Metadata, citation and similar papers at core.ac.uk

EMISTRY DEPARTMENT

— NIVERSITY HEIGHTS
/T NEW YORK UNIVERSITY

QUANTUM MECHAN] CAL
STUDY OF
ATOMS AND MOLECULES
BY
R. €, SAHNI

. The research reported in this document has been made possible through the )
«, support and sponsorship extended by the 0ffice of Research Grants and Contracts
of the 'iational Advisary and Space Administration, Washington 25, D. C.
Under contract No, NSG 76-60



https://core.ac.uk/display/10243401?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

e e

ELECTRONIC STRUCTURE OF MOLECULES

ABSTRACT

This paper, following a brief introduction, is divided into
five parts. Part I outlines ths theory of the molecular orbital method
for the ground, ionised and excited states of molecules. Part II gives
a8 brief summary of the interaction integrals and their tabulation.

Part III outlines an automatic program designed for the computetion of
various states of molecules. Part IV gives examples of the study of
ground, jonized and excited states of CO, BH and N, where the programs

of sutomatic éomputation and moleculayr integrals have been utilized.

Part V enlists same special problems of Molecular Quantum Meghanica which
are being ¢,cicjeq a8t New York University. |
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I. INTRODUCTION

Sinze molecules are built from two or more atoms, it is obvious
that an undersiandineg of the electronic stetes of molecules must be
built upon . prior Ynowledge of the electronic ststes of atoms.

Just as each energy level of an atom ecorresponds to a certsin
electronic confisaration, similarly molecular spectra are anelysed
intc levels, each of which i3 analogous to an electronic level in an
atom. With each electronic level is associated s group of neighbour=
ing levels which are stiributed to the quantized vibration of the
molecule. Again each vibration level has associated with it & group
of levels due to the quantized rotation of the molecule with the
same electronic configuration and the same energy of vibration.
Theoryé;) shows that the electronic, vibrational, and rotational levels
may, to & first approximation, be considered separately and their
respective contributions to the energy are to this approximation
additive, thus:

E = Falee * Prib ¢ Frot

Since the knowledge of electronic levels forms the bagis for
understanding of spectrs and the structure of molecules, we shall,
therefore, in this review discuss the electronic levels (states or

C- wave functions) of molecules and will outline a procedure for their

automatic computation on the electronic machine.



PART I. MOLECULAR ORBITAL METHOD

THE ONF~ELFCTRON APPROXIMATION,
.The calculation of the electronic wave functions of atoms and molecules

with more than two e_lectrons, 18 based on the Hartree Model of the atom,
which gives an approximate value of the total state function ? obtained
by the product of n one-electron functions YW*'s. Thus

\P(xlyl’l’ s n’n) - \'i(xlylzi) V;(xéy - 2) °ee ‘G(xny n’n) (1)

Hart.ree( 2) suggested on the basis of plausibility that each one~electron
function \V 1in equation (1) should satisfy a one-electron Schr3dinger equa-
tion, in which the potential includes a term that takes into acoount the
‘coulomb field of the other electrons as well as the field arising from mucledi.
He chose this term as the classical electrostatic potential of the n~1 normal-
ised charge distributions |*f3|2e2. '

Hence his equations for ‘f{ are

2 y 2
B Ayt e e | _.‘."Jrilz.ﬁ. ay ) - Y @

where

ry denotes the space co~ordinates (xi,yi,zi) of the 1P electron,

€ 15 the energy value of the 1*® ele0tron,

vy is the potentiel energy of the it'h electron in the field of muclel alone,

ar 3 is the integration over the entire space for the Jth electron,

/
% is the summation over all values of J = 1, 2...n except when J = i
2 .
and :f_ A\ 18 the kinetic energy operato? of the 1% g1ectron.
om 1

Equations (2) have been further modified by Fock(3 ) so as to include

exchange terms, and are now known as Hartree-Fock equations
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The general procedure for solving Hartree-Fock equations is one of trial
and error. One assumes & set of ‘/'s, solves the equations for the required
¢'s and Y's and compares the resulting WV ‘s with the assumed ones.
Guided by this comparison a new set of \1/'3 is chosen and the procedure
is repeated. This process is then continued until the assumed and calculated
\V 's agree. This iterative method of solving equations (3) is called the
Hartree=Fock self-consistent field method.
For atoms, the problem of solving Hartree=Fock equations is greatly
simplified by the central symmetry. For molecules because of the absence
of centrsl symmetry the numerical solution of these equations is a very
difficult problem. This difficulty is overcome by using the molecular

orbitsl approximstion, described in the next section.

MOL®CULAR ORBITAL M%THOD
The molecular orbitel method is essentially an extension of the Bohr
theory of electron configurations from atoms to molecules. Eech electron
is assigned to & one-electron wave function, or molecular orbital, which is
the quantum mechanical analogue of an electron orbit. Molecular orbitsls
(MO) are generally built up as linear combinations of atomic orbitals (ICAO).
The molecular orbital theory, based on a single-daterminantal wave
function for the ground state of molecules having doubly occupied orbitsls,
has been applied to molecules, on the lines similar to Hartree-Fock treatment

(1,5,6) )

for atoms, by a number of workers Lennard=Jones has also con-

sidered a determinantal wave function in which moleculaer orbitals



»4/1, yz e % are associated with two electrons of opposite {( . and (3)
spins and Yoe1? Yoo *o° qu with only one electron (of /. or (3spin).

Such a wave function can be written

Y - [<=++%>'.]—%%“'§P[‘*’w‘*“‘"“‘%‘*P)B@P) Yori (pH)4Gk)

S Wety (bt ) B0pty) ()
where P runs over the (2p+q)! permutations of the (2n+q) variables and
1)P 1s the parity of the pth permutation. Con:-sidering all the
functions as orthogonal, he has also deduced & set of differential equa-
tions for their optimum forms. These equations for the paired spins can
be written

(Hed-K) ¥, =T & ¥, (5)
where H, J and K ere the bare~-nuclesr field Hamiltonian operator, Coulomb
operator and Exchange operstor respectively. K, 1s defined by

L f\_&(n +J=K) “I: dT (6)
and the Coulomb operator J; and the E-change operator K, are defined by

<@’ 1
3, Y = ((Fy2) - i) T

and K (DY) = (j‘?i(z) ;d-u Y(2)er,) Y;(2) (7)
12

so that they can be expressed as one-electron integrals involving the
operators J1 and Ki'

Tquations (5) do not define the orbitals uniquely so that the motion
of the electrons can be described with equal accuracy using seversl types
of orbitals. One possible type is the molecular orbitsl description which
is defined by the condition that

E..= 0, my¢n (8)

From this definition it r;'an be proved that each molecular orbital

belongs to one or other of the irreducible representations of the symmetry

eroup of the molecule. This means that they cannot be localized in a certain

part of the mdecule, but are spread throughout it.
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The wave function (L) is not the most general form of a single deter
minant wave function. If the number of o electrons (N,) 18 not equsl to
the mmber of (3 electrons (Njz), 1t cen be sbown *° that thare s no
2 priori resson why any of the orbitals containing ci electrons should be
identical with any of the rest. In the most genersl form we may introduce
N Lt Nf-” molecular orbitals, all of which may be varied independently in

the Ritz variational process. This wave function can be written as

£ b
J = [txrva)t T2 260 PLvios du #a00 a6 040

e e (Mt W M TN
kq"avn‘wr;“. 0 B (o F’)j (9)

In addition to being more general than (L), the wave equation (9) has
the additional advantage of simplifying the variaetional problem. By carry-
ing ocut linear transofrmation within the determinant, we may take the
orbitals to be an orthogonal set; the same applies to the (5 orbitals.
However, there is no need for any of the o orbitals to be orthogonsl to any
of the (3 orbitals, since the complete one-electron functions are orthogonal
on acoount of spin.

The total electronic energy for such a wave function is given by the

formula -
E = f y HY 4T 0y
where H, the complete many electron Hamiltonien is
- : > (11)
H= %t 9 iy

Hy is the Hamiltonian operator for the iﬁ‘ electron in the field of the

mclei alone.

For the wave function of equation (9) we have, therefore,
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where H 1is totally symmetrical in all its variebles. Most of the permute-
tions in (12) lead to vanishing terms on account of orthogonality. The only
ones that do not vanish are the identical permutation and all single permmta-
tions of the same spin. These lead to the following expression for the energy

E A+B , arh 4t
2-Z Mt g Z Z. %q (Zi)K,) (13)
Here é and 5= indicate sumation over suffixes corresponding to
i p 8

molecular orbitals ‘l: that are ocuupied by J and (3 electrons respectively.
At3

fi 18 used for smmation over gll orbitals.

If we are dealing with a close shell ground state in which the two sets
of orbitals are identical, the energy expression {13) reduces to the usunal

form
Tw2fH o E,’ (23 = Kyy) (1h)
140 SFLP-CORSISTENT FIELD GREITALS

In the LCAO MO method all the electrons of the molecule are represented
by linear combinastions of atomic orbitals.

Ye 2:°t,, b (15)

where 1 specifies the MO's,‘},
p specifies the atomic orbitals, X ,

and 'ip specifies the uvadetermined coefficients, a's.
Equation (15) can be written in the matrix notation as

Ye = Xy 2(-_ (26)
The condition that the MO's be orthogonal then reduces to



fYev, T = & Sy zga.j' (17)
where the elements of the overlsp matrix § are defined by
= S =f" A
Seq T Syp T ) % B AT (18)

and g} 1s the Hemitisn conjugate of the vector g,.
If we write the temms in the energy expression of equation (13) in the
matrix form
R, =27 Hay
g =8 338 = a7 ds 85,
Ky ™ K58 .l? X 245 (19)

and vary the coefficients g, by an amount $2y, the resulting variation
in E is found to be _ . (3 d+

At © . 221—%2)8‘ LK
“ J - g‘ -
CE = ? sa, Ha.p-{ 2:;' Sf’-‘c 519&'((. 4 U39 '7% % Complex Conjugate

A+ oL o e « G
=Z ng(u +y XOL.‘ZSQTKB.-'(ZSQ. K @; + Complex Conjugate (20)
[ t [} t <

" Where J, f‘ ’ Kp, the total coulomb and exchange matrices are defined as

,g—B
J =
itz 4
&L

PA )
F-2g 5 5%-3x (22)
8;1 is subject to the orthonormelity restriction (17)

t 4
'Sq:S_OEé-l-CLCSSQ,j';O (1, J in same set) (22)
Multiplying equation (22) by Lagrangian mmltipliers - (31
equation (20) we obtain the minimization condition R

oA - o ol G "~ A _ _
?SQ.CH'\']‘-K)QL.‘?§9,5€5L.\+§S%\(H+J’-K Y, Zg!:?-fs?-é,,,.)

and adding to

+ complex conjugate = O (23)




From (23) we conclude that the coefficients g, must satisfy

&
either Hed- Kd Jag = §§ & 631 (2
8 53
or B+d-K)g = §‘§£J €4 (25)

according as Vi be associated with & or ﬂ electrons. We can further
diagonalise the matrices &, by the orthonormal transofrmetion of the

hh 1
orbitals reducing equations (2h) and (25) respectively to
d
(Hed-E) 4 =65l (26)
6 [
and @*i'x).ﬂf-ﬁ§£{3 (27)
aor(3
The elements of the matrices H, J and § are defined by

am-fzpnx;ar

G _
a X@yL—XK AT, 4Ty .
+‘j’ tc%c\ffﬂ"’ t(‘)w‘»&w“)%/“) ' A 289)

tv
d“ﬂ dﬂ(s__ )
e Z (2 &z, )ﬁ‘XPu)Xt_(a);;7‘%(’*)760)’\1}47'%(2&)

Though equations (26) and (27) describe two strasightforward eigen-value
problems, the calculation of the elements of matrix J, which is common to
both, involves the 54 coafficients which sre assumed for the first cycle
but for the subsequent cycles they have to be obtained from the solution of
_ both the eigen-value problems. The equations are, therefore, best solved
by a cyclic process:

1. to begin with, values of a, are assumed consistent with the
orthonormaelity condition of equation (17),

2, these a; arewed to calculate the matrices J, ]gd and KG »

3. the determinants (equation 29) of secular equations (26) and (27) are

solved for n lowest roots €, and for their coefficients _g;( and 31(3

’




le-ésl-o; tr(5-es|-o : (29)
Ed and 28 sre defined by
Y P B
ed E®-geg-x” (30)
k. the new coefficients 3_; and !1(5 , thus obtained, are used to calculate
matrices J, xd, K& and the process is repeated till self-consistency is
attained; that is, the coefficients ,‘i and _gf obtained from the n°l
cycle are in agreement with those obtained from the (n--l)th cycle, within

predetermined limits.

After the self-consistency is obteined, the eigenveétors a3, of the
secular equations give the ICAD MO’s and the eigen-values éi the vertical
ionization potentials.

We shall describe in the following section the computation of atomic
and molecular integrales required in the calculstion of S, H, d and _l_(_ matrices.
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PART IT. ATOMIC AND MOLECULAR INTEGRALS

TABLES OF MOLECULAR INTEGRALS

A variety of physical properties of molecules such as energies, polarize-
bilities, susceptibilities, and transition moments can be calculsted by use
of quantum mechanics from the knowledge of moleoular wave functions. The
calculation of these functions by any of the standard methods, such as valence
bond or molecular orbital, involves the calculation of molecular integrals
which is extremely tedious and requires considerable mathematical understand-
ing. Until recently only approximate methods were used to evaluate these
integrals; however, progress has been made in the past few years in the
evaluation of the basic integrals. MNumerical values of some of these integrals
have been tabulated by sarme 1nveatigators;uol)1;‘w;£32 the availsble values
are not sufficient to provide all the integrals required in the calculation
of molecular wave functions.

It has therefore been considered worth-while to study a number of these
integrals and tabulate their wvalues. In carrying out these computations a
nmmber of factors were considered and material tabulated for:

(1) Integrals which contain all the interection integrals arising in the
calculation of the properties of diatomic molecules containing electrons of
1s, 28, and 2p atomic orbitals.

(2) Integrals or their auxiliary functions as functions of one or two
variables over wide ranges of intermuclesr distance.

(3) Integrals which are functions of more than two varisbles which have
been expressed as a linesr corbination of auxiliary functions of two variables

f and “¢” . The values of"ij' may range from O to 1, and all the required
values at suitable intervals are tabulated, while the values of [° may range
from O to 6. The upper limit of the values of (’ is chosen to have integrals
for values of the intermuclear distance even beyond the dissociation distance.

Tables which contain one-=center one-electron and two-center two-electron
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integrals have been prepared automatically on an electronic computer. The
monocenter integrals involving ls, 2s, and 2p atomic orbitals are special
cases of two-center integrais for (’ = O and can also be obtained from these
tables.

The tables of integrals® are divided into four parts and will appear in

.@ix volumes.

Volume 1 (designated es Part K) contains two-center two-electron and
monocenter one—-electron-integrals.

Volume 2 (designated as Part II) contains two-center two-electron and
monocenter two~electron Coulomb integrals.

Volumxess_g, Ly and 5S(designated as Pa{(t,a IIT (a), ITI (b) and III (c)
contain Cd a ¢ er) ‘—g /3( e ok 'Cd {(3 f~T)auxilliary functions of the
hybrid integrals.

Volume 6 (designated as Pert IV) contains exchange integrals and the
suxilliary functions, W and G, required for the computation of some exchange

integrals.

CHOICE OF ATOMIC ORBITALS
For the Computation:of the different types of integrals given below,
Slafez-type atomic orbitals (AO's) were used for the computations. For
quantum mmbers nel and 2 the normnlised Slater AC's are
(‘* >
L

cos ©

2r_x, __,_(,u 2 "““’; sin 8 coscf

Zpy m sin @ sin CP (31)

# The tables of integrals are being published by NASA in six volumes (four
parts and contain over two million values and cover over 5000 pages. Volumes
I and IT have already been published and distributed to different libraries and
scientists upon request to NASA. Copies of these tables can be made available,
free of charge, to accredited workers upon request to NASA, 1520 H Street
Nortl’uest R Waehington 25, D.C., Attention Mr. Carl B. Palmer, Deputy Director,

AL .. o o Vammwemnat Memwd s reasd Mamdewmnad a



where the effective charge A+ is arbitrery.

TYPES_OF INTEGRALS
The following types of integrals or their auxiliary functions are

/ “
tabulated in Parts 1, I, ITI And IV. The notations %, , %, , X,  are
used for the various atomic orbitals on atom a and, similerly, the notatinns
7(‘ % X are used for the various atomic orbitals on atom b.

Overlap integrals:
f7cam Koty Ay, (32)

Nuclear-attraction integrals

l rd
1y — X, ) v
f')‘a‘ v, o ' (33)

/
f
f X‘e(l\ ;;XLU) d’\)i

Potential-energy integrals:

! 9.4 L')—L—-X\l)d'\/‘
a A {
a (3L)

!
YXQU\ -—;1%&('\ 0\'\}‘

Xinetic-energy integrals:

-L (xar A xuydv (35)
Coulomb integruls:
/ 7
I
ff LG %4 —;(;XL('A) 7(4(1) A W 0\1*1 (36)

Hybrid integrals: ,
/
’ /
(f X“U) X“(‘) ‘_‘T‘_'LX&(Q) X—L(i) AV‘ dul (37)
Fxchange integrals:

L *

/ ’
ff %0 %Ko — KON, ydw A, ()
W




Tgbles of Molecular Integrals (Part 1)
TWO-CTNTER ONR-FRLECTRON NUCLEAR-ATTRACTION, OVERLAP,
AND POTENTIAL~ AND KINWTIC-RNERGY INTEGRALSY

The tables in Part I deal with the two-center one~electron and monocenter

one-slectron integrals and are presented in two parts. The first part,
table 1(a), contains nuclear-attraction integrals and the second part,

table 1(b), contains all the functions necessary for two-center one~electron
overlap and potential- and kinetic-energy integrals.

JUCLEAR-ATTRACTION INTEGRALS
The tmcloar-attraction integrals are

(% = ('x 'Xt‘\—'—-Xt')dv
) = f Yoo l ()

Kl 1%V~ [z £ o dy,

These integrals cen be expresaed in the fom

L
P ~ +4 ,'n w f (())
vhere A = L. (s +A{) The fumstion #(f) 1s a funotion of the
single parameter.
P= R (1)

and is given for each atomic-orbital pair in table 1(a) for values of
p from 0 to 14.95 in 0.05 steps.

For sufficiently high values of P’ the mmerical entries are givan
by the following expressions:

#+ An expanded version of the information presented in this section is included

in "Part 1 - Tables for Two~Center One~Electron Nuclear—-Attraction, Over:lap,
and Potentisl~ and Kinetic-Energy Integrals.”
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13 (42)
‘Y\a‘iﬁ,&)/"}"-i—ﬁ (il@ﬁ,‘y ‘1*,1 ) <1 §—
(um,l—‘;a;ah&)ﬁ__'_i (s | F e
, P |2 b Y=t -3

In every case, formulas (}2) yield better than 7-digit accuracy for values
of P beyond the range of the tables.

OVERLAP and POTENTTAL~- and KINETIC-ENERGY INTEGRALS

The numerical values for overlap integrals
= \ X AV
(%1% )= § 7 Xetr 4 1)

are contained in table 1(b) along with some additional functions necessary for

two~center one-electron potential=energy integrals

(%, V= | e y = fx oL = X AV,
CX 4, | 7(,&)“;7%“’%«;7&&“) 4V, (i)
and kinetic-energy integrals
- L ~ =L '
(% l-5al%) 1§72(')47(,e.“)"“’1 (45)

These additional functions ere the overlap integrals of the fictitious

orbitals given by the follmring equations:

o< —(—_) .w.\- -é./—\?\

‘\”“7_ Corn & (46)
e [T faie g
|}9\1 A & /uMcI:

The Os and 1p orbitals used here are actually J< and 1/“,3 s respectively,
times those given by Slater's general formmula.




All the overlap integrals including those of the fictitious orbitals are
given in tsble 1(b) as functions of two parameters.
R
"rl - /(44 - A—L (’-l.,)

A+ A
The ranges and intervals of the overlap integrals are such that all

integrals can be obtained for
= -0.0(p.02)0.94*

and for
p= 0.0(0.1)50.0(0.2)60.0(0.4)79.6 1f n = my, = 1
p= 0.0(0.1)30.0(0.2)40.0(0.4)59.6 if n, = 1, = 2 orn, = 2, 0, =1
p= 0.0(0.1)20.0(0.2)30.0(0.4)49.6 1f ng = my, = 2

The numerical values of these overlap integrals are given in the form
of 7-digit mantissas (between -1 and 1) followed by an exponent giving the
power of 10 by which the mantissas are to be multiplied.

For example, the value of (1s|ls) for p= 25.0 and ‘T’ = 0.70
is given in the table as

3.L34kL71,~h
(see sample page bound). This wiue is to be interpreted as
3.134h71 x 107

The overlap integrals (X{x) listed in the tables are defined so that
the first atomic orbital in the parentheses is on atom a and the second is
on atom b. Only positive values of “J are listed so that if an integral wi:h
a negative value of 'T” is needed one must interchange the a and b orbital
functions and then obtain the value from the appropriate tsble; that is, for
(0s[18) for T = -0.8 one should use (1s]0Os) for T’ = 0.8.

#+ This notation indicates "values of from 0.0 to 0.9L in 0.02 steps." likewise
the notation for p indicates "values of p from 0.0 to 50.0 in 0.1 steps,
values from 50.0 to 60.0 in 0.2 steps, and values from 60.0 to 79.6 in 0.k
steps,” and so forth.

-
(2 §



Tables of Molecular Integrals (Part II)
TWO-CENTER TWO-FLECTRON COULOMB INTEGRALS™

The general expression for two-center two~electron Coulomb integrals is

given by /

/
J. AV
g x Xau) VWXL(H 7‘4(1) AV, 2% (18)

where xa ,xa- and Xb, Xb' are atomic orbitals on centers A and B,
respectively, and where 1 and 2 refer to coordinates of electrons 1 and 2.

The Coulomb integrals are obviously functions of five parameters, namely,
the four orbital exponents /“‘a Mg's Aps 8nd Ayt and the internuclear
distance R. However, a product of two atomic orbitals on the same center is
equal to a radial function times the product of two spherical harmmonics.

The exponent l: of the radial function is the average orbital exponent of
the two constituting atomic orbitals. It is thus clear that these Coulomb
integrals cen be expressed as a function of three variables

M= 12 (A e a0 ), 2 = 1AM + /') and R. Replacing these

parameters by - —
- R
P - "i‘(ﬂq*—/‘t&)
,rf - /LL—“"/‘IA
A+ A g

these integrals can be represented as functions of @ and T” . The complete
integral (11) is then

’

ff'lam x ) "';.‘1 X () X,L(‘)AV‘AV-;“ Kf((y,r)

where ’ .
A'\k'*'% //*w‘&*'li- M,C.‘LJ{ ’ m.&.""%'v
K =2 a Ao “e ~ = (u9)
_Ma'*""::'l" - “h‘ai—m’.r' ./(-la-f-,b.&
L
/O.q A.a o

% An expanded version of the information contained in this section is included
in Supplement 11 - Tables for Two~Center Two-Electron Coulomb Integrals.
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For a given set of orbitals, £((7’) is 1liasted in the tables in Supplement 11
headed by the four orbital functions X,, X.'s %o X 7.
The principal quantum mumbews of the four orbitals are ng, n, " ns and ny°
wierene=1for lsandine 2 for 2s and 2 p.
The range and spac_ing of (?° depend upon the value of
N= n, + n.' + o m,'. They are as follows in the same notation as that used
previously:
N=bh: p = 0(0.1)50(0.2)60(0.4)79.6
N = 5: p = 0(0.1)40(0.2)50(0.4)69.6
N = 6: p = 0(0.1)30(0.2)L0(0.4)59.6
N =7t p=0(0.1) 25(0.2)35(0.4)5k.6
N = 8: p= 0(0.1)20(0.2)30(0.h)49.6
The range and spacing of f[‘/ depend upon N, = ng ¢ na' and Ny = mp, + nb' as

follows:
N, S8 T » 0(0.02)0.9k
Ny = N+l T = 0(0.02)0.78
Ny = Mp+2 T’ = 0(0.2)0.62

Some integrals for the orbitals involving px and Py are not listed since
these can be obtained by using the relation
’ rd - L4 rd
(%% | 2 }a‘ 2 ]ox ),%[‘5(76 X122 2) (% 2y 2 \a.‘ }50)
which holds except when x.x.' involve py or py orbitals. In the latter case
("t"xikx \‘ihﬂh [‘(101061620)—3(10-;0(1},1 h)

”3(’f°1°~l°al‘l’°’l’>)+(ﬁ|,*q,zpp '.L’,, )’]
and TP Ee2 Py 12k by

(51)

, . - . (52)
(al"\,'k b?(‘l.‘pxﬂ‘ax )=J‘[:?(aoaojaozo)—3(101f;j2p 1},’)

..'3(1‘41‘1‘91 \2A'10)+1(¢12};\1\'31},)‘]
Ohcrbg (2o thy)



Table of Moleculsr Integrals (part III (a), Part III (b), and
Part IIT (¢)

TWD- CENTFR TWO=FLECTRON HYBRID TINTEGRALS®

The general expression for two-center two-electron hybrid integrals is given by
4 ) /4
{f X uy K u) pou 'XQL’H 'XL(".L) v, a(\/'1 (53)

(B §

where X, Ko*» X" and Xb are AQ's on centers A and B, respectively, and
when 1 and 2 refe- to coordinates of electrons 1 and 2.

For the hybrid integrals, electron 1 belongs wholly to atom a while
electron 2 18 exchanged between atoms a and b. The same method as that
for the Coulomb integrals can be applied, that is, integration over the
coordinates of the second electron in the potential field of the first. This
gives a finite series of the overlap integrals discussed earlier when the
potential due to electron 1 is spherically symmetrical, that is, due to
(1s) (1s), (1s) (28), or (28) (28). For the electron 1 with 2p AO's the
same treatment as for the Coulomb integrals can be carried out.

Unlike Coulomb integrals these hybrid integrals are not generally functions
of two varisbles. They can, however, be expressed as a linear combination of
suxiliary functions C and C"HL'.) These functions are functions of two
variables. For the C function tPese variables are

= (Ma -r/u; +A; +Ap >R/7~,
T = Aa'f"‘a,'f"":_/‘*_,g‘. (54)

A+ A+ A—g -+ /‘*A
and C' is a function of the two variables

(Aa -1-/‘4;&)‘2/1
/7 1/

T = Ma - A
A+ Mg

4n “Supplement III-Tebles far Two«Oe

~
"

(55)

ormation contained in this section is ingJuded
Two- Electron Hybrid Integrals?

!

[T S ——
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The € and C cre tabulated zs functicns cof Lwo variables for intervals and ranges
such that all hybris integrals between Is, 2s, and 2p orbitals can be obtained
from the tables of supplement III.

Tables of Molecular Integrals ( Part IV )
TWO— CENTER ‘TWO— ELECTRON EXCHANGE INTEGRALS

In the two-center two-electron exchange integrals each of the electrons is
exchanged between two atoms. They are represented by the formula:

1 / ¢
ff?;d) 7‘-{:') vy Xa(al) 7("_(2') dv, OLVL .. (56)
ta

These integrals can be evaluated by using the elliptical coordinates and expa.miing#-
in the Neumann series 1%

.Y ® L > y > Y |
o R [:Q;_f S0 EO P (L) Gosvi-4) (7))
where
B, = PRI 2
v Cr-w)! v 2t - ($S¢)

and ﬁ‘is the larger and f , the smaller of. f' , and ? . Intergration with
kY

respect to fl s and fm gives the integral

\V , oC oo 4 \'4 -P _)’ M N \;;v N V;
W Gmonp )= [ QU )5 £ (L g, d gt

while the integrations with respect to "‘ll and “'l give

v '..
G (o) - ffrf’:(m)“f“(c-n’{/ldw
-1 . 1 [} [} \.l _ . o (éo)
. r_ Vv L v

c_:(%c-) : S.ecﬁ(ﬂ,)“li (“"t)/lat’”ll

. / ,
" where P’ r , 6 and ¢~ of equations (59) and (60) are given as

- % An eépa.nded version of the information contained in this section will be included
in “Supplement IV — Tables for Two-Center Two--Electron Exchange Integrals.’?
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= R -
PR (mtie) T (A4
1—. , , ”~ - R ”, ” (61)
C & (A4« ) ¢ rz (A
7 ~
where R is the internuclear distance and A%, Atg ; M ’and M ere

the screening constants of the ateomic orbitals X X, ,7‘a and 'Xl

In case f -'p' , these integrals are functions of two variables and can
be easily tabulated. When })7_. f‘ » these integrals are functions of more than
two verisbles and camnot be easily tabulated. However, these integrals can be
expressed 8s a linear combination of the auxiliary integrals W and G given
in equations (59) and (60). These auxiliary integrals can be expressed as
functions of two variables.

St111 another method of computing these integrals has been developed which
is en extension of the Coulson and Barnett method for Coulomb and hybrid
integrals.( ') This method can also be extended to three~ and four-center
integrals.

The tables in Part IV contain  the numerical values of exchange integrals
of = P/along with W and G functions for the exchange integrals of

F :'f: (),fof intervals and ranges such that all exchenge integrals between
18, 23, and 2p orbitals can be obtained for diatomic molecules even beyond the
dissociation limit.

A photographic copy of a page from table 1(b) is attached dong with this
proposal to acquaint the reasder with the type of information contained in
each table.
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PART ITT.  PROGRAM FOR COMPUTING WAVE FUNCTIONS USING MOLECULAR
INTEGRALS

9 in the caleulation of ICAO MO's and their

6

L
ionization potentials are the calculation of the F gnd F matrices, and

The two essential stageé

the calculstion of the LCAO MO's fram these matrices.

It was not found possible to construct a programme, which could cover
both these stages of computation in & single run, becsuse of the limitation
of the available storage capacity of the computer. However, it was found
2os8sible to construct two master programmes, A and B, prepai'ed in the usual
manner punched bon I.B.M. cards, requiring less than the available storage space
of the machine. The programme A was so constructed as to carry out the following:
1. to normalize the vectors a, according to the equation

a, _S_gj - Sij (62)

2. to multiply & with integrals JU and Kij to give matrices J, K( s &nd 5’5

o oL
3. to evalunate mgtrices ¥ and [ according to the equations
o
BEeg-§ =
Eeg-5Pagf
k. to punch out matrices F‘ and FB in the binary form onl.B.M. cards which

and (63)

serve as the igput data for programme B.
The programme B uses the matrices F and § as the input data together with
a card which contains some instructions in the form of constants, which depend on
the order of the matrices. The progrmé solves the eigenvector equations
@ - &g)ay -0

and
n | (26_ eig)ei-o

both for the LCADO coefficients and éi values in a single run by the iteration~

(64)

rotation process described in appendices I and II,




The programme B, at the end of every run, punches out the coefficients gy
and éi, both in the decimal form, for camparison with the values of the
previous run, and glso in the binary form. The - coefficients, punched out in
the binary form, serve as the input data for the second run of the programme A.
Progremme A in return punches out matrices _lfd and _EG which are used as the
input data for programme B. This is continued till the required self-consistency
is obtained. In all sbout 15-20 cycles, requiring sbout -3, hour of computation
on the maeh:lm,' are generally needed for the self-consistent calculation of an

electronic state of a molecule.

THE SCOPE AND USE OF THE PROGRAMME
The programme for the calculation of molecular orbitals is naturally divided
into two parts:

@ from the molecular integrals‘

(a) evaluation of the matrices _Ii& and F
of Part II.

(b) calculation of the LCAO MO's and their energy values.

The progreamme for part A has been so constructed that it can be used for the
calculation of the matrices for the ground state as well as those for the excited
and ionic states. In fact, it can be used even for doubly and triply ionised
states of molecules; 2 card has been made in the programme with the necessary
instructions punched out in certain :locations, which can be modified so as to
exclude the contributions to the energy value from those orbitals, which remain
unoccupied in any state of the molecule.

Both the programmes, A and B, are constructed, at the present stage, to
cope with the EOL and F £ matrices up to the order 10. This is due to the
fact that nearly everycalculation in the molecular orbital theory can be
carried out with a matrix of the order less than 10, if group representation

is tsken into consideration (see-appenddw=FTI). However, if it becomes necessary
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to use matrices of the order higher than 10, the programmes can be easily modified.

The programmes are &lso useful in the more accurste treatments of the wave
func tione of atoms and molecules; such as the configuration interaction, and the
uge of codetors (linear combinations of determinants), which involve the use
of equations of the type |

(E-€1) g =0 (65)

containing the unitary matrix J. The equations (65) ere a special case of
equations (64), in which the disgonal elements of the overlap matrix S are

unity and the off-diagonsl elements are zero.



PART IV. COMFUTATION OF 7' FUNCTIONS

The above programmes have been applied to calculate the electronic ~av>
functions and some of the properties of the following moleculest
1. Co molecule (ground state)
2. BH molecule (ground state)
3.°n *n 31: T and 3Zu " states of N_ molecule (excited states)

9> v 2
h. Bzfu t+  and Xifi + of N; nolecule (ionized states)
The calculations are now being extended to the ground, excited and ionized states
of a number of other molecules and, at the ssme time, technigques are being
developed to improve these wave functions. It is hoped that these calculations,
a brief summary of them will be given in the following sections, will form the
basis of further work in the field and its application to other problems of

molecular physics and spectroscopy.

THE STRUCTURE._OF CARBON MONOXID%&

THE MOLFCULAR ORBITALS OF CARBON MONOXIDE. The most practical form of

expression of molecular orbitals at present is to use linear combinations of atomic
orbitals. This method is adopted here for carbon monoxide, stomic orbitals of

the Slater type being used for carbon and cxygen, the only modification of the
original Slater functions being to form orthogonal functions from the 1s and 2s
orbitals. This ensures that all orbitals on the same atom are orthogonal to each
other. All the orbitals will be taken in their normalized form. The convention
to be adopted for the sign of the 2p, orbitals is to use the oxygen nucleus as
origin, to denote the OC axis as the positive direction and to make the p-orbitals
positive on the side of increasing z. The atomic orbitals of oxygen and carbon

are distinguished by the suffixes o and c.



Table 1. MOLECULAR ORBITALS OF T~ SYMMETRY FOR THE GROUND STATE OF
CARBON MONOXIDE

Moleculsr  (28), (2s), (2p,), (2p,)o energy (eV) observed
orbital energy(eV)
ve 0.187 0.6145 —0.189 0.7626 -13.373 =1);.009
D6 0.7176 =0.4926  -0.6065 0.168 -20.011 -19.695
te 0.675  0.270 0.231 «0,227 =43.369
”
s 00973 .0.971 1.0 10055 15o613

The two most tightly bound molecular orbitels are taken to be the same as the
atomic orbitals (1s), and the (1a)c, their computed energies (negative) being
562.76 eV and 308.52 eV. From the four atomic orbitals of O  symmetyy, vis.
(28),, (2p,)o» (28), and (2py),, four orthogonal molecular orbitals can be con-
structed. Those that satisfy most nearly the equations for the molecular orbitals
and give self-consistent results have the linear coefficients given in table 1, the
nomenclature being that used by Mulliken.

Hé. 1. t¢— bonding molecular orbitsl of CO
It is instruotive to examine the distribution of the three occupied
molecular orbitals, which are given in fig. 1, 2 and 3. The most tightly bound
one, t6— , is concentrated mainly between the two nuclei where the potential
field is strong. The energy of bonding is accordingly large. It is evident
from the countours of equal density, plotted in the figure, that the greater
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field of the oxygen pulls the electron distribution towards it. This represents
a form of polarisation, or induction. If the two nuclei were equal, as in the
nitrogen molecule, the distribution would be symmetrical sbout the midplane. The
asymmetry in the CO molecule produces & shift towsrds the oxygen and at the same
time there is a distortion of the pattern near the oxygen nucleus cérieeponding
to & contraction of the distribntiot’:; there is a corresponding expinaion of the
distribution round the carbon mocleus.

Fig. 2. (A 6") non"_'doiid;ﬁy.molec'uhr orbital of CO

The next orbital in order of energy is the ~¢ one and this is distributed
mafnly on the reverse side of the oxygen. ‘Thia is 1ike & localized oxygen atomic
orbital, made up of (2s), and (2p3)°, directed away from the carbon, though .
polarise& to some extent towards it. This distribution, which puts e_p,air
of electrons away from the carbon and 8o in a8 region where the field is not
so strong, ia due to the powerful influence of the exclusion principle, for the
orbital must be orthogonal to the te¢ orbit;al . This important effect is 1llus-
trated also in the next orbital, v o™, which is mainly concentrated on the side
of the carbon remote from the oxygen, for it must be orthogonal to both T 6 and o6~

We thus see that when electrons are assigned in pairs to the G~ orbitals in
accordance with the exclusion principle, they are distributed mainly in three
regions, viz. between the muclel, on the outer side of the oxygen and on the
outer side of the carbon respectively.




field of the oxygen pulls the electron distribution towards it. This represents
a form of polarisation, or induction. If the two muclei were equal, as in the
nitrogen molecule, the distribution would be symmetricel about the midplane. The
asymmetry in the CO molecule produces a shift towards the oxygen and at the seme
time there is a distortion of the pattern nesr the oxygen mucleus cWMim
to a contraction of the distributiod; there is s corresponding expsnsion of the
distribution ronnd the carbon nucleus.

Fig. 2.(n &) nonafﬁohd;l"iy;molec'nm orbital of CO

The next orbital in order of energy is the ~¢™ one and this is distributed
meinly on the reverse side of the oxygen. This is like & localized oxygen atomic
orbital, made up of (2s), and (2p,),, directed away from the carbon, though
polarised to some extent towards it. This distribution, which puts  pair
of electrons sway from the carbon and so in a region where the field is not
so strong, is due to the powerful influence of the exclusion principle, for the
orbital must be orthogonal to the to- orbiﬁal . This important effect is illus-
trated also in the next orbital, v o™, which is mainly concentrated on the side
of the carbon remote from the oxygen, for it must ﬁe orthogonal to both L& and o6

We thus see that when electrons are assigned in pairs to the G~ orbitals in
accordance with the exclusion prinmciple, they are distributed mainly in three
regions, viz. between the nuclei, on the outer side of the oxygen and on the
outer side of the carbon respectively.
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Fig. 3. (UG™) nombonding molecular orbital of CO.

There are two atomic orbitals each of 2py and 2p, symmetry and from them two
molecular orbitals each of n, and Tor symmetry are derived. Those for ny
are given in tzble 2, and the coefficients for Ry 8Te the same. The bonding
ny molecular orbital is shown in fig. L. The distribution 13 seen to be
mainly concentrated in the neighbourhood of the oxygen mcleua but with some
extension of the pattern in the direction of the carbon. If, as suggested by
Mulliken, the electrons to be assoclated with each micleus are calculated from

cotfficients

the squares of the . . . :.given in table 2, allowing half the overlap contri-
bution to each, the four electrons assigned to the L and iy orbitals may dbe
regarded as distributed between the oxygen snd the carbon in the ratio of

appfoximately three to one.

Fig. li. A n~bonding molecular orbital of CO.
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THE FLECTRON DISTRIBUTION IN CO and 002. = The contours of the total
electron deusity in CO are shown in fig. 5, these being obtained by summing the
squares of the oceﬁpied orbitalsve, ns ,t e, n, and Ty A similar diagrem
was constructed for CO,, based on Hulﬁgan'a oalcuhtiona({zf the ococupied orditals,
in order to find cut what modification was made in the CO distribution by the
removal of an oxygen atom. A comparison of ﬁhe elecgron density for CO and 002
as integrated over planes through points on the mciear axis is given in fig. 6.
It sppears that the main effect is on the lone pair side of the carbon atom, the
distribution between the carbon and oxygen not being greatly changed. Whereas
the distribution round the carbon in carbon dioxide is, of course, symmetrical,

that in carbon monoxide projects out slightly on the remote side from the bomnd.

Table 2. MOLECULAR ORBITALS OF n, SYMMETRY

Moleculsr (2r0)g | . (2px); | energy (eV) | observed
orbitel | " | energy (eV)
e 0.8145 |  0.4162 -15.969 | -16.578
" 0.631 =0.9k25 7.2:5

ceeean — » o——— . e — . oo v

This no doubt is the major factor in comtributing to the dipole moment of the
molecule. It means also that the molecule is electron-rich in that region and
so 1is likely to be attracted to electrophilic groups. This may facilitate
attachment to other molecules and be a primary step in the formation of
complexes as in the carbonyl compounds.
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Fig. 6. The charge density st points along the nuclear axes for CO and 002.
(The full line curve shows the charge distribution of the outer valence shell

electrons of 002; the dotted line curve shows the charge distribution of the

outer valence shell electrons of CO.)

ELECTRONIC STRUCTURE OF BH( 16)
This calculation presents the SCF LCAO MO treatment of the BH molecule in

" which no spproximations excepting those inherent in the theory have been applied.

Two different treatments, A and B, have been carried out to compute the wave

function, ionization potentials, total energy, binding energy, and the dipole

moment of BH. 1In one of the treatments, called A, the interactions of all the

electrons have been inclnded explicitly. In the second treatment, called B,

the imner shell -= outer shell mixing is neglected but all the orbitals are made

orthogonal to one another and to the inner shells. This is done to f£ind how far
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the neglect of inmer shell == outer shell mixing affects the results of the
caloulation. For if this mixing can be neglected, the eigenvector problem becomes
simpler and the evaluation of some of the integrals is also not required.

The wave functions of the BH molecule, calculated by both the treatments,
are further utilized to calculate the total energy, bindim energy, dipole
moment, and ionisation potentials of the molecule. All the integrals used in
these calculations have been computed at the observed equilibrium intermoclear
separation, 1.2325 A (or 2.329 atmmic ﬁnits) » of BH.

The electron distribution analysis, suggested by Mulliken, has also been
carried ocut t.o.get intimate insight into the distribution of charges around and
between the muclei, and to get such information as the degree of hybridisation,
and the bonding or antibonding nature of MO's.

ATOMIC ORB AND ICAO MO'S OF

The molecular orbitals are built up from the Slater AO's. The notation
b, 8, and s is adopted for the 1s, 2s, and 2p, AO's of boron; h denotes the 1s AO
of hydrogen. The 29: A0 is directed along the intermiclear axis having the boron
nucleus as the origin, and the positive z direction pointing toward the hydrogen
nucleus.

The atomic orbitals on each atom are normalized and mutually orthogonal
except that the nodeless 2s A0 is not orthogonal to 1s. The orthogonal 2s AO
is therefore formed from the 1s and 2s AO's of boron. These normalized AO's are
then orthogonal to all the orbitals of the same atom.

On inserting the necessary integrsls the matrices S and H were determined
for both the treatments, A and B. The elements of the G matrix depend on the
undetermined coefficients a; and contain contributions from all the occupled
orbitals of the closed-shell ground state. For BH, these orbitals are here
denoted by G"' (\" and G':;

Tha aelf-conaistent calculations, A and B, were performed using programs of
Part III. After the self-consistency was obtained the eigenvectors a4 and the



eigenvalues €5 gave the LCAO coefficients and LCAO orbitsl energies which are
given in Table 3 (a) for treatment A and in Table 3 (b) for treatment B.

*
Table 3. (a)

Energy
ICAO MO's valueg in

atomic units

| g3  1.000 U(b) + 0.017 7(s) + 0.006 2(s) - 0.007 1(h) ~7.699 7
o3 =0.048 3(b) + 0.558 3(s) + 0.217 (=) + 0.h81 k(h) -0.646 6
O3 -0.027 6(b) - 0.799 9(s) + 0.552 9(s) + O.LL6 6(b)  -0.3L6 8

Unocoupied orbitals
g~ =0.103 o(b) - 0.906 h(s) - 1.1L5 9(s) + 1.422 2(h) 0.467 1

b e —

(b)

G 1.0 ~7.696 3

G5 =0.037 0(b) + 0.560 6(s) + 0.216 9(=) + 0.479 S(h)  =0.647 7

G3 -0-03h 6(b) ~ 0.799 5(s) + 0.552 5(s) + 0.4k8 5(h)  -0.3u6 8
Unocuupied orbitals

3 =-0.109 6(b) = 0.905 S(s) = 1.1L6 1(s) + 1.k22 3(h) 0.466 7

ot — et ——— —
D —— S

" A11 the MO%s in Tuble 3 (a) and (b) satisfy the orthonormality condition.

i e~ g o e it e eme e et

OF THE DIPOLE OF
The dipole moment was determined by finding the center of the charge for
each molecular orbital using the well-known formula

S = (w. AT/ 2 .
z =~ fvzv /\.,J‘.'a('r (66)
The integrals were evaluated by using the formulas given by Sahniéz The moment

wag actually computed from both the origins. The velue of the moment was found to
be 0.389 au (0.989 D) for each of the treatments, A and B.



Table 4. Comparison of calculated and observed total energies.

Ratio of computed

to observed
Total ene molecular ene ! T
Calculation A =681.8 ev 0.992h 0.76
Calculation B ~68L.7 ev 0.9923 0.77

*
Obgerved value =687.0 ev

THE TOTAL ENFRGY OF THE BH MOLECULE
The total energy was calculated by using the formula

E"'%(Em +HMM)+Z-Z°(Z_B : ’(57)

where E/ is the sum of the orbital energies of the occupied orbitals, and

en

Byp = -1 -
\‘i(’.A Thoron Thydrog

The total energies for both the treatments, A and B, are compaered in Table L.

BIND OF TH M
For the comparison of the observed binding energy with the caloulated one, we
have calculated the energy of the boron atom, using the same Slater AO's as used
for the calculation of the energy value of BH. The total energy for boron was
found to be
| E = -666.l electron volts.
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The caleulated binding energy of the BE' molecule is given for both the calculations

A and B, together with the experimental valune, in Table 5,




TABLE S. Calculated and observed binding energies in
electron volts
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¥nergy Calculation A Calculation B Fxperimentsal
BH -681.8 ev ~681.7 ev
B ~665.); ev -866.4 ev
H ~13.6 ev =13.6 ev
BH-B-H
= binding energy -1.8 ev 1.7 ev -2.6 ev

ELFCTRON DI ON_ANALYSTS
If a normalized MO Y of a diestomic molecule is written as & linear combine-

tion of normalised AO's X, and X, of the two respective atoms k and 1,
¥Y=C X, t+C X (69)
then the atomic population for atoms k and 1 is given by the following equations

respectively: s, -
NC-% +NC_%C0 S:wo (70)
and
!
VG +NGS, g‘* ” (12)

where S__ is the overlap integral f%’—» X AT , N is the number of electrons
in esch MO, Cr and C, are the ICAO coefficients. The overlap population is
given by 2HCC Sy,

The atomic population N(i ,}!;,) thus calculated is given in Table 6.



TABLE 6. AO population N (i,y) in BH

N(i,b) N(1,8) N(i,s) N(1i,h) N(1i)

ay 2.0006 0.0005 0.0000 -0.0011 2.0000
oS 0.0010 0.9252 0.2032 0. 8706 2.0000
0-:3 ~0. 000k 0.8786 0.8686 0.2532 2.0000
subtotals 2.0012 1.8043 1.0718 1.1227 6.0000

S - p hybridization is 9.78%

1
IONIZED AND ¥XCITFD STATES OF N: MOLE'J_QLE( 7

ATOMIC ORBITALS AND I1CAO MO's
For the construction of LCAO MOts of different states of N2 the following

set of Slater AQ's was adopted.

3L -2
lo = (2)* ¢
-2 "

28-(2547)‘&\’\91

2p, =7’ Cas &

R T U O

%px = (E-_;.__) w2 AUn & Con P (72)

- ﬂ | M 3

for nitrogen Z, = 6.7, 22 - 1.95

The atomic orbitals of each atom are nmormalized and mutually orthogonal
to all the orbitals of the same atom. The notation n, s, 5, x, y is adopted
for the nitrogen 1s, 2s, 2pgs 2p,, and apy orbitals with n’, s’, z’, x’, y/ for the
corresponding orbitals of the second nitrogen stam. The 2p, orbitals are directed
along the intermuclear axis with the‘ positive Z=directions towards each other.
SQETRY GRDTTALS
From the 10 atomic orbitals 10 molecular orbitals were formed according to
equation (74). These LCAO MO's were chosen so that they belonged in sets
to irreducible representations of the symmetry group of “2' To obtain the
proper symmetry for these MO's, it waslconvenient to introduce symmetry orbitals.
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The symmetry orbitals of "2 were obtained from the atomic ordbitals by the
following transformation

g=1; (73)
where
g~ represents symmetry orbitals
/’~ represents atomic orbitals
and I 1s a real orthogonal matrix.

The resulting symmetry orbitals and the irreducible representations of

the symmetry group Dh to which they belong are given in Tsble 7. It
)

should be noted that the symmetry orbitals are not normaliszed.

Table 7.
Symmetry Orbitals of NZ
Sz;::zz - og e n, L.
| 6g 18 = 1/2{nen*) K3 1s = 1/2(u=n') | x, 2p=1/2(xex') n 2pel/2(x=x')
d'g‘ 28 = 1/2(sen?’) ' log 28 = 1/2(s-s') R, = 1/2(y+y*) ng 2p=1/2(y=y"')
L og 2p = 2(ses?) |6 %P = 12A(e-st) | |
i i i

There sre three cg, thres c;, twe "y and two ﬁg symmetry orbitals. By taking
linear combinations of these orbitals, a like mmber of molecular orbitals of the
same symmetry was formed. These MO's were related to the symetx-y orbitals o—

by the transformation
. L G_.

(76)
which reduces to
lcgobucg-la+b120§2:+b136é‘2§g
2?-b21§u¢b§2§28+b236é'2pz
30§-b31§184b32§280b33°}-2p!
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and
1o, = = b)), Oy 18 + byo o 28 + D o 2p,
20y = bg), 6y 18 « bge 6 28 + bgg o 2p,
36, = bgy o5 18 + bgg 0 28 ¢ Dgg o 2p,

"u and ug each belong to a one-membered class. The ICAO coefficiente for such
a class are completely determined by the normslisation condition; thus in thq
j)recent case ihe ¥ MO's are uniguely determined.

ETERMINATION OF 1CAO MO

The LCAO MO's of the following states of N2 wvere constructed ‘by assigning
the electrons to the orbitals in the menner given in Table 8.  Using Tables
of Molecular Integrals S, H, and @ matrices were conotmcted Two different
trestments were carried out to obtain the G ﬁtr:lx. In one of the treatments
called the génsralized treatment, the Jpq and qud'“ ﬁ elements of the _
matriz were caloulated using equations (28a) and (28b). In the second tmtnent
celled the restrictod treatment, the g; for the § orditals were tak:: to be 1;(!10"-‘IL p
game as those for the o orbitals to calculate the J ‘vowwl KM’ for
matrix. The LCAO MO's and orbitals energles wers then calculated using program
described in Part III.

Observed equilibrimm

1. Ground State Internuclesr distayces

xlz'; o . 1.094 A

X %; 1.126 A

2.+ :

B3, 1.075 A
30 Evcited States

B 3ng 1.2123 A

c 3% - 1.1482 A
L. Excited States

L ]
a3t 1.293 A

1,%; © (1.28 A)
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OCCUPIED LCAO MO's OF DIFFERENT STATES OF N,

!ggneralized hatmenﬁ}

TABLE 8

l&&¢ 207 36 1oy 267 1ny in, 1n, ng 3o
x x x x x x x
x x o x x x x
x x x x x x x

= x x x - x x
x x x x x x x x
x x - x x x x
x x x x x x x x
x x x x oo x x
x x x x x x x x
x x x x x —-— x
x x x x x x x x
x x x x x x -
x x x x x x x
x x x x x x x
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TOT. OF D STA OF N»

The total emergy for each of the states was calculated by using the equation

Ewl/2 Zﬁ(Em+Bm)+1/2 %(Fmo,nm)»,Z‘_ z_"_z_'Q (75)

2, 25 A3 >0

where O represents the internuclear repulsion.

d*+R A
Enn is the sum of the orbital energles of the orbitals occupied by o

electrons, and

Hnn 'me (“7’: Vm— Z;TM_ 23.:; ) Y’M\AT

T
- n' no ) (76)
2o 51'} 13 Lo 03

Ty and By bave the same meaning for the orbitals ocoupled by (3 electrons,
as B, and Hy, for the orbitals ocoupied by & electrons.

The calculated total energies for the X2z, and B2 ionised states of
N} sre given in Table 9A. The difference between the calculated energies of
the lonised states and that of the ground state x'z_g of N, are given in
Table 9b along with the experimental ionization potentials (reference 18)
and the ionisation energies obtained from the calculation of the ground state
('XGZ‘ g”) of N, Molecule. |

The energy of an excited state is calculated by finding the difference
between the energy of the excited orbitals and the energy of the original
orbital, from which the electron is excited, of the ground state. The
energlies of the excited states Clng, BBng ths calculated, are given in Table 10
along with the experimental values (reference 18) and the energles of Alx,*

and 1’31:,,. are given in Table 11, along with the expeﬁmental values (reference 18).



Table Ga

* 1+ .2+ 24
TOTAL ENE!GIES oF X g X Zg AND B Zu STATES OF N2
e 2z4 2z3
hﬂmotﬁ ‘1080 Sn "1080 8261 ] "108. d‘m
Generalised | .08, «107. ~108.
Treatment 108.571 107.8262 | 108.0507
% In atomic units (1 atomic unit = 27.20h e.v.)
Jable b
IONIZATION POTENTIALS
_E.E?”“nd - "ionie .
v . Calculation from the Evperimental
‘ﬁﬂ
Restricted |[Generaliged ground state wave values
Ireatment Treatment fuynction
2;_: -20.267 e.v.| ~20.267 e.v. -19. 868 e.v. ~18.72 e.v.
2{; =14.399 e.v.| =1h.15h e.v. =11.807 e.v. ~15.602 e.v.
R 1
EXCITATION ENERGIES OF C’nm, and B3ng STATES OF N2
Calculations from the '
wave function of Experimental
CBuu and BBng States values

(Generalized) | (Restricted)

3ny 10.958 e.v. 10.976 e.v. 11.049 e.v.

3,! 703“ @eVe ! 10131 Q.V. 7.3% Qe Ve




Table 11

EXCITATION ENERGIES

4o

Experimental

Calculations from the
wave function of , valnes
83t ana 13z states
Generelised Restrioted
3y '; 6.953 °'?'_ 7.056}_0.7. 6.223 e.v.
1,35, 8.150 s.v. 8.255 e.v.

7.437 e.v.

The results.of the above calculation of the different states of N, show

2

that the LCAO MO method gives the results of the same order of aceurscy for

the excited and iomised states as that for the ground state of molecules.

It is further appsrent from the caloulations that both the generaliszed and

restricted treatments give nearly the same results for both the ionised and

exoited states. Since the calculations have been carried out for both

g“and u states, it appears the method holds fgr the atates (ground, ioniged and

excited states) of molecules which can be represented by a single @eteminant.

This is the first caloulation where the quantim mechanicsl treatment of ionised

and excited mm has been carried out without using any approximations, within
the rigorous framework of the LCAO SCF MO theory. It is hoped that this calcula~

tion will form the basis of the much needed work on the ionised and excited

states of molecules.



PART V.

SOME SPECIAL PROBLEMS IN
MOLECULAR QUANTUM MECHANICS

b1

Theoretical study is being carried out by R. C. Sahni and collsborators
dealing with the various problems involving molecular wave functions that arise
in determining the properties of air at high temperatures. The specific
problems and computations which are now being tackled by the group are with a

view to studying the following:
1. Transport Properties of air to 12000%K.

(Of immediate interest is

the tempersture range 3000%K to 8000°%K.) Calculations will include the

various excited states including possible quadrupole moments.

The mportant diastomic molecules involved are N2 » 02, NO inoluding

ions and low~lying excited states.

molecules N02 »

NZO, and 03.

Of some interest are the triatomic

The transport properties referred to here are diffusion, viscosity,
thermal conductivity, and thermal diffusion.

2. Rate Processes. How fast does a non-equilibrium mixture approach

equilibrium

b.

Ce

d.

Exchange processes
8.8 Na +0=R0+ N

Displacement reattions

- 2% 4} Nz ] q"‘ = 2m
Ionization reactions ‘

e.g. NO+X = NO+ esX
Excitation reactions

0.g. NO+ X = NO© aX




hzr

(0f particular interest is the rate at which the NO 6 ~bands are filled.)

e. Dissociation rates: rates of transfer
of rotational, vibrationasl, and electronic

energies.

3. ectron-Mo le Reaction

b.
C.
d.

Flastic scattering - scattering from ground, excited, a&nd ionie
molecular states.

Inelastic scat.tering.

Ionization reactious.

Coulomb scattering.

The reaction NO* + ¢ = N+0 is of importance in determining

whether the electrons are in equilibrium with the rest of the
plasma.

k. Radiation. Of primary interest is radiation fromf , Y end S bands

of NO and from excited states of Nz. To estimate the trensition pro- '
babilities sccurately the potential curves for the various excited
and ground states are needed.

s. Non-gir Moleculeg. Some of these are C,, CN, CH, OH, and variocus

6.

metallic oxides.
ta tential c .

The potential energy curves of different states of a number of
molecules will be computed by calculating electronic wave functions
and their energy values at a mumber of intermuclear distances (R)
and drawing the curve with the electronk energy E(-R) as the ordinate
and intermuclear distance (R) as the asbacissa.




. APPRNDIX I

THE DIAGONALISATION OF MATRICES

The iteration-rotation method for the diagonalisation of a metrix is based

on the fact, that by an orthogonal transformation from variables x, y to
variables x*', y', which can be described in the forms

x? cos 8 sin 8 x

v -[- sin & cos & y (m
One can express the quadratic form

ax2 + 2hxy + byZ = 0 (78)
as a sum of squares

M2evyl =0 (79)

© is chosen such that

tan 2 = 2h (a - b)-l (80)

where h is the largest off-~diagonal element, a and b being the
corresponding diagonal elements.
For example, if one takes the matrix,

Ae[ 2.8m 0. 81 -0c3h8 0.506 |
«-0.%1 3.369 -0,111 0.380
=0.148 -0.111 . 1.26 «=0. h0
hs= -0.&1.
tan 29 - 20855 - 3-3%5’
cos 8 3in 6 0 0
and T =| -s5in & cos © 0 0
\: 0 0 1 0
0 0 0 1l

then the element in T;]'A T, (=h,) corresponding to ~0.8i1 will be sero.

L3



The matrix, Al, thus obtained, is again subjected to a similar
operation '1‘;1 A T? for its largest off-diagonsl element h.
When all the off-diagonal elements are reduced to sero, or to negligibly

small values, the final matrix will take the following form

-} — —
TY An-l TY - 3.005 0.0 0.0 0.0
0.0 ). 000 0.0 0.0
0.0 0.0 1.005 0.0
8.0 0.0 0.0 1.990
 — a—

suggesting that the characteristic roots, which are invariant under the above
orthogonal transformations are approximately }.00S, k.000, 1.005 and 1.990.




APPENDIX 11
EQUIVALENT FORMS OF MO EQUATIONS

The molecular orbital equations

E-€8)g =0 (81)

can be obtained in the following equivalent forms,
(F - €8) 8, (82)
~@E@-€eTlLT g (83)
wtTl(rr1Tl- 1) T (84)

-rl14 (L.}*T Frl 1'% - ¢ I) 15T (85)
where L and I are the diagonal and unitary matrices.
Bquations (83) are obtained from equations (82) by replacing S by its
equivalent |
| sETiLT (86)
where L is the diagonal matrix obtained from S by the iteration-
rotation process described in appendix I.
The matrix B (= L-%-' TF ‘1"'1_L"‘s - €I): of equations (85) is also
diagonalized by the iteration-rotation process using the tranasformetion
ylBy =B (87)
The elements of the diagonal matrix_ B, thus obtained, will give the
jonization potentials (refer to appendix I) while the vectors
L-’;.' TY

give the coefficients for the ICAO MO's.

ks
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