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Abstract

Leptin plays a key role in regulating energy intake/expenditure, metabolism and hypertension. It folds into a four-helix
bundle that binds to the extracellular receptor to initiate signaling. Our work on leptin revealed a hidden complexity in the
formation of a previously un-described, cysteine-knotted topology in leptin. We hypothesized that this unique topology
could offer new mechanisms in regulating the protein activity. A combination of in silico simulation and in vitro experiments
was used to probe the role of the knotted topology introduced by the disulphide-bridge on leptin folding and function. Our
results surprisingly show that the free energy landscape is conserved between knotted and unknotted protein, however the
additional complexity added by the knot formation is structurally important. Native state analyses led to the discovery that
the disulphide-bond plays an important role in receptor binding and thus mediate biological activity by local motions on
distal receptor-binding sites, far removed from the disulphide-bridge. Thus, the disulphide-bridge appears to function as a
point of tension that allows dissipation of stress at a distance in leptin.
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Introduction

A single mutation found in the leptin gene led to the discovery

of the role of this protein in regulating obesity [1]. While the cases

of mutation associated morbid obesity constitute an orphan family

of disease targets [2,3,4,5,6], leptin is now recognized as an

essential factor in signaling from adipose tissue to the brain and

regulates the propensity towards developing diabetes [7]. In

addition, leptin is a pleiotropic hormone involved in the regulation

of inflammation, hematopoiesis as well as a major regulator of the

innate and adaptive immune response [8]. Importantly, a number

of mutations in the human gene have been linked to several

developmental processes and diseases including Alzheimer’s, and

puberty onset as well as diabetes [9,10,11,12]. Only one of these

mutations maps directly to the receptor-binding site [2,3,13] and

some far from this site have been suggested to be linked to the

formation of a single disulphide bond in the protein [4,5,6]. The

four long helices in leptin form a helical-bundle motif containing

one disulphide bridge (PDB code 1AX8 [14]). The literature

suggests that helical-bundles are quite stable proteins (8–15 kcal/

mol [15,16,17,18]). Our work shows that the stability of leptin is

much lower then seen with the typical helical-bundles (1.8Reduced

versus 3.4Oxidized kcal/mol, respectively). We analyzed the structure

and found that the formation of the disulphide bond not only

stabilizes the protein but also leads to a previously un-described,

uniquely cysteine knotted structure in the oxidized state. The

question then arises: why does leptin introduce this unique

topology when other four-helix-bundles are stable enough to exist

without a knot (between 8.3–14.5 kcal/mol [15,17]) or a

disulphide bridge (9.4 kcal/mol [18]). The discovery of the

previously uncharacterized structure led us to hypothesize that

the unique knotted-topology could offer new mechanisms of

regulation in leptin. Thus, disease mutations may be linked to

formation of the cysteine knot structure rather than simply

affecting the disulphide bond. Additionally, it is not known if this

knotted topology can spontaneously fold from the unfolded to the

native basin or spontaneously self-tie/untie. If the protein can

solve this obstacle on the folding pathway the remaining question

is: how different are the rate constants for the oxidized and

reduced route?

Investigating the role of mutations in mediating leptin related

diseases requires the understanding of the folding of the cysteine

knotted motif and the formation of the fully active protein. In

Figure 1 we show the overall topology of leptin emphasizing the

role of the disulphide bond in the formation of the threaded

structure. Under oxidized conditions, the C-terminal cysteine

forms a disulphide bond to C96 forming a covalent-loop. The

more commonly referred class of proteins with a knotted topology

is the classic cysteine knotted proteins, such as the ICK motif, the

conotoxins and the cyclotides [19,20]. Here the cysteine knots are

built upon a ß-structure with the disulphide bridges building the
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knot. In the case of leptin, the protein forms a cysteine knotted

four-helix bundle, which differs from the common fold.

Our approach to understanding the role of mutations in

regulating activity has been to investigate the free energy

landscape and function of the protein of interest. The unique

topology of leptin could be compared to slipknotted proteins

[21,22], which are of similar size. A slipknot topology appears

when one loop is partially threaded across the other loop

(Figure 1C) [23]. The knotted motif revealed in leptin represents

the simplest slipknotted topology. Recent theoretical results show

that the concept of a funneled landscape is applicable for

slipknotted proteins [24]. However, these results have not been

verified experimentally. In this work we can, for the first time,

characterize the unique topology of leptin and theoretically

explore the mechanism of reversible threading of a helical hairpin

across the covalently bonded loop. We investigate the folding

mechanism of the linear and knotted protein and compare the

folding routes. The bifurcation on the protein landscape is

discussed on a kinetic level. The differences in the rate limiting

steps between the two topologies are investigated. We explore the

motion of the native state of leptin and discovered a correlation

between the binding site of leptin and the knotted topology.

Finally, we demonstrate that leptin can successfully fold and unfold

in both its oxidized and reduced state in vitro. Both these states

activate the leptin receptor in human cell lines, suggesting that

leptin can spontaneously fold and unfold from both states as shown

by our theoretical investigation. Moreover, we suggest that the

knot formation and the slipknotted topology are important not

only in signaling from adipose tissue but also in host defense

response in proteins such as cytokines and interferons [25,26,27].

Results and Discussion

Leptin is a potential therapeutic target for regulating the

common occurrence of ‘yoyo cycle’ of weight loss and weight gain

for people that struggle with metabolic syndrome as a result of

mutation in the leptin gene. Therefore, a means to produce active

native protein is an emerging area of research in treating patients

that have leptin deficiency.

The unique topology of leptin provides a considerable barrier to

produce high yields of active protein from inclusion bodies. We

sought to undertake this challenging problem in protein folding

and additionally found a surprising correlation between the

knotted topology and the function/activity of protein. As described

in the introduction and Figure 1 leptin has a unique, slipknotted

structure created by a disulphide bridge between the C-terminal

and residue 96 to make a 50 residue long covalent-loop.

Theoretical and experimental work indicates that proteins are

able to solve/bypass these topological traps on the folding

landscape [23,24,28]. However, the final question is how leptin

can fold successfully, without any external help (chaperons), under

the given topological constraint. This topology necessitates

threading of the N-terminal across the covalent-loop (Figure 1).

The significance of the disulphide bridge is debated from an

experimental point of view [29,30,31,32,33]. It has been suggested

that leptin requires the correct disulphide formation to fold

[29,30,33]. However, the work of Imagawa et al. [31] implies that

Figure 1. The unique cysteine knotted helical bundle of leptin. (A) The native structure of leptin (PDB code 1AX8 [14]). The cysteine bridge is
located between residue C96 and the C-terminal cysteine (yellow), indicated with an arrow. The overall conformation of the protein creates a cysteine
knotted helical bundle (blue). Consequently, 59 of the N-terminal residues (red), helix 3 and half of helix 2 (a2{3{hairpin), have to be ‘threaded’
through the covalent-loop (loopa4-a5). (B) The same structure as in (A), but the covalent-loop is represented as Van der Waals spheres. The spheres
illustrate the occupation of the side groups in the interior of the covalent-loop, showing that the side groups mainly point away from the center of
the loop. In consequence, creating more open space to thread the a2{3{hairpin. (C) A cartoon representation of leptin, native- (N), slipknotted (S),
denatured- (D), and unfolded (U) conformation seen from left to right respectively. The denatured and unfolded state shows the starting
conformation from which successful folding can proceed. The native state (left panel) show that leptin can reach an unfolded state, through a
slipknotted conformation, without breaking the disulphide bond, thus leaving the covalent-loop intact in a ‘so-called’ denatured state. To reach the
fully unfolded state linear state, (right panel) reduction of the disulphide bond is required.
doi:10.1371/journal.pone.0045654.g001
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the protein can fold under reduced conditions [31]. To

characterize the funnel landscape for proteins with a cysteine

knotted conformation we apply numerical in silico simulations

followed by in vitro and activity assays in human cell lines.

Topology of the Protein
We found that leptin constitutes a new structural motif within

the helical bundle family (PDB code 1AX8 [14]). The mature form

of leptin has 146 residues (16 kDa) and its structure contains four

antiparallel a-helices (a four helix bundle formed by a1, a2, a3

and a5) plus a short helix/turn (a4), packing almost perpendicular

to the four-helix bundle (Figure 1A) [1]. There are two cysteine

residues in leptin, the C-terminal (C146) plus C96, that can form a

disulphide bridge. This generates a 50 residue covalent-loop (a

tadpole like structure [34], Figure 1) that encompasses a4 and a5.

We call this a covalent loopa4-a5 and an open loopa4-a5 in the

oxidized and reduced state respectively. This disulfide bond

formation is thought to be essential for receptor signaling activity

by maintaining the 36u kink in helix 5 [1]. Our re-examination of

the structural coordinates reveals that disulphide-linked leptin

constitutes a new member of the growing motifs of cysteine

knotted proteins. However, the structure of leptin differs from the

traditional cysteine knotted fold [35,36,37]. We term this new

structure a ‘cysteine knotted helical bundle’. In brief, in the native

state helices 2 and 3 form a helical hairpin motif (which we call the

a2{3{hairpin motif throughout this paper) that threads through

the loopa4-a5 (Figure 1A). It is important to point out that this

slipknotted structure differs from the typically observed loop-

crossings seen in other slipknotted proteins as the a2{3{hairpin
only crosses the loopa4-a5 once in leptin (Figure 1). Additionally,

leptin is composed of the simplest knot [38] as opposite to the

more complex topologies like the trefoil knots [39]. Proteins with a

similar topology are the lasso peptides [40], where the C-terminal

tail is threaded through and caught within an N-terminal

macrolactam ring. While these proteins share the same topology,

they are very small peptides (16–21 residues) with less then 5

residues threaded through the closed-loop. Comparing the

structures also reveal that the loop in the lasso peptides are

enclosed by a glycine to glutamate contact, instead of a cysteine

bridge, as seen in leptin. Oxidized leptin unfolds leaving the

covalent loopa4-a5 intact, held together by the disulphide bridge.

However, reducing conditions breaks the bond to form a linear

chain (unknotted) (Figure 1C). The disulphide bridge is conserved

throughout the leptin family [14,41,42], suggesting that the unique

cysteine knotted motif is conserved (Figure S1). This motif

distinguishes leptin from the typical helical bundle cytokines, and

could complicate and challenge the folding route significantly.

Native state dynamics and receptor signaling
Investigation of native state dynamic and frustration in proteins

led to the discovery that dynamic regions in proteins are essential

to protein function [43,44]. It has also been proposed that

frustrated surface regions are sites relevant for allostery [45]. To

characterize the native state dynamics of leptin we performed All-

Atom structure based simulations (Figure 2) and essential

dynamics [46] of the first four eigenvectors of the wtReduced and

wtOxidized form of leptin. It was shown previously that protein-

protein recognition [47], protein-DNA binding sites [48], enzyme-

substrate binding and enzyme activity [49,50] are all determined,

partially, by conformational flexibility of the protein chain. We

found significant differences in the amplitude and position of

motions of individual amino acids along the sequence. The results

reveal that the disulphide bridge has a more important role then

previously known in leptin. It seems that the added constraint in

the oxidized state changes the dynamics in distal receptor-binding

sites (shown in red in the structure in Figure 2), far removed from

the disulphide bridge. This suggests that the disulphide bridge

provides a mechanism as a point of tension that dissipates stress

across the motif of leptin. Reducing the disulphide bridge reduces

the dynamics around the receptor binding sites in a1 and a2.

The Free Energy Landscape
We define the reaction coordinate(s) RMSD, measuring the

similarity between native and denatured structures, and Q, as the

fraction of native contacts formed at any point, along the free

energy landscape. This approach allows for a qualitative and

quantitative interpretation of folding data [51,52,53,54,55].

However, oxidizing conditions creates an unusual geometric

constraint in both the native and denatured states of leptin, as

described in Figure 1.

Numerical simulations were performed with structured based

model as described (see method section) (Table 1). The top panel in

Figure 3 shows the free energy profile of wtDynamicDisulphide (black),

wtReduced (blue) and wtOxidized (red) respectively. The folding

temperature Tf, based on the free energy profile, was found for

each model. Thus, all simulation were performed at their

individual value of Tf (Table 1). The wtDynamicDisulphide is a toy

model exploring the free energy landscape with a structure based

model, where the disulphide bond is treated as a typical native

contact rather then a covalent bond. This is the model with the

highest transition state (TS) value, found at Q = 0.4 and F(Q)/

kBT = 6.6 (defined as Df+), and with the highest cooperativity.

These features appear where the largest changes are seen from the

denatured state to the native state. The wtDynamicDisulphide model

explores the full cycle/route from a fully unfolded linear

conformation to the compact native state. Representations of

structures on the folding routes of the wtDynamicDisulphide model are

seen in Figure 3, top panel. Four structures are shown at two

different values of Q (Q = 0.3, left side, and Q = 0.4, right side of

Figure 3, top panel). Both reduced and oxidized assemblies are

observed at the same Q vs. RMSD with the wtDynamicDisulphide

model. The highest TS values for both the wtReduced and wtOxidized

model are found at the same Df+ (at Q = 0.4 and F(Q)/kBT = 6.6).

The folded state ensemble resides at the same value of the reaction

coordinates (at about Q = 0.8 and RMSD = 0.05) for the reduced

and oxidized models, respectively. This indicates that the strength

of the disulphide bridge does not influence the position of the

native state. Despite these similarities, a noticeable difference is

seen in the shape of F(Q) around TS. The wtReduced shows a more

narrow TS with no significant traps on the folding route. The

wtOxidized has a slightly broader TS, with a shoulder evident

between N and the TS. A representation of a thermodynamic

trajectory is given in Figure S2, comparing the wtReduced and

wtOxidized models. The oxidized route indicates several unsuccess-

ful unfolding attempts, seen as a spike from the native state to the

unfolded state. Given enough time or external support, this

trapped state can be fully denatured. One might ask, why is the

chain of leptin trapped in an unthreaded denatured state? (A) The

loopa4-a5 and the a2{3{hairpin creates a topological obstacle

which hinders the unthreading of the a2{3{hairpin so that the

denatured chain is trapped inside the loopa4-a5. (B) There is one

extra residue in the cut-off map than in the shadow map (P142, see

methods). This residue is located in the bottom of the structure

packing the threaded second loop tighter/closer to the C-terminus.

(C) The trapped state has native contacts that stabilize the

threaded state. Intramolecular contacts in a4 and a5 stabilize the

loopa4-a5 and decrease the effective size of the loop, thus trapping

The Unique Cysteine Knot Regulates Leptin Function
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the a2{3{hairpin. To investigate the density of states from a

different perspective, the free energy is plotted as a function of Q

and RMSD in the bottom panel of Figure 3. As expected, the RMSD

of the unfolded basin is somewhat broader in the reduced state

where the disulphide bridge is broken, as compared to the oxidized

state with the fixed covalent loopa4-a5. The oxidized route also

shows a broader TS ensemble, probably due to the topological

traps described previously. However the F(Q, RMSD) profiles

reveal no significant differences between the folding routes.

Global Kinetic Analysis
In order to directly compare the kinetic folding, we performed

simulations for our three models at the same temperature. Because

the protein constructs have slightly different stabilities we

compared them at 0.95Tf (wtDynamicDisulphide), 0.96Tf (wtReduced)

and 0.94Tf (wtOxidized), respectively (Figure 4). The number of

successful folding event depends on the constraints introduced by

the disulphide bridge formation. All routes in the unknotted

protein (wtReduced) are successful, while a small number (1%) of the

routes are trapped in the wtDynamicDisulphide model, where the

constraint is variable within the trajectories. The wtOxidized model

has more traps with a 95% success rate. The distributions of

kinetic folding times are best described by a Gamma distribution.

For each fit we found the position of the maximum, which

corresponds to the most probable time, Pt (Table 1). We found that

Pt is in the same range for the wtDynamicDisulphide and wtReduced

models, whereas Pt for wtOxidized is significantly slower (at least two

times slower). To characterise the difference in the time

distributions we compared the shape of the Gamma distribution

by calculating its variance S~
ffiffiffiffiffiffiffi
kh2

p
(Table 1). S is almost two

times bigger, in the wtDynamicDisulphide compared to the wtReduced

model, even though Pt is very similar. The discrepancy in S

suggests a significant number of additional folding routes apart

from the main route. This complexity is a consequence of the

temporary constraints on the backbone introduced by the native

contact between the two cysteines. This native contact imitates the

formation of a disulphide bridge. Looking at the overall

distribution of species over the entire folding reaction one observes

a very long tail in the histogram of the wtDynamicDisulphide and

wtOxidized model. This indicates an additional complexity in the

folding landscapes compared to the wtReduced model. The

wtOxidized model shows an increase in Pt, almost three and two

times bigger then for the wtReduced and the wtDynamicDisulphide

model respectively. This indicates a different main folding route,

which is more complicated and thus slower. The longer folding

times are a result of the more complicated topology in the oxidized

state. However, the shape of the distribution is similar between the

wtOxidized and the wtDynamicDisulphide model. We found that S in the

wtOxidized model is noticeably bigger than in wtDynamicDisulphide

model (Table 1). The difference in S is a consequence of the

constant constraints from the topological traps on the protein

backbone introduced/implied by the disulphide bridge. If a more

complex function is used to fit the data, an even more pronounced

difference in the time distribution would be observed. All together,

this shows that the folding route of the oxidized model are very

complex even though the shape of the free energy F(Q, RMSD) is

similar to the reduced model.

Folding Mechanisms under Reduced and Oxidized
Conditions is Conserved

Given the added topological constraint imposed by the

disulphide bridge it was surprising that the folding landscapes of

the oxidized and reduced proteins were largely similar. The

question then arises, are the folding mechanisms for reduced and

Figure 2. The crystal structure of leptin modeled onto its receptor showing the native state dynamics in the reduced and oxidized
state. The results of the dynamic simulations of leptin (PDB code 1AX8) are mapped on to the structure of the receptor complex (PDB code 3V6O).
Our analysis of the native state dynamics reveal how the formation of the disulphide bridge changes the native state dynamics from increased
motions shown in red to decreased motions shown in blue. The disulphide bridge, indicated in yellow, clearly changes the overall motions in leptin.
The plot shows the differences between oxidized and reduced protein where the positive numbers indicates regions with higher dynamics in the
oxidized state, while negative numbers indicate higher motions in the reduced state.
doi:10.1371/journal.pone.0045654.g002
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oxidized leptin truly conserved? In order to address this question

we focus on the formation of specific secondary structure elements

and helix-helix tertiary interactions Sqa 1{5ð ÞT as a function of the

total number of native contacts formed, Q (Figure 5). Each plot

shows the increased formation of contacts for the three different

models; wtDynamicDisulphide (black), wtReduced (blue) and wtOxidized

(red), at their respective folding temperatures, Tf. Surprisingly, the

folding routes appear conserved between the reduced and oxidized

protein. The folding mechanism is always initiated by the

formation of the loopa4-a5 where more then 50% of the contacts

are formed early (Q = 0.2). This finding indicates that the

formation of the loopa4-a5 is independent of the oxidation state

of disulphide bridge. Immediately following the formation of the

loopa4-a5 is the progressive folding of helix 3. Helix 2 starts to fold

at Q.0.3 and qa1v0:1, where more then half of the contacts in

the loopa4-a5 are formed. The N-terminal helix (a1) remains in a

random conformation until both the loopa4-a5 and a2{3{hairpin
are formed (Q = 0.5 and qa1v0:2). As a3 and a5 are formed in

earlier events, where a1 is on the front side of the molecule, the

last event for folding is to flip a1 to the back of the molecule,

behind the loopa4-a5.

It is important to note that in the absence of the disulfide bridge

the open loopa4-a5, folds into a horseshoe conformation that brings

the cysteines in close proximity. While the threading event

discussed below technically only occurs in the oxidized protein,

the same secondary and tertiary contacts are involved in the

folding process with respect to the nearly closed conformation of

the horseshoe in the reduced protein.

Threading of the a2-3-hairpin across the Closed loopa4-a5

The oxidized state of leptin closes the loopa4-a5 and introduces a

slipknot event/motif in the folding landscape. Here, the

a2{3{hairpin has to cross-over/thread-through the loopa4-a5 to

reach the active native state (Figure 1). The main bottleneck in this

case is due to the topological constraints introduced by the cysteine

knotted conformation. The force to overcome this topological

barrier is initiated from the formation of a2 and the contacts

between a2–a3 and a2–a5 (Figure 5). Interestingly, the driving

force for the threading event is also seen in the reduced state,

where the formation of contacts between a2–a5 is conserved.

Overall, the folding mechanism is conserved for both the reduced

and oxidized protein. There are minor differences seen in the

Figure 3. The free energy plot and representative structure diversity of leptin. Top panel: The free energy landscape for three folding
routes of leptin, wtDynamicDisulphide (black), wtReduced (blue) and wtOxidized (red). It is clear from the folding trajectories that the wtDynamicDisulphide model
can follow both the oxidized and the reduced routes. Therefore, four structures on the folding route are shown, two structures before the TS (Q = 0.3)
and two at TS (Q = 0.4), on the left and right side of the free energy landscape respectively. The structures represented before the TS show that the
a2{3{hairpin is structured and with the a2{3{hairpin in a native conformation while the rest of the structure is denatured. At the TS most of the
protein is folded, only a1 is unfolded. Bottom panel: The three dimensional representation of the distribution of structure diversity, measured by Q
versus RMSD (F(Q, RMSD) where colors indicate normalized energy scale from top panel. The plot shows how occupied the different states are
throughout the free energy landscape, from blue (low occupancy) to deep red (high occupancy). The location of the unfolded and native basins are
positioned ate similar Q and RMSD with similar occupation of states indicating a similar folding route for all three models.
doi:10.1371/journal.pone.0045654.g003
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elements involved in the threading event in Figure 5. For example,

enclosing the loopa4-a5 immobilizes a5 and places a3 in the correct

slipknotted conformation, increasing the formation of a2 in the

wtOxidized state. Also, folding in the oxidized state, with a4 packed

within the covalent loopa4-a5, leads to a pause or stalling event in

its formation. This data suggests that a4 cannot be well packed

before the a2{3{hairpin is threaded through the covalent

loopa4-a5. That is, too many constraints on the covalent

loopa4-a5 may impede the threading of the a2{3{hairpin in the

oxidized state.

Exploration of the Folding Routes with an All-Atom
Model

The Ca-model allows for a comprehensive description of the

shape of free energy landscape. However, in the case of proteins

with unique topologies, as seen in knotted proteins [23,24,28], the

effect of the excluded volume may be significant as the internal

radius of the slipknot is reduced and can impact the threading

event. The effect of the excluded volume can also influence the

unknotted state. These potential effects were explored with an All-

Atom structure based model to explore the folding mechanism of

leptin and the efficiency of threading when side groups are taken

into account (for more details see the Supporting Information and

Figure S3). We address whether the similarity between the three

models seen from a Ca perspective is a result of the structure based

models or whether the folding event in leptin is conserved even

when steric crowding is imposed in the All-Atom model. While the

free energy at the TS suggests a less cooperative folding event with

higher levels of topological frustration in the All-Atom model, the

observed folding mechanism in our models is conserved across all

SBMs. 11

In vitro Experiments
Previously published in vitro experiments report different yields,

expression levels and biological potencies of leptin renatured from

E. coli inclusion bodies [56,57,58,59,60,61,62]. Our combined

expertise in experimental folding [63,64,65,66] and aggregation

experiments [67,68,69] taken together with our results from SBMs

allowed us to design a refolding protocol that not only limited

protein aggregation but also afforded sufficient time for the

Table 1. Parameters explaining the thermodynamic- and kinetic properties of the three models obtained from Ca simulations.

Thermodynamica Kineticsb

Tf (kBT) F(Q)/KBT Pt

ffiffiffiffiffiffiffiffi
kh2

p
Unsuccessful events (%)

wtDynamicDisulphide 143 6.6 12626 47028 1

wtReduced 141 6.2 7151 9691 0

wtOxidized 145 4.8 27346 54958 5

aThermodynamic data is described by folding temperatures, Tf, and the height of the free energy barrier, F(Q)/KBT.

bKinetics data were fitted with the Gamma distribution f (x)~
1

C(k)hk
xk{1e

{
x

h . The most probably time to fold P(t) is given by (k{1)h for k§1 with the tail

distribution given by
ffiffiffiffiffiffiffiffi
kh2

p
. The last column represents the percentage of unsuccessful folding events, which are excluded from the Gamma distributions.

doi:10.1371/journal.pone.0045654.t001

Figure 4. The distribution of the kinetic folding times described by a Gamma function [85,86]. The fit is colored according to;

wtDynamicDisulphide (black), wtReduced (blue) and wtOxidized (Red). The most probable folding time, Pt, (the position of the maximum of the fit) and the
shape of the fit obtained for each model is shown in Table 1. Pt corresponds to the main folding route and is in the same range for the

wtDynamicDisulphide and wtReduced models. However, the tails of the distributions for these models are significantly different. In the case of the wtOxidized

model Pt is three times bigger then for the wtReduced route and the tail distribution is similar to the wtDynamicDisulphide .
doi:10.1371/journal.pone.0045654.g004
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threading event. The resulting refolded protein was characterized

by optical as well as cellular activity assays. The equilibrium

unfolding curves for the reduced (blue curve) and the oxidized (red

curve) proteins are shown in Figure 6A. The data is fitted to a two-

state model as described in [70] and is given in Table 2. The

stabilizing effect of disulfide bridge formation is clearly evident in

the shift of the mid-point (MP), as well as the change in the overall

stability of the proteins in the oxidized and reduced curves.

Surprisingly, the overall stability is very low compared to other

helical-bundles (1.8Reduced versus 3.4Oxidized kcal/mol, respectively)

[15,16,17,18]. The mD-N values are significantly different, i.e. the

reduced state has an mD-N value of 5.2 compared to 1.8 as seen for

the oxidized state (Table 2). Clearly, a major contributor to this

cooperativity change is due to the difference in solvent exposed

surface area in the unfolded state, where the reduced protein

unfolds to a linear protein while the oxidized protein is trapped in

a denatured conformation where the covalent loopa4-a5 remains

intact (Figure 1C).

To ensure that we refolded to the native state, we tested the

activity of our purified protein with a cellular activity assay as

described [71]. The results of these studies are shown in Figure 6B.

The unphosphorylated kinase Erk (extracellular signal-regulated

kinase) is constitutively produced in the absence of leptin

stimulation. Previous studies suggest that the reduced form of

leptin is not fully active [31,42,72]. Our activity assay reveals that

the reduced form (mimicked by the mutations C96S/C146S) of

leptin is capable of stimulating the Janus kinase/Signal transducer

and activator of transcription (JAK/STAT) pathway, however the

controlled dose-dependent assays indicate it is less active than the

oxidized species. These results suggest that the reduced state has

the correct conformation to bind the receptor and activate

signaling cascade. The lower activity seen in the reduced state

could be an effect of the shifted dynamics in the native state and/

or an effect of the decrease in stability of the non cross-linked form

of leptin. This could lead to either (A) a lower binding affinity

(lower kd) or (B) a lower signaling cascade when bound to the

receptor, because binding and signaling could be decoupled

[73,74]. However, when the leptin receptor JAK/STAT signaling

cascade is initiated by stimulation with quality controlled leptin

(purchased from Calbiochem) or our purified oxidized protein we

observe identical phosphorylation levels of pErk. Our simulations

of the native state dynamics reveals that the disulphide bond

functions as a point of tension that influences local motions on

distal receptor-binding sites. Breaking the disulphide bonds

increases the local motions in the bottom of the structure, which

binds to the receptor complex. The dynamics of the top part of the

structure increases when the disulphide bridge is formed,

indicating that the disulphide bridge might function as a tension

Figure 5. Probability of specific secondary structure elements and tertiary contacts on the folding routes. Characterizing the folding
route based on the average contacts within specific secondary or tertiary contacts, SqsegmentT, versus the nativeness of the overall fold, Q. Left panel:
The plots show the distribution of internal secondary contacts for each a-helix versus Q. Right panel: The plots show the distribution of tertiary

contacts between elements versus Q. Where wtDynamicDisulphide, wtOxidized and wtReduced are shown in black, red and blue respectively. Progressive
folding is indicated with a gray dotted line. The first element to fold is the covalent loopa4-a5 , followed by the a2{3{hairpin. Finally, a1 is stabilized
and folded to its correct position between a3 and a5 in the back of the loopa4-a5 . The structure of leptin is represented below the plots colored from
red (early folding) to yellow (late folding).
doi:10.1371/journal.pone.0045654.g005
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point. Moreover, increased dynamics of the protein could enhance

receptor binding/signaling through induced fit mechanisms.

Conclusion and Discussion

We found that leptin possesses a unique cysteine knotted

topology. We investigated the impact and importance of the

knotted topology on the correct folding of leptin as well as its

correlation with receptor binding and activity. Our results show

that the folding mechanism appears to be very similar for the

unknotted (reduced) and knotted (oxidized) forms of leptin

(Figure 7). Therefore, topological constraints imposed by the

disulphide bridge do not determine the overall shape of the free

energy landscape associated with the folding event. However, the

disruption of the disulphide bond plays a central role [2,3,4] in

efficient folding by increasing the folding rate. This suggests a new

interpretation of previously published experimental results [5,6].

Misfolding of leptin is not due to the failure of forming the correct

disulphide bridge, rather it is a complication of mutations altering

the unique folding route associated with a slipknotted topology.

The experimentally observed unsuccessful routes for the reduced

form are probably a consequence of the harsh conditions used in

previous studies [29,30,33]. While the current view is that disease-

associated mutations in leptin aggregate as a result of incorrect

disulphide bridge formation [2,4,5,6], we propose a new

interpretation. Our work indicates that the driving force to thread

the a2{3{hairpin across the loopa4-a5 comes from network of

native contacts between helix 2 and helix 5 (Figures 1, 4). We can

also demonstrate that the threading event occurs both in the

reduced and oxidized state. Based on this data we suggest that

these mutations in leptin structure can play three roles: (A)

Disruption of native interactions which are responsible for

dragging the a2{3{hairpin, (B) Decrease of the effective size of

the covalent loopa4-a5 across which the a2{3{hairpin has to be

threaded, and (C) Mutations can also affect the receptor binding

sites, thus impair or block receptor binding [13,75,76]. The

remaining question then is to explore the threading event and

folding of leptin through a more detailed study of different point

mutation within the slipknotted topology. Our work also suggest

that the disulphide bridge plays a more important regulatory role

then expected, where the novel landscape allows for a subtle, yet

robust mechanism where a singly disulphide bridge is able to

modulate distal regions needed for receptor binding, which has not

been observed previously. This unique mechanism appears to

mediate biological function that has yet to be observed. Only the

combination of theoretical studies and in vitro experiments allowed

us to discover this new folding mechanism, which was corrobo-

rated with assays and confirms this new important finding. Such

an understanding opens many new possibilities for exploring leptin

function and further development of therapeutics. Inhibition of

leptin signaling is beneficial in models of fibrosis and inflammation

while leptin activation strategies are beneficial in the treatment of

cachexia and anorexia [74].

Methods

Structure Based Models (SBM)
Our models are based on the hypothesis that pairs of interacting

residues (i,j) in the native state of the protein provide, on average,

more stability throughout the folding process than non-native

contacts [54,77]. This implies that the protein is minimally

frustrated [52,53,55] and provides the basic framework to

construct SBM [52,53]. In this work we investigate the thermo-

dynamics and kinetics of folding using both Ca [51,78] and All-

Atom [51,53] SBMs.

The Ca Model
In the Ca model for leptin each amino acid is represented as a

single bead at the Ca position. The interacting pairs, amino acids i

and j in the native state, are identified based on a shadow map

Figure 6. Experimental demonstration of the relative cooperativity of unfolding and signalling activity of WT and mutant leptin. (A)
The equilibrium unfolding curves show the reduced (blue) and oxidized (red) states of leptin. The plots show that the oxidized protein is more stable
then the reduced protein. (B) The activity assay was performed on human MCF-7 cell lines. We used a blank (Blk) to test the normal expression in
these cell lines (Erk), a positive control (mouse leptin, purchased from Calbiochem) our purified oxidized leptin wt and our mutated leptin C96S/
C146S, from left to right respectively. Stimulation results in the production of phosphorylated forms of Erk as indicated by the arrow (pErk).
doi:10.1371/journal.pone.0045654.g006

Table 2. Experimental data from equilibrium curves of wt
and mutated leptin.

mD-N
a MPa DGD-N

a (kcal/mol)

wtReduced 5.2 0.3 1.8

wtOxidized 1.8 1.9 3.4

aAll unfolding equilibrium data is fitted to a standard two-state equation (see
method section).
doi:10.1371/journal.pone.0045654.t002
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(Figure S4) [79,80]. The basic form of the potential is,
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where the last two terms correspond respectively to attractive and

repulsive interactions. r N
ij denotes the native distance between

atoms i and j along the sequence. The topology of the chain is

described by the native angle hN
ijk between the bonds connecting

atom pairs ij and jk, and the native dihedrals QN
ijkl describe the

angle between the planes defined by atoms ijk and jkl. The strength

of the interactions are described by the reduced energy units

kb = 26104 e/nm2, ka = 40 e/rad2, k1
d = e and k2

d = 0.5e. The

details of the model are characterised elsewhere [51,52,53,78].

The All-Atom Model
In the All-Atom (AA) model all heavy atoms are taken into

account [51,53]. Here, we found that a 5 Å cut-off map represents

the features of leptin is optimal for characterization of leptin with

the current model (Supporting Information and Figure S4). The

potential for the All-Atom model is an extension of the Ca model.

However, additionally it takes into account all heavy atoms. Thus,

two additional terms are added to maintain the conformation of

the backbone and amino acid side chains. The details of the All-

Atom model are presented elsewhere [51,53].

Our models [51,53] are parameterized based on empirical

values given from the protein structure (PDB code 1AX8 [14]).

The available crystal structure does not describe the coordinates of

residues 25–38 in loop 1 and were reconstructed with the server

[81]. The results of the current studies were independent of the

loop conformation.

Simulations and Data analysis
The web server (http://smog.ucsd.edu) [80] was used to create

input files to perform simulations with the GROMACS 4.0.5

software package [82] (Figure S4). All results are presented with

Figure 7. Cartoon representation of the folding landscape of leptin. All possible geometries are observed theoretically, however, the route
indicated by the grey shadow is not accessible through our experiments. The conversions throughout the folding landscape are as follows: The top of
the figure shows the denatured states; with high entropical freedom and small numbers of Q. As the protein folds several similar states reduced/
oxidized can be seen at the same level of Q, indicating that the folding routes are very similar between the two forms of leptin. Both the reduced and
oxidized route leads to a correctly folded native state.
doi:10.1371/journal.pone.0045654.g007
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reduced units and the integration steps, t = 0.0005 was used

throughout. Several constant temperature runs, including transi-

tions from fully unfolded to folded native states, were performed

and combined with the Weighted Histogram Analysis Method

(WHAM) [83,84] to create free energy profiles (F(Q)). The

apparent folding temperatures are estimated from each maximum

peak in each specific heat curve. For a formed native contact the

energy gain is measured by epsilon (e), and thus the temperatures

and energies reported in this paper are measured in units of e. In

the case of the reduced model we used an e of ei,j~
e

100
, which

respectively will rescale the shape of the potential and weakening

the contact. To evaluate the nativeness of a structure we used Q,

the number/fraction of native contacts within a structure [51]. A

contact between the native pair ij is considered formed if it satisfies

rij,crij
0, where c<1.2–1.4 and rij

0 describe native distance

between ij. Additionally, we also characterize the complexity

introduced from the cysteine knotted structure with the Root-

Mean-Square Distance (RMSD) of the configuration from the

native state.

The wtDynamicDisulphide, wtReduced and wtOxidized States of
Leptin

Leptin has a continuum of states from the oxidized native to the

reduced unfolded forms. For this reason, we constructed three

SBMs to model different physical/chemical conditions for leptin

described below (Figure 8).

The DynamicDisulphide model, wtDynamicDisulphide (Figure 8,
grey arrow)

This model corresponds to a condition where the contacts

between the two cysteines spontaneously is made and broken

along the folding/unfolding route. In this case, the folding

mechanism cannot be observed experimentally. However it

represents an ideal toy model for theoretical investigation. The

spontaneous formation of contact between the cysteines is modeled

by making the disulfide bond a Lenard Jones type of contact

equivalent to the other contacts (eC96–C146 = e = constant).

The Reduced model, wtReduced (Figure 8, top panel)
This model corresponds to the conditions where the disulphide

bridge cannot form, mimicking the strongly reducing conditions

applied experimentally. The strength of the disulphide bond was

significantly decreased in this SBM eC96-C146~
e

100
. The strength

of native contacts in the vicinity of disulphide bridge were also

decreased to insure that there are no contributions from the

nearest neighbour. Contacts between residue i and j: F92–D141,

F92–L142, F92–S143, F92–P144, S95–P144 and C96–P144 are

represented with ei,j~
e

100
.

Furthermore, to test this reduced SBM we also used a construct

where only the strength of the disulphide bond was reduced,

eC96-C146~
e

100
. The result agrees with the data from the reduced

model and additionally shows slightly broader diversity in folding

pathway as expected (data not shown).

The Oxidized model, wtOxidized (Figure 8, bottom panel)
This model corresponds to a condition where the disulphide

bridge is always intact, and mimics the oxidized conditions applied

experimentally. In this SBM the strength of disulphide bridge was

modelled as strong as a peptide bond, as eC96{C146~100|e.

Native state dynamics
To characterize the native state motions we performed All-Atom

simulations of both the oxidized and reduced form of leptin. We

deleted the first 500 frames of each trajectory to ensure that the

system was equilibrated. Based on the obtained trajectories we

calculate and diagonalize the (mass-weighted) covariance matrix for

the backbone of the protein using GROMACS standardized tools.

All structures are fitted to the native state of leptin available in PDB

(1AX8 [14]). We obtained a full set of eigenvectors from which we

analyze the first four. These vectors describe the slowest motions of

the protein. Next we calculate the principal components by making

the projections of the trajectory on the eigenvectors. To characterize

the amplitude of the motion of each atom in respect to the native

structure we calculated the root mean square deviation based on the

first, second, third and fourth eigenvectors.

Kinetics Analyses
The refolding times from 500–800 trajectories where analyzed

for all three models. A Gamma distribution function describes the

distributions of folding times in the best way [85,86]. The

functions were fitted with Mathematica 8.5, to optimize the

observed histogram distribution.

Robustness of the SBM
We tested several SBMs to explore the robustness of the

observed mechanisms. Different attractive and repulsive potentials

(Gaussian potential [87], Lennard Jones potential [88], 10/12

potential [88]) and different contacts maps were investigated (cut-

off map with different cut-off values and shadow map [79,80]

(Figure S4). We found that the folding and unfolding mechanisms

do not depend on the details of the SBM employed.

Protein Expression and Purification
The leptin gene (purchased from GenScript USA Inc, Piscat-

away) was cloned into a pET-3A vector with restriction sites NdeI

and BamHI and transformed into competent E. coli strain BL21

(DE3) expression cells. One point mutation was introduced at

position 100 (W100E), to prevent precipitation [1]. Mutations

were performed with the Quick-Change site-directed mutagenesis

kit (Stratagene), and oligonucleotides were purchased from

Integrated DNA technology. The mutations and integrity of the

amino acid sequence were confirmed by sequencing of the entire

gene (ETON biosciences). The protein was over expressed and

purified from inclusion bodies [56]. Unfolded protein was loaded

onto a gel filtration (Sephacryl S-200) column, refolded and loaded

onto an S-200 column again to prevent formation of oligomeric

species. Oxidized and reduced glutathione was used as shuffling

reagent to insure correct formation of the disulphide bridge. The

purity of the protein was confirmed by SDS-page and the identity

by mass spectrometry.

Activity Assay
The human breast cancer MCF-7 cell line was used to

investigate the biologic activity of our purified wild-type (wt) and

mutated leptin. The cell lines were cultured in DMEM

(Dulbecco’s modified Eagle’s medium) with 10% fetal bovine

serum. The MCF-7 cells were starved overnight without serum

and subsequently stimulated for 20 minutes by mouse leptin

(Calbiochem), wt human leptin or mutated human leptin (C96S/

C146S), respectively. Immunoblotting of cell lysates were used to

perform activity assays with the antibodies pErk (phosphorylated

extracellular signal-regulated kinase, cell signaling), and Erk

(extracellular signal-regulated kinase, cell signaling) [71].
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Mouse leptin (positive control, purchased from Calbiochem

EMD), purified human wt and mutated leptin were used at

different concentrations to treat MCF-7 cells containing the leptin

receptor. As a control, the rat neuronal cell line PC12LeRb was also

infected with leptin indicating the same results as seen with the

human cells (result not shown) [89].

Native State Stability analyses
Equilibrium unfolding titrations were measured using average

fluorescence wavelength [90]. The single tryptophan residue 138 is

a useful probe of the global unfolding reaction. Fluorescence

spectra were collected with an excitation of 280 nm and emission

collected from 300–450 nm, both for reduced and oxidized leptin.

Protein samples were prepared at a concentration of 12 mM in a

buffer solution (BisTris 10 mM at pH 6.3) containing varying

concentrations of denaturant ranging from 0 to 4 M GdmCl. The

fluorescence data were collected at an emission wavelength

between 300–450. The protein was incubated for 6 hours with

20 mM of TCEP (tris(2-carboxyethyl)phosphine) to reduce the

disulphide bridge, a time sufficient to break the disulphide

according our iodoacetic acid assay results (data not shown)

[91,92,93]. Leptin shows a hyperfluorescence behavior/signal.

Therefore, the linear regime of the equilibrium curves was fitted to

the standard two-state equation as described for [70]

S~
SNzSD|KD-N

1zKD-N

where

KD-N~exp
{DG

H2O

D-N z mD-N| GdmCl½ �ð Þ
RT

 !

where mD-N is the linear dependence of DGD-N on denaturant

concentration and DG
H2O

D-N is the free energy of unfolding at 0 M

GdmCl. S is the signal of the native and denatured states.

Supporting Information

Figure S1 Sequence alignment and structural mapping
of leptin homologs. (A)The amino acid alignment of human

leptin and six of its homologs [14,41,42]. The sequence

conservation between the different species 38–86% similar to

human leptin. Even though they are different, all of them have two

cysteines where one of them is the N-terminal residue and the

other is positioned close to helix 3. (B) The wild type leptin

structure and the backbone of predicted tertiary structures of

mouse, rat, frog and puffer fish leptin (SWISS-MODEL

automated protein homology-modelling server where the struc-

tures are based on human leptin [94,95,96]).

(TIFF)

Figure S2 Evidence for the denatured threaded state
prior to full unfolding. The trajectory shows the energy levels

of the folded- (around 0) and unfolded basins (around 250) for

wtReduced (black ) and wtOxidized (red) respectively. The plot also

indicate that there are several unsuccessful unfolding attempts on

the wtOxidized route from N to U. The unfolded chain is trapped

inside loopa4-a5 (helix 2 and 3 shown in white in the structure B),

leading to a denatured threaded state. This represents the typical

subpopulation during the unfolding of leptin. The structures show

the different states, i.e. the native state (A), trapped threaded state

(B) and the unfolded unthreaded state (C), from the folding routes

in an All-Atom representation.

(TIFF)

Figure S3 The All-Atom simulations of leptin. The free

energy landscape F(Q, RMSD) together with the free energy plot

of the All-Atom simulation (wtDynamicDisulphide). The plots show

that there are no significant shifts of the denatured and native

basins. As appose to the broad TS seen in the oxidized state in

Figure 3, we see the potential of an intermediate formation in the

All-Atom model.

(TIFF)

Figure S4 Contact maps for leptin showing the proba-
bility of contact formation at the TS. The contact map is

shown at the TS (Q = 0.4). Leptin displays a diffuse TS where all

helices, except a1, are involved. They also indicate/show that the

TS is very similar between the different Ca- versus the SBMs.

(TIFF)

Table S1 Kinetics data.

(DOC)

Table S2 Thermodynamics.

(DOC)
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Figure 8. Cartoon of the different folded/unfolded states. The
cartoon represents reduced and oxidized leptin, seen in the top- and
bottom panel respectively. The left- and right panel shows the denatured
and native state respectively. The grey colour indicates the intercon-
version between two constructs as a result of the numerical simulation
where the disulphide bond is continuously made and broken during
simulation (wtDynamicDisulphide). Spontaneous reduction of the protein
(grey pathway) is not observed experimentally.
doi:10.1371/journal.pone.0045654.g008
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