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In this paper we propose simple diagnostic tests, based on OLS residuals,

for spatial residual autocorrelation (or spatially lagged dependent variable)

in the presence of spatially lagged dependent variable (or spatial residual

autocorrelation), applying the modified LM test developed in Bera and Yoon

(1990). Our new tests may be viewed as computationally simple and robust

alternatives to some existing procedures in spatial econometrics.
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1. Introduction

In spatial data analysis, model specification issues have recently become

an integrated part of spatial econometric modelling [see, for example, Anselin

(1988b, 1989) and Blommestein (1983)]. In a recent paper by Anselin (1988a)

several diagnostics for spatial econometric models have been proposed based

on the Lagrange multiplier (LM) principle. In particular the focus was on

detecting model misspecification due to spatial dependence (in the form of an

omitted spatially lagged dependent variable and spatial residual autocorre-

lation) as well as spatial heterogeneity (in the form of heteroskedasticity). In

deriving a joint test for spatial dependence and spatial heterogeneity, Anselin

(1988a) has observed that the inverse of the information matrix for the joint

LM test is block diagonal between the spatially dependent and the het-

eroskedastic components, and hence the joint test statistic is the sum of the

two corresponding component statistics where the test for the heteroskedastic

part is identical to the Breusch and Pagan (1979) statistic. However, the spa-

tially dependent part cannot be decomposed further into two one-directional

test statistics corresponding to spatially lagged dependent variable and spa-

tial residual autocorrelation respectively. As emphasized by the author, this

is due to the structural relationship between spatial autoregressive processes

in the dependent variable and the disturbance term resulting in the non block

diagonality of the information matrix between the corresponding elements

[see Anselin (1988a p. 8)].

Noting this, Anselin (1988a) poposes an LM test for spatial residual au-

tocorrelation in the presence of a spatially lagged dependent variable. The



implementation of the suggested test, however, requires nonlinear optimiza-

tion or some numerical search techniques. In this paper we propose simple

diagnostic tests, based on ordinary least squares (OLS) residuals, for spa-

tial dependence, applying the modified LM test developed in Bera and Yoon

(1990) to spatial models.

In section 2, we briefly summarize the main results on the distribution of

standard LM test when the alternative hypothesis is misspecified, and present

the modified LM test which is robust under local misspecification. Section 3

develops new diagnostic tests for spatial residual autocorrelation (or spatially

lagged dependent variable) in the presence of spatially lagged dependent

variable (or spatial residual autocorrelation). Final section 4 contains some

concluding remarks.

2. A General Approach to Testing

in the Presence of a Nuisance Parameter

Consider a general statistical model represented by the log-likelihood

£(7>V, j^) where 7 is a parameter vector, and for simplicity xf) and
<f>

are

assumed to be scalars. Suppose an investigator sets
(f>
= and tests H :

xj> = using the likelihood function Li(y,tp) = L(j,ip,0). The LM statistic

for testing H in £1(7, V0 wnl De denoted by LM^. Let us also denote

= (7', 0, 4>)' and = (7', 0, 0)' where 7 is the maximum likelihood estimator

(MLE) of 7 when ifi
= and

<f>
= 0. The score vector and the information

matrix are defined, respectively as

due)
daW = —— for a = 7,^,0,
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and
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If Li(y, ip) were the true model, then it is well known that under H : ip = 0,

LM* = Ldi,(6)'3-^(6^(8) -°*
xl(0)

where J^.y (6) = J^(9) — Jrpy (6)J~
1 (8)Jy^(6). We use — to denote con-

vergence in distribution. Under this set-up, asymptotically the test will

have correct size and will be locally optimal. Now suppose that the true

log-likelihood function is £2(7,^) so that the alternative Li(y,ip) becomes

misspecified. Using a sequence of local values
<f>
= S/yfN , Davidson and

McKinnon (1987) and Saikkonen (1989) obtained the asymptotic distribu-

tion of LM^p under £2(7,^) as

LM^ -^ xlW (2-1)

where the non-centrality parameter A is given by A = S' J^.^JT 1 J^.^8 with

JxP4>-y = Jxi>(f>
— Jtp-y J^

1

Jf<t>- Due to this non-centrality parameter, LM^ will

have power in the model £(7,1/*, (j>) even when = 0, and therefore, the test

will have incorrect size. Notice that the crucial quantity is <7^. 7 which can

be interpreted as the partial covariance between d^ and d^ after eliminating

the effect of <i7 on d^ and d^. If J^^>. 7 = 0, then the local presence of the

parameter 4> has no effect on LM^.



Using the result (2.1), Bera and Yoon (1990) suggested a modification to

LM^ so that the resulting test is robust to the presence of <j>. The modified

statistic is given by

lm; = i [d^e) - J^.-,(e)j;\(e)d
4>
(e)}' (2.2)

[Ji>-i(8) - Jii4>-iWJ+.-,(9)Jw-r(9)]

This new test essentially adjusts the mean and variance of the standard LM^.

Bera and Yoon (1990) further showed that under ip = and <j) = 8/\/N

LM1 has a central x\ distribution. Thus LM1 has the same asymptotic null

distribution as the LM^ based on the correct specification, thereby producing

an asymptotically correct size test under locally misspecified model. Two

things regarding LM1 are worth noting. First, LM1 requires estimation only

under the joint null, namely ip = and
<f>
= 0. Given the full specification of

the model £(7, tp, 4>) it is of course possible to derive an LM test for tp = in

the presence of
<f>.

However, that requires MLE of
<f>
which could be difficult

to obtain in some cases. Second, when J^.7 = 0, LM1 = LM^. This is

a very simple condition to check in practice. As mentioned before, if this

condition is true, LM^ is an asymptotically valid test in the local presence

of
<f>.

3. Tests for Spatial Dependence

We consider the mixed regressive-spatial autoregressive model with a

4



spatial autoregressive disturbance

y — <f>Wiy + Xj + u

u = 1JJW2U + e

e~Af(0,/cr 2

) (3.1)

In this model y is a (TV x 1) vector of observations on a dependent variable

recorded at each of N locations, X is an (N x k) matrix of exogenous vari-

ables, and 7isa(kxl) vector of parameters.
(f>
and are scalar parameters.

W\ and W2 are (N x N) spatial observable weight matrices associated with

the spatially lagged dependent variable and the spatial autoregressive dis-

turbance respectively. These spatial weight matrices represent the 'degree of

possible interaction' between neighboring locations and are scaled such that

the sum of the row elements in each matrix is equal to one [see Ord (1975)

and Upton and Fingleton (1985) for discussions of W matrix]. Note that

it is the inclusion of these spatial weight matrices that renders the spatial

models to depart from the standard linear model limiting the applicability

of the standard econometric procedures based on OLS method.

We are interested in the problem of testing Hq : ip = in the pres-

ence of the nuisance parameter 0. As before, let 8 — (7', t/>, <f>)' . Since the

information matrix is block diagonal between the 8 and a 2 parameters, we

need only to consider the scores and the information matrix evaluated at



O =(7',O,O)', i.e.,

and

gL = —-xX u,
ST +•

dyu = —u'W2ii,

dt - —u'Wiy,
a*

J =
Na 2

X'X

T22 <7
2

X'(WxXi)

T21 a 2

liWiX-yyX T12a
2 (Wr

1X7)'(^1X7)4-T11 a
2
J

(3.2)

where, as in Anselin (1988a), we use the notation TtJ
= tr{W{Wj + W\Wj},

i,j = 1,2, with tr denoting trace of a matrix. From (3.2) it follows that

and

•Vt -
jv

7 2̂2 '

J<t>-f
—
Na 2

[(WxX-f)'MiW^i) + Tn cr
2

]
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where M - I - X{X'X)- l X'. Note that J^. 7 / 0. This indicates the

asymptotic correlation between the scores corresponding to the two spatial

autoregressive parameters in the dependent variable and the disturbance

term. Our modified LM test can be easily obtained as

lm; =
u'W2u/J

2 - T2i(NJ4>
.1
)- 1 u'Wl y/a-

i 2

T22 -(T21 )
2 (iVJ*. 7 )

-i
(3.3)

where u = y — X~/ are the OLS residuals with a 2 = u'u/N and (N J^. 7 )
l =

a 2 [(P^
1
X7)'M(VT1 X7) + Tiiflf

2]- 1
. One can interpret {WX X^) as the spa-

tially lagged OLS predicted values. If we assume that the spatial weight ma-

trices Wl <mdW2 are the same, i.e., Tn = T21 = T22 = T = tr{(W + W)W],

the LM*j in (3.3) can be simplified further to give

lm; =
~2u'W2 u/a

2 -T{NJ^)- l u'Wiyla
n 2

l-T(NJ^)-
(3.4)

The conventional one-directional test LM^ given in Burridge (1980) is

obtained by setting
<f>
— to yield

~oi2

IM =
[u'W2 u/a

2

]

T
(3.5)

Comparison of (3.4) with (3.5) clearly reveals that the IM! modifies the

7



standard LM^ by correcting the mean and variance of the score for the

asymptotic correlation between d^ and d^.

Let us now consider the LM test for H : tp = in the presence of the
<f>

parameter derived in Anselin (1988a). We can denote this statistic by LM$:

\u'W2u/d
2

]

2

LM$ = l- _ ~ (3.6)
T22 - (T2 iA) 2 var(^)

where u are the maximum likelihood residuals under the null model y =

(pWiy+X^+u obtained by nonlinear optimization or some search techniques.

T2 ia denotes tr{W2W1A~ 1 + W^WxA' 1
} with A = I - pWY . Comparing

the LM$ with the LMJ in (3.3), it is readily seen that the LMft does not

have the mean correction factor in LM^. This is because LM^ uses the

restricted MLE of
<f)

for which d^ = 0. We may view LM^ as the spatial

version of the Durbin h statistic which can also be derived from the general

LM principle. Unlike Durbin's /i, however, LM^ cannot be computed using

the OLS residuals while LM1 can be, since here the model is nonlinear even

under Hq : ip = 0.

We can also obtain LM^ easily to test Hq :
<f>
= in the presence of xp

yielding

Liir
[VWiy/<P - TuT^u'W.u/^}

2

* NJ^-{T21YT-2
l
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Assuming W\ = W2 , this simplifies to

LMl = ± ^^ ' J

(3.8)

It is straightforward to see that the standard one-directional test LM^ given

ip = is obtained as

LM+ = L

Jf
J

(3.9)

Note that this statistic is identical to the one shown in equation (32) in

Anselin (1988a).

Anselin (1988a) also derives an LM test for spatial residual autocor-

relation in the presence of heteroskedasticity assuming no spatially lagged

dependent variable. The statistic is given by

u'Q.- lW2 u

(3.10)

where Q. denotes the diagonal error covariance matrix incorporating het-

eroskedasticity. Using the information matrix given in Anselin (1988a) it is

easy to check that J^^ = in this model. This implies that our modi-

fied LM* would revert to the conventional LM test given in (3.5). In other

words, the simple standard LM statistic in (3.5) would give asymptotically

same inference as (3.10) in the presence of local heteroskedasticity without



the computational difficulties associated with (3.10).

4. Concluding Remarks

In this paper we have proposed simple diagnostic tests for spatial de-

pendence. The proposed tests can be implemented using OLS residuals and

are robust to local presence of a nuisance parameter. Anselin (1990) re-

views some robust approaches to specification testing in the context of spatial

econometric models, focusing on techniques that are robust to the presence

of heteroskedasticity of an unknown form. For example, following Davidson

and MacKinnon (1985), Anselin (1990) considers heteroskedasticity-robust

tests for spatial error autocorrelation as well as spatial lag. Essentially, these

may be viewed as tests for conditional mean specification robust against mis-

specification of the conditional variance. It is worth pointing out, however,

that the information matrix between the parameters of the conditional mean

function and those of the conditional variance will be block diagonal when

the unknown heteroskedasticity is parametrized as, for example, in Breush

and Pagan (1979). Davidson and MacKinnon's approach is not applicable

when the information matrix is not block diagonal. Therefore, our proposed

tests may be viewed as computationally simple and robust alternatives to

some available procedures in spatial econometrics.
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