
 

A peer-reviewed electronic journal. 

Copyright is retained by the first or sole author, who grants right of first publication to the Practical Assessment, Research & Evaluation. 
Permission is granted to distribute this article for nonprofit, educational purposes if it is copied in its entirety and the journal is credited. 
PARE has the right to authorize third party reproduction of this article in print, electronic and database forms. 

Volume 17, Number 9, April 2012      ISSN 1531-7714  

 
Interpreting Multiple Linear Regression:  

A Guidebook of Variable Importance 
 

Laura L. Nathans, University of North Texas 
Frederick L. Oswald, Rice University 

Kim Nimon, University of North Texas 
 

Multiple regression (MR) analyses are commonly employed in social science fields. It is also 
common for interpretation of results to typically reflect overreliance on beta weights (cf. Courville & 
Thompson, 2001; Nimon, Roberts, & Gavrilova, 2010; Zientek, Capraro, & Capraro, 2008), often 
resulting in very limited interpretations of variable importance. It appears that few researchers 
employ other methods to obtain a fuller understanding of what and how independent variables 
contribute to a regression equation. Thus, this paper presents a guidebook of variable importance 
measures that inform MR results, linking measures to a theoretical framework that demonstrates the 
complementary roles they play when interpreting regression findings. We also provide a data-driven 
example of how to publish MR results that demonstrates how to present a more complete picture of 
the contributions variables make to a regression equation.  We end with several recommendations 
for practice regarding how to integrate multiple variable importance measures into MR analyses. 

 

Across behavioral science disciplines, multiple 
linear regression (MR) is a standard statistical technique 
in a researcher‘s toolbox. An extension of simple linear 
regression, MR allows researchers to answer questions 
that consider the role(s) that multiple independent 
variables play in accounting for variance in a single 
dependent variable. Researchers tend to rely heavily on 
beta weights when interpreting MR results (e.g., 
Nimon, Gavrilova, & Roberts, 2010; Zientek, Carpraro, 
& Capraro, 2008). Presumably, this is because most 
statistical packages automatically output these weights 
by default, which can then be easily rank ordered based 
on their magnitudes.  But beta weights serve as only 
one method for answering the proverbial fairy-tale 
question: Mirror, mirror on the wall, what is the best predictor 
of them all? As others have shown (e.g., Courville & 
Thompson, 2001) and readers will see, it is often not 
best to rely only on beta weights when interpreting MR 
results. In MR applications, independent variables are 
often intercorrelated, resulting in a statistical 
phenomenon that is referred to as multicollinearity when 
correlations between predictors are high, and, more 

generally, associations when there are correlations 
between independent variables. The more predictors 
there are in the model, the greater the potential there is 
for multicollinearity or association between variables 
(Pedhazur, 1997; Zientek & Thompson, 2006). The 
current paper demonstrates that there are several 
approaches researchers can use to gain insight into the 
role(s) that predictors play in MR that are particularly 
important to use in the presence of associations or 
correlations between variables. Each approach, we 
show, yields different perspectives and insights 
regarding the importance of independent variables in a 
regression equation, as well as often different rank 
orderings of those independent variables in terms of 
their contributions to the regression equation. We 
support Azen and Budescu‘s (2003) assertion that 
assessment of variable importance is contingent on how 
importance is defined and quantified and that it is 
therefore impossible to generate a, ―precise universal 
definition of importance‖ (Budescu, 1993, p. 544). The 
term variable importance in and of itself is not a 
meaningful term; rather, it must be discussed (if it is 
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discussed at all) in the context of a specific metric for it 
to have any meaning to the researcher or the reader.  It 
is probably better for researchers to emphasize the 
specific ways in which variable importance is 
operationalized (e.g., dominance analysis, commonality 
analysis) rather than to focus on the blanket term and 
assume that the reader knows what this term means. 
Through gaining an understanding of multiple methods 
of assessing variable importance and how they 
complement each other, a researcher should be able to 
avoid dichotomous thinking (e.g., yes it is an 
‗important‘ predictor, or no it is not), and instead 
understand the importance of independent variables in 
more nuanced terms. This means that there is no single 
‗right‘ way to interpret regression results, and although 
reliance on beta weights may feel right because it is 
normative practice, it provides very limited 
information. We want to open researchers‘ eyes to the 
multiple lenses through which MR can be profitably 
viewed; we also want researchers to promote the value 
of the multiple-lens approach in their publications and 
with their colleagues and graduate students.  

Several statistical techniques have been developed 
to determine independent variables‘ contributions to 
MR models. Our focus is on two general families of 
techniques.  One family provides different methods of 
rank ordering individual predictors‘ contributions to an 
overall regression effect or R2 (e.g., Pratt‘s measure, 
dominance analysis, relative weights), and the other 
family involves partitioning R2 into the unique and 
shared variance contributions of the independent 
variables (e.g., commonality analysis, squared semi-
partial correlations).  These two families are aligned 
with the framework of LeBreton, Ployhart, and Ladd 
(2004), who categorized methods of variable importance 
into those that assess (a) direct effects, which quantify the 
contribution of each independent variable to the 
regression equation when measured in isolation from 
other independent variables; (b) total effects, which 
quantify the each independent variable‘s contribution 
to the regression equation when the variance 
contributions of all other predictors in the regression 
model have been accounted for; or (c) partial effects, 
which quantify the each independent variable‘s 
contribution to the regression equation while 
accounting for the contributions to regression models 
of a specific subset or subsets of remaining 
independent variables.  It is important to clarify that a 
direct effect in this paper refers to a relationship between 

an independent and a dependent variable that does not 
incorporate variance contributions of other 
independent variables, as opposed to a direct effect in a 
path model, which refers to an independent variable 
that directly impacts another variable in the model 
(either an independent or dependent variable).  
Different techniques for assessing variable importance 
from these different categories may potentially (but not 
in all cases) yield different rank orderings of 
independent variables.  Use of multiple techniques that 
reflect these three types of effects when assessing 
variable importance will yield the richest and most 
complete picture regarding the relationships between 
independent variables and the dependent variable.  

Keeping this context in mind, the goal of our 
paper is to present a set of measures or lenses that 
provide different yet complementary ways of viewing 
the role(s) that each independent variable plays in a MR 
equation.  Our paper is structured by (a) defining each 
measure, (b) highlighting each measure‘s advantages 
and limitations, (c) describing how each measure can 
help identify suppression effects, (d) outlining specific 
research questions that each measure can address, and 
(e) detailing when the researcher should select each 
particular index to assess variable importance.  This 
guidebook should serve as a practical resource for 
researchers to define and identify the measure or set of 
measures with which to analyze their data using MR.  
In conclusion, we present a data-driven example and 
results section that researchers can use as a template for 
interpreting and reporting MR results.  Lastly, we 
present recommendations for practice for selecting and 
reporting of the variable importance measures included 
in our guidebook.  

Beta Weight  

Research shows that beta weights are heavily relied 
on to assess variable importance (e.g., Courville & 
Thompson, 2001; Nimon, Gavrilova, & Roberts, 2010; 
Zientek, Carpraro, & Capraro, 2008). The regression 
weight for each given independent variable is 
interpreted as the expected difference in the dependent 
variable score between people who differ by one unit 
on that independent variable, with all other 
independent variable scores held constant (Hoyt, 
Leierer, & Millington, 2006; Johnson, 2004). When 
variables are standardized (i.e., converted to z-scores), 
regression weights are called beta weights. A beta 
weight for an independent variable indicates the 
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expected increase or decrease in the dependent 
variable, in standard deviation units, given a one 
standard-deviation increase in independent variable 
with all other independent variables held constant. 
When variables are not standardized (i.e., scaled in their 
original metric), regression weights are called B weights.  
A B weight also indicates how much a one unit increase 
in the independent variable results in an increase in the 
dependent variable with all other variables held 
constant.  However, this increase is scaled in terms of 
the variable‘s original scaling metric, rather than in a 
standardized metric.  Our focus in this paper is on beta 
weights rather than B weights, because beta weights are 
more comparable across independent variables due to 
being scaled in the same standardized metric. 

According to Pedhazur (1997), beta weights are 
computed to weight the independent variables so that 
when the weights are multiplied by variable scores, 
their sum is maximally correlated with the dependent 
variable. This computation process minimizes the sum 
of squared errors between the dependent variable 
scores and the dependent variable scores predicted by 

the regression equation (called Y-hat or ) (Pedhazur, 
1997).  Because the beta weight calculation process 
accounts for the contributions of all variables in the 
model to the regression equation, each beta weight is a 
measure of the total effect of an independent variable 
(cf., LeBreton, Ployhart, & Ladd, 2004).  If beta 
weights are rank-ordered by their absolute values, it is 
important to understand that the rank ordering 
represents solely this type of contribution (and not 
others that we will describe shortly).  

According to Pedhazur (1997), sole reliance on 
using beta weights to interpret MR is only justified in 
the case where predictors are perfectly uncorrelated.  In 
the absence of shared variances between independent 
variables, each standardized beta weight is equal to the 
zero-order correlation between the independent and 
dependent variable. In such a case, variable importance 
can easily by determined by squaring the standardized 
beta weights; thus, it is not necessary to calculate more 
complicated MR indices.  

The major advantage of beta weights is that they 
provide a measure of variable importance that is easily 
computed and provides an initial rank ordering of 
independent variables‘ contributions to a MR equation 
that accounts for contributions of other independent 
variables.  However, this lens has a limited focus due to 

associations between independent variables.  A given 
beta weight may receive the credit for explained 
variance that it shares with one or more independent 
variables (Pedhazur, 1997).  As such, the other weights 
are not given credit for this shared variance, and their 
contribution to the regression effect is thus not fully 
captured in the beta weight value.  

Beta weights are also limited in their ability to 
determine suppression in a regression equation.  An 
independent variable that contributes little or no 
variance to the dependent variable may have a large 
non-zero beta weight because it ―purifies‖ one or more 
independent variables of their irrelevant variance, 
thereby allowing it or their predictive power to increase 
(Capraro & Capraro, 2001).  In such a case, the beta 
weight‘s value may lead the researcher to erroneously 
conclude that it directly predicts the dependent variable 
(Pedhazur, 1997). Thus, after obtaining beta weights, 
researchers should not cease to analyze their MR 
results, but rather should consider additional measures 
to gain a broader and fuller perspective on the 
contributions that independent variables make to the 
regression equation.  

Beta weights are best used as an initial ―starting 
point‖ from which to begin exploring the issue of 
independent variables‘ contributions to a regression 
equation.  It is recommended that all researchers begin 
MR analyses with beta weights, as they are easily 
computed with most statistical software packages and 
can provide an initial rank ordering of variable 
contributions in one computation.  If there are no 
associations between independent variables or the 
model is perfectly specified (Courville & Thompson, 
2001), no other techniques need to be employed.  
However, in the more realistic case of correlated 
predictors, researchers should select from at least one 
of the other techniques discussed in this guidebook to 
determine the impact of shared variance between 
variables on the regression equation. 

Beta Weight Research Question: What is the 
contribution of each independent variable to the regression 
equation, holding all other independent variables constant? 

Zero-Order Correlation  

As applied to MR, zero-order correlations reflect 
the bivariate relationships between independent and 
dependent variables. According to Hinkle, Wiersma, 
and Jurs (2003), the correlation coefficient is, ―an index 
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that describes the extent to which two variables are 
related‖ (p. 98). The correlation coefficient reflects 
both the magnitude and direction of the relationship 
between two independent variables.  Its values range 
from -1.0 to 1.0. If a correlation coefficient is negative, 
the values of the two variables that are correlated are 
inversely related; as one variable‘s scores increase, the 
other variable‘s scores decrease.  If a correlation 
coefficient is positive, an increase (or decrease) in one 
variable is related to an increase (or decrease) in the 
other variable in the coefficient.  The closer the value 
of the correlation coefficient is an absolute value of 1.0, 
the larger the magnitude of the relationship is between 
the two variables.  If the value of the correlation 
coefficient is zero, there is no relationship between the 
two variables.  It is important to note that the 
strength/magnitude of a correlational relationship is 
not related to the sign of the correlation coefficient; 
thus, equivalent predictive power can be attributed to 
correlations of equivalent magnitude but different 
signs. 

Zero-order correlations are measures of direct 
effect (cf., LeBreton, Ployhart, & Ladd, 2004), as they 
determine the magnitude of the bivariate relationship 
between the independent and dependent variable 
without accounting for the contributions of other 
variables in the regression equation. These coefficients 
are also commonly referred to as ―validities‖ (Nunnally 
& Bernstein, 1994).  In the case where independent 
variables are uncorrelated, zero-order correlations are 
equivalent to beta weights and are sufficient to rank 
order independent variables.  When squared, they add 
up to the model R2, and thus partition the regression 
effect (Pedhazur, 1997).  Conversely, in the case where 
at least some of the independent variables are 
correlated, squared zero-order correlations will 
generally add up to a total that is greater than the 
model R2, as shared variance in the dependent variable 
is added multiple times into the overall sum for R2.  
Thus, in the latter case, researchers should employ 
other statistics to determine how the regression 
equation is affected by shared variance among the 
independent variables. 

According to Nunnally and Bernstein (1994), there 
are several advantages to use of zero-order correlations.  
First, if a researcher has to select one independent 
variable to target for research or intervention after 
obtaining several beta weights of similar magnitude, 

s/he should choose the variable with the highest zero-
order correlation.  Second, zero-order correlations are 
less sensitive to effects of sampling error than are beta 
weights.  Third, this measure is the only measure 
presented in this guidebook that is able to quantify how 
much variance is directly shared between the 
independent and dependent variable without being 
affected by shared variance between independent 
variables. 

According to Nunnally and Bernstein (1994), there 
are limitations to the use of zero-order correlations.  
First, an independent variable may have the largest 
zero-order correlation with the dependent variable yet 
make the smallest (or potentially no) contribution to 
the regression equation when measures of total effect 
are calculated due to variance it shares with other 
variables.  As such, several independent variables may 
show high zero-order correlations, yet may not be, 
―particularly important to independent prediction‖ (p. 
192) when other independent variables‘ contributions 
to the regression equation are accounted for.  Thus, it 
is best to complement use of zero-order correlations 
with measures of total and partial effects that consider 
contributions of other variables to the regression 
equation in their assessments of variable importance. 

Zero-order correlations are often useful to identify 
the occurrence of suppression when viewed in concert 
with beta weights, although they cannot identify 
suppression effects in and of themselves.  If an 
independent variable has a near-zero or negligible zero-
order correlation with the dependent variable and a 
large and statistically significant beta weight, these two 
statistics suggest that the variable is a suppressor.  This 
variable shares no variance directly with the dependent 
variable and thus contributes to the regression equation 
through removing irrelevant variance from other 
independent variables. 

Researchers should choose this measure as a 
complement to beta weights when they are interested in 
determining the magnitude and direction of the 
bivariate relationship between an independent variable 
and the dependent variable without accounting for 
other predictors in the regression equation.  

Zero-Order Correlation Research Question: What is 
the magnitude and direction of the relationship between the 
independent and dependent variable, without considering any 
other independent variables in the MR model? 
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Product Measure 

Pratt (1987) proposed the product measure, which 
is calculated by multiplying the variable‘s zero order 
correlation (its relationship to the dependent variable in 
isolation from of other independent variables) by its 
beta weight (which accounts for contributions of all 
other predictors to the regression equation).  Thus, the 
product measure uniquely reflects in one statistic both 
direct and total effects (cf. LeBreton, Ployart, & Ladd, 
2004). 

A benefit of product measures is that they 
partition the regression effect; thus, their sum across all 
independent variables equals the multiple R² for the 
regression model, even when independent variables are 
correlated with one another (Azen & Budescu, 2003).  
This measure thus enables rank orderings of variable 
importance based on the partitioning of the regression 
effect.  The major difficulty with this measure is that it 
may also yield negative values for an independent 
variable even when the independent variable accounts 
for a large amount of variance in the dependent 
variable, particularly if either the zero-order correlation 
or beta weight for an independent variable is negative 
(Darlington, 1968). If large negative values are 
generated for independent variables, it renders their 
product measure values substantively meaningless in 
terms of quantifying their contribution to R2 because 
their variance contributions to the regression effect are 
subtracted from rather than added to the overall R2.  
Thus, they should not be used in such cases.  

Concerning suppression, Thomas, Hughes, and 
Zumbo (1998) explained that the product measure can 
identify suppressor variables.  Multiplying an 
independent variable‘s beta weight by the small or 
negligible zero-order correlation of the suppressor 
variable with the dependent variable will yield a small 
or negligible product measure value, thereby 
demonstrating that the variable did not directly 
contribute to the regression effect.  Small negative 
values may also indicate the presence of suppression if 
a near-zero correlation coefficient is multiplied by a 
negative beta weight (a classic profile for suppression). 

This measure should be selected as an initial, easily 
computed (as opposed to general dominance and 
relative weights, which will be discussed later) method 
of partitioning R2 in the presence of correlated 
predictors. It should be used to complement beta 

weights to provide a different ―perspective‖ on variable 
importance because its values, unlike those for beta 
weights, do sum to R2. It can be compared and 
contrasted with other methods for partitioning the 
regression effect as well.  

Product Measure Research Question: How can the 
regression effect be partitioned into non-overlapping partitions 
based on the interaction between the beta weight of each 
independent variable and its zero-order correlation with the 
dependent variable? 

Relative Weights 

Another method for partitioning the R2 in MR 
between independent variables in the model is through 
relative weight analysis (RWA; Fabbris, 1980; Genizi, 1993; 
Johnson, 2000).  Johnson (2000) explained that when 
independent variables are uncorrelated, the relative 
weights are computed by calculating the squared zero-
order correlation between the independent variable and 
the dependent variable (also the standardized beta 
weight) and dividing this number by R².  In contrast, 
when independent variables are correlated, relative 
weights address this problem by using principal 
components analysis to transform the original 
independent variables into a set of uncorrelated 
principal components that are most highly correlated 
with the original independent variables (Tonidandel & 
LeBreton, 2010).  These components are then 
submitted to two regression analyses.  The first analysis 
is a regression that predicts the dependent variable 
from these uncorrelated principal components. Next, 
the original independent variables are regressed onto 
the uncorrelated principal components.  Finally, relative 
weights are computed by multiplying squared 
regression weights from the first analysis (regression of 
dependent variables on components) with squared 
regression weights the second analysis (regression of 
independent variables on components).  Each weight 
can be divided by R2 and multiplied by 100 so that the 
new weights add to 100%, with each weight reflecting 
the percentage of predictable variance.  Relative 
weights are unique as a measure of total effect in that they 
provide rank orderings of individual independent 
variables‘ contributions to a MR effect in the presence 
of all other predictors based on a computational 
method that addresses associations between 
independent variables between variables by creating 
their uncorrelated ―counterparts‖ (Johnson & 
LeBreton, 2004). 
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There are several strengths of relative weights. 
First, relative weights add up to R² (Tonidandel & 
LeBreton, 2011).  They partition the regression effect 
based on a procedure that addresses the problem of 
associations between independent variables through the 
use of uncorrelated principal components.  Relative 
weights will thus, ―perform appropriately and much 
better than regression weights‖ when partitioning 
variance in the presence of correlated independent 
variables (Tonidandel & LeBreton, 2011, p. 5).  
Additionally, relative weights are easy to explain to 
researchers, because, unlike beta weights, they account 
for all variance explained by the regression model and 
at the same time address the minimize the impact of 
multicollinearity on weights attributed to each 
independent variable (Johnson & LeBreton, 2004). 
These points are probably more important than 
another advertised benefit of RWA, which is 
computational ease (Johnson, 2000).  

According to Tonidandel and LeBreton (2011), 
there are also several limitations of relative weight 
analysis.  First, these weights are highly dependent 
upon the independent variables in the regression 
model, and are thus ―susceptible to model 
misspecification‖ (p. 5). Second, although the 
computational procedure for relative weights presents a 
unique way of dealing with associations between 
independent variables, it is a common ―myth‖ (p. 5) 
among users of this method that this method ―fixes‖ all 
related problems. Relative weights are still affected by 
associations between independent variables; as each 
weight generally contains variance that is shared with 
other independent variables as well as unique variance, 
associations between independent variables are not 
completely eliminated. We would also add as a 
potential limitation that relative weights only identify 
suppression effects indirectly, when the weights sum to 
a total that is larger than R² or account for greater than 
100% of the variance in R² when relative weights are 
converted to percentages.  

The researcher should generally select relative 
weights when there is multicollinearity between 
independent variables. It serves as a strong 
complement to beta weights as, it is uniquely able to 
partition R2 while minimizing the impact of 
associations between variables, and can thus present a 
more accurate picture of variables‘ contributions to a 

regression effect than other R2 partitioning methods 
(such as the product measure). 

Relative Weights Research Question: How do 
independent variables contribute to the dependent variable when 
the regression effect is partitioned as a joint function of (a) how 
highly related independent variables are to their uncorrelated 
counterpart and (b) how highly related the uncorrelated 
counterparts are to the dependent variable?  

Structure Coefficients 

A structure coefficient is the bivariate correlation 
between an independent variable variable and the 

predicted value resulting from the MR model, where 

represents the predicted dependent variable scores 
(Courville & Thompson, 2001).  A structure coefficient 
in MR analyses is a useful measure of a variable‘s direct 
effect (LeBreton, Ployhart, & Ladd, 2004), as it 
quantifies the magnitude of the bivariate relationship 

between each independent variable and  in isolation 

from other independent variable- correlations. 
However, it is important to note that other 
independent variables do contribute indirectly to 
structure coefficient values, as they are used in 

computation of the  scores. The major difference 
between a zero-order correlation and a structure 
coefficient is that the structure coefficient is scaled to 
remove the difference of the multiple R2. 

According to Courville and Thompson (2001), 
there are two ways a structure coefficient can be 
computed. First, for a given independent variable, X, 
the structure coefficient is: 

 

where rX.Y is the bivariate correlation between the 
independent variable (X) and the dependent variable 
(Y), and R is the multiple correlation for the regression 
containing all independent variables. Second, the 
structure coefficient may be calculated by computing 
the correlation between a given independent variable 

and the predicted  scores, or:  

 

When squared, structure coefficients represent the 
amount of variance that an independent variable shares 

with the variance from the predicted  scores. 

According to Courville and Thompson (2001), a 
beneficial property of structure coefficients is that they 
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are not affected by associations between independent 
variables, as a structure coefficient is simply a Pearson r 

between an independent variable and . Thus, 
structure coefficients enable an understanding of how 
much variance each independent variable shares with 

the predicted  scores that are the actual analytic focus 
of the study. If an independent variable has a small beta 

weight but explains substantial variance in  as 
reflected a large squared structure coefficient, the 
researcher then knows that (a) there is shared variance 
between this variable and another variable and (b) that 
the beta weight calculation process assigned that shared 
variance to another independent variable.  However, 
structure coefficients are limited in and of themselves 
due to being solely a measure of direct effect that does not 
identify which independent variables jointly share 
variance in predicting the dependent variable or 
quantify the amount of this shared variance.  

A special case that highlights the usefulness of 
structure coefficients in identifying how the variance 
assignment process for a particular regression equation 
occurs is the suppression case. If a structure coefficient 
is near zero or zero in magnitude, that independent 

variable contributes little or no direct variance to .  If 
that independent variable has a substantial beta weight, 
it can be determined that the particular independent 
variable is a suppressor.  Notably, a similar process is 
used when comparing zero-order correlations to beta 
weights to determine the presence of a suppression 
effect. The major difference between the two processes 
is that the independent variable in the zero-order 
correlation in a suppression effect will share little or no 
variance with the dependent variable, while the 
independent variable in the structure coefficient will 

share little or no variance with the scores that are a 
portion of the dependent variable.  However, the 
researcher does not know what variables are being 
suppressed and must rely on other techniques, such as 
commonality analysis (to be discussed), to determine 
the magnitude and loci of suppression. 

As asserted by Courville and Thompson (2001) 
and we recommend, the researcher should select this 
measure in addition to beta weights in the presence of 
correlated predictors, as it is able to determine both (a) 

the variance each independent variable shares with  
and (b) if a variable‘s contribution to the regression 
equation was ―distorted‖ or minimized in the beta 
weight calculation process due to assignment of 

variance it shares with another independent variable to 
another beta weight. 

Squared Structure Coefficients Research Question: 
How much variance in the predicted scores for the dependent 

variable ( ) can be attributed to each independent variable when 
variance is allowed to be shared between independent variables? 

Commonality Coefficients 

Developed in the 1960s as a method of 
partitioning variance (Mayeske et. al, 1969; Mood, 1969, 
1971; Newton & Spurrell, 1967), commonality analysis 
partitions the R² that is explained by all independent 
variables in a MR into variance that is unique to each 
variable and variance that each possible subset of 
independent variables share (Onwuegbuzie & Daniel, 
2003; Rowell, 1996). For example, if a MR models the 
effects of X1, X2 and X3 in predicting Y (the dependent 
variable), then a commonality analysis calculates the 
amount of variance in Y that is predicted by 7 subsets 
that together add up to the model R²:  the unique 
variances of each variable X1, X2, and X3; the shared 
variances of variables taken two at a time, {X1, X2}, 
{X1, X3}, and {X2, X3}; and the shared variance of all 
three variables {X1, X2, X3}.  It is important to note 
that this process partitions the regression effect into 
nonoverlapping components of variance that can thus 
be easily compared. 

There are two types of commonality coefficients:  
unique effects and common effects. Unique effects 
reflect how much variance an independent variable 
contributes to a regression equation that is not shared 
with other independent variables (Zientek & 
Thompson, 2006).  This statistic is also termed the 
independent variable‘s usefulness or squared 
semipartial correlation. If independent variables are all 
uncorrelated, all independent variable contributions are 
unique effects, as no variance is shared between 
independent variables in predicting the dependent 
variable.  In this case, unique effects are identical in 
value to squared zero-order correlations and squared 
beta weights, and variable importance can be 
determined by rank orderings of unique effects.  A 
unique effect is a measure of total effect, as it is only 
calculated when all independent variables have been 
entered into the regression equation. 

In contrast, common effects provide detailed 
information that identifies and quantifies the extent and 
pattern of the independent variables‘ ―overlap‖ in 
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predicting dependent variable variance (Mood, 1971). 
Common effects are measures of total effect (LeBreton et 
al., 2004), as they quantify the contribution to the 
regression effect that each variable shares with every 
other variable set. By knowing which variables share 
variance in R², researchers have knowledge of how 
particular sets of variables operate in combination in 
predicting an outcome, and can thus generate 
recommendations regarding how to jointly target these 
variables to produce desired effects (see Seibold & 
McPhee, 1979 for an example). Commonality 
coefficients sum to the multiple R² for the regression 
model. Thus, they can be used to determine how the 
regression effect is partitioned into percentages of 
unique and shared variance. 

A unique property of commonality analysis is that 
the researcher can add the common effects for each 
independent variable and compare them with its unique 
effect to determine whether a variable contributes more 
to a regression effect when operating in combination 
with other variables or independently of them.  The 
resulting data provide rich interpretation of the 
regression effect.  Seibold and McPhee (1979) stressed 
the importance of decomposing R² into constituent 
parts: 

Advancement of theory and the useful 
application of research findings depend not  
only on establishing that a relationship exists  
among independent variables and the  
dependent variable, but also upon determining  
the extent to which those independent 
variables, singly and in all combinations, share 
variance with the dependent variable. Only 
then can we fully know the relative importance 
of independent variables with regard to the 
dependent variable in question.  (p. 355) 
 
There are two major difficulties with the 

commonality procedure. First, as the number of 
independent variables increases, the number of 
commonality coefficients increases exponentially 
(Mood, 1971). The number of commonality 
coefficients is 2p-1, where p equals the number of 
independent variables in the MR model (Mood, 1971).  
For example, with three, four, or five independent 
variables, the number of commonality coefficients is 7, 
15, and 31 respectively.  Therefore, with large numbers 
of predictors, there are large numbers of commonalities 

to report and interpret. However, software in PASW 
(Nimon, 2010) and R (Nimon, Lewis, Kane, & Haynes, 
2008) exists to compute these coefficients. Researchers 
will also need to summarize multiple combinations of 
variables represented by commonality coefficients. For 
example, with six variables, there are second-order 
commonalities between two variables, third-order 
commonalities between three variables, fourth-order 
commonalities between four variables, fifth-order 
commonalities between five variables, and a sixth-order 
commonality between all six of the variables (Amado, 
1999).  It may be hard for the researcher to assign clear 
meanings and interpretations to higher-order 
commonalities that reflect combinations of varied 
constructs (DeVito, 1976), but we argue that the 
attempt to do so can be worthwhile.  

The results of a commonality analysis can aid in 
identifying where suppressor effects occur and also 
how much of the regression effect is due to 
suppression. Negative values of commonalities 
generally indicate the presence of suppressor effects 
(Amado, 1999).  In the suppression case, a variable in a 
particular common effect coefficient that does not 
directly share variance with the dependent variable 
suppresses variance in at least one of the other 
independent variables in that coefficient.  The 
suppressor removes the irrelevant variance in the other 
variable or variables in the common effect to increase 
the other variable(s)‘ variance contributions to the 
regression effect (DeVito, 1976; Zientek & Thompson, 
2006).  Commonality analysis is uniquely able to both 
identify which variables are in a suppressor relationship 
and the specific nature of that relationship.  The 
researcher can look across a table of commonality 
coefficients and see if a particular variable is a part of 
multiple negative common effects, which suggests that 
it is a suppressor for at least one of the other variables 
in the common effects.  Additionally, researchers can 
compare common effects with structure coefficients 
and zero-order correlations to help identify 
suppressors.  If a variable has a small or negligible 
structure coefficient and zero-order correlation (and 

thus does not directly share variance with  or the 
dependent variable) and that same variable is part of a 
negative common effect, it can be determined that the 
variable is a suppressor for the other variables that are 
part of this common effect.  Summing all negative 
common effects for a regression equation can quantify 
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the amount of suppression present in the regression 
equation.  

Researchers should select commonality analysis 
when they have identified that shared variance between 
independent variables is impacting the regression 
equation (usually through comparisons of beta weights 
with structure coefficients) so that they can determine 
the patterns and extent of shared and unique variance.  
Additionally, commonality analysis should always be 
selected for use in the presence of suppression effects, 
as it is uniquely able to both identify the variables that 
are in a suppressor relationship and quantify the 
amount of suppression present in a particular 
regression equation. 

Commonality Analysis Research Question: How 
much variance in the dependent variable is uniquely vs. jointly 
explained by each predictor or predictor set?  

Dominance Weights 

Dominance analysis is a technique developed by 
Budescu (1993) and refined by Azen and Budescu 
(2003) to determine variable importance based on 
comparisons of unique variance contributions of all 
pairs of variables to regression equations involving all 
possible subsets of predictors. Budescu (1993) initially 
proposed dominance analysis as a means to improve 
upon previous relative importance measures by 
quantifying an independent variable‘s direct effect in 
isolation from other independent variables (as the 
subset containing no other independent variables 
includes squared zero-order correlations), total effect (as 
it compares independent variables‘ unique variance 
contributions when all predictors are included in the 
model), and partial effect (as it compares independent 
variables‘ unique variance contributions for all possible 
subsets of independent variables).  

According to Azen and Budescu (2003), there are 
three types of dominance. First, an independent 
variable shows complete dominance over another 
independent variable across all submodels if the former 
independent variable always shows a higher unique 
variance contribution than the latter independent 
variable when it is entered last into regression equations 
containing all possible subsets of independent variables.  
Budescu (1993) lists four ―exclusive‖ complete 
dominance relationships that an independent variable 
can have in relation to another independent variable: (a) 
X1 completely dominates X2; (b) X2 completely 

dominates X1; (c) X1 and X2 contribute equally to 
prediction of variance in the dependent variable; or (d) 
neither independent variable dominates the other 
across all possible model subsets (i.e., they each 
dominate different model subsets or no subsets).  

Azen and Budescu (2003) developed a weaker type 
of dominance, termed conditional dominance. Conditional 
dominance is determined by first calculating the averages 
of independent variables‘ contributions to all models of 
the same subset size (e.g., how much unique variance, 
on average, independent variables add to models with 
no independent variables, one other independent 
variable, and two other independent variables if the 
model has three independent variables). If, on average, 
an independent variable contributes more unique 
variance than another independent variable across 
model of all subset sizes, an independent variable is 
said to conditionally dominate another independent 
variable. 

Lastly, Azen and Budescu (2003) define a third and 
weakest type of dominance, termed general dominance.  
General dominance reflects the average additional 
unique variance contribution of each independent 
variable to all subset models; this can be computed by 
averaging across all conditional dominance statistics. 
Interpretively, general dominance represents the, 
―average difference in fit between all subset models (of 
equal size) that include Xi and those that do not include 
it‖ (Azen & Budescu, 2003, p. 137).  An important 
property of general dominance variance averages is that 
they partition the total R², enabling the researcher to 
rank order independent variables‘ contributions to the 
regression effect based on their average contributions 
across all possible subsets of independent variables. 
Notably, this method of partitioning R2 is different 
from that used with both the product measure, which is 
based upon zero-order correlations and beta weights 
rather than averages of uniqueness values, and relative 
weights, which are calculated on the basis of the entire 
regression model and not the average contribution 
across all sub-models.  

There are many advantages of the dominance 
analysis procedure.  First, dominance analysis enables 
comparisons between the uniqueness values of all 
independent variables for all possible subsets of 
independent variables in one technique (Budescu, 
1993). Second, dominance analysis rank orders 
independent variables equivalently across multiple 
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measures of fit, including Mallow‘s C, Akaike‘s 
information criterion, Bayesian information criterion, 
adjusted R², and many other measures (Azen & 
Budescu, 2003). Most importantly, dominance analysis 
is a comprehensive technique in that it is the only 
measure that involves calculation of all three types of 
effects in LeBreton et al. (2004)‘s theoretical 
framework.  

There are also several limitations of dominance 
analysis in addition to its many advantages.  First, 
dominance analysis involves computation of numerous 
statistics, and the number of models increases 
exponentially with the number of independent 
variables.  For example, Johnson (2000) noted that 
there are 1,023 models for 10 independent variables 
and 32,767 models for 15 independent variables. The 
researcher must construct tables of all R²s and perform 
extensive visual comparisons to establish dominance 
relationships for multiple pairs of variables. A SAS 
macro is listed in Azen and Budescu (2003) to 
automate the process, however.  Second, Budescu 
(1993) stressed that dominance analysis is contingent 
upon identification of the correct regression model; 
rank orderings will less informative if important 
variables are excluded and unimportant variables are 
included.  Third, Baltes, Parker, Young, Huff, and 
Altman (2004) did not find that in their data, 
dominance analysis added new information to that 
found with more traditional variable importance 
measures except in the presence of independent 
variables that do not contribute substantially to the 
regression effect; thus, the extensive computations and 
comparisons that dominance analysis requires may not 
be justified in such cases. 

Azen and Budescu (2003) explained how 
suppression effects can be determined through 
examination of conditional dominance statistics. 
Unique variance contributions of a ―regular‖ 
independent variable averaged over all models of a 
given size will typically decrease with increasing 
numbers of independent variables. This trend occurs 
because variance is typically shared between the 
independent variables, which reduces the amount of 
variance an independent variable uniquely explains in 
the presence of other independent variables.  However, 
in the suppression case, a suppressor will contribute 
more variance on average across subsets with greater 
numbers of predictors, as it only contributes variance 

to the regression equation through suppressing 
variance in other predictors. Viewing this trend for an 
independent variable that contributes no or little 
variance to the subset containing no predictors (and 
thus is not a direct contributor to variance in the 
dependent variable) will demonstrate that the 
independent variable is a classic suppressor.  

Researchers should select this technique when they 
are interested in understanding the dynamics of all 
possible subsets of independent variables, which is not 
captured in any other measure in this guidebook.  If the 
researcher wants to make pairwise comparisons 
between variables, this technique is solely suited for 
those comparisons, as well.  This technique is also well-
suited for selection of the subset of the most significant 
independent variables for future analyses.  

Dominance Analysis Research Question: Does one 
independent variable contribute more variance that another 
independent variable to the regression effect for models containing 
all or some subsets of independent variables, or on average across 
all possible subsets of independent variables? 

The preceding discussions are summarized in Table 1. 

A Caveat Regarding Theory-Driven 
Regression Methods and Stepwise 

Regression 

Because of the importance of regression analysis 
for answering theory-driven—as opposed to data-
driven—research questions, we provide a discussion of 
how variable importance measures can be used in 
theory-based research. Theoretical considerations can 
be factored into both assessments of variable 
importance and inclusion of variables in regression 
models.  According to Schafer (1991), the purpose of 
theory-based hierarchical regression analysis is to enter 
variables into regression equations in a predetermined 
order that is relevant to the theory underlying 
development of the regression model.  This process 
enables determinations of both the (a) incremental 
predictability at each regression step and (b) the 
variance explained by the variable(s) entered at each 
step.  The researcher is able to control the variance 
contributions of several ―control‖ variables before 
entering the variables of ―primary importance‖ to the 
theory with such methods.  Researchers can examine 
variable importance in the same hierarchical manner, 
and they can frame variable importance in the context 
of the theory underlying the regression model.   
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Table 1.  The Multiple Lenses of Multiple Regression: Ways to Operationalize Independent Variable 
Contributions to R2 

 
Always 
Total 

R² 

Identifies 
Suppressor 

Direct 
Effect 

Total 
Effect 

Partial 
Effect 

Values are 
Identical 

When 
Predictors 

Uncorrelated 

Identifies 
Multi- 

collinearity 

β Weights    X  X  

Zero-order r   X   X  

Product Measure X  X X    

Structure 
Coefficient 

  X    
 

 

Commonality 
Coefficients 

X X     
 

 

Unique    X  X  

Common    X   X 

Dominance 
Analysis 

Complete 

Conditional 

General 

 

 

 

 

X 

 

 

X 

X X X   

Relative Weights X   X    

 

Generally, in the presence of strong theory, 
regression equations can be used to answer three 
types of theoretical research questions: (a) can 
specific combinations of independent variables 
predict or explain variance in the dependent 
variable?; (b) is a specific variable in a set of 
independent variables necessary to predict or 
explain variance in the dependent variable; and (c) 
can specific combinations of independent variables 
predict or explain variance in the dependent 
variable, given a strong theoretical rationale for 
including control variables as predictors? (Thayer, 
2002).  In the context of intervention research, 
Groemping (2007) also argued that researchers can 
use regression results to make comparative 
judgments of which independent predictors can 

produce specific effects on a particular dependent 
variable that are used to inform intervention-related 
theory in such a case.  

Stepwise Regression Methods 

Stepwise regression methods are sometimes 
relied upon to determine a set of independent 
variables that purportedly represent the ―best‖ set of 
predictors of a particular dependent variable. 
Hinkle, Wiersma, and Jurs (2003) outlined the steps 
involved in conducting forward stepwise regression. 
The first independent variable is selected for entry 
into the regression equation that demonstrates the 
highest bivariate correlation with the dependent 
variable.  The second independent variable selected 
produces the highest increase in R2 after accounting 
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for the prediction of the first variable.  After this 
second independent variable is added, a second 
significance test is conducted to determine if the 
first independent variable remains a statistically 
significant predictor; if it is not, it is dropped from 
the equation.  This process repeats until either (a) all 
independent variables have been entered into the 
equation or (b) entry of the remaining independent 
variables into the stepwise solution does not 
produce a statistically significant increase in R2. 

There are several significant difficulties inherent 
in stepwise regression analyses (Thompson, 1989, 
1995) that caution against its widespread use as a 
measure of variable importance.  First, as 
Thompson (1995) pointed out, the analysis does not 
incorporate the correct number of degrees of 
freedom for each statistical significance test.  The 
method assigns one degree of freedom to each 
variable that is tested at each step; however, because 
each independent variable is selected from all 
remaining independent variables in the regression 
equation at each step, a degree of freedom should 
be assigned to all considered variables. This 
oversight increases the F value at each step and its 
likelihood of being statistically significant. The 
miscalculation of degrees of freedom will thus result 
in more Type I errors overall (rejecting the null 
hypothesis when it is true; Thompson, 1989).  

Even if this issue were addressed, a second 
significant difficulty with the stepwise regression 
procedure is that the independent variables that are 
selected are conditional on the variance 
contributions of the variables that have already been 
entered into the regression (Thompson, 1995).  All 
results hinge on the variable that is selected as the 
first predictor; accordingly, the researcher will get 
different entry orders at different steps depending 
on the variable that ―starts‖ the stepwise solution. 
Because of this conditionality, the stepwise 
regression process does not answer the question 
that it claims to answer, that is, ―what is the best set 
of independent variables to predict variance in a 
particular dependent variable?‖   In fact, it is likely if 
stepwise regression methods are used that (a) other 
models with the same number of independent 
variables may have a larger R2; (b) models with 

fewer independent variables may predict an 
equivalent R2 as the models selected by the stepwise 
solution; (c) independent variables not included in 
the stepwise solution may be just as significant 
independent variables as those that are included; and 
(d) the independent variables will not enter the 
model in the order of importance that they would in 
a final model of independent variables selected 
simultaneously (Thayer, 1990).  

Lastly, and perhaps most importantly, selection 
of variables in stepwise solutions capitalizes hugely 
on sampling error (Thompson, 1995). An 
independent variable that contributes an amount of 
variance that explains an extremely miniscule 
amount of greater variance than another variable 
due to sampling error may be chosen as the ―best‖ 
predictor for a particular step, and all following 
variable selections will thereby result from a 
―chance‖ selection at this previous step.  Due to 
these three major problems with the stepwise 
regression method, we generally proscribe use of 
this technique in assessing variable importance.  We 
dedicated considerable discussion to these issues 
because the method remains in popular use by 
researchers. 

Illustration 

Below we present an example of a results 
section that employs all variable importance 
measures discussed in our guidebook to interpreting 
MR results, in hopes that this can serve as a 
template for other researchers to use in their own 
work. Data for this example was obtained from the 
Holzinger and Swineford (1939)‘s dataset. This 
dataset contains assessments of 301 subjects from 
two high schools (Paster School and White Grant 
School) on a battery of 26 tests that measured 
verbal, spatial, and mathematical abilities. This 
example used three tests relevant to subjects‘ 
mathematical aptitude: (a) numeric, (b) arithmetic, and 
(c) addition to predict deductive mathematical reasoning 
(i.e., reasoning).  

The regression equation for this analysis was: 
reasoning = -2.92 + 1.43numeric + 0.89arithmetic – 
0.12addition.  A comparison across all statistics 
presented in Table 2 highlighted that numeric was the 
strongest direct predictor of reasoning across multiple  
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Table 2.  Summary of Statistics Determining Independent Variable Contributions to Regression Effects 

Variable β rs rs
2 r Pratt Unique Common GDW RWI RWI % 

Numeric .35 .87 .76 .40 .140 .092 .065 .124 .124 60.0 

Arithmetic .23 .72 .52 .33 .075 .038 .070 .072 .073 35.5 

Addition -.16 .09 .01 .04 -.006 .022 -.020 .011 .009 4.5 

 

indices.  Numeric obtained the largest beta weight (β 
= .35, p < .001), demonstrating that it made the 
largest contribution to the regression equation, while 
holding all other predictor variables constant.  The 
zero-order correlation of numeric with the reasoning (r 
= .40), when squared, showed that numeric shared 
the largest amount (16%) of its variance with 
reasoning. The squared structure coefficient (rs

2 = .76) 
demonstrated that numeric explained the largest 

amount (76%) of the variance in , the predicted 
values of reasoning. Product measure results 
demonstrated that numeric accounted for the largest 
partition of variance in reasoning (.140, 67.6% of the  

Table 3.  Commonality Coefficients 

Effect 
Coeffic

-ient 
Percent 

Unique to Numeric .092  44.5 

Unique to Arithmetic .038 18.5 

Unique to Addition .022 10.7 

Common to Numeric and 
Arithmetic 

.075 36.2 

Common to Numeric and 
Addition 

-.015* -7.4* 

Common to Arithmetic and 
Addition 

-.011* -5.3* 

Common to Numeric, Arithmetic, 
and Addition 

.006 2.9 

Total .207 100.0 

*Negative values represent suppression effects 

regression effect) when multiplying the beta weight 
(.35) by the zero-order correlation (.40).  Notably, 
relative weight results supported that numeric 

explained a large portion of the overall regression 
effect (.124, 60%) when partitioning that effect 
based on creation of variables‘ uncorrelated or 
independent counterparts. Dominance analysis 
results (see Table 4) demonstrated complete 
dominance of numeric over arithmetic and addition, as it 
contributed more unique variance in the regression 
effect than the other two independent variables 
across all 3 MR sub-models that include that 
variable.  This complete dominance can be 
determined by looking across each row in Table 4 
and seeing how each value for numeric was larger 
than the values for arithmetic and addition.  

Table 4.  Complete Dominance Weights 

  Additional 
Contribution of: 

Variable(s) 
Model 

R² 
Num-
eric 

Arith-
metic 

Addi-
tion 

Subset Containing 
No Predictors 

 .158 .108 .002 

Numeric .152  .027 .011 

Arithmetic .108 .073  .008 

Addition .002 .167 .113  

Numeric and 
Arithmetic 

.185   .022 

Numeric and 
Addition 

.169  .038  

Arithmetic and 
Addition 

.115 .092   

Numeric, 
Arithmetic, and 
Addition 

.207    
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Because numeric was a completely dominant 
independent variable over arithmetic and addition, it 
necessarily showed conditional dominance (see 
Table 5) over arithmetic and addition.  This conditional 
dominance can be determined by looking across all 
rows in Table 5 and seeing how numeric contributed 
more unique variance on average to regression 
effects for models of all subset sizes than arithmetic 
and addition. As numeric was completely and 
conditionally dominant over the other two 
predictors in the model, it also showed general 
dominance over both of these variables (see Table 
2).  These statistics are equal to the averages of the 
conditional dominance weights shown in Table 5. 
Notably, for this example, the relative weight (.124) 
was equivalent to the general dominance weight 
(.124); thus, its contribution to the regression effect 
assessed in terms of averages of unique variance 
contributions to all possible subsets or through the 
creation of uncorrelated counterpart variables was 
the same. 

Table 5.  Conditional Dominance Weights 

Subset 
Size 

Numeric Arithmetic Addition 

    0 .158 .108 .002 

    1 .122 .070 .009 

    2 .092 .038 .022 

Arithmetic clearly emerged as the second 
strongest direct predictor of reasoning.  In terms of 
the beta weight (β = .23, p < .001), it made the 
second largest contribution to the regression 
equation when holding all other predictors constant. 
Its zero-order correlation (r = .33) was also the 
second largest in the model, which, when squared, 
demonstrated that arithmetic shared the second 
largest amount (10.9%) of its variance with reasoning. 
The squared structure coefficient (rs

2 = .52) 
illustrated that arithmetic shared the second largest 

amount (52%) of variance with . Product measure 
(.075) results showed that arithmetic accounted for 
36.2% of R2 when it was partitioned based on 
multiplying the beta weight (.23) by the zero-order 
correlation (.33).  Arithmetic‘s relative weight (.073) 
was nearly identical to its product measure, 

demonstrating that arithmetic accounted for 35.5% of 
the regression effect when partitioning it based on 
creation of the independent variables‘ uncorrelated 
counterparts. Thus, arithmetic accounted for the 
second largest amount of variance in the regression 
equation across multiple measures.  

Complete dominance analysis results (see Table 
4) supported the fact that arithmetic was completely 
dominant over addition (see Table 4), as a perusal of 
all rows in Table 4 show that it contributed more 
unique variance to all rows of all subsets sizes than 
addition.  As arithmetic was completely dominant over 
addition, it also showed conditional dominance (see 
Table 5) in and general dominance (see Table 2) 
over this variable. Once again, the general 
dominance weight for arithmetic was nearly identical 
to the relative weight, reflecting that arithmetic 
explained the second largest and a substantial 35.5% 
of the variance in R² when partitioning the 
regression effect based on the average difference in 
fit between subsets that do and do not include 
arithmetic—a different partitioning method than that 
used for relative weights. 

Although other statistics clearly showed how 
numeric was the strongest direct contributor to the 
regression equation, followed by arithmetic, they did 
not show exactly how those variables contributed 
unique and shared variance to the regression 
equation. Thus, commonality coefficients were 
consulted to obtain this information (see Table 3). 
When viewing commonality analysis results, unique 
effect results demonstrated that numeric contributed 
more unique variance (44.5%) to the regression 
effect than did arithmetic (18.5%). The common 
effect for numeric and arithmetic reflected that both 
variables also contributed substantial shared 
variance (36.2%) to the regression effect. These 
results highlighted that numeric and arithmetic partially 
operated in combination in predicting reasoning. 
Viewing unique and common effect columns in 
Table 2 illustrated how numeric contributed more 
unique than shared variance to variance in reasoning 
(.09 vs. .07, respectively), while, conversely, arithmetic 
contributed more shared than unique variance to 
variance in the dependent variable (.04 vs. .07, 
respectively). 
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The results for different measures presented 
different lenses on the predictive power of addition to 
predicting variance in the dependent variable. The 
beta weight for addition (β = -.16, p = .004) 
suggested that addition played a more minor but still 
statistically significant role in the regression effect 
when holding all other variables constant.  However, 
the squared structure coefficient (rs

2 = .001) showed 

that addition contributed negligible variance to , 
and the zero-order correlation (r = .04) showed that 
addition explained 0.2% of the variance in the overall 
dependent variable. These statistics clearly 
demonstrated that addition did not directly share 
variance with either the obtained effect or the 
dependent variable as a whole.  When partitioning 
R² based on multiplying the beta weight (-.16) by the 
zero-order correlation (.02), product measure (-.006) 
results reflected that addition once again contributed 
very little variance to the regression effect (-2.9%). 
The relative weight for addition (.009) demonstrated 
that addition contributed very little variance the 
regression effect (4.5%) when partitioning it based 
on variables‘ uncorrelated counterparts.  The fact 
that the beta weight for addition was statistically 
significant but that addition shared little variance with 
reasoning when examining (a) its shared variance with 

, (b) its shared variance with the dependent 
variable, and (c) partitioning the regression effect 
based on two measures suggested that addition was a 
suppressor variable, which removed irrelevant 
variance in at least one independent variable, 
thereby allowing its (or their) contributions to the 
regression effect to become larger. 

Conditional dominance weights confirmed that 
addition was a suppressor, as its contribution to 
regression models increased across subset sizes. Its 
contribution to the subset containing no other 
predictors was .002, which illustrated that it 
contributed nearly negligible variance to the 
regression effect in isolation from other variables in 
the regression equation.  Its average unique variance 
contribution for the models containing only one of 
the other two predictors was .009, and for the 
subset containing both other predictors it was .022. 
Notably, addition‘s contribution to the regression 
model containing both numeric and arithmetic was 
greater than its contribution to models containing 

either numeric or arithmetic, suggesting that addition 
might be a suppressor for both numeric and arithmetic.  

Commonality coefficient findings supported 
that addition was a suppressor for both numeric and 
arithmetic, as the common effects between numeric 
and addition (-.015) and arithmetic and addition (-.011) 
were negative, and suppression is generally 
demonstrated in negative commonalities. Summing 
the percentages of variance that each of these 
common effects contributes to the overall 
regression effect (7.4% for numeric and 5.3%, for 
addition, respectively) showed that 12.7% of the 
regression effect is due to suppression, and thus that 
addition removes 12.7% of irrelevant variance from 
numeric and arithmetic to increase the amount of 
variance in the dependent variable explained by 
these two independent variables by 12.7%.  

Overall, these findings supported how both 
numeric was the most significant direct contributor 
and arithmetic was the second most important direct 
contributor to predicting variance in reasoning, as 
reflected across different measures of direct, total, and 
partial effects.  It is important to note that this is not 
always the case:  One independent variable may be 
deemed the most important through one lens, and 
another independent variable may achieve that 
status through another lens.  Results also supported 
from multiple lenses how addition functioned as a 
suppressor in this regression equation. Reliance on 
beta weights alone would not have pointed out the 
nature of the suppressor effect. 

Table 6 is offered as a summary of the purposes 
of each of the discussed statistics. 

List of Recommendations for Practice 

We present a list of recommendations for 
reporting of regression results based on the methods 
discussed in this guidebook to assist researchers in 
selection and synthesis of multiple variable 
importance measures. Prior to outlining our 
recommendations, we would like to state a general 
recommendation to run scatterplots of all 
independent variables and the dependent variable to 
find outliers and/or unexpected patterns in the data 
prior to conducting MR analyses.  Clean up the data 
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Table 6.  Purposes of Each Statistical Measure 

Statistic Purposes of Measure 

Beta weight Determination of independent 
variables‘ contributions to prediction 
within a linear regression equation 
while holding all other independent 
variables constant 

Zero-order 
r 

Determination of magnitude and 
direction of bivariate linear relationship 
between each independent variable and 
the dependent variable 

Product 
measure 

Determination of variable importance 
based on partitioning model R2 as a 
function of a predictor‘s beta weight 
multiplied by its zero-order r 

Squared 
structure 
coefficients 

Determination of how much variance 
each independent variable contributes 

to  

Commonality coefficients: 

   Unique   
   effects 
 

Determination of variance each 
independent variable contributes to a 
regression equation that is not shared 
with other independent variables 
(squared semipartial correlation) 

   Common 
   effects 

Determination of which independent 
variables share variance in predicting 
the dependent variable as well as 
quantification of how much variance is 
shared between independent variables 

Dominance 
weights 

Determination of whether one 
independent variable contributes more 
variance than another independent 
variable to models: 

(a) across all subsets of 
independent variables 
(complete dominance) 

(b) on average across models for 
all subset sizes (conditional 
dominance) 

(c) on average across all models 
(general dominance) 

Relative 
weights 

Determination of variable importance 
based on method that addresses 
multicollinearity by creating variables‘ 
uncorrelated ―counterparts‖  

as appropriate before proceeding with summarizing 
them with regression and other statistical analyses. 
Also, previous articles have recommended including 
tables of means, standard deviations, and 
intercorrelations between independent variables to 
accompany regression summary tables (cf. Schafer, 
1991). Reporting reliability coefficients for all 
variables can also be helpful (e.g., independent 
variables with low alpha reliability might explain low 
intercorrelations and weak prediction). Previous 
authors have also recommended (a) including the 
specific regression equation(s) in a footnote or in 
text (i.e., do not merely list the total R2 or the 
statistical significance of the equation; cf. Schafer, 
1992) as well as (b) including a general regression 
summary table that reports the values of the zero-
order correlation between each independent variable 
and the dependent variable, F and MSresidual values, 
and p values for each individual predictor to 
illustrate statistical significance (cf. Schafer, 1992). 

Specific to reporting multiple indices of variable 
importance, we offer following recommendations 
for practice: 

1) Do not rely solely upon beta weights when 
interpreting regression findings, except in 
the case of uncorrelated predictors or when 
the model is perfectly specified (see, e.g., 
Courville & Thompson, 2001). Beta weights 
are only informative with regard to 
prediction; they do not tell the researcher 
other important information provided by 
the other metrics we have reviewed. 

2) Use different tables to help interpret 
different indices of variable importance. 

a. Include one table that enables visual 
comparisons across indices for each 
independent variable. Joint 
comparisons across indices can aid 
in identification of associations 
between variables and the presence 
of suppression in a regression 
equation. Table 2 of this paper is 
recommended if all indices are 
compared. If specific subsets of 
indices are used for a specific 
research purpose, then one can still 
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present those indices in the format 
we display. 

b. If commonality analysis is used, 
include a table (see Table 3) that lists 
the unique variance contributions of 
each independent variable and the 
common variance contributions for 
all possible subsets of independent 
variables to the regression equation. 
Also report these portions of R2 as 
percentages of R2, as well.  

c. If dominance analysis is used, 
include a table (see Table 4) of 
unique variance contributions of 
each independent variable to all 
possible subset sizes to enable 
pairwise comparisons of unique 
variance contributions of each 
independent variable to all subsets of 
predictors. Additionally, include a 
table (see Table 5) of conditional 
dominance weights that averages 
unique variance contributions of 
each independent variable to models 
of all subset sizes. This table is useful 
in identifying suppression effects if 
values increase across subset sizes 
with more independent variables. 

3) When reporting commonality analysis results 
in text, describe both the unique and shared 
variance contributions of all independent 
variables and whether each variable 
contributes more shared or unique variance 
in its contribution to R2. 

4) When reporting dominance analysis results 
in text, include all three types of dominance 
(complete, conditional, and general), as 
dominance relationships can be established 
at lesser levels of dominance (i.e., general 
dominance) if not at higher levels (i.e., 
complete dominance).  

5) Calculate squared structure coefficients 
when independent variables are correlated in 
order to determine the role of shared 
variance in the regression equation (cf. 
Courville & Thompson, 2001). If there is 
divergence between beta weight and 

structure coefficient results (supportive of 
multicollinearity/associations between 
variables and/or suppression), it is suggested 
that researchers employ commonality 
analysis to determine the location and extent 
of this shared variance and/or suppression. 

6) Include a variance partitioning statistic in 
addition to beta weights in the presence of 
correlated predictors (e.g., general 
dominance weights, relative weights, and 
Pratt‘s measure).  Draw comparisons in text 
between techniques that partition R2 if 
multiple techniques are used.  

7) In the presence of suppression in a 
regression equation, always calculate 
commonality coefficients, as this technique 
is uniquely able to identify which variables 
are being suppressed and quantify the 
overall amount of suppression present in an 
equation. 

8) Always consider the statistics used in 
calculating each index when evaluating 
variable importance. For example, if a Pratt 
measure value is near-zero, the researcher 
should verify that the zero-order correlation 
used in computing the Pratt measure and 
not the beta weight shows a near-zero or 
zero value when determining if a variable is 
a suppressor, as suppression is only 
demonstrated in the former case. The 
researcher should also consider the value of 
R2 that is expressed as percentages in 
commonality analysis and relative weights 
analysis. It is reasonable to think that 
percentages of a small R2 might be 
interpreted differently than the same 
percentages based on a large R2. 

Conclusion 

This paper has illustrated how researchers‘ 
conceptualizations and assessments of variable 
importance can be enhanced by viewing MR results 
through multiple lenses.  As it has shown that each 
―lens‖ has distinct advantages and limitations, and 
that multiple statistical measures complement each 
other in the perspectives they provide regarding 
regression findings, we hope that this paper will 
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encourage researchers to ―look beyond‖ beta 
weights and employ the other measures discussed in 
our guidebook.  Ideally, this practice would become 
a matter of routine among researchers, in our peer-
reviewed journals, and in teaching MR within 
graduate-level statistics curricula.  The hope is that 
our data-driven example will allow researchers to 
write up their own findings in a similar manner and 
thus will be able to better represent the richness of 
their regression findings, and how these findings are 
impacted by such issues as suppression and patterns 
of shared variance that go undiscovered through 
heavy reliance on beta weights alone. 
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