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INTRODUCTION

The thermal radiation characteristics of spherical cavities are of
practical interegt in connection with the absorption of radiant energy for
both space-vehicle and terrestrial applications. Also, spherical cavities
are of potential use as sources of black-body energy. The purpose of this
brief paper is to determine both the absorption and emission characteristics
of spherical cavities which are diffuse reflectors and emitters.

An important aspect of the process of radiant interchange betwsen surface
elements in a diffuse spherical enclosure is that the angle factorlis inde-~
pendent of the orientation of the elements. In a spherical enclosure of radius
R, the angle factor for radiation leaving any surface element 1 {area Al)
and incident on any other surface element 2 (area A2) is

F_ = ii\a/cmfR’-L (1)

-
and this holds whether A_ and A2 are infinitesimal or finite. Since the
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positions and orientations of the elements are not involved, it follows from
equation (1) that energy leaving a typical element 1 is uniformly distributed
over each unit area of the spherical enclosure. Additionally, it is seen that
the energy incident on element 2 (from element 1) depends only on the ratio of
its area A, to that of a complete sphere, lm’Rz.

ABSORPTION CHARACTERISTICS

General theory.-—Consider a spherical enclosure of radius R having an

- opening defined by the angle cy* as pictured on figure 1. The surface area of
the enclosure is denoted by A*, and it is easily shown that

S QA *x
A"= QT R™ (1+ cos &™)
Radiant energy enters the cavity at a rate S {e.g., Btu/hr) and impinges on

(2)

the surface with some arbitrary distribution given by s (%8’) per unit area.

1The angle factor is the fraction of the radiant energy leaving one surface
element which is incident on some other surface element.
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The angles Qand & are the polar and plane angles (respectively measured from
the z and x axes) in a standard set of spherical coordirates.

Keeping account of the incoming energy, we note that an amount

| ) (3a)
is absorbed at the first contact with the surface, and (1 ~o()S is reflected in

all directions. Of this reflected energy, it follows from equation {1) that
(1 =00)s

remains within the enzlosure and is \mifomlz distributed over

hTf ‘
the surface. Of the reflected energy which is thus incident on the surface, a
v *
fraction oL is absorbed, i.e., oS ('_O’_) A
: - UTYR > (3v)
A®
and another fraction (1 -ct) -=-=_§-= is re-reflected and then returns to the
KWR
surface. Once again, a fraction ot is absorbed, i.e., * 2
A (
3c)
- OL-S[ {1-a) 4w R>
and another fraction (1 - &A) ——T reflects and returns to the surface. If
LT{R

one were to keep account of all the successive absorptions, then the total
energy absorbed could be obtained by simply summing the separate contributions as

given by equations (3a), (3b), (3¢), etc., thus i
| A* ey A Tl
QLS | o (l‘&) W -+ [(l U-) §1r RS -+

This is a geometric series whose sum is

)

| - oO. s‘(\—oc)(l+c05c9*)
where A" has been replaced according to equation (2).

(5)

Az a convenient representation of the absorption characteristics of the

cavity as a whole, we introduce the apparent absorptivity which is defined as
Qla = (total absorbed energy)/(total incoming energy) , (6)

Utilizing equation (5), it follows that

oL = S )

o = 0.5 (1-o)( 1+ cos @*)




The remarkable conclusion which follows from equation (7) ie that the apparent
absorptivity is independent of the detailed manner in which the incoming energy
enters the enclosure. Therefore, equation (7) applies in general. The only
parameters are the opening angle 9* and the surface absorptivity ol .

The apparent absorptivity, as given by equation (7), has been plotted on
figure 1 as a function of é)*for parametric values of oL . Inspection of the
figure reveals that the apparent absorptivity of the cavity always exceéds the
surface absorptivity O(C. The increase of oLa relative to OL is greatest for
surfaces of low absorptivity and for cavities with small openings (i.e., small g*)o
For very small values of 9*, the apparent absorptivity is very close to unity
regardless of the actual absorptivity of the surface.

Thus far, consideration has been given to the absorption characteristics of
the enclosure as a whole. Now, attention will be directed to the energy absorbed
locally at various positions on the enclosure surface. Let J\ be the energy
locally sbsorbed per unit area {e.g., Btu/hr-f£t2). To determine A , we note that
the incoming energy is distributed over the surface as given by a(c?) ©°) per unit
area (e.g., Bm/hr-ftz). From the first contact of the incoming enei'gy with the

surface, the energy absorbed locally is
xS (8a)

However, all subsequent absorptions of reflected and re-reflected radiation take
place uniformly at all locations in the enclosure. Therefore, ‘from all absorp-
tions following the first oontact, the energy locally absorbed per unit area is
simpiy obtained by subtracting L5 from equation (5) and dividing by the surface

area A", giving oL{1-o) (5/Hn'R?~)
| =05 (1-)( 1 + cos 9¥%)

(8v)

Then, I\ s obtained by adding equations (8a) and (8b),

j\_= oS + °‘(|'°L) (S/L',WRQ-) (9)
)= 0.5 (1=) ( 1+ cos %)




Clearly, the local distribution of the absorbed energy depends upon the
detalled manner in which the incoming energy enters the enclosure, that is, on
s( Q‘e’)o For illustrative purposes, consideration will now be given to two
interesting limiting situations.

Parallel rays.--Consider radiation arriving in a parallel ray bundle as _
11lustrated in figure 2. The rays travel in the direction of the positive x-axis
and make an angle ? with the vertical. The energy carried by the ray bundle may
be characterized by e per unit area normal to the ray® (e.g., Btwhr-rt?).

Noting that the area of a surface tightly stretched across the opening of the
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spherical cavity is T (R sin z9 ) , and that the projection of the rays on the
rormal to this surface is accomplished by cos @ , it follows that the total energy

S entering the enclosure is
5= e R* cosf smacg* (10)

Next, it is necessary to find the surface distribution of the incoming energy
as given by 3(3)8')0 Depending on the inclination angle P and the opening angle
g*, the incoming rays may be directly incident only on part of the surface, the
remaining portion receiving radiant energy due to internal reflections alone.

Iet us call the portion which is directly irradiated the no-shadow region, while
the portion receiving only reflected energy will be called the shadow region.

In the no-shadow region, the distribution function s (which is per unit surface
area) may be derived by projecting the incoming rays along the surface nomal.
By writing expressions for unit vectors lying along the local surface normal
(i.e., the radius vector) and the incoming rays, and then taking the scalar
product, it is found that |

= er(cos © sin cf sinP - cos <f coelﬁ ) (11a)
in the no-shadow region. In the shadow region,
5=0 (11b)

zl?or example, the solar constant.
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These expressions for s, along with equation (10) for S, may be utilized in
determining the local distribution of the absorbed energy as given by equation (9).

In order to render equations (11) fully useful, it remains to determine the
boundary between the shadow and no-shadow regions. To illustrate the method of
analysis, consider the case where cg*> 90°, that is, a spherical shell smaller
than a hemisphere. First of all, when the inclination angle p((csy - 90°), the
incoming radiation will fall dimctly'on all parts of the surface (albeit non-
uniformly). When ‘3> (3' = 90°), a shadow region exists along with a region of
direct illumination. The coordinates of the boundary curve between the shadow
and no-shadow regiorswill be found with t'iie ald of figure 2. The upper part of
the figure is a plan view of the spherical shell showing radiation arriving from
the right. The lower part of the figure is an elevation view cut through the
spherical shell at a typical location y. A limiting ray which grases the rim of
the shell strikes the surface at a location x,s, and this is the boundary point
between the shadow and no-shadow region. From the geometry of the figure

K= —¥ cos (QF"?) , = —r Sin (:}.P- €) (12a)
Also, it 1s easy to show that v
rsing =- Rcos cQ*, Feos €= \/RQ' Smaq*-ﬁi (12v)
Combination of equations (12a) and (12b) yields
%X= R cos ¥ sin g - fRaSn‘\ace*-—‘ja" cos 2 (13)
3= - IR¥sin3g*-42 sin 2B - R cos §* cos 2

Equations (13) constitute a parametric representation of the boundary curve between

the shadow and no-shadow regioms.

When 9*4, 90°® (spherical shell larger than a hemisphere), the boundary curve
is also defined by limiting rays which graze the rim of the cavity opening and
intersect the shell. But now, rays which graze at all points around the rim
must be considered. From the rays which graze at the forward edge of the rim

(toward the inooming rays), the x,s coordinates of the shadow, no-shadow boundary




remain as given by equations (13). From the rays which graze at the rearward
edge of the rim, the boundary curve is found to be
A= R cos c?* Sin ap + {R= s\na-c?*-na‘ cos gp
2= [R¥sin2g¥-4> snap - Rcos §* cosap (k)
To provide some feeling for the nature of the boundary curve, it is useful

to project it into the x-2z and x-y planes. The projections have the following

equations X sin aIB - % cos 2B = R cos <f*
(k-Rcosd* s 1n 2p)* + Y= = | (15)
R2 sin®* ¥ cos?ap R* sin® g*

These projections are, respectively, a straight line and an ellipse. This
indicates that the boundary curve cuts out a circle or a part of a circle on the
surface of ths spherical shell.

To illustrate these results, figure 3 has been prepared to show the projections
of the boundary curve in plan and elevation views (x-y and x-z planes, respectively).
The left-hand pcrtion of the figure corresponds to an enclosure where cy* is greater
than 90°. Projections are shomn for inclination angles ﬁ‘hS‘, equal to L5°,
and > 45%°. The right-hand portion correaponds’ to 9* less than 90°® and pro-
jections are shown for F( L5°® and equal to L5°. The case €> LS® was not
included in order to preserve clarity of the figure.

Diffuse incoming radiation.-——Consider diffuse radiant energy uniformly

distributed over the opening of the apherical cavity. The energy carried by the
diffuse stream may be characterized by 8 per unit area of the cavity opening.
Without loss of generality, this energy may be regarded as coming from a black,

isothemal spherical cap of radius R and emissive power e, which fits over the

d
opening of the cavity. From this and from the corollaries of equation (1), it
follows that the diffuse energy which enters the cavity is uniformly distributed
dong the surface of the cavity. Then, noting that the area of the cavity opening
# 2
rite ‘ .

isTt‘(Rsincy),mcanw S= QATTRQ‘S"\.&C?*

(16a)
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S = S/A* = 0.5 ed Sinac?*/(\-i- cos LQ*) (16p)
Introducing this information into equation (9) gives the following result for

the local absorbed energy

A= e OS5x sin*d*/(1+cos ¢¥)
4 1= 0.5 (1= ) (1 + cos §%) an

EMISSION CHARACTERISTICS

Consideraticn is now given to the emission characteristics of a diffuse,
isothemmal spherical enclosure at temperature T. External radiation entering the
enclosure is not included in the following analysis, but may be accounted for with-
out difficulty.

The energy leaving any point on the surface per unit time and area (the
radiosity B) is equal to the sum of the emitted energy plus the reflected portion
of the incident energy. As shown in reference 1, the energy incident at any
given point is obtained by taking the energy leaving another point, multiplying »
by an appropriate angle factor, and then integrating over the entire surface. So,

B($,8) = cxT* + (1-x))  B401dF  am
in which the reflectivity has been replaced by 1 ~c¢. . Due to the symmetry of
the problem, B will be uniform over the surface. Then, the solution of equa-
tion (18) immediately follows as

€ .
y . (19)
BA’T T 1= 0.5 (1-o) {1 + Cos 9*)

where the angle factor has been taken from equation (1) with A, = A%,

If the enclosure is to be used as a black-body cavity, then B/¢°T

is a
measure of its effectiveness. Clearly, it would be desired that B/s-'!h approach
as closely as possible to unity. If €y ol (gray body), then B/a"l.‘ll can be read
directly from figure 1. The figure reveals that a spherical enclosure with a
emall hole (small Q*) is a very effective black body. If a3 e , then figure 1

may still be used, but the values read from the ordinate must be multiplied by
€ Joi,
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The net local heat transfer rate q per unit surface area, which is the

difference between the emitted energy éo’Th and the absorbed incident energy,

is readily calculated to be "
1-‘-‘ echq 0.5 Sina'CQ/( |+ cos Qf)
I=0.5 (1= o) (| + cos@*)

The rate Q at which energy streams outward from the enclosure is obtained by

(20)

multiplying equation (20) by the surface area A*. A convenient repmsentﬁtion
of the overall heat transfer results may be made in termme of an apparent emis-
sivity €a° This is defined as the ratio of the actual rate at which energy
streams from the enclosure to the energy emitted by a black circular disk having

the same area as the opening of the cavity. The emission of such a disk is

L 3 ,
G’Th‘n’l't2 singcg o Then, multiplying squation (20) by A% and dividing by the
foregoing emission quantity gives
€ = € (21)
a”~ 1- 0.5 (1-a) (14 Cos §#)
For olx € ; comparison of this expression with equation {7) shows that the apparent

emissivity and apparent absorptivity of a spherical cavity are identical. There-
fore, values of € may be read directly from figure 1. If X €&, the ordinates
are to be multiplied byé /fx .
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Elevation at A-A

Fig.2 Diagram for determining boundary between shadow and non-
shadow regions, ¢*>90°
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Fig. | Absorption and Emission Characteristics
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Fig. 3 Projections of shadow, no-shadow boundary on plan and elevation
views




