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ABSTRACT

This paper develops the zero-dimensional (0D) hydrodynamic coronal loop model “Enthalpy-based Thermal
Evolution of Loops” (EBTEL) proposed by Klimchuk et al., which studies the plasma response to evolving coronal
heating, especially impulsive heating events. The basis of EBTEL is the modeling of mass exchange between the
corona and transition region (TR) and chromosphere in response to heating variations, with the key parameter being
the ratio of the TR to coronal radiation. We develop new models for this parameter that now include gravitational
stratification and a physically motivated approach to radiative cooling. A number of examples are presented,
including nanoflares in short and long loops, and a small flare. The new features in EBTEL are important for
accurate tracking of, in particular, the density. The 0D results are compared to a 1D hydro code (Hydrad) with
generally good agreement. EBTEL is suitable for general use as a tool for (1) quick-look results of loop evolution
in response to a given heating function, (2) extensive parameter surveys, and (3) situations where the modeling of
hundreds or thousands of elemental loops is needed. A single run takes a few seconds on a contemporary laptop.
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1. INTRODUCTION

Since the recognition in the 1970s that the magnetically
confined solar corona is comprised of discrete loops, a great deal
of effort has been devoted to modeling the temporal evolution
of loop plasma. One approach is to solve numerically the
one-dimensional hydrodynamic (1D hydro) equations of mass,
momentum, and energy conservation along a magnetic field line
(or strand, or loop) in response to an imposed time-dependent
heating function representing a flare or smaller heating event
(e.g., Peres 2000). Of importance is the ability of such models
to generate “observables” that can be used to interpret coronal
data (e.g., Hansteen 1993; Bradshaw & Cargill 2006; Bradshaw
& Klimchuk 2011).

1D hydro models have two difficulties. One is the optically
thick chromosphere at the lower boundaries. In principle,
this requires a full radiative-hydrodynamic treatment (e.g.,
McClymont & Canfield 1983) but one can attach a simple
lower atmosphere that preserves the essential physics (e.g.,
Klimchuk et al. 1987; Antiochos et al. 1999). The second,
and more significant, difficulty is the limitation imposed on the
computational timestep by thermal conduction in the transition
region (hereafter TR). In static equilibrium loops (e.g., Martens
2010), the downward heat flux implies a temperature scale
height (LT ) of under 1 km in the TR and even shorter in hot
flaring loops. Resolving this requires a fine grid, but when
modeling thermal conduction the timestep scales as the smallest
value of LT

2, implying long run times.
There is thus a need for simple and fast ways of model-

ing the coronal response to time-dependent heating. “Zero-
dimensional” (0D) models, which average over the loop’s spa-
tial dimension (Kuin & Martens 1982; Fisher & Hawley 1990;
Kopp & Poletto 1993; Cargill 1994; Klimchuk et al. 2008;
Aschwanden & Tsiklauri 2009) accomplish this. In addition
to providing “quick look” results, 0D models are useful if a
loop is comprised of many hundreds or thousands of thin, ther-
mally isolated, randomly heated strands (Cargill 1994), which

conventional 1D hydro modeling still finds a large task. They
can also provide physical insight obscured in 1D models.

The success of 1D and 0D models of this type depends on
handling correctly the exchange of matter between the corona,
TR, and chromosphere in response to a changing coronal
temperature. While the above 0D models all address this to
varying degrees (see Cargill et al. 2012, hereafter Paper III),
we base our discussion here on the work of Klimchuk et al.
(2008, hereafter Paper I) where we developed a 0D model
whose centerpiece was the calculation of the enthalpy flux to
and from the corona. The model, called EBTEL (Enthalpy-
based Thermal Evolution of Loops), divides a loop into coronal
and TR parts, the boundary being defined as where thermal
conduction changes from a loss to a gain. Whether the enthalpy
flux is into, or out of, the corona depends on whether the TR can
radiate away the downward heat flux. If it cannot, then material is
“evaporated” into the corona, whose density then increases (e.g.,
Antiochos & Sturrock 1978). If the downward heat flux is too
small to power the TR radiation, then there must be a downward
enthalpy flux, and the coronal density decreases (e.g., Cargill
et al. 1995). The top of the TR is then where enthalpy changes
from a coronal loss to a TR gain. The model was compared with
1D hydro simulations of an impulsively heated loop (starting
each time with the same initial conditions) and gave reasonable
agreement.

EBTEL relies on three parameters, the most important of
which is the ratio of the TR to coronal radiative losses. They
govern both the initial equilibrium and how the loop cools
after impulsive heating. It has become apparent through use
of EBTEL, and attempts to benchmark the results against
other known solutions of loop cooling, that the choice of this
parameter in Paper I was not optimal for many circumstances.
The physical principles behind EBTEL are unchanged, but, by
re-examining the three key parameters, we here put the EBTEL
model on a broader foundation. A wider range of heating events
are also shown. The result is a model that, when compared with
a 1D hydro code, can now follow with satisfactory accuracy the
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evolution of loops over a range of lengths and temperatures.
In Paper III, we will provide a comparison of 0D models and
sources of potential discrepancy with 1D models.

2. OVERVIEW OF THE EBTEL MODEL

2.1. The Governing Equations

The details of the model are discussed in Paper I and so are
just restated briefly here. The 1D energy equation is

∂E

∂t
= − ∂

∂s
v(E + p) − ∂Fc

∂s
+ Q − n2Λ(T ), (1)

where v is the velocity, E = p/(γ − 1), Fc = −κ0T
5/2(∂T /∂s)

is the heat flux, Q(t) is a heating function that includes both
steady and time-dependent components, Λ(T ) = χT α is the
radiative loss function in an optically thin plasma as defined
in Paper I, Equation (3), and s is a spatial coordinate along the
magnetic field. We have assumed that the flow is always subsonic
and that gravity can be neglected in the energy equation. There
is also an equation of state: p = 2nkBT .

For a corona loop of half-length L and a TR of thickness
l (�L), we define the boundary between corona and TR as
the location where conduction changes from a loss to a gain
(Vesecky et al. 1979). Integrating Equation (1) from the top of
the TR to the top of the loop and enforcing symmetry boundary
conditions, we find

L

γ − 1

dp̄

dt
= γ

γ − 1
p0v0 + F0 + LQ̄ − Rc, (2)

where “overbar” denotes an averaged coronal quantity, subscript
“0” denotes a quantity at the base of the corona (or top of the
TR), and Rc = n̄2Λ(T̄ )L. Note that the heat flux and enthalpy
flux can play equivalent roles in providing energy to the TR.

Integrating over the TR, and assuming the heat flux and flow
are small at its base, the pressure derivative and the heating can
be eliminated since l � L, giving

γ

γ − 1
p0v0 + F0 + Rtr = 0, (3)

where Rtr is the integrated radiative TR losses. Equation (3) can
then be combined with Equation (2) to give an equation for the
coronal evolution:

1

γ − 1

dp̄

dt
= Q̄ − 1

L
(Rc + Rtr) . (4)

Note that conduction and enthalpy do not appear in Equation (4)
emphasizing their roles as energy redistribution mechanisms
in the loop as opposed to energy losses or gains. The density
evolution comes from a similar approach, and in the corona we
find

dn̄

dt
= n0v0

L
= − γ − 1

2kT0Lγ
(F0 + Rtr) . (5)

The average coronal temperature then follows from the equation
of state:

1

T̄

dT̄

dt
= 1

p̄

dp̄

dt
− 1

n̄

dn̄

dt
. (6)

To solve the set of coronal equations (4)–(6) for the primary
variables T̄ , n̄, and p̄, we need to relate Rtr, T0, and F0 to
coronal quantities. The conductive losses are defined in terms

of the loop apex temperature (Ta): F0 = −(2/7)κ0T
7/2
a /L

(Paper I: Equation (20)), so three temperatures characterize the
corona: T̄ , Ta, and T0. Ta and T0 are defined as C2 = T̄ /Ta, C3 =
T0/Ta . Finally, we define a third parameter: C1 = Rtr/Rc which
leads to Equations (4) and (5) becoming

1

γ − 1

dp̄

dt
= Q̄ − Rc

L
(1 + C1) (7)

dn̄

dt
= n0v0

L
= −C2

C3

(γ − 1)

2kT̄ Lγ
(F0 + C1Rc) . (8)

Equations (6)–(8) can then be solved on specification of C1–3.
Initial conditions come from solving the steady state versions
of Equations (7) and (8). This approach gives slightly different
values from the familiar scaling law results (e.g., Martens 2010)
since our choices of C1 are approximations to the exact static
loop structure.

Apex quantities are also useful when comparing with 1D
hydro models. For a semi-circular loop, the apex and av-
erage pressures are pa ≈ p0 exp(−2L/λ(T̄ )π ) and p̄ ≈
p0 exp(−2L sin(π/5)/λ(T̄ )π ), where p0 is the pressure at the
top of the TR, λ(T̄ ) = 2kT̄ /mig is the coronal scale height
based on the average temperature and ion mass, and the fac-
tor sin(π/5) is discussed in Section 3.1. EBTEL calculates
the average pressure, so it is straightforward to then work
out pa. The same is true for the density: na = n̄C2 exp(−2L(1−
sin(π/5))/λ(T̄ )π ).

2.2. The Calculation of Constant C1

In Paper I, we used constant values of C1–3 calculated
from static equilibrium loop solutions. Two approaches were
considered. The first, used to produce all the figures in Paper I,
adopted fixed values of C1–3 at all temperatures, namely C1 = 4,
C2 = 0.87, and C3 = 0.5. We refer to these as the “EBTEL-1”
values. The second used a polynomial fit for C1 and C3 over
the temperature range 1–10 MK (Tables 1 and 2 of Paper I).
However, the values of C1 and C3 in Table 1 of Paper I are
incorrect for short loops and T > 3 MK.

Thus, the values of C1–3 appropriate for static equilibrium
loops must be reassessed. We first neglect gravity and use a
simple power-law radiative loss function of the form Λ(T) =
χT α = 1.95 × 10−18 T −2/3 above 104.97 K, and Λ(T) =
1.1 × 10−31T 2 below 104.97 K to avoid unrealistic losses at low
temperatures. In Appendix A, the work of Martens (2010) is
used to demonstrate analytically that C1 and C3 are independent
of all loop parameters except the slope of the radiative loss
function when there is no low temperature correction to Λ(T).
Then, modifying Λ(T) at low temperatures, hydrostatic thermal
equilibrium is calculated numerically. Ta and L are specified,
and a double iteration calculates the base pressure (pb) and
(constant) heating subject to appropriate boundary conditions
at the top of loop (T = Ta and dT/ds = 0) for a small base
temperature and vanishing base heat flux. This gives the usual
scaling laws between Ta, L, Q, and pb. These solutions show
that C1–3 may be taken as constants over a wide range of Ta
and L. For L = 2.5, 5, and 7.5 × 109 cm and Ta between 0.5
and 10 MK, C2 and C3 are 0.89 and 0.6, respectively. C1 varies
a little more with Ta, but can be taken as approximately 2. We
propose these as the baseline values of C1–3 in the absence of
gravity and refer to them as “EBTEL-2” values.
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Table 1
Summary of the Cases Considered

Case L H0 tH T(t = 0) n(t = 0)
(109 cm) (erg cm−3 s−1) (s) (MK) (108 cm−3)

1 7.5 1.5 × 10−3 250 0.85 0.36
2 2.5 10−2 100 0.78 1.85
3 2.5 2 100 2.1 18.5
4 2.5 10−2 100 1.3(1.6∗) 9.2

Notes. The columns show: loop half-length (Column 2), maximum amplitude
of triangular heating pulse (Column 3), half-width of the pulse (Column 4),
initial average temperature (Column 5), and density (Column 6). In case 4, the
starred temperature is for EBTEL.

2.3. Comparison Between 0D and 1D Models

The EBTEL results are compared with the 1D Hydrad code
(Bradshaw & Mason 2003; Bradshaw & Cargill 2006). Hy-
drad solves time-dependent electron and ion energy equations
together with equations of mass and momentum conservation
along a magnetic field line, and an equation of state. Here we in-
troduce an anomalously high electron–ion collision frequency
to ensure equal electron and ion temperatures. The optically
thin radiative loss function is the same as in EBTEL (Paper I,
Equation (3)). In all cases EBTEL uses the same coefficient of
thermal conductivity (κ0 = 8.12 × 10−7 erg cm−2 s−1 K−7/2)
and average ion mass (mi = 2.17 × 10−24 g) as Hydrad.

In Paper I, we compared EBTEL results with average coronal
values from the 1D ARGOS code (Antiochos et al. 1999), with
the ARGOS averages calculated over the upper 80% of the
loop. However, our static loop calculations show that the TR
occupies at most only the lower 10% of a loop, so averaging
Hydrad results over 80% will underestimate the average coronal
density. Coronal averages from Hydrad are now calculated
over 90% of the loop. (It should be stressed that considerable
experimentation with both ARGOS and Hydrad showed no
reliable way of identifying the TR/coronal boundary in such
1D codes, in part because in the more dynamic phases there
can be multiple locations where the conduction changes from
a loss to a gain.) We also show some comparisons between
apex quantities, with the apex results from Hydrad being spatial
averages over 10% at the loop top. However, the density and
pressure from Hydrad are rather spiky due to the interaction at
the loop top of evaporation fronts from each footpoint, leading
to a compression, and subsequent oscillation that persists for a
few periods. A smoothing over roughly 30% of the oscillation
period is applied to the Hydrad apex average results.

2.4. Results for Constant C1–3

We revisit an example from Paper I: a long loop heated by
a small nanoflare (hereafter Case 1). Table 1 provides a list of
all cases, showing the heating function, loop half-length, initial
temperature, and density. The heating pulse is triangular with
half-width (tH) and magnitude (H0). For Case 1, tH = 250 s,
H0 = 1.5 × 10−3 erg cm−3 s−1, and L = 75 Mm. For a strand
diameter of 200 km, 1.77 × 1024 erg is released.

Figure 1 shows the average temperature, pressure, density,
apex density, fractional errors in T and n, and relationship
between T and n for the “EBTEL-1” parameters. The thick
(thin) solid lines are Hydrad (EBTEL-1) results, except in the
error plot where the thin (thick) lines are temperature (density)
and solid (dashed) lines correspond to average (apex) quantities.
Hydrad apex quantities are smoothed over a 500 s window to

reduce spikiness. In the T–n plot (lower right panel), we show
n/nmax and T/T(nmax), where nmax is the maximum density and
T(nmax) is the temperature at the time of maximum density.
Table 2 provides a summary of the results, namely the maximum
temperature, density, and pressure, the time these are reached,
the time interval over which their values exceed 90% of the
maximum, and the scaling between T and n, assumed to be of
the form T ∼ nδ , in the cooling phase. As we will discuss in
Section 3.2, the last of these is a very important diagnostic of
loop cooling. The stars on the temperature, density, and T–n
plots show the start and end times over which this scaling is
evaluated. These are chosen when radiative losses are the most
important coronal cooling process.

Figure 1 and the first two rows of Table 2 show the following.
(1) The maximum EBTEL-1 average temperature and density
exceed the Hydrad values by 12% and 8%, respectively, and
the average pressure combines these differences. (2) The time
of the maximum average density and temperature agree to 110
and 30 s, respectively, and the time when they exceed 90% of
the maximum shows similar differences. The EBTEL pressure
maximum precedes the Hydrad one by longer. (3) In the decay
phase, the EBTEL temperature (density) is systematically above
(below) the Hydrad values, as can also be seen in the error plot,
and (4) this leads to a relationship between T and n in the decay
phase characteristic of equilibrium as opposed to cooling loops.
(5) The apex densities are in superficially better agreement,
but the spikiness in the Hydrad result may exaggerate this. (6)
Both Hydrad and EBTEL return the loop to its pre-heated state
after 104 s.

Figure 2 and the third row of Table 2 show results for the
“EBTEL-2” values of C1–3. Here (1) the EBTEL-2 maximum
temperature and density increase over EBTEL-1, the temper-
ature exceeding the Hydrad value by 20%. (2) The time of
the maximum EBTEL density is now delayed with respect to
Hydrad. (3) The EBTEL density in the decay phase is now per-
sistently higher than Hydrad and in turn this leads to (4) an
EBTEL-2 T–n scaling more typical of a cooling loop, but no-
tably steeper than Hydrad. This occurs because larger (smaller)
values of C1 imply that the TR is more (less) efficient at radiating
away downward energy fluxes (conduction or enthalpy). Larger
values of C1 thus lead to smaller coronal densities. For smaller
values of C1, the larger coronal density leads to slower conduc-
tive cooling (the conductive cooling timescales with density),
hence higher peak temperatures and later times for the density
maximum.

However, this pair of models shows that neither sets of
constant values of C1–3 does well at all times, and in some ways
the EBTEL-2 choice makes things worse. We have identified
this as being due to the absence of two pieces of physics: (1)
the lack of a description how gravity changes the loop behavior
and (2) the incorrect handling of the decay phase where the
T ∼ n1/2 scaling from static equilibrium models does not apply,
and loops should be “overdense” with respect to equilibrium
values.

3. INCLUSION OF ADDITIONAL PHYSICS IN EBTEL

3.1. Re-assessment of Parameters: Equilibrium Loops

The first piece of missing physics to be discussed is the
inclusion of gravity. The main effect is that, while the TR
radiation is driven by the downward heat flux, and so for a
given coronal temperature and loop length is roughly fixed, the
coronal radiation falls due to stratification. Thus, larger values of
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Figure 1. EBTEL and Hydrad solutions for a small nanoflare in a long loop (Case 1). “EBTEL-1” values of the parameters C1–3 are used. The top four panels show the
average temperature and pressure and the average and apex density. The lower right panel shows the relationship between T and n, where n and T are normalized with
respect to the maximum density and temperature at the time of maximum density, respectively. Thick and thin solid lines are Hydrad and EBTEL results, respectively.
The stars show the start and end points between which the decay phase T–n scaling is calculated. The lower left panel shows the fractional errors of the average (solid)
and apex (dashed) density and temperature. In this panel, the thin and thick lines correspond to the error in temperature and density, respectively. The error ΔT/T is
defined as [T(EBTEL)–T(Hydrad)]/T(Hydrad).

Table 2
Summary of Key Output for the Four Cases Shown in Table 1

Case Tmax t(Tmax) nmax(109) t(nmax) pmax t(pmax) δ

(MK) (cgs)

1(Hydrad) 3.94 260 (190–460) 0.37 1450 (1020–2690) 0.22 660 (460–890) 0.83
1(C1 = 4) 4.41 290 (220–430) 0.40 1560 (900–2440) 0.26 500 (390–1300) 0.61
1(C1 = 2) 4.76 280 (200–420) 0.41 2210 (1220–3440) 0.26 500 (390–1670) 1.24
1 4.77 280 (200–420) 0.39 1840 (1030–3270) 0.26 500 (390–1420) 1.02
2(Hydrad) 3.77 110 (90–180) 1.07 820 (430–1290) 0.63 260 (190–340) 1.33
2 4.30 120 (90–180) 1.15 720 (410–1360) 0.71 200 (160–580) 1.22
3(Hydrad) 18.9 120 (90–170) 33.9 430 (260–740) 112 180 (150–270) 1.77
3 20.0 110 (80–170) 38.7 450 (280–770) 132 200 (150–340) 1.89
4(Hydrad) 3.07 160 (120–220) 1.55 850 (390–1470) 0.90 260 (150–520) 1.22
4 3.44 170 (120–250) 1.64 790 (400–1580) 1.10 240 (150–730) 1.35

Notes. The maximum of the average temperature, density, and pressure are shown in Columns 2, 4, and 6 and the time this maximum is
reached is the left number in Columns 3, 5, and 7. The right pair of numbers in Columns 3, 5, and 7 is the time interval between which
the relevant variable lies above 90% of the maximum value. All times are in seconds and have been rounded to the nearest 10 s. In the
last column, δ is defined by the relationship in the radiative cooling phase, T ∼ nδ and is calculated between the starred location on the
relevant figures.

C1 can be expected for loops with significant ratios of the length
to the gravitational scale height. We have solved the hydrostatic
equations for semi-circular equilibrium loops using the simple
power-law radiative loss function mentioned in Section 2.2 for
L = 5 × 109 and 7.5 × 109 cm, and temperatures between
5 × 105 and 4 × 106 K. In the upper panels of Figure 3, the
stars denote C1 when gravity is absent (around 2 in all cases)

and the circles show C1 when gravity is included. (Note that
static solutions for Ta = 5 × 105 K with L = 7.5 × 109 cm
could not be found: see also Serio et al. 1981.) C1 increases
as the temperature and scale height decrease. C2 and C3 have
negligible dependence on gravity.

We now parameterize C1 in the form C1(Ta, L). There is little
dependence of C1 on L itself, rather the key parameter is the
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Figure 2. Same as Figure 1 except constant “EBTEL-2” values of C1–3 are used.

1 2 3 4
0

2

4

6

8

C
1

L = 50 Mm

1 2 3 4
0

2

4

6

8

10

12

C
1

L = 75 Mm

1 2 3 4
0

1

2

3

4

T
a
 (106 K)

R
(n

og
)/

R
(g

)

1 2 3 4
0

1

2

3

4

5

T
a
 (106 K)

R
(n

og
)/

R
(g

)

Figure 3. Upper two panels show the parameter C1 as a function of Ta for L = 5 × 109 cm (left) and 7.5 × 109 cm (right) for a single power-law loss function with
a low-temperature correction. Stars, circles, and plus signs are, respectively, C1 in the absence of gravity, C1 with gravity (both are from numerical solutions of the
hydrostatic equations), and the estimate of C1 in Equation (11). The lower two panels show the ratio of the radiative losses without gravity to those with gravity in the
transition region (stars) and corona (circles). The ratio of the two transition region losses is roughly constant.

5



The Astrophysical Journal, 752:161 (13pp), 2012 June 20 Cargill, Bradshaw, & Klimchuk

ratio of half-length to scale height. We write

C1 = Rtr

Rc

=
[

Rtr

Rtr(g = 0)

] [
Rtr(g = 0)

Rc(g = 0)

] [
Rc(g = 0)

Rc

]
(9)

and calculate the three ratios on the right-hand side. The label
“g = 0” is values when gravity is neglected. The lower panels of
Figure 3 show Rtr(g = 0)/Rtr (stars) and Rc(g = 0)/Rc (circles) as
a function of Ta. As anticipated, the first ratio in Equation (9) is
roughly unity. From Section 2.2, the middle ratio in Equation (9)
is 2. Figure 3 shows that the third ratio has the expected drop
when gravity is included. To calculate an approximate form for
C1 we argue that, for a given coronal temperature,

Rc(g = 0)

Rc

≈ (n̄2T̄ α)g=0

n̄2T̄ α
≈ (n̄2)g=0

n̄2
≈ p2

0

p̄2
(10)

assuming the coronal half-length is the same with and without
gravity.

Next assume that for a semi-circular loop the coronal pressure
is given by p(s) ≈ p0 exp[−(2L/πλ̄) sin(πs/2L)] where we
use a scale height based on the average temperature (T̄ = C2Ta)
and that hydrostatic density stratification occurs only in the
corona. Integrating p(s) numerically gives an average pressure,
and this average value is well approximated by using the actual
pressure at s/L = 0.4. So the average pressure is written as
p̄ = p0 exp(−2L sin(π/5)/λ̄π ) (which also accounts for the
sin(π/5) factor introduced in Section 2.1) and so

C1 = Rtr

Rc

= 2 exp(4L sin(π/5)/λ̄π ). (11)

The plus signs in the upper panels of Figure 3 show that
Equation (11) works well for all but the lowest temperature.

An analysis can also be carried out to include multiple power-
law loss functions. Since the method is similar, it is discussed in
Appendix B. One can finally obtain a formula for C1 = C1(eqm)
for equilibrium loops including gravity and radiation as

C1(eqm) = 2

[
Rc(g = 0, α = −2/3)

Rc(g = 0, T̄ )

]
exp(4L sin(π/5)/λ̄π ),

(12)
where the ratio is that of the radiative losses for the −2/3 power
law to that calculated using the full EBTEL loss function.

3.2. Radiative Cooling Phase

In a static equilibrium loop, there is a scaling between
temperature and density of order T ∼ n1/2 that arises because
coronal conductive and radiative losses are roughly equal.
However, this does not hold in the cooling phase after the
density maximum when the energetics involve mainly coronal
cooling due to radiation and an enthalpy flux to the TR. For
short, hot loops, there is a scaling T ∼ n2 during this phase
(Serio et al. 1991; Cargill et al. 1995; Bradshaw & Cargill
2005, 2010a, 2010b), with a scaling approaching T ∼ n for
longer, more tenuous loops (Bradshaw & Cargill 2010b). We
can adapt the EBTEL equations to this regime and determine
the appropriate value of C1. Neglecting thermal conduction and
heating, Equations (7) and (8) are

1

γ − 1

dp̄

dt
= −Rc

L
(1 + C1) ,

dn̄

dt
= −C2C1

C3

(γ − 1) Rc

2kBT̄ Lγ
(13)

and so, on writing T ∼ nδ , we can relate T and n:

δ + 1 = 1

p

dp

dt
÷ 1

n

dn

dt
= γ

C3

C2

(1 + C1)

C1
. (14)

This can be solved for C1 as

C1(rad) =
(

C2(1 + δ)

γC3
− 1

)−1

, (15)

where T0 is now the temperature at which enthalpy changes
from a loss to a gain (Bradshaw & Cargill 2010a, 2010b) and
we denote C1(rad) as C1 in the radiative phase. For δ = 2 (1),
and the same values of C2 and C3 derived above, C1 = 0.6
(1.25). We chose C1 = 0.6 as the baseline value for the radiative
phase in the absence of gravity and a loss function coefficient
of α = −2/3.

To include gravity and a full Λ(T), we adopt the same
approach as in Section 3.1 and Appendix B based on our work
on radiative cooling (Cargill et al. 1995; Bradshaw & Cargill
2005, 2010a, 2010b), with gravity increasing C1(rad):

C1(rad) = Rtr

Rc

= 0.6

[
Rc(g = 0, α = −2/3)

Rc(g = 0, T̄ )

]
exp(4L sin(π/5)/λ̄π ).

(16)

Equation (16) is equivalent to Equation (12) except that the
coefficient “2” is replaced by “0.6.”

3.3. Overall Implementation of C1

We now implement a formalism for C1 that has a smooth
transition from equilibrium to radiative values as the loop
evolves after the density maximum. The formalism is expressed
in terms of the ratio of the actual average density to the density
for a loop in static equilibrium at a given temperature. This is a
measure of the “overdensity” of the loop, and it is well known
that loops undergoing radiative cooling are in this regime (e.g.,
Cargill & Klimchuk 2004). For a given average temperature,
Equations (7) and (8) give the density required for equilibrium
as

n2
eq = 2κ0

7C1(eqm)Λ(T̄ )L2

(
T̄

C2

)7/2

. (17)

Now (n/neq)2 = C1(eqm)τc/τR where τ c and τR are the
conductive and radiative cooling times, defined as τc =
(21kBn̄L2C2/2κ0)(C2/T̄ )5/2, τR = 3kBT̄ /n̄Λ(T̄ ). So radiative-
dominated cooling of an impulsively heated loop at a given
temperature is characterized by n > neq (e.g., Cargill 1994;
Cargill & Klimchuk 2004). We thus define C1 as

C1 = C1(eqm) n < neq

C1 = [2C1(eqm) + C1(rad)((n/neq)2 − 1)]/[1 + (n/neq)2]

n > neq (18)

which is piecewise continuous at n = neq.

3.4. Case 1 Revisited

We return to Case 1 and use Equation (18) for C1. C2 and
C3 are unchanged. Figure 4 has the same format as Figure 1
and, along with row 4 of Table 2, shows that (1) the EBTEL
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Figure 4. Case 1. Same as Figure 1, with variable C1 from Equation (18) included.

and Hydrad maximum temperatures still differ by roughly 20%.
(2) While the EBTEL density still is larger at all times than
the Hydrad values, the difference in the average density is
diminished (the difference at the maximum is now under 10%),
and the apex density shows very good agreement. (3) The delay
in the timing of the maximum density presents in the “EBTEL-
2” run has been largely removed and (4) the T–n scaling in the
decay phase is now closer to the Hydrad value, and characteristic
of a loop cooling by radiation.

The physics behind this involves a number of factors and we
have turned on and off various terms in the C1 parameterization
to clarify what is going on. First, retaining the gravitational
physics in C1 and ignoring the radiative phase correction
maintains the value of the peak density but leads to decay phase
densities that are too low and a T–n scaling of T ∼ n0.5, typical
of an equilibrium loop. Second, keeping the radiative correction
and ignoring gravity gives high densities at all times (by almost
a factor of two in the decay phase) and a T–n scaling of T ∼
n2.4. Thus including both the radiative physics and stratification
is essential. Ignore either, and the decay phase is not modeled
properly. Ignore gravity, and the density is too high.

4. FURTHER RESULTS

Case 1 has demonstrated explicitly how the inclusion of
gravitational and radiative decay physics can enhance the
performance of EBTEL. Case 1 is quite challenging because
of the extreme loop length, low density, and consequent strong
role of gravity. We now present three more cases that each poses

specific challenges. Case 2 is a more typical coronal problem,
a nanoflare in a medium length loop, and poses a challenge to
both the gravitational and radiative physics. Case 3 is a small
flare that provides a test for the radiative physics alone since
gravity is not important. Case 4 is similar to Case 2, except the
nanoflare is in a loop with significantly higher density. Here we
wish to see whether the loop returns to its pre-event state.

Case 2 is a nanoflare in a short loop of half-length 25 Mm. The
pulse half-width is 100 s and peak magnitude 10−2 erg cm−3 s−1.
For a 200 km diameter strand, 1.57 × 1024 erg is released.
Figure 5 is in the same format as the others with the addition
of results using the “EBTEL-1” parameters (the dashed lines
in the top four and lower right panels). The smoothing in the
apex quantities is now over 150 s. The EBTEL-1 parameters
do poorly, in particular with the density, peaking too early
and falling off far too rapidly. However, it is clear that the
new EBTEL and Hydrad show good agreement and rows 5
and 6 of Table 2 show that the peak temperature and density
differ by 14% for the temperature and 7% for the density,
though the EBTEL density and pressure do peak early. The
T–n slope in the decay phase differs by 0.1, with Hydrad
showing the steeper slope, but with values commensurate with
enthalpy-dominated radiative cooling. It should also be noted
that the return to equilibrium after the heating event shows some
disagreement (see temperature results in the error plot) with the
Hydrad temperature undershooting. This is discussed further in
Case 3.

Case 3 is a modest flare in a short loop with L = 25 Mm,
a maximum heating of 2 erg cm−3 s−1, and a pulse half-width

7
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Figure 5. Case 2: a short loop (25 Mm half-length) with a nanoflare energy release. The format is the same as Figure 1 except that the dashed line in the top four and
lower right panels is the result for EBTEL-1 parameters.

100 s. The total heating per unit area is 5 × 1011 erg cm−2

which for a loop diameter 20% of the half-length gives a total
energy input of 4 × 1029 erg. We neglect “thick target” heating
which was discussed in Paper I and remains part of the EBTEL
code. Figure 6 and rows 7 and 8 of Table 2 show the results
in the same format as Figure 5. Once again, the “EBTEL-1”
values of density do very badly. It is also noticeable now that
the agreement between the peak density is superficially not
as good as the previous example (14% difference), whereas
the peak temperature is better (6% difference). The time of
both peaks shows differences of 10–20 s between Hydrad and
EBTEL. While the T–n slopes in the radiative phase compare
well, and take on typical flare values, the EBTEL density is
systematically larger by 20%. Further, the Hydrad run appears
to undergo a catastrophic loop cooling from about 1200 s and we
have truncated the error plot so that the results from the heating
and initial phases remain clear. This radiative collapse appears
to be typical in the latter phases of flare cooling (F. Reale 2012,
private communication), and some evidence was also apparent
in Case 2, though this does not happen in all cooling loops (see
Figures 1–4 of Bradshaw & Cargill 2010b). The topic will be
discussed further in another publication.

The previous examples have a nanoflare or flare with energy
much larger than the background thermal energy in the loop
or, equivalently, the background heating is much smaller than
the peak nanoflare heating. However, nanoflare heating is not
necessarily confined to a single heating/cooling cycle in a loop.

Evidence now suggests that impulsive heating on occasions may
be occurring in loops or strands that have not undergone such
a full evaporation—draining cycle (e.g., Warren et al. 2011), so
that the heating takes place in a higher ambient density.

Case 4 is a re-run of Case 2 with a higher background
heating. There is one difficulty that should be noted. The initial
conditions generated by Hydrad and EBTEL are not identical,
a reflection of the fact that modeling the full spatial structure
of a loop will give a different value of the average temperature
and density from an approximate model. So long as the flare or
nanoflare is “large” in the sense that at its peak the heating is
much stronger than the background, this does not matter. For
Case 4, we have adjusted the background heating to give the
same initial density in Hydrad and EBTEL of 9.2 × 108 cm−3.
This leads to the Hydrad (EBTEL) initial temperatures being
1.3 (1.6) MK. The choice of fixing the initial density is arbitrary,
but reflects our experience that density behavior is a sterner test
of 0D models than temperature.

The results in Figure 7 and rows 9 and 10 of Table 2 need to
be considered with this in mind. Not surprisingly, the EBTEL
maximum temperature exceeds the Hydrad one, though by less
than the discrepancy at the start. However, the densities agree
well, though the EBTEL one peaks earlier by 200 s. In particular,
we note that with both EBTEL and Hydrad the loop returns to
it pre-nanoflare state after a few thousand seconds.

Looking at the results overall, we can draw some general
conclusions.
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Figure 6. Case 3: a small flare in a loop of half-length 25 Mm. The format is the same as Figure 5.

1. EBTEL calculates the time of the temperature maximum
and the duration when it is over 90% of the maximum to
within 50 s in all cases, but overestimates the value of the
maximum temperature by between 10% and 20%. The error
is largest for weak heating in a long loop and smallest for
the small flare. The maximum temperature is determined
by how well the corona can conduct heat away, and these
results suggest that the simple approximation for Fc gives
values that are too small. Given the simplicity of our
approximation to the strongly nonlinear conductive losses,
we regard a 10%–20% overestimation as satisfactory.

2. EBTEL overestimates the maximum density, though by
under 14% in all cases. For the long loop, the timing of the
maximum density in EBTEL is delayed by 390 s, but the
start of the 90% envelope is only off by 10 s, suggesting
that the oscillation in the Hydrad results gives an “early”
peak value. In the other three cases, the difference in timing
is under 100 s. One possible reason for the larger EBTEL
density is the assumption of a fixed loop length in EBTEL
and the use of the 90% spatial average in Hydrad. It is
well known that when a loop undergoes impulsive heating,
the top of the chromosphere is pushed downward, leading
to a slightly longer loop. Given that the same amount of
chromospheric plasma will be heated, and fill the (longer)
coronal volume, this effect will lead to a lower average
density, as is seen in the Hydrad results.

3. In the decay phase, the Hydrad density remains lower than
the EBTEL one. However, the important T–n relationship
that describes the radiative/enthalpy cooling shows good

agreement. We note that these slopes are somewhat sensi-
tive to the start and termination of the analysis windows.

4. While we did not document the properties of the apex
density in Table 2, examination of the figures shows that
the agreement between the EBTEL and Hydrad values is
excellent.

5. More negatively, the discrepancy between the EBTEL and
Hydrad pressures is larger, in excess of 15% in some cases.
This is partly due to the issue discussed in point (2) above,
but also suggests that the chromosphere and TR may be
more efficient radiators during the early phase than our
model for C1 assumes.

6. It is interesting to note that the discrepancies between
the 0D and 1D models are small enough that the 0D
model may be used as a suitable proxy for 1D given
that parameters determined from inversion of spectroscopic
data are probably not constrained by any less that our
discrepancy (Judge et al. 1997; Judge 2010).

5. THE DIFFERENTIAL EMISSION MEASURE

In Paper I, we calculated separate coronal and TR differential
emission measures (DEMs), the latter by two distinct methods.
The DEM is defined as DEM(T ) = n2 (∂T /∂s)−1. The mod-
ifications to EBTEL do not change the way the coronal DEM
is calculated since the coronal parameters are our primary vari-
ables. On the other hand, the TR DEM relied on an assumption
of constant pressure in the loop, which the introduction of grav-
ity will invalidate. In Paper I, we calculate the TR DEM by
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Figure 7. Case 4: a nanoflare in a dense loop. The format is the same as Figure 5 except we do not show the “EBTEL-1” results.

solving the following quadratic equation for ∂T /∂s:

κ0T
3/2

(
∂T

∂s

)2

− 5kJ0

(
∂T

∂s

)
−

(
pTR

2kBT

)2

Λ(T ) = 0. (19)

While J0 = n0v0 is determined by the mass flow to and from the
corona, the pressure in the last term is a TR quantity. Thus, when
gravity is important we need to modify this term to account for
the fact that the TR pressure will be larger than the coronal
one. This is done by using our coronal pressure modification
in reverse, so we write pTR = p̄ exp(2L sin(π/5)/λ̄π ). In the
Appendix of Paper I we also provided approximate forms of
the DEM for three cases of loop evolution: strong conduction-
driven evaporation, equilibrium, and strong radiative-driven
condensation (draining). Of these, the third is unmodified, while
the first two both involve the TR pressure and need to be
changed.

The top two panels of Figure 8 show on the left the DEM
from EBTEL and Hydrad for the flare Case 3 (thin and thick
solid lines, respectively) and the DEM for the “EBTEL-1”
values of C1–3 (dashed line) where the DEM is summed over
2000 s. The principle difference between the EBTEL-1 values
and the full model is below 107 K, when the low EBTEL-1
density in the decay phase is most evident (Figure 6). The larger
discrepancy at lower temperatures is due to the catastrophic
loop draining in Hydrad after 1500 s discussed in the previous
section. The top right panel shows the EBTEL DEM broken
into its components from the corona (dashed) and TR (dotted).

The coronal component has a slope of T 2 above 106.2 and T 3/4

below that temperature. Cargill (1994, p 387) noted that the
DEM slope in this cooling phase depends solely on the slope of
the radiative loss function, with a scaling of DEM ∼ T(1/2−α).
The break in the slope occurs near the break in the loss function,
and the slopes above and below are in general agreement with
this simple scaling.

The lower left and right panels show, respectively, the DEM
of a nanoflare in the long and short loops with the DEM summed
over 10,000 and 5000 s, respectively. While there are differences
in the magnitude of the different models, the topology, which is
very important for inferring coronal properties, is comparable.
Here we see a flatter coronal DEM distribution below the peak
compared to the flare case. This reflects the difference in the
radiative cooling physics when gravity is important with a
shallower T–n scaling. The arguments of Cargill (1994) now
suggest a DEM slope of T −α , in broad agreement with what is
seen.

6. DISCUSSION AND CONCLUSIONS

Simple 0D hydrodynamic models have a long history in
modeling the temporal evolution of transiently heated coronal
loops and in this paper we have updated our original version of
the EBTEL model to include gravitational stratification and the
correct radiative cooling physics. Comparison with results from
the 1D Hydrad code suggest that these changes are quantifiable
improvements to the original model, as can be seen by especially
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Figure 8. Two upper panels show the DEM for Case 3 (flare in a 25 Mm loop). The left panel shows the EBTEL (thin solid line), Hydrad (thick solid line), and
EBTEL-1 (dashed line) results. The top right panel shows separate coronal (dashed) and TR (dotted) contributions. The lower panels show the DEM from nanoflares
in a long loop (Case 1) and short loop (Case 2) with dashed lines being the coronal component.

comparing the density of the new and original versions. It would
certainly be feasible to develop further the parameterizations
of C1–3 to include more physics than we have included here,
but, barring some major new understanding of how impulsively
heated loops evolve, at some point diminishing returns will
set in.

The applications of EBTEL were discussed extensively in the
discussion of Paper I, so only a brief summary is appropriate
here. EBTEL is a useful tool in looking at the generic evolution
of temperature and density, as well as the DEM of single loops.
It runs fast (a few seconds on a contemporary laptop), and
the output can be convolved with other software to generate,
for example, light curves in various coronal emission lines. It
can also be used to survey very large areas of parameter space
(heating magnitude, cadence, loop length, pre-event conditions)
quickly, so giving users of 1D models guidance on what to look
for. But, perhaps more useful is the ability to model a multi-
strand corona. In such a scenario (e.g., Cargill 1994; Cargill
& Klimchuk 1997), the coronal emission comes from many
(perhaps thousands) of separately evolving strands. This is still
beyond the abilities of 1D hydro codes, at least with a realistic
turn-around time, whereas EBTEL can model such a scenario
in a few hours, and indeed perhaps less if a properly optimized
version is used.

J.A.K. and S.J.B. thank the NASA Supporting Research and
Technology Program. We are grateful to the International Space
Science Institute (ISSI) for supporting our team, to Helen Mason
for acting as co-leader of this team with S.J.B. and to Fabio Reale
for useful discussions about catastrophic loop cooling.

APPENDIX A

COMPARISON OF ANALYTICAL AND NUMERICAL
VALUES OF C1 FOR A SIMPLE RADIATIVE

LOSS FUNCTION

C1 and C3 can be calculated analytically from Martens (2010).
Assuming uniform heating, a single power-law slope of α for
the loss function, and boundary conditions of vanishing heat
flux at top and bottom of loop, and vanishing temperature at
bottom, he writes the energy equation in terms of the variable
η = (T/Ta)7/2 as

ε
d2η

ds2
= ημ − ξ, μ = −2(2 − α)

7
, ξ = 7

3 + 2α
, (A1)

ε = 2

(1 − 2(2 − α)/7)

[
2(2 − α)

7

]2 1

B2(λ + 1, 1/2)
,

λ = 3/2 + α

2(2 − α)
,

where Ta is the apex temperature and the scaling laws are used
to eliminate L, Q, and p. B(a, b) is a beta function. He solves the
energy equation for a variable u = η−μ as

s/L = βr (u, λ + 1, 1/2),

where βr is the normalized incomplete beta function.
At the point where conduction changes from a gain to

a loss, denoted by subscript zero, Equation (A1) gives
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η0 = (7/(3 + 2α))−(7/2(2−α)) or, in real units, T0/Ta =
(7/(3 + 2α))−(1/(2−α)). Setting α = −1/2, we get C3 = T0/Ta =
(2/7)2/5 = 0.606. For α = −2/3, C3 = 0.584. We can also cal-
culate C1 as follows. The dimensionless coronal radiative losses
are ∫ 1

s(η0)
ημds = ξ (1 − s(η0)) − ε

(
dη

ds

)
s=s(η0)

.

Now Equation (A1) integrates once to give, on application of
the boundary conditions:

ε

2

(
dη

ds

)2

= ημ+1

μ + 1
− ξη, (A2)

so that (
dη

ds

)
s=s(η0)

=
√√√√2

ε

(
η

μ+1
0

μ + 1
− ξη0

)
. (A3)

The total radiative loss is just ξ in these units so that the TR loss
is then ∫ s(η0)

0
ημds = ξs(η0) + ε

(
dη

ds

)
s=s(η0)

.

We have calculated η0 above, and so can obtain C1, which is
independent of Q, L, and p. For α = −1/2, we get C1 = 1.76
and for α = −2/3, C1 = 2.095.

We now compare the Martens solutions with a numerical
solution that has a lower boundary at 2 × 104 K, a single
power-law loss function above 105 K and a loss function scaling
as T 2 below. (This eliminates the problem that the vanishing
heat flux is only exactly enforceable in the limit of vanishing
base temperature.) We use the following spatial grid with
5000 points:

s/L = (2/π )[sin−1x − x
√

1 − x2]

and x is evenly distributed between 0 and 1. The motivation can
be seen in Equation (C1) of Rosner et al. (1978) and it does give
well-resolved solutions at all temperatures.

An array of cases has been run: three loop half-lengths, 2.5,
5, and 7.5 × 109, and Ta between 106 and 107 for each length. It

Table 3
Constants C1, C2, and C3 for Two Loss Functions

α = −1/2 C1 C2 C3

Analytic 1.76 0.89 0.606
Numerical 1.65–1.74 0.895 0.62–0.61
α = −2/3
Analytic 2.09 0.89 0.585
Numerical 1.88–2.06 0.892 0.61–0.59

Note. The range of values in each box are those obtained as Ta

increases from low to high.

turns out that the results are by and large independent of the loop
half-length, so individual results are not shown, rather the ranges
of values are given in Table 3. It can be seen that C2 = 0.89 and
C3 = 0.6 are reasonable for both cases. The lower values of C1
correspond to smaller Ta where the T 2 loss function at lower
temperatures makes a greater relative contribution to the loop
losses. We would argue that for a simple model, C1 = 1.7 for
α = −1/2 and C1 = 2 for α = −2/3 are appropriate.

APPENDIX B

C1 FOR MULTIPLE POWER- LAW RADIATIVE
LOSS FUNCTION

Neglecting gravity, we evaluate C1 for a more complicated
loss function by comparing results for the EBTEL loss function
and the single power-law one, using a similar approach to
including gravity in Section 3.1:

C1 = Rtr

Rc

=
[

Rtr(T )

Rtr(α = −2/3)

] [
Rtr(α = −2/3)

Rc(α = −2/3)

]

×
[
Rc(α = −2/3)

Rc(T )

]
, (B1)

where Rtr(T) and Rc(T) evaluate the loss functions at a given
temperature using the full power law in EBTEL. The right-hand
plot in Figure 9 shows little difference in the TR losses between
the two radiative loss models (stars), so we can assume that the
first term in Equation (B1) is unity. The explanation is once
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Figure 10. Upper row shows C1 as a function of Ta for two temperature ranges and L = 5 × 109 cm. Stars, circles, and plus signs are, respectively, C1 for single
power loss function and no gravity, for the EBTEL loss function and gravity, and the estimate of C1 in Equation (B2). The lower row shows the ratio of radiative losses
assuming a single power law with low-temperature correction and no gravity, and the EBTEL loss function and gravity in the transition region (stars) and corona
(circles).

again that the TR losses are determined by the heat flux from
the corona. The coronal loss (circles) does show differences
between the models. The second term in Equation (B1) is 2.
For the third term, we use the average coronal temperature
(T = T̄ = C2Ta) in Equation (B1). The left-hand plot of
Figure 9 shows the same quantities as the upper left plot of
Figure 3 for a loop of length 5 × 109 cm. This model for C1 is
almost independent of the loop length.

We can also combine the two corrections for loops with
gravity and the general EBTEL loss function by replacing the
ratio before the exponential in Equation (11) (which has gravity
and the simple loss function) with Equation (B1) (which has no
gravity and the full loss function), and using the fact that the TR
losses are roughly the same for all cases:

C1(eqm) = Rtr(g, T̄ )

Rc(g, T̄ )
=

[
Rtr(g = 0, α = −2/3)

Rc(g = 0, α = −2/3)

]

×
[
Rc(g = 0, α = −2/3)

Rc(g = 0, T̄ )

]
exp(4L sin(π/5)/λ̄π ),

(B2)

where we now denote the “equilibrium” value of C1 as C1(eqm).
The first ratio is 2 in this paper, but is written in a general form
to allow for changes to the coronal losses that no longer use our
power-law approximation. Figure 10 shows the results in the
same format as Figure 9 for two temperature ranges and a loop
length of 5 × 109 cm.
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