surrounding the dispersed particles, due to 
the operation of the Orowan mechanism, gives rise to a back stress 
which must be overcome by dislocations subsequently moving on the 

. 
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same slip planes as those on which the residual loops lie. This back 
stress is assumed to be a significant part of work hardening. The 
results of Fisher, Hart, and Pry’s computatioiis show that after a 
given amount of deformation, the shear stress for further deforindtion 
can be calculated. Fisher, Hart, and Pry’s model can, of course, not 
be correct for any alloy for which the second phase particles must be 
sheared before macroscopic yielding has occurred. Once the particles 
are sheared, they cannot give rise to the formation of additional loops 
during work hardening. 

’. 

III. DISLOCATION THEORY FOR YIELDING OF 
DISPERSION-STRENGTHENED ALLOYS 

1. Introduction 

Plastic deformation in crystals is due to the movement of disloca- 
tions. The crystals yield when large numbers of dislocations can 
move appreciable distances through the lattice. Dislocations are 
nucleated a t  sources in the lattice due to an applied stress. If the 
stress required to nucleate dislocations is greater than the stress 
necessary to move dislocations appreciable distances along a slip 
plane, the yield stress of the material will equal the stress necessary to 
nucleate the dislocations from a source. In alloys where a continuous 
three-dimensional dislocation network provides Frank-Read sources, 
this stress is equal to 

Nucleating stress = d ! L  (1) 

. where p is a shear modulus, b is the Burgers vector of the dislocation, 
and L is the linear distance between nodes of the dislocation network. 
For unresolved stresses and strains the right-hand side of this equa- 
tion should be multiplied by 2. 

In dispersion-strengthened alloys, however, the stress necessary to 
move dislocations appreciable distances along a slip plane may be 
higher than the stress necessary to nucleate dislocations from a 
source. In this case, the yield stress of the alloy is determined by the 
stress required to move dislocations freely in a crystal lattice con- 
taining a uniformly dispersed second phase. A model for calculating 
this stress follows. 

. 
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2. Model 

Dislocation loops are considered to be formed a t  dislocation sources 
under the action of an applied stress. The exact nature of the 
sources is not critical in considering the model. As the dislocation 
loops expand from the sources, they are either blocked from further 
motion by the dispersed second phase particles or they continue to 
move by bowing about the dispersed particles leaving residual loops 
surrounding each particle. The stress required to bow dislocation 
loops about the dispersed particles is the yield stress in the Orowan 
criterion for ~ i e l d i n g , ~ , ~  which predicts that the yield stress of dis- 
persion-strengthened alloys is inversely proportional to the dispersed 
particle spacing. However, in this model it is postulated that even 
when the dislocations move past the dispersed particles, leaving re- 
sidual dislocation loops surrounding the particles, yielding does not 
result. 

The first dislocation nucleated a t  a source moves in the slip plane 
until it is blocked from further movement by its interaction with dis- 
locations nucleated from other sources. In single phase materials 
this blockage of the lead dislocation is overcome by the increase of 
stress on the dislocation due to the pile up of subsequently nucleated 
dislocations behind the lead dislocation. In a dispersion-strengthened 
alloy, however, the lead dislocation remains blocked for the following 
reasons: (1) The stress field of the residual loops as in the Fisher 
et  al.' work-hardening model, decreases the effective stress on the 
dislocation source. Because the effective stress on the dislocation 
source is reduced, fewer dislocations are nucleated a t  each source. 
(2)  The stress field of the residual loops interacts with the piled-up 
dislocation group changing the pile-up spacing. This reduces the 
stress field ahead of the leading dislocation of the piled-up group of 
dislocations. Both of these factors decrease the stress on the lead 
dislocation making i t  easier to be blocked. Therefore, the plastic 
strain E of the dispersion-strengthened alloy is 

' 

This postulate can be supported by the following argument. 

E = MNaR'b ( 2 )  

where M is the density of dislocation sources, N is the number of dis- 
locations nucleated a t  each source, R is the average radius of the dis- 
location loops, and b is the Burgers vector of the dislocations. As- 
suming reasonable values for these: M = lo9 sources/cm3, N = 10 
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dislocations/source, R = l/* (M-1'3), and b = 2 X cm the re- 
sultant strain is about This is much less than the strain asso- 
ciated vc-ith yielding, e.g., the strain associated with the engineering 
offset yield stress of 2 X lW3. Therefore, plastic deformation stops 
and yielding has not occurred when the back stress on the dislocation 
source (due to an array of either blocked dislocations or of residual 
loops around the particles) exceeds the applied stress. The choice of 
the value for the source density in the evaluation of eq. (2) is not 
critical since the strain varies as the cube root of the source density. 
Under these conditions, in alloys with fine dispersions, no apparent 
yielding has yet occurred. In order to cause such yielding, the shear 
stress due to the dislocations piled up around or against the particles 
must fracture the dispersed second phase particles. This fracturing 
of the dispersed particles relieves the back stress on the dislocation 
source and also increases the stress on the lead dislocation. The 
dislocations then can sweep out areas on the slip plane which are 
large with respect to the dispersion spacing. 

The fineness of a second phase dispersion necessary to make its 
fracture the critical requirement for yielding, depends upon the den- 
sity of active dislocation sources in the alloy. The lower the disloca- 
tion source density, the cwarser the dispersed particle spacing required 
to make the dispersed particle failure the requirement for yielding. 

Even at one-half or more of the absolute melting temperature of the 
matrix metal, fracture of the second phase particles should be neces- 
sary for appreciable yielding unless recovery takes place. Recovery 
can occur either by climb of piled-up dislocations a t  a rate exceeding 
the applied strain rate or by cross slip of piled-up dislocations out of 
the slip plane if the geometry of the dispersed second phase particles 
permits. The possibility of recovery is not considered in the following 
calculation. . 

3. Calculations Based on the Model 

On the basis of the preceding model, the yield strength of a disper- 
sion-strengthened alloy is now evaluated. In this evaluation the 
shear stress on the dispersed particles due to dislocations piled up 
against or residual loops piled up around the particles is calculated 
for straight dislocation segments piled up against a straight barrier. 
This calculation is applicable to dispersion-strengthened alloys which 
contain dispersed particles of such a size and shape (e.g., flat plates 
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and large spheres) that the piled-up dislocations have a large radius of 
curvature and can be considered straight. This is the case for many 
of these alloys, e.g., S.A.P.-type alloys and most steels. In this case 
the stress r on a dispersed second phase particle due to a piled up array 
of dislocations can be considered to be equal to 

T = IZF 0) 
where n is the number of dislocation loops pilcd up against or arouiitl 
a dispersed particle and F is the applied stress. 

The number of dislocations n in eq. (3) acting on a particle depends 
upon the spacing between particles, according to 

. 

n = 2Xg/pb  (4) 

where X is the spacing between dispersed particles and p is a shear 
modulus of the matrix metal [p = 1/1/2C44(C11 - CE) for cubic metals, 
C,, being the usual elastic constants]. Combining eqs. (3) and (1), 
the shear stress T 011 the particle is equal to 

r = ?Xa' /pb  ( 3 )  

The dispersioii-streiigihfrled alloy yields when the shear stress on 
the particle is equal to the fracture stress of the dispersed particle. 

The limiting stress F that w-ill fracture the dispersed particles is 
proportional to a shear modulus p* of the particle. Therefore 

F = p * / C  (6) 

where C is a constant of proportioiiality, which can theoretically be 
shown to be somewhere in the neighborhood of 

Coinbining eqs. ( 5 )  and (6) gives the rnaxinium stress that can be 
applied to the alloy before yielding occurs. The yield .strcss of the 
alloy is therefore equal to 

. 

Yield stress = di&*/~C ( 7 )  

If the distribution of second phase particles is such that the stress 
calculated from eq. (7) is less than the stress necessary to cause dis- 
locations to be nucleated from a source, the equation is no longer appli- 
cable. In this case, the yield stress of the alloy should be calculated 
from this dislocation-nueleating stress, which is the yield stress of the 
matrix metal without a dispersed second phase. If a continuous 
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three-dimensional network provides Frank-Read dislocation sources, 
this stress is gi\Ten by eq. (1 ). 

The calculation presented in this section is based on the assumption 
that the piled-up dislocations have a large radius of curvature and can 
be considered straight. K l e n  the radius of curvature is small, this 
calculation of the shear stress on the particles no longer holds. In- 
stead, the treatment which Fisher et  al.' used to calculate the shear 
stress on a dispersed particle due to residual dislocation loops be- 
comes applicable. In this treatment the stress on the dispersed 
particles due to residual dislocation loops is equal to 

T = n b p / X  (8) 
where R is the radius of a spherical dispersed particle. The minimum 
radius Rmin of the dispersed particles for which the treatment in this 
section is no longer applicable may be calculated by combining eqs. 
(3)  and (8) and writing: 

This minimum radius is therefore dependent upon the particular 
alloy system in question and on the level of stress required to produce 
yielding. If for a particular alloy: b = lO-* cm, I.( = 10'l dynes/cm2, 
and u = lo9 dynes/cm?, then Kinin is lop6 em. The two approaches 
(i.e., the one for particles larger and the one for particles smaller 
than R)  are compatible with the model, each being the limiting case 
of the other. The model itself, which postulates shearing of the 
second phase particles is valid in either case, only the mathematical 
treatment must be varied to fit the appropriate case. 

This model is based upon yielding occurring when the area swept 
out per dislocation loop is large as compared to the dispersed particle 
spacing. The particles act simply to hinder dislocation motion. The 
derivation is similar to thg t given by P e t ~ h , ~  where grain boundaries 
are the blocking structure. 

IV. REQUIREMENTS FOR DISPERSION-STRENGTHENED 
ALLOYS WITH HIGH YIELD STRENGTH 

With the dislocation theory proposed for yielding, i t  should be 
possible to predict the yield strength of an alloy containing a finely 
dispersed second phase. However, in most of these alloys yield 
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strengths can be evaluated from eq. (7) only to an order of magnitude 
for two reasons : (1) The value .of the constant of proportionality c in 
eq. (6) is very approximate since i t  depends upon what assumptions 
are made in its calculation, (2)  The value of the shear modulus of the 
dispersed phase may not be known, or if i t  is known for the phase in 
bulk form, it may not be applicable to the fine particles in the disper- 
sion because of differences in structure or composition. Nevertheless, 
it is interesting to note that by taking reasonable values for the shear 
moduli of dispersed phase and xnatrixthe calculated yield strength of 
the alloys discussed below will fall within an order of magnitude of the 
experimental values. 

Even though the dislocation theory does not yet permit calculation 
of absolute values of yield strength of dispersion-strengthened alloys, 
it will furnish a guide for the design of these alloys. The theory pre- 
dicts the variation of yield strength with the degree of dispersion in 
these alloys. It shows how the nature of the matrix metal and of the 
second phase influence the strength of the alloy. For certain sxstems 
it predicts how the yield strength of an alloy varies with tempera- 
ture. The theory will also indicate whether the yield strength of a 
given alloy consisting of particles of a second phase dispersed in a 
matrix is due to the dispersion-strengthening mechanism or not. 
Finally, the theory will answer questions regarding the nature of the 
dispersed particle-matrix interface. Experimental data are available 
to test the predictions of the theory with regard to the relationships 
between yield strength and particle spacing, between yield strength 
and the nature of the phases involved, and between yield strength and 
temperature in a given system. These data are presented in the 
following sections. They are followed by qualitative discussions of 
the range of validity of the dispersion-strengthening mechanism and 
of the requirements for dispersed phase-matrix interfaces in disper- 
sion-strengthened alloys. 

. 

. 

1. Effect of Dispersion Spacing upon Yield Strength 

According to eq. (7) the yield strength of a dispersion-strengthened 
alloy should vary linearly with the reciprocal of the square root of the 
dispersion spacing. The line should extrapolate to zero for disper- 
sions with an infinite spacing. In order to verify this relation, data 
are necessary on the spacing of the second phase in these alloys and 
their yield strengths. The yield strength predicted by the theory is 
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the stress required to produce apparent yield in the alloy. In single 
crystals this stress can be identified with the critical resolved shear 
stress. In polycrystalline material, a yield strength may be used 
with an offset corresponding to the strain a t  which the second phase 
particles fracture. As indicated in the theory section this strain will 
in most cases be considerably less than the 0.2% offset used €or the 
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Fig. 1. The lower yield points of several hypoeutectoid, eutectoid, and hy- 
pereutectoid steels are plotted vs the reciprocal square root of dispersion spacing. 
The line represents the least squares fit of the data. 

engineering yield strength. The assumption may be made that for a 
given series of alloys tested a t  constant temperature the engineering 
0.2% offset yield strength is a constant amount higher than the yield 
strength postulated by the theory. In that case the engineering 
yield strength should also be proportional to the reciprocal of the 
square root of the spacing, but the intercept of the straight line 
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between yield strength and reciprocal of the square root of spacing 
should have a positive intercept a t  infinite dispersion spacing. Rob- 
erts et aL4 determined the lower yield strength of several hypoeutec- 
toid, eutectoid, and hypereutectoid steels, some with a pearlitic and 
others with a spheroidized structure. In a few cases the elastic limit 
was also measured. For this same series of steels, the authors de- 

YIELD 
0 U.T.S, 

0 
0 I 2 

RECIPROCAL SOUARE ROOT OF DISPERSION SPACING 
I 1 , ~  ( M I C R O N S - ~  

Fig. 2. The room temperature yield strengths and the ultimate tensile strengths 
at 400OC for several .4I-X1~0:, S..l.P.-type alloys are plotted vs the reciprocal square 
root of the dispersion spacing. Each line represents the least squares fit of the data. 

termined the mean ferrite path, which they defined as the mean dis- 
tance between carbide particles or pearlite patches. They plotted 
the lower yield point, and where available the elastic limit, versus 
the logarithm of the mean free path. This relationship, which was 
first proposed by Gensaxner et aLY for flow stress must be considered 
empirical as is discussed in the Introduction. In accordance with 
the theory proposed here, the lower yield points of Roberts et a1.l 
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were replotted in Figure 1 versus the reciprocal of the square root 
of the spacings. A least squares line has been drawn assuming a 
linear relationship. The fit is as satisfactory as that shown in the 
original plot of Roberts et al. Unfortunately, too few values were 
available for establishing a valid correlation between elastic limit and 
spacing. 

Lenel, Ansell, and Nelsonlo determined by quantitative electron 
microscopy the average spacing between the plate-like oxide parti- 
cles, for a series of flake aluminum powder extrusions of the S.A.P. 
type. For these same extrusions, Lenel, Backensto, and RoselI 
determined the room temperature yield strength a t  0.20/, offset and 
the ultimate tensile strength at 400OC. At 100°C, the ultimate ten- 
sile strength and the tensile yield strength are almost equal.12 In 
Figure 2,  the strength values a t  the two temperatures are again 
plotted versus the reciprocal of the average spacing, with the lines 
representing the least squares fit of the data. This plot does not 
exhibit any more scatter than the empirical type of plot suggested by 
Lenel for his data. 

The critical resolved shear stress of a series of overaged high-purity 
aluminum-copper alloys and the spacing between the dispersed sec- 
ond phase particles in these alloys were determined by Dew-Hughes 
and Robertson.13 They interpreted the data as supporting Orowan's 
yield strength theory. A least squares analysis of the data plotted 
according to Orowan's theory, however, shows neither predicted linear 
variation of the critical resolved shear stress with the reciprocal of the 
dispersion spacing, nor a line intercept of zero for an alloy with an 
infinite spacing. On the other hand, if their values for the critical 
resolved shear stress are plotted versus the reciprocal of the square 
root of the dispersion spacing as is shown in Figure 3, a better fit is 
obtained. The line represents the least squares fit of the data and 
goes through the origin of the graph. This indicates that the pro- 
posed theory, in which yielding takes place when the dispersed second- 
phase particles shear, would also apply to aluminum alloys containing 
a dispersion of the theta phase. Dew-Hughes and Robertson con- 
sider this possibility, but conclude from an examination of the micro- 
graph of a fractured sample near its fracture surface that the particles 
do not shear during plastic deformation of the matrix. However, it 
appears doubtful that the shear of the particles as proposed in this 
paper can actually be detected by this type of examination. 

. 

. 

, 

. 
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2. Effect of Alloy System upon Yield Strength 

The dislocation theory indicates that the yield strength of a dis- 
persion-strengthened alloy depends upon the strength of both the 
matrix and the dispersed phase. Only alloys in which the second 
phase is stronger than the matrix will exhibit dispersion strengthening. 
The theory permits an evaluation of the effect of a particular metal 
matrix-dispersed phase combination used in fabricating a dispersion- 
strengthened alloy. According to eq. (7) the larger the value of the 
shear modulus of the dispersed second phase, the steeper should be the 
slope of the curve of yield strength versus the reciprocal of the square 
root of the dispersion spacing. This is shown to be true in comparing 
the slope of the lines representing the least squares fit of the data in 
Figures 2 and 3. In both cases the matrix metal of the alloy is alu- 

0 CRS.S,  AGED AI-CU ALLOYS,25'C (DEW-HUGHES) 

F- 
I- 

e e 

RECIPROCAL SOUARE ROOT OF DISPERSION SPACING 

I UT (MICRONS-'12) 

Fig. 3. The critical resolved shear stress of several overaged AI-Cu alloys are 
plotted vs the reciprocal square root of the dispersion spacing. The line represents 
the least squares fit of the data. 
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minum, but the alloy whose yield strength data are shown in Figure 2 
has aluminum oxide as the dispersed second phase as compared to the 
copper-aluminum theta phase for the alloy represented in Figure 3. 
The shear modulus of the oxide is approximately 10 times greater than 
that of the theta phase. The ratio of the slopes of the two lines should 
therefore be equal to .\/lo, if the mode of failure of these two dis- 
persed phases is similar and the constant of proportionality Cin eq. (6)  
the same for the two alloys. The actual ratio of the slopes of the two 
lines is 3, in good agreement with the theory. 

. 

3. Temperature Dependence of the Yield Strength 

Inspection of eq. (7) shows that of the terms which determine the 
yield strength of a dispersion-strengthened alloy, only the shear 
moduli have an appreciable temperature dependence. Therefore, if 
the temperature dependence of these moduli is known, or if a reason- 
able approximation of this dependence can be made, the variation of 
the yield strength with temperature should be predictable according 
to the equation 

CT = u25(PTPT*/P25P25*) lP (10) 

in which u is the yield stress, and p and p* the shear moduli of the 
matrix metal and the dispersed phase, respectively; the subscripts 
refer to the values of the properties a t  test temperature and at 25OC. 

This predicted temperature dependence can be checked by deter- 
mining the temperature dependence of the proportional limit, as- 
suming that the proportional limit in these alloys is the stress which 
causes the second phase particles to shear. The temperature de- 
pendence of the proportional limit of two aluminum-aluminum oxide 
S.A.P.-type alloys, MD 2100 and MD 5100, has been determined re- 
cently by Lenel, Ansell, and B0sch.1~ The proportional li@t was 
determined by sensitively measuring the strain in these materials as a 
function of stress. In Figure 4 the values of stress divided by strain 
are plotted as a function of strain for one particular test. This type 
of plot unambiguously shows the first deviation from the linear stress- 
strain relationship permitting an accurate determination of the pro- 
portional limit. For both of these alloys, the proportional limit was 
determined over the temperature range from 0.1 to 0.87 homologous 
temperature (90-773’K) and the !~e ld  strength (0.2% offset) in the 

, 

. 
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range from 0.1 to 0.6 homologous temperature (90-530’K). The data 
are plotted in Figure 5. In the same figure, lines are plotted of the 
temperature dependence of the proportional limit according to eq . 
(10). The data for the shear modulus of aluminum as a function of 
temperature were interpolated from the data of Sutton15 for the 
elastic constants of high purity aluminum. The data for the shear 
modulus of aluminum oxide were interpolated from the data of Stav- 
rolakis and NortonI6 for the modulus of rigidity of compacted and sin- 

10.5 

10.0 

9.5 

9.0 

I - 0  
0 0  I 

0 200 400 600 800 000 
STRAIN (MICROINCHES) 

Fig. 1. The ratio of stress divided by strain on an AI-Al~O~ SAP.- type  alloy 
is plotted as a function o f  strain to determine the proportional limit. 

tered alumina. The data for aluminum are quite extensive and can be 
considered reliable in this temperature range. Very little reliance can 
be placed in the data for the aluminum oxide, however, because of the 
few data determined in this temperature range. In view of the 
uncertainty of the modulus data for aluminum oxide, the agreement 
between the theoretically calculated and the experimentally deter- 
mined proportional limit-temperature relationship may be considered 
reasonable. I t  is certainly much better than for the experimental 0.2% 
offset yield strength curve. 

. 
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Fig. 5. The offset yield stress and proportional limit of two A1-;1l2Q SAP.-  
Lines are shown giving the type alloys are plotted as a function of temperature. 

temperature dependence of the proportional limit predicted by eq. (10). 

I 4. Cold-Worked and Dispersion-Strengthened Alloys 

In discussing the theory of dispersion strengthening, Grant l7 
has placed emphasis upon the effect of “stored energy,” which is 
derived from cold working the alloy. Cold work strengthens a 
single phase alloy by increasing the dislocation density and, at least in 
the case of face-centered cubic metals, by forming Cottrell-Lomer 
barriers. Dispersion-strengthened alloys may be strengthened by 
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cold work in a similar way. However, this strengthening effect is not 
lost as readily in these alloys because of their resistance to recovery, 
as will be discussed in the section on creep theory in this paper. The 
problem arises : What are the relative contributions of the stored 
energy effect on the one hand and the stress necessary to 
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Fig. 6. schematic graph of the relative effects of dispersion spacing atid 
stored energy upon the yield strength of dispersion-strengthened alloys. 

second phase particles on the other hand to the increased yield 
strength of dispersion-strengthened alloys? 

The 
stored energy causes an increase in the yield strength of the matrix 
metal. By cold working, the density of dislocations is increased, and 
therefore the length of Frank-Read sources present in the matrix 

One may consider the problem in the following manner: 
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decreased. This in turn raises the stress to nucleate dislocations as 
given in eq. (I). If this stress to nucleate dislocations is greater than 
the stress required to cause dislocations to fracture the second phase 
particles, then the yield stress of the dispersion-strengthened alloy is 
determined by the amount of stored energy. If the nucleating stress 
is less, then stored energy has no effect on the yield strength of dis- 
persion-strengthened alloys. This is shown in Figure 6 where, for 
dispersed particle spacings which are very large, the strength of the 
alloy is the strength of the matrix metal. For intermediate spacings, 
the yield strength is determined either by the dispersion or stored 
energy, whichever is greater. For very fine dispersion spacings the 
yield strength is not affected by stored energy but is determined by 
the dispersion. HOW fine a dispersion must be so that an alloy falls 
into the third category will depend upon the shear moduli of the 
matrix metal and the dispersed second phase a t  the temperature in 
question because the strengthening mechanism is a function of both 
of them. 

5. Dispersed Particle-Matrix Interface 

The theory proposed for the strengthening of a metal by the addi- 
tion of a dispersed second phase depends upon the dispersed phase 
impeding the movement of dislocations. For this purpose the inter- 
face between the dispersed phase and the metal matrix cannot act as a 
free surface. A dislocation in a crystal lattice has a strain field asso- 
ciated with it. On approaching a free surface, the strain field on the 
surface side of the dislocation is relaxed as compared with the strain 
field of the dislocation facing the interior of the crystal. This net 
unbalance of the dislocation strain field acts to move the dislocation 
toward the free surface and it eventually runs out of the crystal. If, 
instead of a free surface, the surface of the crystal is elastically stronger 
than the crystal lattice, then the unbalance of the strain field is of the 
opposite sign to the preceding case for a free surface; i.e., the disloca- 
tion will be repelled from the surface. In dispersion-strengthened 
alloys, for the particles to hinder dislocation movement, the disloca- 
tions have to be repelled from the dispersed phase-matrix interface. 
Therefore the interface has to be of such a nature that the strain field 
of the dislocation can be transmitted from the matrix lattice, through 
the interface, into the lattice of the dispersed phase. In order to 
accomplish this the matrix has to “wet,” adhere to, or cohere with 
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the dispersed particles. This characteristic of the effects of free 
surfaces and of adherent coatings on surfaces has been clearly shown 
by Barrett l8 in his experimental investigations of the elastic aftereffect 
for wires twisted in torsion. A similar investigation of the presence 
or absence of the elastic aftereffect in wires of the matrix metal coated 
with a proposed dispersed phase should give a good indication of 
whether the interface between the two phases of a particular two 
phase system possesses this required property. 

This discussion brings out the fact that in order to obtain dispersion 
strengthening the second phase may cohere but does not have to 
cohere to the matrix. The principal characteristic of the coherency 
effect is the lattice strain it produces in both the matrix and the second 
phase. The range of these coherency strains may be of the order of 
the dispersed particle spacing. For the purpose of calculating disper- 
sion-strengthening effects, the size of a complex consisting of the 
precipitated particle and the strained coherent region of the matrix 
surrounding i t  should be important, rather than the size of the particle 
alone. When precipitation hardening is considered from this point 
of view, the small spacing between these complexes would furnish 
the major contribution to the high yield strength of precipitation- 
hardened alloys. 

V. DISLOCATION THEORY AND EXPERIMENTAL DATA FOR 
CREEP 

1. Introduction 

Creep is the extension of crystals under constant stress a t  a con- 
stant temperature. Creep behavior has been described rheologi- 
cally for many years. Not all the different modes of creep which 
have been observed can be readily explained on the basis of a disloca- 
tion model. However, one type of creep lends itself well to such a 
treatment. This is steady state creep, Le., creep a t  a constant rate, 
a t  temperatures above one-half of the absolute melting temperature. 

In order to treat steady state creep, models must be set up for the 
metallurgical structure and the dislocation array of the alloy and the 
assumption made that both structure and array remain constant. 
The rate is then evaluated by calculating the density of dislocations 
moving in the crystal and their rate of motion. Two creep theories 
have been developed by Xnsell and WeertmanIg for dispersion- 
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strengthened alloys of the S.A.P. type. The first theory should be 
applicable to alloys in which the area-to-volume ratio of grain bound- 
ary of the alloy is small. Such coarse-grained dispersion-strengthened 
alloys with grain diameters of several millimeters may be produced by 
cold working and then recrystallizing aluminum powder extrusions.20 
Ansell and Weertman base their theory for the creep of these coarse- 
grained alloys on a model for creep essentially due to Mott and 
adopted by Weertman.21J? According to this model, dislocation 
loops are created at  sources under the action of an applied stress. 
The loops expand to some maximum radius a t  which point they are 
annihilated by climbing to dislocations of opposite sign on neigh- 
boring slip planes. Just as fast as loops are destroyed, new loops 
are created a t  the sources and steady state creep is produced. For 
single phase material the rate-controlling process for creep can be 
either the climb of dislocationsz1 or the viscous motion of a dislocation 
by some microcreep mechanism. 22 For coarse-grained dispersion- 
strengthened alloys it is reasonable to assume, as suggested by 
S c h o e ~ k , ~ ~  that the rate-controlling process for steady state creep is 
the climb of dislocations over the second phase particles. 

Ansell and Weertman’s second creep theory was developed to ac- 
count for the creep behavior of fine-grained dispersion-strengthened 
alloys of the S.A.P. type. It applied to aluminum powder extru- 
sions in the as-extruded condition which have needle-like grains ap- 
proximately 5 thick. For these materials the activation energy for 
steady state creep is abnormally large. This was explained by Ansell 
and Weertman by assuming that dislocations nucleated at  the grain 
boundaries are primarily responsible for the creep deformation while 
dislocations nucleated from active dislocation sources of the type found 
in the coarse-grained alloys contribute much less to creep. 

In the following sections each of the two theories is presented to- 
gether with the experimental data supporting it. 

2. Steady-State Creep Defined by Dislocation Climb 
In order to calculate steady state creep rates based on dislocation 

climb somewhat different models have to be adopted for a low stress 
region, in which the stress is insufficient to bow dislocation loops about 
the particles, and for a high stress region, in which the stress will 
cause bowing of the loops. For both models an assumption must be 
made concerning the origin of the dislocations in the dispersion- 
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strengthened matrix. These dislocations must be nucleated from a 
constant set of dislocation sources present in the alloy. In order to 
calculate creep rates, Ansell and Weertman assumed that the density 
of sources would be approximately the same as in a well-annealed 
pure metal. The first attempts to compare calculated steady state 
creep rates with those determined in creep experiments were made 
on recrystallized MD 2100 alloy having a spacing between oxide 
particles of approximately 0.5 p. These attempts were unsuccessful, . 

since the experimental creep rates were so low (less than 10-8/min) 
that they could not be determined. Later on, creep experiments 
were made on recrystallized aluminum powder extrusions with coarser 
spacings between oxide particles. For these alloys the steady state 
creep rate in the low stress region was still too low to be measured. 
However, in the high stress region, steady state creep could readily be 
determined. The dependence of these creep rates on stress, on tem- 
perature, and on the microstructure of the alloys showed that the 
Ansell-Weertman theorywas on firm ground, even though the ab- 
solute values of the creep rate were several orders of magnitude lower 
than those calculated on the assumption of a dislocation source 
density similar to that in annealed metals. 

(a)  Theory at Low Stresses 
First the creep rate is calculated in the stress range from a stress 

which would be just sufficient to activate a dislocation source, up to a 
stress which is great enough to force a dislocation past the particles 
by bowing dislocation loops about the particles. In this stress range 
dislocations do not pile up, because if the stress is great enough to pile 
up dislocations it is great enough to bow them past the particles. At 
low temperatures no plastic deformation takes place in this stress 
range because the dislocations cannot be moved past the particles. 
At high temperatures, however, plastic deformation can take place 
as the dislocations can climb around the particles. 

In order to make the calculations it is necessary to use a number of 
parameters which are best described by means of diagrams. Figure 
7a pictures a dislocation source imbedded in a field of second phase 
particles. The plane of the paper is the slip plane. Figure 7b 
shows a cross-sectional view of dislocation loops some time after the 
application of a stress. The slip plane is horizontal and perpendicular 
to the plane of the paper. Figure 7c shows a view of a length of dis- 

' 

, 
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location line looking down the direction of motion of the dislocation. 
The slip plane is again horizontal and perpendicular to the plane of 
the paper. Figure 7c illustrates the fact that it is equally probable 
that a segment of dislocation line may climb either over or under a 
particle. In one direction of climb vacancies (or interstitials) must 
be absorbed by an edge-type dislocation and in the other direction 
they must be released. . 

The creep rate may be calculated from the model shown in Figure 7 
in the following manner. The creep rate is equal to the product of 
the number of dislocation sources per unit volume giving off disloca- 

V 

A 

(C) 

Fig. 7 .  Dislocation motion during steady state creep at low stresses: ( a )  dis- 
location source with slip plane in plane of paper, ( b )  dislocation loops under stress 
with slip plane horizontal, (c) dislocation line viewed from the direction of mo- 
tion. 

tion loops, the plastic strain produced by one dislocation loop upon 
expansion to its maximum radius, and the rate of production of 
dislocation loops a t  any one source. The creep rate K is therefore 
equal to 

K = MrSzbR (11) 

where M is the density of dislocation sources, d: is the maximum 
radius, b is the length of the Burgers vector of a dislocation, and R is 
the rate of creation of dislocations a t  one source. 

The maximum radius d: can be calculated from the following argu- 
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ment.21$22 The probability must be essentially one that a t  the 
maximum radius d: a dislocation loop is blocked from further expan- 
sion by dislocations on neighboring slip planes. Consider a pill box 
of radius .C and height d. Let one dislocation source be situated a t  
the center of this pill box. There must be three other dislocation 
sources in the box since i t  takes a t  least three other sources to block a 
dislocation These conditions mean that the value of d: must 
be such that 

2ll.lrCY = 3 (12) 

where d is the distance climbed by a dislocation in order to annihilate a 
dislocation on a neighboring slip plane. In the calculation of the 
steady state creep rate of a single phase alloy21-22 the distance d is a 
function of stress. In the present problem the distance of climb 
around particles is fixed by the geometry of the dispersed phase 
(distances of the order of a micron), and is usually greater than the 
stress-dependent values of d for single phase alloys. Thus i t  is 
reasonable in the present calculations to take a stress-independent 
value of d equal to the dimensions of the particles (d  = h) .  

Consider next the term R, the rate of creation of dislocation loops, 
which appears in eq. (1 1). This rate is equal to the rate at which dis- 
locations surmount barriers in Figure 7b. This is equal to the height 
of climb divided by the velocity of climb: 

R = u/h (14) 

This velocity of climb is controlled by the diffusion of vacancies or 
interstitials. WeertmanZ5 calculated the velocity of climb for a dis- 
location which could maintain an equilibrium concentration of vacan- 
cies in its vicinity. This velocity was 

v = ab2D/kT (15) 

where u is the stress, D is the coefficient of self-diffusion, k is Boltz- 
mann’s constant, and ‘ 1  is absolute temperature. The equation is 
valid for an edge dislocation which is climbing by itself some distance 
away from other dislocations. 
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Combining eqs. ( 1  l), (13), and (15) gives for the creep rate 

K = rab3D/2KTh2 (16) 

(For unresolved stress and strain rates the right-hand side of this 
equation should be divided by 2 4 2 ) .  

(b) Tfseory at High Stresses 

Now an expression for the creep rate will be developed for stresses 
great enough foi dislocations to be forced past the particles by bowing 
about the particles leaving residual dislocation loops surrounding and 
piled up against each particle. The process is shown in Figure 8. 

. 

I A )  18) 

Fig. 8. Dislocation motion during steady state creep at high stresses: (a) 
pinching-off of dislocation loops and ( b )  climb of loops around dispersed par- 
ticle. 

The rate-controlling process now is the climb of the residual disloca- 
tion loops around the particles as shown in Figure 8b. The climb of 
these loops will be governed by the diffusion of vacancies away from or 
toward a dislocation line. Since the interface between the metal 
matrix and the included particle should be a good source or sink of 
vacancies, the vacancy flow will probably be between this interface 
and the dislocation lines. 

The rate a t  which the residual dislocation loops are annihilated in 
Figure S b  may be estimated. The loops are forced to climb around 
the particles because of the interaction forces of the dislocations piled 
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up against the particles. 
dispersion spacing, is 

The number n piled up in the distance A, the 

n = 2uA/bp (17) 

The distance a residual dislocation loop must climb before another 
loop can be pinched off about the particle is of the order 

A = pb/nu .- p2b*u2 (18) 

The rate of climb of the dislocation loop is given by eq. (15) with the 
stress replaced by the concentrated stress nu or 

v = 2u2bXD/pkT (19) 

R, the rate of dislocation nucleation, is equal to the dislocation 
velocity v divided by the height of climb A. Combining eqs. (18) 
and (19) yields the expression 

R = 4u4A2D/bp3kT (20) 

Using the same argument for the dislocation source density as related 
to the maximum radius of expansion of dislocation loops as for the 
low stress case, eqs. (ll), (131, and (20) are combined. This gives 
for the creep rate 

K = 2nu4X2D/hpr3kT (21) 

which is valid up to  stresses where nub3/kt becomes greater than one. 
If unresolved stresses and strain rate are used, the right-hand side 
of this equation should be divided by 1 6 d 2 .  

At stresses great enough that nub3jkT is greater than one, the 
velocity is no longer given by eq. (19) but is n ~ ~ ~ ~ f ~ ~  

v = (D/2b) expfnub3/kTf (22) 

K = (nu2XD/p2b2h) exp(2u2Xb2/pkT] (23) 

The creep rate then becomes 

One must assume, of course, in the application of eq. (23) that the 
included particles are strong enough to withstand the stresses ex- 
erted by the dislocations piled up against them. In the stress range 
where eq. (23) is valid these stresses are very large and the particles 
may fracture or plastically deform. If the particles do yield, eq. (23) 
may merely set a lower limit to the creep rate. 
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(c) Creep Data for Coarse-Grained Recrystallized Alloys 

Steady state creep data for three coarse-grained recrystallized 
alloys produced from aluminum powder have been obtained. The 
alloys consist of a fine dispersion of aluminum oxide platelets in a 
matrix of commercially pure aluminum. The oxide platelets are 
approximately 130 A. thick and 0.3 p on edge. The alloys designated 
MD 2100,20 AT 400, and RP 15-30 were fabricated by compacting, 
hot pressing, and then hot extruding three types of aluminum pow- 
der : 

A flake powder with an average flake thickness of 
0.9 p.  

An atomized powder with 3 p average diameter 
particles. 
An atomized powder having a particle size range 
between 15 and 30 p. 

For MD 2100: 

For A T  400: 

For RP 15-30: 

The average dispersion spacing is approximately 0.5 p for the MD 
2100 alloy, 1 p for the AT 400 alloy, and 6 p for the RP 15-30 alloy. 
After the initial fabrication process, the alloys were heavily cold 
worked by wire drawing and then annealed. The recrystallized 
alloys had a grain size of several millimeters. l9 

Samples of these recrystallized alloys were creep tested under the 
condition of constant loading. Since the creep strains were small 
the tests can be considered constant stress tests. The steady state 
creep rates obtained for all these alloys were several orders of magni- 
tude slower than would be predicted from the creep theory based upon 
dislocation climb. 

The steady state creep rate of the recrystallized MD 2100 alloy 
was slower than the sensitivity of the creep test apparatus, lo+ 
min-' for all temperatures up to 6OO0C and stresses as high as 3.5 X 
108 dynes/cm2. Therefore, these data shed little light on the creep 
theory. 

The steady state creep rates of the AT 400 and RP 15-30 recrys- 
tallized alloys were fast enough to be measurable in the high stress 
region as shown in Figure 9. In this figure the steady state creep 
rates for the two alloys a t  5OO0C are shown on a logarithmic scale as a 
function of stress along with creep rates predicted by the creep theory 
at  5OO0C and the creep rate of high purity aluminum a t  483OC. Al- 
though the absolute value of the creep rates is much lower for the AT 
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Fig. 9. The logarithm of the steady state creep rates of A T  400 and RP 15-30 
recrystallized ,41-.41203 S.A.P.-type alloys at  500°C and pure aluminum a t  483°C 
are plotted vs the logarithm of the applied stress. Lines are drawn representing 
the steady state creep rates of  the AT 400 and RP 15-30 alloys predicted by eq. 
(21). 

400 and RP 15-30 alloys than would be predicted by the theory, 
there are two factors shown in the figure predicted by the theory. 
First the steady state creep rate of these alloys a t  high stresses 
varies as predicted, as the fourth power of the applied stress. 
Secondly, the creep rates in this stress range are proportional to the . 
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square of the dispersion spacing. The creep rate of the RP 15-30 is 
about 32 times faster than the rate of the AT 400 alloy, while their 
respective dispersion spacings are a t  a ratio of 6 to 1. 

For the AT 400 recrystallized alloy, creep rates a t  several tempera- 
tures have been determined. To compare these data with each other 
the creep rates were compensated to a single temperature by elim- 
inating temperature as a variable in eq. (21). For this purpose only 
those terms in the equation which are temperature dependent (i.e.) 
p, D, and 1') must be considered. To take the temperature depend- 
ence of the self-diffusivity D into account, it is expanded into the term 
Do exp { - Q/RT) . The temperature-compensated creep rate K* can 
then be written : 

in which 1' and 0 are test temperature and reference temperature 
respectively, and the subscripts 7' and 0 refer to the properties at  these 
temperatures. In order to calculate temperature-compensated creep 
rates, the value of the activation energy Q must be known. This 
value was determined experimentally by conducting creep tests in 
which the stress was held constant and the temperature suddenly 
changed. At each of these temperatures creep rates were observed 
after they had assumed a steady state value. Using eq. (21), a value 
for Q of 37,000 cal/mole was determined from the creep rates a t  the 
two temperatures. This is in good agreement with the activation 
energy for self-diffusion in aluminum, indicating that dislocation 
climb is the rate-controlling process for steady state creep in this 
alloy. 

In Figure 10 the logarithm of the steady state creep rate of the A T  
400 alloy compensated to 500°C is plotted versus the logarithm of the 
applied stress. Using temperature compensation, creep over a much 
wider range of stresses can be plotted than for single temperature 
creep as in Figure 9. The slope of the straight line in Figure 10 was 
drawn to correspond to a fourth power stress dependence of the steady 
state creep rate. The position of the line was arbitrarily taken to 
fit the data. The agreement of the data points with the fourth power 
line again indicates that for the high stress region the data are in 
agreement with the creep theory. On the other hand, it is seen that 
for stresses lower than a certain value the creep rate falls rapidly to 
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very low values instead of following the first power relationship pre- 
dicted by the theory for low stress. 

. 

(d) Dislocation Sources 

The experiments indicate that the steady state creep rates for 
coarse-grained dispersion-strengthened alloys are much lower than 
those calculated on the assumption of active dislocation sources due 
to a continuous three-dimensional dislocation network. This leads 
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to the conclusion that the normal number of dislocation sources in 
these alloys is much reduced compared to that found in single phase 
metals. Ansell% suggested that this is due to the interaction of the 
dispersed particles with the dislocation network, either inactivating 
many of the sources or preventing network formation entirely. If 
such is the case, other types of dislocation sources must be the only 
active sources present in the alloy. These sources may be Frank- 
Read sources due to short dislocation segments running between 
particles, grain boundaries, or some type of lattice imperfections. 

1 

I '  

3. Steady-State Creep Defined by Dislocation Nucleation from Grain 
Boundaries 

(a) Theory 

In the case where the normal types of dislocation sources in the alloy 
are not active, dislocations may be nucleated from other imperfec- 
tions in the structure, for example, a t  grain boundaries. This type of 
steady state creep behavior cannot be quantitatively evaluated but 
may be explained qualitatively in the following way. 

With the aid of applied stress and thermal stress fluctuations, dis- 
locations pop out of a grain boundary and move across the grain and 
join another grain boundary. The rate-controlling process for 
steady state creep is this lipopping" out of the dislocation from the 
boundary. The energy required for this process is undoubtedly 
stress dependent and decreases with increasing stress. Let i t  be 
written as Q(e) .  Then in any narrow stress range about a particular 
stress eo the energy can be written as 

Q(c) = Q(co> + (dQ/da)(o - eo) (25) 

One now assumes that steady state creep is an activated process, and 
the rate of change of the activation energy with stress (dQ/dq) is a 
constant B. The steady state creep rate must then follow a creep 
equation of the type 

Creep rate K = A exp{ -Q/kT] exp(Be/kTf (26) 

(b )  Creep Datu for  Fine-Grained As-Extruded Alloys 

Steady state creep rates for two fine-grained, as-extruded S.A.P.- 
These alloys, MD 2100 and M type alloys have been obtained. 
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257, in the as-extruded condition have needle-like grains, about 3 p 
in diameter, but many microns long. Both have an average dis- 
persed particle spacing of approximately 0.5 p .  The AI 257 is a 
commercial grade of aluminum powder metallurgy product. 

The alloy MD 2100 is the only one for which steady state creep 
rates were determined in both the as-extruded and the recrystallized, 
coarse-grained condition. As mentioned above the rate for the alloy 
in the recrystallized conditions was so low that i t  could not be meas- 
ured. The creep rate of the alloy in the as-extruded condition, on the 
other hand, was appreciable. Such a slower creep rate for an alloy 

LO' 
MD2100  AS EXTRUDED Y 

W 
I- < io2 - O = 8 7 3 * K  
K 0 =773'K 
a ; - X =673.K 
a 0 

S lo*- 
t 
Y) 

W a 

a D-m- 7d 0=150.000 CAL/MOLE 
K W 

P 
STRESS/ABSOCUTE TEMPERATURE 

(DYNES/CM~)/T'K~A 10') 

Fig. 11. The logarithm of the temperature-compens3tetl steady state crcep 
rates of the fine-grained MD 2100 and M 257 Al-.Al~O;~ S..A.P.-type alloys arc 
plotted vs the stress divided by temperature. 

in the recrystallized condition can be expected only in alloy systems 
such as the aluminum-aluminum oxide system, in which the second 
phase is stable enough so that the dispersion does not coarsen even 
during the drastic mechanical and thermal treatment necessary for 
recrystallization. 

The steady state creep rates of the two fine-grained alloys, when 
measured a t  a single temperature, followed an equation of the type 

Creep rate, K = 11 exp(Bg/k~'{  (27)  

where i4 and B are constants. From eq. (27) the data taken at 
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several temperatures were compensated to a single test temperature 
by eliminating temperature as a variable and deriving a temperature- 
compensated steady state creep rate K*, where 

In Figure 11, the logarithm of the steady state creep rate of both 
fine-grained alloys cornpensated to 500°C was plotted versus stress 
divided by temperature. The value of the activation energy Q 
which best fits this relationship was 150,000 cal/mole. 

These data are in agreement with the qualitative theory for steady 
state creep of fine-grained dispersion-strengthened alloys, where the 
rate-controlling process for creep is the nucleation of dislocations from 
grain boundaries. 

VI. OTHER STRENGTH PROPERTIES 

In the preceding sections several of the strength properties of dis- 
persion-strengthened alloys (Le., yielding and steady state creep) 
have been handled in a rather fundamental way with a fair degree of 
success. There are however other properties which constitute the 
mechanical strength of a dispersion-strengthened alloy. These in- 
clude fracture mode, stress rupture, ductility, transient creep be- 
havior, work hardening, and recovery. 

These areas of strength, which have not yet been covered in a 
fundamental way for dispersion-strengthened alloys, are difficult to 
treat fundamentally. Unlike yielding and steady state creep be- 
havior, they cannot be considered in terms of unique dislocation or 
metallurgical structure. Rather, one has to determine the changes 
in microstructure and dislocation arrays as a function of strain, strain 
rate, stress, and temperature. 

There are directions which may prove fruitful in these studies. 
Stress rupture, ductility, work hardening, and recovery are properties 
which are more or less interdependent. If one treats the rate of crack 
propagation, the rate of recovery, and the rate of work hardening as 
independent processes, then it should be possible to evaluate com- 
posite properties like stress to rupture and ductility. It is this line of 
approach which should be used in further studies of the strengthening 
effects of a dispersed phase. 

In conclusion it should be pointed out that a mechanism or model 
proposed to explain a particular mechanical property of a metal can 
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only be expected to explain the behavior of those alloy systems to 
which the fundamental assumptions of the model apply. In the 
theoretical work presented here, i t  has always been assumed that dis- 
locations in the structure are interacting with a particular dispersion 
morphology. If the dispersion morphology is changing during the 
testing or application of any dispersion-strengthened alloy, one can- 
not expect these models to predict their behavior unless the change in 
morphology can be delineated. This is particularly important when . 
one is considering elevated temperature strength. 

i 

VII. CONCLUSIONS 

1. A dislocation model is proposed for yielding of dispersion- 
strengthened alloys. The criterion for yielding is the fracture of the 
dispersed second phase particles due to an array of piled-up dislocation 

Calculations based upon this dislocation model for yielding 
indicate that the yield strength of a dispersion-strengthened alloy is 
proportional both to the reciprocal square root of the dispersed 
particle spacing and to the product of the square roots of the shear 
moduli of the dispersed phase and the matrix metal. 

Experimental data for the yielding behavior of several types 
of dispersion-strengthened alloys as a function of dispersion spacing, 
temperature, and shear modulus of the dispersed phase are in agree- 
ment with the calculation based on the dislocation model for yielding. 

4. Dislocation models, proposed by Ansell and Weertman to 
account for the steady state creep behavior of dispersion-strengthened 
alloys, are reviewed. The rate-controlling processes for steady state 
creep used in these models are dislocation climb for alloys in which 
Frank-Read dislocation sources are operative in the alloy and nucle- 
ation of dislocations from grain boundaries for alloys in which the 
usual Frank-Read dislocation sources are not active. 

Steady state creep data for several large-grained aluminum 
S.A.P.-type alloys, in which active Frank-Read dislocation sources 
are assumed to be present, are in agreement with the stress, tempera- 
ture, and dispersion spacing dependence as predicted by the disloca- 
tion theory for creep based upon dislocation climb. The absolute 
value of the creep rate is, however, several orders of magnitude lower 
than that predicted by the theory. This indicates that the density of 

loops. 
2. 

3. 

5. 
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dislocation sources in a dispersion-strengthened alloy is much lower 
than in a single phase metal. 

Steady state creep data for several fine-grained aluminum 
S.A.P.-type alloys, in which the usual Frank-Read dislocation sources 
are not active, are in agreement with the dislocation theory presented 
in which the rate-controlling process for steady state creep is the 
nucleation of dislocations from grain boundaries. 

Although several of the strength properties of dispersion- 
strengthened alloys (namely, yielding and steady state creep be- 
havior) appear now to be explained on a fundamental basis, there are 
several other strength properties4uctility, fracture, stress to rup- 
ture, and work hardening-which are not yet well understood. 

The support of the investigations upon which this paper is based, by the Na- 
tional Aeronautics and Space *%dministration, is gratefully acknowledged. 
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' 

Discussion 
L. J. Bonis (Massachusetts Inst. of Technol.): The theoretical explanation of 

dispersion strengthening and calculations look extremely interesting and promis- 
ing. There remains, however, the applicability of this theory for other similar sys- 
tems outside of the A1-A1203 range. 

We applied the approach described in the paper on two different internally 
oxidized systems. A Ni-1.25 wt-0; AI alloy internally oxidized at 75OOC (5.58 
vol-c/, mean free path 0.8 @ (No. 68 in Discussion Table I ) ;  a Xi-2.27 wt-% 
A I  alloy internally oxidized at i50"C (10.44 ~01-7~ A1,O3), mean free path 0.6 p 

(69 in Discussion Table I), and a Cu-0.7 wt-c/, AI alloy internally oxidized at 
950OC (3.5 vel-$: A1,O3), mean free path 0.31 p (B-33 in table). The results are 
.;hewn in Discussion Table I. 

. 

DI~CUSSIOX TABLE I 
Temperature Compensated Minimum Creep Rate (T.C.M.C.R.) of Ki-1.25 AI 

(68). Ni-B.2i A1(69), Cu-0.ii Al(BR3) 

illloy Temperature Stress 
No. O F  OK psi dynes/cmZ MCR miR-' T.C.M.C.R." 

68 1300 978 15000 1.03 X lo9 8.84 X 10F 8.84 X 
1500 1089 8000 5 . 5  X lo8 7.67 X 3.28  X 
1800 1255 5000 3.44 X lo8 1.18 X 4.8167 X 1 V 8  

69 1800 1225 5000 3.44 X 108 1.15 X 1 0 P  4.705 X 
68 1500 1089 12000 8.27 X 10' 5.0 X lW7 1.39 X 10P  
69 1800 1255 6000 4.137 X 10R 3 . 0 i  X lOP 1.253 X 10 
68 1500 1089 8000 5.5 X lo* i . 1 6  X 10-6 1.99 X 10-7 
68 1500 1089 9000 6 . 2  X IO* 2.88 X 10-5 8.0  X 10-7 
68 1500 1089 10000 6.89 X lo8 1 . 6  X 4.5 X 10-6 
68 1300 978 11000 '7.58 X los 1 .28 X 1.28 X 1 0 P  
68 1300 978 13000 8.96 X lo8 8.48 X 8.48 X 10-5 
68 1300 978 10000 6.89 X lo8 4.75 X 4.75 X l O P  
B-33 845 i23 40000 2.76 X loy 1 . 4  X 1.4  X 

, 

845 i23  35000 2.41 X lo9 8 . 3  X 8.3 X 10-5 
1205 923 21000 1.48 X loy 1 . O  X lW4 4 . 1  X 10-7 
1565 1123 12000 8.27 X lo8 8.3 X 3.07 X 9 0 P  

, 

1565 1123 14000 9.65 x lo8 1 . 5  X 10-1 5 . 5  X 
1565 1123 8000 5.5 x lo8 5 . 8  X 2 . 1  X 
1565 1123 10000 6.89 X los 2 . 5  X lW4 9 . 5  X 

" Data compensated to reference temperature assuming eq. (24) is applicable. 
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I G. S. Ansell: The minimum creep rate data referred to by Mr. Bonis for the 
Xi-’i-A1201 and Cu-A1201 dispersion-strengthened alloys are quite interesting. 
We have presented the steady-state creep data for the AI-A120a system only 
because these alloys have an extremely stable structure at elevated tempera- 
tures. The theoretical treatment presented to  explain the steady-state creep 
behavior of dispersion-strengthelled alloys should of course be applicable to any 
other alloy with both a suitably dispersed second-phase and a similar structural 
stability at high temperatures. 

presented by Mr. Bonis in terms of the creep theory. First, one must consider 
trr-o factors. (2) Are the structures 
of these alloys stable at the testing temperature? It is reasonable to  assume that 
a t  test temperature these are stable systems with a suitably dispersed second- 
phase. The data were 
taken in a stress range below and above that where nab3/kT = 1. For the 
lower stresses eq. (21) should therefore be applicable, i.e., the creep rate should 
be proportional to  the fourth power of the applied stress, while for the higher 
stresses, eq. (23) should apply, where rate is an exponential function of the 
applied stress. A plot of the data at each temperature shows that the theory 
reasonably describes the creep behavior. Because of this change in stress de- 
pendence of the creep data the data presented cannot be compensated t o  a single 

- In view of this, i t  is important now to compare the steady-state creep data 

i 
( I )  Is the second-phase suitably dispersed? 

Now one can compare the data with the creep theory. 

test temperature using as a basis only eq. (24). 
I t  is interesting to  note that we have been unable to obtain minimum or 

steady-state creep data for the Al-AI203 alloys in the stress range where eq. (23) 
is applicable due t o  rapid specimen fracture. The data provided by Mr. Bonis 
extends the stress range over which the creep theory may be verified with experi- 
mental data. 

H. Buckle (Ofice National d’Etudes et de Recherches Aeronautiques, France): 
I t  is worthwhile noting that the strengthening effect of dispersed phases (hetero- 
geneous alloys) finds to some extent an analogy in the case of entirely homogeneous 
phases which have undergone heavy cold work or have extremely small grain sizes. 
Even in the case of pure metals, the hardness values show a very considerable in- 
crease with decreasing grain size below about 1 p. With further decrease in grain 
size, the microhardness number tends toward a saturation value equal to  3 or 4 
times that of a single crystal, this level being approached with grain diameters of 
less than 0.1 p. A limiting value of the same order of magnitude (factor 3.7) has 
been postulated by Tabor for heavily cold-worked metals, and this again could be 
confirmed by microhardness studies. Similar results were achieved by testing 
heterogeneous samples consisting of a matrix with precipitates. It should be noted 
that in the case of very fine precipitates, the hardness variation seems to be inde- 
pendent of the nature of the precipitate, depending only on their spacing, so that 
dispersed pores of less than 0.1 p diam may have a notable hardening effect. With 
further decreasing spacing of the fine precipitates, the microhardness values seem 
to approach a limiting level as described above. These phenomena can be ex- 
plained on a common basis, if the segregates, precipitates, local stress concentra- 
tions, grain boundaries, sub-grains, and the like are considered as more or less 
equivalent “dislocation traps,” forming a network of meshes which have the 

.8 
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diameter of the potential mean free path of the dislocations. To simplify the dis- 
cussions, we suggested calling these undisturbed volume units “coherent regions” 
(H. Buckle, “L’essai de microduretk et ses applications,” Publications Scientifiques 
et Techniques du Ministbre de l’Air, Paris, 1960). Clearly, the saturation value 
must be reached if their diameter reaches the dimensions of a dislocation, i.e., 
10-4-10” cm. The specimen consists then entirely of “disturbed matter” and 
therefore must behave as a quasi-amorphous sample where crystalline gliding is no 
longer possible. Likewise, in the case of dispersed phases, a maximum strength- 
ening should occur if both the dispersed phases as well as their spacing approach 
the above-mentioned dimensions. So, for example, we should reasonably expect 
that the curves shown by Drs. Lenel and Ansell and representing some mechan- 
ical data as a function of I /& should cease to be linear and should tend toward 
some saturation value if the abscissa values are in excess of about 3 fi-‘l2/ (Le., 
x < 0.1 u). 

It should be clearly understood that 1 do not suggest transposing simply the 
microhardness results to the problem of creep stress and related stress problems. 
One must also keep in mind the factor of the thermal stability; in fact, very fine- 
grained or heavy cold-worked pure metals recrystallize easily, dispersed fine pores 
can coalesce and grow, etc. Xevertheless, I think that the general description in 
terms of coherent regions, admittedly somewhat rough, lends itself to a quite use- 
ful tentative approach as the basis of comparative studies. 

D. H. Feisel (Westinghouse Research Labs.):  In work I am doing with nickel- 
base alloys dispersion hardencd by alumina, I find that the proportional limit in 
compression is always higher than that in tension, and in some cases there is a fac- 
tor of two involved. In creep tests, for a givcn set of conditions, thc creep rate in 
compression has been found to be much lower t lml that ir, tension. Would the 
authors care to comment on these observations? 

G .  S. Ansell: The authors liavc no explanation for this behavior. 
R. Steinitz (General Telephone and Electronics Labs.):  What is the influence of 

porosity on the strcngtliening effect of  a dispersed phase? Does porosity lower the 
strength of such a material in the same way and by the same amount as i t  would do 
in the pure matrix metal, or do pores more or less destroy the whole effect of the 
dispersed phase, and make the material behave like the pure metal? I am con- 
sidering a porosity of about 10-15% with small, finely distributed pores. 

G. S. Ansell : If the pores have a strong, adherent coating such as an oxide, they 
act just as the dispersed phase. If, on the other hand, the pore surface is clean, 
then the pores have three effects. The first, and most important effect, is that the 
free surface of the pore acts as a sink for dislocations. If the pores and the dis- 
persed-phase particles are associated then this prevents the dispersed phase from 
acting as an effective barrier to dislocation motion. If the pores are separate from 
the dispersed-phase particles then the relative morphology of pore distribution to 
second phase particles becomes important. In an amount dependent upon this 
relative distribution, the effectiveness of the dispersed particles in increasing the 
yield strength and reducing the steady state creep rate is lowered. The second 
effect is that dislocations will extend from pore to pore. To move dislocatious in 
the matrix, stress must be supplied either to make these dislocation segments break 
away from the pores or to operate as a Frank-Read source. This strenethening 
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effect would affect the yielding behavior and would require a mean interpore spac- 
ing which is much less than the dispersed-particle spacing. The third effect is 
that the pores could act as sources for dislocations, just as in the case of grain 
boundaries in the as-extruded S.A.P. alloys. In  this case, the steady state creep 
rate of a large grained material would be much faster with pores than without 
pores. 

In considering the 
effect of pores in the structure a more specific answer is not possible unless the pore 
shape and distribution, matrix metal, and dispersed-phase shape and distribution 
are specified so that the relative effect of each of these may be calculated. 

It is realized that these are quite generalized statements. 


