Investigating a Role for DNA Mismatch Repair in Signaling a Benzo[a]pyrene Diol Epoxide-Induced DNA Replication Arrest

Coburn, Jacki L. and Buermeyer, Andrew B., PhD
Program of Bioresource Research
Environmental and Molecular Toxicology Department
Oregon State University, Corvallis, Oregon 97331
Cancer affects everyone

Economic impact of cancer in 2007
Total : $226.8 billion
Direct medical costs : $103.8 billion
Indirect mortality costs : $123.0 billion
Source: NIH, American Cancer Society website (www.cancer.org)
Colon cancer is the second leading cause of cancer death

- In 2011, nearly 50,000 deaths in the U.S., many of which were preventable
- 5-year survival rates range from 6%-74%
- Early detection is vital
Factors that increase cancer risk

• Mutations in critical genes
 Mismatch repair deficiency
 (Lynch syndrome)

• Exposure to carcinogens
 Polycyclic aromatic hydrocarbon (PAH) exposure
Mismatch repair

• Highly conserved pathway focused on repair of DNA replication errors
• Conserved proteins include MLH1, PMS2, MSH2, MSH6
• MMR deficiency has significant impacts on human health (increased cancer risk)
MMR recognizes and repairs DNA replication errors

[Diagram showing DNA bases and proteins involved in MMR]
PAHs – they’re everywhere
Many studies link PAHs to cancer

- Scrotal tumors in chimney sweeps
- Lung cancers in smokers
- Colon cancer associated with grilled meat consumption
- Coal-tar induced skin tumors (mice)
- *In utero* PAH exposure linked to cancer as adult in mice
PAHs vary in structure and carcinogenicity

(From Neff, 1979; CCREM, 1987; NRCC, 1983; USPHS, 1990)
Benzo[a]pyrene – a model PAH

- Best known and most studied of PAHs
- Gold standard of PAH carcinogenicity
- Produced during combustion of organic compounds
- Recalcitrant pollutant - bioaccumulates
- Detected in air, water, food and soil
<table>
<thead>
<tr>
<th>Sample</th>
<th>PPB (ng/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBQ steak, very well done</td>
<td>4.75</td>
</tr>
<tr>
<td>BBQ chicken (bone and skin), well done</td>
<td>4.57</td>
</tr>
<tr>
<td>BBQ hamburger, medium cooked</td>
<td>0.56</td>
</tr>
<tr>
<td>Pumpkin pie</td>
<td>0.47</td>
</tr>
<tr>
<td>Fast food french fry</td>
<td>0.22</td>
</tr>
<tr>
<td>Tomato (fresh)</td>
<td>0.19</td>
</tr>
</tbody>
</table>

BaP biotransformation into ultimate carcinogen

- Benzo[a]pyrene
- (+)Benzo[a]pyrene-7,8-epoxide
- (-)Benzo[a]pyrene-7,8-dihydrodiol
- (+)Benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide
BPDE bonds to DNA and forms a bulky adduct

BPDE Lesion on DNA

Image courtesy of Zephyris

B[a]P-Adducted Guanine

Image courtesy of Peter Hoffman
Consequences of BaP-Derived Adducts
Two responses to BaP adduct

• Local (translesion polymerase recruitment)

• Global (reduction in DNA synthesis rate)
S-phase checkpoint helps ensure replication fidelity

- A normal response to DNA damage
- If damage cannot be resolved, cell may remain quiescent or signal for apoptosis
- Inability to activate checkpoint can compromise fidelity of DNA replication
Phases of the Cell Life Cycle

- **G1**: Organelle synthesis
- **S**: DNA Replication
- **G2**: Growth and protein synthesis
- **M**: Mitosis (Cell Division)
BPDE-induced S-phase checkpoint signaling

BaP-DNA adduct

 atolad replication fork

ATR

Chk1

MMR

Reported Involvement

Apoptosis

Inhibition of firing at origins of replication

DNA repair
Is S-phase checkpoint a mechanism by which MMR suppresses BPDE-induced mutations?

• Increased mutations seen in MMR-deficient cells exposed to BPDE
• BPDE induces S-phase checkpoint
• S-phase checkpoint suppresses mutations
• MMR is necessary for S-phase checkpoint induced by ionizing radiation and alkylating agents
Hypothesis

MMR is necessary for the activation of BPDE-induced S-phase checkpoint
Predictions

MMR-deficient cells will show reduced activation of S-phase checkpoint in response to BPDE exposure

- MMR-deficient cells will display lower levels of PChk1
- PChk1 can be measured using semi-quantitative immunoblotting
- Differences in S-phase checkpoint activation can be observed by flow cytometry
Model system: MMR deficient and proficient cell lines

- **HCT116 – 2 defective copies of MLH1 (Chr. 3)**
- **WT MLH1 Chr. 3 + neomycin resistance gene**
- **HCT116+3 – 2 defective copies of MLH1 (Chromosome 3) + 1 copy of WT MLH1 + neomycin resistance gene**
Experimental procedure

Cultured cells: HCT116, HCT116+3

BPDE treatment

Fixing and PI staining cells

Harvest of cells

Whole cell lysates

Flow cytometry

Protein immunoblot
Predicted results

Flow cytometry

HCT116+ch3
DMSO (control)

BPDE

S-phase arrest

BPDE

Protein Immunoblots

HCT116
DMSO BPDE

PChk1

HCT116+ch3
DMSO BPDE

PChk1
Results outline

• Confirmation of MLH1 expression in cell lines
• GAPDH loading control
• PChk1 accumulation
• Positive control for PChk1
• Flow cytometry
Confirmation of MLH1 expression in HCT116 vs. HCT116+ch3 cells

<table>
<thead>
<tr>
<th></th>
<th>MLH1</th>
<th>MSH6</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCT116</td>
<td>Neg</td>
<td>Pos</td>
</tr>
<tr>
<td>HCT116+3</td>
<td>Pos</td>
<td>Pos</td>
</tr>
</tbody>
</table>

[Image: Western blot showing MLH1 and MSH6 expression levels in different conditions.]
What is the upper limit of the linear dynamic range of GAPDH signal?

GAPDH is not useful as a loading control when quantities greater than 30 μg are loaded.
BPDE-induced PChk1 accumulation

Immuno-blot probed with anti-PChk1 (S345) polyclonal antibody

- DMSO (control)
- 100 nM BPDE
- 200 nM BPDE

MW (kDa)
- 75
- 50
- 37

Time following exposure
MLH1 Status

<table>
<thead>
<tr>
<th>MW (kDa)</th>
<th>24</th>
<th>48</th>
<th>24</th>
<th>48</th>
<th>24</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>Def Pro</td>
</tr>
</tbody>
</table>

- PChk1 accumulation similar in MLH1-proficient and deficient cells
- HCT116 cells show sustained PChk1 accumulation relative to HCT116+3 cells
- .
BPDE-induced S-phase checkpoint activation in MLH1-proficient and deficient cells

<table>
<thead>
<tr>
<th>Time after Exposure (hours)</th>
<th>MLH1-Deficient</th>
<th>MLH1-Proficient</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DMSO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BPDE 100 nM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BPDE 200 nM</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DMSO: Dimethyl Sulfoxide
Selecting gel type

- Nonspecific signal (NS) in 4-12% Bis-Tris gels interfered with PChk1 signal
- Could this problem be resolved with a different gel?
7.5% Tris HCl gel used for identification of putative PChk1 signal

<table>
<thead>
<tr>
<th>MW (kDa)</th>
<th>DMSO (control)</th>
<th>200 nM BPDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>24 Def Pro Def Pro</td>
<td>24 Def Pro Def Pro</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Marker

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NS</td>
<td></td>
<td></td>
<td>PChk1</td>
</tr>
</tbody>
</table>

- Similar PChk1 accumulation observed in previous gel
- Excellent signal resolution and band separation
BPDE exposed MLH1-proficient and – deficient cells with earlier timepoints

- Signal fairly uniform within cell lines
- Is this signal really PChk1?
Positive control for PChk1

- HeLa cells treated with 25 μM etoposide or DMSO (solvent control)
- Repeated exposure four times
- Putative PChk1 signal weak at best
- Results were inconsistent

Etoposide (μM)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>25</th>
<th>0</th>
<th>25</th>
</tr>
</thead>
</table>

NS
PChk1
Protein immunoblots

- Preliminary results suggested MMR is not required for S-phase checkpoint activation
- This was not observed in subsequent experiments
- Many blots had technical problems, some of which remain unresolved
- Ultimately we were not sure if the antibody detected PChk1
Flow cytometry

- Cells are counted and their viability determined by lasers
- Cellular DNA content is measured by intensity of propidium iodide (PI) fluorescence
- Peak nearest origin is G1; peak twice as far from origin is G2
- Mathematical models used to fit curves of the histogram
- Area under curves used to estimate percentage of cells in each phase
Technical issues with flow cytometric analysis

HCT116+ch3 (MLH1-proficient) cells exposed to DMSO

- DMSO control populations showed abnormal cell cycle distribution
- Similar distribution in HCT116 (MLH1-deficient) samples
Comparison of flow cytometric profiles of MLH1-proficient cells treated with BPDE and DMSO

- No consistent differences between two treatment groups apparent
- MLH1-deficient cell populations gave similar results
Flow cytometry

- Difficulty in fitting cell cycle patterns to Dean-Jett-Fox model
- Abnormal profiles of control cells – likely technical issues
- No consistent differences found between cell lines
Conclusions

- Preliminary results suggest sustained S-phase arrest in MLH1-deficient cells
- Preliminary results suggest MMR is not necessary for S-phase checkpoint activation
- No pattern in S-phase checkpoint activation determined from flow cytometry
Technical changes for future experiments

- Subculture and synchronize cultures before exposure using non-chemical methods
- Use siRNA to create MMR-deficient cell lines
- Use PChk1 as positive control
Benefits of research

• Identify S-phase checkpoint as a mechanism by which MMR suppresses mutations
• Understand how MMR deficiency and PAH exposure interact to increase mutation risk
• Identify individuals most vulnerable to accumulation of mutations
• Help direct intervention efforts to vulnerable individuals
Future research

• Investigate other markers of S-phase checkpoint activation
• Analyzing downstream effects of prolonged checkpoint activation
Acknowledgements

Dr. Kevin Ahern
Fatimah Almousawi
Dr. Andrew B. Buermeyer
Dr. Katharine Field
Frances Cripp Scholarship Fund
Dr. John Hays
HHMI
Peter Hoffman
Casey Kernan
Dr. Siva K. Kolluri and the Kolluri Lab
James Rekow
Kimberly Sarver
URISC
Dr. Anthony C. Zable