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Abstract
We survey our recent theoretical studies on the generation and detection of coherent radial
breathing mode (RBM) phonons in single-walled carbon nanotubes and coherent radial
breathing like mode (RBLM) phonons in graphene nanoribbons. We present a microscopic
theory for the electronic states, phonon modes, optical matrix elements and electron–phonon
interaction matrix elements that allows us to calculate the coherent phonon spectrum. An
extended tight-binding (ETB) model has been used for the electronic structure and a valence
force field (VFF) model has been used for the phonon modes. The coherent phonon
amplitudes satisfy a driven oscillator equation with the driving term depending on the
photoexcited carrier density. We discuss the dependence of the coherent phonon spectrum on
the nanotube chirality and type, and also on the graphene nanoribbon mod number and class
(armchair versus zigzag). We compare these results with a simpler effective mass theory
where reasonable agreement with the main features of the coherent phonon spectrum is found.
In particular, the effective mass theory helps us to understand the initial phase of the coherent
phonon oscillations for a given nanotube chirality and type. We compare these results to two
different experiments for nanotubes: (i) micelle suspended tubes and (ii) aligned nanotube
films. In the case of graphene nanoribbons, there are no experimental observations to date. We
also discuss, based on the evaluation of the electron–phonon interaction matrix elements, the
initial phase of the coherent phonon amplitude and its dependence on the chirality and type.
Finally, we discuss previously unpublished results for coherent phonon amplitudes in zigzag
nanoribbons obtained using an effective mass theory.

(Some figures may appear in colour only in the online journal)
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1. Introduction

For over twenty five years, scientists have been keenly
interested in studying carbon based nanostructures because of
their unique optical and electronic properties and because they
provide ideal systems for studying low-dimensional electron
systems, such as 0D buckyballs [1–3], 2D graphene [4–6], and
1D carbon nanotubes and graphene nanoribbons [7, 8]. The
unique properties of these systems hold promise for a wide
range of future applications from drug delivery systems to
THz detectors and lasers to high speed transistors [9–11]. In
this paper, we present an overview of our theoretical studies
of one specific dynamical optical property, namely coherent
phonon (CP) spectroscopy in two distinct but related classes
of carbon nanostructures: single-walled carbon nanotubes
(SWNTs) and graphene nanoribbons (GNRs).

Coherent phonon spectroscopy uses ultrafast pump–
probe spectroscopy in which either transient differential
transmission (�T/T) or differential reflection (�R/R)
oscillations vibrating at phonon frequencies are measured by
the probe pulse as a function of delay time relative to an
ultrafast pump pulse. Taking the Fourier transform of the
transient transmission or reflection signal after subtracting
a slowly varying background produces the coherent phonon
spectrum. In order to observe macroscopic properties like
�T/T or �R/R in a solid vibrating at phonon frequencies,
it is necessary for the phonon modes in question to vibrate
in phase. Because these modes vibrate in phase, they are
referred to as coherent phonons. Coherent phonon oscillations
in a solid are excited by electrons and holes generated by
an ultrafast pump which then interact with phonons through
the electron–phonon interaction. For coherent phonons to be
excited, it is necessary for the pump pulse duration to be
short in comparison with the phonon oscillation period so that
all phonon oscillations start at the same time with the same
phase. For example, to generate coherent radial breathing
mode (RBM) phonons in a SWNT where the SWNT diameter
vibrates at a typical frequency of 5 THz, the pump pulse
duration should be shorter than 100 fs, while for coherent
optic G band phonons in SWNTs and graphene with typical
frequencies of 47 THz, the pump pulse duration needs to be
as small as 10 fs.

Coherent phonons are widely observed in coherent
phonon spectroscopy on a variety of materials [12–24].
The Fourier transform of the transient �T/T or �R/R

due to coherent phonon oscillations produces a spectrum
similar to Raman spectra from which information on
phonons in solids can be obtained. In contrast with Raman
spectroscopy, coherent phonon spectroscopy is free from
Rayleigh scattering effects since we measure the transient
�T/T or �R/R using the delayed probe beam and not
from the scattered light. Thus the observed CP spectra is
especially useful for measuring low frequency phonons with
wavenumbers smaller than 100 cm−1 and for measuring
spectra obtained by changing the laser excitation energy. In
CP spectroscopy, the coherent phonon amplitude is large
when (1) a strong optical absorption (or large joint density
of states) occurs, (2) large electron–phonon matrix elements
exist, (3) the pump pulse duration is sufficiently short
compared with the phonon period and (4) the stimulated
Raman effect occurs. The stimulated Raman effect is the
stimulated emission of inelastically scattered light in which
photoexcited carriers recombine by coherently emitting
inelastically scattered light and the corresponding phonon
can be coherent. The difference between stimulated Raman
spectroscopy and coherent phonon spectroscopy is that the
incident light is not always an ultrafast pulse in stimulated
Raman spectroscopy. For an overview of Raman spectroscopy
in graphene-related systems, the reader is referred to the
literature [25–29].

Multi-wall carbon nanotubes (MWNTs) were discovered
by S Iijima who fabricated helical microtubules of graphitic
carbon using an arc-discharge evaporation method similar to
that used in the synthesis of fullerenes [30]. Transmission
microscopy showed that the tubules consisted of coaxial
carbon nanotubes ranging in number from about 2 to 50 with
the spacing between tubes being approximately 3.4 Å as is
typical in graphite materials. SWNTs were later grown using
catalysts in arc-discharge generators. Bethune et al found
that by vaporizing carbon and a cobalt catalyst in an arc
generator, SWNTs with small diameters of around 1.2 nm
could be grown [31]. Iijima et al then grew SWNTs with
diameters around 1 nm using an iron catalyst [32]. Much
progress in producing carbon nanotubes has been made since
these early pioneering efforts and an excellent overview of
various methods for producing carbon nanotubes can be found
in [33]. A SWNT can be viewed as a graphene sheet rolled
up into a cylinder whose diameter and length are on the
order of 1 nm and 1 µm, respectively [34]. Because the
SWNT energy band structure is one dimensional, a Van Hove
singularity in the electronic density of states exists at the
ith optical transition energy Eii for light polarized parallel
to the SWNT axis [35, 36]. A strong optical absorption at
the Eii band edge occurs due to the formation of excitons
(bound electron hole pair states) which are stable even at
room temperature [25, 37]. Further we have a low frequency
(5 THz for 1.5 nm diameter) RBM phonon mode in which
the diameter of the SWNT vibrates with a frequency which is
inversely proportional of the diameter of the SWNT [38, 39].
Because of the saturation of the photoexcited carriers in low
dimensions, the threshold power for observing the stimulated
Raman effect becomes quite low (10 mW) compared with
conventional semiconductor materials [40]. Thus SWNTs are
an ideal material for observing coherent phonons.
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Graphene nanoribbons are thin strips of planar graphene
with straight edges that offer intriguing possibilities for high
speed device design. They have been produced by unzipping
carbon nanotubes [41] as well as through lithographic [42–44]
and chemical means [45]. A detailed review paper on
fabrication methods and characterization of GNRs can be
found in [46]. GNRs can be thought of as SWNTs that have
been unfolded to form a narrow graphene stripe. In GNRs,
the electronic structure is also one dimensional and we expect
that the coherent RBLM phonon in which the ribbon width
vibrates has a large electron–phonon interaction [47].

In coherent phonon spectroscopy, several optical pro-
cesses occur within 1 ps. First, many photoexcited electron
hole pairs or excitons are excited by an ultrafast pump
pulse. For high excitation densities, at short time scales
(<10 fs), electron–electron scattering causes the carriers to
thermalize to an effective electronic temperature that is much
higher than the lattice temperature. Some of the excitons
emit phonons through the exciton–phonon interaction on
10–100 fs time scales and initiate coherent phonon vibrations.
These coherent phonons can decay via phonon–phonon
scattering. The phonon–phonon scattering occurs because
of the anharmonicity of the vibrational potential. A typical
phonon lifetime is 1–5 ps. The exciton–phonon scattering
matrix elements are small enough so that not all excitons
relax by emitting phonons. However, if stimulated Raman
effects occur, this is not the case and most of the emitted
light is scattered light. The remaining excitons decay
non-radiatively by emitting many phonons or radiatively by
spontaneous emission of light. Hereafter, we consider only
phonon generation by the electron–phonon interaction (i.e. the
photoexcited electrons and holes do not interact with each
other to form excitons in our treatment) in our discussion
of coherent phonons. The exciton–phonon interaction should
be a dominant effect in the case of SWNTs. However, since
the exciton wavefunction is localized in space, we do not
yet have a clear picture of why the localized exciton gives
a macroscopic oscillation of �T/T or �R/R. However, since
the properties of �T/T or �R/R can be obtained by spatially
averaging over the wavelength, the localized nature of the
exciton might not appear in CP spectroscopy. The treatment of
the full exciton–phonon interaction remains for future study.

The optoelectronic properties and characterization of
SWNTs have been reviewed from an experimental perspective
in the excellent article by Nanot et al in [48]. There
they discuss the experimental generation and detection
of coherent phonons using CP spectroscopy and compare
the results of CP spectroscopy with resonant Raman
spectroscopy (RRS) and photoluminescence excitation (PLE)
spectroscopy. It is pointed out that CP spectroscopy
applied to SWNTs has several advantages over continuous-
wave spectroscopic techniques. In CP spectroscopy there
is no photoluminescence signal or Raleigh scattering
background as we discussed earlier. Coherent phonons
in an ensemble of micelle suspended SWNTs have been
generated by ultrafast laser pulses and detected using
femtosecond pump–probe spectroscopy. These coherent
phonon spectroscopy experiments measure periodic changes

in nanotube optical properties induced by CP lattice
vibrations and, unlike RRS and PLE, allows one to directly
measure phonon dynamics, including phase information,
in the time domain. The coherent phonon dynamics in
micelle suspended nanotubes can also probe details of
the interaction of the SWNTs with the environment.
Makino et al [49] studied the dynamics of coherent RBM
phonons in micelle suspended SWNTs in femtosecond
pump–probe impulsive Raman experiments and found a
strong environmental pH dependence in the CP spectra
which they attributed to protonation at the SWNT surface.
Using pulse shaping techniques to create a train of pump
pulses resonant with the CP period, one can generate
and detect coherent phonons in nanotubes of a specific
chirality in an ensemble sample [50]. These resonant CP
spectroscopy experiments provide information on the chirality
dependence of light absorption, coherent phonon generation,
and coherent phonon-induced band structure changes. The
lowest frequency coherent phonons that can be photoexcited
in SWNTs using ultrafast laser pulses are coherent RBM
phonons with phonon wavevector q = 0 corresponding to
a mode in which the diameter of the nanotube periodically
expands and contracts. These coherent RBM phonons have
been studied experimentally by several groups [51–56]. In
addition to the lower frequency coherent RBM modes, higher
frequency q = 0 coherent G mode phonons have also been
observed [57, 58].

We discuss, in this review article, our recent theoretical
work on the generation and detection of coherent phonons
in carbon SWNTs and GNRs. We focus on the coherent
RBM mode in the SWNTs and the coherent RBLM mode
in GNRs. We have developed a microscopic theory for
the generation and detection of coherent RBM phonons
based on an extended (third nearest neighbor) tight-binding
(ETB) model for electronic states and a valence force field
(VFF) model for the phonons. The microscopic deformation
potential electron–phonon interaction in our theoretical model
allows us to explain the origin of the chirality and family
dependence of the CP spectra observed in SWNTs. Although
no experimental results on coherent phonons in GNRs
have been reported to date, we have applied our extended
tight-binding model to studying CP spectra in armchair edge
(aGNR) and zigzag edge (zGNR) graphene nanoribbons. In
particular, we focus on the q = 0 coherent RBLM phonon
in which the nanoribbon width periodically expands and
contracts.

To further deepen our understanding of coherent phonon
phenomena in SWNTs and GNRs, we have studied the
generation of coherent RBM and RBLM phonons in
these systems using a simpler effective mass theory in
which electronic states are treated as Dirac fermions. The
electron–phonon interaction in the effective mass theory
is treated using Sasaki’s deformation-induced gauge field
in graphene due to lattice deformations, which gives rise
to changes in the nearest neighbor transfer integral in the
electronic tight-binding Hamiltonian [59]. Using the effective
mass theory, we are able to reproduce most of the results
of our extended tight-binding model and explain general
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trends for CP spectroscopy signals. The electron–phonon
interaction Hamiltonian in both the effective mass and
extended tight-binding theories depends on k in the Brillouin
zone and the sign of the interaction determines the initial
phase of the RBM CP vibrations which can be observed in
CP spectroscopy experiments on SWNTs.

This review article is organized as follows. In section 2
we give a brief introduction and overview of the phenomena
of coherent phonons in molecules and solids. In section 3
the basic theory for the generation and detection of CPs in
carbon based nanostructures is presented. This includes a
discussion of the electronic states and optical properties in
sections 3.1 and 3.2, and the phonon modes in section 3.3.
In section 3.4 we determine the matrix elements for
the deformation potential electron–phonon interaction, both
within the tight-binding formalism and using effective mass
theory. Using the electron–phonon matrix elements we obtain
the driving function in the driven oscillator equation for
the coherent phonon amplitude as described in section 3.5.
This driving function depends on the photoexcited electron
and hole carrier densities, and establishes the connection
between the CP amplitude and the action of the pump laser.
The CP amplitude tells us how the carbon atoms oscillate
in time and from this we can calculate a time-dependent
energy band structure and time-dependent optical properties
assuming the electronic structure adiabatically follows the
coherent lattice vibrations. The general scheme for detecting
CPs from the time-dependent optical prosperities is discussed
section 3.6. Coherent phonons in SWNTs are detected by
using a delayed probe pulse to measure time-dependent
changes in the optical transmission at the probe frequency
and we use our calculated optical properties to determine
the time-dependent transmission. Finally, the simulated CP
signal is calculated by taking the Fourier power spectrum
of the theoretical time-dependent transmission at the probe
energy. In section 4 we present results for RBM CPs in
carbon nanotubes. We compare our theory and calculations
with two different types of experiments: (1) micelle suspended
nanotubes and (2) films of aligned nanotubes. We then make
predictions about the initial phase of the CP oscillation
based on the effective mass theory. In section 5, since no
experiments have been performed to date, we present our
theoretical calculations and predictions for CPs in zigzag
and armchair graphene nanoribbons. The effective mass
theory allows us to characterize the initial lattice behavior in
armchair nanoribbons and we develop the effective mass CP
theory in zigzag GNRs which is previously unpublished.

2. Coherent phonons

The development of ultrafast, femtosecond laser sources
has enabled researchers to study dynamical properties of
molecular systems, semiconductor nanostructures, and carbon
nanotubes [20, 60–66]. Ultrafast femtosecond lasers are ideal
for studying electron and hole dynamics since scattering rates
typically range from 10 to 100s of femtoseconds in most
semiconductors [67, 68].

Figure 1. Time-resolved change in transmission (�T/T) of the
laser probe pulse as a function of time delay with respect to the
pump pulse for a SWNT system. The oscillations superimposed on
the background electron and hole relaxation dynamics signal, are
known as coherent phonons. To study the coherent phonons, one
subtracts off the background carrier dynamics signal and then
performs a fast Fourier transform (FFT) to calculate the power
spectrum or coherent phonon signal.

A good review of femtosecond spectroscopy, especially
in molecular systems, can be found in [69]. The usual
femtosecond experiment is a pump–probe experiment where
the pump laser beam creates a nonequilibrium distribution of
photoexcited electrons and holes. One can study the relaxation
dynamics of these nonequilibrium carriers back to equilibrium
by measuring the absorption or reflection of the probe pulse
as a function of delay time with respect to the pump pulse.
The decay or change of the probe signal provides valuable
information on the (i) electronic structure, (ii) scattering rates,
(iii) relaxation dynamics and mechanisms and (iii) many-body
effects in a given material.

In addition to a background decay signal, many systems
show oscillating signals superimposed on the carrier dynamics
signal. This is illustrated in figure 1, where, in the raw
pump–probe signal, we see a fast decay signal (due to the
electrons and holes) in �T/T with oscillations on top of this
background signal. These oscillations usually match one of
the vibrational frequencies of the material and are known as
coherent phonons. To better understand the oscillations, one
subtracts off the background signal and the performs a Fourier
transforms to calculate the power spectrum, which is referred
to as the coherent phonon signal. The spectroscopic study of
these oscillations is known as coherent phonon spectroscopy.

Coherent phonon spectroscopy can be used to study the
dynamics of vibrational motion in a given system. It allows
the direct measurement of excited state phonon dynamics in
the time domain and includes information on: (1) the phase of
the vibration, (2) the electron–phonon coupling, and (3) the
decay time of the phonon modes. To excite a given phonon
mode however, requires that the ultrashort laser pulse have a
duration shorter than the period of the lattice vibration (or the
pulse must at least have a Fourier component that matches the
vibrational frequency).
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Figure 2. Relaxation of nonequilibrium, photoexcited electrons and
holes through optic phonon emission. The phonons that are emitted
through the relaxation of the nonequilibrium carries are incoherent
phonons.

Coherent phonons should not be confused with the
phonons that are generated by the relaxation of the
photoexcited, nonequilibrium electrons and holes shown
in figure 2. The electrons and holes lose energy and
relax to equilibrium through the emission of optic and
acoustic phonons. These phonons, however, are defined to be
incoherent phonons which are (1) emitted at random times,
(2) have no distinct phase relationship, and are not responsible
for the oscillations in the pump–probe signal.

How then does one generate coherent phonons? A
simple explanation is shown in figure 3 for two prototypical

systems: (1) a semiconducting system (GaAs), where the
electron–phonon coupling is weak compared to the transfer
integral which leads to the energy bands and as a result, the
electron–phonon interaction can be treated as a perturbation,
and (2) a molecular system where the electron–phonon
coupling is strong compared to the transfer integral and one
speaks of the combined electronic-vibrational levels.

In a polar semiconductor such as GaAs shown in
figure 3(a), there exists a surface depletion field. Before
photoexcitation, in response to the surface depletion field, the
Ga and As ions are slightly displaced by an amount x1 and x2
from their equilibrium positions (i.e. with no depletion field
inside the semiconductor). After photoexcitation by the pump
laser pulse, electrons and holes are photoexcited which create
carriers near the semiconductor surface which can (partially)
screen out the depletion field. If the photoexcited carriers are
created on a fast time scale, the displaced Ga and As ions
want to return to their equilibrium (no depletion electric field)
position and trigger the coherent oscillation.

A similar situation is shown in figure 3(b) for a typical
molecule. Shown in the figure are the combined electronic
and vibrational states for the ground state and the first excited
state. The pump pulse creates a rapid photoexcitation of an
electron from the ground state energy surface to the excited
state energy surface. Since the minimum in the excited state
energy surface is at different point than in the ground state
energy surface, the rapid photoexcitation to the higher state
energy surface triggers the coherent oscillation.

Single wall carbon nanotubes and graphene nanoribbons
are interesting because they lie between the simple molecular
systems and the extended traditional semiconducting systems.
In addition, the electron–phonon coupling in these carbon
based nanostructures is not polar like in GaAs. In calculating

Ga

Ga As

As

Figure 3. Generation mechanisms for coherent phonons. (a) A conventional polar semiconductor like GaAs. Before photoexcitation by the
pump pulse, the surface depletion field cause the Ga and As ions to be displaced by an amount x1 and x2 from their equilibrium (no
depletion field) position. After photoexcitation, the electrons and holes generated near the surface, screen the depletion field causing the Ga
and As ions to return to their equilibrium position and trigger the coherent phonon. (b) A typical molecule. Shown are the combined
electronic and vibrational energy levels for the grounds state energy surface and an excited state energy surface. Since the ground state and
excited state energy surfaces have different minima, photoexcitation by the pump pulse from the ground state energy surface to the excited
surface triggers the coherent phonon and the system wants to move to a new minimum.
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and modeling the coherent phonon spectra in carbon
nanotubes and graphene, several important effects must be
addressed. These include: (i) electronic structure (needed to
determine the electron and hole states), (ii) optical matrix
elements (needed to determine what states are excited by the
pump laser pulse), (iii) phonon modes, (iv) electron–phonon
interaction matrix elements (to determine which coherent
phonon modes are triggered by the photoexcited electrons)
and (v) the generation and detection mechanisms. In the next
section, we address these issues for SWNTs and GNRs one by
one.

3. Theory for generation and detection of coherent
phonons

Kuznetsov and Stanton [70] developed a microscopic theory
for generation of coherent optical phonons observed in bulk
semiconductors excited by ultrafast laser pulses. The coherent
optical phonon amplitudes were found to satisfy a driven
harmonic oscillator equation (see section 3.5). They found
that carriers photoexcited by an ultrafast pump acted as a
driving source for coherent optical phonon oscillations via
the deformation potential coupling between electrons and
phonons.

Dumitrică et al [71, 72] theoretically predicted coherent
phonons in finite length carbon nanotubes in nonequilibrium
molecular dynamics simulations. These authors treat electric
and ionic motion in a tight-binding Hamiltonian with
electronic matrix elements and core–core repulsive terms
that depend on interatomic distances. The coupling to a
classical time-dependent laser field is included and ionic
forces are found from the gradient of the electronic free
energy. Ultrafast laser excitation resulted in the generation of
two coherent phonon modes of different frequencies localized
in the cylindrical body and hemispherical end caps of the
nanotubes. In combination with ultrafast bond weakening,
it was found that the coherent phonon oscillations allowed
selective cap opening to take place. This is potentially of
interest for nanotechnology applications as it may allow
for the controlled manipulation of lattice structures at the
nanoscale.

Subsequently, a theory of coherent phonons in SWNT
excited states has been reported based on tight-binding
molecular dynamics simulations [73]. Recently, microscopic
theories have been developed for the generation and detection
of coherent phonons in SWNTs and GNRs using an extended
tight-binding model for electronic states, valence force
field models for the phonons, and deformation potential
coupling between electrons and phonons [47, 54]. As in
bulk non-polar semiconductors, the CP amplitudes in SWNTs
and GNRs are found to satisfy a driven oscillator equation
with the driving term depending on the photoexcited carrier
densities. The results of these extended tight-binding theories
have been confirmed using effective mass electronic states,
phonon modes, and nearest neighbor deformation potential
electron–phonon interactions [47, 74]. In the following
subsections we describe the elements of these microscopic
theories in more detail.

3.1. Electronic states

The length of a typical SWNT is many times larger than the
tube diameter. It is a good approximation to consider SWNTs
of infinite length which can be thought of as rolled up sheets
of graphene. The way the graphene sheet is wrapped to form a
SWNT is specified by the roll up or chiral vector Ch = n a1 +
m a2 ≡ (n, m) where a1 = a/2(

√
3, 1) and a2 = a/2(

√
3, −1)

are the unit cell vectors of the graphene hexagonal lattice and
n and m are the chirality indices. For graphene, the hexagonal
lattice constant a = 2.49 Å is related to the carbon–carbon
bond length aC−C = 1.44 Å by a =

√
3aC−C. In the SWNT

the roll up vector circles the tube circumference with the head
of the rolled up vector touching the tail. The pair of chirality
indices (n, m) with 0 ≤ m ≤ n uniquely specify the structure
of the infinite ideal SWNT. If m = 0 the SWNT is referred to
as a zigzag nanotube, if m = n the SWNT is referred to as an
armchair nanotube, and if 0 < m < n the SWNT is referred to
as a chiral nanotube [34, 75].

Because of translational symmetry along the nanotube
axis, SWNTs have a one-dimensional band structure with
unique electronic properties. They can be either metallic
or semiconducting depending on their chirality indices
(n, m) [7, 34, 76–79]. A widely used description of the
electronic band structure of SWNTs is a nearest neighbor
empirical tight-binding model that includes only the π orbitals
perpendicular to the nanotube surface since these give rise to
the electronic bands close to the Fermi level [34].

We note that in calculating electronic bands, one can also
consider the hybridized sp2 σ bands which are responsible
for the strong bonding between the carbon atoms [34]. In
planar graphene and GNRs, the π and σ states do not couple
thanks to the planar symmetry in ideal graphene and GNRs.
However, curvature in fullerenes and carbon nanotubes causes
the π and σ bands to hybridize. Fortunately, this hybridization
is weak enough to be ignored in SWNTs with diameters larger
than 0.6 nm [75]. For tubes with diameters less than 0.6 nm,
the hybridization can be strong enough to alter the electronic
states. In particular, small diameter tubes that are predicted
to be semiconducting in the absence of σ–π hybridization in
tight-binding calculations are found to be metallic in ab initio
calculations that take σ–π hybridization into account [80].

Samsonidze et al [81] have calculated electronic energy
bands and optical transition energies in small diameter
SWNTs in the extended tight-binding (ETB) model of
Porezag et al [82] taking σ–π hybridization into account.
For SWNTs whose diameters are not too small, we ignore
σ–π hybridization and treat the π and π∗ electronic states
in SWNTs using the above mentioned ETB model for the
π bands. However, in our ETB model, we do not include
the curvature induced σ–π hybridization. In the Porezag
et al [82] ETB model for carbon atoms, the tight-binding
Hamiltonian and overlap matrix elements between carbon π

orbitals on different atoms are functions of the interatomic
distance. Position-dependent Hamiltonian and overlap matrix
elements are obtained by parameterizing density-functional
(DFT) results in the local-density approximation (LDA)
for a wide selection of carbon compounds [82]. These
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Figure 4. Energy dispersion relations for the bonding π and
anti-bonding π∗ bands in graphene along high symmetry directions
in the hexagonal Brillouin zone. The calculated bands in forth
nearest neighbor extended tight-binding model are shown as solid
blue lines and the bands obtained with the nearest neighbor simple
tight-binding model described in [34] are shown as red dash-dotted
curves. The high symmetry lines are shown schematically in the
inset where the Brillouin zone has been rotated clockwise by 30◦.

parameterized matrix elements are transferable to a wide
range of carbon compounds and vanish beyond third nearest
neighbor distances. The third nearest neighbor ETB has the
advantage that it can be used to compute time-dependent
adiabatic changes in the electronic structure due to changes
in the lattice induced by CP lattice vibrations. The computed
energy bands in graphene are plotted in figure 4 along
high symmetry directions in the two-dimensional hexagonal
Brillouin zone shown schematically in the inset. The bands
calculated in the third neighbor ETB model are shown as
solid blue lines and the results of the nearest neighbor simple
tight-binding model described in [34] are shown as red
dash-dotted lines.

In a SWNT with chiral indices (n, m), a translational
vector T can be found parallel to the tube axis [34, 75]. The
translational vector is T = t1a1 + t2a2 ≡ (t1, t2) where t1 =
(2m+n)/ gcd(2n+m, 2m+n) and t2 = −(2n+m)/ gcd(2n+
m, 2m+n) with gcd(i, j) being the greatest common divisor of
two positive integers i and j. For the resulting one-dimensional
Brillouin zone, |k| ≤ π/T . Retaining one π orbital per atomic
site and exploiting the translational symmetry, the resulting
size of the Hamiltonian and overlap matrices is 2Nhex ×2Nhex,
where Nhex = 2(n2 + nm + m2)/ gcd(2n + m, 2m + n) is the
number of two-atom hexagonal cells in the SWNT unit cell
defined by Ch and T. As pointed out in [83], we can make
use of the screw symmetry operations to block diagonalize
the 2Nhex ×2Nhex Hamiltonian and overlap matrices into 2×2
subblocks which we label µ. In SWNTs, the subblock index
µ labels the cutting lines in the zone folding picture so the
cutting line indices are good quantum numbers for SWNT π
bands.

The unit cell of a SWNT lies in the curved surface
area defined by the chiral vector Ch in the circumferential
direction and the translation vector T along the tube
axis. The nanotube reciprocal lattice vectors K1 along the
circumferential direction and K2 parallel to the tube axis are

Figure 5. (a) Electronic π bands for the (11, 0) zigzag SWNT
calculated in the third nearest neighbor ETB model and (b) the same
bands obtained from the zone folding picture equation (1).

obtained from the relations Ch · K1 = Th · K2 = 2π and Ch ·
K2 = T·K1 = 0. From these relations the nanotube reciprocal
lattice vectors are found to be K1 = (−t2b1 + t1b2)/Nhex
and K2 = (mb1 − nb2)/Nhex where b1 = (2π/a)(1/

√
3, 1)

and b2 = (2π/a)(1/
√

3, −1) are the reciprocal lattice vectors
for graphene [34, 75]. Because of the translational symmetry
along the tube axis, the tube has a one-dimensional Brillouin
zone −π/T ≤ k ≤ π/T along the tube axis. The wavevector
in the circumferential direction is quantized by the periodic
boundary condition. In the zone folding picture, the nanotube
electronic states for the µth cutting line in a SWNT is given
by [34]

Es
µ(k) = Es

2D

�
k

K2

|K2|
+ µ K1

�
,

(µ = 0 · · · Nhex − 1, |k| ≤ π/T), (1)

where s = c, v labels the conduction and valence π bands
and Es

2D(k) are the graphene ETB electronic bands in the
2D Brillouin zone plotted in figure 4 along high symmetry
directions. The µth 1D cutting line in the 2D Brillouin zone is
given by the argument of Es

2D(k) in equation (1).
Figures 5 and 6 show the computed electronic π bands for

the zigzag (11, 0) and chiral (8, 6) semiconducting SWNTs
in the 2n + m = 22 family of nanotubes. The figures show
the effects of chirality on the electronic structure. Note that
owing to the large number of bands for the (8, 6) SWNTs,
the energy scale only goes from −3 to +3 eV. The results of
the full ETB model are shown in (a) as solid black lines and
the corresponding zone folded (ZF ETB) bands are shown in
(b) as solid red lines. Comparing the ETB and ZF ETB band
structures, we see that the zone folded bands give remarkably
accurate results. This is due to the fact that (i) bands belonging
to different cutting lines do not mix thanks to the SWNT screw
symmetries and to the fact that (ii) conduction and valence
band states belonging to the same cutting line do not cross.

7
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Figure 6. (a) Electronic π bands for the (8, 6) chiral SWNT
calculated in the third nearest neighbor ETB model and (b) the same
bands obtained from the zone folding picture equation (1). Note that
the energy scale in this figure differs from figure 5.

3.2. Optical properties

The absorption coefficient at photon energy h̄ω is given
by [84, 85]

α(h̄ω) = h̄ω

ngh̄c
ε2(h̄ω), (2)

where ε2(h̄ω) is the imaginary part of the dielectric function
evaluated at the photon energy h̄ω, and ng is the index
of refraction. We calculate the absorption coefficient by

evaluating the imaginary part of the dielectric function in
the dipole approximation using Fermi’s golden rule. Similar
formulas can be derived for graphene, SWNTs and GNRs. For
zigzag and armchair GNRs, the Fermi golden rule imaginary
dielectric function is given in [47]. For SWNTs we have [54]

ε2(h̄ω) = 8π2e2

At(h̄ω)2

�
h̄2

m0

�
�

nn�

�
dk
π

|Pnn�(k)|2

× (fn(k) − fn�(k)) δ(En�(k) − En(k) − h̄ω), (3)

where At = π(dt/2)2 is the cross sectional area of the tube
and the tube diameter is dt = (a/π)

√
n2 + nm + m2. The

electron distribution functions are fn(k), the electronic band
energies are En(k), and the squared optical matrix elements
for optical transitions between the tight-binding electronic
states |nk� and |n�k� are |Pnn�(k)|2. We replace the delta
function in equation (3) by a broadened Lorentzian lineshape
with a FWHM of �s. The optical dipole matrix element for
vertical transitions between states |nk� and |n�k� is Pnn�(k) =
h̄/

√
2m0 ê ·�n�k|∇|nk� where ê is the unit electric polarization

vector.
Figure 7 shows the squared optical matrix elements for

dipole transitions between the valence and conduction π

bands in planar graphene for linearly polarized light. Squared
optical matrix elements are shown for linear polarization
angles ranging from 0◦ to 90◦ in 30◦ increments. To get a
feel for the optical properties in carbon materials obtained
using Fermi’s golden rule, we calculate the optical properties
of planar graphene for circularly polarized light incident
normally to an infinite graphene sheet. For our ETB model,
the π bands are shown in figure 4 and the resulting joint
density of states (JDOS) as a function of transition energy is

Figure 7. Squared optical matrix element for dipole allowed transitions between valence and conduction π bands in graphene in linearly
polarized light. Four different linear polarization angles are shown from 0◦ to 90◦.
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Figure 8. ETB calculations in planar graphene for (a) joint density
of states (states/unit cell/eV) and (b) imaginary dielectric function
ε2 and absorption coefficient α for normally incident e-active
(positive helicity σ+) circularly polarized light.

plotted in figure 8(a). At 6.1 eV the JDOS has a logarithmic
singularity corresponding to transitions at the M point in the
Brillouin zone where the Ec(k) − Ev(k) surface in k space
has a saddle point. This agrees with the tight-binding results
of Pedersen et al [86] who also obtain a peak in the JDOS
at 6.1 eV. Our theoretical JDOS has an M point logarithmic
singularity at 6.1 eV while the observed JDOS peak occurs
near 4.4 eV [87].

The imaginary part of the dielectric function ε2(h̄ω) and
the absorption coefficient α(h̄ω) as a function of photon
energy h̄ω are shown in figure 8(b) for normally incident
e-active circularly polarized light (positive helicity σ+).
We used a Gaussian FWHM linewidth of 0.1 eV. In the
limit h̄ω → 0 the imaginary part of the dielectric function
diverges as 1/h̄ω. This is in agreement with the results of
Pedersen et al [86] who evaluated the dielectric function
analytically in a nearest neighbor tight-binding model using
the expression of Ehrenreich and Cohen [88] for the complex
dielectric function. From this result and equation (2) it follows
that α(h̄ω) approaches a constant as h̄ω → 0. Above the
logarithmic singularity, the absorption coefficient drops off
sharply with increasing energy. This can be attributed to
quenching of the squared optical matrix element near the �
point.

The symmetric peak in the absorption spectrum due to
M point transitions is predicted to occur at 6.1 eV while
the observed absorption spectrum is peaked near 4.4 eV and
is highly asymmetric. Part of the discrepancy is due to the
fact that our model neglects Coulomb interactions between
photoexcited electrons and holes and between photoexcited
electrons and valence electrons, which we call the exciton
binding energy and electron self-energy, respectively. Yang

Figure 9. Absorption coefficient for the (11, 0) (solid black line)
and (8, 6) (dashed red line) SWNTs as functions of photon energy
for light linearly polarized parallel to the tube axis.

et al [89] theoretically studied the absorption spectrum in
graphene using the many-body GW-Bethe Salpeter equation.
In their calculation, resonant excitons give rise to a highly
asymmetric peak in the absorption at 4.5 eV. This peak is
redshifted to lower energy by 0.6 eV relative to the absorption
peak obtained by Yang et al in the independent particle
picture.

The absorption coefficients obtained with Fermi’s golden
rule using equations (3) and (2) are shown in figure 9 for the
semiconducting (11, 0) and (8, 6) SWNTs for light linearly
polarized parallel to the tube axis. The FWHM linewidth is
taken to be 0.15 eV. The squared optical matrix elements
are slowly varying near the band edge, so the absorption
coefficients are roughly proportional to the joint density of
states for the allowed transitions and are sharply peaked by
the van Hove singularities at the direct band gaps. The lowest
two peaks are labeled E11 and E22. The absorption coefficients
calculated in figure 9 do not include many-body Coulomb
interaction effects. When these are included strong excitonic
peaks occur near the absorption band edges and strongly
modify the optical properties [90–92].

3.3. Phonon modes

Phonons in graphene, SWNTs and GNRs have been studied
by a number of techniques including elastic continuum
models [93–99], valence force field models [34, 100–103]
bond charge models [104], and ab initio methods [105–110].

In our work, we treat phonon dispersion relations in
planar graphene using a valence force field model [34]. We
include radial (r) bond-stretching interactions as well as
transverse in-plane (ti) and out-of-plane (to) bond bending
interactions. The force constants for these interactions are
denoted φ

(n)
r , φ

(n)
ti , and φ

(n)
to respectively where the integers

n = 1–4 label the nearest neighbor atomic shells surrounding
each carbon atom. As pointed out in [34], we must include at
least fourth neighbor interactions to describe the bond twisting
interaction involving a carbon–carbon sp2 bond and the four
attached carbon–carbon bonds with a grand total of six carbon

9
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Figure 10. (a) Graphene phonon energies, h̄ω(q), along high symmetry lines in the hexagonal Brillouin zone. (b) Phonon density of states
in units of phonon modes per hexagonal unit cell per electronvolt. The high symmetry lines are shown schematically in the inset where the
Brillouin zone has been rotated clockwise by 30◦. In (c) the mode displacement vectors for the q = 0 in-plane LO and TO phonons are
shown schematically.

atoms. The most widely separated of these six carbon atoms
are separated by the fourth neighbor distance. We use 12 force
constant values obtained from fits to experimental data [100]
keeping up to fourth neighbor interactions. In graphene, there
are two atoms per hexagonal unit cell giving rise to six phonon
branches. The phonon energies h̄ω(q) and corresponding
mode displacement vectors are obtained by diagonalizing a
6 × 6 dynamical matrix given in [34].

The graphene phonon dispersion relations are shown
in figure 10(a) where phonon energy is plotted along high
symmetry lines in the hexagonal Brillouin zone. There are six
phonon modes. The corresponding density of states for the
phonon modes in units of modes per hexagonal unit cell per
eV is shown in figure 10(b). Near the � point (q = 0), there are
three acoustic and three optical branches. The lowest acoustic
branch is an out-of-plane transverse mode (ZA) whose energy
varies as q2. There are two in-plane acoustic modes with
energies varying linearly as |q|. The lower lying of these two
modes is a transverse acoustic mode (TA) and the higher lying
mode is a longitudinal acoustic mode (LA). The lowest lying
optical branch is an out-of-plane transverse mode (ZO) with a
negative q2 energy dependence at the � point. The remaining
two optical branches are in-plane transverse optical (TO) and
longitudinal optical (LO) modes which are degenerate at the �

point and whose energy dependence is approximately constant
for small values of q. For the � point LO mode the A and
B atoms vibrate parallel to the graphene x̂ axis (parallel to
the bond connecting the A and B atoms) 180◦ out of phase
with each other. For the � point TO mode the atoms vibrate
out of phase with each other parallel to the graphene ŷ axis.
The mode displacement vectors for the LO and TO modes are
shown schematically in figure 10(c).

The above valence force field model works well for
graphene and planar carbon structures such as GNRs.
However, in SWNTs where curvature affects are important
care must be taken to ensure that the force constant sum
rule is obeyed [111]. This simply means that the valence
force field potential energy terms must be invariant under
rigid translations and rigid rotations of the nanotube about
the nanotube axis. In [102], Mahan and Jeon pointed out that

many calculations in the literature use force field models that
violate the force constant sum rule and fail to reproduce long
wavelength flexure modes predicted by elasticity theory. To
remedy this problem in our calculations, we follow Jiang et al
[112] and Lobo et al [101] and treat lattice dynamics in carbon
nanotubes using a modified valence force field model (MVFF)
in which the force constant sum rule is obeyed so that the
force field potentials are invariant under rigid translations and
rotations. In our MVFF model, we include bond stretching,
in-plane bond bending, out-of-plane bond bending, and bond
twisting potentials. Our MVFF model for SWNTs has seven
force constants [54], four due to bond-stretching interactions
out to fourth nearest neighbor shells and one each from the
remaining three interactions. We obtained force constants for
the MVFF model by fitting our MVFF results for graphene
to the VFF results shown in figure 10. Figure 11 shows the
best fit MVFF results as red solid lines and the VFF model
results as black dots. In the fitting procedure, we gave added
emphasis to the low frequency phonons. In what follows, we
will use the VFF model in graphene and GNRs and the MVFF
model for SWNTs. The force constants in our phonon models
are independent of the density of photoexcited carriers and
cannot describe phonon softening observed at high values of
the laser fluence.

Figure 12 shows the computed phonon dispersion rela-
tions for the zigzag (11, 0) and chiral (8, 6) semiconducting
SWNTs. Because of the SWNT screw symmetries, the
phonon dynamical matrix can be block diagonalized into 6×6
submatrices each of which corresponds to a different value
of the cutting line index µ = 0, . . . , Nhex − 1. The CP active
phonon modes are q = 0 modes with nonzero frequency and
cutting line index µ = 0. The CP active mode with the lowest
frequency is the RBM mode. In figure 12 the µ = 0 acoustic
phonon branches are shown as blue lines while the µ = 0
branches containing the q = 0 radial breathing mode (RBM)
are shown as thick red lines.

3.4. Electron–phonon matrix elements

The deformation potential electron–phonon interaction be-
tween carriers photoexcited by ultrafast laser pulses and the
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Figure 11. Graphene phonon energies, h̄ω(q), along high
symmetry lines in the hexagonal Brillouin zone. Black dots are
obtained using the 12 parameter valence force field model (VFF)
described in the text and the solid red curves are the best fit phonon
energies for the 7 parameter modified valence force field model
(MVFF). The MVFF fits are optimized for low phonon energies.

phonon modes is responsible for the generation of coherent
phonons in non-polar semiconductors as well as carbon
materials and nanostructures. In modeling the deformation
potential electron–phonon interaction, we use two different
models in our ETB and effective mass coherent phonon

theories. Here we discuss the electron–phonon interaction for
SWNTs.

3.4.1. Extended tight-binding model. In the ETB
model, the deformation potential electron–phonon interaction
Hamiltonian in a SWNT is given by

Hep(r) = −
�

sjl

∇v(r − Rl
sj) · Ul

sj (4)

where s = A, B labels the A and B sublattices, j =
1, . . . , 2Nhex labels the carbon atoms in a unit cell,
and l = −∞, . . . ,∞ labels the translational unit cell.
The equilibrium carbon atomic positions are Rl

sj, the
corresponding displacements from equilibrium are Ul

sj, and
v(r) is the screened atomic potential.

The electron field operator ψ̂(r) is

ψ̂(r) =
�

nk

cnkψnk(r), (5)

where ψnk(r) is the tight-binding wavefunction for the
nth state with wavevector k. The annihilation operator for
this state is cnk and we obtain the second-quantized ETB
electron–phonon interaction by evaluating the integral

Ĥep =
�

dr ψ̂†(r)Hep(r)ψ̂(r) (6)

and replacing the classical atomic displacements Ul
sj with the

second-quantized phonon operators

Ul
sj = h̄√

2ρL�

�

mq

êm
sj(q)

√
h̄ωm(q)

eiqTl(bmq + b†
m,−q). (7)

Figure 12. Phonon dispersion relations for (a) the (11, 0) zigzag SWNT and (b) the (8, 6) chiral SWNT calculated using the modified
valence force field model. The acoustic modes are thick blue lines and the radial breathing mode (RBM) is shown as a thick red line.
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Figure 13. Two-center deformation potential vectors �λ as a
function of atomic separation involving two 2pz (|1� and |2�)
electrons and a central carbon atom with screened potential V(r).
The vector �λ points from a central carbon atom C on the left to the
neighboring carbon atom in question. The atomic distances from a
central atom to the first four neighbor shells are indicated. The two
possible two-center configurations are shown on the right. For the
upper black curve, both electrons sit on the neighboring site and for
the lower red curve, one electron sits on each carbon atom.

Here ρ is the mass density per unit length and L� is the sample
length. The phonon mode displacement vectors em

sj(q) are
eigenvectors of the dynamical matrix for the phonon modes.

The second-quantized electron–phonon interaction is
now

Ĥep =
�

m

�

n�k�;nk

Mmq
n�k�;nk c†

n�k�cnk(bmq + b†
m,−q), (8)

where q ≡ k� − k. The interaction matrix element is given by

Mmq
n�k�;nk = −Am(q)

�

sj;s�j�
C∗

s�j�(n
�k�)Csj(nk)

×
�

ll�;s��j��
eiT(kl−k�l�)êm

s��j��(q) · �λ(s�j�l�; s��j��; sjl),

(9)

where Am(q) = h̄/
√

2ρL�h̄ωm(q) is the quantized phonon
amplitude. In equation (9) T is the length of the
translational unit cell, Csj(nk) are the electronic state
tight-binding expansion coefficients, êm

sj(q) is the phonon
mode displacement vector, and �λ is the deformation potential
vector.

In general, the deformation potential vector is the
three-center integral

�λ =
�

dr φ∗
π (r − Rl�

s�j�)∇v(r − R0
s��j��)φπ (r − Rl

sj). (10)

We evaluate �λ using the 2pz atomic wavefunctions φπ(r) and
screened atomic potential v(r) for carbon in [113] obtained
from an ab initio calculation in graphene [114].

The one-center deformation potential vector vanishes
identically by symmetry and the dominant deformation
potential vectors �λ are the two-center integrals shown in
figure 13 as functions of the interatomic distance. The distance
R between neighboring atoms is measured relative to the

origin of the screened atomic potential v(r). These integrals
reach a maximum around 0.5 Å and fall off sharply with
distance. In figure 13, the equilibrium distances from a carbon
atom to the first four nearest neighbor shells are indicated.

Further details concerning the evaluation of the
electron–phonon matrix elements in SWNTs and GNRs can
be found in the appendices of [54] and [47].

3.4.2. Effective mass theory. We can also calculate the
RBM and RBLM electron–phonon matrix elements by using
effective mass theory. Indeed, considering the effective mass
theory allows us to analyze the trend of CP amplitudes
of SWNTS and GNRs which will be discussed later.
Here we briefly derive the Hamiltonian needed to calculate
the electron–phonon matrix elements. The electron–phonon
Hamiltonian in effective mass theory for graphene-related
systems basically can be decomposed into the on-site and
off-site Hamiltonians,

H
(ep) = Hon + Hoff. (11)

The details of the on-site and off-site interactions are given
in Sasaki’s work on the deformation-induced gauge field in
graphene [59]. We will directly use his results in formulating
the on-site and off-site Hamiltonians. The on-site and off-site
interactions are induced by a lattice deformation which gives
rise to a change in the transfer integral and a change in the
potential between A and B atoms in the graphene unit cell.
We adopt a coordinate system shown in figure 14 to derive
H(ep).

The on-site Hamiltonian can be expressed in terms of the
divergence of uA and uB, which represent the displacement
vector of A-atom and B-atom in the graphene unit cell,
respectively. This Hamiltonian is written as

Hon = gon

�
∇ · uB(r) 0

0 ∇ · uA(r)

�

. (12)

For the discussion of the RBM and RBLM electron–phonon
interactions, we rewrite (12) as follows:

Hon = gonσ0∇ ·
�

uA(r) + uB(r)
2

�

+ gonσz∇ ·
�

uA(r) − uB(r)
2

�
, (13)

where gon denotes the gradient of the atomic potential at r, σ0
is the identity matrix, and σz is the z-component of the vector
of Pauli matrices. In the simplest case, we have uA(r) =
uB(r) = u(r). Therefore, equation (13) can be simplified to
be

Hon = gonσ0∇ · u(r). (14)

Let ∇ · u(r) = uph, we can write equation (14) as

Hon = uph

�
gon 0
0 gon

�

. (15)

In equation (15), uph is just a parameter determined by the
type of vibrations. For example, in the case of zigzag nanotube
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Figure 14. Upper panel shows displacements of B atoms at ri + Ra
(a = 1, 2, 3), that is uB(ri + Ra), which give rise to a deformation
potential at A-atom of ri. Lower panel shows local modulations of
the hopping integral defined by δγ a

0 (r) (a = 1, 2, 3). In this
coordinate system we have the nearest neighbor vectors
R1 = (0, acc), R2 = (−

√
3/2, −1/2)acc, R3 = (

√
3/2, −1/2)acc,

where acc = a/
√

3. Here � = 3acc/2 is used in equation (19)
(reproduced from [47]).

RBM oscillation, uph is found to be 2sr/dt, where sr =√
h̄/2mcωRBM is the phonon amplitude for the RBM [115]

and mc is total mass of carbon atoms in the unit cell.
Next, to derive the off-site interaction Hamiltonian, we

start with the fact that the lattice deformation modifies the
nearest neighbor hopping integral locally as −γ0 → −γ0 +
δγ a

0 (ri) (a = 1, 2, 3). The corresponding perturbation of the
lattice deformation is given by

Hdeform ≡
�

i∈A

�

a=1,2,3

δγ a
0 (ri)[(cB

i+a)
†cA

i + (cA
i )†cB

i+a],

(16)

where cA
i is the annihilation operator for a π electron on an

A-atom at position ri, and (cB
i+a)

† is the creation operator
for a π electron on a B-atom at position ri+a (=ri + Ra).
This perturbation gives rise to scattering within a region
near the K point of graphene whose interaction is given
by a deformation-induced gauge field A(r) = (Ax(r), Ay(r))
as vFσ · [p̂ + A(r)], where vF is the Fermi velocity, p̂ =
−ih̄∇ is the momentum operator, and σ is the Pauli matrix.
The deformation-induced gauge field A(r) for the off-site
interaction is defined from δγ a

0 (r) (a = 1, 2, 3) as

vFAx(r) = δγ 1
0 (r) − 1

2 [δγ 2
0 (r) + δγ 3

0 (r)], (17)

vFAy(r) =
√

3
2

[δγ 2
0 (r) − δγ 3

0 (r)]. (18)

The perturbation to the nearest neighbor hopping integral
for the RBM and RBLM electron–phonon interactions is
given by

δγ a
0 (r) = goff

�acc
Ra · {u(r + Ra) − u(r)}, (19)

where goff is the off-site coupling constant and � = 3acc/2
(see the lower panel of figure 14). Here the displacement
vector of a carbon atom at r in general is expressed by u(r) =
[ux(r), uy(r)]. Using a Taylor expansion, we approximate
equation (19) as

δγ a
0 (r) = goff

�acc
Ra · {(Ra ·∇)u(r)} . (20)

Using R1, R2, and R3 in figure 14, we obtain the
deformation-induced gauge field of equations (17) and (18)
as follows:

vFAx(r) = goff

2

�
−∂ux(r)

∂x
+ ∂uy(r)

∂y

�
, (21)

vFAy(r) = goff

2

�
∂ux(r)

∂y
+ ∂uy(r)

∂x

�
. (22)

Interestingly, vFAy = 0 for both RBM and RBLM cases [47,
115]. Therefore, the off-site Hamiltonian can be written as

Hoff = σxvFAx = uph




0 −goff

2
−goff

2
0



 . (23)

3.5. Generation of coherent phonons

The coherent phonon amplitude is related to the expectation
value of the phonon displacement operator. If we take
the expectation value of the atomic displacement operator
Ul

sj(t) ≡ �Ul
sj� we get an expression for the time-dependent

atomic displacements

Ul
sj(t) = h̄√

2ρL�

�

mq

êm
sj(q)

√
h̄ωm(q)

eiqTlQmq(t) (24)

where Qmq(t) = �bmq + b†
m,−q� is the coherent phonon

amplitude.
In CP spectroscopy, the coherent phonon modes that

are typically excited are the ones with wavevector q = 0.
From the second-quantized form of the free phonon and
deformation potential electron–phonon Hamiltonians, we can
use the Heisenberg equation to motion to show that the
CP amplitudes Qm(t) ≡ Qm,q=0(t) satisfy a driven oscillator
equation [47, 54, 70]

∂2Qm(t)
∂t2

+ ω2
mQm(t) = Sm(t), (25)

where m denotes the phonon mode and ωm is the frequency
of phonon mode m at q = 0. In the ETB model, the coherent
lattice displacements can then be expressed in terms of the CP
amplitudes Qm(t). Explicit expressions for individual carbon
atom displacements as functions of the CP amplitudes in
SWNTs and GNRs are given in [54] and [47] respectively.
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There is no damping term in equation (25) since
anharmonic terms in the electron–phonon Hamiltonian are
neglected. We solve the driven oscillator equation subject to
the initial conditions Qm(0) = 0 and Q̇m(0) = 0. The driving
function Sm(t) is given by

Sm(t) = −2ωm

h̄

�

nk

Mm
n (k)(fn(k, t) − f 0

n (k)) (26)

where f 0
n (k) and fn(k, t) are the initial and time-dependent

electron distribution functions, respectively. Here n labels the
electronic state and k is the electron wavevector. The q =
0 deformation potential electron–phonon interaction matrix
element in our ETB model is Mm

n (k) ≡ Mm,q=0
nk;nk [47, 54].

When we neglect slow carrier relaxation effects and retain
only the photogeneration term in the Boltzmann equation
(impulsive excitation approximation), the net photogenerated
conduction band electron distribution function fc(k, t) − f 0

c (k)
for any optical transition from the valence band to the
conduction band (v → c) is equal to the net photogenerated
hole distribution function f 0

v (k) − fv(k, t) for each value of
k. In this case we obtain a simplified expression for the
driving function in terms of the conduction band distribution
functions. Thus

Sm(t) =
�

ck

Sm(k)(fc(k, t) − f 0
c (k)), (27)

where the driving function kernel Sm(k) for the (v → c)
transition is

Sm(k) = −2ωm

h̄
(Mm

c (k) − Mm
v (k)). (28)

The driving function kernels in equation (27) for generation of
coherent LO and TO phonons in graphene have been studied
by Sanders et al in [116] for the π band (v → c) transition
and are shown in figure 15 as a function of k. As a guide to the
eyes, the S = −106 ps−2 contour is shown as a dotted (yellow)
line and the S = +106 ps−2 contour appears as a solid (red)
line. We note that Sm(k) is even under reflection about the kx
and ky axes for coherent LO phonons while Sm(k) for coherent
TO phonons is odd under reflections about the kx and ky axes.

3.6. Detection of coherent phonons

In coherent phonon spectroscopy a probe pulse is used to
measure the time-varying absorption coefficient α(h̄ω, t) at
the probe energy. The time-varying absorption coefficient
is computed using Fermi’s golden rule and in the golden
rule expression for the absorption coefficient, we explicitly
take the time variation of the band structure and carrier
distribution functions into account. The time dependence
of the band structure comes from changes induced by the
coherent phonon lattice displacements which alter bond
lengths between carbon atoms. The bond length variations
depend on the coherent phonon modes being excited and
their phases. We make the assumption that the electrons
adiabatically follow the lattice vibrations and use the ETB
model to calculate changes in the electronic structure. From
the computed differential transmission at the probe energy, we

Figure 15. Driving function kernel Sm(k) for coherent LO and TO
phonons for graphene in the impulsive excitation approximation.
The dotted (yellow) and solid (red) contour lines correspond to
S = −106 and +106 ps−2 respectively (reproduced from [116]).

Figure 16. Graphene absorption coefficient as a function of pump
excitation energy for normally incident e-actively polarized light
plotted as a solid black line against the left axis. The CP intensity as
a function of excitation energy is plotted as a solid red line against
right axis (reproduced from [116]).

obtain the CP intensity by taking the Fourier transform of the
differential transmission.

An example of such a calculation in graphene is shown in
figure 16 where we plot the graphene absorption coefficient
as a function of excitation energy for e-actively polarized
pump/probe beams. The photon excitation energy is in the
vicinity of the M point transition in graphene and the CP
intensity induced by the coherent LO mode is seen to be
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Figure 17. Schematic dimensionality dependence of CP signal. Top row: absorption coefficient versus photon energy for 0, 1, 2, and
3-dimensional carbon structures. Middle row: negative of the derivative of the absorption coefficient proportional to transient differential
transmission. Bottom row: square of the derivative of the absorption coefficient proportional to the CP intensity.

roughly proportional to the square of the derivative of the
absorption coefficient. Thus, CP spectroscopy is a derivative
spectroscopy.

This is a generic feature and can be qualitatively
understood for photoexcitation near the band edge. For
coherent RBM oscillations in semiconducting SWNTs, the
coherent tube diameter oscillations give rise to band gap
oscillations which, to first approximation, rigidly shifts the
absorption spectrum. In coherent phonon spectroscopy on
semiconducting carbon structures, excitation of coherent
phonons near the band edge by the pump modulates the
band gap and gives rise to transient differential transmission.
We take the theoretical CP signal to be proportional to the
power spectrum of the transient differential transmission after
background subtraction. Thus, the CP signal as a function of
the pump energy is roughly proportional to the square of the
derivative of the absorption coefficient. The dimensionality
dependence of CP intensity in different carbon nanostructures
is shown schematically in figure 17. The top row shows the
absorption coefficient as a function of photon energy for
carbon structures in 0, 1, 2, and 3 dimensions. The middle
row shows the negative of the derivative of the absorption
coefficient which is proportional to the transient differential
transmission due to CP induced band gap oscillations. The
bottom row shows the square of the derivative of the
absorption coefficient which is roughly proportional to the CP
intensity.

In our ETB model, we explicitly track how the energy
bands En(k) are modified by coherent phonon oscillations.
These shifts are taken as inputs to the Fermi golden rule
calculation of the time-dependent optical properties measured
by the probe beam. The energy band shifts depend on the
band index n, the wavevector k, as well as the coherent

Figure 18. Effect of coherent RBM phonon oscillations on SWNT
bands for (13,0) SWNTs. Black curves are unstrained bands and red
curves are adiabatically modified bands due to RBM oscillations
when the RBM coherent CP amplitude is set to a large value of
Q = 10.

phonon mode being excited. For the RBM coherent phonon
mode, figure 18 shows how the bands in (13,0) SWNTs are
modified by the coherent RBM phonon oscillations. The black
curves are the unmodified bands and the red curves are bands
calculated when the RBM coherent phonon amplitude is fixed
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Figure 19. Electron–phonon matrix elements for coherent RBM phonons in (a) (11, 0) and (b) (13, 0) SWNTs for E11 (black curve) and
E22 (red curve) optical transitions calculated within the ETB formalism with VFF phonon modes. Electron–phonon matrix elements
calculated using effective mass theory for (c) (11, 0) and (d) (13, 0) SWNTs. The CP driving function S(k) is proportional to the negative of
the electron–phonon matrix element and the sign convention is chosen so that a positive electron–phonon matrix element corresponds to a
radially inward driving term S(k) for RBM coherent phonons.

at Q = 10. In actual RBM oscillations, Q � 10 so the band
gap shifts shown in the figure are greatly exaggerated. The size
of the band gap shift varies slowly with k, so the shifts may
be taken as approximately rigid. However, the magnitude and
sign of the shifts vary depending on the optical transition. We
note that for Q > 0 the E11 band gap shrinks at k = 0 while
the E22 band gap expands.

4. Coherent phonons in carbon nanotubes

Using the concepts we have developed in section 3, we
are now able to investigate coherent phonon properties
in a variety of SWNT systems. We first investigate how
the initial phase of the CP amplitude depends upon tube
type and chirality. Then we compare our calculations with
two experimental SWNT systems: (1) micelle suspended
nanotubes and (2) aligned films of nanotubes. Comparison
of theory with experiment is difficult because usually there
are an ensemble of randomly oriented different types and
chiralities of the SWNTs in a given sample, making it difficult
to compare to theory. However, in the first type of experiment
on micelle suspended tubes, one can use femtosecond pulse
shaping to resonantly excite CPs in a tube of a fixed chirality.
In the second type of experiment, the ability to grow films
of aligned nanotubes (with approximately the same diameter
but different chiralities) allows one to study the dependence of

the CP signal on the polarization of the pump and probe with
respect to the nanotube axis.

4.1. Initial phase of the RBM CP amplitude

The lowest lying CP mode is the q = 0 RBM mode in which
the tube diameter oscillates about an equilibrium value. In this
case, the CP amplitude Q(t) is directly proportional to the tube
diameter D(t) [54]. The driving function kernels are defined
on the one-dimensional nanotube Brillouin zone and there
is a different kernel for each optical transition Eii. For light
polarized along the nanotube growth direction, the allowed
transitions are between conduction and valence bands on the
same cutting line and thus various optical transitions can be
associated with the cutting lines.

The RBM electron–phonon matrix elements in the
ETB model for E11 and E22 transitions in semiconducting
(type-I) (11, 0) and (type-II) (13, 0) nanotubes are shown
in figures 19(a) and (b), respectively. Here type-I or II
nanotube families are determined by mod(2n + m, 3) =
1 or 2, respectively. Mod(2n + m, 3) = 0 corresponds
to a metallic SWNT. Electron–phonon matrix elements
calculated in the effective mass theory and shown in
figures 19(c) and (d), respectively (while mod(2n + m, 3) = 0
corresponds to a metallic SWNT). Comparing figures 19(a)
and (c) and comparing figures 19(b) and (d) we see
that there is good agreement between ETB and effective
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mass results in the region around k = 0. The RBM
coherent phonon driving function S(k) is proportional to
the negative of the electron–phonon matrix element so a
positive electron–phonon matrix element gives a negative
contribution to S(k). Comparing figures 19(a) and (b) we see
that photoexcitation at the E22 band edge causes the coherent
RBM phonon to initially expand in the case of the (11, 0)

nanotube and contract in the case of the (13, 0) nanotube. The
opposite is true for photoexcitation at the E11 transition. When
photoexcited by ultrafast laser pulses, lattices in solids tend
to expand in accordance with the Franck–Condon principle.
As seen in figure 19 this is not the case for coherent
RBM oscillations in carbon nanotubes where the diameter
can initially expand or contract depending on nanotube
chirality and photoexcitation energy. To better understand
this phenomenon, we undertook a systematic study of the
chirality dependence of coherent RBM oscillation amplitudes
within the effective mass framework by considering the RBM
electron–phonon interaction analytically [74].

In a nearest neighbor effective mass approximation, the
RBM electron–phonon matrix element H(ep) for an (n, m)

SWNT with a chiral angle θ and diameter dt is obtained from a
sum of the on-site and off-site electron–phonon Hamiltonians
in equations (15) and (23), respectively. However, we should
add a phase factor ei3θ to the off-site Hamiltonian in order to
take into account a general chirality dependence. Therefore,
the RBM electron–phonon matrix element can be written as

H
(ep) = 2sr

dt




gon −goff

2
ei3θ

−goff

2
e−i3θ gon



 , (29)

where gon (goff) is the on-site (off-site) coupling constant.
Here sr = √

h̄/2mcωRBM is the phonon amplitude for the
RBM, ωRBM is the RBM phonon frequency at q = 0, and
mc is the total mass of the carbon atoms within the unit
cell. The electron–phonon matrix element is defined as a sum
of conduction band c and valence band v electron–phonon
matrix elements [117], which represent the electron and hole
contributions, respectively,

M(ep) = M(ep)
c − M(ep)

v = �c|H
(ep)|c� − �v|H

(ep)|v�. (30)

To obtain M(ep) in (30), we use the following
wavefunctions,

�c = eik·r
√

2S

�
e−i�(k)/2

e+i�(k)/2

�

,

�v = eik·r
√

2S

�
e−i�(k)/2

−e+i�(k)/2

�

,

(31)

for conduction and valence states, respectively, which are
suitable near the graphene K point [115]. In (31), S is the
surface area of graphene and �(k) is an angle at the K
point measured from a line perpendicular to the cutting lines
(figure 20). By inserting the wavefunctions in (31) to (30), we
obtain

M(ep) = − sr

dt
[goff cos(�(k) + 3θ)]. (32)

Figure 20. Cutting lines for (a) (11, 0) and (b) (13, 0) zigzag
nanotubes near the graphene K point. Solid lines denote the E11 and
E22 cutting lines, respectively, while the dotted lines correspond to
higher cutting lines. The angle �(k) defines the position of a k
point. Here �(k) is shown for a k point on the E22 cutting line for
both SWNTs. The difference between the type-I and type-II families
can be understood from the position of the E11 or E22 cutting lines
relative to the K point (reproduced from [74]).

Table 1. Initial lattice behavior due to coherent RBM oscillations at
E11 and E22 in semiconducting SWNTs.

Nanotube family E11 E22

Type I (mod(2n + m, 3) = 1) Contract Expand
Type II (mod(2n + m, 3) = 2) Expand Contract

According to the density-functional calculation by
Porezag et al [82], we may adopt the off-site coupling
constant goff = 6.4 eV and the on-site coupling constant gon =
17.0 eV, which are calculated for the first nearest neighbor
carbon–carbon distance [115]. However, gon has no effect on
the electron–phonon matrix element since it vanishes in (32).
Finally, using the matrix element (32), the coherent RBM
driving function kernel in (28) is then given by

S(k) = 2ωRBM

h̄
sr

dt
[2goff cos(�(k) + 3θ)]. (33)

In the cutting line picture of figure 20, the angle �(k)

is measured counterclockwise from a line perpendicular to
the cutting lines, with the positive direction of the line to
the right of the K point. A simple geometrical argument
shows that the driving function (33) correctly predicts the
sign of the results shown in figure 19 for the E11 and E22
transitions [74] based on the rule of �(k). For example,
in figure 20 we show the cutting lines for the (11, 0) and
(13, 0) nanotubes. The E22 cutting line for the (11, 0) ((13, 0))
tube is to the right (left) of the K point, giving a positive
(negative) cos(�(k)) and thus a positive (negative) S(k) for
the E22 transition, corresponding to initial increase (decrease)
of the tube diameter. The coherent RBM oscillations are
thus strongly nanotube family dependent. Their behavior are
summarized in table 1. However, it is important to note that the
general trend might deviate from table 1 because of the chiral
angle θ term in (33). Also, for higher lying transitions with
cutting lines far from the K point, the effective mass picture
breaks down due the limitation of the first nearest neighbor
approximation.
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4.2. CP in micelle suspended SWNTs

The electronic properties of carbon nanotubes depend on their
chirality (n, m) [7, 34, 76–78]. Carbon nanotube samples
typically contain ensembles of nanotubes with different
chiralities. The relative abundances of different chirality tubes
makes it difficult to study chirality-dependent properties.
Kim et al then developed resonant CP spectroscopy [50,
54], a technique that allows chirality-dependent properties of
nanotubes in an ensemble to be studied. Using pre-designed
trains of femtosecond optical pulses, it is possible to
selectively excite and probe coherent RBM lattice vibrations
in SWNTs of a specific chirality and gain information on
light absorption, coherent phonon generation, and coherent
phonon-induced band structure modulations. Coherent RBM
phonons are selectively excited using a train of pump pulses
whose repetition rate is equal to the desired phonon frequency.
By exciting coherent phonons with a specific frequency,
nanotubes with a single chirality in an ensemble of tubes can
be studied.

Lim et al generated and detected RBM phonons in
single-walled carbon nanotubes using CP spectroscopy with
ultrafast pump pulses with durations of around 50 fs [52, 53].
The coherent RBM phonons give rise to diameter oscillations.
The band gap is roughly inversely related to the diameter,
so the induced RBM diameter oscillations give rise to band
gap oscillations at the phonon frequencies. These band gap
oscillations induce oscillations in the excitonic peaks which
are detected by the probe beam.

The CP spectra in SWNT ensemble samples exhibited
a large number of strong peaks, each one induced by RBM
diameter oscillations in nanotubes of different chiralities.
The chiralities corresponding to the different peaks were
identified from the RBM oscillation frequencies and the
relative strengths of the peaks provides information on the
relative populations of different chirality nanotubes in the
ensemble samples.

With 50 fs laser pulses, coherent RBM phonon modes
are excited since the pulse duration is much less than the
RBM oscillation period around 100–200 fs. On the other
hand, the coherent G mode phonon energies are near 0.2 eV
(see figure 10) with periods of around 21 fs. In order to
excite coherent G mode phonons, it is necessary to use laser
pulses shorter than 21 fs. Gambetta et al used sub-10-fs pump
pulses to excite both coherent RBM and G modes in SWNT
ensembles [57]. The anharmonic coupling between the RBM
and G modes resulted in frequency modulation of the G modes
by the RBM. Using quantum chemical dynamic simulations,
they concluded that the nanotube surface becomes locally
distorted during photoexcitation. This corrugation of the
surface of the SWNT during photoexcitation couples the
radial and longitudinal modes and gives rise to the observed
frequency modulation of the G modes by the RBM [57].

In the above studies, coherent phonons were observed
in semiconducting SWNTs but were not observed in
metallic SWNTs. Using sub-10 fs laser pulses, Kato et al
investigated coherent phonon dynamics in metallic SWNTs
using CP spectroscopy experiments measuring time-resolved

Figure 21. Coherent phonon intensity at the RBM frequency as a
function of pump–probe energy for several mod 2 semiconducting
nanotubes at the E22 transition. The experimental CP spectra are in
the top panel and the simulated CP spectra are in the bottom panel.
The upper four curves in each panel are for nanotubes in Family 22
and the lower four curves are for tubes in Family 25. Each curve is
labeled with the chirality (n, m) and the RBM phonon energy in
meV (adapted from [50]).

reflectivity with the probe pulse and observed coherent RBM,
D mode, and G mode phonons [118]. In the case of coherent
G mode phonons, they were able to resolve the longitudinal
G− and transverse G+ modes. The frequencies of the coherent
RBM phonons were observed to shift with increasing pump
intensity implying that the photocarriers modify the RBM
phonon frequency.

In [54], Sanders et al used resonant CP spectroscopy
to systematically study CP spectra in micelle suspended
mod 2 semiconducting nanotubes of different chiralities and
compared experimental and theoretical CP intensities at the
RBM phonon frequency as a function of the excitation energy.
As an aside on nomenclature, mod 2 semiconducting SWNTs
with chirality indices (n, m) satisfy mod(n − m, 3) = 2 and
are equivalent to semiconducting type I SWNTs which satisfy
mod(2n + m, 3) = 1.

The results of the comparison of theory and experiment
for mod 2 SWNTs are shown in figure 21. The bottom panel
of figure 21 shows the theoretical CP intensity at the RBM
frequency as a function of excitation energy for all (n, m)

nanotubes in Families with 2n + m = 22 and 25. The curves
for each nanotube are labeled with the nanotube chirality
(n, m) and the computed RBM phonon energy in meV. In each
tube, peaks in the CP spectra correspond to E22 transitions.
Within each family, CP intensity tends to decrease as the
chiral angle and tends to increase as we go from Family 22 to
Family 25. The top panel of figure 21 shows the corresponding
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Figure 22. Schematic diagrams showing experimental configurations employed in polarization-dependent pump–probe CP measurements
reported by Booshehri et al in [56]. In (a) the pump and probe polarizations are fixed and the sample is rotated through an angle θ . In (b) the
probe and sample orientations are fixed and the pump polarization is rotated through an angle φ.

experimental CP spectra for tubes in Families 22 and 25. We
see that the theory correctly predicts overall trends in the
CP intensities both within and between Families. There is a
small difference in the calculated RBM energy compared to
the experimental energy with the experimental RBM energy
≈3–4 meV lower. We attribute this difference to the fact that
the experimental tubes are micelle suspended in liquid and we
would expect them to have a lower RBM frequency than an
isolated tube.

Discrepancies in the predicted excitation energies of the
peaks on the order of 0.4 eV or less are observed. This
discrepancy is most likely due to Coulomb interactions (or
excitonic effects) which are not included in the present theory.
Both the excitonic red shift and the self-energy blue shift are
on the order of eV in nanotubes, with the latter exceeding
the former [37, 91, 92, 119–121]. The dielectric function of
the surrounding medium in the micelle suspended samples
also influences excitonic transition energies [122]. Comparing
theoretical and experimental CP spectra for the (12, 1) tube,
we find that both exhibit a double peaked structure, but
the lower energy theoretical peak is much stronger than the
higher energy peak whereas the two experimental peaks have
comparable strength. This discrepancy is due to excitonic
modification of the shape of the nanotube absorption spectrum
whose time-dependent modulation gives rise to the shape of
the CP signal [52]. This is illustrated again in figure 17. There
we see that the expected CP lineshape for a 0D system (as one
would expect for strong exciton effects) more closely matches
the experimental lineshape than the 1D system.

4.3. Polarization dependence of the CP signal in aligned
nanotube films

Kim et al [123] and Kato et al [118] studied the
polarization dependence of CP oscillations in SWNTs and
the relation between the nanotube axis and the incident
light polarization. They found that optical absorption in
nanotubes depends strongly on polarization. CP amplitudes
measured as a function of the angle between the pump and
probe polarizations were analyzed based on the absorption
anisotropy of carbon nanotubes. A simple model in which

nanotubes in a solution sample have random orientations
and taking the expected optical anisotropy of nanotubes into
account was used to explain observed polarization-dependent
CP oscillations as a function of the angle θ between the pump
and probe beams. It is found that the CP intensity can be fitted
to I(θ) = A(2cos2(θ) + 1) + B where A and B are fitting
parameters. This agrees well with experiment with A = 0.234
and B = 0.302 as seen in figure 5 of [123].

A more elaborate study of polarization dependence of
coherent phonons in samples where the tubes are highly
aligned was undertaken by Booshehri et al [56]. These
authors used polarization-dependent differential-transmission
pump–probe CP spectroscopy to investigate the polarization
dependence of coherent RBM phonons in highly aligned
single-walled carbon nanotube thin films transferred onto a
sapphire substrate with a diameter distributed between 1 and
5 nm centered around 3 nm [124]. Experiments on RBM
CPs were performed in two different geometries indicated
schematically in figure 22. In geometry I (figure 22(a)),
the pump and probe polarizations are fixed, and the sample
orientation is rotated through an angle θ . In geometry II
(figure 22(b)), the probe polarization and sample orientations
are fixed, and the pump polarization rotated through an
angle φ.

The optical properties of carbon nanotubes are very
anisotropic with the strongest RBM CP signal occurring when
the pump polarization is parallel to the tube axis. It was found
that very nearly complete quenching of the RBM CPs was
observed in both experimental geometries when the pump
polarization was perpendicular to the tube axis. Comparing
experimental results with theory, Booshehri et al simulated
polarization-dependent CP spectroscopy in a (38, 0) zigzag
nanotube and found a decrease in CP signal as the optical
polarization varied from parallel to perpendicular to the
tube axis [56]. Using those simulated results, they found a
cos8(θ) dependence in geometry I CP spectra and a cos4(φ)

polarization dependence in geometry II CP spectra. In fitting
experiment to theory, misalignment effects were taken into
account, and it was determined that data from both geometry
I and II experiments could be fit assuming the nematic order
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Figure 23. Experimental integrated coherent RBM phonon power
for the E44 transition as a function of θ for Geometry 1 (upward
pointing triangles) and φ for Geometry 2 (downward pointing
triangles) experiments. Geometry 1 experiments are fit to
Acosp(θ + �θ) + B where p = 8 (dashed line) and Geometry 2
experiments are fit to Acosp(φ + �φ) + B for p = 4 (solid red line).
A and B are background subtraction and rescaling parameters and
the standard deviations for the random tube axis misalignment �θ
and �φ are restricted to be the same for both Geometry 1 and 2
experiments (reproduced from [56]).

parameter in the sample was S = 0.81. The fit is shown in
figure 23.

5. Coherent phonons in graphene nanoribbons

In this section, we extend the microscopic theory for
generating and detecting coherent phonons in SWNTs to
the case of coherent phonons in GNRs, although there are
no measurements of coherent phonons to date in GNRs.
Therefore, our discussion here gives some predictions of CP
behavior in GNRs. We consider armchair and zigzag ribbons
denoted Nab aGNR and Nab zGNR, respectively, where Nab is
the number of AB carbon dimers in the unit cell.

The lattice structure for aGNRs and zGNRs is shown
schematically in figure 24. For both aGNRs and zGNRs there
are Nab CP active modes that vibrate in the plane of the
nanoribbon. In all cases, the CP active mode with the lowest
frequency is RBLM mode in which the nanoribbon width
periodically expands and contracts. For coherent RBLM
phonons the ribbon width W(t) is directly proportional to the
coherent phonon amplitude Q(t) [47].

The RBLM phonon energies are sensitive to the ribbon
width W and scale roughly as the inverse of the ribbon
width in accordance with a simple zone folding expression
E = 0.4/W eV with W in units of angstrom. The RBLM
energies for aGNRs and zGNRs calculated using our valence
force field model for GNR phonons are shown in figure 25
as functions of the ribbon width. We plot the RBLM phonon
energies for Nab aGNRs for 4 ≤ Nab ≤ 25 as black dots
and RBLM energies for Nab zGNRs for 3 ≤ Nab ≤ 15 as
red triangles. To fit our calculated VFF energies as functions
of the nanoribbon width, we fit our results to an empirical
expression of the form E = AWP + B where A, P, and B are
fitting parameters the values of which are shown in figure 25.

The coherent phonon driving function S(t) immediately
after photoexcitation is greatest for light polarized parallel to
the nanoribbon axis. The sign of the driving function gives
phase information that can be measured in CP spectroscopy.

5.1. Armchair nanoribbons

Armchair nanoribbons belong to one of three families
depending on the mod number mod(Nab, 3). Based on a
simple band structure calculation, we classify mod 0 and
mod 1 aGNRs as semiconductors and mod 2 aGNRs as
metals [125, 126].

Bandstructures for π electrons in three representative
armchair graphene nanoribbons (aGNRs) calculated in the
ETB model are shown in figure 26. The 6 GNR and
7 GNR ribbons are semiconducting with finite band gaps,
while the mod 2 8 GNR ribbon is metallic. Armchair
semiconducting nanoribbons have direct gaps that arise from

Figure 24. Lattice structures and translational unit cells for armchair (aGNR) and zigzag (zGNR) graphene nanoribbons. The width of the
nanoribbons is W (reproduced from [47]).
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Figure 25. RBLM phonon energies for armchair nanoribbons (black dots) and zigzag nanoribbons (red triangles) computed in the valence
force field model as a function of ribbon width W. The RBLM phonon energies can be fit to E = AWP + B where A, P, and B are fitting
parameters. Each plot symbol corresponds to a different value of Nab which varies from 4 to 25 for armchair ribbons and from 3 to 15 for
zigzag nanoribbons [47].

Figure 26. π energy bands for 6, 7 and 8 aGNR nanoribbons
calculated in the ETB model (adapted from [47]).

quantum confinement and edge effects and all the electronic
wavefunctions near the band edge are distributed throughout
the width of the ribbon.

A typical mod 1 semiconducting nanoribbon is the
7 aGNR. In GNRs, the CP active mode with the lowest
phonon energy is the RBLM mode at q = 0. Figure 27
shows the 7 aGNR unit cell with 14 carbon atoms, and
superimposed on these atoms are vectors proportional to the
atomic displacements in the RBLM mode as determined in
our valence force field model. As can be seen in the figure, the
RBLM mode represents a periodic expansion and contraction
of the ribbon width. The inset shows the phonon dispersion
relations for out-of-plane modes (red curves) and in-plane
phonon modes (black curves). The phonon branch containing
the RBLM mode is shown as a thick black line and the RBLM
mode at q = 0 is indicated by a yellow dot. In the VFF model
the RBLM phonon energy is found to be 51 meV.

Since coherent phonon spectroscopy gives direct phase
information on the coherent phonon amplitude, it is thus

instructive to examine Smax as a function of pump photon
energy and nanotube species. This is done in figure 28 for
mod 0, 1 and 2 nanoribbons. Our results for the 6 aGNR
mod 0 semiconducting nanoribbon are shown in figure 28(a)
where Smax is shown as a function of pump photon energy. For
comparison, the absorption coefficient is also plotted in the
lower panel of figure 28(a). Near the band edge, we see from
figure 28(a) that the pump light is strongly absorbed near the
E11 and E22 peaks. The resulting increase in the photoexcited
carrier density increases the coherent phonon driving function
and enhances the coherent phonon oscillation amplitudes.
Photoexcitation by the pump causes the nanoribbon to initially
expand for pump photon energies near the E11 transition and
to initially contract for pump photon energies near the E22
transition. We find this to be true for all mod 0 semiconducting
aGNRs.

Qualitatively, different results are obtained for mod 1
aGNRs. In figure 28(b) we plot Smax as a function of pump
photon energy for mod 1 7 aGNRs. Photoexcitation by the
pump near the E11 absorption peak causes the 7 aGNR to
initially contract while pumping near the E22 absorption peak
causes the 7 aGNR to initially expand. This is true for all
mod 1 semiconducting aGNRs. In figure 28(c) we show
results for an 8 aGNR mod 2 metallic nanoribbon excited
by a laser pulse polarized parallel to the ribbon length. From
figure 28(c), we find that photoexcitation by the pump near the
E11 absorption peak causes the nanoribbon to initially expand.
For photon energies near the E22 transition, the situation is
more ambiguous.

Again, we could explain the trend in figure 28 using
effective mass theory to understand why some GNRs start
their coherent RBLM oscillations by initially expanding while
others start the oscillations by initially shrinking [47]. The
RBLM H(ep) for an aGNR can be written as

H
(ep) = uarm




gon −goff

2
−goff

2
gon



 , (34)
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Figure 27. Phonon mode pattern for the RBLM mode (phonon energy 51 meV) in a 7 aGNR mod 1 semiconducting nanoribbon. The
coherent phonon amplitude is proportional to the ribbon width and increasing amplitude corresponds to ribbon width expansion. The
phonon dispersion relation is shown on the right with the phonon branch containing the RBLM mode at q = 0 shown as a thick black line.
The red lines correspond to out-of-plane modes and the black lines are in-plane modes.

Figure 28. The coherent phonon power, the value of Smax, and the initial absorption spectrum are plotted as a function of photon energy for
(a) 6 aGNR mod 0 nanoribbon (RBLM frequency = 59 meV), (b) 7 aGNR mod 1 nanoribbon (RBLM frequency = 51 meV), and (c) 8
aGNR mod 2 nanoribbon (RBLM frequency = 44 meV). The excitation is due to a Gaussian laser pulse with pump and probe polarization
vectors parallel to the ribbon length (reproduced from [47]).

where gon (goff) is the on-site (off-site) coupling constant in
electronvolt, while uarm is a ribbon width- or Nab-dependent
phonon amplitude. To obtain the electron–phonon matrix
element M(ep), we use the same wavefunctions as in (31).
The wavefunctions are suitable near the graphene Dirac
K point and thus they can explain well the aGNR lattice
response especially at relatively low energy E11 and E22
optical transitions. We then obtain a formula for aGNR M(ep)

similar to that for the nanotube case,

M(ep) = −uarm(2goff cos �(k)). (35)

Here �(k) is defined by the angle that k points in the
two-dimensional Brillouin zone measured from the line in k
space perpendicular to the discrete one-dimensional Brillouin

zone (cutting lines) which goes over the K point (hexagonal
corner, see figure 29). Therefore, the driving function kernel
can be written as [47]

S(k) = 2ωRBLM

h̄
uarm[2goff cos(�(k))], (36)

where ωRBLM is the RBLM frequency at q = 0. From this
equation, we can analyze the Nab and Eii dependence of the
aGNR initial lattice response. First of all, we should note that
goff and uarm are always positive, while cos �(k) can either be
positive or negative depending on the value of k at which the
Eii transition occurs.

Using this argument, we can classify the aGNR lattice
response based on the aGNR types. For example, let us
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Figure 29. Cutting lines for (a) mod 0 aGNR and (b) mod 1 aGNRs
near the Dirac K point. To make clear the definition of �(k), in this
figure �(k) is shown for an arbitrary k at E11. In fact, in the case of
mod 0 and mod 1 aGNRs the E11 transitions occur at �(k) = 0 and
π , respectively. The difference between the mod 0 and mod 1
aGNRs can be understood from the position of the E11 or E22
cutting lines relative to the K point (reproduced from [47]).

consider semiconducting mod 0 aGNR and mod 1 aGNRs.
The cutting line position for their E11 and E22 optical
transitions are just opposite to each other. For a mod 0 aGNR,
we see that cos �(k) becomes positive (negative) at E11 (E22),
and thus the aGNR starts the coherent phonon oscillations
by expanding (shrinking) its width. This can be seen in the
illustration of �(k) in figure 29. The opposite behavior is true
for mod 1 aGNRs.

The effective mass predictions for semiconducting mod 0
and mod 1 aGNRs are borne out by the ETB coherent phonon
spectroscopy simulations summarized in figures 30 and 31.
In the case of mod 0 aGNRs, pumping at the E11 transition
causes the nanoribbon to initially expand while pumping at
the E22 transition causes the nanoribbon to initially contract.
The exact opposite is true in the case of mod 1 aGNRs. For

higher lying transitions, the effective mass theory breaks down
as these transitions are too far from the Dirac points.

The driving force trends for mod 2 metallic aGNRs (see
figure 32) cannot be explained by the effective mass theory.
In metallic aGNRs, two cutting lines are equidistant from
the K point and are the lower and higher branches of an Eii
transition. Both branches contribute to Eii and we sum up
the matrix elements from each contribution to obtain M(ep).
For example, if the 1D k-points for the lower and higher
branches of Eii are the same, the matrix elements cancel
because cos �(k) + cos(π − �(k)) = 0. In this case, the
CP amplitude will be small for the mod 2 metallic aGNRs
as compared to the mod 0 or mod 1 semiconducting aGNRs.
In reality, we have slightly different k-points for the two Eii
branches due to trigonal warping effects [36]. When trigonal
warping effects are included, the resulting nonzero value of
M(ep) allows us to determine if the ribbon width initially
expands or contracts.

Near the E11 transition in metallic aGNRs the lattice
initially expands for all Nab. Near the E22 transition, the lattice
always initially contracts, though we see in figures 32(b)–(d)
the trends do not hold for larger Nab. We summarize the lattice
behavior at E11 and E22 transitions for all families of aGNRs
in table 2.

5.2. Zigzag nanoribbons

The molecular structure of a zigzag graphene nanoribbon
(zGNR) is shown in figure 24. All zGNRs are metallic and
there is no classification into qualitatively distinct types like
there is in armchair nanoribbons. Furthermore, the bands for

Figure 30. RBLM coherent phonon driving function and initial absorption spectrum as a function of photon energy for several mod 0
semiconducting aGNRs: (a) Nab = 6, (b) Nab = 6, (c) Nab = 12, and (d) Nab = 15. Positive (negative) Smax at E11 (E22) corresponds to an
expansion (contraction) of the ribbon width (adapted from [47]).
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Figure 31. RBLM coherent phonon driving function and initial absorption spectrum as a function of photon energy for several mod 1
semiconducting aGNRs: (a) Nab = 7, (b) Nab = 10, (c) Nab = 13, and (d) Nab = 16. Negative (positive) Smax at E11 (E22) corresponds to a
contraction (expansion) of the ribbon width (adapted from [47]).

Figure 32. RBLM coherent phonon driving function and initial absorption spectrum as a function of photon energy for several mod 2
metallic aGNRs: (a) Nab = 8, (b) Nab = 11, (c) Nab = 14, and (d) Nab = 17. Positive (negative) Smax at E11 (E22) corresponds to an
expansion (contraction) of the ribbon width (adapted from [47]).

Table 2. Initial lattice behavior due to coherent phonon oscillations
at E11 and E22 in aGNRs.

Family E11 E22

mod 0 Expand Contract
mod 1 Contract Expand
mod 2 Expand Expand or contract

all zGNR nanoribbons are qualitatively similar. Thus when we
discuss zGNR electronic states it is sufficient to consider just
one example.

It is mentioned, however, that the localized electronic
energy band, which are the so called edge states as we will
discuss below, exists for zGNR in which the C1 and V1 energy
bands as shown in figure 33 are merged into degenerate energy
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Figure 33. π energy bands for 7 zGNR nanoribbons calculated in
the ETB model. The lowest seven bands labeled V1 · · · V7 are the
valence bands and the highest seven bands labeled C1 · · · C7 are the
conduction bands.

bands at the zone boundary region. Since the contribution of
the edge states to CP amplitude is not clear, we did not discuss
the calculation in [47]. The discussion here is thus an original
results in this review article.

The computed bandstructure for π bands in 7 zGNR
nanoribbons is shown in figure 33. The Brillouin zone is one
dimensional with |k| ≤ π/L and there are fourteen bands.
The lowest seven bands labeled V1, . . . , V7 are the valence
bands and the remaining bands labeled C1, . . . , C7 are the
conduction bands. We note that the conduction and valence
bands are asymmetric about E = 0 because of atomic overlap

matrix elements in the ETB formalism which are not present
in simple tight-binding (STB) and effective mass models.
There is a strong degeneracy in the bands at k = ± π/L
and there are two partially degenerate bands V1 and C1 near
E = 0. These ground state bands correspond to localized edge
states for |k| � 2π/3L where k = ± 2π/3L are the Dirac
points K and K�. For |k| � 2π/3L the states penetrate into
the interior of the ribbon as |k| → 0. These edge states are
peculiar to zigzag nanoribbons and have been studied using
effective mass, tight-binding and ab initio theories [127–129].
The remaining bands are delocalized zone folded quantum
confined bands the lowest of which have parabolic minima
near the Dirac points K and K� located at k = ±2π/3L.

Figure 34(a) shows a closeup of the ETB π band states
near the band edge for 7 zGNR nanoribbons. The Fermi level
at a temperature of 300 K is Ef = 0.07 eV and is shown
as a dotted line. Figures 34(b) and (c) respectively show
differences in the STB and ETB energy bands in the vicinity
of the K� point. In the STB model, the bands are symmetric
about E = 0 and in the ETB model, the bands are asymmetric.
Thus, in the STB model, the Fermi energy for undoped GNRs
is pinned at Ef = 0 eV independent of the temperature while
the Fermi energy in the ETB model is temperature dependent.

This difference in band curvature near K and K� has
pronounced effects on band edge absorption. In zGNRs, we
designate optical transitions between bands Ci and Vj with
the obvious notation ViCj. Optical absorption in GNRs is
qualitatively different from absorption in SWNTs. GNRs
have a vertical mirror plane running down the center so
the electronic states are either symmetric or antisymmetric
about this mirror plane. Optically dipole allowed transitions
for polarization parallel to the nanoribbon axis are between
states in bands with the same parity and discrete k values (or
the same cutting line). The edge states V1 and C1 near the
Brillouin zone boundary play an important role in the band
edge transitions and the absorption spectrum is sensitive to
the Fermi energy.

Figure 34. A closeup of C1 and V1 band edge states in undoped 7 zGNR nanoribbons computed using the ETB model is shown in (a). The
Fermi level at 300 K is 0.07 eV and is indicated by the dotted line. The STB and the ETB bands in the vicinity of the K� point are shown in
(b) and (c), respectively with dotted lines indicating the Fermi level in the two models.
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Figure 35. (a) Band edge absorption for 7 zGNR nanoribbons with electric polarization vector parallel to the ribbon. Total absorption is the
sum of absorption due to several transitions. (b) Band diagram showing the Fermi level Ef and transitions involved in the three lowest
absorption peaks. Blue lines are valence bands and red lines are conduction bands. Solid lines (n even) are even parity states and the
dash-dotted lines (n odd) are odd parity states. (reproduced from [47]).

The absorption spectrum for the 7 zGNR nanoribbon is
shown in figure 35(a) for linearly polarized light with the
electric polarization vector parallel to the nanoribbon axis.
The nanoribbon is assumed to be undoped at a temperature
of 300 K. The Fermi level Ef at 70.16 meV is indicated by
the black dashed line in figure 35(b). The V1 edge states in
the vicinity of the Dirac points lie above the Fermi energy
and since these states are empty, electrons in the lower
valence bands can be photoexcited into these V1 states thus
accounting for the strong intraband V3V1 absorption peak
near 2.23 eV. The Fermi golden rule absorption coefficient
is computed with a FWHM linewidth of 0.2 eV. The total
absorption spectrum shown as a thick black line is a sum
of contributions from several transitions. The lowest lying
absorption peak at 1.65 eV is V2C1 and is indicated by a
vertical arrow in figure 35(b). The V2C1 peak comes from
transitions near K and K�. The initial states are quantum
confined hole states V2 and the final states are the localized
electron edge states C1. A second broad absorption transition
V1C2 peaking at 2 eV comes from transitions between
the localized hole edge states V1 and the second quantum
confined electron states C2. A strong peak in the absorption
spectrum at 2.23 eV is due to the intraband transition V3V1
between V3 quantum confined states near the K and K� points
and the localized V1 hole edge states.

Figure 36 shows the 7 zGNR unit cell with 14 carbon
atoms, and superimposed on these are vectors proportional to
the atomic displacements in the RBLM mode as determined
in our valence force field model. Again, the RBLM mode
represents a periodic expansion and contraction of the ribbon
width. The inset shows the phonon dispersion relations for

out-of-plane modes (red curves) and in-plane phonon modes
(black curves). The phonon branch containing the RBLM
mode is shown as a thick black line and the RBLM mode
at q = 0 is indicated by a yellow dot. In the VFF model the
RBLM phonon energy is found to be 29 meV.

For photoexcitation near the optical absorption edge,
the RBLM driving function is much larger for zGNRs in
which transitions involving localized edge states provide the
dominant contribution. Figure 37(a) is the power spectrum of
CP amplitude Q(t) at the RBLM frequency. In figure 37(b) we
plot Smax as a function of pump photon energy. The absorption
coefficient is plotted in figure 37(c) for comparison. Near the
band edge, we see from figure 37(b) that the pump light is
strongly absorbed at the V2C1 and V3V1 peaks. The resulting
increase in the photoexcited carrier density increases the
coherent phonon driving function and enhances the coherent
phonon oscillation amplitudes. In other words the coherent
phonon driving function near the band edge is determined by
the strength of optical absorption between the lowest few hole
bands and the localized edge states V1 and C1. At energies
above 3 eV, Smax changes sign and the nanoribbon initially
contracts.

We performed simulations of the generation and
detection of RBLM coherent phonons in zGNRs with Nab
ranging from 6 to 14. In figure 38 we plot the maximum
driving function Smax as black curves against the left axis and
the absorption coefficient (red curves) against the right axis.
We assume the pump and probe are polarized parallel to the
ribbon axis. In all cases, the maximum driving function Smax is
positive (and the ribbon width initially expands) for energies
below approximately 3 eV and is negative for higher energies.
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Figure 36. Phonon mode pattern for the RBLM mode (phonon energy 29 meV) in a 7 zGNR nanoribbon. The coherent phonon amplitude
is proportional to the ribbon width with increasing amplitude corresponding to ribbon width expansion. The phonon dispersion relation is
shown on the right with the phonon branch containing the RBLM mode at q = 0 shown as a thick black line. The red lines correspond to
out-of-plane modes and the black lines are in-plane modes.

Figure 37. For 7 zGNR nanoribbon excited by Gaussian a laser
pulse with polarization vector parallel to ribbon length, we plot (a)
the coherent phonon power at the RBLM frequency (29 meV), (b)
the value of Smax, and (c) the initial absorption spectrum as a
function of photon energy (adapted from [47]).

The V3V1 feature near 2 eV has the strongest CP intensity
and is judged easiest to observe.

The CP intensity as a function of nanoribbon width is
shown in figure 39 where the pump and probe polarization
are parallel to the nanoribbon width. In figure 39 the coherent

RBLM phonon intensity for the V2C1 and V3V1 transitions
as a function of Nab is plotted against the left axis and the
RBLM frequency is plotted against the right axis. We have
studied all zGNR nanoribbons for Nab ranging from 6 to
17 and find similar results. We see that the coherent RBLM
amplitudes of zGNRs quickly decrease with increasing ribbon
width.

We also investigated the in-plane polarization depen-
dence of the coherent phonon spectra for 7 GNRs [47]. The
polarization of the electric field of both pump and probe are
rotated by an angle θ with respect to the nanoribbon length
as indicated schematically in figure 40(a). The dependence of
the RBLM CP power spectrum on θ is shown in figure 40(b)
where CP power spectra are shown for θ ranging from 0◦ and
50◦. For θ = 0◦, there is a strong V3V1 signal at 2.25 eV and a
weaker V2C1 signal at 1.65 eV. As θ increases from 0◦ to 50◦,
the CP signal becomes weaker. The CP intensity is plotted on
a log scale in figure 40(c) for V2C1 and V3V1 transitions. As
θ varies from 0◦ to 90◦, the CP intensity is strongly quenched.

To apply the effective mass theory in zGNRs, however,
we have to consider a special localized edge state, which
is different with the wavefunctions defined in equation (31).
Either conduction or valence band can be the initial or final
localized edge state labeled as the first subband index. For
examples, in 7zGNR, V3V1 transition means that the edge
state is V1 as the final state, V2C1 means that the edge state is
C1 as the final state, and V1C2 means that the edge state is V1
as the initial state. An appropriate definition of the edge state
wavefunction should take into account the localization along
the zigzag edge. Assuming that the zGNR width is along the
x-axis, Sasaki et al proposed such a wavefunction defined as
follows [130],

�e = N�eikyye−G(x)

�
e+g(x)

e−g(x)

�

, (37)
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Figure 38. For zigzag nanoribbons excited by Gaussian laser pulse with pump and probe polarization parallel to ribbon lengths, we plot the
maximum driving function Smax (black curves) against the left axis and the initial absorption coefficient (red curves) against the right axis.
We consider all zGNRs with Nab ranging from 6 to 14. The nanoribbon widths in angstroms are shown in blue for each zGNR.

Figure 39. For zigzag nanoribbons excited by Gaussian laser pulse
with pump and probe polarization parallel to ribbon length, we plot
the coherent RBLM phonon intensity for V2C1 and V3V1
transitions as a function of Nab, the number of carbon dimers in the
zigzag unit cell, on the left axis. On the right axis we plot RBLM
frequency ω in electronvolt. The ribbon width can be read from the
upper axis (adapted from [47]).

where N� is a normalization constant, e−G(x) is the amplitude
of the wavefunction with some localization length, and g(x) is
the pseudospin modulation part. Detailed discussion about the
properties of this wavefunction is given in [130].

Now, the two contributions in the electron–phonon matrix
element in (30) in the case of zGNRs should be separated
between the valence and conduction states. One of the two
states should be the edge state (37), while another one should
be the normal state (31). Denoting the matrix element for the

Figure 40. The pump–probe polarization angle θ relative to the
zGNR nanoribbon axis is shown schematically in (a). For 7 zGNRs
excited by Gaussian laser pulse we plot (b) the RBLM CP spectrum
as a function of pump/probe energy for θ ranging from 0◦ to
50◦ and (c) the integrated RBLM CP intensity for V2C1 and V3V1
transitions as functions of θ (adapted from [47]).

normal state as M(ep)
b (b could be conduction state c or valence

state v), we find that

M(ep)
b = −uzig(goff cos �(k)), (38)
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where uzig is the zGNR RBLM zero-point phonon amplitude.
On the other hand, after some algebra for the edge state, we
find that M(ep)

e , where e can also be either c or v, is just
proportional to uzig.

M(ep)
e = Ceuzig, (39)

where Ce is a large constant. This means that the expansion
or contraction of zGNR width is determined by the normal
state (38), while the amplitude might be strongly affected
by the edge state since uzig is decreasing by increasing Nab
of zGNR. This result is thus consistent with the results in
figures 37 and 39.

6. Summary and conclusions

In this paper we have reviewed our theoretical method
for calculating the coherent phonon spectrum in carbon
nanotubes and graphene nanoribbons. Calculation of the
coherent phonon spectrum requires a detailed knowledge
of (i) the electronic structure, (ii) optical matrix elements,
(iii) phonon modes and (iv) electron–phonon matrix elements.
In our method, we have developed a microscopic theory
which uses a tight-binding model for the electronic states and
optical matrix elements and a valence force field model for
the phonons. Combining the phonon valence force field model
with the extended tight-binding model for electronic states
allows us to determine the electron–phonon matrix elements.

Our results show that the coherent RBM (of SWNTs)
and RBLM (of GNRs) phonon spectrum strongly depend on
tube chirality and ribbon type. In addition, we find the phase
of the amplitude (i.e. whether the tube diameter or ribbon
width initially expand or contract) can vary depending on the
tube chirality or ribbon type. Comparison of our microscopic
theory with a simplified effective mass theory provides an
explanation of the initial contraction or expansion. Using
effective mass theory for the electron–phonon interactions,
we can analytically analyze how the tube diameter changes
in response to femtosecond laser excitation and under what
conditions the tube diameter or the ribbon width will initially
increase or decrease. Results show that the initial phase of the
coherent phonon oscillation depends on the relative position
of the E11 and E22 cutting lines with respect to the K point.

We have compared our theoretical calculations for the
SWNT to two different types of experiment: (i) micelle
suspended nanotubes and (ii) films of horizontally aligned
tubes. In micelle suspended samples, comparison to
experiment is difficult because the experimental samples
consist of a distribution of randomly oriented nanotubes with
distribution of different types and chiralities. For micelle
suspended tubes, one can use femtosecond pulse shaping
to selectively isolate a specific SWNT chirality. In this
case, we can analyze a specific chirality and our model
predicts the overall trends in the relative strengths of the
CP signal both within and between different (2n + m)

families. For horizontally aligned nanotube films, we studied
the polarization dependence of the pump and probe pulse
with respect to the nanotube film axis. For the aligned

films, two types of experiments were modeled. In Geometry
1 experiments, both the pump and probe polarizations
were rotated with respect to the tube axis. In Geometry 2
experiments, only the pump polarization was rotated and
the probe polarization was fixed along the tube axis. We
found reasonable agreement between our calculations and
the experiment predicting the overall dependence on the CP
spectrum with the angle of the polarization. However, our
results suggested that the nanotube films were not perfectly
aligned, and allowing for a distribution of tube alignments
produced better agreement between theory and experiment.

In the case of GNRs, experiments have not been
performed to date. We theoretically find however, that for
photoexcitation near the optical absorption edge, the CP
driving term for the RBLM is much larger for zigzag
nanoribbons where the strong transitions between localized
edge states provide the dominant contribution to the CP
driving term. We eagerly await future experiments to be
performed in this area.

Perhaps the most important correction that can be made
to our model in the future is to include the Coulomb
interactions between photoexcited electron and hole pairs
(exciton effects). Exciton effects are quite strong in carbon
nanotubes with binding energies as large as 0.5 eV or even
larger for nanotubes with diameters less than 0.7 nm. We
would expect that the dominant effect of excitons would be
to change the electronic states and optical matrix elements.
This would affect where the initial photoexcited carriers
are generated as well the absorption or reflection of the
probe pulse. Exciton effects should be less important for the
exciton–phonon matrix elements. Jiang et al [131] recently
studied exciton–photon and exciton–phonon matrix elements
in SWNTs of arbitrary chirality and found that for RBM
and G modes, the exciton–phonon matrix elements with
the Coulomb interaction turned on and in the free particle
approximation are nearly identical. Hence we would not
expect the initial phase of the oscillation to be strongly
affected by the excitons. Comparing calculated exciton effects
on the CP spectrum with experiment might prove very
difficult since the effects of neighboring tubes and the local
environment could be large.

Finally, as the experimental ability to make better samples
(i.e. graphene nanoribbons, nanotubes of a fixed chirality)
improves, we would expect that one would be able to generate
coherent phonons in these samples that are not RBM, RBLM
or G modes, but instead correspond to q �= 0 acoustic modes.
One could imagine ultrafast, pump–probe experiments where
the pump and probe are spatially separated so that coherent
acoustic phonons could be generated at one spatial point in the
system but probed in a different point. The study of coherent
phonons in carbon based nanostructures is only in its infancy
and the future promises to be rewarding.
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[107] Kürti J, Zólyomi V, Kertesz M and Sun G 2003 The
geometry and the radial breathing mode of carbon
nanotubes: beyond the ideal behaviour New J. Phys. 5 125

[108] Dubay O and Kresse G 2003 Accurate density functional
calculations for the phonon dispersion relations of graphite
layer and carbon nanotubes Phys. Rev. B 67 035401

[109] Ye L H, Liu B G, Wang D S and Han R 2004 Ab initio
phonon dispersions of single-wall carbon nanotubes Phys.
Rev. B 69 235409

[110] Gillen R, Mohr M, Thomsen C and Maultzsch J 2009
Vibrational properties of graphene nanoribbons by
first-principles calculations Phys. Rev. B 80 155418

[111] Madelung O 1978 Introduction to Solid-State Theory (Berlin:
Springer)

[112] Jiang J W, Tang H, Wang B S and Su Z B 2006 Chiral
symmetry analysis and rigid rotational invariance for the
lattice dynamics of single-wall carbon nanotubes Phys.
Rev. B 73 235434

[113] Jiang J et al 2005 Electron–phonon matrix elements in
single-wall carbon nanotubes Phys. Rev. B 72 235408
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