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We consider the evolution of large but finite populations on arbitrary fitness landscapes. We describe the
evolutionary process by a Markov-Moran process. We show that to O(1/N ), the time-averaged fitness is lower for
the finite population than it is for the infinite population. We also show that fluctuations in the number of individuals
for a given genotype can be proportional to a power of the inverse of the mutation rate. Finally, we show that the
probability for the system to take a given path through the fitness landscape can be nonmonotonic in system size.
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I. INTRODUCTION

Natural populations are characterized by finite sizes. For
this reason, it is impossible for biology to sample the entire
space of all possible genotypes. Even the number of possible
sequences with high fitness is typically much larger than the
population size in naturally occurring populations. Effects due
to finite population size are particularly pronounced in asexual
populations. For example, the reduction of fitness in a finite
population without back mutation is termed Muller’s ratchet
[1], and the decreased speed of evolution in a finite population
without recombination is termed the Hill-Robertson effect [2].

The relative influence of different evolutionary forces
changes between small and large populations. While stochastic
effects such as genetic drift act more strongly on small
populations, natural selection acts more effectively on large
populations. Many results in classical population genetics have
focused on the limiting cases of small or infinite populations.
In sufficiently small populations, beneficial mutations occur
but rarely survive long enough to become established in
the population. Those mutations that survive, however, can
spread through a small population, reaching fixation before
another beneficial mutation arises. This regime is referred
to as successional-mutations regime [3,4] and is fairly well-
understood. This theory has been useful, for example, to
understand evolution of transcription factor binding sites
[5]. As the population size increases, beneficial mutations
arise more frequently. Fixation of individual mutations does
not occur before the arrival of another beneficial mutation.
In asexual populations, this leads to competition between
descendants of each of the mutations—an effect referred to
as clonal interference [6]. As the population becomes even
larger, ultimately stochastic effects become negligible, and the
time-evolution of the evolving population can be described by
a set of ordinary differential equations. This regime has been
studied extensively in quasispecies theory, albeit often only
for simple fitness functions.

Here we investigate the regime between clonal interference
and quasispecies theory. We seek to predict the evolutionary
dynamics followed by a large yet finite population and how this
dynamics differs from that of an infinite population. The study
of finite-population effects requires a stochastic description
based on a master equation [7]. We make no assumption
about the fitness landscape upon which the population evolves.

We show that, averaged over time, the average fitness of a
large finite population is lower than that of a population of
infinite size. In other words, for large asexual populations
evolving on a fixed fitness landscape, an increase in population
size is accompanied by an increase in the average fitness.
Furthermore, small mutation rates lead to high fluctuations and
correlations. In particular, for small mutation rates, fluctuations
and correlations in the number of individuals for a given
genotype are inversely proportional to a power of the mutation
rate. These large correlations enhance finite population effects
and make the convergence to infinite-population behavior
occur only for extremely large populations.

This article is organized as follows. We describe the
stochastic process underlying our studies in Sec. II. We explain
how this dynamic process can be written as a field theory. We
derive analytic results for the infinite population evolution
from this field theory. We describe finite population effects
in Sec. III. We introduce the fitness landscape that we use
to illustrate our results in Sec. IV. In Sec. V we investigate
fluctuations in this random process and verify our analytic
results using stochastic simulations. We conclude in Sec. VI.

II. STOCHASTIC PROCESS MAPPED TO
A FIELD THEORY

Throughout this article, we use the Moran process to
model evolution of a population [8]. The individuals in the
population are identified by their genotype, a sequence of
length l. In this continuous-time process a constant population
size, N , is maintained by simultaneous replication and death.
The individual to be replicated is chosen randomly from the
population with probability proportional to its microscopic
fitness, while the individual to be killed is chosen randomly
from the population with uniform probability. We further
assume that replication and mutation are independent. Thus,
there are two classes of events: mutation and replication.
Mutation from genotype i to genotype j occurs at a rate
of μ�ijNi , where μ is the mutation rate per locus, Ni

is the number of individuals with genotype i, and �ij is
equal to one if an individual can mutate from sequence i

to sequence j with a single mutation; �ij is equal to zero
otherwise. This description allows for the incorporation of
back-mutations which are often ignored in the literature. Note

022704-11539-3755/2013/87(2)/022704(10) ©2013 American Physical Society

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DSpace at Rice University

https://core.ac.uk/display/10180443?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1103/PhysRevE.87.022704


DIRK M. LORENZ, JEONG-MAN PARK, AND MICHAEL W. DEEM PHYSICAL REVIEW E 87, 022704 (2013)

that the analytical results in this paper do not depend on this
binary form of the matrix �. Its elements can be arbitrary
nonnegative numbers as would be appropriate if back-mutation
rates differed from forward mutation rates. Replication of
genotype i and simultaneous death of genotype j occurs at
a rate of 1

N
riNiNj , where ri is the replication rate of sequence

i. The stochastic master equation for this process is

∂

∂t
P (N; t)

= μ
∑
i,j

�ij [(Ni + 1)P (N + ei − ej ; t) − NiP (N; t)]

+ 1

N

∑
i

ri

∑
j �=i

[(Ni − 1)(Nj + 1)P (N − ei + ej ; t)

−NiNjP (N; t)]. (1)

Here N is a vector describing the state of the population by the
number of individuals of each genoptype: (N1,N2, . . .), and ei

is a unit vector associated with genotype i. Note
∑

i Ni = N .
We obtain analytic expressions for the average occupation

numbers and the fluctuations by mapping the stochastic
process described in the previous section onto a field theory
following Ref. [9]. To do this we introduce the state vector

|ψ(t)〉 =
∑

N

P (N; t)|N〉, (2)

whose time evolution is governed by

∂

∂t
|ψ(t)〉 =

∑
N

[
μ
∑
i,j

�ij [(Ni + 1)

×P (N + ei − ej ; t) − NiP (N; t)]

+ 1

N

∑
i

ri

∑
j �=i

[(Ni − 1)(Nj + 1)P (N − ei

+ ej ; t) − NiNjP (N; t)]

]
|N〉. (3)

By defining annihilation and creation operators

âi |N〉 = Ni |N − ei〉,
â
†
i |N〉 = |N + ei〉 âi â

†
j − â

†
j âi = δij , (4)

we can write the governing equation for the state vector as

∂

∂t
|ψ(t)〉 = −Ĥ |ψ(t) > , (5)

where

−Ĥ = μ
∑
i,j

�ij (â†
j − â

†
i )âi + 1

N

∑
i,j

ri â
†
i (â†

i − â
†
j )âi âj .

(6)

This differential equation has the formal solution

|ψ(t)〉 = e−Ĥ t |ψ(0)〉, (7)

where |ψ(0)〉 = |N0〉 is the initial distribution of individuals
in the population. At time T , the average of an observ-
able represented by the (normal-ordered) operator F ({â†

i ,âi})
can be obtained [10] by multiplying with the “sum bra”

〈·| = 〈0|(∏i e
âi )

〈F 〉T = 〈·|F ({â†
i ,âi})|ψ(t)〉 = 〈·|F ({â†

i ,âi})e−ĤT |N0〉.
(8)

We introduce a Trotter factorization for the evolution operator
e−ĤT , using a time interval ε → 0, in the basis of coherent
states defined by âi |z〉 = zi |z〉 and obtain a path integral
representation

〈·|F ({â†
i ,âi})e−ĤT |N0〉

= 〈·|F ({â†
i ,âi})e−εĤ · e−εĤ · · · · · e−εĤ |N0〉

=
∫

[Dz∗Dz]F ({z(T/ε)})e−S(z,z∗). (9)

Here, the action in the exponent is, after the change of variables
z∗
i ≡ 1 + z̄i ,

S(z,z̄) =
∑

i

{
T/ε∑
k=0

z̄i(k)zi(k) −
T/ε∑
k=1

z̄i(k)zi(k − 1)

− Ni(0) ln[1 + z̄i(0)]

}

−με

T/ε∑
k=1

∑
i,j

[z̄j (k) − z̄i(k)]zi(k − 1)�ij

− ε

N

T/ε∑
k=1

∑
i,j

ri[1 + z̄i(k)]

× [z̄i(k) − z̄j (k)]zi(k − 1)zj (k − 1). (10)

The population dynamics in the limit as the population
size, N , becomes infinite emerges as a saddle point in the
action [9]. Setting δS/δzi(t)|c = 0 leads to z̄c

i (t) = 0. From
setting δS/δz̄i(t)|c = 0 we obtain zc

i (t) = Npi(t) where pi(t)
obeys the differential equation

dpi

dt
= μ

∑
j

(�jipj − �ijpi) + ripi − 〈r〉pi. (11)

Here 〈r〉 =∑j rjpj is the average fitness of the infinite
population. This differential equation has the closed-form
solution [11]

pi(t) =
∑

j (eY t )ijpj (0)∑
a,j (eY t )ajpj (0)

, (12)

where the matrix Y is defined by Yij = μ�ji − μδij

∑
k �ik +

δij ri .

III. FINITE POPULATION SHIFT TO PROBABILITY
DISTRIBUTION

We proceed to quantify analytically how finite population
effects alter the infinite population dynamics. To do so we
expand the action about the saddle point and separate it into
a Gaussian and a non-Gaussian part. Introducing zi(k) =
zci(k) + δzi(k) and z̄i(k) = δz̄i(k) in Eq. (10), we can write
S = S0 + �S, where the reference action S0 can be written as

S0 = 1
2 xT · �−1

0 · x, (13)
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where

xT = ({δ z̄(0),δz(0)},{δ z̄(1),δz(1)}, . . . ,{δ z̄(T/ε),δz(T/ε)}).
(14)

Here,

�−1
0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
�−1

0

)
00 −(�−1

0

)
01 0 0 · · ·

−(�−1
0

)
10

(
�−1

0

)
11 −(�−1

0

)
12 0 · · ·

0 −(�−1
0

)
21

(
�−1

0

)
22 −(�−1

0

)
23

. . .

0 0 −(�−1
0

)
32

(
�−1

0

)
33

. . .
...

...
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (15)

with

(
�−1

0

)
00 =

(
δijNi(0) δij

δij 0

)
,

(
�−1

0

)
kk

=
(−ε(B)ij δij

δij 0

)
,

(
�−1

0

)
k,k−1 =

(
0 δij + ε(A)ij
0 0

)
,

(
�−1

0

)
k−1,k

=
(

0 0

δij + ε(A)Tij 0

)
. (16)

The matrices A and B are

(A)ij = μ�ji − μδij

(∑
m

�im

)
+ 1

N
rizci(k − 1) + δij ri

− 1

N
δij

[∑
m

rmzcm(k − 1)

]
− 1

N
rjzci(k − 1), (17)

and

(B)ij = 2δij rizci(k − 1) − 1

N
(ri + rj )zci(k − 1)zcj (k − 1).

(18)

The non-Gaussian part of the action is given by

�S = −
∑

i

Ni(0)

{
ln [1 + δz̄i(0)] − δz̄i(0) + 1

2
[δz̄i(0)]2

}

− ε

N

T/ε∑
k=1

∑
i,j

{ri[δz̄i(k) − δz̄j (k)]δzi(k − 1)δzj (k − 1)

+ riδz̄i(k)[δz̄i(k) − δz̄j (k)]zci(k − 1)δzj (k − 1)

+ riδz̄i(k)[δz̄i(k) − δz̄j (k)]δzi(k − 1)zcj (k − 1)

+ riδz̄i(k)[δz̄i(k) − δz̄j (k)]δzi(k − 1)δzj (k − 1)}.
(19)

This formulation allows us to calculate averages using
the Gaussian action and thermodynamic perturbation theory,
which is equivalent to a cumulant expansion. The average

occupation numbers are given by

〈Ni〉T = 〈·|â†
i âie

−ĤT |N0〉 = 〈·|âie
−ĤT |N0〉

=
∫

[Dz∗Dz]zi(T/ε)e−S(z, z̄), (20)

=
∫

[Dz∗Dz]zi(T/ε)e−�Se−S0

= 〈zi(T/ε)e−�S〉0, (21)

= 〈zi(T/ε)〉0 − 〈zi(T/ε)�S〉0

+ 1

2
〈zi(T/ε)(�S)2〉0 + · · · , (22)

= Npi(T ) − 〈δzi(T/ε)�S〉0

+ 1

2
〈δzi(T/ε)(�S)2〉0 + · · · , (23)

where the last step follows from 〈(�S)n〉0 = 0 ∀n ∈ Z,n �
1. This procedure leads to an asymptotic expansion for the
occupation numbers in powers of 1/N . To first order, we obtain

1

N
〈Na〉(T ) ∼ pa(T ) + 1

N2

∫ T

0
dt

×
∑
i,j

�0
zz̄
ai(T ,t)�0

zz
ij (t,t)(ri − rj ). (24)

This expansion about infinite size is accurate when the
correction term on the right-hand side of Eq. (24) is much
smaller than pa(T ). Equation (36) provides an estimate of
the magnitude of the correction for a common landscape
with k intermediate steps. The second order term is given
by Eq. (A1) in the appendix. We derive expressions for the
matrices �0

zz̄
ai(T ,t) and �0

zz
ij (t,t) by inverting �−1

0 in Eq. (15).
In continuous time for T > t , they obey

∂�0
zz̄(T ,t)

∂T
= A(T )�0

zz̄(T ,t), (25)

with

�0
zz̄(t,t) = I (26)
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and

d�0
zz(t,t)

dt
= B(t) + A(t)�0

zz(t,t) + �0
zz(t,t)AT (t),

(27)

with

�0
zz
ij (0,0) = −δijNi(0). (28)

Using the expression for the first-order shift to the occupa-
tion numbers due to finite population effects, we calculate the
finite population shift in the average fitness of the population.
The average fitness correction is

〈δr(T )〉 = 1

N2

∫ T

0
dt
∑
i,j,a

ra�0
zz̄
ai(T ,t)�0

zz
ij (t,t)(ri − rj )

(29)

= − 1

N2

∫ T

0
dt
∑
i,j,a

ra�0
zz̄
ai(T ,t)[�0

zz
ij (t,t) + Nδijpi(t)]rj ,

(30)

This result shows that the correction to the mean fitness is
O(1/N ) the mean fitness in the limit of infinite population.
This result can be rewritten in a more revealing form. Let r̄(t)
be a random variable defined as

r̄(t) ≡ 1

N

∑
i

ri [Ni(t) − 〈Ni(t)〉] (31)

in the limit of large population size. The finite population
correction to the average fitness can then be written as

〈δr(T )〉 = −
∫ T

0
〈r̄(T ) r̄(t)〉 dt (32)

and its time integral as∫ T

0
〈δr(t)〉 dt = −

∫ T

0
dt

∫ t

0
dt ′ 〈r̄(t)r̄(t ′)〉

= −1

2

〈[∫ T

0
r̄(t) dt

]2
〉

. (33)

This expression for the average fitness correction, which
resembles a fluctuation dissipation theorem, implies that the
time-average of the finite-population shift is always negative.
In other words, the average fitness of a large finite population is
smaller than that of a population of infinite size. Note that this
result is perturbative, valid for large population size N , and it
does not require the average fitness to be a monotonic function
of N for small N . On complex fitness landscapes, it is possible
for small asexual populations to achieve a higher average
fitness than larger ones [12]. Nonetheless, for sufficiently large
population sizes, the time-integrated average fitness increases
monotonously with population size.

IV. THE LANDSCAPE

The analytical expressions developed in this paper are
applicable to arbitrary fitness landscapes and mutational
pathways. However, we now describe in some detail the
implications for fitness landscapes [13] defined by a certain
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FIG. 1. Left-hand side: the state-space for a fitness landscape
with three forward-mutations and no back-mutations. Each node, i,
is a particular genotype. The replication rate of each genotype is
ri . Right-hand side (discussed in Sec. VI): The state-space can be
expanded to include mutational histories. Each two-mutation state is
split into 2! = 2 states, while the three-mutation state is split into
3! = 6 states. The node is now identified by a vector that conveys the
mutational history of a particular path through the landscape.

number of fitness loci l with two alleles each. Genotypes that
differ from each other by exactly one point mutation in one of
the loci are connected in the mutation matrix. Each position in
sequence space is thus connected by a mutation event to l other
genotypes. Figure 1 shows the geometry of the landscape for
the case of three loci. Typically in this landscape, the fitness
of each state increases upon moving to the right in the figure.

V. FLUCTUATIONS AROUND THE MEAN

The matrices �0
zz(t,t) and �0

zz̄(T ,t) can be understood
intuitively. In the limit of large N , the off-diagonal elements
of �0

zz(t,t) describe the covariances between the occupation
numbers at time t while the diagonal elements are related to
the variances of the occupation numbers at time t by

1

N2
[δNa(t)]2 ∼ 1

N

[
pa(t) + 1

N
�0

zz
aa(t,t)

]
. (34)

At different times, �0
zz(T ,t) gives the cross-covariances

between the occupation numbers at times T and t . The matrix
�0

zz̄
ai(T ,t) relates the correlations at different times to the

same-time correlations via

�0
zz(T ,t) = �0

zz̄(T ,t)�0
zz(t,t). (35)

We observe numerically that for small mutation rates, the
fluctuations are proportional to a negative power of the
mutation rate. Specifically,

1

N2
[δNa(t)]2 ∼ 1

N

(
r

μ

)k

, (36)

where k is the number of mutational steps as shown in Fig. 2.
This dependence can also be shown analytically for sufficiently
simple landscapes. See section A in the appendix for one
example. Thus, the expansion, which naively appears to be
in 1/N , is actually in 1/(Nμk). Thus, the expansion breaks
down when μ〈1/N1/k . The expansion is valid for large N and
μ � 1/N1/k .

We verify our analytical results by performing stochastic
simulations using the Lebowitz-Gillespie algorithm [14,15].
Rewriting Eq. (24) for the first order shifts to the occupation
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FIG. 2. The maximal change of the variance with time (+), i.e., maxt,i d�0
zz
ii (t,t)/dt , where �0

zz is obtained from Eqs. (27) and (28), depends
on the mutation rate as an inverse power law. Shown are calculations for a nonepistatic version of the landscape as described in Sec. IV with (a)
two possible mutations—r0 = 0, �r1 ≈ 0.049, �r2 ≈ 0.010; (b) three possible mutations—r0 = 0, �r1 ≈ 0.049, �r2 ≈ 0.010, �r3 ≈ 0.002;
and (c) four possible mutations—r0 = 0, �r1 ≈ 0.049, �r2 ≈ 0.020, �r3 ≈ 0.006, �r4 ≈ 0.002. In this case, the fitness of each state is simply
the sum of contributions from each mutation. The solid lines indicate power law fits using the values for μ � 10−5. Their exponents are (a)
−1.999, (b) −2.989, and (c) −3.939. The exponent is observed to be equal to the number of mutational steps in the landscape.

numbers,

〈Na〉(T ) − Npa(T )

∼ 1

N

∫ T

0
dt
∑
i,j

�0
zz̄
ai(T ,t)�0

zz
ij (t,t)(ri − rj ), (37)

we observe that the finite population correction converges to
a constant value for large N . The average replication rate in
the population is linear in the occupation numbers. It is equal
to 1

N

∑
i riNi(t). Therefore, the average replication rate also

converges to the quasispecies result in the limit of a large
population. That is, the average replication rate is equal to
that of the infinite population plus a correction that is of order
1/N smaller. Figure 3 shows this convergence for one set of
parameters. As a further check on our analytic results, we fit
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Σ a r
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N
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>
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 <
r>

0

(b)

FIG. 3. (a) Finite-population correction to the average occupation
numbers (left-hand side of Eq. (37) as a function of population size,
N , on a three-mutation landscape as described in the legend of Fig. 1,
including back-mutations. Shown are data for a mutation rate of μ =
10−5 and replication rates of r0 = 0, r1 ≈ 0.049, r2 ≈ 0.010, r3 ≈
0.002, r4 ≈ 0.059, r5 ≈ 0.051, r6 ≈ 0.012, and r7 ≈ 0.061. The time
is chosen as T = 157.5, which approximately maximizes 〈N0〉(T ) −
Np0(T ). As N increases, the corrections obtained from stochastic
simulations—N0(×), N1(©), N2(+), N3(∗), N4(�), N5(♦), N6(�),
N7(�)—converge to the values predicted by the theory (solid lines).
The dashed curves show the second-order expansion, given by Eqs.
(37) and (A1). The error bars are one standard error. (b) Finite-size
correction to the mean population fitness. The average replication rate
in the population is linear in the occupation numbers, being equal to
1
N

∑
i riNi(t), and so it, too, converges to the quasispecies result in

the limit of a large population.

a cubic polynomial in 1/N to the simulation data displayed
in Fig. 3. For the particular fitness parameters chosen here,
the coefficients from this fit are 320.4 ± 2.5 for the constant
term and (−5.3 ± 0.8) × 105 for the linear term, while our
theory predicts 319.0 and −5.2 × 105, respectively. Here, the
coefficient of the linear term is obtained from Eq. (A1) in
Appendix A. Similarly, we observe that the variances obtained
from stochastic simulations agree with the analytic expression
given in Eq. (34), as shown in Fig. 4.

VI. DISCUSSION AND CONCLUSION

Although the theory described in this paper was developed
to study the time-evolution of the occupation numbers in
sequence space, we can immediately apply these results to
investigate which mutational paths individuals take. This
allows us to predict the large N behavior of the probability
that a population will follow a certain mutational trajectory.
To do this we simply expand the state space describing the
identity of each individual to include not only the possible
sequences but also the mutational histories. Figure 1 illustrates
this expansion for the case of three mutations. Figure 5
compares the probability of following a given path as obtained
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FIG. 4. Variances divided by population size, N as a function of
N . The values obtained from stochastic simulations—N0(×), N1(©),
N2(+), N3(∗), N4(�), N5(♦), N6(�), N7(�)—agree with the values
predicted by Eq. (34) (solid lines). The time and other parameters are
the same as described in the legend of Fig. 3. The error bars are one
standard error.
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FIG. 5. Probability that a population will follow a certain
mutational trajectory as a function of population size. Shown
are data for the landscape described in the legend of Fig. 1,
excluding back-mutations, with a mutation rate of μ = 10−3 and
epistatic replication rates of r0 = 0, r1 ≈ 0.049, r2 ≈ 0.010, r3 ≈
0.002, r4 ≈ 0.012, r5 ≈ 0.051, r6 ≈ 0.059, and r7 ≈ 0.061. Equation
(37) (solid lines) predicts the asymptotic behavior of the simulation
values—N123(×), N213(©), N132(�), N312(+), N231(∗), N321(♦)—for
large population sizes. The second-order expansion (dashed lines)
improves the prediction for sufficiently large populations. The error
bars are one standard error.

from stochastic simulations to the expressions given in Eqs.
(24) and (A1). We again observe that the simulation results
converge to the values predicted by the theory as the population
size increases. Interestingly, we observe numerically that the
probability for a population to take a certain mutational path
varies with the population size in a nonmonotonic fashion. In
particular, there is an intermediate population size at which the
population is most likely to take the dominant path through the
landscape.

Fluctuations due to finite population can be quite large. As
shown in Appendix B, these fluctuations are proportional to an
inverse power of the mutation rate. That is, the expansion in
1/N has a coefficient that depends on a power of the inverse of
the mutation rate. For this reason, convergence to the infinite
population limit can be exceedingly slow. The coefficient in
the expansion in 1/N also has a time dependence. As shown
in Appendix A, this coefficient can be proportional to t ,

and so diverge at long times. This divergence occurs when
there are multiple final states, with equal replication rates. For
example, the fluctuations diverge at long times in the expanded
state space due to what may be termed fixation of path
probabilities.

In this paper, we presented a path-integral formulation of
evolution under a Moran-type process on arbitrary fitness land-
scapes. We derived analytic results that describe the dynamics
exactly in the limit of an infinite population size and obtained
an asymptotic expansion in the inverse of the population size
for finite populations. We showed that the finite population
correction to the time-averaged fitness is always negative,
which implies that for sufficiently large population sizes the
time-averaged fitness increases with population size. We also
found that for small mutation rates, the infinite-population
variances of the occupation numbers behave as μ−k , where k

is the number of mutational steps from the ancestral sequence.
Finally, we showed how the formalism described in this
paper can also be used to investigate which mutational path a
population takes through the fitness landscape by expanding
the sequence space to include mutational histories.
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APPENDIX A: SECOND-ORDER CORRECTION

Equation (24) gives the terms up to O(N0) of an asymptotic
expansion for the average occupation numbers in powers of
1/N . We here determine the second-order, O(N−1) correction
terms. Figure 6 shows all possible vertices appearing in the
diagrams. Unlike the first correction term, which is derived
from only the single nonvanishing diagram shown in Fig. 7,
the second-order correction term comes from the nine different
diagrams shown in Fig. 8. We obtain

1

N
〈Na〉(T ) ∼ pa(T ) + 1

N2

∫ T

0
dt
∑
i,j

�0
zz̄
ai(T ,t)�0

zz
ij (t,t)(ri − rj ) + 1

N
〈Na〉(2)(T ), (A1)

where

〈Na〉(2)(T ) = 1

2N2

∫ T

0
dt
∑
i,j

[
�0

zz̄
ai(T ,t) − �0

zz̄
aj (T ,t)

]
(ri − rj )

∫ t

0
dt ′
∑
i ′,j ′

ri ′
[
�0

zz̄
ii ′ (t,t

′) − �0
zz̄
ij ′(t,t ′)

]
�0

zz̄
j i ′ (t,t

′)�0
zz
i ′j ′ (t ′,t ′)

+ 1

4N3

∫ T

0
dt
∑
i,j

[
�0

zz̄
ai(T ,t) − �0

zz̄
aj (T ,t)

]
(ri − rj )

∫ t

0
dt ′
∑
i ′,j ′

[
�0

zz̄
ii ′ (t,t

′) − �0
zz̄
ij ′(t,t ′)

]
(ri ′ − rj ′)

×
∫ t ′

0
dt ′′

∑
i ′′,j ′′

(ri ′′ − rj ′′ )
{[

�0
zz̄
j i ′′ (t,t

′′) − �0
zz̄
jj ′′(t,t ′′)

][
�0

zz
i ′j ′(t ′,t ′)�0

zz
i ′′j ′′ (t ′′,t ′′) + 2�0

zz
i ′j ′′ (t ′,t ′′)�0

zz
j ′i ′′ (t

′,t ′′)
]

+ 2
[
�0

zz̄
i ′i ′′ (t

′,t ′′) − �0
zz̄
i ′j ′′ (t ′,t ′′)

][
�0

zz
jj ′(t,t ′)�0

zz
i ′′j ′′ (t ′′,t ′′) + 2�0

zz
ji ′′ (t,t

′′)�0
zz
j ′j ′′ (t ′,t ′′)

]}
+ 1

N3

∫ T

0
dt
∑
i,j

[
�0

zz̄
ai(T ,t) − �0

zz̄
aj (T ,t)

]
(ri − rj )

∫ t

0
dt ′
∑
i ′,j ′

[
�0

zz̄
ii ′(t,t

′) − �0
zz̄
ij ′ (t,t ′)

]
(ri ′ − rj ′)

∫ t ′

0
dt ′′

∑
i ′′,j ′′

ri ′′
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× {�0
zz̄
j i ′′ (t,t

′′)
[
�0

zz̄
j ′i ′′ (t

′,t ′′) − �0
zz̄
j ′j ′′ (t ′,t ′′)

][
�0

zz
i ′i ′′ (t

′,t ′′)zcj ′′ (t ′′) + �0
zz
i ′j ′′ (t ′,t ′′)zci ′′(t

′′)
]

+�0
zz̄
j ′i ′′(t

′,t ′′)
[
�0

zz̄
j i ′′ (t,t

′′) − �0
zz̄
jj ′′ (t,t ′′)

][
�0

zz
i ′i ′′ (t

′,t ′′)zcj ′′ (t ′′) + �0
zz
i ′j ′′ (t ′,t ′′)zci ′′ (t

′′)
]

+�0
zz̄
j ′i ′′(t

′,t ′′)
[
�0

zz̄
i ′i ′′ (t

′,t ′′) − �0
zz̄
i ′j ′′ (t ′,t ′′)

][
�0

zz
ji ′′ (t,t

′′)zcj ′′ (t ′′) + �0
zz
jj ′′ (t,t ′′)zci ′′ (t

′′)
]}

+ 1

N3

∫ T

0
dt
∑
i,j

[
�0

zz̄
ai(T ,t) − �0

zz̄
aj (T ,t)

]
(ri − rj )

∫ t

0
dt ′
∑
i ′,j ′

ri ′

∫ t ′

0
dt ′′

∑
i ′′,j ′′

�0
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i ′′j ′′ (t ′′,t ′′)(ri ′′ − rj ′′ )

×�0
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[
�0

zz̄
j i ′ (t,t

′) − �0
zz̄
jj ′(t,t ′)

][
�0

zz̄
i ′i ′′ (t

′,t ′′)zcj ′ (t ′) + �0
zz̄
j ′i ′′ (t

′,t ′′)zci ′(t
′)
]

+ 2

N2

∫ T

0
dt
∑
i,j

[
�0

zz̄
ai(T ,t) − �0

zz̄
aj (T ,t)

]
(ri − rj )

∫ t

0
dt ′
∑
i ′,j ′

�0
zz̄
ii ′ (t,t

′)(ri ′ − rj ′)

×
∑
i ′′

�0
zz̄
j i ′′ (t,0)�0

zz̄
i ′i ′′ (t

′,0)�0
zz̄
j ′i ′′ (t

′,0)ni ′′ (0).

APPENDIX B: FLUCTUATIONS PROPORTIONAL TO A
NEGATIVE POWER OF THE MUTATION RATE

In this Appendix we consider a special case of the model
described in Sec. II, for which we show analytically that for
small mutation rates, μ, the variance in the infinite population
occupation numbers is proportional to Nμ−k , where k is the
number of mutational steps in the landscape. We work in the
limit that N → ∞. We seek to understand when the 1/N

expansions of Eqs. (24) and (34) break down. We will show
that for small μ, the naive expansion in 1/N is actually an
expansion in 1/(Nμk). The expansions in Eqs. (24) and (34),
therefore, break down when μ〈1/N1/k . In other words, the
expansion is valid for large N and μ � 1/N1/k . Let there
be k + 1 positions in sequence space linked by k mutations,
which occur at equal rate μ such that �ij = δi,j−1 for i < k,
where δi,j is the Kronecker δ. The fitness increases in the
direction of mutations (all mutations are beneficial) but the
fitness increments decrease monotonically. This landscape is
commonly encountered when there is a dominant path through
a landscape. For example, we encountered this case when
applying our theory to long-term experimental studies of bac-
terial evolution [16]. Figure 9 shows a graphical representation
of this landscape. We assume that the mutation rate is very
small, μ � r , and that there is no back mutation. Initially, the
entire population is in the starting state, Ni(t = 0) = Nδi,0.
For this simple landscape, Eq. (11) can be solved explicitly
for the infinite population occupation numbers. In the limit as
μ → 0, we have

p =
k∑

i=0

i∑
b=0

μiγ i
be

rbt , (B1)

pi = p−1
i∑

b=0

μiγ i
be

rbt , (B2)

where

γ i
b =

⎧⎨
⎩

(−1)i−b∏i
j=b+1(rj −rb)

∏b−1
j=0(rb−rj )

b � i

0 b > i.

(B3)

Substitution into Eq. (11) confirms these solutions in the μ →
0 limit.

Let Cij ≡ limN→∞(〈NiNj 〉 − 〈Ni〉〈Ni〉)/N denote the
infinite-population covariance matrix. From Sec. V we know
that

Cij (t) = δijpi(t) + 1

N
�0

zz
ij (t,t). (B4)

In the limit of infinite N , the correlation matrix C converges
to a number independent of N . We can show that

dC(t)

dt
= B̄(t) + A(t)C(t) + C(t)AT (t), (B5)

with

Cij (0) = 0 (B6)

and

B̄ij (t) = −[μ�ijpi(t) + μ�jipj (t) + (ri + rj )pi(t)pj (t)]

+ δij

[
μ
∑

a

�aipa(t) + μ
∑

a

�iapi(t)

+ ripi(t) + 〈r〉pi(t)

]
. (B7)

To compute B, one is allowed to use the infinite N

values for pi(t) because finite N corrections to pi(t)
lead to higher-order terms in the expansion Eq. (34).
Let t0 = 0, ta ≡ ln (�ra/μ) /�ra,0 < a � k. We examine
Eq. (B2). We consider t〉ta . Equation (B2) for pa will

(a) (b) (c) (d) (e)

FIG. 6. Vertices for the diagrammatic expansion. A white circle represents an open time, while black circles stand for times that are
integrated over.
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FIG. 7. Diagram for the O(N0) correction to the average occupa-
tion numbers.

be dominated by the last term in the series, since the
ratio of the magnitude of the last term to the second-
to-last term is exp(�rat)

∏j=a−2
j=0 (ra−1 − rj )/(ra − rj ) =

(�ra/μ) exp[�ra(t − ta)]
∏j=a−2

j=0 (ra−1 − rj )/(ra − rj ), and
this is large for small μ and t〉ta . Furthermore, the ratio of pa

to pa−1 is (μ/�ra) exp(�rat)
∏j=a−2

j=0 (ra−1 − rj )/(ra − rj ) =
exp[�ra(t − ta)]

∏j=a−2
j=0 (ra−1 − rj )/(ra − rj ), which is also

large for t > ta . The time interval from ta to ta+1 gets larger
as μ gets smaller, so that the time period during which pa−1

and pa are of similar magnitude, t ∼ ta , becomes less and less
significant. Figure 10 shows this result numerically.

Finally, the ratio of pa+1 to pa is exp[�ra+1(t −
ta+1)]

∏j=a−1
j=0 (ra − rj )/(ra+1 − rj ), which is small for t <

ta+1. Thus, for small μ, in the time interval ta to ta+1, most of
the population is in state a. That is,

pa(t) � pa′(t) a′ �= a, ta < t < ta+1, μ → 0. (B8)

Using this result and keeping the lowest order in μ in Eq. (17),
we find

Aij (t) ∼ (rj − ra)(δi,j − δi,a), ta < t < ta+1, μ → 0,

(B9)

(a) Multiplicity: 2

(b) Multiplicity: 1 (c) Multiplicity: 2

(d) Multiplicity: 4 (e) Multiplicity: 2

(f) Multiplicity: 8 (g) Multiplicity: 4 (h) Multiplicity: 8

(i) Multiplicity: 12

FIG. 8. Diagrams for the O(N−1) correction to the average
occupation numbers with their multiplicities.

µ µ µ µ µ µN0 N1 N2 N3 Nk−1 Nk

r0 r1 r2 r3 rk−1 rk
. . .

FIG. 9. A simple landscape in which mutations occur at rate μ,
without back mutation, the replication rate at position i is ri , and Ni

is the occupation number at position i.

such that

dCij (t)

dt
∼ B̄ij (t) + (ri + rj − 2ra)Cij (t)

−
∑

n

(rn − ra)(δj,aCi,n + δi,aCj,n). (B10)

For this landscape, Eq. (B7) reduces to

B̄ij (t)

= − [μδi,j−1pi(t) + μδi,j+1pj (t) + (ri + rj )pi(t)pj (t)
]

+δij [μpi−1(t) + μ(1 − δi,k)pi(t) + ripi(t) + 〈r〉pi(t)]

(B11)

and, in particular,

B̄kk(t) = −2rk[pk(t)]2 + μpk−1(t) + rkpk(t) + 〈r〉pk(t).

(B12)

Substituting Eqs. (B1) and (B2) into this expression and
keeping only the lowest power of μ, we obtain, for t < t1,

B̄kk(t < t1) ∼ rkμ
k

k∑
a=0

γ k
a erat μ → 0, (B13)

and, thus,

dCkk(t)

dt
∼ rkμ

k

k∑
a=0

γ k
a erat + 2rkCkk(t), t < t1, μ → 0.

(B14)

Integrating and only keeping terms to lowest order in μ yields

Ckk(t1) ∼ μk

(
�r1

μ

)2rk/�r1 k∑
a=0

γ k
a

2 − ra/rk

μ → 0. (B15)

For later time periods, the evolution of Ckk(t1 < t < tk) is
dominated by the second term in Eq. (B10) as μ → 0:

dCkk(t)

dt
∼ 2(rk − ra)Ckk(t), ta < t < ta+1,

0 < a < k, μ → 0, (B16)

with solution

Ckk(t) ∼ μke2(rk−ra )t
a∏

j=1

(
�rj

μ

)2 k∑
a′=0

γ k
a′

2 − ra′/rk

ta < t < ta+1, 0 < a < k, μ → 0. (B17)

Figure 11 shows the convergence of this approximation to
Eq. (34) as μ → 0 for one set of replication rates.
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FIG. 10. Infinite population occupation numbers versus time for k = 4, r0 = 0, r1 = 1.00, r2 = 1.45, r3 = 1.65, r4 = 1.74, and three
different values for μ: (a) 10−5, (b) 10−8, and (c) 10−11. The occupation numbers, p0 (solid), p1 (dotted), p2 (dash-dotted), p3 (dashed), p4

(solid with circles), are calculated using Eq. (12). Note that as μ becomes smaller, pa becomes more and more dominant during the time
interval ta < t < ta+1.

Using Eq. (B17), we find that as μ → 0,

Ckk(tk) ∼ μke2�rktk

k∑
a=0

γ k
a

2 − ra/rk

k−1∏
j=1

(
�rj

μ

)2

= μ−k

k∑
a=0

γ k
a

2 − ra/rk

k∏
j=1

(�rj )2. (B18)

The maximum of Ckk(t) occurs near tk . This result follows
from Eq. (B10). The first term on the right-hand side of
Eq. (B10) only matters during 0 < t < t1. After that, Bkk has
a larger power of μ then Ckk does. The second term on the
right-hand side is zero for t > tk . Thus, for t > tk , only the
third term on the right-hand side matters, and it is negative.
Thus, for t > tk , Ckk(t) decreases. It is for this reason that the
dashed curves in Fig. 11 are shown for 0 < t < tk only.

APPENDIX C: FLUCTUATIONS IN THE EXPANDED STATE
SPACE AT LARGE TIMES

Consider the expanded state space of a landscape as shown
in Fig. 1 generalized to an arbitrary number of loci. For any
finite population size N , the only sinks are the final states in
which all mutations have occurred in some order, all of which
have the same replication rate. Thus, after a certain time tf , the
occupation numbers at positions prior to the final states can
be neglected so that the dynamics can be described by Eq. (1)

with a single replication rate r and without mutation,

∂

∂t
P (N; t) = r

N

∑
i,j �=i

[(Ni − 1)(Nj + 1)P (N − ei + ej ; t)

−NiNjP (N; t)].

From this we obtain that the average occupation numbers
remain constant

〈Na(t)〉 = const = 〈Na(tf )〉 t � tf (C1)

and that the covariances are

	ab(t) ≡ 〈Na(t)Nb(t)〉 − 〈Na(t)〉〈Nb(t)〉
= [1 − e−2r(t−tf )/N ]〈Na〉(δabN

−〈Nb〉) + e−2r(t−tf )/N	ab(tf ) t � tf . (C2)

Expanding this to largest order in N yields

	ab(t) ∼ 2r(t − tf )

(
δab〈Na〉 − 1

N
〈Na〉〈Nb〉

)
+	ab(tf ) t � tf . (C3)

Note that the expansion in N converges only for finite times.
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FIG. 11. Infinite population variance of the final state vs. time for k = 4, r0 = 0, r1 = 1.00, r2 = 1.45, r3 = 1.65, r4 = 1.74, and three
different values for μ: (a) 10−3, (b) 10−5, and (c) 10−8. Exact values calculated using Eq. (34) (solid lines) and the approximation given in
Eq. (B17) (dashed lines) are both shown. Note that Ckk(tk) ∝ μ−k .
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