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This paper explores the possibility of combining projected Hartree-Fock and density functional theo-
ries for treating static and dynamic correlations in molecular systems with mean-field computational
cost. The combination of spin-projected unrestricted Hartree-Fock (SUHF) with the TPSS correla-
tion functional (SUHF+TPSS) yields excellent results for non-metallic molecular dissociations and
singlet-triplet splittings. However, SUHF+TPSS fails to provide the qualitatively correct dissociation
curve for the notoriously difficult case of the chromium dimer. By tuning the TPSS correlation param-
eters and adding complex conjugation symmetry breaking and restoration to SUHF, the right curve
shape for Cr2 can be obtained; unfortunately, such a combination is found to lead to overcorrelation
in the general case. © 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4796545]

I. INTRODUCTION

To date, no method is known to have the ability to si-
multaneously describe weak (or dynamic) and strong (or
static) correlations at low computational cost. However, an
efficient projected Hartree-Fock (PHF) methodology with
mean-field computational cost has recently been proposed
and implemented by our research group.1 The most at-
tractive feature of spin-PHF is that it is capable of deal-
ing with strong correlations arising from spin fluctuations
while retaining the low computational scaling of the regu-
lar Hartree-Fock method.2 On the other hand, density func-
tional theory (DFT) has a well established reputation because
of its ability to account for some static and weak correla-
tions via exchange and correlation functionals, respectively,3

all within mean-field computational cost too. It then seems
quite logical to attempt to combine PHF and DFT correla-
tion functionals in a scheme taking advantage of the par-
ticular abilities of each method. Assuming that PHF ac-
counts for all static correlations, one could, for example,
compute the PHF wavefunction and then use the resulting
density for calculating the residual dynamical correlations
from DFT.

The idea of adding DFT correlation functionals to
methods that can capture static correlation has been ex-
plored in the past.4–11 Blends of DFT with complete active
space12–14 (CAS), configuration interaction15 (CI), multicon-
figuration self-consistent field16 (MCSCF), and constrained-
pairing mean-field theory17, 18 (CPMFT) have emerged in the
literature during the last decade. Compared to these methods,
PHF has the advantage of being a “black box” tool in the
sense that it does not require the specification of the num-
ber of active orbitals or electrons from the user. Furthermore,
PHF has a much lower computational scaling than CI, MC-
SCF, or CAS, and as shown below, PHF+DFT does not seem
to require the inclusion of DFT exchange in molecules near
equilibrium, as occurs with CPMFT.18

There are, however, two central issues that one must con-
sider before using such a PHF+DFT scheme: symmetry in-
consistencies and double counting of correlations. The first
one refers to the fact that PHF yields a wavefunction that re-
spects the symmetries of the molecular Hamiltonian, while
modern DFT functionals are designed to work with broken
symmetry densities.19 The second problem is basically the
possibility of overcorrelation; the PHF wavefunction may al-
ready contain dynamic correlations which would then lead to
double counting when adding residual correlations from DFT
correlation functionals. These two problems are not unique to
PHF and are also encountered in other multireference (MR)
DFT procedures.12, 15, 16

In this paper, we address the above issues and present
the results of our implementation for a simple PHF+DFT
model. Our aim is to demonstrate that PHF+DFT is a promis-
ing, computationally economic tool for handling molecular
systems in which both dynamic and static correlations are
important. We begin by explaining in detail the problem of
symmetry discrepancies between PHF and DFT, and present
an approach to solve it by means of alternative densities.
These alternative densities are then used in a single-shot post-
PHF calculation for adding residual correlations via DFT. The
rest of the paper is dedicated to describe the details of our im-
plementation and the results of benchmark calculations.

II. THEORY AND METHODS

A. Alternative densities

The symmetry dilemma of DFT and the rationale behind
the need of using alternative densities in PHF+DFT can be
summarized as follows: the most successful DFT approach to
date has been Kohn-Sham (KS) DFT.20 All KS-DFT function-
als are approximations to a formally exact functional which
depend only on the total electronic density γ (r) = γ α(r)
+ γ β(r).21 However, methods that depend only on γ (r) yield

0021-9606/2013/138(13)/134102/6/$30.00 © 2013 American Institute of Physics138, 134102-1
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poor quality results if strong correlations are present. This
problem is alleviated by using functionals which depend on
both γ α(r) and γ β(r) (or, equivalently, γ (r) and the spin den-
sity γ z(r)) and breaking spin symmetry. In consequence, mod-
ern functionals have been designed to work with broken-
symmetry densities19, 22 (this technique is sometimes referred
to as unrestricted or spin DFT). Since PHF yields symmetry-
adapted densities, we must define and use alternative densi-
ties if we are to take advantage of the vast resources currently
available from KS-DFT methods.

Perhaps the most rigorous way around this symmetry
dilemma is the one provided by Perdew et al.19 According
to this interpretation, rather than yielding physically accurate
values for γ α(r) and γ β(r), DFT yields correct values for γ (r)
and the on-top pair density P2(r), the probability of finding
two electrons at the same point in space. This view is per-
fectly valid as the Hohenberg-Kohn theorem21 makes no ref-
erence to the individual densities γ α(r) and γ β(r), but only to
γ (r) and the energy, which is also related to P2(r) because of
contributions from interelectronic repulsions.

Following this philosophy, we can create alternative den-
sities defined as γ ±(r) = (γ (r) ± γ z(r))/2 by substituting
γ α(r) and γ β(r) by γ +(r) and γ −(r) in the expression of P2(r)
for a single-determinant state, P2(r) = γ α(r)γ β(r).23, 24 This
procedure yields the densities used by Moscardó and San-
Fabián8

γ±(r) = 1

2
γ (r) ± 1

2

√
γ (r)2 − 4P2(r), (1)

where the term γz(r) =
√

γ (r)2 − 4P2(r) is basically an al-
ternative spin density. Unfortunately, this approach has two
pressing drawbacks in practical applications. The first one is
related to the cost of computing P2(r); in general, it is ob-
tained from the pair density P2(r, r′ = r) = P2(r),

P2(r, r ′) =
∑
ijkl

�kl
ij ϕ∗

i (r)ϕ∗
j (r ′)ϕk(r)ϕl(r

′), (2)

where ϕi represents a spin orbital and � is the reduced two-
particle density matrix. Knowledge of P2(r) requires then the
evaluation and storage of �, a computationally demanding
procedure. The second drawback is that, for densities formed
from wavefunctions of multireference character, such as PHF
wavefunctions, it is possible that 4P2(r) > γ (r)2 leading to
unphysical complex densities in Eq. (1) and a formally imag-
inary spin density.25 Because of these complications, we have
avoided in this work the use of the alternative densities de-
fined by Eq. (1).

The simplest and most economic approach to obtain us-
able alternative densities in PHF+DFT would be to form den-
sities from an unprojected state that breaks spin symmetry. In
the spin-projected PHF method (SUHF), we have a variation-
ally optimized Slater determinant |�〉 which breaks spin sym-
metry, and a projected state |�〉 = N P̂ |�〉 , where P̂ is the
spin-projection operator recovering the components of |�〉
having a specific eigenvalue of Ŝ2 and N is a normalization
factor. As usual, we can use the one-particle reduced density
matrix γ

γ =
(

γα 0
0 γβ

)
, (3)

where γij = 〈�|â†
j âi |�〉, to get γ α(r) and γ β(r) from

γσ (r, r ′) =
∑
ij

(γσ )ij ϕ
∗
σ i(r)ϕσj (r ′) (4)

by setting r′ = r (here, ϕ∗
σ i(r) is a spatial orbital of σ spin). Al-

ternative densities can be formed if, rather than forming γ σ (r)
using the elements γ ij , we form instead a deformed density

σ (r) from the matrix 
ij = 〈�|â†

j âi |�〉. The resulting 
α(r)
and 
β(r) components break spin symmetry and are compat-
ible with DFT correlation functionals. For details regarding
the projection operators used here and how to build the PHF
density matrices, see Refs. 1 and 26.

A second viable possibility is to define alternative den-
sities based only on the spinless (or charge) first-order den-
sity matrix γ (r, r′) = γ α(r, r′) + γ β(r, r′). Takeda et al.13

as well as Pérez-Jiménez and Pérez-Jordá16 have favored this
approach in their implementations of MR+DFT methods.
Pérez-Jiménez and Pérez-Jordá define the densities ρ>(r) and
ρ<(r) in terms of the natural orbitals ψ i(r) and occupation
numbers of γ (r, r′), ni (i.e., eigenvalues of γ c = γ α + γ β)27

ρ>(r) =
∑
ni≥1

(ni − 1)|ψi(r)|2, (5)

ρ<(r) =
∑
ni≥1

|ψi(r)|2 +
∑
ni<1

ni |ψi(r)|2. (6)

Similar densities have also been derived using the density
of unpaired electrons D(r, r′) of Takatsuka et al.28

D(r, r ′) =
∑

i

ni(2 − ni)ψ
∗
i (r ′)ψi(r). (7)

Such is the case of the uA(r) and uB(r) densities defined by
Staroverov and Davidson29

uA(r) = 1

2

∑
i

ni(1 + ni(2 − ni))|ψi(r)|2, (8)

uB(r) = 1

2

∑
i

ni(1 − ni(2 − ni))|ψi(r)|2, (9)

which can be written in their matrix representation as
uA = γ c(1 + D)/2 and uB = γ c(1 − D)/2, where γ c = γ α

+ γ β . Although a more natural definition for alternative den-
sities based on D(r, r′) would have been u′

A = (γc + D)/2 and
u′

B = (γc − D)/2, this prescription allows the appearance of
spurious negative densities. This problem arises from the defi-
nition of D(r, r′) which does not enforce Tr(D) ≤ Tr(γc), i.e.,
it allows the number of effectively unpaired electrons to be
larger than the actual number of electrons. An alternative def-
inition for the density of unpaired electrons U(r, r′) avoids this
problem:30

U (r, r ′) =
∑

i

min{ni, 2 − ni}ψ∗
i (r ′)ψi(r). (10)

We note here that the densities defined by Eqs. (5) and (6) can
also be defined in terms of the alternative U(r, r′) above as
ρ< = (γ c + U)/2 and ρ> = (γ c − U)/2.

Figure 1 maps the occupation numbers of γ (r, r′), ni,
onto those of the alternative densities uA, uB , ρ> and ρ<.
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FIG. 1. Occupation numbers of alternative densities in terms of the eigenval-
ues of the charge density matrix.

Although these two sets of alternative densities are quite dif-
ferent from each other, both satisfy the physical constraints of
non-negativity and adding to the total density. In this work,
we have used these densities as well as the deformed densi-
ties 
α and 
β for our PHF+DFT methodology, which we
now proceed to describe.

B. Description of the PHF+DFT method

In our PHF+DFT scheme, the exact energy E is approx-
imated as

E ≈ EPHF + EDFT
c , (11)

where EPHF is the PHF energy obtained via a self-consistent
procedure, and EDFT

c is the correlation energy from a single-
point calculation using a DFT functional that takes as argu-
ments the alternative densities described in Sec. II A. To avoid
the introduction of self-interaction error31–34 when calculat-
ing residual correlations with DFT, we have chosen the TPSS
functional37 to compute EDFT

c . Additionally, the TPSS corre-
lation functional has two parameters set as C(0, 0) = 0.53 and
d = 2.8 hartree−1 that can be reoptimized for our purposes
without affecting the self-interaction correction. The original
values of C(0, 0) and d were chosen so that the TPSS energy
of jellium would remain unchanged with respect to its PBE
GGA35, 36 values. However, it is reasonable to modify C(0, 0)
and d for PHF+DFT because here we are interested only in
residual correlations via alternative densities. Additional de-
tails about TPSS and these parameters can be consulted in the
original paper.37

In PHF methods, the larger the number of symmetries
broken and restored, the more correlations are captured. By
using SUHF (which restores Ŝ2 symmetry only) to obtain
EPHF, and optimizing the parameters C(0, 0) and d for perfor-
mance in SUHF+TPSS, we expect to reduce the possibility
of overcorrelation. Specifically, C(0, 0) and d were chosen so
that SUHF+TPSS would fit the exact dissociation curve for
the hydrogen molecule using the cc-pVTZ basis. These values
are then used in all other benchmarks, except when explicitly
mentioned. Although we here focus on SUHF+TPSS, we also

discuss a few results with KSUHF+TPSS (that breaks and re-
stores collinear spin and complex conjugation symmetries).

It is convenient at this point to introduce notation to avoid
confusion; from now on, we indicate within square brackets
the particular set of alternative densities used in the TPSS
correlation evaluation. Thus, DFT[
] refers to the deformed

α(r) and 
β(r) densities of PHF, DFT[ρ] corresponds with
ρ> and ρ<, and DFT[u] uses uA and uB. We remind the reader
that DFT[ρ] and DFT[u] are constructed using the density
matrix of the projected state.

C. Computational details

Our PHF+DFT scheme using alternative densities was
implemented in the GAUSSIAN suite of programs.38 Un-
less otherwise noted, all calculations in this work are car-
ried out with the cc-pVTZ basis set.39 Unrestricted Hartree-
Fock wavefunctions were used to generate initial guesses for
the SUHF and KSUHF calculations. Frozen-core unrestricted
coupled cluster singles and doubles with perturbative triplets,
UCCSD(T),40 served as comparison reference in some exam-
ples. For KSUHF initial guesses, a complex phase factor was
also applied to some elements of the HOMO orbital in order to
break complex conjugation symmetry. Convergence extrapo-
lation techniques41, 42 (DIIS) were also applied when feasible.
The Nelder-Mead algorithm43 was utilized for the optimiza-
tion of the TPSS parameters.

III. RESULTS AND DISCUSSION

A. Molecular dissociations

Molecular dissociations make a good test for PHF+DFT
as a quantitatively accurate description of this phenomenon
demands the inclusion of both static and dynamic correla-
tions. In this case, the overall best results are obtained by the
least computationally demanding and simplest of the explored
methods: SUHF+TPSS[
]; we shall focus mostly on it in this
section.

Figure 2(a) shows excellent agreement between the
dissociation curves of H2 computed from full-CI and
SUHF+TPSS[
] with the optimized parameters d = 31.68
and C(0, 0) = −0.22. This figure also shows the UHF, SUHF,
and UHF+TPSS curves for comparison. Note that addition
of TPSS correlation yields a curve that tends to be paral-
lel to the parent method, leading to a more accurate curve
shape in SUHF+TPSS than in UHF+TPSS. The correlation
energy ETPSS

c [
α, 
β] in H2 tends to zero as the bond length
increases, reflecting that the SUHF 
α and 
β densities are
compatible with TPSS and that this functional is free of self-
interaction error. We note that a curve nearly overlapping
SUHF+TPSS[
] can also be obtained using SUHF+TPSS[ρ]
with d = 8.91 and C(0, 0) = −0.79. In contrast, it was
not possible to achieve such a good agreement with FCI
through all the dissociation region with SUHF+TPSS[u]
because ETPSS

c [uA, uB ] approaches zero more slowly than
ETPSS

c [
α, 
β] and ETPSS
c [ρ>, 
<].

For larger systems, it is not viable to use full-CI to as-
sess the accuracy of our method. However, UCCSD(T) has
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(c) (d)

(a) (b)

(e) (f)

FIG. 2. Dissociation curves comparing results from SUHF+TPSS[
] with standard methods. All SUHF+TPSS calculations use d = 31.68 and C(0, 0)
= −0.22 while KSUHF+TPSS[u] uses d = 1.21 and C(0, 0) = 12.28.

been shown to provide potential energy curves very close to
those of full-CI in some small molecules44 and so we use
it as reference here. Using the same d = 31.68 and C(0, 0)
= −0.22 parameters, SUHF+TPSS[
] yields results very
similar to those obtained from UCCSD(T) for the dissocia-
tions of N2, F2, BH, and triangular H3 (Figures 2(b)–2(e)).
All these plots show total energies except for the F2 disso-
ciation curve (Figure 2(c)) because the amount of dynamic
correlation is so large here that UHF and SUHF are on a dif-
ferent scale as compared to UCCSD(T) and SUHF+TPSS.
These figures also demonstrate that SUHF can miss a large
amount of dynamic correlation even for simple systems; how-
ever, SUHF energies can be greatly improved by addition of
TPSS correlation with virtually no increase in computational
cost.

The results are not quite as encouraging for the notori-
ously difficult case of the chromium dimer. Figure 2(f) shows
the potential energy curve for Cr2 given by different methods
using the 10s8p3d2f basis of Scuseria and Schaefer.45 In Cr2,
a mixture of 4s-4s and 3d-3d interactions with antiferromag-
netic coupling results in a very short bond length but weak
binding energy of 1.679 Å and 34 kcal/mol (0.054 hartrees),
respectively.46 UHF and SUHF predict only a very weak bind-
ing in a region around 2.6–3.0 Å, while SUHF+TPSS is
nearly parallel to SUHF. The binding in this region is due to
the 4s-4s interactions; the bonding at shorter distances due to
3d-3d interactions is completely absent in these dissociation
curves. Nevertheless, the sophisticated, O(M7), UCCSD(T)
method also fails to correctly describe the bonding in Cr2 (al-
though better results have been reported using closed-shell
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CCSD(T) based on a sextuply bonded Slater determinant47).
The chromium dimer is a notoriously difficult dissociation
where both static and dynamic correlations have large contri-
butions, thus it is not terribly surprising that the simple com-
binations proposed in this work are unsuccessful; it is esti-
mated that traditional CI methods would require more than ten
billion configurations to achieve high accuracy in Cr2.48

In an attempt to fix this deficiency of SUHF+TPSS,
we have also experimented with different alternative densi-
ties and the TPSS parameters. However, we were unable to
find a combination of SUHF alternative densities and TPSS
parameters that improved the description of the Cr2 dis-
sociation. In fact, SUHF+TPSS[
], SUHF+TPSS[ρ], and
SUHF+TPSS[u] all give very similar results and variation
of d and C(0, 0) always result in curves that are almost
parallel to SUHF; variation of d and C(0, 0) results mostly
in a rescaling of ETPSS

c . It is possible, however, to obtain
the qualitatively correct dissociation curve by incorporating
complex conjugation symmetry breaking in the mixture. The
KSUHF+TPSS[u] curve shown in Figure 2(f) uses parame-
ters optimized to fit the experimental dissociation energy of
0.054 hartrees (d = 1.21 and C(0, 0) = 12.28). Here, alter-
native densities uA and uB are used because TPSS does not
work well with the deformed KSUHF densities, yielding a
non-zero Ec for one-electron densities. Apparently, breaking
and restoring complex conjugation in addition to Ŝ2 symme-
try, which essentially adds a 2 × 2 non-orthogonal CI to the
wavefunction, allows KSUHF to capture correlations from a
different spin reconfiguration, one with orbitals that are nec-
essary for describing the dynamic correlations responsible for
the 3d-3d bonding in the chromium dimer.

Unfortunately, KSUHF+TPSS is found to be inadequate
for general use (at least in its current form) as it usually leads
to serious overcorrelation problems. Clearly, what is needed
in Cr2 (i.e., the inclusion of complex conjugation and a drastic
change in the TPSS parameters) becomes double counting in
non-metallic bonds. Modifications to C(0, 0) and d do not fix
the issue as using parameters optimized for a certain system
can even lead to unphysical results (e.g., positive ETPSS

c ) in
another system. Nonetheless, it may be possible to improve
the general applicability of KSUHF+TPSS through a scheme

that properly addresses the problem of double counting corre-
lations.

B. Singlet-triplet splittings

Singlet-triplet splittings (the energy difference between
the lowest singlet and triplet states) are particularly chal-
lenging to predict accurately because of their high sensitivity
to both static and dynamic correlation effects. Table I com-
pares the singlet-triplet splittings predicted by different ap-
proximations with experimental data for a set of particularly
challenging benchmarks49–52 including small diatomics,53

methylene,54 trimethylenemethane,55 and benzyne isomers.56

Here, UHF+TPSS data are also given for comparison pur-
poses; while it improves upon UHF, SUHF+TPSS tech-
niques roughly halve the mean average error (MAE) of
UHF+TPSS. The improvement given by SUHF+TPSS meth-
ods over SUHF is more moderate but significant; in particular,
SUHF+TPSS predicts the correct sign for the splitting in each
case, whereas SUHF fails for m-benzyne. Clearly, inclusion
of dynamic correlation is important to describe this benzyne
isomer, an observation in agreement with previous studies of
spin splittings using unrestricted mean-field methods.49 The
SUHF+TPSS singlet-triplet gaps are also more accurate than
those reported for spin unrestricted calculations using state of
the art DFT functionals.52 Nonetheless, the negative mean er-
rors (MEs) indicate that SUHF+DFT tends to overcorrelate
the singlet states, a problem that also seems to occur in other
MR+DFT approaches.16

Although variation of the TPSS parameters has impor-
tant effects on the total energies in SUHF+TPSS, the change
in relative energies seems to be much less significant. Typi-
cally, use of the parameters C(0, 0) = −0.22 and d = 31.68
yields a correlation energy that is about half of the correlation
energy using the default values of C(0, 0) = 0.53 and d = 2.8.
Nevertheless, the MAE in Table I for SUHF+TPSS[
] using
these different parametrizations are very close to each other.
In fact, SUHF+TPSS[
] with the default parameters gave the
lowest MAE suggesting that one may use these parameters
if interested only in relative energies. This is similar to what

TABLE I. Singlet-triplet splittings (in kcal/mol) for different approximations using the cc-pVTZ basis. The energies are given by ES − ET , ME is the mean
error (theory − experiment), MAE the mean absolute error, and TMM denotes trimethylenemethane. The experimental data were taken from Refs. 53–56.

Molecule UHF UHF+TPSS[
]a SUHF SUHF+TPSS[
]b SUHF+TPSS[
]a SUHF+TPSS[u]a SUHF+TPSS[ρ]a Expt.

NH 19.4 16.7 33.6 42.1 31.9 33.7 33.7 39.0
OH+ 25.9 22.8 45.8 43.1 43.4 45.7 45.7 50.6
O2 15.8 15.6 20.6 22.9 21.7 22.3 22.4 22.6
NF 19.7 16.7 32.3 35.5 32.6 31.7 31.8 34.3
CH2 16.9 13.1 15.6 17.9 12.8 10.0 9.8 9.4
TMM 23.7 23.7 19.1 20.8 22.4 20.6 20.6 17.7
o-Benzyne − 15.8 − 20.6 − 51.4 − 53.3 − 51.6 − 62.5 − 62.9 − 38.0
m-Benzyne 28.8 0.5 2.2 − 15.8 − 16.7 − 19.4 − 18.2 − 20.6
p-Benzyne − 10.1 − 6.2 − 28.2 − 25.0 − 21.8 − 28.8 − 31.5 − 3.5

ME 1.3 − 3.24 − 2.43 − 2.59 − 4.08 − 6.47 − 6.68
MAE 17.5 13.96 9.19 7.26 6.75 7.51 7.94

aC(0, 0) = 0.53 and d = 2.8.
bC(0, 0) = −0.22 and d = 31.68.
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occurs in DFT, where the total energies tend to be well below
the variational limit, but the relative energies are very reason-
able.

Another observation that can be drawn from Table I is
that SUHF+TPSS[ρ] and SUHF+TPSS[u] yield very similar
results. In the cases where the splittings are nearly identical,
the occupation numbers of γ (r, r′) were such that ρ< and ρ>

were similar to uA and uB. Also, the MAE does not change
drastically when using the deformed 
α and 
β densities. All
this suggests that PHF+DFT is relatively insensitive to the
type of alternative densities used. The densities 
α and 
β

may then be preferred since they do not require the compu-
tation of γ (r, r′) or any kind of transformations. However, if
one uses a PHF method which breaks any kind of symmetry
other than Ŝ2 symmetry, use of 
α and 
β may introduce self-
interaction error, and in that case, ρ< and ρ> or uA and uB are
likely to be a better choice.

IV. CONCLUDING REMARKS

We have presented a simple method combining PHF and
DFT correlation via alternative densities. The method has
low mean-field computational cost and can handle several
systems in which both dynamic and static correlations are
present. Overall, SUHF+TPSS[
] gives the best results and
seems to be more generally applicable (although it is not
able to properly describe the most challenging case of the
chromium dimer). Because of the large variety of plausible
PHF+DFT combinations, there are still many alternatives to
be explored, opening possibilities to improve upon the results
reported here. We believe that PHF+DFT should be viewed
as a low cost alternative within the multireference DFT family
and therefore a promising candidate for treating large systems
in which both types of correlation are important.
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