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Abstract The occurrence of wildfires within municipal watersheds can result in signif-
icant impacts to water quality and ultimately human health and safety. In this paper, we
illustrate the application of geospatial analysis and burn probability modeling to assess the
exposure of municipal watersheds to wildfire. Our assessment of wildfire exposure consists
of two primary components: (1) wildfire hazard, which we characterize with burn proba-
bility, fireline intensity, and a composite index, and (2) geospatial intersection of watershed
polygons with spatially resolved wildfire hazard metrics. This effort enhances investigation
into spatial patterns of fire occurrence and behavior and enables quantitative comparisons
of exposure across watersheds on the basis of a novel, integrated measure of wildfire
hazard. As a case study, we consider the municipal watersheds located on the Beaverhead-
Deerlodge National Forest (BDNF) in Montana, United States. We present simulation
results to highlight exposure across watersheds and generally demonstrate vast differences
in fire likelihood, fire behavior, and expected area burned among the analyzed municipal
watersheds. We describe how this information can be incorporated into risk-based strategic
fuels management planning and across the broader wildfire management spectrum. To
conclude, we discuss strengths and limitations of our approach and offer potential future
expansions.
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1 Introduction

In this paper, we illustrate the application of geospatial analysis and burn probability
modeling to assess wildfire hazard and exposure of municipal watersheds (i.e., drinking
water supplies) to wildfire. Wildfires can have profound effects on watersheds (Parise and
Cannon 2012), and sediment loads from burned watersheds have resulted in shutdowns of
municipal water supply facilities due to water quality (Ryan and Samuels 2010). Thus,
there are pressing human health and safety reasons for identifying at-risk watersheds. As a
case study, we consider the municipal watersheds located on the Beaverhead-Deerlodge
National Forest (BDNF) in Montana, United States. Our assessment of wildfire exposure
consists of two primary components: (1) wildfire hazard, which we characterize with burn
probability, fireline intensity, and a composite index, and (2) geospatial intersection of
watershed polygons with spatially resolved wildfire hazard metrics.

1.1 Background: wildfire hazard and risk analysis

Federal wildfire management within the United States is increasingly adopting risk-based
paradigms to inform policy and management (Calkin et al. 2011a; Fire Executive Council
2009). Recently published examples include strategic national-scale assessments
(Thompson et al. 2011a), fuel treatment evaluation (Ager et al. 2010), incident-level
decision support (Calkin et al. 2011b; Noonan-Wright et al. 2011), and localized
assessment of risk to structures in the wildland–urban interface (Bar Massada et al.
2009). Advancements in computing power, fire behavior modeling, and geospatial data
acquisition and management enable spatially explicit simulation of where fire is likely to
ignite, spread, and interact with highly valued resources and assets (Finney et al. 2011;
Finney 2002). Applications of burn probability modeling techniques are still emerging,
with enormous potential for risk-based, strategic fire and fuels management (Miller et al.
2008).

Wildfire hazard is defined here as a physical situation with the potential for wildfire to
cause damage. Qualitatively, hazard can be described by the fire environment surrounding
the resource, for instance the fuel, weather, topography, and ignition characteristics.
Quantitatively, hazard can be described as the probability distribution of a fire charac-
teristic, usually wildfire intensity. A location likely to burn with high intensity, in this
modeling approach, has high hazard. Hazard, however, is but one component of wildfire
risk. Finney (2005) provides a quantitative definition of wildfire risk that integrates
information on burn likelihood, fire intensity, and magnitude of resource response to fire.
This approach aligns with ecological risk assessment paradigms premised on the analysis
of exposure and effects (Fairbrother and Turnley 2005). Wildfire exposure analysis typi-
cally explores the possible spatial interactions of fire-susceptible resources with fire
occurrence and behavior metrics, and fire effects analysis explores the potential magnitude
of wildfire-caused damages (Thompson and Calkin 2011). Conversely, for fire-adapted
ecosystems, exposure and effects analysis could highlight where fire may play an eco-
logically beneficial role and be promoted. Assessing risk informs decision making by
integrating and synthesizing information regarding the likelihood and magnitude of
impacts to resources (Sikder et al. 2006). This information can be used to help plan risk
mitigation activities across the wildfire management spectrum, including ignition pre-
vention efforts, proactive hazardous fuels reduction, suppression response planning, and
evacuation planning (Dennison et al. 2007).
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1.2 Wildfire impacts to watershed health and integrity

Watersheds play important ecological, social, and economic roles and can potentially be
affected by a multitude of human and natural disturbances (Brauman et al. 2007; Brown
2000; Neary et al. 2005). Consideration of watershed health and integrity across the forest
is important for numerous reasons. Forests and federal lands, particularly in the Western
United States, are important providers of the water supply (Brown et al. 2008; Ryan and
Samuels 2010). Ecologically, watersheds have the potential to be greatly impacted by
wildland fire, and the results are often far-reaching. The natural occurrence of fire on the
landscape is an important component of watershed health and may have beneficial effects
in the long run (e.g., increased biodiversity) and functions as an agent of recovery (Benda
et al. 2003). However, fire can also induce dramatic and negative changes to watershed
integrity through flooding, debris flow, and subsequent impacts on human lives and spe-
cies’ habitat suitability. Post-fire effects can range in magnitude and impact, across time
and space, from rejuvenation of alluvial fans to burial of existing habitat (Benda et al.
2003). Post-fire floods and high sediment flow are of high concern (Neary et al. 2005).
Areas that have been naturally disturbed (i.e., post-fire environment) become more sus-
ceptible to substantial human degradation (Brown and Binkley 1994).

Erosion and sediment redistribution are commonly referenced as prominent effects of
fire on watersheds (Brown and Froemke 2010; Calkin et al. 2007; Shakesby and Doerr
2006; Brown 2000; Brown and Binkley 1994; Agee 1993). Stand-replacing fires (high
severity) often result in intense erosion and large influxes of sediment (Benda et al. 2003)
and woody debris in stream channels and confluences (Neary et al. 2005; Benda et al.
2003; Brown 2000) as well as shift overland flow rates and runoff behavior (Shakesby and
Doerr 2006). Debris flows are a potential response of recently burned basins and are
considered more severe than sediment-laden floods (Cannon et al. 2010). Fire severity is a
major determinant of impacts to soil and water resources (Shakesby and Doerr 2006; Neary
et al. 2005).

Our interest here is in wildfire impacts as they relate to municipal watersheds; readers
wishing for a more thorough review of hydrologic, geomorphic, and aquatic habitat-related
effects of wildfire are referred to Parise and Cannon (2012), Rieman et al. (2010), Moody
and Martin (2009), Dunham et al. (2007), Shakesby and Doerr (2006), Neary et al. (2005),
and Bisson et al. (2003). Municipal watersheds are critical infrastructure and disruption of
their operation can have serious economic and public safety consequences (Ryan and
Samuels 2010); hence, their explicit consideration within decision support systems sup-
porting incident management (Calkin et al. 2011b) and within strategic risk assessments
(Thompson et al. 2011a, b). Municipal water is affected by wildland fire occurrence and
management practices associated with fire (Brown 2000). Threats to drinking water from
wildfire are varied and can occur while a fire burns, from aerial application of fire retardant
(Neary et al. 2005; Ryan and Samuels 2010), or in the months and years following a fire
due to increased storm runoff (Shakesby and Doerr 2006), ash accumulation, and accel-
erated soil erosion and sedimentation (Emelko et al. 2011; Smith et al. 2010).

1.3 Case study description: BDNF wildfire hazard assessment

The study area for the assessment of watershed exposure included the approximately
3.2 million ha (8 million acres) in 12 BDNF planning units (called ‘‘landscapes’’ in the
Forest plan; see Fig. 1). The study area is less fire-prone than many other landscapes in the
western United States, but wildfire is nevertheless a concern. Our analysis sought to
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understand spatial patterns in hazard due to large fires. For this analysis, we defined a
‘‘large fire’’ as one greater than 121.41 ha (300 ac) in final fire size, consistent with USDA
Forest Service accounting and reporting procedures. Across the years 1992–2009, large
fires accounted for only 2.55 % of all fire occurrences, while accounting for 94.49 % of all
area burned. This result is consistent in other areas of the western United States as well,
where area burned is largely driven by large fire spread rather than localized ignitions. By
incorporating information on total area burned relative to the area covered by burnable
vegetation within the study area (exclusive of water, rock, urban areas, etc.) and dividing
by the number of years analyzed, we derived a non-spatial average annual burn probability
of 0.001196 across the study area.

With this study, we quantify wildfire exposure to the 10 municipal watersheds on the
BDNF. Explicit identification of municipal watersheds is a sensitive, national security issue
due to the potential serious consequences of disruption. Therefore, exact names and
locations of municipal watersheds across the landscapes will not be provided. Instead, we
refer to the municipal watersheds by code letter (A through J) and identify the landscape in
which each watershed is located (Table 1).

The municipal watersheds vary in several important characteristics that may affect their
wildfire exposure (Table 1). The upper reaches of many of the watersheds extend into bare
ground at ridge tops. Watershed area covered by burnable vegetation (Table 1; column e)
ranges from a low of 58.8 % (watershed C) to a high of 99.5 % (J). Spatial variability in
ignition likelihood, fuel conditions, and terrain jointly influence spatial patterns of potential
fire spread and municipal watershed exposure. The spatial patterns of ignitions in particular
may be an important factor affecting burn probability (Bar Massada et al. 2011). The
ignition density grids we used (see Sect. 2) quantify historical wildfire occurrence on a
relative basis across grid cells of equal area. To quantify relative ignition likelihood across
watersheds, we summed ignition density values from grid cells within each watershed. This
derived metric, relative ignition density (Table 1; column f) provides a comparison of the
likelihood that a wildfire will start within each watershed (per unit area), scaled to the
watershed with the highest ignition density (Watershed G, in the Clark Fork-Flints land-
scape). Watersheds D and I, also in the Clark Fork-Flints landscape, have the second- and
third-highest ignition density at 89.4 and 66.3 % of the maximum, respectively. By
comparison, the relative ignition density of all remaining watersheds ranges from 49.5 to
65.8 %.

2 Methods

The primary model we used is the FSim large-fire simulator (Finney et al. 2011). FSim is a
spatially explicit model that pairs existing fire growth models (Finney 1998, 2002) and a
model of large-fire ignition probability with artificially generated weather streams in order
to simulate fire ignition and growth for thousands of fire seasons. FSim does not modify
landscape conditions through time to reflect disturbance or succession, and thus each
simulation is a possible realization of a single fire season given current conditions. These
simulations are used to estimate annual burn probability (BP), mean fireline intensity
(MFI), and fire-size distributions. FSim annual burn probabilities are fundamentally dif-
ferent from other work presenting conditional burn probabilities (e.g., Ager et al. 2010);
FSim explicitly models the likelihood of large-fire ignitions, which on some landscapes
may be quite infrequent, whereas the latter approach models burn probabilities conditional
on an ignition occurring. The simulated weather sequences combine time series analysis of
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the fire danger rating index Energy Release Component (ERC) and corresponding fuel
moisture scenario with historic joint distributions of wind speed and direction. For use in
FSim, empirical distribution functions that relate daily ERC values to large-fire occurrence
for the fire modeling area were developed in FireFamilyPlus (Rocky Mountain Research
Station Fire Sciences Laboratory and Systems for Environmental Management 2002). Fire

Fig. 1 Overview of the analysis area for the assessment of wildfire hazard and watershed exposure on the
Beaverhead-Deerlodge National Forest, showing 12 planning units (‘‘landscapes’’ as identified in the Forest
plan), listed alphabetically: Big Hole, Boulder River, Clark Fork-Flints, Elkhorn, Gravelly, Jefferson River,
Lima-Tendoy, Madison, Pioneer, Tobacco Roots, Upper Clark Fork, and Upper Rock Creek. The 10
municipal watersheds of interest are found across these 12 BDNF landscapes (Table 1). National Forest
System lands are shown in cross-hatching
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duration is not fixed within FSim, but rather is determined by the artificially generated
weather stream and an embedded suppression algorithm (Finney et al. 2009).To minimize
edge effects, we allowed simulated fires to move into the analysis area from adjacent land
by including a 8-km (5-mile) buffer from the edge of any landscape to the extent of our
geospatial data. The total fire modeling area encompasses 6,103,188 ha (15,080,978 acres),
and using a 90 m pixel resolution, this resulted in a modeling landscape of 2,415 9 3,120
pixels.

Figure 2 presents a simplified flowchart for our wildfire exposure analysis process, with
the key analytical steps highlighted in gray. In the following subsections, we describe our
methods for creating the necessary input files for FSim and for performing the wildfire
exposure analysis with FSim. Specifically, this entailed generating information on land-
scape characteristics such as terrain and fuel conditions (§2.1), acquiring weather data for
generating artificial fire seasons (§2.2), obtaining fire occurrence data and developing
probabilistic large-fire occurrence relationships (§2.3), and running the model to charac-
terize pixel-based wildfire hazard within municipal watersheds (§2.4).

2.1 Generation of landscape file for fire simulation model

In order to simulate fire growth and behavior, FSim requires a user-defined landscape file,
which consists of geospatial data representing terrain, fuel, and vegetation characteristics.
Terrain characteristics include slope steepness, aspect, and elevation. Fuel characteristics
include surface fire behavior fuel model, forest canopy base height, and forest canopy bulk
density. Vegetation characteristics include forest canopy cover and forest canopy height.
LANDFIRE (www.landfire.gov) is a valuable source for such data; however, a few
challenges existed when applying LANDFIRE’s off-the-shelf landscape data for this mid-
scale assessment. First, the fire modeling area includes portions of four LANDFIRE
mapping zones, resulting in data discontinuities (seamlines) at mapping zone boundaries.
This occurred if the LANDIFRE rules for assigning and mapping fuel characteristics (i.e.,

Table 1 Characteristics of the ten municipal watersheds on the Beaverhead-Deerlodge National Forest

(a)
Watershed

(b)
BDNF landscape

(c)
Total watershed

area (ha)

(d)
Burnable

watershed
area (ha)

(e)
Burnable area

(% of total
watershed)

(f)
Relative ignition

density (%)

A Boulder River 10,779 10,093 93.6 60.3
B Upper Clark Fork 3,144 3,115 99.1 54.6
C Jefferson River 885 521 58.8 52.5
D Clark Fork-Flints 788 722 91.6 89.4
E Tobacco Roots 3,021 2,494 82.5 65.8
F Pioneer 6,425 5,930 92.3 58.3
G Clark Fork-Flints 1,593 1,580 99.2 100.0
H Big Hole 1,290 1,264 98.0 49.5
I Clark Fork-Flints 1,812 1,303 71.9 66.3
J Upper Clark Fork 1,337 1,330 99.5 57.5

Non-burnable watershed area consists of bare ground at the upper reaches of the watersheds. Relative
ignition density (column f) is an indicator of the relative potential for fire starts within the watersheds.
Because the ignition density grid used to produce these data is coarse (see Fig. 2), relative ignition density in
the area surrounding the watersheds should be similar to the values reported here
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surface fire behavior fuel model, canopy base height, and canopy bulk density) differed
between zones. Rules for mapping fuel characteristics are based on the combinations of
existing vegetation type (EVT), existing vegetation cover (EVC), existing vegetation
height (EVH), and biophysical setting (BpS). Second, rules for mapping fuel character-
istics are generalized to whole LANDFIRE mapping zones, which span millions of hect-
ares each. Rules that account for variability across a whole mapping zone can result in
imprecision when looking at just a small portion of the mapping zone. Third, LANDFIRE’s
published forest canopy cover data available at the time were known to overestimate this
factor (this overestimate has since been corrected and is not present in recent versions of
LANDFIRE data).

For these reasons, we held a local fuel calibration workshop with BDNF fire and fuel
staff to produce seamless, locally calibrated surface and canopy fuel data based on
LANDFIRE data version 1.0.0 of EVT, EVC, EVH, and BpS. A local calibration
workshop provides the opportunity for fire and fuels staff to critique and ‘‘fine-tune’’ the
LANDFIRE data for use at a more local scale based on their collective experience and

Wildfire Simulation 
Modeling System

Aggregated Fire Seasons 
(Pixel-Based)

Burn 
Probability

Geospatial Intersection of Municipal Watershed Polygons

Fireline
Intensity

Aggregated Watershed-
Pixel Results

Burn Probability 
Distribution

Fireline Intensity 
Distribution

Integrated Hazard 
Distribution

Fig. 2 Simplified flowchart for wildfire exposure analysis process. Highlighted in gray are the key
analytical steps, with the most effort involved in wildfire simulation. Pixel-based wildfire hazard metrics are
intersected with HVRA polygons to provide multiple characterizations of HVRA exposure to wildfire
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knowledge of the area. The data sets can also be updated to reflect recent disturbances
such as wildfire and insect outbreaks. We took slope, aspect, and elevation from
LANDFIRE version 1.0.0 (LANDFIRE ‘‘National’’) without adjustment. We also used
LANDFIRE version 1.0.0 data, without adjustment, for vegetation height and cover of
shrub and grass lifeforms. We reduced vegetation cover of the tree lifeform (forest
canopy cover) using the recommended procedure posted on the LANDFIRE Web site
(LANDFIRE 2010).

At the local calibration workshop, we reviewed, and edited where necessary, the
LANDFIRE fuel mapping rules to create a geospatial layer of surface fire behavior fuel
models. We used the LANDFIRE National EVC layer for herbaceous and shrub lifeforms,
but substituted our adjusted canopy cover values for the tree lifeform. This calibration
process produced a fuel model layer valid as of ca. 2000, the year of the imagery used by
LANDFIRE to produce the geospatial vegetation data.

To generate the canopy bulk density layer, we used a general linear model (GLM)
produced by LANDFIRE (Reeves et al. 2009), which is now used in LANDFIRE ver-
sions 1.0.5 (Refresh 2001) and 1.1.0 (Refresh 2008). The GLM is essentially a nonlinear
regression of canopy bulk density against forest canopy cover and height, based on data
from the LANDFIRE Reference Database (LFRDB) (LANDFIRE 2010). To generate the
canopy base height layer, we used a new mapping method produced by LANDFIRE.
Like the GLM for canopy bulk density, this canopy base height mapping method is now
used in LANDFIRE versions 1.0.5 and 1.1.0 data. It is also available in the newly
released Total Fuel Change Tool developed by the LANDFIRE program (LANDFIRE
2010).

To update the landscape model to vegetation conditions in 2009, we needed to reflect
fuel changes associated with wildfires that occurred between 2000 and 2009. Using fire
severity data from the Monitoring Trends in Burn Severity (MTBS) program (MTBS
2010), we identified areas that experienced a wildfire during that time period. We worked
with BDNF fire and fuel staff to create expert-opinion rules that identified a post-fire fuel
model as a function of EVT, fire severity (three classes), and time since fire occurrence
(1–5 years and 6–10 years). Forest canopy height was assumed to remain unchanged after
low and moderate severity fire; canopy cover and canopy bulk density were reduced to a
specified fraction of the pre-fire level. All canopy characteristics were set to zero in the
case of high-severity fire, on the assumption that a high-severity fire would effectively
remove the entire forest canopy.

It was further necessary to update the landscape model conditions to reflect changes due
to the beetle infestation. A procedure similar to the wildfire update was used. In place of
the MTBS fire severity data used for the wildfire update, we used geospatial data repre-
senting relative overstory canopy loss produced by the US Forest Service Region 1
Geospatial Services Group. Their data classified the relative amount of canopy cover
reduction from 2000 to 2009 (Ahl et al. 2010). We created an expert-opinion lookup table
based on the pre-infestation fuel model and relative canopy loss class to estimate the
surface fuel model as of 2009. We left canopy height and canopy base height unchanged
following the outbreak, assuming that the beetles would not affect the smaller trees that
contribute most to canopy base height. We reduced canopy bulk density and canopy cover
in direct proportion to the Region 1 canopy loss values.

The effects of insect infestations on fuel and fire behavior vary with time since dis-
turbance (Simard et al. 2011; Page and Jenkins 2007a, b; Jenkins et al. 2008). Very early in
the infestation, during the ‘‘red phase’’ of an infestation, the surface fuel model and most
canopy characteristics remain unchanged, but the reduced moisture content of the dead and
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dying foliage may temporarily increase the potential for crown fire. We did not simulate
this phase because it is of relatively short duration at any given place on the landscape,
usually less than 3 years. The lag time between measurement of canopy loss and assess-
ment of wildfire hazard means that red-phase stands will likely have moved into the longer-
duration gray phase. Instead, we simulated the longer-duration standing-gray phase during
which the foliage and fine branches of dead trees have fallen to the ground—so canopy
bulk density is reduced and surface fuel load is slightly increased—but the dead trees
remain standing with much of their branchwood still attached. Decades after the outbreak,
these dead trees will be falling to the ground, exacerbating fuel consumption, smoke
production, and resistance to control in the event of a wildfire. We did not simulate this
later phase of the current outbreak.

2.2 Fire weather

We identified five representative weather stations from across the forest with consistent
hourly wind and daily fire weather observations. Using FireFamilyPlus (Rocky Mountain
Research Station Fire Sciences Laboratory and Systems for Environmental Management
2002), we calculated the seasonal trend in the daily mean and standard deviation of ERC
throughout a calendar year. This information is used by FSim to produce artificial ERC
traces for a season. Also using FireFamilyPlus, we generated monthly joint distributions of
wind speed and direction. This information is used by FSim to randomly draw a wind
speed and direction, independently for each day of a simulation.

2.3 Fire occurrence

FSim requires information regarding the historic occurrence of fire in the analysis area,
specifically large fires—those that escape initial attack and require an extended attack
suppression response. We gathered fire occurrence data for all jurisdictions in the analysis
area. A total of 82 large fires occurred in the analysis area between 1990 and 2009; those
fires started on 65 days (that is, some days had multiple fire starts). We used FireFami-
lyPlus to estimate the coefficients of a logistic regression model of the probability of a
large-fire day within the 15 million acre fire modeling area. A large-fire day is a day on
which one or more fires start (or is discovered) that eventually burns more than 300 acres.
FSim uses these regression coefficients to simulate the ignition of large fires based on
simulated weather.

We also determined the distribution of number of fires started on each of the 65
large-fire days. During the last 19 years on the fire modeling area, only one large fire
started on 58 of the 65 large-fire days in the record (89 %), two fires started on 5 of the
days, four on one day (July 23, 2000), and ten started on one day (July 31, 2000).Past
fire start locations have not been uniform across the fire modeling area. To account for
that non-uniformity, FSim uses a geospatial layer indicating relative ignition density
across the landscape and randomly locates fires according to this density grid. The
ignition locations of all 82 large fires in the analysis area are shown in Fig. 3. Because
FSim is concerned only with large fires, which occur relatively infrequently on the
landscape, we used a nationwide large-fire ignition density grid created at the Missoula
Fire Sciences Laboratory based on a 75 km average density (and a cell size of 20 km).
The highest density of large-fire starts is found in the NW corner of the analysis area
(Fig. 3). The southeast corner has a moderate density of large-fire starts. The lowest
density of large-fire starts occurs along a southwest to northeast line running though the
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Gravelly

Big Hole

Lima Tendoy

Clark Fork - Flints

Jefferson River

Tobacco Roots

Madison

Boulder River

Upper Clark Fork

Upper Rock Creek

Ignitions > 300 acres
Ignition density grid

0.842

0.001

Elkhorn

Pioneer

Fig. 3 Start locations of fires greater than 121.41 ha (300 acres) (yellow dots) that occurred 1990–2009, and the
relative ignition density grid (unit-less) created from such locations at a nationwide scale. The ignition density grid
is used in FSimto locate simulated fires across the landscape. This grid helps explain the variability of burn
probability across the landscape. To prevent FSim from starting large fires in valley-bottom locations, we created
a valley-bottom mask and artificially lowered the ignition density in those locations to an arbitrarily small nonzero
value
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center of the analysis area. On a highly variable landscape like the BDNF, which
includes forested mountains and grassland valley bottoms, such a coarse-scale ignition
density grid tends to wash out the fine-scale patterns that occur. In this case, the
supplied ignition density grid indicates a higher propensity to start large fires in the
valley-bottom grasslands than the historic locations would indicate appropriate. In lieu
of developing a custom classification and regression tree model or logistic regression
specifically for this analysis, we instead simply identified the valley-bottom grasslands
within the fire modeling area and set the ignition probability to an arbitrarily low value
(0.001).Fires ignited outside the valley bottoms could still burn into and across them if
supported by fuel conditions.

2.4 Pixel-based wildfire hazard and exposure

Upon completion of preparatory work, we used FSim to simulate 40,000 fire seasons
using a pixel resolution of 90 m. We quantified wildfire hazard across the BDNF with
two primary, pixel-level FSim results: burn probability (BP) and mean fireline intensity
(MFI). Burn probability is the annual probability that an individual landscape pixel will
experience a wildfire, calculated as the number of times a pixel is burned during any of
the iterations divided by 40,000 (the total number of iterations). Mean fireline intensity is
the arithmetic mean fireline intensity (kW/m) of the simulation iterations that burned
each pixel. These two factors taken together characterize wildfire hazard at a pixel. For a
single measure of integrated wildfire hazard, we multiply these two results together and
bin into eight mutually exclusive hazard classes. A wildfire hazard assessment chart
(Fig. 4) illustrates this integrated hazard measure as diagonal lines (on a log–log scale)
representing lines of equal integrated hazard. Pixels with high BP and high MFI fall in
the highest integrated wildfire hazard class; pixels with low BP and low MFI fall in the
lower classes. To characterize exposure, we summarized BP, MFI, and integrated hazard
metrics across all landscape pixels within watershed polygon boundaries. Based on these
pixel-level results, we calculated the expected annual watershed area burned by multi-
plying the watershed-mean BP (excluding non-burnable pixels) by the burnable area of
the watershed.

Fig. 4 A wildfire hazard
characteristics chart illustrating
integrated hazard through
diagonal lines representing the
product of BP and MFI. This
hazard characterization sorts
individual landscape pixels into
integrated wildfire hazard classes,
I–VIII. Pixels with high BP and
high MFI have high wildfire
hazard; pixels with low BP and
low MFI have low wildfire
hazard
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Fig. 5 Map of pixel-level burn probability across the BDNF fire modeling landscape. Burn probabilities
range from a high near 0.01 in the NW corner of the area to 0.0002 in the low spread-rate portions of the low
ignition density band trending from the SW to the NE corner. Black indicates non-burnable areas of the
landscape (primarily agricultural land)
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Fig. 6 Map of pixel-level mean fireline intensity across the BDNF fire modeling landscape. Mean fireline
intensity values range from a high near 56,000 kW/m in intact forested areas to a minimum near 200 kW/m.
Black indicates non-burnable areas of the landscape (primarily agricultural land)
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