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ABSTRACT 

Radiative heat transfer to the propellant and reactor 

cri t icali ty for a f iss ionable  gaseous rocket engine are  

analyzed to determine their interdependence. The necess i ty  

for propellant t h i cknesses  of approximately 1-3 m due to 

poor thermal absorption properties of hydrogen significantly 

affects reactor cri t ical  radius and mass.  The two primary 

adverse effects are: (1) increased absorption i n  the 

reflector- moderator for a given reflector th ickness  and 

(2) poor utilization of thermal neutrons by the core due to 

the lower geometrical view factor of the core for the 
reflector walls. In fact ,  there is a minimum core radius at 

a particular propellant thickness which allows the system 

to “go” crit ical .  

Engine performance i s  limited primarily to two 

regions of operation: the first, a specif ic  impulse of 

approximately 1550 sec a t  a thrust level  of 2 x lo6 lb and 

second, a specif ic  impulse of approximately 2200 sec a t  a 

thrust level of 5.3 x lo6 lb.  

I .  THERMAL ANALYSIS 

I The utilization of a high-temperature gaseous fission reactor as a source of energy for nuclear rocket 

propulsion i s  based on the direct interchange of energy between the fissionable material and the propellant. 

In the case of the plasma core reactor (Ref. 1) and the coaxial flow reactor (Ref. 2), the principal mechanism 

of interchange is  due to thermal radiation from fuel to propellant. (Although not described in the Report, i t  is 

1 
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relatively easy to show that convective exchange of energy from plasma to propellant is less  than 1% of the 

radiative mechanism and fission-fragment heating less  than 5%) In order to effect this interchange, and 

thereby heat the propellant to a high temperature, the opacity of the propellant must be sufficiently high to 

absorb the thermal radiation emitted by the fissionable material. 

The propellant temperature a t  injection into the cavity region i s  limited by the maximum operating 

temperature of the reflector-moderator (henceforth to be referred to simply a s  the reflector). The discussion 

wil l  be limited to a graphite reflector, with a peak operating temperature of 2500'K. T h e  maximum obtainable 

propellant temperature i s  restricted by the fact that part of the fission energy i s  deposited directly in the 

graphite a s  neutron and gamma heating. This energy, and, in addition, any thermal energy reaching the 

reflector, must be absorbed by the propellant prior to injection into the cavity (Ref. 3). 

The principal difficulty in the transfer of energy from core (plasma) to propellant is the high 

transparency of the propellant, hydrogen, for thermal radiation in the temperature range 2500- 8000OK.  

Figure 1 shows the emissivity per unit length of hydrogen versus temperature, as calculated from the data 

of Olfe (Ref. 4) for a pressure of 30 atm. 

'E 
V 

$- 

TEMPERATURE, O K  

2 

Fig. 1. Emissivity per unit length of 
hydrogen vs temperature 
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~ 

In order to heat the hydrogen by thermal radiation, it must be seeded by s o m e  solid material over at 
I least a portion of this temperature range to increase ita apparent absorptivity. In the following analysis, 

tantalum carbide in particulate form w a s  assumed to be added t o  the hydrogen. 'Zhe weight-percent TaC in 
I 
I , the hydrogen is restricted to 2%, based on the maximum hydrogen temperature in the cavity, so that it does 

not appreciably affect the specific impulse of the engine. 

I The primary objectives of the thermal analysis are to obtain: 

1. The thickness of propellant necessary to heat the hydrogen from the wall temperature 

to its maximum chamber temperature. 

2. The maximum obtainable propellant temperature (specific impulse) a s  a function of 

flow rate. 

3. The steady-state temperature profile in the propellant for various plasma temperatures 

and radii. 

I The above objectives are attained by requiring the enthalpy rise in the cavity to be consistent with 

the rise in the reflector. i 
In order to perform the analyeis, certain simplifying assumptions have been made: 

1. The plasma radiates a t  an average temperature T a s  a black body. 

2. The wall radiates as a black body at T, = 25000K. 

P 

3. The plasma, propellant, and wall are concentric spheres. 

4. Hydrogen i s  a gray gas and opaque to all wavelengths when seeded. 

5. The seeding agent is effective to its sublimation temperature but does not affect the 

absorptivity above this temperature. 

6. The seeding agent considered, TaC, sublimes at  58000K and has thermal absorption 

properties similar to graphite to this temperature. 

7. The hydrogen enters the chamber radially, and the total path length to heat it to the 

maximum chamber temperature is the inner reflector radius minus the core radius, 

R , -  R c .  

3 
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8. Direct heating of the propellant by fission fragments and convective heat transfer can 

be neglected ( <  6%). 

9. Engine performance is based on a 20:l expansion ratio of the nozzle. 

Using assumption 8, the net heat input to the nth zone of hydrogen, n running from 1 a t  the reflector 

to N a t  the plasma surface (Fig. 2), is given by 

It is required that the net heat input to the nth zone be sufficient to heat it  from Tn,l to T,. Thus, 



I 
I JPL Technical Report No. 32-189 

I I 

Fig. 2. Schematic  indicat ing hydrogen zones 
u s e d  in thermal a n a l y s i s  

I I FISSIONABLE MATERIAL REFLECTOR 

Further, the enthalpy r i s e  in t h e  propel lant  prior to inject ion into the cavi ty  is determined by the  

I total  h e a t  reaching  the ref lector  as nuclear  and thermal heating: 

zip ( H  - H l )  = d A H r  = [ " + St.] Q 
T r  P 1 - 6, (3) 

and the to ta l  enthalpy r i s e  i n  t h e  cavi ty  must  equal  the  total thermal energy emit ted by the plasma,  minus 

the  contribution which reaches the wall. Then,  
~ 

N 
zip ( H  - H  ) = d A H  = 1 zip A H n  = ( l - l j t h )  Q T~ T r  P P . C  

I 
Combination of E q s .  (3) a n d  (4) yie lds  

(4) 

5 
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Since  the al lowable enthalpy r i s e  in the w a l l s  a n d  6 ,  are  fixed, there i s  a maximum enthalpy r i s e  

of the propellant in  the cavity for a,, = 0 which l imi t s  the peak propel lant  temperature (Tp)max. For any 

a,,, > 0, the  maximum obtainable  propel lant  temperature i s  l e s s  than t h i s  value. 

In most c a s e s  of interest ,  the energy emitted direct ly  by t h e  plasma a n d  a t tenuated  within the 

propellant is the dominant h e a t  source for each layer; i .e . ,  T: >> T f .  T h i s  a l lows  o n e  to neglec t  radiat ive 

t ransfer  from one zone t o  another within the  propellant and  from the  reflector to the  propellant, thus  s im- 

plifying tremendously the  calculat ional  procedure. Even when the plasma temperature is only twice  the 

maximum propellant temperature, emission from the  Nth zone of hydrogen i s  unimportant. 

U s i n g  assumptions 1, 2, 3, 4, a n d  5 and the resu l t  from t h e  preceding paragraph, 

Equation (6) provides  a conservat ive es t imate  of the  hea t ing  for each zone, thus  giving the  maximum 

th ickness  required. In order to  determine t h e  th ickness  of e a c h  zone,  subs t i tu te  Eq. (2) into (6) and  e x p r e s s  - - 
T 

as ( E / L )  n(Ar)n.  Then,  Eq. (6) becomes 

(7) 1 

- (f) Arn u-Am F," 

Solution to this equation can  be  obtained by a procedure which is demonstrated in  Appendix A. 

Since the energy input  to layer  n is dependent  on the  t ransmission propert ies  of other  l a y e r s  nearer  the 

plasma,  t h e  calculation begins  for n = N and cont inues toward the wall. In th i s  way, the at tenuat ion from 

previous layers  is automatically taken into account .  

This procedure may be ut i l ized for propel lant  temperatures  above  the sublimation temperature of the 

seeding  agent  and, in f a c t ,  may be  ut i l ized to obtain the  total  absorptivity required in  the zone; i.e., the zone 

in which the propellant i s  hea ted  from the  wal l  temperature to the sublimation temperature of the s e e d i n g  agent .  

6 
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I In this case, we have 

I Then, 

ri, AH, P al = 

Q1 

The procedure to obtain A r1 is that given by Barre (Ref. S), coupled with assumption 6. 

Now, 

Q r  
( 1 - a )  = - 

Q1 
1 

~ and, from Ref. 5, 
I 

cc 
Q1 

Q r  

h-= 

From the assumption that the plasma radiates as a black body, Wien’s Law gives 

0.293 x = -  

T c  
T C  

The plot of log p/(rr:NS) versus log rS/h  (Fig. 4 of Ref. 5) gives a relation of the form 
T C  

p = K ~ r :  N, 

where K may be evaluated (from this  figure) for a given rs/h . 
Tc 

7 
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Combining Eqs. (11) and (12) and solving for N,, 

Q r  

The mass of a TaC particle is 

It is obvious that A r1 can be made as smal l  as we wish by simply increasing N , .  But i t  has  been 

assumed that the weight fraction of TaC should be only 2%. Then, 

Substituting Eqs. (15) and (16) into (14) and solving for A T , ,  

67 f s  Q1 

Qr f P  

In - T s  - A T ,  = - 
K 

This provides the f inal  increment in A r. The sum of the A r gives the total hydrogen thickness, or, from 

assumption 7, the difference between the reflector and core radii: 

N 
rr - tC = 1 AT,, 

n=l  

(17) 

Since U, Q1 is known from Eq. (8), the actual fraction of thermal energy reaching the wall, (ath) , 
a 

can be calculated. 

(18) 

8 
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~ To obtain a solution for a particular flow rate and maximum hydrogen temperature, the value of 
I 

(ath), must be consistent with a,,, calculated from Eq. (5)  for a given ratio of AH 

obtaining the correct hydrogen thickness and maximum propellant temperature for a given flow rate is 

/ A H r .  The method of 
P . C  

~ 

demonstrated in Fig. 3 (for details see Appendix A) by a graphical procedure for T, = 30,00O"K, 

z i  = 1.36 x IO6 g/sec, and rc = 100 cm. The required hydrogen thickness (rr - re) is 292 cm, and the hydrogen I P 
I has a peak temperature of 10,80@K, which corresponds to an engine specific impulse of 1900 s e c  for a 20:l 

I 
expansion ratio of the nozzle (Ref. 6). 

HYDROGEN THICKNESS. cm 

0.05 

0.04 

0.03 

0.02 

0.01 

0 

Fig. 3. Graphical determination of maximum 
hydrogen temperature and hydrogen thickness 

9400 10,200 1l.OOo 11.800 12.600 
MAXIMUM HYDROGEN TEMPERATURE T,.*K 

A similar procedure was used to obtain the curve in Fig. 4, which presents the engine specific 

impulse a s  a function of required hydrogen thickness. This curve is valid for any plasma radius, as shown 

in Appendix A, and to calculational accuracy is independent of core temperature above 20,OWK. Of course, 

the flow rate necessary to cool the engine depends on the plasma temperature and radius. 

The significant feature of Fig. 4 is the appreciable thickness of hydrogen necessary to heat the 

propellant from 5 8 W K  to 8000°K. This exemplifies the very poor thermal radiative-absorption characteristics 

of hydrogen. In fact, a similar analysis using graphite as the seeding agent requires thicknesses of 

approximately 300 m to heat the hydrogen from the graphite sublimation temperature (4000OK) to 5000OK. 

This may prohibit seeding with graphite in the high-temperature application of this system. 

9 
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Fig .  4. Engine spec i f ic  impulse 
v s  required hydrogen th ickness  

REQUIRED HYDROGEN THICKNESS, cm 

From the r e s u l t s  shown in F ig .  4, i t  appears  that  engine performance wi l l  be  limited to two reg ions  

of operation; namely,(l) spec i f ic  impulse below 1500 s e c ,  with approximately 20 cm of hydrogen or (2) a 

spec i f ic  impulse in  the range of 2000-2500 s e c ,  with hydrogen t h i c k n e s s e s  of approximately 300 cm. T h e  

reflection of this resu l t  on cr i t ical  m a s s  and radius  will be considered in t h e  second par t  of t h i s  Report. 

T h e  effect  on over-all engine and sys tem performance wil l  b e  the  s u b j e c t  of a la te r  Report  by the  author. 

Figure 5 shows the s teady-s ta te  temperature distribution i n  the hydrogen for a flow r a t e  of 3000 

lb /sec  and a specif ic  impulse of 1900 sec. As would b e  expected,  it  has  a form similar  to tha t  in  F ig .  4 

and rei terates  the difficulty of hea t ing  hydrogen from 5800 to 8000'K. 

0 80 160 240 320 
DISTANCE IN HYDROGEN FROM REFLECTOR SURFACE, cm 

Fig .  5. Steady-state  temperature profile 
in  hydrogen 
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NOMENCLATURE 

(Port I and Appendix A) 

A thermal-energy emittance area, cm2 

A average emittance area, cm 

F 

2 - 

view factor F , ,  = fraction of radiation emitted by area one, intercepted 
directly by area two 

H enthalpy, cal/g 

K arbitrary constant, dimensionless 

L diffusion length, cm 

rn particle mass ,  g 

N particle concentration, particles/cm3 

Q heat input, cal/sec 

r radius, cm 

T temperature, O K  

- 
T 

lil 
P 

U 

AH 

Ar 

SN 

' th 

E 

x 
c" 

P 

5 

average temperature, O K  

propellant flow rate, g/sec 

thermal-radiation absorptivity 

enthalpy change, cal/lb 

radial-distance increment, cm 

nuclear-radiation fraction of fission energy (gamma and neutron energy) 

fraction of radiated energy reaching reflector 

thermal-radiation emissivity 

wavelength a t  peak of black-body radiation curve, cm 

absorption coefficient per unit length of seed material, cm-' 

density, g/cm3 

Stefan Boltzmann constant = 1.365 x lo-'' cal/sec cm2 

11 
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NOMENCLATURE (Con t 'd) 

Subscripts 

a 

C 

1 

max 

N 

n 

net 

P 

P7C 

r 

S 

TN 

actual value from calculation 

core 

hydrogen in the liquid state a t  20°K 

maximum value 

Nth (maximum-temperature) zone of hydrogen 

nth zone of hydrogen (1 5 n 5 N) 

net value 

prop ellan t (hydrogen) 

propellant in cavity 

reflector and radius to inner reflector surface 

seed material (tantalum carbide) 

evaluated a t  peak reflector temperature 

evaluated a t  maximum hydrogen temperature 

Superecript 

T property evaluated a t  appropriate temperature (e.@;., Tn, T,, etc.) 

12 
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II. CRITICALITY ANALYSIS 

The results of the preceding analysis indicate that substantial thicknesses of hydrogen are required 

to absorb the thermal energy emanating from the core. Reflection of this effect on criticality is the subject 

of Part  11. 

The criticality of a cavity reactor system has been treated by Safonov (Ref. 7) for the moderator 

and fuel a t  room temperature. This technique was utilized in Ref. 1 to determine critical concentration 

versus core radius for a high-temperature (2000OK) moderator. However, in both analyses, contact of the 

core and reflector surfaces was assumed; i.e., rc = rr.  

This analysis investigates the effect of an intervening void (the propellant) on reactor criticality. 

The reactor i s  composed of three regions, as shown in Fig. 6. The three regions are core, pure fissionable 

material, the void (space occupied by the propellant), and the reflector-moderator (graphite). 

REGION I REGION III 
FISSIONABLE REFLECTOR- 
MATERIAL MODERATOR 

Fig. 6. The three regions of a gaseous 
core reactor 

Two-group diffusion theory is utilized to determine the fast and thermal flux distributions in the 

reflector, subject to  continuity of fast and slow currents at the inner reflector surface and an extrapolated 

flux boundary condition a t  the exterior moderator surface on the fast  and slow fluxes. 

13 



I P L  Technical Report No. 32-789 

The reactor cr i t ical i ty  thus  r e s o l v e s  i t se l f  into a two-group, single-region problem with the  u s e  of  

appropriate boundary condi t ions . 

T h e  following simplifying assumpt ions  have  been made in  the  ana lys i s :  

1. Diffusion theory i s  appl icable  to the  reflector. ( T h i s  approximation should be  appl icable  

for reflector t h i c k n e s s e s  2 1 m.) 

2. T h e  reflector h a s  a uniform temperature of 2500'K. Its microscopic-absorption c r o s s  

sect ion has  i t s  room-temperature va lue  (for conservatism). 

3. The flow of neutrons toward the  core a t  t h e  inner  ref lector  sur face  h a s  a cos ine  

distribution peaked in  t h e  forward direct ion.  

4. The intervening layer  of propellant i s  t reated as a void (a  good assumption,  s i n c e  the 

transport mean free path in  hydrogen a t  30 atm is approximately 60 m). 

5. The  core proper d o e s  not  s c a t t e r  neutrons; i t  simply absorbs  thermal neutrons. 

6. The reactor  h a s  spher ica l  symmetry. 

7. The extrapolation d i s t a n c e  i s  the s a m e  for fast or thermal neutrons leaving the  reflector. 

The two-group diffusion equat ions  which must  be  so lved  i n  the ref lector  are: 

The f a s t  f lux equation is homogeneous a n d  may be so lved  direct ly .  

where 

14 
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I where 

yields 

Application of the extrapolation-length boundary condition a t  the exterior of the reflector 

= o  r = r + a  41 ,r 

C sinh K l , r  (rr + a - r)  
- - 

41 ,r r 

where 

C l  e = -  
cosh K l , r  (rr + a) 

(24) 

(27) 

The second boundary condition on $l,r i s  dependent on the number of fast neutrons/sec entering the 

reflector from the core. The fast-neutron current entering the reflector is, of course, dependent on the average 

thermal-neutron flux in the core, which, in turn, depends on the net thermal-neutron current into the core from 

the reflector. This  neutron balance provides the basis for obtaining a critical reactor equation and the 

attendant flux distributions in the reflector. 

The number of neutrons produced per second in the core is 

and the net current density a t  the surface of the core is 

15 
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From continuity of current, t h e  current densi ty  at the  inner  sur face  of the reflector m u s t  be  I 

The net number of thermal neutrons absorbed per second in  t h e  core is 

and the required thermal-neutron surface-current densi ty  inward is 

A c  

From continuity of current 

L 

r A 
rr 

or 

(35) 

Equation (35) represents  the second boundary condition on 6 which must  be  sa t i s f ied .  Since the 

thermal-flux distribution in t h e  reflector i s  unknown, we must  delay t h e  final solut ion to  Eq.  (26). 
1 ,r  

16 
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The solution of Eq. (21) involves the sum of a complementary and particular integral. Substituting 

Eq. (26) into (211, 

The complementary solution of Eq. (36), after applying the extrapolation-distance boundary condition 

and assumption 7, has  the form of Eq. (26): 

where 

- = 2 , r  q r  - - 
’ 2 , r  

The particular integral may be obtained by the method of undetermined coefficient. The general 

solution i s  then 

B sinh K2,r (rr + a - r) C sinh Kl ,r  (rr + a - r)  D 2 , r  
’ z , r  

T r 
(39) 

In order to evaluate the two arbitrary constants, an additional relationship to Eq. (35) is required. 

As mentioned previously, the reflector supplies the thermal neutrons which are absorbed i n  the core. However 

the core does not absorb all thermal neutrons entering the cavity, (1) because of the relative geometry of core 

and reflector and (2) because the core i s  not necessarily completely “opaque” to thermal neutrons. Thus, 

in general, there i s  a probability of capture in  the core which is l e s s  than one. Let  this probability be P. 

Those thermal neutrons which are not absorbed by the core make up the outgoing thermal current a t  the wall. 

17 
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I T h i s  i s  t h e  only thermal current outward a t  t h e  wall, s i n c e  i t  ha s  been assumed that  no thermal neutrons a r e  

born or a r i s e  in the core. Mathematically, t h i s  may be  s t a t e d  by 

I 

and 

or 

Equation (42) i s  the second boundary condition to  be u s e d  in evaluat ing one  of the remaining 

arbitrary constants  and obtaining a cr i t ical  condition. T h e  s e c o n d  arbitrary constant  is, of course ,  se t  by the 

reactor  power level. Application of Eqs .  (35) and (42) to Eqs .  (26) and (39) is made i n  Appendix B. T h e  

ut i l izat ion of these two condi t ions a l lows  one to obtain a n  expl ic i t  form for the  probability P, independent  

of t h e  fuel  concentration in the  core. From Appendix B, Eq. (B-15), 

1 + K2,r rr coth K2,r a - 
P =  

Let u s  c a l l  t h i s  P t h e  geometric probability P in analogy to the geometric buckling. T h i s  probability 
g’ 

must  be equal  to the  “material” probability Pm, which is dependent  on the  probability of capture  in the core. 

Thus,  the  critical condition for such  a sys tem h a s  the  form 

P = Pm 
g 

(44) 
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I As yet, the form of Pm has not been stipulated; however, it must depend on the ability of the core to 

capture thermal neutrons. Now, from assumption 5, the Probability of penetrating the core along any path is 

l and the probability of capture is 

The path length traveled by a particular neutron penetrating the core is dependent on the relative 

orientation of the reflector wall and core, as shown in Fig. 7. From geometry, 

But, 

I ,  = 1 + 1, = re COS p + r r  COS 0 P 

p = 1800 - 

IC(@ = I ,  - 1 = -  2rc cos a P 

and 

(49) 

(50) 

(51) 

19 
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Equation (51) is valid to s i n  emax, which i s  given by 

sin Bmax = - 
rr 

Fig. 7. Geometric path length of neutron 
penetrating the core 

Equation (51) gives the desired form for the neutron path length a s  a function of 8, the angle of 

departure from the vertical a t  the wall. The distribution of neutrons leaving the wall is assumed to be a 

cosine, peaked in the forward direction (assumption 3). Then, the total probability of capture in the core 

P m 7  after appropriate normalization, is 

( 53) 

since 

20 

~- 
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The integration of Eq. (54) i s  carried out in Appendix C. The final form for P,(Eq. C-9) i s  

Solution of Eq. (56) consistent with Eq. (43) determines the critical concentration in the core. 
I 

I Once the critical concentration has been detennined for a given configuration, the flux distribution 

in the reflector can be determined as a function of the average thermal flux in the core. This is carried out 

, in Appendix D, and the results are given below: 

T 

1 ( 58) 

__ 
1 sinh K l , r  (rr -+ a - r )  ’2,r 

J 
The critical concentration of plutonium as a function of rc/rr and core radius for reflector thicknesses 

of WH) and 200 cm i s  given in Figs. 8 and 9. The nuclear constants used in this analysis are tabulated in 

Appendix E. For comparison, data from Ref. 1, based on the analysis of Safonov (Ref. 7) are given in Fig. 8 

for a reflector thickness of 100 cm and rc/rr  = 1.0. The two-group theory is within 20% of the more sophisticat- 

ed theory in all cases, thus substantiating i t s  applicability. The most important result i s  the sharp increase 

in critical concentration required for ratios of rc/rr < 0.5. This effect arises principally from the fact that even 

though the core is opaque to thermal neutrons, it  is very difficult for them to “find” the core. 
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Fig. 9. Critical fuel concentration vs 
rc/rr for T = 200 cm 

I0lS 

IO" 

IO" 

Fig. 8. Critical fuel concentration vs  
rc/rr  for T = 100 cm 

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 

Comparison of Figs. 8 and 9 shows the effect of reflector thickness on reactor criticality. The critical 

concentration decreases somewhat with the thicker reflector; however, the asymptotic value of rc/rr  does not 

change appreciably. For reflector thicknesses greater than 200 cm, there i s  effectively no reduction in critical 

concentration. This arises from the fact that although the leakage decreases, the capture within the graphite 

is increasing. 
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Figures 10 and 11 show the critical masses associated with Figs. 8 and 9, respectively. Of course, 

the critical m a s s  depends on the reflector thickness in the same way a s  the critical concentration. From a 

criticality standpoint, the 200-cm-thick reflector i s  desirable; however, the reflector weight is twice a s  great 

a s  that of the 100-cm one. 

IO' 

100 

I 

Fig. 11. 

I I 

0.8 09 1.0 I 4 0.5 OS 01 

Tc/G 

u) a 
f a 

Critical mass vs r,/r, for T = 200 cm 

Fig. 10. Critical mass vs rJrr for T = 100 cm 

I o2 

IO' 

100 
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Typical fast- and thermal-flux distributions are shown in Figs .  12- 14. The sharp peaking of the 

thermal-neutron flux near the interior wall is characteristic of the externally moderated reactors. 

Fig.  12. Flux distribution in reflector 
(rc = 300 cm, rr = 500 cm, T = 100 crn) 

2.4 

2.0 

1.6 

b N 

'IC 1.2 

0.8 

0.4 

C 

Fig. 13. Flux distribution in reflector 
(rc = 300 cm, rr = 600 cm, T = 100 cm) 
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Fig. 14. Flux distribution in reflector 
(r, = 300 cm, rr = 600 cm, T = 200 cm) 

Comparison of Figs. 12 and 13 shows the effect of a larger hydrogen thickness on the reflector flux 

distribution as rc /rr  increases. Since i t  i s  more difficult for the thermal neutrons to “find” the core with the 

thicker hydrogen zone, the thermal-flux peaking in the reflector is more pronounced. 

Comparison of Figs. 13 and 14 indicates the effect of increasing the reflector thickness. The fast-flux 

distributions do not change appreciably,but the peaking of the thermal flux i s  l e s s  pronounced for the thicker 

reflector. This i s ,  of course, due to the lower neutron leakage in this case. 
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NOMENCLATURE 

(Part I I  and Appendixes B, C, D, and E) 

2 sur face  a r e a ,  cm 

reflector th ickness  p l u s  extrapolation d is tance ,  cm 

arbitrary constant ,  neutrons/cm s e c  

arbitrary cons tan ts ,  neutrons/cm s e c  

diffusion coefficient, cm 

number of neutrons produced, neutrons/sec 

neutron current densi ty ,  neutrons/crn2 s e c  

neutron path length, cm 

part ic le  concentration, particles/cm 

probability of capture  

radial  coordinate, cm 

ref lector  th ickness ,  crn 

3 

volume, cm 3 

dimensionless  parameter 

probability of penetrat ing core 

exterior angle  in Fig. 8 re lated to 0 ,  rad 

interior angle  in F i g .  8 re la ted  to 8, rad 

number of neutrons produced per absorption 

angle  from loca l  ver t ical  to direction of motion of the  neutron, rad 

inverse  diffusion length,  cm-' 

mean free path, cm 

average  number of neutrons produced per  f i ss ion  

d imens ionless  parameter 

macroscopic  c r o s s  sec t ion  in  core, cm -1 
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Subscripts 

cr macroscopic removal cross section in reflector, cm-l 

u microscopic cross section, barns 

4 neutron flux, neutrons/crn' sec  

7 neutron age, cm 2 

V2 Laplacian operator in spherical coordinates, cm -2 

a 

C 

f 

m 

max 

tr 

1 

2 

absorption 

core 

fission 

geometric 

material 

maximum value 

propellant 

reflector and radius to inner reflector surface 

total 

transport property 

fast neutrons 

thermal neutrons 

Superscripts 

net net value 

r reflector 

+ directed outward 

- directed inward 

29 plutonium 239 

I 
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111. SUPERPOSITION OF RESULTS FROM PARTS I AND II 

The effect of superimposing the restrictions imposed i n  Parts I and I1 are now considered. Basically, 

the thermal analysis specifies the thickness of hydrogen required to heat the propellant to a certain tem- 

perature. This, in turn, determines the operating-engine specific impulse. The criticality analysis, on the 

other hand, indicates the ratio of core to inner reflector radius necessary to obtain a critical system for a 

particular core radius. Both analyses, therefore, are dependent on the thickness of hydrogen, which i s  the 

required link between the solutions. 

If the asymptotic value of core-to-wall radius i s  assumed for a particular core radius, the maximum 

achievable specific impulse for the system can be determined (Fig. 15). The cross-hatched region to the 

right of the curve indicates the theoretical operating conditions for the engine, assuming a reflector thickness 

of 100 cm. For example, to achieve an engine specific impulse of 2000 sec, the core radius must be a t  least 

220 cm. Since the reflector weight increases for a given thickness of propellant as the core radius increases, 

operation a s  near the limiting curve a s  possible is desirable from a performance standpoint. 

2300 
T=lOO cm 

I 

Fig. 15. Maximum achievable engine specific 
impulse based on thermal and criticality 

constraints ( T ,  2 20,000'K) 

b o  140 180 220 260 300 340 

CORE RADIUS, cm 
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A s  the asymptotic ratio of core to inner reflector radius was assumed in  Fig. 15, the required 

critical m a s s  is infinite for all cases  falling on the curve. Practical operation, therefore, requires a core 

radius which lies within the cross-hatched region. 

Figure 16 presents the engine thrust as a function of core radius and core temperature. The core 

temperature i s  limited to a value greater than 20 ,WK,  because this was the applicable region for the 

simplified thermal analysis. Although operation at lower core temperatures is possible, a loss  in engine 

specific impulse and performance will occur. Preliminary weight estimates also indicate that for lower 

thrust levels, the engine thrust-to-weight ratio is l e s s  than 1.0. 

100 180 260 340 

Fig. 16. Achievable engine thrust based on 
thermal and cri ti Cali ty constraints 

(T, 2 20,0000K) 

CORE RADIUS, cm 

A s  was stated in Ref. 1, the minimum engine thrust level is approximately lo6 lb, and higher values 

are easily attained by increasing the core temperature. The achievable thrust, thus, lies above the curve 

shown for T, = 2 0 , W K  for near-maximum performance. 

A s  examples of engine characteristics, a specific impulse of approximately 1550 sec at an engine 

thrust of 2 x IO6 lb, or a specific impulse of approximately 2200 s e c  a t  a thrust of 5.3 x IO6 lb,is achievable. 

The performance of vehicle systems with these characteristics, including weight breakdowns, will be the 

subject of a subsequent Report by the author. 

29 



IPL Technical Report No. 32-189 

ACKNOWLEDGEMENT 

The author i s  grateful to Dr. Clifford J. Heindl of  

the JPL Physics  Section for helpful discussions regarding 

the criticality problem and to Mrs. Carolyn Level,  who per- 

formed the numerical calculations in Part 11. 



JPL Technical Report No. 32-189 

REFERENCES 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

Spencer, D. F., The Plasma Core Reactor, Technical Report No. 32-104, Jet Propulsion Laboratory, 

Pasadena, California, April 24, 1961. 

Weinstein, H. and Ragsdale, R. G., A Coaxial Flow Reactor-A Gaseous Nuclear-Rocket Concept, 

Lewis Research Center. Presented at the ARS 15th Annual Meeting, Shoreham Hotel, Washington, D. C., 

Dec. 5-8, 1960. 

Meghreblian, R. V., Gaseous Fission Reactor for Spacecraft Propulsion, Technical Report No. 32-42, 

Jet Propulsion Laboratory, Pasadena, California, July 6, 1960. 

Olfe, D., Equilibrium Emissivity Calculations for a Hydrogen Plasma at Temperatures up to l O , O W K ,  

Technical Report No. 33, Guggenheim Aeronautical Laboratory, California Institute of Technology, 

Pasadena, California, May, 1%O. 

Barre, J. J., Essai de Contribution 

Astronautical Congress, Barcelona, 1957. 

I’Autopropulsion Nuclkaire, Presented at the VIIIth International 

Altrnan, D., Thermodynamic Properties and Calculated Rocket Performance of Hydrogen to 10,00PK, 

Report No. 20-106, Jet Propulsion Laboratory, Pasadena, California, September 3, 1956. 

Safonov, G., “Externally Moderated Reactors,” Second United Nations International Conference on the 

Peaceful Uses of Atomic Energy, Vol. 12, 1958, p. 705. 

Hughes, D. J., and Schwartz, R. B., Neutron Cross Sections, BNL 325, Brookhaven National Laboratory, 

Upton, New York, 2nd edition, July 1, 1958. 

31 

I 



JPL Technical Report No. 32-789 

APPENDIX A 

Calculation of Temperature Distribution in the Propellant 

The utilization of Eqs. (5) and (7) to obtain the temperature profile and hydrogen-layer thickness 

requires an estimate of the propellant flow rate which is to be used. To obtain this estimate, a,,, i s  assumed 

to be zero. Then, 

h H P , c  1 - 6 ,  

For booster applications (i.e., short reactor operating times), the nuclear energy deposited directly 

in the reflector is approximately 7% of the total reactor power; therefore, 6, is assumed to be 0.07 in this 

analysis. For a peak moderator-reflector temperature of 2500°K, h H ,  = 9.65 x lo3 cal/g atom for a hydrogen 

pressure of 30 atm. 

Then, 

AH = 1.29 x lo5 cal/g 
P 9 C  

TN = ( T p )  = 13,30O0K 
m a x  

Since i t  has been assumed that all the thermal energy i s  absorbed in the propellant, 

z i p  A H p , c  2: a A c  ( T t -  TN) 4 (A-2) 

For a typical core temperature of 30,000'K and a core radius of l m ,  

d = 1.06 x lo6 g/sec (2.33 x lo3 lb/sec) P 

This represents the minimum flow rate required in the reflector, since there will be some thermal transfer to 

the reflector. The other extreme i s  simply the case in which all the thermal energy reaches the reflector. Then, 

d = 1.44 x lo7 g/sec (3.17 x lo4 lb/sec) 
P 
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In obtaining the stepwise solution to Eq. (7), the value of E / L  i s  taken from Fig. 1 at Tn-l; i.e., the 

low-temperature value is utilized for conservatism. The A T for a particular zone is assumed, and the thick- 

ness  required to produce this A T i s  calculated. Small increments in A T are taken when the propellant 

emissivity is low and larger A T when the emissivity is higher. 

By assuming various flow rates and peak temperatures, calculating stepwise the Ar required per 

zone, then calculating ( Z t h )  hom the stepwise process, and finally comparing it with the required Sth for 

the assumed (T ) 
a 

, the maximum obtainable hydrogen temperature is determined for a particular flow rate. 
P max 

A sample calculation i s  given below for a core temperatme of 30,0WK, a core radius of 100 cm, a 

flow rate of 1.36 x IO6 g/sec (3000 lb/sec), and an assumed peak hydrogen temperature of 1 1 , W K :  

- 
The first increment in A T is assumed to be from 10,OOO to 11,000'K; then, TN = 10,%O°K; A H N  = 7.5 x lo3 
cal/g, and we have 

( E/L),,,,,,o~ = 6.5 x 

By neglecting the second-order term in A,, 

ArN = 1.2 cm 

and 
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since A r  .< .< rt second-order terms are negligible and no iteration is required. For the N- 1 zone, A T from 

8000 to 10,OOO°K, A"-, = 12 x lo3 cal/g, 

4 
Q N - ,  = 1.64 x 10" = (1.72 x ArN-' (0.924) [(3 x IO4) -negligible 

4 . 4  - (0.9 x lo4) 1 + negligible - (1.76 x - A"-, (0.9 x lo4) 
(:)N-1 

where E / L  = 9 x 10-3/cm. Then, 

O r N - ,  = 14.5 cm 

and 

UN-, = 0.130 1 - UN- ,  = 0.870 

Again, since the dominant term i s  simply the plasma emission, no iteration i s  necessary. 

In a similar manner, the remaining A r  (except Ar,) were obtained. These are shown in Table A-1. 

The determination of O r , ,  as explained in Part  I, depends on the photon wavelength at  the peak of 

the black-body radiation curve for a core temperature of 30,000OK: 

0.293 

30,Ooo 
A, = -  2: 0.1 /I = cm 

The minimum practical TaC particle size which can be obtained has  a diameter of 0.1 p .  From Fig. 4 

of Ref. 5 and rs/h = 0.5, K = 10. For a peak hydrogen temperature of l l ,OOO°K at 30 atm, 

P, 2 6.7 x 10" g/cm3 

p, = 14.65 g/cm3 
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A T n  

O K  

10,000 - 11,000 

8,000 - 10,000 

7,500 - 8,000 
7,000 - 7,500 
6,800 - 7,000 
6,600 - 6,800 
6,400 - 6,600 

6,200 - 6,400 
6,000 - 6,200 
5,800 - 6,000 
2,500 - 5,800 

and 

Then, 

Table A-1. Determination of Arn and an 

( E / L ) ,  
-1  cm 

6.5 x 

9.0 

5.6 
3.0 
2.4 1 0 - ~  
1.9 10-3 

1.3 

1.0 
7 1 0 - ~  
5 x  

" n  

io3 caI/g 

7.5 

12 
3.5 

3.5 

2.0 
2.0 
2.0 
2.5 

2.5 
3 

61 

A I" 
cm 

1.2 
14.1 

7.6 
14.8 

11.0 
14.3 

21.6 
36.1 
53.4 
93.4 

~~~ 

a n  

dimensionless 

0.076 

0.13 
0.042 
0.044 

0.026 
0.027 
0.028 
0.036 

0.037 
0.047 
0.994 

~ ~~ ~~ 

n 

dimension1 ess 

Since ul  = 0.994, QJQ, = 0.006, and In Q,/Q, = 5.1. Then, substituting into Eq. (17), 

A r ,  = 37.4 cm 

N 

n = l  
r f  - rc = 2 A,,, 

r f  - rc = 305 cm 

Now, 

11 
10 
9 
8 
7 
6 
5 
4 

3 
2 

1 

(0.006) (0.65) (1.29 x 10") 

1.39 x 10" 
(Q = = 0.0036 

a 
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In a similar manner, other  v a l u e s  of rr - rc and ( Z t h )  can be determined by assuming var ious v a l u e s  
a 

of T,.  T h e s e  are plot ted on curves  1 a n d  2, respect ively,  in  Fig.  3. T h e  required maximum hydrogen 

temperature for var ious v a l u e s  of sth are given in  T a b l e  A-2 and shown as curve 3 in F ig .  3. The intersect ion 

of curves  2 and 3 g ives  the cons is ten t  va lue  of (T,,) , and a horizontal l ine  drawn to in te rsec t  curve 1 sets  

the required hydrogen thickness .  

I 

, 
m a x  

i 

Table A-2. Enthalpy rise and maximum propellant temperature 

th 

0 

0.001 
0.005 

0.0 1 
0.02 
0.03 
0.04 
0.06 

0.07 

128.5 
126.6 
119.8 
112.1 
99.3 
88.9 
80.4 
67.1 
61.8 

T N  
OK 

1 3,300 
13,200 
12,700 
12,100 
10,800 
9,200 
8,000 
6,200 
5,800 

Although the  r e s u l t s  presented  in F ig .  4 were calculated for a core rad ius  of 100 cm, they are, to  

within calculational accuracy,  independent  o f  r c .  T h i s  s t e m s  from the  f a c t  t h a t  the  major hea t ing  contribution 

t o  each  hydrogen zone r e s u l t s  from the  direct  interchange with the core. Increas ing  the  core rad ius  by some 

multiple increases  the h e a t  re jec ted  by the  core by the  square  of t h i s  multiple. S ince  t h e  enthalpy r i s e  per  

zone for a given A Tm i s  fixed, t h i s  merely requi res  an i n c r e a s e  in  flow r a t e  by a factor  of t h e  multiple 

squared to obtain a new operat ing condition. A s  a resul t ,  nei ther  rl - rc  nor T,, i s  changed; thus,  t h e s e  

r e s u l t s  a r e  valid for any core radius. 

A similar argument can b e  u s e d  in  determining the  e f fec t  of core  temperature. Since back  emission 

from the  hydrogen contr ibutes  very l i t t l e  a t  core  temperatures  above 20,000°K, the  hydrogen t h i c k n e s s  

required and maximum hydrogen temperature are independent  of  the core temperature to calculat ional  accuracy.  
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In this case ,  however, the flow rate increases as the fourth power of the multiple increase in the core 

temperature. Thus, Fig. 4 presents results which are independent of the core radius and temperature but 

which are dependent on the propellant flow rate or, in other words, engine thrust. 
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APPENDIX B 

Application of Continuity Conditions on Thermal and Fast  Currents 

The thermal- and fast-flux equations in the reflector are 

1 , r  

sinh K l , r  ( r r  + a - r )  B sinh K 2 , ?  ( rr  + a - r )  - D2,r 
d- = - c  

r r 

and 

C sinh K l , r  (Ir + a - r) 

r 
4 1 , r  = 

where 

C l  c = -  
cosh K l , ,  ( r r  + a) 

The boundary conditions to be applied are 

(1,)""' = - P (1,)- 
I I  

Now. 

sinh K l , r  a + K l , r  rr cosh K l , r  u 

= - D l , r  (%) = D l , r  c 
rl 2 l r  
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a+,,, sinh Kz,, a + K2,, r, cosh Kz,,  a 

2 = - D2,, (7) = Dz,, B 
rr rt 

=,,, 
DZJ sinh K,,, a + K,,, r, cosh K,,, a 

2 
c - D2J 

K i t  - Ki,? rr 

b i n h  Kz,, a + Kz,, r, cosh Kz,, a) 
DZ,? 

J? 'r 

(sinh K,, ,  a + K,,, r, cosh K,,, a) = - D l J  
2 

C.,,, C sinh K,,, a + K,,, r,  cosh K,,, a 
+ n  

Rearranging and solving for B ,  

( 4 D,,, ) ainh K,, ,  a + K,,, r, cosh K,,, a 

sinh Kz,, a + K2,, r, cosh K2,, a 
B = C  - -  

77 D2J KT,, - K;,? 

'Ibe negative thermal-neutron current density is given by 

sinh Kl , ,  a + Kl,r  r, cosh KlSr  a 

$ 
D2,r sinh K2,, a + K2,r rr cosh K2,r a 

B - -  
2 rf 

39 
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Substituting for B ,  
- 

'1,r 

D 2 , r  sinh K,, ,  a 
- 

( I2 , -  = - 1 [ c ( $ -- D,,, ) sinh K l , ,  a + K , , ,  r ,  cosh K l , r  a - c  
4 KP., - G , r  ~ 2 , r  r, (1  + K2,r r ,  coth K2,,  a )  K:,r - K $ , r  'r 

- 

1 
I sinh K , , ,  a + K,, ,  r, cosh K, , ,  a '2, r 
I - 

2 
' r  

Rearranging and canceling like terms, 

1 
(B-11) 

. i , r  r J s h  K,, ,  a - K,,, r ,  sinh K , , ,  a coth K2,,  a) 
1 + K2,,  r ,  coth K2 ,r  a (K;,, - K;,> 4 r r  1 1 

'.. 2' 

- D 1 , r  
(sinh K, , ,  a - K,,,  r, cosh K, , ,  a )  [ r ,  - 2D2, ,  ( 1  + K2,,  coth K2, ,  a ) ]  (B-12) 

2 
4 7  D2,r rr 

Substituting for B in Eq. (B-7), 

-~ 
' r  'r KP,r - K;,r D2,r 

(sinh K, , ,  a + K , , ,  r ,  cosh K l , r  a) 
D2,r 

(]&net = - 

- '1,r 

D 2 , r  

K:,r - K22,r 
- c  (sinh K, , ,  a + K , , ,  r ,  cosh K, , ,  a) 

40 
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Simplify in g, 

, , p e t  = - (sinh K l , r  a + Kl ,r  r, cosh Kl , t  a) 
2 

l r  'r 

( B- 14) 

Applying Eq. (El) and solving for P, 
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APPENDIX C 

Evaluation of Integral Form for P, 

The determination of P,,, involves the evaluation of the integral in Eq. (54): 

J O  

Zc(e) = -21, COS a 

r .  r 
sin a = - sin 0 

I 

Now, 

lC 
sin Bmax = - 

c o s a = -  ~7 1 - s i n  a = -  J- (2)' sin2 e 
rC 

and 

42 
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z = sin 0 dx = cos e d e  

Then, Eq. (C-1) becomes I 

Now, le t  

2 

2 5 d 5 =  - 2  (:) zdz 

and Eq. (C-6), upon substitution and interchange of limits, i s  

Now, (C-6) may be broken into two standard integrals. Integration yields 

Fin ally, 
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APPENDIX D 

Determination of the Final  Equations for Fast  and Thermal Fluxes in the Reflector 

I 

The fast- and thermal-flux distribution can be obtained as functions of the average thermal flux in the 

core. The only remaining constant to be determined in the flux equations is C. Solving for C from Eq. (B-14), 

'1,r 'r sinh K l , r  a + K l , r  rr  cosh K l , r  a 

but (I,)""' is given in Eq. (33) a s  
r 

L 

r A 
'r 

or 

- 
3 s a ,  c 4 2 , c  rc (1,)""' = - 

' r  3 r; 

Then, 

'1,r 3 sinh K l , r  a + K l , r  r r  cosh K l , r  a 

Noting that 

Sf, c 
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3D1,r sinh K l , r  a + Kl,f  r f  cosh K l , f  a 
t 

Thus, knowledge of the critical concentration to evaluate C yields C as a function of the average f, c 

thermal-neutron flux in the core. 

Substitution of Eq. (D-6) into Eq. (26) gives the fast-neutron-flux distribution in the reflector as a 

function of average thermal-neutron flux in the core. 

3 D 1 , f  sinh Kl,f a + K l , r  r f  cosh K l , r  a r 

The thermal-flux distribution in the reflectors is obtained by successive substitution of Eq. (B-9) 

for B and Eq. (D-6) for C into Eq. (39). 

D2,r 1 sinh Kl , r  ( r r  + a - r )  

K4, l  - G , r  r sinh K l , f  a + K l , r  r f  cosh K l , l  c 
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APPENDIX E 

Summary of Nuclear Parameters Used in the Analysis 

ants were The cross  sections for the core and reflector are taken from Ref. 8. All  con5 valuated for 

a reflector temperature of 2500°K, except for the absorption cross section of graphite, which is assumed to 

have i t s  room-temperature value for conservatism. 

0z9 = 4 x lo3 barns 

07 = 2.5 x lo3 barns 

C: = 3mbarns 

= 4.8 barns 

The pertinent two-group nuclear constants in the reflector are: 

-2 K:,~ = I / T ~  = 4.55 x cm 

K ; , f  - - 1/1!,;,~ = 2 . 7 9 ~  

x2 , r  = 2 . 5 ~  cm-' 

D 2 , r  = 0.89 cm 

D l , r  = 1.11 cm 

xl,r = 5.05 x cm-l 

Xtr,r = 2.67 cm 

cm-2 

The nuclear constants in the core are: 

v = 2.88 77 = 1.8 
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2 Recipients of .JPL Technical Report 

YO. 32-189 

SUBJECT: Errata for TR 32-189 

Gentlemen: 

It is requested that the following changes be made in your copy of Technical Report 

No. 32-189, entitled “Tbermal and Criticality Analysis of the Plasma Core Reactor,” by 

D. F. Spencer, dated January 1, 1%2: 

1. On page 3 (last line), change R, - R ,  to r,  - r e .  

2. On page 6 (Eq. 7, second term on the right), change A, to A,,. 

3. On page 10 ( h d  paragraph), change 3000 lb/sec to 1.36 x IO6 g/sec (3000 lb/eec). 

4. On page 11, change L - diffusion length, cm, to L - lengtb, cm. 

5. On page 13 ( a d  paragraph), change 2 W K  to 25000K. 

6. On page 15 (Eq. 24). change a to a. 

7. On page 17 (Eq. 36, second term on the left), change +,,, to +,,,. 
8. On page 18 (Eq. 43, final term), close parenthesis. 

9. On page 21 (Eq. 58, first term on the left in numerator), change 

sinh K2,r (rr + a + r)  to einh K2,, (r, + (I - r ) .  

10. On page 26, add L - diff’asion length, cm. 

11. On page 29, substitate attached Fig. 16. 

’2,r ’2.r 
13. On page 40 (Eq. B-13, first tem on the right), change - to- n 

rr r,” 

IEN /DW :bh 
SyIvan 0-681 I Muway 1-3661 

- -  
N. F. White, Assistant Munaget 
Reports Section 
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Achievable engine thrust based on thermai and criticality constraints (T, 2 20,000°K) 
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