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\c;;§ ’ THEORETICAL DETERMINATION OF THE BOUNDARY OF THE
GEOMAGNETIC FIELD IN A STEADY SOLAR WIND
i\\,\ By Benjamin R. Briggs* and John R. Spreiter*
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| ABSTRACT
:5\ The interaction of the geomagnetic field and a neutral ionized
\E corpuscular solar stream is investigated. According to the theory of
#f Chapman and Ferraro, the interaction is such that the geomagnetic field
. is confined to the interior of a cavity in the stream into which the
\zz particles of the stream do not penetrate. An approximate solution is
N presented for the complete shape of the boundary of the geomagnetic field
:i for the case where the magnetic dipole axis is normal to the free-stream
:i\\ velocity vector. The calculations were made with the aid of an IBM 7090

electronic computer.
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INTRODUCTION

It is generally believed (see, e.g., Chapman [1960], Ferraro [1960a],
and Dungey [1958] for recent accounts) that the earth's magnetic fleld
does not extend infinitely in all directions, but is bounded on the
sunward side as a result of its interaction with a neutral ionized stream
of particles emenating from the sun. (Dissenting views have been summerized
by Alfvén [1961].) The interaction of the neutral solar stream with the
geomagnetic field is such, according to the theory of Chspmen and Ferraro,
that the field is confined to the interior of a cavity in the stream into
which the particles of the stream do not penetrate}. Although much of the
earlier work 1s concerned with the manner in which the boundary forms and
evolves (see Ferraro [1960a] and Chepmen and Kendall [1961] for recent
developments), the present paper is concerned with the determination of
the ultimate shape and location of the boundary for the idealized case in
which the earth is deeply jmmersed in a uniform steady stream.

The steady-state Chapman-Ferraro problem is formulated in the following
way. The magnetic field inside the boundary is considered to consist of
the geomagnetic dipole field plus a component induced by electric currents
in the boundary. It is supposed that the component of the total field
normal to the boundary vanishes, and that the square of the total (tangential)
field intensity at the boundary is proportional to the normal component of
the momentum of the incident solar particles. The shape and location of
the boundary and the total megnetic field inside it are then given by that
solution of the magnetic field equations which satisfies the stated boundary

conditions. The exsct solution has not been given for this problem in three
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dimensions, but the corresponding problem in two dimensions has been
solved analytically by Zhigulev and Romishevskii [1959], Hurley [1961],
and Dungey [1961].

Beard [1960] simplﬁ‘ied the three-dimensional problem by relinquishing
the condition that the component of the total magnetic field normal to
the boundary vanishes, and applying instead the approximstion that the
magnetic fleld at the boundary is two times the tangentlial component of
the dipole’field. He then used a power series technique to calculate the
shape of the boundary of the geomagnetic fleld on the daytime side, for
the case where the dipole axis is perpendicular to the free-stream velocity
vector.

Spreiter and Briggs [1961, 1962a, 1962b] employed a similar anslysis
and calculated traces of the boundary in the plane of the dipole axis and
free-stream velocity vector for arbitrary inclinations of the dipole axis.
They used the related approximation, suggested by Ferraro [1960b], that the
total magnetic field at the boundary is 2f +times the tangential component
of the dipole field, where f 1s a constant. No information was supplied
concerning the proper value for f in the three-dimensional problem. Tt
was shown, however, that the distance along the sun-earth line to the
boundary in the corresponding approximate two-dimensional problem is about
5 percent too large if f is unity. If f 1s taken to be 0.91, the
coordinates of the entire approximate boundary agree well with the results

indicated by the exact two-dimensional solutions cited in the foregolng

parsgraph.
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The present work is an extension of that done by Beard [1960], and
Spreiter and Briggs [1961, 1962a, 1962b]. The coordinateé of the entire
boundary of the geomagnetic field are calculated for the case in which
the dipole axis is perpendicular to the free-stream velocity vector.

The mathematical derivetions ha.vé been given by the authors cited here
and are not repeated in the present paper. The notation used by Spreiter
end Briggs is retained for convenience.

It may be observed that the dimensions of the boundary, as calculated
here using representative stream conditions, are much smaller than have
been inferred from the magnetometer experiments of Pioneer I and Pioneer V.
(See Sonett, et al. [1960], and Coleman, et al. [1960].) The dimensions of
the boundary can be increased by substantlally decreasing the velocity or
number density of protons in the solar stream; or, as has been indicated
by Spreiter and Briggs [1961, 1962a], by the inclusion in the theoretical
model of a ring current as has been proposed by Smith, et al. [1960] on
the basis of data from Explorer VI and Pioneer V. The effect of a ring
current has not been considered in the present calculations. It 1is expected,
however, in the light of results given by Spreiter and Alksne [1962], that
the general features of the shape of the boundary would not be greatly
affected by inclusion of a ring current, but that the dimensions of the

boundary would be increased considerably.

MATHEMATICAL FORMULATION OF THE PROBLEM

Preliminary Discussion

The determination of the shepe of the boundary of the geomagnetic
field > and the total magnetic fleld H inside 1t, involves the solution

of the magnetic field equations div H = O and curl H = 0. The earth's
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magnetic field 1s represented by a three-dimensional dipole singularity
at the origin (the center of the earth). The normal component of g
venishes at the boundary, and Dungey [1958] has shown (see Spreiter and
Briggs [1962b] for clarification of contrary views expressed in Spreiter
and Briggs [196la]) that the total (tangential) field at the boundary,

Hs, may be expressed mathemastically by the relation

HeZ
—=— = 2mv3cos2Vy (1)
8x

The quantities m, n, and v are mass, number density, and velocity of
the protons of the solar stream, and V¥ 1is the angle between the free-
stream velocity vector and an outward normal to the surface. The
condition cos ¥ < O must hold on the boundary.

It is a property of the boundary value problem described above that
the field H can vanish only at isolated points on the boundary. These
points are designated neutral points. It follows from equation (1) that
cos ¥ vanishes, and the boundary is therefore parallel to the stream,
at these points.

Beard [1960] dropped the condition that the normal component of i
vanishes at the boundary and replaced it with the approximate condition
that Hg = 2Hy, where Hy 1is the tangential component of the geomagnetic
dipole field E@ at the boundary. The closely related approximation,
suggested by Ferraro [1960bl],

Hy = 2fh (2)
where f 1s a constant, was used by Spreiter and Briggs [1961, 1962a,

1962b] and 1s employed in the present work.
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The differential equation that defines, approximastely, the shape of
the boundary is obtained by substitution of equation (2) into equation (1).
For the case where the dipole axis is normal to the free-stream velocity

vector, it is

(sj_ne+§_‘£_s_2 > <sincpsine_smgcoseap cos @ Bp>
P 36 d p sin @ dq

ST G G T

(3)
where p = r/ro and
hszpz /e hfzﬂio 1/8
o (Famr) - () )

The variables r, 6, and ¢ are spherical coordinates that are fixed with
respect to the geomagnetic dipole axis (see fig. 1). The quantity Mp,
the magnetic moment of the dipole, is equal to asﬂio, where a represents
the radius of the earth, and H?o is the magnitude of §P at the magnetic
equator on the surface of the earth. The quantities in equation (4) are
in cgs units, and numerical values for a, Hpo, and m are 6.37><108 cm,
0.312 gauss, and 1.67XL0"2* gram, respectively.

The quantity r, 1s the geocentric distance along the sun-earth line
to the boundary of the geomagnetic field. The effect of variations of n
and v on r, is shown in figure 2 for two values of the constant f.
Representative values of v and n are 500 km/sec and 10 protons/cm3.

These lead to values for r, Of 7.6 earth radii for f

1 and 6.9 earth
radii for f = 0.75.

If attention is confined to the plane ¢ = #x/2 (x

n

0) where the

derivative Op/d9 is zero by consideration of symmetry, equation (3)
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reduces to an ordinary differential equation that can be solved analytically.
The trace of the boundary in this plane is illustrated in figure 3. The
front portion is circular, p = 1, and the upper portion 1s defined by

the relation p cos 8 = (3/2%/3)e3/(1 + p3).

The problem in three dimensions is to find the solution of equation (3)
whose trace in the plane ¢ = in/2 is as shown.in figure 3. It will be
seen, subsequently, that the boundary in the upper half-space (z > 0) is
composed of two intersecting surfaces. One will be called the main surface.
It contains the circular trace p =1, and that portion of the upper trace
that lies in the half-plane ¢ = -x/2 (i.e., z >0, y < 0). The other,
to be called the polar surface, contains the small portion of the upper
trace that lies in the half-plane ¢ = n/2 (1., 2 > O, vy > 0). This
segment of the upper trace is indicated by broken lines in figure 3. The
coordinates of the boundary of the geomagnetic field are then determined
by solving the initial value problem defined by equation (3) together with
the traces of the solution in the plane ¢ = n/2.

Equation (3) may be put into a form that renders it more amenable to

standard numerical procedures by solving for the derivative Bp/BQ; that is,

2

F,“sinZ¢ 2
-si; F, -F J[:L - <?2 - cos® >
Bp sin Q.cos ®F,y 2 Fa Fa ¢

— =p sin 6
o <§5§ -cos2é>
3
-

The functions F,, F,, and Fz are

(5)
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3 =Sin9_c059§_g W
1 “?r-'ae
F2=% sine+2°:se >> (6)
2
F3=l+<l§2 .
P d6 J

The numerical integration of equation (5) is discussed in the next section.
NUMERICAL INTEGRATION

The coordinates of the two portions of the boundary of the geomagnetic
field are determined by forward integration from the traces in the plane
¢ = ﬂ/2 toward larger values of ¢. The variable p 1s extrapolated over
intervals AP in surfaces of constant © by use of an iterative extrap-
olation process based on Euler's method for solving ordinary differential
equations. (See, e.g., Kunz [1957].) Equation (5) is used to calculate
the derivatives Op/d9 and at each new value of @, dp/30 is evaluated by
numerical differentiation.

The initial step away from the plane ¢ = n/2 is effected by means of

the truncated series

2 .2
o = by + M(30/30), + 5 (p/3F) 4+ . . .
= po(l + a APP) , (N
which is similar to the one used by Beard [1960]. Here po represents
the trace of the boundary in the plane of ¢ = n/2. The constant o = a(6),

which is proportional to the second derivative of p with respect to o,
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is evaluasted by substituting equation (7) into equation (5). It develops

that o 1is a solution of the quaedratic equation

£.2 £ £ o8 £.8 £.2

—2 sz |- ,c2 2o 1’0 i S

%o sin%0 o [sin 5 3 <}f2 + ~ cos 9) + > cos 9] o + 0
(8)

(o]
where B8, = (ap/ae) » and the functions fi, f>, and Fg are simply

Po=x/2
F,, F,, and Fg (eqs. (6)) evaluated at @ = x/2. In the case of the main

surface, where Py = 1 and 5, = O, the desired solution of equation (8) is

a = % [(2 + 3 sin2g) - .j(2 +3 sin29)% - 4 sinz@] (9)

After « 1is computed by means of equation (8), the values for p at
P = n/2 + AP are readily calculated by means of equation (7). The deriva-
tive Op/d9 here is simply 20.py &P, and dp/d6 may now be calculated by
numerical differentiation. Thus the trace of the boundary, as well as its
derivatives, is completely determined in the plane ¢ = n/2 + AP,

The integration process for succeeding intervals proceeds in the
following fashion: The values for p and dp/d9 at station ®; are

inserted in the linear extrapolation formula

Pypq = Py + 2P(3p/30)y (10)

in order to get a first estimate for p at station Pypq = P1 + Np, The
derivative (8p/89)i+l is computed by numerical differentiation, and then
equation (5) is used to evaluate the derivative (8p/8¢)i+l. Finally a
refined value for P3 41 is determined by means of the iterative

extrapolation formuls
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Opun = oy + (80/2)] (36/29); + (36/30)y,, (12)

The derivatives (Bp/ae)i+l and (9p/d9) are now recomputed as before, and

i+a
the process is repeated from equation (10) to integrate over the next
increment Ap.

The forward integration technique'outlined here has been used to find
the coordinates of traces of the boundary of the geomagnetic field in
planes ¢ = constant in the range n/2 <P < 3n/2 and 0 <6 < n/2. This
range of values of ¢ and 6 1is sufficient by reasons of symmetry to
establish the entire boundary. In any plane @ = constant the traces of

the two surfaces intersect, and the boundary is defined by the exterior

portion of the intersecting traces.
RESULTS AND DISCUSSION

The coordinates of the main and polar surfaces have been calculated
at 50 intervals of ¢ in the range 90° <P < 2700. The increment and
range of variation of 6 were 5° and 0 < 6 < 140° in the case of the main
surface, and 2° and O < 6 < 30° in the case of the polar surface. It is
clear that the main surface possesses mirror symmetry in the equatorial
Plane, and it will be seen subsequently that the range of interest of o
in the polar surface is O <6< 20°. TheAcalculations were carried out
beyond the range of interest of the variable 6 for both surfaces, how-
ever, in order to minimize the effects of end-point inaccuracy inherent
in the procedure used to evaluate the derivative dp/d in planes of
constant ®. It may be observed that the results do not change significantly
with the use of increments somewhat larger or smaller than those employed

here.



- 11 -

It develops that the numerical technique described in the foregoing
section is not adequate for calculating the coordinates of the main sur-
face near the plane @ = 270°. The derivative 3p/d9 becomes excessively
large in this region, with the chosen mesh size, and therefore the extrapo-
lation process is not sufficiently accurate. The procedure works well up
to ¢ = 2550, however, and these results along with the known analytic
solution in the plane @ = 270o (see fig. 3), are sufficient to determine
the entire boundary.

The numerical results are presented graphically in figures 4 and 5.
Figure U4 shows traces of the boundary of the geomagnetic field in the
planes ¢ = 90°, 105°, 120°, . . ., 270°. The trace for the plane ¢ = 270°
is the analytic solution as given in figure 3. Figure 5 is an isometric
view of the boundary. The curve designated S in this figure represents
the intersection of the main and polar surfaces, and the point labeled N
corresponds to the neutral point in the exact solution.

It is of interest to examine the deterioration of the results with the
introduction of certain simplifications in the iﬁtegration procedure. It
is found, for example, that the power series sfarting process may be omitted
with no major effect on the results. A comparison is shown in figure 6(a)
of calculations made with and without thekstarting series. The differences
are seen to be confined essentially to traces of the main surface. If, on
the other hand, equation (11) is deleted, then the extrapolation process is
purely linear. A comparison is shown in figure 6(b) of calculations made
with the full iterative process, and the linear process with and without the

starting series. It 1is seen that if the starting series is retained, linear
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extrapolation produces results that are in substantial agreement with the
results obtained using the iterative process. If, on the other hand, the
starting series is dropped, the linear process yields irregular results
that would probably be regarded as unsatisfactory for most purposes.

The present results may be comparéd with those given by Beard [1960].
Traces of the boundary in planes 90° <Q 5_180o are reproduced in figure 7T,
and Beard's results are indicated by broken lines. It 1is seen that the
two sets of computations agree well except in a region near the polar axis.
These differences result from corresponding differences in the trace of
the boundary in the meridian plane ¢ = 90O that have been discussed pre- -
viously by Spreiter and Briggs [1961, 1962a, 1962b]. Beard has informed
the present authors privately that the latter differences result from the
fact that the present authors base their analysis on the consistent use of
the approximation given by equation (2), whereas he uses another approxima-
tion in the vicinity of the polar axis. Beard, and also Spreiter and Briggs
[1961], have in addition made refined calculations‘for the trace in the
equatorial plane by solving the ordinary differential equation that results
when 6 1s set equal to 90° and 3p/36 to zero in equation (5). These
results are in almost perfect agreement with the present calculations.

As noted in the introduction, Spreiter and Briggs [1961, 1962a, 1962b]
showed that the coordinates of the boundary given by the exact and approximate
solutions of the two-dimensional Chapman-Ferraro problem can be brought into
close agreement if the value for the constant f is taken to be 0.91. The
principal remaining difference is that the discontinuous slope 1n the vicinity

of the neutral point in the approximate solution appears as a smoothly turning
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curve in the exact solution. The exact solution has not been given for
the three-dimensional problem, but according to an estimate of Beard [1960]
the geocentric distance on the sunward side to the approximate boundary is
too great by about T to 11 percent. A major portion of this discrepancy
can be rectified if f 1s chosen in tﬁe range 0.7 to 0.8. There remains,
however, the discrepancy associated with the discontinuity of slope along
the curve of intersection of the main and polar surfaces.

In the exact solution of the Chapman-Ferraro problem, the field
strength 1s small in the vicinity of the neutral point, and vanishes at
the neutral point. It follows from equation (1) that the slope of the
boundary with respect to the free-stream direction is small in this region,
also. These remarks apply to the approximaste solution as well, except that
the field strength does not vanish at the point that corresponds to the
neutral point. Although the percentage errors may be large, the absolute
magnitude of the errors in slope should be small or moderate. These errors
would tend, in any case, to be of secondary importance since the coordinates
of the boundary are calculated by a process invoiving the integration of
surface slopes. It is anticipated, therefore,vthat the discontinuous slope
along the curve S represents a local failure of the approximaste method
of solution of the problem. It is concluded, however, that with the appro-
priate choice for the value of the constant f, the coordinates of the
approximate boundary should be in substantial agreement with the coordinates

that would be given by the exact solution of the Chapman-Ferraro problem.
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Fig. 1.
Fig., 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Figure Legends

The coordinate systems.
Values of r, for various velocities and number densities of the
solar stream.
Analytic solutions in the plane @ = #x/2.
Traces of the boundary of the'geomagnetic field in planes
of constant ¢.
Isometric view of the boundary of the geomagnetic field.
Comparisons of results obtained by iterative and linear extrapolation
processes with and without the starting series.

Comparison with Beard's results.
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