## Pressure-Volume-Temperature Correlations for Crude Oils from the Illinois Basin

## Steve Soo Khoon Sim



## Digitized by the Internet Archive in 2012 with funding from University of Illinois Urbana-Champaign

# Pressure-Volume-Temperature Correlations for Crude Oils from the Illinois Basin 

Steve Soo Khoon Sim

1993
Illinois Petroleum 140

ILLINOIS STATE GEOLOGICAL SURVEY
Morris W. Leighton, Chief
Natural Resources Building
615 East Peabody Drive
Champaign, Illinois 61820-6964

## Disclaimer

This report was prepared by the Illinois State Geological Survey (ISGS) for a project sponsored by the State of Illinois and the U.S. Department of Energy (USDOE). It presents reasonable interpretations of available data. Any opinions, findings, conclusions, or recommendations expressed herein are those of the author and do not necessarily reflect the views of the USDOE. Neither the ISGS, any member of the ISGS staff, the Illinois Department of Energy and Natural Resources (ENR), nor the USDOE assumes any liability with respect to the use, or for any damages resulting from the use, of any information contained in this report. Use of trademarks and brand names in this report does not constitute endorsement of any product by the ISGS, ENR, or USDOE.

## CONTENTS

ABSTRACT ..... 1
INTRODUCTION ..... 1
PRESSURE-VOLUME-TEMPERATURE ANALYSES ..... 2
EXISTING PRESSURE-VOLUME-TEMPERATURE CORRELATIONS: BUBBLE-POINT PRESSURES ..... 4
VALIDATION OF AN EQUATION OF STATE COMPUTER PROGRAM WITH EXPERIMENTAL DATA ..... 6
Simulation of Pressure-Volume-Temperature Analysis ..... 6
Simulation of Carbon Dioxide Swelling Tests ..... 8
NEW CORRELATIONS ..... 8
Bubble-Point Pressure Correlation ..... 9
Calculation of Oil Formation Volume Factors of Saturated Oil ..... 11
Calculation of Isothermal Compressibility of Undersaturated Oil ..... 11
Viscosity Relationships ..... 12
Correlation of Saturated Oil Densities ..... 13
SUMMARY ..... 15
ACKNOWLEDGMENTS ..... 15
REFERENCES ..... 16
APPENDIXES ..... 17
A Two Equations of State ..... 17
B Input Data and Results of EOS Matching ..... 18
C PVT Analysis of Reservoir Fluid, Alex Lease, Zeigler Field, Franklin County ..... 20
D PVT Analysis of Reservoir Fluid (Sample 1), McCullum Unit, Dale Consolidated Field, Franklin County ..... 25
E PVT Analysis of Reservoir Fluid (Sample 2), McCullum Unit, Dale Consolidated Field, Franklin County ..... 29
F PVT Analysis of Reservoir Fluid, Energy Field, Williamson County ..... 34
G Sample Calculation Using Equation 1 ..... 41
FIGURES
1 Oil and gas sampling locations ..... 3
2 Comparison between bubble-point pressures ..... 5
3 Bubble-point pressure matching with EOS ..... 7
4 Oil swelling test with $\mathrm{CO}_{2}$ ..... 9
5 Bubble-point pressure relative to critical temperature of gas ..... 9
F -1 Saturation pressure relative to $\mathrm{B}_{0}$ ..... 35
F-2 Saturation pressure relative to GOR ..... 35
TABLES
1 Ranges of data used to develop PVT relationships ..... 4
2 Comparison between calculated and measured bubble-point pressures ..... 5
3 Comparison between measured and calculated PVT parameters for oil samples from three lllinois Basin Fields ..... 7
4 Comparison between measured and calculated PVT parameters for a $\mathrm{CO}_{2}$ swelling test of oil from Dale Consolidated Field ..... 8
5 Calculation of bubble-point pressures ..... 10
6 Prediction of bubble-point pressures at $150^{\circ} \mathrm{F}$ ..... 11
7 Calculation of oil formation volume factor ..... 12
8 Comparison between values for undersaturated oil compressibility calculated by the method of Vasquez and Beggs (1980) and equation 4 ..... 13
9 Calculation of saturated oil viscosity ..... 14
10 Calculation of saturated oil density by method of Katz (1942) ..... 14
B-1 Composition of reservoir fluid samples ..... 18
B-2 Thermodynamic properties of oil fractions used in EOS simulation ..... 18
B-3 Gas composition matching ..... 19
C-1 Field data ..... 21
C-2 PVT summary ..... 21
C-3 Pressure to volume relationship ..... 22
C-4 Flash separator test ..... 22
C-5 Differential vaporization at $95^{\circ} \mathrm{F}$ ..... 23
C-6 Gas composition ..... 23
C-7 Solution gas composition from flash separation ..... 24
C-8 Oil viscosity at $95^{\circ} \mathrm{F}$ ..... 24
D-1 Field data ..... 26
D-2 PVT summary ..... 26
D-3 Pressure to volume relationship ..... 27
D-4 Flash separator test ..... 27
D-5 Differential vaporization at $98^{\circ} \mathrm{F}$ ..... 28
D-6 Gas composition ..... 28
D-7 Oil viscosity ..... 28
E-1 Field data ..... 30
E-2 PVT summary ..... 30
E-3 Pressure to volume relationship ..... 31
E-4 Flash separator test ..... 31
E-5 Differential vaporization at $98^{\circ} \mathrm{F}$ ..... 32
E-6 Gas composition ..... 32
E-7 Gas composition from differential vaporization tests ..... 33
E-8 Oil viscosity ..... 33
F-1 Field data ..... 37
F-2 PVT summary ..... 37
F-3 Pressure to volume relationship of sample 1 at reservoir temperature of $84^{\circ} \mathrm{F}$ ..... 38
F-4 Pressure to volume relationship of sample 2 at reservoir temperature of $84^{\circ} \mathrm{F}$ ..... 38
F-5 Pressure to volume relationship of sample 3 at reservoir temperature of $84^{\circ} \mathrm{F}$ ..... 39
F-6 Flash separator test ..... 39
F-7 Differential vaporization of reservoir fluid (sample 3) at $84^{\circ} \mathrm{F}$ ..... 40
F-8 Gas composition ..... 40
F-9 Viscosity of reservoir fluid (sample 3) at $84^{\circ} \mathrm{F}$ ..... 40


#### Abstract

Several pressure-volume-temperature (PVT) analyses were performed using crude oil and gases from three different lllinois reservoirs. The results were used to evaluate the applicability of the commonly used correlation methods for PVT properties and to validate an equation of state (EOS) computer program that can be used to calculate PVT properties under other pressure and temperature conditions.

Knowledge of the bubble-point pressure and oil compressibility of the reservoir crude is crucial in the implementation of a successful secondary recovery program. Timely initiation of water injection can avoid poor oil recovery due to (1) excessive loss of reservoir energy and (2) creation of gas channels through excessive gas production below bubble-point pressure.

Crude oil samples from Illinois Basin reservoirs commonly contain solution gas with a composition outside the range of applicability of the methods generally used for bubble-point pressure calculations. A simple and more generally applicable equation has been derived for this purpose. This equation, which uses the pseudo critical temperature to represent the physical properties of solution gases, was found to be superior to the commonly used correlation methods for the calculation of bubblepoint pressure.

The method of Vasquez and Beggs (1980) commonly used for the estimation of isothermal oil compressibility was found to be inadequate for the samples analyzed. An equation that shows better agreement with experimental values was developed. It adequately reflects the effect of pressure, temperature, and the amount of solution gas on the oil compressibilities.

Estimation of the oil formation volume factor by the method of Vasquez and Beggs (1980) and calculation of saturated oil density using the method of Katz (1942) were found to be adequate for practical purposes.

As a result of this study, Illinois Basin operators now have an improved methodology to calculate more applicable PVT properties for use in reservoir management. As more PVT data become available in the future, the full extent of the applicability of the correlations developed in this study can be established.


## INTRODUCTION

Petroleum engineers require knowledge of the physical properties of petroleum fluids for various calculations relating to both reservoir and production systems. These properties must be determined at the reservoir temperature and various pressures for reservoir performance studies, and at conditions of both changing pressure and temperature for well-bore hydraulics, surface separation, and flow-line calculation. The physical properties of a representative reservoir fluid sample which is obtained either by subsurface sampling techniques or recombination of separator oil and gas, are measured with equipment for determining the pressure, volume, and temperature of the sample (PVT). The results of these analyses are used to

- estimate the volume of original oil and gas in place,
- calculate flow properties of the reservoir fluid under reservoir or pipeline conditions,
- design separator conditions for optimization of liquid recovery,
- provide information on solution gas drive energy and timing of pressure maintenance

A program of well-conditioning activities has to be undertaken to obtain the required representative sample. These activities ensure that no nonassociated free gas is being produced together with the crude oil during sampling. The program generally requires gradually reducing the production rate of a well until the ratio of produced gas to produced oil stabilizes. Shutting in the well for 1 to 2 days may be required if bottom-hole samples are needed. Most importantly, the samples must be obtained as early as possible in the production life of the reservoir to avoid changes in the overall composition of the sample.

In addition to the expense of carrying out a well-conditioning program is the \$5,000 to $\$ 10,000$ cost of a complete PVT analysis conducted by a petroleum service laboratory. Most independent operators have been reluctant to incur the additional expense at an early stage of reservoir development because of cash flow considerations. As an alternative, many of them rely on published PVT correlation charts to obtain the needed PVT properties for their engineering calculations. Several PVT correlation methods (Standing 1952, Lasater 1958, Vasquez and Beggs 1980) provide sufficiently accurate data for making engineering decisions in most cases. Care should be taken, however, to make sure that the oil and gas compositions of interest fall within the limits of these correlation charts or equations.

As discussed in detail later, many of these published PVT correlations are not directly applicable to reservoirs with solution gas containing a substantial amount (more than $10 \%$ ) of nonhydrocarbon gas or with a gas gravity higher than 1.2. The oil composition used to construct these correlations can be quite different from that of Illinois crude oils.

To assist the independent oil and gas operators of the Illinois Basin in improving their oil recovery, the Illinois State Geological Survey (ISGS) has established a geological and engineering database from which they can draw essential information. Reservoir characterization and engineering studies of selected reservoirs are being undertaken to better understand the reservoir architecture and drive mechanism of the reservoir, and to evaluate the technologies for improved oil recovery.

When an initial attempt to obtain PVT data from the independent operators in the basin yielded only one partial PVT report from Zeigler Field and some isolated PVT data from other fields, the ISGS began a series of investigations with these objectives: (1) to provide needed PVT property data input for reservoir engineering studies, (2) to accumulate a PVT database for the Illinois Basin, (3) to evaluate the adequacy of existing PVT property correlation charts and equations for Illinois reservoir crude oils, and (4) to provide independent oil and gas producers with a more accurate method for estimating PVT relationships in cases where other published methods are found to be inadequate.

Several PVT analyses were performed using crude oil and gases from three different Illinois reservoirs. In addition, one oil swelling test with carbon dioxide was performed to evaluate the potential for $\mathrm{CO}_{2}$ flood enhanced oil recovery from the Aux Vases Formation of the Illinois Basin.

## PRESSURE-VOLUME-TEMPERATURE ANALYSES

Surface oil and gas samples collected from well sites in the fields (fig. 1) were recombined according to the known solution gas to oil ratios or saturation pressures. Whenever uncertainties existed in the actual ratio of solution gas to oil, several samples were recombined with varying gas to oil ratios. The PVT properties of these samples were then measured with the ISGS integrated PVT and capillary viscometer system. Details of the experimental procedures and calculation are described in an open file report on PVT standard operating procedures at the

Figure 1 Oil and gas
 sampling locations.

ISGS (Sim, in preparation). Results of the analyses of the samples are included as appendixes C, D, E and F of this report.

```
Nomenclature
    \(\mathrm{P}_{\mathrm{b}}=\) bubble-point pressure (psi)
    \(\mathrm{T}_{\mathrm{r}}=\) reservoir temperature ( \({ }^{\circ} \mathrm{F}\) )
    \(\mathrm{R}_{\mathrm{S}}=\) solution gas to oil ratio (scf/stb)
    API = oil degree API
    \(\mathrm{Y}_{\mathrm{g}}=\) mole fraction of gas
        \(\gamma_{g}=\) gas gravity
    \(\mathrm{T}_{\mathrm{cm}}=\) pseudo critical temperature of gas mixture
        \(y_{i}=\) mole fraction of individual gas components
    \(\mathrm{T}_{\mathrm{ci}}=\) critical temperature ( \({ }^{\circ} \mathrm{F}\) ) of individual gas components
        \(\mathrm{P}=\) pressure (psi)
        \(\mathrm{T}=\) temperature ( \({ }^{\circ} \mathrm{F}\) )
        \(\mathrm{C}_{0}=\) oil compressibility
        \(\gamma_{0}=\) oil density \(\left(\mathrm{gm} / \mathrm{cm}^{3}\right)\)
    \(U_{\text {os }}=\) saturated oil viscosity (Cp)
    \(U_{\text {od }}=\) gas free or dead oil viscosity (Cp)
```


## EXISTING PRESSURE-VOLUME-TEMPERATURE CORRELATIONS: BUBBLE-POINT PRESSURES

The three most popular correlations used by the petroleum industry to calulate bubble-point pressures are those of Standing (1952), Lasater (1958), and Vasquez and Beggs (1980). The ranges of the data used to develop these PVT correlations (Beggs 1987) are summarized in table 1.

The adequacy of using these relationships for estimating the PVT properties of Illinois Basin crude oils was evaluated. Bubble-point pressures, as calculated from the PVT correlations, were compared with measured data for crude samples from the Aux Vases sandstone reservoir in three Illinois fields. Table 2 and figure 2 show the calculated results related to the measured data for wells producing from the Aux Vases Sandstone at Energy Field in Williamson County, McCullum Unit at Dale Consolidated Field in Franklin County, and Zeigler Field in Franklin County, Illinois.

Table 2 and figure 2 indicate that deviations of the calculated from the measured results are most extreme for samples from the Energy and McCullum fields. Solution gas from Energy Field contains 15\% nitrogen, whereas gas from the McCullum field has a gas gravity of 1.3 because of the high content of propane and butane. They both exceed the limits of applicability of the published correlation charts.

The PVT correlations of Standing (1952) and Lasater (1958) were based on systems essentially free of nonhydrocarbon components. The presence of large amounts of nitrogen, carbon dioxide, and hydrogen sulfide result in estimated bubble points that are unrealistically low. Bubble-point pressures calculated from the Lasater correlation were adjusted upward based on anticipated errors due to the presence of nonhydrocarbon gases in the solution gases (Smith et al. 1992). As shown in table 2, however, the corrected bubble-point pressure for the Energy Field sample, which contains $15 \%$ nitrogen, is still 142 to 444 psi below the measured values. Although no information was given regarding the composition of the gas samples upon which the Vasquez and Beggs (1980) PVT correlation was based, the fact that all three PVT correlations used gas gravity to represent the properties of the solution gas limits their applicability to mixtures containing nonhydrocarbon gases.

Review of the compositions of gases produced from Illinois reservoirs, as reported by Meents (1981), reveals that a substantial number of the gases have either nitrogen contents higher than $10 \%$ or gas gravities higher than 1.2. Therefore, an

Table 1 Ranges of data used to develop PVT relationships (from published correlation charts)

|  | Standing | Lasater | Vasquez and Beggs |
| :--- | :---: | :---: | :---: |
| $\mathrm{P}_{\mathrm{b}}$ (psi) | $130-7000$ | $48-5780$ | $50-5250$ |
| $\mathrm{~T}_{\mathrm{r}}\left({ }^{\circ} \mathrm{F}\right)$ | $100-258$ | $82-272$ | $70-295$ |
| $\mathrm{R}_{\mathrm{s}}$ | $20-1425$ | $3-2905$ | $20-2070$ |
| oil (API) | $16.5-63.8$ | $17.9-51.1$ | $16-58$ |
| gas gravity | $0.59-.95$ | $0.57-1.22$ | $0.56-1.18$ |

[^0]Table 2 Comparison between calculated and measured bubble-point pressures

|  | Measured P psig | Standing |  | Lasater(1) |  | Lasater(2) |  | Vasquez and Beggs |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} \text { P } \\ \text { psig } \end{gathered}$ | ( $\Delta \mathrm{P}$ ) <br> psig | $\begin{gathered} \text { P } \\ \text { psig } \end{gathered}$ | $(\Delta P)$ psig | $\begin{gathered} \text { P } \\ \text { psig } \end{gathered}$ | $(\Delta P)$ psig | $\begin{gathered} \text { P } \\ \text { psig } \end{gathered}$ | $(\Delta P)$ psig |
| Energy | 1600.0 | 1077.4 | (-522) | 1013.4 | (-587) | 1155.3 | (-444) | 1185.5 | (-414) |
| Field | 910.0 | 622.4 | (-288) | 674.0 | (-236) | 768.4 | $(-142)$ | 736.0 | (-174) |
| McCullum | 350.0 | 728.1 | (378) | 622.6 | (272) | 628.8 | (278) | 800.5 | (450) |
| Unit | 150.0 | 558.0 | (408) | 483.6 | (333) | 488.4 | (338) | 611.6 | (461) |
| Zeigler | 707.0 | 557.5 | (-150) | 585.0 | (-122) | 643.5 | $(-64)$ | 609.9 | (-97) |
| Field | 180.0 | 257.5 | (78) | 376.9 | (197) | 403.3 | (223) | 347.9 | (168) |

$\Delta P=P_{b}$ (calc) - $P_{b}$ (measured)
Standing = calculated with Standing's correlation
Lasater (1) = calculated with Lasater's correlation without correction for nonhydrocarbon gas
Lasater(2) = calculated with Lasater's correlation with correction for nonhydrocarbon gas
Vasquez and Beggs = calculated with the method of Vasquez and Beggs (1980)


Figure 2 Comparison between bubble-point pressures
improved PVT correlation equation is needed to accurately estimate the PVT properties of Illinois reservoirs.

The equation of state (EOS) used by the petroleum industry for simulation of phase behavior and PVT properties has been discussed in several papers (e.g. Whitson 1982). Although the most important application of EOS is in the field of gas-miscible flood enhanced oil recovery, it can also be used to check the consistency of PVT and phase behavior results.

There are very limited experimental PVT data from Illinois reservoirs available for the derivation of a reliable equation for the calculation of physical properties such as bubble-point pressures, oil and gas formation volume factors, and compressibilities. Consequently, an EOS computer program was used to check the consistency
of new correlation equations and to extend the PVT relationships beyond the limits of the available data.

## VALIDATION OF AN EQUATION OF STATE COMPUTER PROGRAM WITH EXPERIMENTAL DATA

The phase behavior simulator used in this work was the Westem Atlas Integrated Technologies EOS-PAK ${ }^{\text {TM }}$ licensed to the ISGS and installed on a SiliconGraphics ${ }^{\text {TM }}$ IRIS 4D/310GTX work station. The program includes two of the most widely used EOS: the Peng-Robinson (Peng and Robinson 1976) and the RedlichKwong (Redlich and Kwong 1949). Brief descriptions of them are included in appendix A.

The program contains the thermodynamic properties of the most common components in oil and gas mixtures. Thus, with the composition of the reservoir fluid as input, the program defines the relationship between the pressure, volume and temperature for a given fluid. If two of the three variables (e.g. pressure and temperature) are known, the third variable (e.g. volume) can be calculated.

Before an EOS can be used for the prediction of phase behavior, certain parameters in the equation, namely the critical properties of the oil fractions and certain interaction parameters ( $\delta_{\mathrm{ij}}$ ) between the gas and the oil components, have to be determined. A common practice in the oil industry is to adjust the values of these parameters until the PVT values obtained from the EOS match a set of experimental PVT data. This process is commonly called EOS tuning.

Three sets of PVT data and one $\mathrm{CO}_{2}$ swelling test obtained from laboratory experiments were used for the tuning process. The following summarizes the steps taken to tune the EOS program.

1) The molecular distribution of the crude oil was simulated using a computer program. Then a comparison was made between the calculated oil composition and that obtained by gas chromatographic analysis of the stock tank oil. This procedure ensures the proper distribution of hydrocarbon components. A three-fraction mixture representing the crude oil mixture was used to facilitate calculation.
2) The overall composition of the mixtures was calculated from the composition of separator gas, stock tank oil, and gas to oil ratio. The final composition was used as input for the calculation of PVT properties at specified temperatures and pressures.
3) A regression subroutine was then employed to match the experimental bubble points. In this adjustment, the interaction parameters between methane and the three oil fractions were allowed to vary $20 \%$.
4) These calculations were followed by matching the oil formation volume factor and the oil densities. This was accomplished by adjusting the three variables, $\Omega_{A}, \Omega_{B}$ and the acentric factors ( $\omega$ ), of the three oil fractions. (Refer to appendix A for details.)
5) Final matching of the oil viscosities was accomplished by adjusting the critical compressibility factors $\left(\mathrm{Z}_{\mathrm{c}}\right)$ of the oil fraction.

## Simulation of Pressure -Volume -Temperature Analyses

Table 3 and figure 3 compare the EOS-calculated PVT properties with the experimental data. Deviation between the calculated bubble-point pressures and the

Table 3 Comparison between measured and calculated PVT parameters for oil samples from three Illinois Basin fields

data $=$ experimental data measured with the ISGS PVT equipment
calc $=$ EOS (equation of state) calculated results


Figure 3 Bubble-point matching with EOS (calculated versus measured)
experimental bubble-point values ranges from $1 \%$ to $13 \%$, with an average deviation of $4.8 \%$. Deviation between calculated oil formation volume factors and experimental values ranges from $0.1 \%$ to $10 \%$, with an average deviation of $3.2 \%$.

The overall composition of the four reservoir samples used for tuning and the thermodynamic properties of the three pseudo fractions used to represent the crude oils are tabulated in appendix B. Detailed results of the simulation, such as the comparison of calculated and measured gas compositions, are also included in appendix B.

## Simulation of Carbon Dioxide Swelling Tests

Once the EOS program was adjusted to mimic the PVT experimental data, the phase behavior of these reservoir crude oils in the presence of $\mathrm{CO}_{2}$ was calculated. In a predictive mode, the calculation is performed without altering the values of the thermodynamic parameters of the oil and gas components.

The results presented in table 4 and figure 4 show the ability of the tuned EOS to simulate the results of a $\mathrm{CO}_{2}$ swelling test performed on the crude oil from McCullum Unit at Dale Consolidated Field in Franklin County. In the plot of saturation pressure relative to gas to oil ratio (GOR) (fig.4), the experimental data show a critical point at about 1200 psig, where a further increase in pressure does not result in further $\mathrm{CO}_{2}$ dissolution. Because this critical point of the mixture is highly dependent upon the oil composition, the ability of the EOS to accurately estimate the critical point suggests that the real oil mixtures are reasonably well simulated by the three pseudo fractions.

## NEW CORRELATIONS

One of the objectives of this study was to provide Illinois Basin producers with a means of calculating essential PVT properties from more readily measurable physical properties such as oil API, gas composition, and gas to oil ratios. Although a tuned EOS program is a good vehicle for performing these tasks, not many independent operators have access to these types of computer programs. Thus, several correlation equations, based both on experimental data and on properties calculated from the tuned EOS program, have been derived for use in the basin.

Table 4 Comparison between measured and calculated PVT parameters for a $\mathrm{CO}_{2}$ swelling test of oil from Dale Consolidated Field

| Saturation <br> pressure | Gas/oil <br> ratio <br> (scf/stb) |  | Oil fomation <br> volume factor <br> (rb/stb) |  | Oil density <br> (gm/cc) |  |
| :---: | ---: | :---: | :---: | :---: | :---: | :---: |
| 3300 | calc | data | calc | data | calc | data |
| 3000 | 1321 |  |  |  |  |  |
| 2500 | 1280 | 1214 | 1214 |  |  |  |
| 2000 | 1210 | 1214 |  |  |  |  |
| 1400 | 1175 | 1214 | 1.388 | 1.478 | 0.879 | 0.847 |
| 1200 | 1066 | 1180 | 1.366 | 1.477 | 0.862 | 0.847 |
| 1000 | 828 | 860 | 1.318 | 1.370 | 0.858 | 0.838 |
| 800 | 608 | 642 | 1.240 | 1.268 | 0.854 | 0.824 |
| 400 | 272 | 233 | 1.121 | 1.116 | 0.844 | 0.813 |
| 0 | 0 | 0 | 1.0 | 1.0 | 0.843 | 0.820 |

data $=$ experimental results obtained with ISGS PVT equipment
calc $=$ results calculated with EOS


Figure 4 Oil swelling test with $\mathrm{CO}_{2}$.

## Bubble-Point Pressure Correlation

A better prediction of the saturation pressure of mixtures that have nitrogen contents higher than $10 \%$ or gas gravities higher than 1.2 required a different approach from that of the three previous correlations. The pseudo critical temperature of the solution gas, instead of the gas gravity, was used to represent the solution gas properties. Figure 5 shows a plot of the measured bubble-point pressure relative to a function containing the mole fraction of the gas and the pseudo critical temperature of the gas mixture. The slope of the best fit line determined by least square method


Figure 5 Bubble-point pressure relative to critical temperature of gas.
is 65.23 , and thus the bubble point pressure of the mixture can be obtained from the following equation:

$$
\begin{equation*}
P_{b}=65.23 T_{r} \frac{0.679 E x p\left(2.786 Y_{g}\right)-0.323}{T_{c m}+60} \tag{1}
\end{equation*}
$$

where
$\mathrm{P}_{\mathrm{b}}=$ bubble-point pressure (psi)
$\mathrm{Y}_{\mathrm{g}}=$ mole fraction of gas (calculated from solution gas to oil ratio, molecular weight of oil, and oil density)
$\mathrm{T}_{\mathrm{cm}}=$ pseudo critical temperature of the solution gas ( ${ }^{\circ} \mathrm{F}$ )

$$
\begin{align*}
& Y_{g}=\frac{\frac{R_{s}}{379.3}}{\frac{R_{s}}{379.3}+\frac{35 \gamma_{o}}{M_{0}}}  \tag{2}\\
& T_{c m}=\Sigma y_{i} T_{c i} \tag{3}
\end{align*}
$$

where
Tcm = pseudo critical temperature of the solution gas ( ${ }^{\circ} \mathrm{F}$ )
$y_{i}=$ mole fraction of individual gas components
$M_{0}=$ molecular weight of stock tank oil
$\mathrm{R}_{\mathrm{s}}=$ solution gas oil ratio (scf/stb)
$\mathrm{T}_{\mathrm{ci}}=$ critical temperature of gas components ( ${ }^{\circ} \mathrm{F}$ )
$\mathrm{T}_{\mathrm{r}}=$ reservoir temperature ( ${ }^{\circ} \mathrm{R}$ )
$\gamma_{0}=$ oil density (gm/cc)

Table 5 Calculation of bubble-point pressures


## data $=$ experimental results

Equation $1=$ calculated results using equation 1
EOS = calculated results with EOS
$\mathrm{R}_{5}=$ solution gas to oil ratio (sct/stb)
$\mathrm{T}_{\mathrm{cm}}=$ critical temperature of gas mixture ( ${ }^{\circ} \mathrm{F}$ )
$\mathrm{P}_{\mathrm{b}}=$ bubble-point pressure (psig)

Table 6 Prediction of bubble-point pressures at $150^{\circ} \mathrm{F}$

$\mathrm{P}_{\mathrm{b}}$ (correlation) = calculated by the various correlations
$P_{b}(E O S)=$ calculated by the tuned equation of state program

Bubble-point values calculated with this equation can be compared with the values from the EOS method (table 5). An example of the calculation is included in appendix $G$. This simple correlation provides substantial improvement over the Standing (1952), Lasater (1958), and Vasquez and Beggs (1980) methods in cases where the nitrogen, propane, or butane contents are high in the solution gases. Before this equation can be used, the composition of the solution gas must be analyzed. The pseudo critical temperature of the solution gas mixture can then be calculated with equation 3.

Table 6 compares the bubble-point pressures calculated with equation 1 at $150^{\circ} \mathrm{F}$ with those predicted by the tuned EOS program and the three published correlation methods. It shows that the bubble points predicted by equation 1 or by the tuned EOS do not change significantly with temperature. Thus, in the absence of an EOS program, equation 1 can be used for prediction of the bubble-point pressure of crude oil with temperatures up to $150^{\circ} \mathrm{F}$.

## Calculation of Oil Formation Volume Factors of Saturated Oil

Table 7 compares measured values for the saturated oil formation volume factor with calculated values obtained with either the Standing (1952) or the Vasquez and Beggs (1980) method. It shows that Vasquez and Beggs provide a reasonable estimate of the saturated oil formation volume factors even when the content of nonhydrocarbon gas is high, as in the case of the $\mathrm{CO}_{2}$ swelling tests. The Standing (1952) method substantially overestimates the oil swelling by $\mathrm{CO}_{2}$.

## Calculation of Isothermal Compressibility of Undersaturated Oil

Measurements of oil compressibility at pressures above the saturation pressure of the reservoir fluid are part of the PVT analysis; they provide data essential for evaluating the driving force during primary depletion from the original pressure of the reservoir down to the bubble-point pressure of the reservoir crude.

Table 7 Calculation of oil formation volume factor

|  | Pb | $B_{0}$ <br> Measured | B。 Standing |  | Bo Vasquez and Beggs |  | $\begin{aligned} & \mathrm{B}_{\circ} \\ & \text { EOS } \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | calc | \% dev | calc | \% dev | calc | \% dev |
| Energy | 1600 | 1.187 | 1.227 | 3.3 | 1.206 | 1.6 | 1.163 | -2 |
| Field | 910 | 1.124 | 1.107 | -2 | 1.107 | -1.5 | 1.123 | -0.1 |
|  | 400 | 1.072 | 1.076 | 0.4 | 1.086 | 1.4 | 1.071 | -0.1 |
|  | 100 | 1.039 | 1.037 | -0.2 | 1.036 | -0.3 | 1.040 | 0.1 |
| McCullum | 350 | 1.213 | 1.201 | -1 | 1.161 | -4.3 | 1.217 | 0.3 |
| Unit | 250 | 1.190 | 1.187 | -0.3 | 1.151 | -3 | 1.150 | -0.4 |
|  | 150 | 1.130 | 1.158 | 2.5 | 1.126 | -0.3 | 1.135 | 0.4 |
|  | 65 | 1.069 | 1.074 | 0.5 | 1.060 | 0.8 | 1.070 | 0.1 |
| Zeigler | 707 | 1.138 | 1.111 | -1.6 | 1.105 | -2.9 | 1.121 | -1 |
| Field | 388 | 1.100 | 1.113 | 1 | 1.083 | -1.5 | 1.099 | -0.1 |
|  | 180 | 1.065 | 1.072 | 0.7 | 1.067 | 0.2 | 1.070 | 0.5 |

Swelling test of McCullum crude with $\mathrm{CO}_{2}$

| $P_{b}$ | $R_{s}$ |  |  |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1400 | 1214 | 1.478 | 1.926 | 30 | 1.579 | 7 | 1.388 | -6 |
| 1200 | 1180 | 1.477 | 1.897 | 28 | 1.563 | 6 | 1.366 | -7 |
| 1000 | 860 | 1.370 | 1.630 | 19 | 1.413 | 3 | 1.318 | -4 |
| 800 | 642 | 1.268 | 1.456 | 15 | 1.311 | 3 | 1.240 | -2 |
| 400 | 233 | 1.116 | 1.158 | 4 | 1.119 | 0.3 | 1.121 | 0.4 |
|  | $\%$ dev $=\frac{B_{0}(\text { calc })-B_{0}(\text { data })}{B_{0}(\text { data })}$ |  |  |  |  |  |  |  |

Table 8 lists oil compressibility factors measured at various solution gas to oil ratios and reservoir pressure conditions. Using the Vasquez and Beggs (1980) correlation equation to calculate undersaturated oil compressibility does not provide an accurate estimation. Correlation equation 4 was based on the data obtained experimentally and calculated with EOS.
$C_{0}=\left(\operatorname{Exp}(1.85+0.0043(T-84)-0.0001122 P)+R_{s} \operatorname{Exp}(-3.7-0.00074 P)\right) 10^{-6}$
[4]
where
$\mathrm{R}_{\mathrm{s}}=$ solution gas to oil ratio (sct/stb)
$\mathrm{P}=$ pressure of interest (psi)
$\mathrm{T}=$ reservoir temperature ( ${ }^{\circ} \mathrm{F}$ )

## Viscosity Relationships

Two methods are commonly used to calculate the viscosity of a gas-saturated crude oils. Chew and Connally (1959) obtained gas-saturated viscosity values as follows:

$$
\begin{equation*}
U_{o s}=a U_{o d}^{b} \tag{5}
\end{equation*}
$$

where
$U_{\text {os }}=$ saturated oil viscosity (Cp)
$U_{o d}=$ gas free or dead oil viscosity (Cp)
$a$ and $b=$ function of solution gas to oil ratio obtained graphically
Beggs and Robinson (1975) obtained similar values from the following relationship:

Table 8 Comparison between values for undersaturated oil compressibility calculated by the methods of Vasquez and Beggs (1980) and equation 4

|  | $\begin{gathered} \text { Rs } \\ \text { (sct/stb) } \end{gathered}$ | $\gamma_{9}$ | $\begin{gathered} \mathrm{T} \\ \left({ }^{\circ} \mathrm{F}\right) \end{gathered}$ | API | $\underset{(\mathrm{psi})}{\mathrm{P}}$ | Compressibility ( $\mathrm{C}_{0}$ ) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Measured | Calculated |  |  |  |
|  |  |  |  |  |  |  | Vasquez and Beggs |  | Equation 4 |  |
|  |  |  |  |  |  | $\mathrm{psi}{ }^{-1}$ | psio ${ }^{-1}$ | \% dev | psi ${ }^{-1}$ | \% dev |
| Energy Field | 419 | 1.038 | 84 | 38 | 2000 | 7.7E-6 | $6.74 \mathrm{E}-6$ | 13 | 7.44E-6 | 3 |
|  | 210 | 1.001 | 84 | 38 | 1000 | 8.0E-6 | $3.41 \mathrm{E}-6$ | 57 | 8.15E-6 | -2 |
|  | 210 | 1.001 | 84 | 38 | 2000 | 6.7E-6 | $3.85 \mathrm{E}-6$ | 42 | 6.26E-6 | 6 |
| Zeigler | 198 | 1.098 | 95 | 38 | 1000 | 8.5E-6 | 3.80E-6 | 55 | 8.29E-6 |  |
| Field | 198 | 1.098 | 95 | 38 | 2000 | 6.8E-6 | $1.90 \mathrm{E}-6$ | 72 | 6.45E-6 | 5 |
|  | 124 | 1.109 | 95 | 38 | 1000 | 6.8E-6 | $1.66 \mathrm{E}-6$ | 76 | 7.47E-6 | -9 |
|  | 124 | 1.109 | 95 | 38 | 2000 | 5.8E-6 | 8.30E-7 | 43 | 6.03E-6 | -4 |
| McCullum | 319 | 1.312 | 98 | 37 | 1000 | 9.6E-6 | 7.66E-6 | 20 | 9.80E-6 | -2 |
| Unit | 319 | 1.312 | 98 | 37 | 2000 | 7.3E-6 | 3.83E-6 | 47 | 7.19E-6 | 1 |
|  | 113 | 1.310 | 98 | 37 | 1000 | 7.4E-6 | 5.00E-6 | 32 | 7.37 E -6 | 1 |
|  | 113 | 1.310 | 98 | 37 | 2000 | 5.5E-6 | $2.50 \mathrm{E}-6$ | 54 | 6.04E-6 | -9 |
| \% dev $=\frac{C_{0}(\text { data })-C_{0}(\text { calc })}{C_{0}(\text { data })}$ |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

$$
\begin{equation*}
U_{o s}=A U_{o d}{ }^{B} \tag{6}
\end{equation*}
$$

where

$$
\begin{aligned}
& A=10.715(\mathrm{Rs}+100)^{-0.515} \\
& B=5.44(\mathrm{Rs}+150)^{-0.338}
\end{aligned}
$$

Both of these equations give reasonable values for the gas-saturated viscosity, if the dead-oil viscosity at the temperature of interest is known. Table 9 compares values for gas-saturated viscosity obtained experimentally with those calculated by equations 5 and 6.

The calculated results from the Beggs and Robinson (1975) method are better than those from the Chew and Connally (1959) method applied to all three crude oils measured for this study. The EOS-PAK ${ }^{\text {TM }}$ program incorporates the Lohrenz, Bray, and Clark (1964) relationship for the calculation of oil viscosity (table 9). Calculation using this method requires knowledge of the critical volumes and densities of the mixture. A regression subroutine was used to match the viscosities of the gas-free oil at reservoir temperature. When this method was used, the calculated saturated viscosities were consistently higher than the measured values. (It is beyond the scope of this study to investigate the cause of this deviation.) When the EOS was tuned by matching the viscosity of gas-saturated oil, however, the calculated viscosities matched the experimental data rather closely. Thus, it is recommended that the experimental viscosity of saturated oil be used for tuning of the EOS.

## Correlation of Saturated Oil Densities

Values for the density of gas-saturated reservoir crude oil at various pressures at the reservoir temperature are required for engineering calculations. The method of Katz (1942) estimates live-oil density from oil API gravity, gas gravity, and the gas to oil ratio. The calculated values using this method are compared with the measured results in table 10. In general, the agreement is good within the range of pressure

Table 9 Calculation of saturated oil viscosity


Rs = solution gas oil ratio (sct/stb)
EOS(1) $=$ EOS calculated results by matching gas-free crude oil EOS(2) = EOS calculated results by matching viscosity of gas-saturated oil

Table 10 Calculation of saturated oil density by the method of Katz (1942)

|  | $\begin{gathered} \text { P } \\ \text { psig } \end{gathered}$ | $\begin{gathered} \mathrm{T} \\ { }^{\circ} \mathrm{F} \end{gathered}$ | $\underset{\text { Rcf/stb }}{\mathrm{R}_{\mathrm{s}}}$ | Oil density (gm/cc) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Gas-free | Gas-s calculated | urated measured |
| McCullum | 350 | 98 | 319 | 0.83 | 0.756 | 0.763 |
| Unit | 150 | 98 | 245 | 0.83 | 0.792 | 0.773 |
|  | 65 | 98 | 164 | 0.83 | 0.814 | 0.795 |
| Energy | 910 | 84 | 210 | 0.83 | 0.785 | 0.783 |
| Field | 100 | 84 | 65 | 0.83 | 0.811 | 0.795 |
| Zeigler | 707 | 95 | 195 | 0.83 | 0.781 | 0.787 |
| Field | 180 | 95 | 114 | 0.83 | 0.804 | 0.794 |

[^1]and gas to oil ratio under investigation. Thus, no attempt was made to construct a different correlation method.

## SUMMARY

Illinois crude oil samples frequently contain solution gas that has a nonhydrocarbon content higher than $10 \%$ and gravities higher than 1.2. The samples are thus outside the range of applicability of the commonly used methods for estimating bubble-point pressures. A simple equation (1) that agrees with both the limited PVT data and the calculated results of a tuned EOS has been derived for these types of crude oils.

The method of Vasquez and Beggs (1980) commonly used for the estimation of isothermal oil compressibility has been found to be inadequate for the samples analyzed. An equation (4) that shows better agreement with experimental values was developed. For the estimation of saturated oil formation volume factors, the Vasquez and Beggs method (1980) was found to be adequate. The relationship derived by Standing (1952) consistently overestimates oil swelling by $\mathrm{CO}_{2}$ for crude oil from the Aux Vases Formation in the Illinois Basin.

Values for saturated oil viscosity estimated, on the basis of the Beggs and Robinson (1975) method, from the viscosity of gas-free crude oil were found to be closer to experimental values than those based on the Chew and Connally (1959) equation.

Values for gas-saturated oil density calculated using the Katz (1942) method agreed closely with experimental determined values.

Further PVT experiments are needed to define the limits of applicability of equations 1 and 4.

## ACKNOWLEDGMENTS

I thank several colleagues at the Illinois State Geological Survey for their helpful guidance and assistance in the preparation and review of this manuscript. The assistance of Dennis J. Haggerty and Emmanuel O. Udegbunam with the sampling of oil and gas is also appreciated. As part of the research on reservoir characterization and improved oil recovery in the Illinois Basin, this project was funded by the U.S. Department of Energy under grant DE-FG22-89BC14250 and the Illinois Department of Energy and Natural Resources under grant AE-45. Support for the research is gratefully acknowledged.

## REFERENCES

Beggs, H. D., 1987, Oil system correlations, inH. B. Bradley, Petroleum Engineering Handbook: Society of Petroleum Engineers, Richardson, Texas, 22 p.

Beggs, H. D., and J. R. Robinson, 1975, Estimating the viscosity of crude oil systems: Joumal of Petroleum Technology, v. 27, September, p. 1140-1141.

Chew, J., and C. A. Connally, 1959, A viscosity correlation for gas-saturated crude oils: Transactions of the American Institute of Mining, Metallurgical, and Petroleum Engineers, v. 216, p. 23-25.

Coats, K. H., 1980, An equation of state compositional model: Society of Petroleum Engineers Journal, v. 20, October, p. 363-376.

Lasater, J. A., 1958, Bubble point pressure correlations: Transactions of the American Institute of Mining, Metallurgical, and Petroleum Engineers, v. 213, p.379-381.

Lahrenz, J., B. G. Bray, and C. R. Clark, 1964, Calculating viscosities for reservoir fluids from their compositions: Journal of Petroleum Technology, v. 16, no. 10, p. 1171-1176.

Meents, W. F., 1981, Analyses of Natural Gas in Illinois: Illinois State Geological Survey, Illinois Petroleum 122, 64 p.
Peng, D. Y., and D. B. Robinson, 1976, A new two-constant equation of state: Industrial Chemistry and Engineering Fundamentals, v. 15, p. 59-64.

Redlich, O., and J.N.S. Kwong, 1949, On the thermodynamics of solutions. V. An equation of state. Fugacities of Gaseous Solutions: Chemical Review,v. 44, p. 233-244.

Standing, M. B., 1952, Volumetric and Phase Behavior of Oil Field Hydrocarbon Systems, Reinhold Publishing Corp., 122 p.
Sim, S.S.K., in preparation, Standard operation procedures of ISGS PVT system, in Standard Operating Procedures for the Improved Oil Recovery Project: Illinois State Geological Survey, Open File Report series.

Smith, C. S., G. W. Tracy, and R. L. Farrar, 1992, Fluid properties, in Applied Reservoir Engineering: Oil \& Gas Consultants International Publications, Tulsa, Oklahoma, p.3-55.

Vasquez, M., and H. D. Beggs, 1980, Correlations for fluid physical property prediction: Journal of Petroleum Technology, v. 32, no. 6, p. 968-970.
Whitson, C. S., 1982, Effect of Physical Properties Estimation on Equation of State Predictions: Society of Petroleum Engineers, Paper 11200, 23 p.

## APPENDIX A TWO EQUATIONS OF STATE

Redlich and Kwong (1949) equation of state

$$
P=\frac{R T}{V-b}-\frac{a T^{-0.5}}{V(V+b)}
$$

where

$$
\begin{aligned}
& a=0.4278 \frac{R^{2} T_{c}^{2.5}}{P_{c}} \\
& b=0.0867 \frac{R T_{c}}{P_{c}}
\end{aligned}
$$

$\mathrm{P}_{\mathrm{C}}=$ critical pressure
$\mathrm{T}_{\mathrm{C}}=$ critical temperature

The Peng and Robinson (1976) equation of state

$$
P=\frac{R T}{V-b}-\frac{a(T)}{V(V+b)+b(V-b)}
$$

where

$$
\begin{aligned}
& b=0.07780 \frac{R T_{c}}{P_{c}} \\
& a(T)=\left(T_{c}\right) \alpha\left(T_{R}, \omega\right) \\
& \alpha^{1 / 2}\left(T_{R}\right)=1+\kappa\left(1-T_{R}^{0.5}\right) \\
& \kappa=0.37464+1.54226 \omega-0.26992 \omega^{2}
\end{aligned}
$$

where

$$
\begin{aligned}
\omega & =\text { acentric factor } \\
\mathrm{P}_{\mathrm{c}} & =\text { critical pressure } \\
\mathrm{T}_{\mathrm{c}} & =\text { critical temperature }
\end{aligned}
$$

For determination of a and b of mixtures

$$
\begin{aligned}
& a_{m}=\Sigma_{i} \Sigma_{j} x_{i} x_{j} a_{i j} \\
& b_{m}=\Sigma x_{i} b_{i} \\
& a_{i j}=\left(1-\delta_{i j}\right) \sqrt{a_{i} a_{j}}
\end{aligned}
$$

where
$\delta_{i j}=$ interaction parameter between component $i$ and $j$
For Redlich-Kwong EOS $\Omega_{A}=0.4278$ and $\Omega_{B}=0.0867$ and in Peng-Robinson EOS $\Omega_{A}=0.45724$ and $\Omega_{B}=0.0778$

During the tuning of the equation of state program, the constants $\Omega_{A}$ and $\Omega_{B}$ for the pseudo-fractions are sometimes altered in order to match the experimental data.

## APPENDIX B INPUT DATA AND RESULTS OF

 EOS MATCHINGTable B-1 Composition of reservoir fluid samples

|  | Zeigler | McCullum | Energy <br> sample 1 | Energy <br> sample 2 |
| :--- | ---: | :---: | :---: | :---: |
| $\mathrm{N}_{2}$ | 2.61 | 0.70 | 5.29 | 5.55 |
| $\mathrm{CO}_{2}$ | 0.08 | 0.15 | 0.10 | 0.13 |
| $\mathrm{C}_{1}$ | 10.22 | 8.34 | 10.18 | 14.46 |
| $\mathrm{C}_{2}$ | 7.81 | 12.60 | 7.76 | 10.04 |
| $\mathrm{C}_{3}$ | 9.67 | 14.12 | 6.00 | 7.75 |
| $\mathrm{I}-\mathrm{C}_{4}$ | 1.27 | 1.35 | 0.71 | 0.92 |
| $\mathrm{~N}-\mathrm{C}_{4}$ | 3.69 | 6.81 | 2.57 | 3.32 |
| $\mathrm{I}-\mathrm{C}_{5}$ | 0.24 | 0.93 | 0.59 | 0.53 |
| $\mathrm{~N}-\mathrm{C}_{5}$ | 1.36 | 1.28 | 1.19 | 1.28 |
| $\mathrm{~F}-1$ | 15.95 | 14.11 | 18.44 | 15.35 |
| $\mathrm{~F}-2$ | 35.74 | 28.17 | 37.16 | 32.04 |
| $\mathrm{~F}-3$ | 11.36 | 11.43 | 10.01 | 8.60 |

Table B-2 Thermodynamic properties of oil fractions used in EOS simulation

|  | Molecular <br> weight | Tc <br> ( ${ }^{\circ}$ ) | Pc <br> (Psi) | Acentric <br> factor | $\mathrm{Z}_{\mathrm{c}}$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Fraction-1 | 102.74 | 561.68 | 430.14 | 0.30337 | 0.398328 |
| Fraction-2 | 194.11 | 800.28 | 277.19 | 0.41406 | 0.360714 |
| Fraction-3 | 399.14 | 1152.01 | 160.77 | 0.80008 | 0.306332 |

## APPENDIX B continued

Table B-3 Gas composition matching

|  |  | $\begin{aligned} & \text { Differential } \\ & 910-400 \text { (psi) } \end{aligned}$ |  | $\begin{aligned} & \text { Differential } \\ & 400-100 \text { (psi) } \end{aligned}$ |  | $\begin{gathered} \text { Flash } \\ 910-0 \text { (psi) } \end{gathered}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | data | calc | data | calc |
| Energy | $\mathrm{N}_{2}$ | 37.22 | 33.82 | 12.91 | 19.04 | 15.96 | 18.96 |
| Field | $\mathrm{CO}_{2}$ | 0.85 | 0.17 | 1.82 | 0.38 | 1.2 | 0.33 |
|  | $\mathrm{C}_{1}$ | 46.08 | 51.73 | 46.09 | 45.76 | 35.57 | 36.42 |
|  | $\mathrm{C}_{2}$ | 9.33 | 10.57 | 23.96 | 24.84 | 24.53 | 24.55 |
|  | $\mathrm{C}_{3}$ | 3.81 | 2.91 | 10.96 | 7.95 | 13.27 | 13.99 |
|  | I-C4 | 0.33 | 0.15 | 0.81 | 0.43 | 1.55 | 1.07 |
|  | $\mathrm{N}-\mathrm{C}_{4}$ | 1.06 | 0.42 | 2.22 | 1.13 | 5.32 | 3.13 |
|  | I-C5 | 0.21 | 0.04 | 0.3 | 0.11 | 0.71 | 0.36 |
|  | $\mathrm{N}-\mathrm{C}_{5}$ | 0.38 | 0.07 | 0.44 | 0.17 | 1.02 | 0.57 |


|  |  | $\begin{aligned} & \text { Differential } \\ & 707-388 \text { (psig) } \\ & \text { data calc } \end{aligned}$ |  | $\begin{aligned} & \text { Differential } \\ & 388-180 \text { (psig) } \\ & \text { data calc } \end{aligned}$ |  | $\begin{gathered} \text { Flash } \\ 707-0 \text { (psig) } \\ \text { data calc } \end{gathered}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Zeigler | $\mathrm{N}_{2}$ | 30.88 | 25.04 | 11.98 | 14.15 | 8.99 | 9.00 |
| Field | $\mathrm{CO}_{2}$ | 0.45 | 0.14 | 0.58 | 0.23 | 0.22 | 0.25 |
|  | $\mathrm{C}_{1}$ | 49.6 | 58.91 | 52.61 | 56.44 | 27.36 | 34.86 |
|  | $\mathrm{C}_{2}$ | 9.55 | 10.39 | 17.91 | 18.54 | 20.9 | 23.95 |
|  | $\mathrm{C}_{3}$ | 6.06 | 4.48 | 12.22 | 8.69 | 25.88 | 23.05 |
|  | I-C4 | 0.52 | 0.27 | 0.99 | 0.53 | 3.38 | 2.11 |
|  | $\mathrm{N}-\mathrm{C}_{4}$ | 1.33 | 0.58 | 2.41 | 1.11 | 9.85 | 5.02 |
|  | I-C5 | 0.13 | 0.02 | 0.31 | 0.03 | 0.6 | 0.17 |
|  | $\mathrm{N}-\mathrm{C}_{5}$ | 0.34 | 0.08 | 0.43 | 0.14 | 2.03 | 0.79 |


|  |  | Differential$350-250$ (psig)data calc |  | Differential$250-150$ (psig)data calc |  | Differential150-65 (psig)data calc |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| McCullum | $\mathrm{N}_{2}$ | 7.95 | 9.07 | 3.37 | 2.78 | 0.51 | 0.42 |
| Unit | $\mathrm{CO}_{2}$ | 0.39 | 0.46 | 0.45 | 0.52 | 0.48 | 0.50 |
|  | $\mathrm{C}_{1}$ | 47.39 | 46.44 | 40.23 | 39.39 | 19.15 | 22.66 |
|  | $\mathrm{C}_{2}$ | 24.09 | 29.58 | 30.77 | 36.44 | 40.76 | 40.97 |
|  | $\mathrm{C}_{3}$ | 15.57 | 11.65 | 20.73 | 16.74 | 29.58 | 27.68 |
|  | I-C4 | 0.80 | 0.52 | 0.98 | 0.77 | 1.89 | 1.42 |
|  | $\mathrm{N}-\mathrm{C}_{4}$ | 2.28 | 1.89 | 2.60 | 2.80 | 5.76 | 5.31 |
|  | I-C4 | 0.31 | 0.12 | 0.24 | 0.17 | 0.58 | 0.33 |
|  | $\mathrm{N}-\mathrm{C}_{5}$ | 0.45 | 0.13 | 0.34 | 0.18 | 0.75 | 0.35 |

## APPENDIX C PVT ANALYSIS OF RESERVOIR FLUID, ALEX LEASE, ZEIGLER FIELD, FRANKLIN COUNTY

## Procedures

The oil sample obtained from the well head was flashed to room condition, and the gas to oil ratio was measured to calculate the quantity of gas required for the recombination to the specified solution gas to oil ratio, as provided by Mike Gallagher of the Gallagher Drilling Company.

The casing gas sample and the oil samples were physically recombined to produce a fluid that has a solution gas to oil ratio of approximately 200 cubic feet of gas per barrel of oil. Subsequent flash separation analysis of this recombined fluid gave a gas to oil ratio of 195 cubic feet per barrel. The pressure to volume relationship and bubble-point pressure were determined by performing a constant composition expansion on a portion of the recombined fluid at a reservoir temperature of $95^{\circ} \mathrm{F}$. The results of the constant composition expansion are presented in table C-3.

A single stage separator test was then carried out. The gas to oil ratio, formation volume factor, gas gravity, gas composition, and stock tank oil gravity were determined. The data are summarized in table C-4.

A three step, differential vaporization test was carried out on the recombined fluid at the reservoir temperature of $95^{\circ} \mathrm{F}$. At each step, the equilibrium gas volume was measured first at cell conditions and then at standard conditions after removal of the gas from the cell. The gas was analyzed by gas chromatographic technique. Results of the gas analysis are reported in tables $\mathrm{C}-6$ and $\mathrm{C}-7$. At each step, a portion of the resulting oil sample was collected for determination of oil density and the solution gas to oil ratio. Results of the analysis are reported on table C-5.

The viscosity of the fluid was measured by a capillary viscometer at three pressure points, starting from the initial reservoir pressure of 1250 psig. The results are summarized in table C-8.

## APPENDIX C continued

Table C-1 Field data

| Company | Gallagher Drilling Company |
| :--- | :--- |
| Well | Alex No. 1 |
| Field | Zeigler |
| Formation | Aux Vases |
| Location | Sec.19, T7S, R2E |
| County | Franklin |
| Original reservoir pressure | 1250 psig |
| Total depth | 2650 ft |
| Production interval | $2,611-2,650 \mathrm{ft}$ |
| Reservoir temperature | $95^{\circ} \mathrm{F}$ |
| Date sampled | May 22,1991 |
| Separator temperature | $85^{\circ} \mathrm{F}$ |
| Separator pressure | Atmospheric |
| Well status | Pumping |
| Gas-oil ratio (stock tank) | 200 scf/stb |
| Water cut | Approximately 20\% |

Table C-2 PVT summary

| Reservoir pressure (psig) | 1250.0 |
| :--- | :---: |
| Reservoir temperature ( ${ }^{\circ} \mathrm{F}$ ) | 95.0 |
| Density (g/cm3) | 0.7869 |
| Specific volume (scf//b) | 0.02036 |
| Viscosity (Cp at 1250 psig) | 1.96 |
| Viscosity (Cp at 800 psig) | 1.88 |
| Formation volume factor (rb/stb) | 1.138 |
| Gas-oil ratio (scf/stb) | 195.3 |
| Compressibility coefficient (vol/vol/psix10 ${ }^{-6}$ ) |  |
| from 2000 psig to 4000 psig | 5.46 |
| from 1250 psig to 2000 psig | 7.37 |
| from 703 psig to 1250 psig | 9.15 |
| Thermal expansion $\left(V^{\circ}\right.$ at $95^{\circ}$ FNo at $77^{\circ} \mathrm{F}$ ) | 1.008 |

APPENDIX C continued

Table C-3 Pressure to volume relationship

| Pressure <br> psig | Relative <br> volume <br> (VNsat) | Y-function |
| :---: | :---: | :---: |
| 3980 | 0.9787 |  |
| 3000 | 0.9832 |  |
| 2000 | 0.9896 |  |
| 1750 | 0.9910 |  |
| 1500 | 0.9929 |  |
| 1250 | 0.9950 |  |
| 1000 | 0.9962 |  |
| 914 | 0.9968 |  |
| 821 | 0.9976 |  |
| 756 | 0.9992 |  |
| 737 | 0.9997 |  |
| 707 | 1.0000 |  |
| 691 | 1.0026 | 7.16 |
| 671 | 1.0071 | 7.00 |
| 664 | 1.0088 | 6.83 |
| 655 | 1.0112 | 6.38 |
| 606 | 1.0256 | 5.51 |
| 512 | 1.0684 | 4.80 |
| 438 | 1.1270 | 4.59 |
| 393 | 1.1730 | 4.24 |
| 345 | 1.2462 | 3.89 |
| 314 | 1.3202 | 3.64 |
| 208 | 1.6562 |  |
| 165 | 2.1075 |  |

Bubble-point pressure $=707$ psig
Vsat $=$ Bubble-point fluid volume
Y -Function $=($ Psat-P)/(P(V/ssat)-1))

Table C-4 Flash separator test

| Saturation <br> pressure <br> (psig) | Reservoir <br> temp. <br> $\left({ }^{\circ} \mathrm{F}\right)$ | Gas/oil <br> ratio* <br> $(\mathrm{scf} / \mathrm{stb})$ | Formation <br> volume** <br> factor | Stock <br> tank oil <br> gravity | Flash <br> gas |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 707 | 95 | 195.1 | 1.138 | 38.6 | 1.10 |

[^2]
## APPENDIX C continued

Table C-5 Differential vaporization at $95^{\circ} \mathrm{F}$

| $\begin{aligned} & \text { Pressure } \\ & \text { (P) } \\ & \text { (psig) } \end{aligned}$ | Relative oil volume* ( $\mathrm{B}_{\mathrm{o}}$ ) (rb/stb) | Oil density ( $\gamma_{0}$ ) (gm/cc) | Solution gas/oil** ( $\mathrm{R}_{\mathrm{s}}$ ) (scf/stb) | Gas expansion factor* $\left(\mathrm{B}_{\mathrm{g}}\right)$ (scf/rcf) | Gas deviation factor (Z) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 707 | 1.138 | 0.7870 | 195.1 |  |  |
| 388 | 1.100 | 0.7878 | 184.4 | 29.71 | 0.88 |
| 180 | 1.065 | 0.7935 | 114.6 | 13.19 | 0.94 |
| 0 | 1.017 | 0.8151 | 0.0 | 0.93 | 0.99 |

* Volume at indicated pressure and temperature per volume of stock tank oil at $60^{\circ} \mathrm{F}$
** Volume of gas at 14.7 psia and $60^{\circ} \mathrm{F}$ per volume of stock tank oil at $60^{\circ} \mathrm{F}$
- Volume of gas at 14.7 psig and $60^{\circ} \mathrm{F}$ per volume of gas at indicated pressure and temperature

Table C-6 Gas composition

|  | Casing gas | Differential vaporization test <br> 388 psig |  |
| :--- | :---: | ---: | :---: |
| $\mathrm{CO}_{2}$ | 0.20 | 0.45 | 0.58 |
| $\mathrm{~N}_{2}$ | 9.15 | 30.88 | 11.98 |
| $\mathrm{C}_{1}$ | 40.37 | 49.60 | 52.61 |
| $\mathrm{C}_{2}$ | 17.05 | 9.55 | 17.91 |
| $\mathrm{C}_{3}$ | 19.18 | 6.06 | 12.22 |
| $1-\mathrm{C}_{4}$ | 2.40 | 0.52 | 0.99 |
| $\mathrm{~N}-\mathrm{C}_{4}$ | 7.32 | 1.33 | 2.41 |
| $\mathrm{l}-\mathrm{C}_{5}$ | 0.99 | 0.13 | 0.31 |
| $\mathrm{~N}-\mathrm{C}_{5}$ | 1.39 | 0.34 | 0.43 |
| $\mathrm{C}_{6+}$ | 1.94 | 1.13 | 0.56 |

## APPENDIX C continued

Table C-7 Solution gas composition from flash separation

|  | 707 psig | 388 psig | 180 psig |
| :--- | ---: | ---: | ---: |
| $\mathrm{CO}_{2}$ | 0.22 | 0.51 | 0.48 |
| $\mathrm{~N}_{2}$ | 6.99 | 3.70 | 0.60 |
| $\mathrm{C}_{1}$ | 27.36 | 26.88 | 19.24 |
| $\mathrm{C}_{2}$ | 20.90 | 25.51 | 27.93 |
| $\mathrm{C}_{3}$ | 25.88 | 28.68 | 34.31 |
| $\mathrm{I} \mathrm{C}_{4}$ | 3.38 | 3.13 | 3.75 |
| $\mathrm{~N}-\mathrm{C}_{4}$ | 9.85 | 8.12 | 9.47 |
| $\mathrm{I}-\mathrm{C}_{5}$ | 0.60 | 1.00 | 1.15 |
| $\mathrm{~N}-\mathrm{C}_{5}$ | 2.13 | 1.29 | 1.45 |
| $\mathrm{C}_{6+}$ | 2.68 | 1.18 | 1.63 |

Table C-8 Oil viscosity at $95^{\circ} \mathrm{F}$

| Pressure <br> (psig) | Oil viscosity <br> (centipoise) |
| :---: | :---: |
| 1250 | 1.96 |
| 707 | 1.88 |
| 180 | 2.19 |

# APPENDIX D PVT ANALYSIS OF RESERVOIR FLUID (SAMPLE 1), MCCULLUM UNIT, DALE CONSOLIDATED FIELD, FRANKLIN COUNTY 

## Procedures

PVT studies on this oil were carried out for the purpose of providing PVT data for the ISGS reservoir simulation study of Dale Consolidated Field. The McCullum lease has been producing since September 1984, and the producing gas to oil ratio of McCullum Nos. 2 and 3 wells, as measured on December 3, 1985, was 1,917 cubic feet per stock barrel of oil. Saturation pressure of the reservoir fluid was estimated using both the Standing (1952) and the Lasater (1958) correlations, and a solution gas to oil ratio of $1,917 \mathrm{scf} / \mathrm{stb}$, oil API of $36^{\circ}$, gas gravity of 1.2 , and reservoir temperature of $98^{\circ} \mathrm{F}$. Both methods resulted in estimated bub-ble-point pressures of more than 3,000 psi.

This saturation pressure is obviously too high for a reservoir of only 3,109 feet deep. The reservoir has thus been producing below bubble-point pressure, and the produced gas has included both solution and free gases.

Because information on the initial reservoir pressure, the original solution gas to oil ratio, and the saturation pressure of the reservoir fluid was unavailable, two reservoir fluid samples with different saturation pressures were prepared and analyzed to provide information on the sensitivity of PVT properties to the variation of saturation pressure. The first sample was prepared with saturation pressure of 150 psig; the results of this study comprise appendix D. The second sample was prepared with saturation pressure of 350 psig ; the results of the analysis are included in appendix $E$. Since it is uncertain whether any of the samples under study represent the original reservoir fluid, extreme care must be taken when using the results.

The oil sample obtained from the well head and the casing gas were physically recombined to give a reservoir fluid with a bubble-point pressure of 150 psig. Subsequent flash separation analysis of this recombined fluid gave a gas to oil ratio of 113 cubic feet of gas per barrel of stock tank oil. The pressure volume relationship and bubble-point pressure were determined by performing a constant composition expansion on a portion of the recombined fluid at a reservoir temperature of $98^{\circ} \mathrm{F}$. The results of the constant composition expansion are presented in table D-3 of this report.

A single stage separator test was then carried out. The gas to oil ratio, formation volume factor, gas gravity, gas composition, and stock tank oil gravity were determined. These data are summarized in table D-4.

A three step, differential liberation test was carried out on the recombined fluid at the reservoir temperature of $98^{\circ} \mathrm{F}$. At each step, the equilibrium gas volume was first measured at cell conditions and then at standard conditions after removal of the gas from the cell. The gas was analyzed by gas chromatographic techniques; the results are reported in table D-6. At each step, a portion of the resulting oil sample was collected for the determination of oil density and solution gas to oil ratio. The results of these analyses are reported in table D-5 .

The viscosity of the fluid was measured by capillary viscometer at three pressure points, starting from a pressure of 1400 psig and decreasing to 10 psig . The results are summarized in table D-7.

Table D-1 Field data

| Company | Farrar Oil Company |
| :--- | :--- |
| Well | McCullum Community No. 2 |
| Field | Dale Consolidated |
| Formation | Aux Vases |
| Location | Sec. 24, T7S, R4E |
| County | Franklin |
| Total depth | 3209 ft |
| Production interval | $3,158-3,176 \mathrm{ft}$ |
| Reservoir temperature | $98^{\circ} \mathrm{F}$ |
| Date sampled | July 11, 1991 |
| Separator temperature | $80^{\circ} \mathrm{F}$ |
| Separator pressure | Atmospheric |
| Well status | Pumping |
| Well tubing pumping pressure | $50-100$ psig |
| Production gas to oil ratio (Dec. 3, 1985) | 1917 scf/stb |
| Water cut | Not significant |

Table D-2 PVT summary

| Reservoir pressure (psig) | 1250 |
| :--- | :---: |
| Reservoir temperature ( ${ }^{\circ} \mathrm{F}$ ) | 98.0 |
| Density (g/cm ${ }^{3}$ ) | 0.7902 |
| Specific volume | 0.02028 |
| Viscosity (Cp at 1250 psig ) | 2.24 |
| Viscosity (Cp at 800 psig ) | 2.09 |
| Formation volume factor (barrel/barrel) | 1.103 |
| Gas to oil ratio (scf/stb) | 113.2 |
| Compressibility coefficient (vol/vol//psix10-6) |  |
| from 2000 psig to 3000 psig | 4.75 |
| from 1500 psig to 2000 psig | 5.50 |
| from 1000 psig to 1500 psig | 6.80 |
| from 500 psig to 1000 psig | 7.30 |
| from 300 Psig to 500 psig | 7.80 |
| from 150 psig to 300 Psig | 9.60 |

## APPENDIX D continued

Table D-3 Pressure to volume relationship

| Pressure <br> (psig) | Relative <br> Volume <br> (VNsat) |
| :---: | :---: |
| 3000 | 0.9824 |
| 2500 | 0.9847 |
| 2000 | 0.9872 |
| 1500 | 0.9900 |
| 1000 | 0.9933 |
| 750 | 0.9952 |
| 500 | 0.9970 |
| 300 | 0.9986 |
| 150 | 1.0000 |
| 128 | 1.0115 |
| 122 | 1.0278 |
| 118 | 1.0432 |
| 109 | 1.0797 |
| 92 | 1.1486 |
| 84 | 1.2423 |
| 75 | 1.3282 |
| 59 | 1.4898 |
| 50 | 1.7013 |

Bubble-point pressure $=150 \mathrm{psig}$
$V_{\text {sat }}=$ Bubble-point fluid volume

Table D-4 Flash separator test

| Saturation <br> pressure <br> (psig) | Reservoir <br> temp. <br> ( ${ }^{\circ}$ F) | Gas/oil <br> ratio* <br> (scf/stb) | Formation <br> volume <br> factor** | Stock <br> tank oil <br> gravity | Flash <br> gas <br> gravity |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 150 | 98 | 113.2 | 1.103 | 37.0 | 1.31 |

[^3]Table D-5 Differential vaporization at $98^{\circ} \mathrm{F}$

| $\begin{aligned} & \text { Pressure } \\ & \text { (psig) } \end{aligned}$ | Relative oil volume* ( $\mathrm{B}_{\mathrm{o}}$ ) (rb/stb) |  | Solution gas/oil** ratio ( $\mathrm{R}_{\mathrm{s}}$ ) (scf/stb) | Gas expansion factor* ( $\mathrm{B}_{\mathrm{g}}$ ) (rcf/scf) | Gas gravity |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2000 | 1.061 |  |  |  |  |
| 1000 | 1.085 |  |  |  |  |
| 150 | 1.103 | 0.7902 | 113.2 |  |  |
| 50 | 1.089 | 0.7942 | 92.4 | 4.30 | 1.06 |
| 10 | 1.062 | 0.7997 | 51.0 | 1.58 | 1.21 |

* Volume at indicated pressure and temperature per volume of stock tank oil at $60^{\circ} \mathrm{F}$
** Volume of gas at 14.7 psia and $60^{\circ} \mathrm{F}$ per volume of stock tank oil at $60^{\circ} \mathrm{F}$
- Volume of gas at 14.7 psig and $60^{\circ} \mathrm{F}$ per volume of gas at indicated pressure and temperature

Table D-6 Gas composition

|  | Field <br> gas | Flash <br> separation | Differential vaporization <br> $(150-50)$ |  |
| :--- | ---: | :---: | ---: | ---: |
| $\mathrm{CO}_{2}$ | 0.25 | 0.19 | 0.36 | 0.33 |
| $\mathrm{~N}_{2}$ | 1.14 | 0.91 | 2.38 | 0.36 |
| $\mathrm{C}_{1}$ | 19.23 | 19.29 | 40.54 | 16.30 |
| $\mathrm{C}_{2}$ | 30.40 | 30.49 | 26.15 | 34.02 |
| $\mathrm{C}_{3}$ | 31.22 | 31.31 | 22.40 | 31.98 |
| $\mathrm{IC}_{4}$ | 2.84 | 2.84 | 1.46 | 2.75 |
| $\mathrm{NC}_{4}$ | 10.32 | 10.35 | 4.57 | 9.76 |
| $\mathrm{IC}_{5}$ | 1.32 | 1.33 | 0.63 | 1.24 |
| $\mathrm{NC}_{5}$ | 1.77 | 1.77 | 0.85 | 1.71 |
| $\mathrm{C}_{6}+$ | 1.51 | 1.52 | 0.68 | 1.56 |
| Ave mw | 37.61 | 37.63 | 30.22 | 37.94 |
| Gas gravity | 1.31 | 1.31 | 1.05 | 1.32 |

Table D-7 Oil viscosity

| Pressure <br> (psig) | Oil viscosity <br> (centipoise) |
| ---: | :---: |
| 1400 | 2.24 |
| 150 | 2.09 |
| 50 | 2.19 |
| 10 | 2.41 |

## APPENDIX E PVT ANALYSIS OF RESERVOIR FLUID (SAMPLE 2), MCCULLUM UNIT, DALE CONSOLIDATED FIELD, FRANKLIN COUNTY

## Procedures

The oil sample obtained from the well head and the casing gas were physically recombined to give a reservoir fluid with a bubble-point pressure of 350 psig. Subsequent flash separation analysis of this recombined fluid gave a gas to oil ratio of 319.4 cubic feet of gas per barrel of stock tank oil. The pressure to volume relationship and bubble-point pressure were determined by performing a constant composition expansion on a portion of the recombined fluid at a reservoir temperature of $98^{\circ} \mathrm{F}$. The results of the constant composition expansion are presented in table E-3.

A single stage separator test was then carried out. The gas to oil ratio, formation volume factor, gas gravity, gas composition, and stock tank oil gravity were determined. The data are summarized in tables E-4 and E-6.

A three step, differential liberation test was carried out on the recombined fluid at the reservoir temperature of $98^{\circ} \mathrm{F}$. At each step, the equilibrium gas volume was measured first at cell conditions and then at standard conditions after removal of the gas from the cell. The gas was analyzed by gas chromatographic technique; the results are reported in table E-7. At each step, a portion of the resulting oil sample was collected for the determination of oil density and solution gas to oil ratio. The results of the analysis are reported in table E-5.

The viscosity of the fluid was measured by capillary viscometer at three pressure points, starting from a pressure of 1500 psig and decreasing to 10 psig . The results are summarized in table E-8.

## APPENDIX E continued

Table E-1 Field data

| Company | Farrar Oil Company |
| :--- | :--- |
| Well | McCullum Community No. 2 |
| Field | Dale Consolidated |
| Formation | Aux Vases |
| Location | Sec. 24, T7S, R4E |
| County | Franklin |
| Original reservoir pressure | 1250 psig |
| Total depth | $3,209 \mathrm{ft}$ |
| Production interval | $3,158-3,176 \mathrm{ft}$ |
| Reservoir temperature | $98^{\circ} \mathrm{F}$ |
| Date sampled | July 11, 1991 |
| Separator temperature | $80^{\circ} \mathrm{F}$ |
| Separator pressure | Atmospheric |
| Well status | Pumping |
| Gas to oil ratio (stock tank)(Dec. 3,1985$)$ | 1917 scf/stb |
| Water cut | No |

Table E-2 PVT summary

| Reservoir pressure ( psig ) | 1250 |
| :--- | :---: |
| Reservoir temperature ( ${ }^{\circ} \mathrm{F}$ ) | 98.0 |
| Density ( $\mathrm{g} / \mathrm{cm}^{3}$ ) | 0.7902 |
| Specific volume (scfnb) | 0.02028 |
| Viscosity (Cp at 1400 psig) | 1.35 |
| Viscosity (Cp at 350 psig) | 1.24 |
| Formation volume factor (barrel/barrel) | 1.213 |
| Gas to oil ratio (scf//tb) | 319.4 |
| Compressibility coefficient (vol/vol/psix $10^{-6}$ ) |  |
| from 2000 psig to 3000 psig | 5.84 |
| from 1500 psig to 2000 psig | 7.35 |
| from 1000 psig to 1500 psig | 8.60 |
| from 500 psig to 1000 psig | 9.60 |

## APPENDIXE continued

Table E-3 Pressure to volume relationship

| Pressure <br> (psig) | Relative <br> volume <br> (VN sat |
| :---: | :---: |
| 3000 | 0.9803 |
| 2500 | 0.9829 |
| 2000 | 0.9868 |
| 1500 | 0.9906 |
| 1300 | 0.9923 |
| 1100 | 0.9936 |
| 900 | 0.9953 |
| 700 | 0.9970 |
| 500 | 0.9987 |
| 360 | 0.9999 |
| 350 | 1.0000 |
| 335 | 1.0500 |
| 315 | 1.1180 |
| 292 | 1.2100 |
| 250 | 1.3800 |
| 180 | 1.5825 |

Bubble-point pressure $=350$ psig
Vsat = Bubble point fluid volume

Table E-4 Flash separator test

| Saturation <br> pressure <br> (psig) | Reservoir <br> temp. <br> $\left({ }^{\circ} \mathrm{F}\right)$ | Gas/oil <br> ratio* <br> (scf/stb) | Formation <br> volume <br> factor** | Stock <br> tank oil <br> gravity | Flash <br> gas <br> gravity |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 350 | 98 | 319.4 | 1.213 | 37.0 | 1.30 |

[^4]
## APPENDIXE continued

Table E-5 Differential vaporization at $98^{\circ} \mathrm{F}$

|  | Relative <br> oil <br> velume* <br> (Bossure | Oil <br> (psig) | Solution <br> ( $\gamma_{0}$ ) | Sas/oil <br> factor** <br> (Rs) | Gas <br> expansion <br> $(\mathrm{Bg})$ |
| :---: | :---: | :---: | :---: | :---: | :---: |

* Volume at indicated pressure and temperature per volume of stock tank oil at $60^{\circ} \mathrm{F}$
** Volume of gas at 14.7 psia and $60^{\circ} \mathrm{F}$ per volume of stock tank oil at $60^{\circ} \mathrm{F}$
- Volume of gas at 14.7 psig and $60^{\circ} \mathrm{F}$ per volume of gas at indicated pressure and temperature

Table E-6 Gas composition

|  |  | Flash separation test <br> ( <br>  <br>  <br> Casing gas |  |
| :--- | :---: | :---: | ---: |
| $\mathrm{CO}_{2}$ | 0.25 | 0.29 | 0.06 |
| $\mathrm{~N}_{2}$ | 1.14 | 0.71 | 0.08 |
| $\mathrm{C}_{1}$ | 19.23 | 17.75 | 0.59 |
| $\mathrm{C}_{2}$ | 30.40 | 30.70 | 23.07 |
| $\mathrm{C}_{3}$ | 31.22 | 33.88 | 51.09 |
| $\mathrm{IC}_{4}$ | 2.84 | 2.81 | 4.63 |
| $\mathrm{NC}_{4}$ | 10.32 | 9.41 | 15.21 |
| $\mathrm{C}_{5}$ | 1.32 | 1.04 | 1.64 |
| $\mathrm{NC}_{5}$ | 1.77 | 1.37 | 2.09 |
| $\mathrm{C}_{6+}$ | 1.51 | 1.05 | 1.53 |
| Ave mw | 37.61 | 37.39 | 45.17 |
| Gas gravity | 1.31 | 1.30 | 1.57 |

## APPENDIX E continued

Table E-7 Gas composition from differential vaporization tests

|  | $(350-250)$ <br> psig | $(250-150)$ <br> psig | $(150-65)$ <br> psig | $(65-10)$ <br> psig |
| :--- | ---: | ---: | ---: | ---: |
| $\mathrm{CO}_{2}$ | 0.39 | 0.45 | 0.48 | 0.23 |
| $\mathrm{~N}_{2}$ | 7.98 | 3.37 | 0.51 | 0.02 |
| $\mathrm{C}_{1}$ | 47.39 | 40.23 | 19.15 | 4.99 |
| $\mathrm{C}_{2}$ | 24.09 | 30.77 | 40.76 | 36.58 |
| $\mathrm{C}_{3}$ | 15.57 | 20.73 | 29.58 | 41.87 |
| $\mathrm{C}_{4}$ | 0.80 | 0.98 | 1.89 | 3.12 |
| $\mathrm{NC}_{4}$ | 2.28 | 2.60 | 5.76 | 9.93 |
| $\mathrm{IC}_{5}$ | 0.31 | 0.26 | 0.58 | 1.03 |
| $\mathrm{NC}_{5}$ | 0.45 | 0.34 | 0.75 | 1.36 |
| $\mathrm{C}_{6+}$ | 0.73 | 0.27 | 0.55 | 0.88 |
| Ave mw | 27.10 | 28.73 | 34.60 | 40.44 |
| Gas gravity | 0.94 | 1.00 | 1.20 | 1.40 |

Table E-8 Oil viscosity

| Pressure <br> (psig) | Oil viscosity <br> (centipoise) |
| ---: | :---: |
| 1500 | 1.50 |
| 350 | 1.39 |
| 150 | 2.33 |
| 65 | 2.44 |
| 10 | 2.69 |

## APPENDIX F PVT ANALYSIS OF RESERVOIR FLUID, ENERGY FIELD,WILLIAMSON COUNTY

## Procedures

Casing gas and well head oil were collected from the Morgan Coal No. 6 well of Energy Field in Williamson County, Illinois, for the purpose of performing reservoir fluid analyses. Because of uncertainty regarding the actual solution gas to oil ratio and original reservoir fluid saturation pressure, it was decided to recombine the well head oil with different amounts of solution gas to produce three reservoir fluids of varying gas to oil ratios. The basic PVT properties of these samples, such as saturation pressure, gas to oil ratio, and oil formation volume factors, were determined and later summarized (table F-2).

The pressure to volume relationship and bubble-point pressure were determined by performing a constant composition expansion on each of these recombined fluids at a reservoir temperature of $84^{\circ} \mathrm{F}$. The results of the constant composition expansion are presented in tables F-3 to F-5.

A single stage separator test on the sample with saturation pressure of 910 psig was then carried out. The gas to oil ratio, formation volume factor, gas gravity, gas composition, and stock tank oil gravity were determined. The data are summarized in table F-6.

A three step, differential vaporization test was carried out on the same recombined fluid at the reservoir temperature of $84^{\circ} \mathrm{F}$. At each step, the equilibrium gas volume was first measured at cell conditions and then at standard conditions after removal of the gas from the cell. The gas was analyzed by gas chromatographic technique; the results are reported in table F-8. At each step, a portion of the resulting oil sample was collected for the determination of oil density and solution gas to oil ratio. The results of the analysis are reported in table F-7.

The viscosity of the fluid was measured by capillary viscometer at four pressure points, starting from the initial pressure of 2,000 psig. The results are summarized in table F-9.

## Discussion

The basic PVT properties of three recombined reservoir fluid samples obtained by recombination of the casing gas and well-head oil produced from the Morgan Coal No. 6 well were measured. From the results presented in table F-2 and figures F-1 and F-2, the relationships between saturation pressure, solution gas to oil ratio, and oil formation volume factor are close to linear within the limits of investigation. These relationships can be used by reservoir or production engineers for the calculation of oil reserves as well as for planning production strategy.

The differential vaporization test of sample 3 was performed giving the oil formation volume factors, gas to oil ratios, oil density, gas expansion factors, and oil viscosity at the pressures of 400 psig and 100 psig. As shown on table F-7, the change in PVT properties is much smaller near the initial bubble-point pressure of 910 psig than at a lower saturation pressure of 100 psig . This observation is a reflection of the facts that (a) the solubilities of gases in the oil phase are in the order of $\mathrm{N}_{2}<\mathrm{C}_{1}<\mathrm{CO}_{2}<\mathrm{C}_{2}<\mathrm{C}_{3}<\mathrm{C}_{4}$; and (b) the effect of dissolved gases on the oil swelling and oil viscosity reduction are also in the same order of $\mathrm{N}_{2}<$ $\mathrm{C}_{1}<\mathrm{CO}_{2}<\mathrm{C}_{2}<\mathrm{C}_{3}<\mathrm{C}_{4}$; and (c) the solution gases of the Energy Field contain


Figure F-1 Saturation pressure relative to $\mathrm{B}_{\circ}$ (Energy Field, Morgan Coal No. 6).


Figure F-2 Saturation pressure relative to GOR (Energy Field, Morgan Coal No. 6).
relatively large amounts of nitrogen (15.96\%), propane (13.27\%) and butane (5.32\%).

During differential vaporization, as the pressure of the sample is decreased, the less soluble nitrogen and methane are being released from the reservoir fluid. As shown in table F-8, the composition of the gases liberated from 910 to 400 psig contain $37.32 \%$ of nitrogen and $46.08 \%$ of methane. The volume of gases released is only $21 \%$ of the total solution gas. The change in physical properties such as oil swelling and viscosity reduction are minimal because (1) the effects of dissolved nitrogen and methane on the oil swelling and viscosity reduction are smaller, and they are also partly counter-balanced by the increase in pressure required to dissolve to gases; and (2) the amount of gas dissolved per unit pressure is smaller.

At low saturation pressure, the change in oil properties measured reflects the effect of dissolved propane and butane on the oil. Their solubilities are large, and the effect on the volume and viscosity is much more pronounced for a small change in pressure.

This observation may partially explain the rapid decline in reservoir pressure during primary production. For a solution gas drive reservoir, the amount of gases released during the initial phase of pressure depletion is small, and thus does not provide a strong driving force for the production of oil.

Conversely, most of the dissolved gases, such as propane and butane, are kept in solution up to relatively low pressure. Thus a lower oil viscosity and higher oil saturation will be maintained and help to improve oil recovery during the waterflood phase of the project.

## APPENDIX F continued

Table F-1 Field data

| Company | Budmark Oil Company |
| :--- | :--- |
| Well | Morgan Coal No. 6 |
| Field | Energy |
| Formation | Aux Vases |
| Location | Sec.4, T9S, R2E |
| County | Williamson |
| Original reservoir pressure | 921 psig |
| Total depth | $2,400 \mathrm{ft}$ |
| Production interval | $2,400 \mathrm{ft}$ |
| Reservoir temperature | $84^{\circ} \mathrm{F}$ |
| Date sampled | July 11,1991 |
| Separator temperature | $80^{\circ} \mathrm{F}$ |
| Separator pressure | Atmospheric |
| Well status | Pumping |
| Gas to oil ratio (stock tank) | Not measured |
| Water cut | Approximately 50\% |

Table F-2 PVT summary

| Sample 1 |  |
| :---: | :---: |
| Saturation pressure (psig) | 1600.0 |
| Reservoir temperature ( ${ }^{\circ} \mathrm{F}$ ) | 84.0 |
| Formation volume factor (barrel/barrel) | 1.187 |
| Gas to oil ratio (scf/stb) | 419.4 |
| Compressibility coefficient (vol/vol/pix $10^{-6}$ ) |  |
| from 2000 psig to 2500 psig | 7.7 |
| from 1600 psig to 2000 psig | 8.4 |
| Sample 2 |  |
| Saturation pressure (psig) | 1160.0 |
| Reservoir temperature ( ${ }^{\circ} \mathrm{F}$ ) | 84.0 |
| Formation volume factor (barrel/barrel) | 1.147 |
| Gas to oil ratio (scf/stb) | 279.5 |
| Compressibility coefficient (VolNol/psix $10^{-6}$ ) |  |
| from 2000 psig to 2500 psig | 7.4 |
| from 1500 psig to 2000 psig | 8.2 |
| Sample 3 |  |
| Saturation pressure (psig) | 910.0 |
| Reservoir temperature ( ${ }^{\circ} \mathrm{F}$ ) | 84.0 |
| Formation volume factor (barre//barrel) | 1.124 |
| Gas to oil ratio (scf/stb) | 210.0 |
| Compressibility coefficient (vol/vol/psix $10^{-6}$ ) |  |
| from 2000 psig to 2500 psig | 6.2 |
| from 1600 psig to 2000 psig | 6.7 |
| from 1000 psig to 1500 psig | 8.2 |

## APPENDIX F continued

Table F-3 Pressure to volume relationship of sample 1 at reservoir temperature of $84^{\circ} \mathrm{F}$

| Pressure <br> (psig) | Relative <br> Volume <br> $(\mathrm{V} / \mathrm{Nb})$ |
| :---: | :---: |
| 2500 | 0.994 |
| 2000 | 0.998 |
| 1800 | 0.999 |
| $\mathrm{~Pb}=1.000$ |  |
| 1550 | 1.006 |
| 1434 | 1.029 |
| 1326 | 1.050 |
| 1230 | 1.069 |
| 903 | 1.178 |
| 594 | 1.437 |
| 370 | 2.008 |
| 213 | 3.178 |

Relative volume $=\frac{\text { Total volume }}{\text { Oil volume at bubble-point pressure }}$

Table F-4 Pressure to volume relationship of sample 2 at reservoir temperature of $84^{\circ} \mathrm{F}$

| Pressure <br> $(\mathrm{psig})$ | Bo <br> (VNsat) |
| :---: | :--- |
| 2494 | 0.988 |
| 2012 | 0.991 |
| 1523 | 0.996 |
| 1310 | 0.998 |
| 1160 | 1.000 |
| 1108 | 1.006 |
| 1065 | 1.013 |
| 996 | 1.025 |
| 926 | 1.043 |
| 849 | 1.062 |
| 663 | 1.149 |
| 550 | 1.241 |
| 439 | 1.391 |
| 341 | 1.622 |
| 286 | 1.821 |
| 234 | 2.116 |

[^5]
## APPENDIX F continued

Table F-5 Pressure to volume relationship of sample 3 at reservoir temperature of $84^{\circ} \mathrm{F}$

| Pressure <br> $(\mathrm{psig})$ | Relative volume <br> $(\mathrm{V} / \mathrm{Vb})$ |
| :---: | :---: |
| 2500 | 0.988 |
| 2000 | 0.992 |
| 1500 | 0.995 |
| 1221 | 0.997 |
| 1010 | 0.999 |
| 910 | 1.000 |
| 869 | 1.005 |
| 846 | 1.010 |
| 816 | 1.017 |
| 791 | 1.024 |
| 747 | 1.036 |
| 667 | 1.064 |
| 541 | 1.134 |
| 460 | 1.209 |
| 375 | 1.328 |
| 305 | 1.478 |
| 263 | 1.630 |
|  |  |
| Relative volume $=\frac{\text { Oil volume at bubble-point pressure }}{}$ |  |

Table F-6 Flash separator test

| Saturation <br> pressure <br> (psig) | Reservoir <br> temp. <br> ( ${ }^{\circ}$ F) | Gas/oil <br> ratio* <br> (scf/stb) | Formation <br> volume <br> factor** | Stock <br> tank oil <br> gravity | Flash <br> gas <br> gravity |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 910 | 84 | 210.0 | 1.124 | 38.8 | 1.03 |

[^6]
## APPENDIX F continued

Table F-7. Differential vaporization of reservoir fluid (sample 3) at $84^{\circ} \mathrm{F}$

| Pressure (psig) (p) | Oil volume factor* (rb/stb) (Bo) | Solution gas/oil ratio"* (scf/stb) (Rs) | Gas expansion factor* (cuftcuft) (Bg) | Oil density (gm/cm ${ }^{3}$ ) | Gas specific gravity (air = 1) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2500 | 1.111 |  |  |  |  |
| 1500 | 1.118 |  |  |  |  |
| 910 | 1.124 | 210.1 |  | 0.783 |  |
| 400 | 1.072 | 166.2 | 31.1 |  | 0.85 |
| 100 | 1.039 | 65.1 | 8.4 | 0.795 | 0.92 |
| 0 | 1.011 | 0 |  |  |  |

* Volume at indicated pressure and temperature per volume of stock tank oil at $60^{\circ} \mathrm{F}$
** Volume of gas at 14.7 psia and $60^{\circ} \mathrm{F}$ per volume of stock tank oil at $60^{\circ} \mathrm{F}$
- Volume of gas at 14.7 psig and $60^{\circ} \mathrm{F}$ per volume of gas at indicated pressure and temperature

Table F-8 Gas composition

|  | Casing gas | Flash separator test 910 psig | Differen <br> 400 psig | oration <br> 100 <br> psig |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{CO}_{2}$ | 0.30 | 1.20 | 0.85 | 1.82 |
| $\mathrm{N}_{2}$ | 12.49 | 15.96 | 37.32 | 12.91 |
| $\mathrm{C}_{1}$ | 32.58 | 35.57 | 46.08 | 46.09 |
| $\mathrm{C}_{2}$ | 22.60 | 24.53 | 9.33 | 23.96 |
| $\mathrm{C}_{3}$ | 17.44 | 13.27 | 3.81 | 10.98 |
| $1 \mathrm{C}_{4}$ | 2.05 | 1.55 | 0.33 | 0.81 |
| $\mathrm{NC}_{4}$ | 7.45 | 5.32 | 1.06 | 2.22 |
| $1 \mathrm{C}_{5}$ | 1.16 | 0.71 | 0.21 | 0.30 |
| $\mathrm{NC}_{5}$ | 1.74 | 1.02 | 0.38 | 0.44 |
| $\mathrm{C}_{6+}$ | 1.88 | 0.87 | 0.63 | 0.43 |
| Ave mw | 32.58 | 30.24 | 24.4 | 26.53 |
| Gas gravity | 1.13 | 1.05 | 0.8 | 0.92 |

Table F-9 Viscosity of reservoir
fluid (sample 3) at $84^{\circ} \mathrm{F}$

| Pressure <br> (psig) | Viscosity <br> $(\mathrm{Cp})$ |
| :---: | :---: |
| 2000 | 1.64 |
| 910 | 1.55 |
| 400 | 1.80 |
| 100 | 2.31 |

## APPENDIX G SAMPLE CALCULATION USING EQUATION 1

Example calculation of bubble-point pressure using equation 1
Where

$$
\begin{aligned}
\text { API gravity of oil } & =38.8 \\
\text { Molecular weight of oil } & =199.3 \\
\text { Solution gas to oil ratio } & =419.4 \mathrm{scf} / \mathrm{stb} \\
\text { Reservoir temperature } & =84^{\circ} \mathrm{F} \\
\text { Density of oil }\left(\gamma_{0}\right) & =\frac{141.5}{131.5+38.8} \\
& =0.831 \mathrm{gm} / \mathrm{cc} \\
\text { Mole fraction of gas }\left(\mathrm{Y}_{\mathrm{g}}\right) & =\frac{\frac{R s}{379.3}}{\frac{R s}{379.3}+350 \times \frac{\gamma_{0}}{M W}} \\
& =\frac{419.4}{\frac{419.4}{379.3}+350 \times \frac{0.831}{199.3}} \\
& =0.4311
\end{aligned}
$$

Calculation of pseudo critical temperature of gas mixture

|  | $\mathrm{T}_{\mathrm{c}}$ | $\mathrm{X}_{\mathrm{ci}}$ |
| :--- | ---: | ---: |
| $\mathrm{N}_{2}$ | -232.4 | 17.49 |
| $\mathrm{CO}_{2}$ | 87.9 | 0.33 |
| $\mathrm{C}_{1}$ | -116.6 | 37.46 |
| $\mathrm{C}_{2}$ | 90.1 | 24.46 |
| $\mathrm{C}_{3}$ | 206 | 14.00 |
| $\mathrm{IC}_{4}$ | 275 | 1.47 |
| $\mathrm{NC}_{4}$ | 305.7 | 3.49 |
| $\mathrm{IC}_{5}$ | 369.1 | 0.43 |
| $\mathrm{NC}_{5}$ | 380.7 | 0.84 |

Where

$$
\begin{aligned}
& T_{c m} \text { of gas mixture }
\end{aligned}=\Sigma x_{i} T_{c i}=-13.66
$$

pəృsənbəy ио!ฺวәноэ ssəupp $\forall$
Champaign, IL 61820-6964
Natural Resources Building
tinnois state Geoiogical Survey
$D$


[^0]:    $\mathrm{P}_{\mathrm{b}}=$ bubble-point pressure of the reservoir fluid (psi)
    $\mathrm{T}_{\mathrm{r}}=$ reservoir temperature ( ${ }^{\circ} \mathrm{F}$ )
    $\mathrm{R}_{\mathrm{s}}=$ solution gas to oil ratio in standard cubic feet of gas per stock tank barrel of oil (sct/stb)
    oil (API) = API gravity of stock tank oil
    gas gravity = density of solution gas / density of air

[^1]:    Measured $=$ experimental results measured with ISGS PVT equipment

[^2]:    * Cubic feet of gas at 14.7 psig per barrel of oil at $60^{\circ} \mathrm{F}$
    ** Barrel of saturated oil at 707 psig and $95^{\circ} \mathrm{F}$ per barrel of stock tank oil at $60^{\circ} \mathrm{F}$

[^3]:    * Cubic feet of gas at 14.7 psig per barrel of oil at $60^{\circ} \mathrm{F}$
    ${ }^{* *}$ Barrel of saturated oil at 150 psig and $98^{\circ} \mathrm{F}$ per barrel of stock tank oil at $60^{\circ} \mathrm{F}$
    - Molecular weight of the stock tank oil $=194.6$

[^4]:    * Cubic feet of gas at 14.7 psig per barrel of oil at $60^{\circ} \mathrm{F}$
    ** Barrel of saturated oil at 350 psig and $98^{\circ} \mathrm{F}$ per barrel of stock tank oil at $60^{\circ} \mathrm{F}$

[^5]:    Relative volume $=\frac{\text { Total volume }}{\text { Oil volume at bubble-point pressure }}$

[^6]:    * Cubic feet of gas at 14.7 psig per barrel of oil at $60^{\circ} \mathrm{F}$
    ** Barrel of saturated oil at 910 psig and $84^{\circ} \mathrm{F}$ per barrel of stock tank oil at $60^{\circ} \mathrm{F}$

