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Dispersion of carbon nanotubes (CNTs) into liquids typically
requires ultrasonication to exfoliate individuals CNTs from bundles.
Experiments show that CNT length drops with sonication time (or
energy) as a power law t~™. Yet the breakage mechanism is not
well understood, and the experimentally reported power law
exponent m ranges from approximately 0.2 to 0.5. Here we simu-
late the motion of CNTs around cavitating bubbles by coupling
Brownian dynamics with the Rayleigh-Plesset equation. We ob-
serve that, during bubble growth, CNTs align tangentially to the
bubble surface. Surprisingly, we find two dynamical regimes dur-
ing the collapse: shorter CNTs align radially, longer ones buckle. We
compute the phase diagram for CNT collapse dynamics as a func-
tion of CNT length, stiffness, and initial distance from the bubble
nuclei and determine the transition from aligning to buckling. We
conclude that, depending on their length, CNTs can break due to
either buckling or stretching. These two mechanisms yield different
power laws for the length decay (0.25 and 0.5, respectively), recon-
ciling the apparent discrepancy in the experimental data.

he dispersion of carbon nanotubes (CNT5) in liquids is critical

for the use of CNTs in applications ranging from biomedical
sensors to structural composites (1). However, CNTs form inso-
luble bundles and ropes during production due to van der Waals
attraction. Commonly, CNTs are exfoliated and dispersed in li-
quids by sonication, where energy is supplied to the system as
ultrasonic waves. These waves induce cavitation, which leads
to progressive exfoliation of bundles into individual CNTs. Un-
derstanding dispersion by sonication is critical for the use of
CNTs in biological and materials applications (2).

Prior studies have monitored the effects of sonication on CNT
dispersion quality and length (3-7). Most of these studies soni-
cated a sample under controlled conditions and monitored bun-
dle diameter and length. Although sonication decreases bundle
diameter at short times as individual CNTs are exfoliated, it also
cuts the CNTs. Shortening has been observed for both single-
walled and multiwalled CNTs (SWNTs and MWNTs) (4, 5).

Similar shortening occurs during sonication of polymer solu-
tions (5, 8-12), where the mechanism is well established; cavita-
tion induces high strain rates in the liquid, stretching polymer
molecules to failure. Although the mechanism of CNT shortening
remains unclear, there are some similarities between sonicated
polymers and CNTs. Like polymers, CNTs show a nonrandom
cutting pattern; i.e., they break near their center of mass
(CoM) (5). Similar to polymers, the kinetics of CNT shortening
are length-dependent, and sonicated CNTs approach a limiting
length, below which no shortening occurs (6, 13). Evidence sug-
gests that thermal effects (due to local temperature rise during
bubble collapse) are negligible and mechanical effects dominate
(6, 14, 15).

Experiments consistently report a power law relation between
CNTs’ average length and sonication time L ~¢~™. This same
power law captures the dependence of length on sonication
energy, showing that sonication time and power have a combined
effect (4). Yet the literature disagrees on the power law exponent
m. Various values for this exponent have been reported: m ~ 0.5
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(5) and m ~0.22 (4). Comparing these experimental data is
difficult because of differences in CNT diameter, mechanical
properties, waviness, surface functions, and wettability; yet the
mismatch is surprising, because the scaling of length with time
is tied to the underlying physics of scission. Here, we model
CNT dynamics during sonication to understand the CNT break-
ing mechanisms and reconcile the experimental data.

Model

Shortening of CNTs can be treated as a first-order chemical
reaction without recombination (4, 5, 11). The kinetics of the
system follow dn/dt = kn, where k is the length-dependent scis-
sion rate and n is the ensemble-averaged number of CNTs with
length L. Assuming an initial population of n, CNTs with mono-
disperse length, L, yields n(t) = nyLo/L(t) by conservation of
CNT mass; i.e., CNT total length. Assuming a power-law
dependence k = aL 7, where a is a constant and g is the power
law exponent, and integrating in time yields a length-dependent
balance

log(L) = —m log(qat); 1]

i.e., a power law relationship between length and time, with
m = 1/q. Although simplistic, the assumption of initial monodis-
persity is a reasonable starting point for analyzing the process.

Hennrich et al. proposed a model which resembles the well-
established polymer description (5). The model postulates that
CNTs align radially with respect to collapsing bubbles. Because
of the radial sink flow, sections of the CNT near the surface
of the bubble experience higher drag than farther sections, result-
ing in a net stretching force on the CNT. The maximum tension
occurs at the CNTcenter and can be calculated by considering the
drag exerted on the two halves of the CNT,

Frp = %npw, 2]

where p is the liquid viscosity and ¢ is the radial strain rate at the
CNT center, which can reach approximately 10° s~! near a col-
lapsing cavity.The critical force for cleaving a CNT is

(2Dw — w?)

F. = Cpreax™ )
c break 4

[3]

where Gy, 1S the CNT tensile strength, D is its diameter, and w
is its wall thickness (5). Experiments on SWNTs indicate a typical
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tensile strength of 37 GPa (1). Hence, the critical force is
F.~20 nN for a CNT with D = 1.2 nm and w = 0.34 nm.

According to Egs. 2 and 3, SWNTs shorter than approximately
120 nm should not break during sonication, in reasonable agree-
ment with experimental evidence (5). Because the tensile force
depends on the length squared, the scission rate should do so
too, such that g ~2 and m ~ 0.5 (5). (We show below that this
equivalence between critical force and scission rate is approxi-
mately correct). This result is in general agreement with their
experimental results, although the length distribution has large
error bars that could affect the scaling law.

Recently, we suggested an alternative mechanism of CNT
breakage where the CNTs are oriented parallel to the bubble sur-
face at the beginning of the collapse phase, due to the bubble
expansion flow (4). The extensional flow during collapse then ex-
erts competing forces that could either rotate the CNT or directly
buckle it. Experimental evidence (rings, kinks) suggests the pos-
sibility of buckling (16, 17). Cohen and Mahadevan argued that
CNTs could be trapped inside a collapsing bubble and buckle due
to interfacial forces, yielding rings and kinks (17).

Chew et al. neglected surfactant effects and assumed that
CNTs enter the bubble during growth due to hydrophobic effects,
and exit the bubble in an orientation tangential to the bubble sur-
face during bubble collapse (14). [This contrasts with the assump-
tion that bubbles would trap CNTs during the collapse (17).]
By combining molecular dynamics with experiments, Chew
et al. concluded that buckling dominates and stretching is not
significant.

Disagreement between experimental studies, combined with
the disparate proposed models, raise the question of whether
breakage during sonication may follow different routes depend-
ing on CNT properties and experimental conditions—and hence
yield different power laws. To study breakage under broad con-
ditions, we model the growth of bubbles and compute the dy-
namics of CNTs in the ensuing flow.

Cavitation Dynamics. The physics of cavitation is a classical subject,
tracing back to the 19th century. Here we summarize the equa-
tions that describe cavitating bubbles (18, 19). Acoustic waves tra-
veling in a liquid can be modeled as longitudinal pressure waves.
The local acoustic pressure is P4(¢) = P 4 sin(wt), where P 4 is
the amplitude.

The frequency o is usually approximately 20 kHz for labora-
tory sonicators. The supplied power ranges between 20 and
160 W, yielding pressure peaks up to 7,500 kPa near the sonicator
tip. Local pressure changes cause preexisting gaseous nuclei to
grow via mass transfer, including diffusion of dissolved gas, liquid
evaporation, and coalescence. Bubbles can grow up to thousand-
fold their initial radius. The oscillating external pressure then
causes a violent bubble collapse, inducing high strain rates in
the liquid.

Models of cavitation dynamics trace to Lord Rayleigh (20),
who treated the collapse of an empty cavity in an inviscid liquid.
Plesset (21) introduced effects of viscosity, surface tension, and
variable external pressure. The generalized Rayleigh—Plesset
(R-P) equation neglects mass transfer and is derived from the
Navier-Stokes equation as (19, 21)

. 2 R
P(RR + 1.5R?) +%+4H§+ Py = P4(t) = Poupbie = 0, [4]

where R is the bubble radius; y, p, and p are the liquid surface
tension, density, and viscosity; Py, i pressure of the liquid bulk;
and Pyyppie is the radius-dependent pressure inside the bubble.
Flynn modeled the dependence of Py on 7 (22). His model
neglects mass transfer between the bubble and the bulk; i.e.,
the mass inside the bubble is constant, and assumes that the bub-
ble is filled with evaporated solvent (vapor), whose partial pres-
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sure is the vapor pressure P, of the liquid, and dissolved air (gas),
which behave as an ideal gas mixture. The bubble lifetime is
divided into two phases: growth and initial collapse are assumed
to be quasistatic and isothermal and are driven by the acoustic
pressure in Eq. 4. The final collapse is dominated by inertial
terms; hence, it occurs independently of acoustic pressure and
violently, and thus is assumed to be adiabatic (15, 23). The pres-
sure inside the bubble is Pyppie = Py + Pgas, Where Py, is the
partial pressure due to the gas. In the isothermal phase, P, is
Pyys = Pyas o(Ri/R) 3 where K is the adiabatic index (ratio of iso-
baric and isochoric heat capacities C,/C,, K = 1.4 for an ideal
diatomic gas), R; is the initial radius of the cavity, and Py, is
the partial pressure due to the gas at the beginning of the process.
Py is derived assuming nuclei at ambient bulk pressure as
Pyus0 = Poui = Py + (2Y/R;). The transition to adiabatic dy-
namics occurs when Py, = P, during the collapse phase. The cri-
tical radius for this transition is Ry = R;(Pgso/Py)'/**. Rerit
and Ry« (the maximum bubble radius) are not the same. During
the collapse, the gas partial pressure is Py = 2P, (Rerii/R)>*.

The R-P equation requires the acoustic pressure P4,
bulk pressure Py, Vviscosity H, surface tension 7y, density p,
and acoustic frequency o. We use the properties of water with
sodium dodecyl sulfate above the critical micellar concentration
at atmospheric pressure Py, = 101 kPa; i.e., p=1 mPas,
Yy =40.1 mNm~!, and p = 1000 kg/m?3 (24). The model para-
meters are Py, o, and the initial bubble radius R;. The bubble
velocity is zero at the beginning of the expansion. During col-
lapse, the bubble surface reaches velocities near the speed of
sound in the fluid, inducing high liquid strain rates in the order
of 10° s! (5). The lifetime of the bubble is typically approxi-
mately 100 ps. Interestingly, as the acoustic pressure increases,
there is a transition from a single-peak to a double-peak bubble
when the radius becomes so large that the bubble cannot collapse
completely within one acoustic cycle (18).

Brownian Dynamics Simulation. Brownian dynamics simulations
have been used to study flexible polymer scission in extensional
flows (25). Here we combine the flow field around the bubble
with a Brownian dynamics algorithm for stiff chains. Our method
consists of two steps (see SI Appendix, Fig. S1). We compute the
position R(¢) and velocity V' (¢) of the bubble surface by time-in-
tegrating Eq. 4 with a 4th order Runge-Kutta method. The flow
field v(r, t) in the fluid is simply v(r, ) = V(t)R(¢)?/r>. We use
model paramaters representative of typical sonication conditions
(19), R; = 10 nm, o = 20 kHz, and P4, of 1,500 and 4,500 kPa
for single and double-cycles bubbles.

After computing the flow, we simulate the motion of CNTs
near the bubble. We model CNTs as semiflexible filaments
(26-28), with persistence length L, between 40 and 175 pm
for SWNTs (28). We discretize the semiflexible filament into a
chain of N beads and (N—1) rods; we simulate the chain motion
by Brownian dynamics, according to the force balance on bead j,
(29_33), 0= F]potential + F}Brownian + F;lrag + F]melric + Fjgonstraim.

As usual, inertia is neglected and Brownian forces are repre-
sented by uncorrelated noise. The bending (potential) forces are
computed as a function of angles between neighboring bonds
and are parameterized by the bending stiffness L,kgT. Metric
forces are used to attain the appropriate equilibrium chain con-
figurations (33, 34). The drag force describes the influence of
fluid flow v(r, ) on the motion of each bead; a local anisotropic
friction (drag) coefficient accounts for the rodlike shape of
the chain.

Each simulation requires CNT length L and persistence length
L,, the initial distance d; of the CNT CoM from the bubble cen-
ter, and the precomputed flow field v(r, ¢). The initial CNT orien-
tation is random, and the conformation is selected from the
theoretical equilibrium distribution for a chain with a given L,
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(29). For each set of inputs (L, L,, d;), we Tun approximately
1,000 independent simulations to sample the behavior of an
ensemble of CNTs.

Results

Growth Phase Pathways. During bubble growth, the distance d(¢) of
a CNT CoM from the bubble center depends monotonically on its
initial distance d;; i.e., CNTs do not overtake each other. The in-
itial orientation affects the trajectory marginally; therefore, d;
alone captures the CNT state at the beginning of bubble growth.
CNT behavior during growth can be classified into three regimes
according to d; (Fig. 14). The closest CNTs (Region 1) align tan-
gential to the bubble and may be “caught” by the advancing bub-
ble wall during growth; i.e., they approach the surface closely
enough that thermal diffusion (approximately 50 nm, see below)
may bring them within the range of electrostatic [Debye length
below 5 nm (28)] and hydrophobic [shorter range (35)] interac-
tions (not included in our model). CNTs in Region 2 also align
tangent to the bubble surface during growth, regardless of their
initial orientation, but do not fall within the range of surface
forces. In Region 3 (bulk), CNTs are too far to be significantly
affected by the bubble. The relative size of these regions depends
on the bubble parameters; typical values are approximately 40 pm
and approximately 250 pm for the radii of Regions 1 and 2. Fig. 1B
and SI Appendix, Fig. S2 show typical monotonic dependence of
final CNT-bubble separation (d.x — Rmax) On d;. The minimum
separation occurs at the end of the growth phase; this separation
is small because the fluid between the CNT and bubble
wall is incompressible and stretches into a thin layer during bub-
ble growth (Fig. 1C). This relationship is 4/3n(d? — R?) =
4n(dmax)2(dmax - Rmax)~

Fig. 1B confirms this relationship by showing that
(dimax — Rumax) vs. d; follows a power law of approximately 3.05.
Therefore, CNT thermal diffusion during bubble growth is neg-
ligible; the diffusive length scale during growth (D,z,)'/* ~ 50 nm
is small relative to the motion of the fluid (28) (here, D, =
kg T /L is the translational diffusivity and #, is the bubble growth
time). Importantly, Region 1 is less than 1% of the volume of
Region 2; therefore, almost all CNTs affected by the flow follow
bulk dynamics, independent of potential entrapment into the
bubble or on the bubble surface. Hence, whether CNTs enter the
bubble [as previously posited (14, 17)] is only relevant to a tiny
fraction of the CNT population; therefore, hydrophobic interac-
tions between CNT and bubble surface can be neglected because
they affect such few CNTs. Finally, the outward radial extensional
flow reorients the CNTs tangentially. This flow also straightens
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Fig. 1. (A) Qualitative partition of the surroundings of a growing bubble at
the start of sonication. CNTs in Region 1 align tangent to the bubble and could
be entrained during growth; CNTs in Region 2 align tangent to the bubble wall;
CNTs in the bulk (Region 3) are minimally affected by the bubble’s growth.
(B) Representative CNT-bubble separation at the end of growth vs. CNT initial
distance from the bubble center (P4, = 1500 kPa, L = 1.5 um, L, =20 pm,
N = 33). (C) During growth, CNTs approach the bubble surface because of
the thinning of the incompressible fluid layer around the bubble.
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collapsing
bubble

Fig. 2. Schematic of the forces and torques on a CNT (black) near a collap-
sing bubble (blue). The flow causes a compressive force (red) on the CNT, as
well as inward torques (green), which can combine to buckle the CNT. Brow-
nian torques may slightly rotate the CNT and cause a torque imbalance
(yellow) that rotates the CNT radially (clockwise here).

out the CNT thermal curvature (the chain is in tension during
growth, hence bending modes are partially suppressed).

Collapse Phase Pathways. CNTs in Region 2 orient tangentially dur-
ing bubble growth and are strongly affected by bubble collapse.
Depending on L, L,,, and d;, such CNTs follow either of two main
dynamics: rotation into radial orientation or buckling. The tan-
gential configuration is unstable to two modes: overall chain ro-
tation, which is promoted by any slight rotational diffusion due to
Brownian forces; and buckling into a U shape (or higher order
shapes if the shear rate is high enough). The CNT is subjected
to viscous drag along its length (Fig. 2); the local velocity and
hence the drag force grows with decreasing distance from the
bubble. The component of the drag parallel to the CNT axis in-
duces a compressive axial force on the CNT. The perpendicular
component induces an overall inward radial motion of the CoM
and opposite torques on the two halves of the CNT. When the
CNT is perfectly tangential to the bubble, its two halves experi-
ence equal opposing torques that tend to bend the CNT by mov-
ing its CoM closer to the bubble and its ends farther from the
bubble surface. Any Brownian rotation causes one end of the
CNT to be closer to the bubble surface than the other end. Such
closer proximity corresponds to larger drag force on one end than
on the other, which results in a net torque on the CNT. If the
torque imbalance is sufficiently large, the CNTrotates and orients
radially, according to the assumption of ref. 5 and in contrast with
ref. 14. If the torque imbalance is small, the viscous torques on
the two halves combine with the viscous axial compression to
buckle the CNT. The torque imbalance scales as L3, whereas pro-
pensity to buckling scales as L#; therefore, the dominant behavior
in a CNT population should be length-dependent. (See below for
detail.) Any partial fluid slip on the CNT surface merely rescales
the friction factor, independent of CNT length, and does not
affect the relative balance between rotation and buckling; prior
studies indicate that the assumption of Stokesian drag coefficient
€, ~4nn,/log(L/D) is accurate (27, 28).

Figs. 3 and 4 and Movie S1 show the dynamics of the bubble
radius and the strain rate experienced by the CNT CoM and
representative examples of buckling and rotation. Time is re-
scaled to the total bubble lifetime. Four distinct behaviors are ob-
served. The longest CNTs (Fig. 44, L = 3 pum) buckle into highly
bent shapes. Intermediate CNTs (Fig. 4B, L = 1.5 pm) bend into
a U shape, which sharpens in time. Below a certain length
(Fig. 4C, L = 1 pm), the CNTs bend but do not develop high cur-
vature; instead, the CNTs straighten out and relieve curvature by
snaking into radial orientation. Finally, the shortest CNTs
(Fig. 4D, L =0.75 pm) directly rotate into radial orientation.
Similar trends are observed for the double-cycle bubble (SI
Appendix, Figs. S3-S6). The dominant behavior (buckling vs. ro-
tation) depends also on persistence length and maximum fluid
strain rate (related to d;). Below, we study this dependence by
simulating ensembles of CNTs over a range of parameter sets.
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Fig. 3. (A) Bubble radius vs. dimensionless time t* for P,y = 1500 kPa. The
snapshots in Fig. 4 are marked. (B) Dimensionless strain rate (¢£21m/w) at the
CNT CoM as a function of t* (P4 = 5000 kPa, L =1.5um, L, =20 pm,
N =33, d; = 60 pym) and (C) near the end of collapse for varying d;.

Conclusion

Breaking Condition for Rotating and Stretching. The propensity of a
CNT to rotate into radial alignment during bubble collapse de-
pends on its length L. The Brownian torque kg7 is independent
of L, but the viscous torque is not. The normal velocity v, of a
differential element on the CNT grows linearly with distance s
from the CNT CoM as v, = és. The local perpendicular drag
coefficient {, = 4mn,/log(L/D) yields a normal drag force
€,v, (28). The viscous torque on a differential CNTelement is the
cross product of the normal drag force with the distance to the
CNT CoM, which yields an additional dependence on s; integrat-
ing this elemental viscous torque over the entire CNT yields a
viscous torque that scales with L3. Thus, the CNT’s propensity
to rotate during the collapse is expressed by the rotational Peclet
number (ratio of viscous to Brownian torques) as Pe = {, L3¢/
12 kg T = &/D,y, Where D, is the rotational diffusivity.

A radially aligned CNT can stretch because the end of the CNT
nearest the bubble is pulled faster than its far end. As in ref. 5, the
breaking condition for stretching are determined by equating the
net viscous stretching force (Eq. 2) to the critical scission force
(Eq. 3), yielding the critical strain rate

(2Dw — w?)

STE [5]

€c stretch = Obreak

r(c_o_m)

Fig.4. Snapshots(notedin Fig.3A)
of the collapse process of represen-

X
y x r(c_o_m)
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tative CNTs. The bubble center is in
the -x direction. d; =50 pym, L, =
50 ym. (A) L =3 pm,N = 121, CNT
remains tangential and buckles di-
rectly. (B) L =1.5 ym,N =61, CNT
remains tangential until it bends
and buckles. (C) L=1pm,N =41
CNT starts tangentially, then
rotates radially while bending
slightly. (D) L=0.75 pm,N =31,
T(c_o_m) CNT starts tangentially then rotates
% radially without bending.

Pagani et al.
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Fig.5. (A) y(40 nm); i.e., percentage of CNTs whose minimum radius of cur-

vature falls below 40 nm during bubble collapse, as a function of L and L.
(d; = 70 ym, Py = 4500 kPa, 960 CNTs simulated per trial). (B) y(40 nm) vs.
d;. For long CNTs, the probability of buckling catastrophically is roughly in-
dependent of initial distance d; over a broad range of lengths. (L, = 30 pm).

Breaking Condition for Buckling. Longer CNTs buckle rather than
rotating radially during collapse. A tight enough radius of curva-
ture will cause CNT breakage. The net compressive load is the
integral of the strain force per unit length rate along the CNT.
The net compressive force at the CoM of a tangentially aligned
CNT is proportional to TpeL? as in the stretching case (Eq. 2).
CNTs can be modeled as stiff, slender, inextensible beams (27,
36). Thus, the critical compressive force for buckling is defined

Nearby CNTs
align tangentially
during growth

\

(S ]

Short CNTs Long CNTs
Rotate radially Collapse Remain tangential
and stretch: and buckle:

Scission rate ~ L*

4 A\

Scission rate ~ L?

Fig.6. Overall schema for CNT breaking. CNTs near the bubble nucleus (green
region) align tangentially during bubble (blue) growth. During collapse, CNTs
may rotate radially and stretch or buckle depending on their length.

Pagani et al.

by Euler’s equation F, = t?El ) /L* = n?L,kg T /L? where E is
the elastic modulus of the beam and 1, is the moment of inertia
of the beam and L, = Ely/kgT (27). This axial buckling force is
orders of magnitude smaller than the radial shell buckling force
described by Chew et al. (14, 37); therefore, axial buckling will
dominate. CNT buckling starts when the net compressive load
along its body (Eq. 3) exceeds F, yielding the critical condition
for buckling peL*/nkg TL, > 1.

However, all buckled CNTs do not necessarily break. To break,
a CNT must experience a sufficiently high local curvature stress.
From elastic beam theory, the maximum curvature stress in a
buckled CNT is 6| = ED/(2&,), where &, is the minimum radius
of curvature of the CNT (38, 39); a buckled CNT breaks if its
minimum radius of curvature falls below a critical value
&c < éc,crit = ED/2Gbreak'

Estimates of Opeq and &, i vary based on CNT diameter and
number of walls, but the critical radius of curvature &, ., is in-
dependent of L. Breakage due to buckling will occur at higher
strain rates; i.e., when péL*/mkg TL, > a> 1, where a is a di-
mensionless factor that may depend on Gy, and on L, /&, be-
cause the strain rate required to break a point of localized
curvature roughly scales with L, /€ . Eq. 6 yields the critical strain
rate for disruptive buckling (breaking due to buckling)

nokgTL,

e [6]

E¢ buckle =

Scission Rate Scaling. These two mechanisms for stretching and for
buckling lead to different scaling for the CNT scission rate. The in-
stantaneous strain rate at a CNT CoM is ¢ = =2V R? /d?; it is high-
est near the end of bubble collapse (Fig. 3 B and C) and scales as

Emax ~ (d?)7P. [71

The SI Appendix, Fig. ST shows that f is in the range 0.82 to
1 for CNTs in Region 2. Egs. 5-7 show that CNTs within a critical
d; . experience a strain rate é,,, higher than the critical strain rate
and break. Because the CNT number density is uniform, the num-
ber of breaking events per unit time varies linearly with the cri-
tical volume, k ~ (d;.)>. Crucially, the rate constant k depends
inversely on the critical strain rate, which has a different power-
law dependence on L, depending on the mechanism—buckling
vs. stretching. The critical strain rate to break depends on L2
for stretching (Eq. 5) vs. L* for buckling (Eq. 6). The kinetics
of the process depends on the dominant breaking mode. The
switch between these modes is length dependent because the
CNT propensity to rotate scales as L3 (due to the L scaling
of Pe), whereas the propensity to buckle scales as L* (Eq. 7).
Therefore, as sonication progresses, L decreases, and the domi-
nant breaking mechanism will switch from buckling to stretching.

To confirm this hypothesis, simulations are carried out for var-
ious parameters in (L, L,, d;) space. The maximum strain rate
and minimum radius of curvature experienced by each CNT are
tracked during the calculations, in order to compute & ,,, the
minimum radius of curvature averaged over all CNTs and y(,),
the fraction of CNTs whose minimum radius of curvature fell be-
low a threshold value &.. We initially choose &. = 40 nm as an
upper estimate—thin SWNTs may have & below 15 nm (39)
(Fig. 5 and SI Appendix, Figs. S8 and S9). Fig. 54 reports
y(40 nm) vs. L and L,. Few short CNTs experience high curva-
ture because most of them simply rotate radially; conversely, most
of the long CNTs buckle sharply. As L, increases, CNTs resist
bending and buckling (Eq. 6). Fig. 5B shows y(40 nm) as a func-
tion of d;. Recall that d; is a unique marker of maximum strain
rate, and this figure clearly confirms Eq. 7. For high L, there is a
plateau in y; below a certain d;, most chains experience high cur-
vature and hence are expected to break. Above this threshold d;,
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the fraction of chains that experience high curvature drops off
dramatically because the maximum strain rate is not large enough.
In contrast, for low L, most of the chains rotate and avoid compres-
sion-induced curvature. These results explain the overall CNT
breaking mechanisms (depicted in Fig. 6) according to two regimes:
For long CNT, . pyckie ~ 0%k TL,/(LL*), and (d; .)* ~ L*/P. For
short CNTS, £, greten ~ 6(Dw —w?)/pL?, and (d;.)* ~ L?/P.
The scission rate k represents breaking events/time. The num-
ber of breaking events per unit time is proportional to the volume
of the region around the bubble with CNTs experiencing a strain
rate necessary to break (d; .)?; i.e., k ~ LP/P, with p = 2 for short
CNTs that rotate radially and stretch, p = 4 for long CNTs that
buckle, and f ~ 0.82-1 from our simulations. Therefore, the aver-
age CNT length decays with a power law m = 1/q = B/p (see
Eq. 1), where m ~0.41-0.5 for short CNTs and m ~0.205-
0.25 for long CNTs. The crossover between the two behaviors
depends on CNT stiffness (persistence length); in polydisperse
samples, the two mechanisms can coexist. The prediction for
short CNTs compares well with the power-law of 0.5 measured
in samples of short SWNTSs (5). The prediction for long CNTs
captures the power-law of 0.22 measured for long MWNTs (4).
In conclusion, our simulation results and scaling arguments
show that for a given population of CNTs of length L, the scission
rate scales with L4, where g depends on the length-dependent
mode of deformation during bubble collapse. The model recon-
ciles the apparent contradiction in the experimental data by show-
ing that two separate breaking mechanisms (and two separate
scaling laws) are expected because CNTs can rotate radially and
stretch or buckle depending on their length and stiffness. Direct
comparison between different CNT samples is complicated by
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other properties; e.g. sidewall defects, which induce permanent
bends and kinks and may affect these scaling relationships.

These peculiar dynamics, due to the rapid reversal of the biax-
ial stretching flow during bubble expansion into uniaxial stretch-
ing during collapse, may impact several research areas. Of course,
these results generally hold for similar stiff fibrils undergoing
ultrasonication, including various interesting systems such as
mineral rods and whiskers; e.g., sepiolite and bohemite, metal
and metal oxide nanorods and nanowires. These rodlike colloids
are normally suspended by sonication, which is likely to cut them,
affecting their length-dependent dynamics and liquid crystalline
phase behavior. Further experiments should be carried out to
explore these mechanisms in more detail, including possibly di-
rect visualization of CNTor fibrils during sonication events, which
should be within reach based on recent reports (40). Moreover, it
is interesting to speculate on the effect of shape in other deform-
able particles whose unperturbed shape is platelike or isotropic,
such as biological cells, graphene, and clay. Graphene and clay
should align parallel to the bubble surface during bubble expan-
sion and may buckle upon sudden flow reversal. Cells are often
sonicated to release their DNA or proteins; in this process, they
may stretch into disks parallel to the bubble surface and then
buckle into parachute shapes during the sudden collapse-induced
uniaxial stretching flow. After all, the classical “frangar, non flec-
tar” may not hold at the micro- and nanoscale.
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