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ABSTRACT 

Quantum Plasmonics: A first-principles investigation of metallic nanostructures and 

their optical properties 

by 

Jorge Z uloaga 

The electronic structure and optical properties of metallic nanoparti­

cles are theoretically investigated from first principles. An efficient im­

plementation of time-dependent density functional theory allows a fully 

quantum mechanical description of systems large enough to display col-

lective electron oscillations and surface plasmon modes. The results are 

compared with traditional classical electrodynamical approaches. Differ-

ent regimes of interest are identified, both where classical electrodynamical 

models yield accurate descriptions, and where quantum effects are indis-

pensable for understanding plasmonic properties in nanostructures. The 

limits of validity of classical electrodynamics are clearly established for 

the study of a variety of relevant geometries. 
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CHAPTER 1 

Introduction 

The fascinating optical properties of metallic nanoparticles have captured the inter­

est of people since antiquity. [1] In recent years, large research efforts have yielded 

a more fundamental understanding of nanophotonics. [2] It is now well established 

that the optical properties of metallic nanoparticles are determined by the collec­

tive oscillations of their conduction electrons, known as plasmon resonances. [3, 4] 

This plasmonic response of nanoparticles has often been found to be accurately de­

scribed by classical electrodynamics. [5, 6, 7, 8] Theoretical investigations based on 

first-principles calculations have confirmed that the plasmon resonances in simple 

single-particle systems are in good agreement with classical electrodynamical calcula­

tions and experimental results. [9, 10] More recent ab initio studies [11] have shown, 

however, that electromagnetic field enhancements near particle surfaces may be sig­

nificantly screened by realistic electron density distributions at the interface between 

a metal and the surrounding medium. Moreover, in geometries where two metallic 

surfaces are in close proximity to each other, quantum effects such as electron tun­

neling and screening, may drastically reduce electromagnetic field enhancements and 

significantly modify plasmon resonant frequencies. [12] These important effects are ne­

glected by purely classical descriptions of plasmonic particles based on discontinuous 
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dielectric models at particle-medium interfaces. 

The objective of this work is to provide a thorough first-principles investigation 

of a variety of metallic nanostructure geometries of interest. Electronic structure and 

optical properties are described within a fully quantum mechanical framework, and 

the results are compared with classical electrodynamical predictions. In chapter 2 

we elaborate on the formalism used for electronic structure calculation. Chapter 3 

discusses the theory of electronic linear response, which is used for the investigation 

of nanoparticle optical properties. Chapters 4, 5, and 6 are devoted to the detailed 

study of different nanoparticle geometries of interest. 



CHAPTER 2 

Electronic Structure 

In this chapter we describe the theoretical formalism used to investigate the electronic 

structure of nanoparticles. We present a general overview of the theory, followed by a 

discussion of how it is applied to the systems we are interested in. We then develop the 

formalism in a framework that is appropriate for particles with different symmetries. 

The chapter concludes with examples of applications and calculations of electronic 

structure for different nanostructure geometries. 

2.1 Density Functional Theory 

Density functional theory (DFT) is a variational formulation of quantum mechanics 

that is particularly useful for the study of the electronic structure in condensed matter 

physics. In the Schrodinger picture, the many-body problem for a general N-electron 

system subject to an external potential Vext, is described by the many-electron time-

independent Schrodinger equation 

(2.1) 
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The third summation in the Hamiltonian, which describes the electron-electron inter-

actions, makes the numerical solution of the problem nontrivial. This computational 

obstacle is circumcised by the key insight of density functional theory, which is con-

tained in the Hohenberg-Kohn theorems.[13] These theorems place the theory in firm 

theoretical footing by guaranteeing the existence of an effective, position dependent, 

single-particle potential Ve1 1 that captures the dynamics of electron interactions. In 

other words, the potential energy term in the many-electron Schrodinger equation 

(2.1) may be described by a single-particle effective potential with which electrons in­

teract individually. The problem is then cast as a system of non interacting particles: 

(2.2) 

where the equation becomes separable. We may now write the many-electron wave 

function as a product of single-electron wave functions 

(2.3) 

and the total energy of the system as a sum of N single-electron energies 

(2.4) 

Substituting (2.3) and (2.4) into (2.2) and dividing by W = '1j;(fi)'I/J(f2) · · · '1/J(fN) 

we find that the many-electron Schrodinger equation is satisfied if N single-electron 

Schrodinger equations of the form 

(2.5) 

are satisfied. For this work, atomic units will be used and we will haven= m = e = 1. 
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2.2 The Kohn-Sham Equations 

We have now seen that we may transform one N -electron Schrodinger equation into N 

single-electron equations. This is one of the most useful formulations of density func­

tional theory. Calculating the electronic structure of a many-body system amounts 

to solving the corresponding Kohn-Sham equations:[14] 

(2.6) 

where '1/Ji and Ei are the single-electron wavefunctions and eigen energies, respectively, 

and UKs is the effective Kohn-Sham potential under which the single electrons move. 

The electron density of the system is calculated from the single-electron wavefunc-

tions: 

(2.7) 

The term 1/(l+e.B(€i-JL)) in eq. (2.7) is the occupation number of a Fermi gas at finite 

temperature T for energy Ei· The temperature Tis given by {3 = 1/kT. The effective 

Kohn-Sham potential U KS under which the single electrons move is a functional of 

the electron density n(T): 

UKs(T) = Vo(T) + VH[n(T)] + Vxc[n(T)], (2.8) 

which includes a background pseudo-potential V0 , the Hartree electrostatic potential 

VH, and the exchange-correlation potential Vxc· The background pseudo-potential is 

a important quantity in calculating the electronic structure for metallic nanoparticles, 

where it is essential that the ionization potential of the metal match the known value 

of the metallic work function. The background pseudo-potential Vo is chosen to be 

zero outside the particle and with a constant value -v0 ( v0 > 0) inside the particle. 
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The value v0 is adjusted to yield the correct value for the metallic work function. 

The electronic structure of the system is calculated by self-consistently solving eqs. 

(2.6)-(2.8). In dealing with electrons moving under the influence of the positive ions in 

a metal, calculations are often done via the so-called jellium approximation, where the 

discrete positive ions are modeled by a continuous, uniform positive charge. Since 

the optical properties of a metallic nanoparticle are determined by the conduction 

electrons, we expect the jellium model to provide an accurate description. Previously, 

jellium models of shell structures have been successfully used for the investigation 

of the electronic structure of C60 and other fullerene systems. [15] Jellium models 

have also been widely used to model small metallic clusters. [16, 17] The numerical 

simplifications enabled by the jellium model are significant and allow the study of 

nanoparticles sufficiently large to have a fully developed plasmon mode. [12] 

When calculating the electronic structure of a nanoparticle in the jellium model, 

the Hartree potential in eq. (2.8) takes the form: 

v; (;;'I =I n(r)- no(r) d..cf 
H rJ llf-r'll r, (2.9) 

where n(T) is the electron density given from eq. (2.7) and n0 (T) is the positive 

pseudo-ionic charge taken to be zero outside the particle and with uniform density 

n0 = 3/ ( 47rr;) inside the particle. The appropriate charge density is chosen for the 

metal of interest by using the Wigner-Seitz radius r s of the metal. 

The exact form of the exchange-correlation potential Vxc in eq. (2.8) is given by 

the functional derivative of the exchange-correlation energy functional: 

1 , [ (;:;'\] = c5Exc[n(f}] 
Vxc n r) c5n(T) . (2.10) 

While an exact form of the energy functional Exc[n(T)] exists, it is not known. [13] 
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Approximating the form of Exc is the ultimate source of error in the method. [18] This 

error, however, is especially small when considering the ground-state of the many­

electron system. [19] For this work, we will work in the local density approximation 

(LDA), [14] where the exchange-correlation energy of a nonuniform electron gas of 

slowly varying density n( f) is presumed to be 

Exc[n(T)] = j Exc[n(r)]n(r)dr, (2.11) 

with Exc being the exchange-correlation energy per particle for a homogeneous system 

with density n(T). Vxc can then be directly calculated through eq. (2.10). The final 

form obtained for Vxc is the Perdew-Zunger LDA exchange-correlation potential [20]: 

- 0·611 + 0.03109log T8 - 0.0584 
Ts 

+0.0013r8 log T8 - 0.007r8 if T8 < 1. 

0.611 0.1423(1+1.23y'T!+0.445rs) "f > 1 ---- 1 r 
Ts (1+1.1592y'r;+0.3334r8 )2 s • 

2.3 Calculating Electronic Structure 

We are interested in calculating the electronic structure of metallic nanoparticles. 

This problem has been reduced to self-consistently solving eqs. (2.6)-(2.8). The main 

computational challenge is to solve the single-electron Schrodinger equation (2.6) 

for the geometry of interest. A general solution for three dimensional geometries is 

extremely expensive computationally, but exploiting symmetry may lead to significant 

simplifications of the problem. In this section we look at special cases where symmetry 

reduces the number of computational dimensions. 
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2.3.1 Particles with spherical symmetry 

For the special case of particles with spherical symmetry, the computational problem 

becomes one-dimensional. In a spherically symmetric system, UKs in eq. (2.6) has 

no angular dependence, and the single-electron Schrodinger equation can be written 

(2.12) 

Separating variables we let 7/J(r, (), ¢) = R(r)Y(O, ¢) and write eq. (2.12) as 

(2.13) 

We may separate (2.13) into an angular equation and a radial equation. For con­

venience we use a separation constant equal to l ( l + 1). The angular equation is 

independent of the effective potential UKs(r) and introduces another quantum num­

ber m as a separation constant for the variables () and ¢. Its solutions are the well 

known spherical harmonics: 

(2.14) 

The radial equation depends on the effective Kohn-Sham potential: 

(2.15) 

Using the change of variable u(r) _ rR(r), the radial equation is often written as 

(2.16) 
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For any quantum numbers l and m, and for any energy En, we then have that the 

Schrodinger equation (2.12) is satisfied by a wave function of the form 

'1/Jnlm(r, (), ¢) = Rnt(r)Yzm((), ¢). (2.17) 

The computational Kohn-Sham problem is then reduced to solving the one-dimensional 

eq. (2.16) self-consistently with eqs. (2.7) and (2.8). 

An interesting plasmonic nanoparticle with spherical symmetry is the so-called 

nanoshell, [21] consisting of a dielectric spherical core surrounded by a metallic 

shell. [22, 23, 24, 25] The interest in these particles lies in their exceptional tunability: 

by varying the ratio of the shell thickness with respect to the overall diameter of the 

particle, the plasmon frequencies of the nanoshells can be placed at arbitrary wave­

lengths between the mid infrared and the UV region of the optical spectrum. [6, 7, 8] 

The exceptional tunability of these particles has been experimentally verified [26] 

and makes them particularly attractive for applications that include Raman sen­

sors, [27] environmental sensors, [28] drug delivery implants, [29] optical triggers for 

opto-mechanical materials, [30] and photo-oxidation inhibitors. [31] 

With the computational procedure described above we are able to calculate the 

electronic structure of nanoshells of large enough size to exhibit fully developed plas­

mon modes. The optical response of nanoshells has been previously studied from 

first principles [32]. Such studies reveal good agreement with experimental results, 

supporting the assumption that the jellium approximation captures the physics at 

the optical and infrared frequencies studied. [33] The calculated electron density for 

a gold nanoshell of inner radius 10 Bohr, outer radius 20 Bohr, and a vacuum core is 

plotted in Fig. 2.1. 
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Figure 2.1: Electron density as a function of radius for a gold nanoshell of inner radius 
10 Bohr, outer radius 20 Bohr, and a vacuum core. 
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2.3.2 Particles with cylindrical symmetry 

Recent innovations in experimental techniques allow the fabrication of new nanoparti-

des with novel plasmonic properties. Some of these particles include nanorods, [34, 35, 

36, 37, 38, 39, 40, 41] nanoeggs (nanoshells with an off-centered core), [42] nanocups, 

[43, 44, 45, 46] nanoparticle dimers, [47, 48, 49, 50, 51] nanowires, [52, 53, 54, 55, 56] 

and nanorice (metallic nanorods with dielectric cores), [57, 58, 59] all of which possess 

cylindrical azimuthal symmetry. While it is desirable to theoretically investigate the 

optical properties of such particles from first principles, the Kohn-Sham equations for 

particles of cylindrical symmetry become a two-dimensional problem of significantly 

more computational complexity than the one-dimensional problem appropriate for 

spherically symmetric particles. One of our goals was to extend this DFT approach 

to cases where the symmetry of the system is azimuthal. Here we present the mapping 

of the problem into cylindrical symmetry. 

When doing electronic structure calculations for particles with cylindrical sym-

metry, UKs in eq. (2.6) has no azimuthal dependence. In cylindrical coordinates we 

write UKs = UKs(p, z), and the azimuthal dependence of the single-electron wave 

functions can be separated out: '1/Jnm(P, ¢, z) = ;j;nm(P, z)eim¢>. The single-electron 

Schrodinger equation (2.6) may then be written 

(2.18) 

By making the change of variable ¢(p, z) = yip;f;(p, z), we may write this equation as 

(2.19) 

Now the Kohn-Sham problem consists of solving the two-dimensional single-electron 

Schrodinger equation (2.19) self-consistently with eq. (2. 7) and (2.8). 
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As a first application and test, we use this generalized procedure for azimuthally 

symmetric systems to calculate the electron density of a spherically symmetric nanoshell. 

In Fig. 2.2 we plot the electron density as a function of radius for a gold spherical 

nanoshell of inner radius 10 Bohr and outer radius 20 Bohr. The electron density 

calculated with the one-dimensional approach for spherical systems is denoted with 

the solid black line. The red circles mark the density calculated with the generalized 

approach for azimuthally symmetric systems. The calculated electron densities from 

both approaches are in agreement. 

We now exploit the generalized approach for azimuthally symmetric systems to 

calculate the electron density for other systems of interest that lack spherical sym­

metry. Fig. 2.3 shows the calculated electron density n(r') for a gold nanoegg (non 

concentric shell) with core radius 12 Bohr, shell radius 24 Bohr, and core displace­

ment of 9 Bohr. The figure reveals the expected oscillatory behavior of the electron 

density inside the particle due to Friedel oscillations. [32] It is also clear that, in the 

narrow metal strip produced by the proximity of the inner core to the outer shell, 

the electron density is reduced due to confinement effects. These important quantum 

effects are will prove to be crucial in understanding the optical properties of such 

systems. 

As another example of an important cylindrically symmetric geometry that can be 

studied with the approach mentioned above, in Fig. 2.4 we plot the electron density 

for a gold sphere dimer. The radius of the particles is 24 Bohr and their separation 

distance is 5 Bohr, so there is no significant overlap in their electron densities, but 

the figure reveals the expected Friedel oscillations inside the particles. The effective 

Kohn-Sham potential for these particles is plotted in Fig. 2.5. As has been mentioned 

above, in the Kohn-Sham formulation of the problem, the electrons behave as non­

interaction particles, all subject to this position-dependent effective potential. 
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Figure 2.2: Electron density as a function of radius for a gold nanoshell of inner 
radius 10 Bohr, outer radius 20 Bohr, and a vacuum core. The solid black line shows 
the electron density calculated using the one dimensional procedure for systems with 
spherical symmetry. The red circles mark the electron density calculated using the 
two dimensional procedure for systems with azimuthal cylindrical symmetry. 
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Figure 2.3: Electron density for a non concentric gold nanoshell with a vacuum core. 
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Figure 2.5: Effective Kohn-Sham potential UKs(f) for an R = 24 Bohr sphere dimer. 
The separation distance is 5 Bohr. 



CHAPTER 3 

Optical Absorption 

Having calculated the equilibrium electron density for a nanostructure, we now study 

the linear response of the electrons to external perturbations. In this chapter we 

elaborate on how the theory of linear response is used to calculate induced charge 

density in nanoparticles. This allows us to calculate the optical absorption. 

3.1 Independent electron induced charge density 

The frequency dependent optical absorption calculation was completed within time­

dependent density functional theory (TDDFT). For the independent electrons, the 

linear response equation for the frequency dependent induced density perturbation is 

given by: 

(3.1) 

where x0 (r, f'; w) is the independent electron density-density correlation function and 

Vext (r, w) is the external driving potential. The independent electron density-density 

correlation function has an exact expression in terms of the single-electron Kohn-Sham 
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orbitals obtained from the equilibrium electronic structure calculation (Eq. 2.5): 

o( .... ,.-,~. ) = """'(!·- f·)'I/Ji(r)'I/Ji(f}'I/Jj(r)'!j;j(f) x r,r ,w L- ~ 1 f, ( ) + ·s: , 
. . nW- Ej- Ei W 
~.J 

(3.2) 

where fi represents the finite temperature occupation number of the ith state. We 

can rewrite (3.2) as 

(3.3) 

or relabeling the dummy indices in the second term: 

(3.4) 

For cylindrically symmetric systems where UKs = UKs(p, z), the azimuthal depen-

dence of the single-electron wave functions can be separated out as shown in Eq. 

(2.18): '1/Jnm(P, ¢, z) = ;j;nm(p, z)eimcf>. Here, each single electron state '1/Ji(f) is de­

scribed by the two quantum numbers nand m: '1/Jnm(p, ¢, z). A sum over all values 

of i then corresponds to a sum over all values of n and m. If we take { ;j;nm} to 

be normalized, we must include a normalization factor of 1/ ..fi7i to have normalized 
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single electron wavefunctions: 

1 - . ¢ 
'1/Jnm(P, ¢, z) = V'iif'l/Jnm(P, z)e~m . (3.5) 

The independent electron density-density correlation function can then be expressed 

as 

00 00 

x0 (r, P; w) = L L 2~ {f;nm(P1 , Z 1){/;nm(P, z)eim(¢-¢') 

n=l m=-oo 
occ occ 

00 00 n/. ( 1 1)"/, ( ) im'(¢-¢') 
X L L 'f'n'm' p 'z 'f'n'm' p, z e 

n'=lm'=-oo 2n [(Enm + hw + i6)- tn'm'] 

+ f f 2~ {/;nm(P1 , Z 1){/;nm(P, z)eim(¢-¢') 

n=l m=-oo 
occ occ 

00 00 n/. ( 1 1)"/, ( ) im'(¢-¢') XL L 'f'n'm' p 'z 'f'n'm' p., z e . 
27r [(Enm- nw- z6)- tn'm'l 

n'=lm'=-oo 

(3.6) 

The Green's function is also given in terms of the single-electron Kohn-Sham 

orbitals: 

(3.7) 

which due to the cylindrical symmetry can factorize as 

00 

-! I: 1 . .,.,~ . "' G(r r · >..) = -G (p p1• z z1 • >..)e-~m'~' e~m'~' 
' ' 2n m ' ' ' ' ' 

(3.8) 
m=-oo 

with 

G ( I. I. ') - Loo {f;nm (P1
' Z 1){/;nm (p, z) 

m p,p,z,z,A - , . 
/1-E n=l nm 

(3.9) 

Let >..+ = (Enm + hw + i6) and>..- = (Enm- hw- i6). Using eq. (3.8) and (3.9) we 
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can now rewrite eq. (3.3) in terms of the Green's functions: 

o( .... -1. ) _ ~ ~ ~ [;j}nm(P', z');j}nm(P, z) im(¢-¢') im'(¢-¢') 
X r,r ,w - ~m~oom~oo (27r)2 e e 

occ occ 

(3.10) 

or letting M = m + m': 

Xo(r, r; w) = f f f ;j}nm(p', z');j}nm(P, z) eiM(<P-<P') 
n=l m=-oo M=-oo (21r )2 
occ occ 

X [GM-m(p,p';z,z';A+)+GM-m(p,p';z,z';A-)]. (3.11) 

In the dipole approximation and assuming polarization along the z-axis, the external 

driving potential is given by Vext = -zE0 . Using this expression together with eq. 

(3.11) in eq. (3.1), we write the independent electron induced density as: 

Ono (i', w) ~ J J J 2;- ;;; z;; </;nm (p' '(~~f;m(p, z) eiM(,Hi) 

occ occ 

X [GM-m(P, p'; z, z'; A+)+ GM-m(P, p'; z, z'; A-)] 

x ( -z' E0 )p' dp' dz' d¢'. (3.12) 

The integration over ¢ kills every term in the sum over M except the term M = 0 

that adds a factor of 21r: 

bno(r,w) = f f -Eo;j};;(p, z) J J ;j}nm(p', z') 
n=l m=-oo 
occ occ 

X [Go-m(P, p'; z, z'; A+)+ Go-m(P, p'; z, z'; A-)] 

x z' p' dp' dz'. (3.13) 
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Now, the key observation is that, using the properties of Green's functions, integrals 

of the form 

u;..(p,z) =-J J F(p',z')Gm(p,p';z,z';A.) p' dp'dz' (3.14) 

can be expressed as solutions to the differential equation 

- --- -- - --+-+ UKs(p, z) -).. u;..(p, z) = F(p, z). [ 1 fJ2 1 a2 1 a m 2 l 
2 ap2 2 az2 2p ap 2p2 

(3.15) 

The independent electron induced density then takes the simplified form: 

s: o(..... ) ~ ~ f Eo-0nm(P, z) [ ) un r,w =L.-JL.-J nm 271" U;..+,nm+U>.-,nm' 
n=l m=O 

(3.16) 

with u;..±,nm satisfying: 

[ 
1 a2 1 a2 1 a ( 0 - m )2 ±] - -- 2 ap2 - 2 az2 - 2p ap + 2p2 + UKs(p, z)-).. U>.±,nm(P, z) - z'l/Jnm(P, z). 

(3.17) 

and the occupation number of the single-electron states given by the Fermi-Dirac 

distribution 
2 

fnm = 1 + ef3(Enm-J.t) • 
(3.18) 

Our problem then consists of solving eq. (3.17) for all occupied states and then 

calculating the independent electron induced charge density through eq. (3.16). 
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3.2 Total induced charge density 

To calculate the total induced charge density, we must use the total (self-consistent) 

perturbing potential in the integrand of eq. (3.1): 

(3.19) 

Here, the total perturbing potential vtot is the sum of the external perturbing potential 

Vext and a term that depends on the total induced density: 

(3.20) 

where U KS is the effective potential appearing in the electronic structure calculation. 

This self consistent calculation can be cast in the form of linear problem: 

(3.21) 

Using eq. (3.1) we may write 

[ 1- j dr 6~~s] 6n(r, w) = 6n°(f, w), (3.22) 

where the right hand side has been calculated through eq. (3.16). This can be written 

in operator form as 

[I A 6UKs] x Aov: x o - Xo * --g:;;:- un = X ext = un · (3.23) 

Calculating the total induced charge density is now cast in the form of solving the 

linear problem (3.23). 

We use the Biconjugate Gradient Algorithm[60] to solve this linear equation. Note 



23 

that we use the Biconjugate and not the simpler Conjugate Algorithm since the 

operator multiplying on is not symmetric. In this algorithm, the only thing that we 

need to supply is an efficient subroutine that applies ;\:0 on a general function V(p, z). 

The action of 8Uxs/8n is trivial to compute. 

Similarly to how we computed the action of ;\:0 on Vext to compute 8n°, to compute 

the action of ;\:0 on an arbitrary function V (p, z), we solve the linear equation: 

for all (n, m) indices of the occupied states and use the U>.±,nm to compute the 

desired result: 

AoV( ) ~ ~ f 1/;nm(P, z) [ ] X p, Z =- L..J L..J nm 21f U.>.+,nm + U.>.-,nm · 
n=l m=O 

(3.25) 

Eq. (3.24) is solved using the same Biconjugate Gradient Algorithm as before, where 

the action of the reduced Kohn-Sham Hamiltonian on a function u(p, z) is imple-

mented on a grid, using a finite difference expression for the kinetic part. 

The convergence of the Biconjugate Gradient Algorithm depends crucially on the 

initial guess. One important aspect of the present calculations is that we compute the 

optical spectrum for a sequence of frequencies and the computed on for one frequency 

can be used as the starting point in the Biconjugate Gradient Algorithm for the 

next frequency. Thus, excepting the first frequency, the iteration in the Biconjugate 

Gradient Algorithm converges extremely fast, typically in less than 4 steps. 

From the perturbed density we compute the induced dipole moment P (w) -

J r8n(rw)d3r. In the linear response regime, P(w) is proportional to the driving field 

Eo: .P (w) = a(w)Eo, where a(w) is the frequency dependent polarizability tensor of 

the system. The total optical absorption cross section CT(w) is directly related to the 
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imaginary part of the polarizability. For a driving field oriented along the z direction, 

O"(w) = ~Im[azz(w)]. 

In the following chapters we will apply the formalism described above to investi­

gate the optical properties of a variety of metallic nanostructure geometries of interest. 



CHAPTER 4 

Single Particle Systems: Nanorods 

One of the most pivotal discoveries in the field of plasmonics has been the realiza­

tion that the plasmon resonances of a metallic nanoparticle can be tuned to occur 

at specific frequencies by modifying the particle geometry. This has been demon­

strated experimentally for a variety of nanostructures whose plasmonic properties 

were nanoengineered using reproducible, controlled processes specific to each struc­

ture. Two of the most highly tunable plasmonic particles available are nanoshells 

and nanorods. For nanoshells, [22, 61, 62, 63, 64] the plasmon frequencies can be 

tuned by simply varying the ratio between the thickness of the shell and the overall 

diameter, which can be accomplished by controlled chemical synthesis. N anorods, in 

contrast, are characterized by their aspect ratio (, defined as the ratio between its 

length and its width. The energies of their plasmon resonances depend quite sensi­

tively on (, [65, 41, 39, 66, 67] so varying this ratio provides the tuning mechanism 

for nanorods. Nanorods can be fabricated by either template-based or seeded growth 

methods.[41] In contrast to the nanoshell, the nanorod is anisotropic and exhibits dif­

ferent resonances when illuminated with light of different polarizations. The ease with 

which these two types of nanoparticles can be synthesized with controlled geometry 

has made both nanoshells and nanorods highly popular substrates for applications in 
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sensing, medicine, and spectroscopy. [68, 69, 70] 

The electromagnetic properties of both nanoshells and nanorods have been inves­

tigated quite extensively using classical electromagnetic theory.[71, 72] There have 

only few ab initio studies on this subject. The spherical symmetry of nanoshells 

simplifies their theoretical investigation by allowing the computational problem to be 

reduced to one dimension. [73, 74, 33] Nanorods, on the other hand, exhibit cylindri­

cal symmetry, and their theoretical investigation from first principles requires solving 

a two dimensional problem. [11] This chapter is devoted to exploiting our generalized 

TDDFT formalism for cylindrically symmetric systems to study nanorods. We will 

see how quantum effects play a significant role in accurately describing the plasmonic 

properties of nanorods and are of crucial importance to establish the limits of validity 

of classical descriptions. 

In classical electromagnetic modeling, the nanoparticles are defined by their di­

electric permittivity, which changes abruptly at the nanoparticle-air interface. Such 

classical approximations neglect the spill-out of electrons outside a realistic nanopar­

ticle surface, and also do not take into account the associated gradual change of 

the dielectric properties at the surfaces. Electron spill-out at the particle surfaces 

introduces a source of screening that is absent in a classical description. 

In this chapter we will focus on the optical properties of silver nanorods. We 

will see how the calculations reveal distinct longitudinal and transverse plasmon reso­

nances with frequencies that can be tuned by varying the aspect ratio ( of the nanorod. 

The ( dependence of the energies of both the longitudinal and transverse plasmon 

modes has been found to be in excellent agreement with the predictions of classical 

electromagnetic modeling, where the surfaces of the nanoparticles are assumed to be 

infinitely sharp. However, the plasmon-induced electric field enhancements obtained 

from the quantum mechanical approach are found to be much smaller than those 
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obtained using classical theory. The major differences occur within 0.5 nm of the 

surface of the nanoparticle, and are due to nonlocal screening introduced by the finite 

electron spill-out. 

4.1 Optical Absorption 

For the size regime that is the focus of this chapter, particles are in the quasistatic 

limit and the optical response is dominated by the dipolar plasmon mode [58]. The 

optical spectra of small nanorods are characterized by a longitudinal and two degen­

erate transverse dipolar plasmon resonances. From experiment as well as classical 

simulations,[65] the longitudinal mode is known to strongly redshift as the aspect 

ratio ( of the rod increases, while the transverse mode has the opposite behavior, 

i.e. it blueshifts with increasing(. The longitudinal mode is also known to be more 

sensitive to changes in the aspect ratio than the transverse mode. 

For our simulations, we model the nanorods as prolate spheroids. In this case, 

their geometry is uniquely defined by their aspect ratio ( and length b of their major 

axis. To do the quantum calculations, the strength of the pseudopotential Vo(f') (see 

Eq. (2.8)) has been adjusted such that the computed work function matches the 

value of 4.5 eV appropriate for Ag. This assures that our simulations give the correct 

electron spill-out profile. In addition, our simulation includes a background dielectric 

that takes into account the polarizability of the ion cores. 

As described in chapter 2, our simulations are based on a jellium description 

appropriate for Ag, which assumes a uniformly distributed positive ionic charge of 

appropriate density throughout the volume of the nanorod. In each direction, the size 

of the jellium model is half a lattice plane spacing larger than the physical size of the 

particle. For Ag, the separation between close-packed lattice planes is approximately 

4 Bohr, which places the jellium surfaces approximately 2 Bohr outside what would 
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be the real surface of the silver nanoparticles. For the frequency range considered in 

this paper, such jellium models are known to provide good quantitative descriptions 

of the optical properties of small metallic nanoparticles. [32] As discussed in chapter 

2, this approximation will enable us to simulate sufficiently large structures (up to 

more than 2x 103 conduction electrons), a necessary condition in order to obtain a 

well-developed plasmonic response. 

We employ the linear response version of TDDFT discussed in chapter 3. The 

equilibrium self-consistent Kohn-Sham equations are solved for the conduction elec­

trons of the nanorods. The equilibrium Kohn-Sham orbitals are then used to compute 

the independent electron response function and the induced screening charge is ob­

tained from a Random Phase Approximation-type integral equation, as discussed 

previously. 

We start by investigating nanorod spectra. In Fig. 4.1 we plot the normalized 

TDDFT optical absorption cross sections as a function of photon energy for nanorods 

of different aspect ratios(, ranging from ( = 1 (spherical) to ( = 3 (highly elongated). 

We have adjusted the overall lengths b of the nanorods so that each nanorod contains 

exactly 510 conduction electrons. Fig. 4.1 shows results for longitudinal (upper panel) 

and transverse (lower panel) polarization of the incident light. As one can see, all 

absorption curves display a prominent peak which is identified as a dipolar plasmon 

resonance. For longitudinal polarization, we observe a strong redshift of the plasmon 

resonance with increasing (. In contrast, for transverse polarization, the plasmon 

modes blueshift with increasing (, and the shifts are relatively small. The redshift 

of the longitudinal mode and the blueshift of the transverse mode with increasing 

aspect ratio is in agreement with previous classical electromagnetic calculations and 

experimental data.[65] 

The calculated spectra are all consistent with the f-sum rule, which states that the 
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Figure 4.1: Optical absorption spectra calculated using TDDFT for nanorods of 
different aspect ratios (. The top panel shows the longitudinal mode for nanorods 
with ( = 3, 2.5, 2, 1.5, 1.2, 1.1, and 1 with the labeling going from left to right. The 
bottom panel shows the transverse mode for the same (, but with a labeling from 
right to left. The length b of the nanorod is scaled so that each nanorod contains 
the same number of electrons (510). The spectra have been normalized to the cross 
sectional area of the nanorod. 
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total area under the curves remains constant. The intensity changes of the plasmon 

peak with aspect ratio are caused by our present normalization of the spectra in the 

figure. The spectra have been normalized to the cross sectional area of the nanorod. 

In Fig. 4.2 we plot the plasmon resonant frequencies as functions of ( as extracted 

from Fig. 4.1. The two branches correspond to the longitudinal and transverse plas­

mon modes. For comparison, we include the results of classical electromagnetic cal­

culations using the appropriate dielectric function for Ag. As can be seen, there is 

good quantitative agreement between classical and quantum descriptions for both 

the longitudinal and transverse modes. The TDDFT results slightly overestimate the 

energies for the transverse modes. This is a quantum size effect, which is expected 

to be stronger for the transverse polarization due to a more pronounced electron 

confinement in the transverse direction. It is clear that good quantitative agreement 

is obtained between the quantum and classical results when comparing the plasmon 

peak positions of nanorods. A similar quantitative agreement was seen between these 

two approaches for the calculated plasmon peak positions of nanoshells. [33, 32) 

4.2 Field Enhancements 

We will now investigate the electromagnetic field enhancements in nanorods using 

the same approach. Our focus will center mainly around the longitudinal dipolar 

plasmon mode, which is of primary interest in applications due to its facile tunability. 

In Fig. 4.3 we plot the field enhancements for rods of different aspect ratios. The 

bottom panels of the figure show the intensity maps of E / E0 , where E is the electric 

field in the presence of the nanorod and E0 is the applied electric field. The electric 

field intensities are plotted for rods of four different aspect ratios at the correspond­

ing resonant frequencies for each case. The bottom row of the figure displays the 

quantum mechanically calculated field enhancements, and the classically calculated 
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Figure 4.2: Longitudinal and transverse dipolar plasmon energies of a silver nanorod 
as a function of inverse aspect ratio 1/( for the nanorods discussed in Fig. 4.1. The 
TDDFT results are shown in blue and the classical electromagnetic results obtained 
using an equivalent dielectric permittivity for Ag are shown in black. 
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enhancements are plotted in the middle row. The rods are kept at a constant volume 

(containing 510 electrons) as we change the aspect ratio. The electric field intensity 

panels in the figure reveal that the spatial distribution of the field enhancements are 

similar for both the TDDFT and classical calculations. There are clear differences, 

however, if we look at the maximum value of the field enhancements. 

In the top panel of Fig. 4.3 we show the maximum value of the field enhancements 

extracted from the intensity maps as a function of (. For both methods of calculation, 

the maximum enhancements grow monotonically with (, but it is clear that the 

classical calculations overestimate the growth rate. For the case of perfect spheres 

( ( = 1) we have the lowest discrepancy between the maximum field enhancements 

calculated from both methods: the classical enhancements yield a value of 6 while 

the TDDFT result gives a value of 4. The difference between the two approaches 

becomes more pronounced with increases in the particle aspect ratio. For the most 

elongated particles (( = 3), the maximum classical field enhancement is 24, almost 

twice as large as the TDDFT value of 13. 

To look more closely at the differences between the field enhancements calculated 

with the classical and quantum mechanical approaches, we now plot the enhancements 

as a function of distance from the particle surface. Fig. 4.4 is a plot of the local field 

enhancements calculated at the peak resonant frequency using TDDFT (black curves) 

and classical electrodynamics (red curves). The top panel shows the enhancements 

for a sphere ( ( = 1) and the bottom panel shows the enhancements for a rod ( ( = 3) 

as a function of separation d from the particle surface. For both particles, the classical 

and TDDFT field enhancements are very similar ford larger than 10 Bohr, but start 

to deviate in value when d becomes smaller than 5 Bohr, with the difference reaching 

its largest value at the particle surface ( d = 0 Bohr). The figure reveals that the 

TDDFT field enhancements peak at approximately d = 3 Bohr from the surface, 
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Figure 4.2: Longitudinal and transverse dipolar plasmon energies of a silver nanorod 
as a function of inverse aspect ratio 1/( for the nanorods discussed in Fig. 4.1. The 
TDDFT results are shown in blue and the classical electromagnetic results obtained 
using an equivalent dielectric permittivity for Ag are shown in black. 
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enhancements are plotted in the middle row. The rods are kept at a constant volume 

(containing 510 electrons) as we change the aspect ratio. The electric field intensity 

panels in the figure reveal that the spatial distribution of the field enhancements are 

similar for both the TDDFT and classical calculations. There are clear differences, 

however, if we look at the maximum value of the field enhancements. 

In the top panel of Fig. 4.3 we show the maximum value of the field enhancements 

extracted from the intensity maps as a function of(. For both methods of calculation, 

the maximum enhancements grow monotonically with (, but it is clear that the 

classical calculations overestimate the growth rate. For the case of perfect spheres 

( ( = 1) we have the lowest discrepancy between the maximum field enhancements 

calculated from both methods: the classical enhancements yield a value of 6 while 

the TDDFT result gives a value of 4. The difference between the two approaches 

becomes more pronounced with increases in the particle aspect ratio. For the most 

elongated particles (( = 3), the maximum classical field enhancement is 24, almost 

twice as large as the TDDFT value of 13. 

To look more closely at the differences between the field enhancements calculated 

with the classical and quantum mechanical approaches, we now plot the enhancements 

as a function of distance from the particle surface. Fig. 4.4 is a plot of the local field 

enhancements calculated at the peak resonant frequency using TDDFT (black curves) 

and classical electrodynamics (red curves). The top panel shows the enhancements 

for a sphere ( ( = 1) and the bottom panel shows the enhancements for a rod ( ( = 3) 

as a function of separation d from the particle surface. For both particles, the classical 

and TDDFT field enhancements are very similar ford larger than 10 Bohr, but start 

to deviate in value when d becomes smaller than 5 Bohr, with the difference reaching 

its largest value at the particle surface ( d = 0 Bohr). The figure reveals that the 

TDDFT field enhancements peak at approximately d = 3 Bohr from the surface, 
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Figure 4.3: The upper graph shows a comparison of the maximum electromag­
netic field enhancements calculated using classical electromagnetic theory (red) and 
TDDFT (blue) for a nanorod as a function of (. The lower panels compare the 
field distributions calculated using classical electromagnetic theory (top panels) and 
TDDFT (bottom panels) for ( = 1 (A),(= 1.5 (B),(= 2 (C), and ( = 3 (D). The field 
enhancements were calculated for the resonant frequency of the longitudinal dipolar 
plasmon using a broadening of o = 0. 27 e V. The overall size b of each nanorod has 
been adjusted so it contains 510 electrons. 
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while the classical enhancements peak at the surface (d = 0 Bohr). This is true for 

rods of all aspect ratios. We will see shortly that the reason for the large discrepancy 

between the TDDFT and classical field enhancements in the near surface region (d < 

5 Bohr) is that the plasmon induced electron density calculated with the quantum 

mechanical approach is smeared over a significant region of space, while the induced 

density in the classical picture is an infinitely thin two-dimensional surface charge. 

Since the classical framework yields an induced surface charge that is a delta function 

in d, the maximal field enhancements occur at d = 0. 

In order to understand why the classical approach overestimates the field en­

hancements at short separations from the particle surface, it is helpful to analyze the 

electronic structure of the nanorods. In Fig. 4.5A we plot the equilibrium electron 

density as a function of distance d from the surface of the nanorod. The electron 

density is shown along the long (red) and short (black) axis for a nanorod with ( = 3. 

For comparison, we also show the density profile for a spherical particle of ( = 1 

(blue). The oscillatory behavior of the electron density inside the nanoparticles is 

due to Friedel oscillations. [32] We can see from the figure that the spill-out density is 

the same for all three cases, as we would expect, since the asymptotic electron density 

profile is determined by the Fermi level EF of the particle and vanishes as 

(4.1) 

where EF is measured from the vacuum level. The electron spill-out extends to ap­

proximately 3 Bohr beyond the particle surface. An important feature to notice in 

Fig. 4.5 is the pronounced anisotropy of the electron density for the elongated ( = 3 

nanorod, which can be easily seen by comparing the red and black curves. This 

is a purely geometrical effect due to the enhancement of Friedel oscillations by the 

increased electron confinement in the transverse direction. 
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Figure 4.4: Electric field enhancements as a function of distance d from the particle 
tip for an aspect ratio of (=1 (top) and (=3 (bottom). The classical calculations are 
shown with red lines and the TDDFT results are shown with black lines. 
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For the same nanorods as in Fig. 4.5A, we also calculate the induced screening 

charge density 8n using the TDDFT approach. Fig. 4.5B shows the induced charge 

density 8n at the longitudinal plasmon frequency, as a function of distance d from 

the nanorod surface. The more elongated rods (( = 3) show a pronounced increase 

in the screening charge near the tip area, as compared with the spheres ( ( = 1). This 

larger accumulation of charge near the tip is responsible for the increase in field en­

hancements for more elongated particles. In a classical picture, the same phenomenon 

appears, and more elongated particles have a larger accumulation of charge in the tip 

vicinity, leading to larger field enhancements. The crucial difference is that, in the 

classical picture, the induced screening charge is an infinitely thin surface charge, 

while the quantum calculations reveal a charge density that is distributed over a 

thick region ("" 10 Bohr) around the nanoparticle surface and extends out as far as 

the spill-out in the ground state electron density shown in Fig. 4.5A. For d well out­

side this smeared density, the Coulomb potential of the 3-dimensional volume charge 

density is not much different from that of the 2-dimensional surface charge, since 

the magnitude of the total induced charge is the same in both cases. This results in 

good agreement between the classical and TD D FT field enhancements at separations 

larger than about 10 Bohr, as we saw in Fig. 4.4. Ford< 10 Bohr, the three dimen­

sional induced charge distribution giving rise to the quantum mechanically calculated 

field enhancements reduces their value in comparison to the classically calculated en­

hancements. For d inside the smeared density region, the quantum mechanical field 

enhancements are generated by only a fraction of the total induced charge density, 

resulting in the decrease of the TDDFT enhancements ford < 3, as we saw in Fig. 4.4. 
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Figure 4.5: (A) Equilibrium electron density calculated using TDDFT as a function 
of distance from the particle surface along the long axis for nanorods of aspect ratios 
( = 1 (blue curve) and ( = 3 (red curve), and perpendicular to the long axis for 
nanorods of ( = 3 (black curve). (B) Induced screening charge calculated using 
TD D FT as a function of distance from the particle surface along the long axis for 
nanorods of aspect ratios ( = 1 (blue curve) and ( = 3 (red curve), and perpendicular 
to the long axis for nanorods of ( = 3 (black curve). The insets show the definitions 
of the coordinate d. 
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4.3 Quantum Size Effects 

As the size of nanorods becomes smaller, the onset of quantum size effects might affect 

plasmonic properties. Our goal here is to investigate at what scales such effects start 

to take place. An important size-dependent factor that may influence the plasmon 

energies and induced electric field distributions is the electronic density of states. In 

momentum space, a plasmon oscillation may be envisioned as a harmonic variation 

of the momentum of each conduction electron. If the energy spacings between the 

electronic states in the particle are too large, a plasmon oscillation is not possible. 

This is the reason why neither a small nanoparticle nor an individual atom exhibits 

a plasmonic response. We now look at how the absorption spectra of nanoparticles is 

modified as the size gets small enough for quantum size effects to play a significant 

role. 

In Fig. 4.6, we compare the absorption spectra for longitudinal polarization of 

five nanorods with the same aspect ratio (( = 3) but a wide array of values for the 

major axes b. In a classical description, their absorption spectra would be identical, 

except for a trivial scaling by a factor proportional to the number of electrons in 

the nanoparticle. Fig. 4.6 clearly shows blueshifted plasmon resonances for the two 

smallest nanorods. For particles containing less than 100 electrons, the plasmon 

resonance is not fully developed and quantum size effects influence the spectra, i.e., the 

plasmon peak positions shifts with particle size. The figure shows that the plasmon 

resonances tend to redshift with increasing particle size. Such a redshift is similar 

to that observed in TDDFT calculations for nanoshells of the same aspect ratios but 

varying overall size and is caused by slight changes in the surface electron density 

distribution. [33] The spectra for the largest two particles are very similar, showing 

size convergence for particles containing more than 500 electrons. 

The sizes of the nanorods we investigate are small (b < 162 Bohr), so an interesting 
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Figure 4.6: Top panel: Absorption spectra calculated using TDDFT for five nanorods 
of the same aspect ratio ( ( = 3) but different major axis b: 17 Bohr ( 19 electrons), 
20 Bohr (63 electrons), 33 Bohr (151 electrons), 42 Bohr (294 electrons), and and 
50 Bohr (510 electrons) from bottom to top. The absorption spectra have been scaled 
so the absorption maxima are the same for each nanorod. Bottom panel: Plasmon­
induced electric field enhancements for the b=17 Bohr (A), 33 Bohr (B), and 50 Bohr 
(C) nanorods. 
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question is whether our present findings apply to larger nanorods. The asymptotic 

form of the electron spill out (Eq. 4.1) holds for particles of all sizes, but for larger 

nanorods the electronic state distribution becomes more dense and more electrons 
' 

are available at the Fermi energy. This naturally leads to an increase in the elec­

tron spill-out density near the surface. An increased spill-out density will make the 

nanorod appear larger and thus may change its effective aspect ratio and therefore its 

plasmon energies. Also, as discussed in Fig. 4.5, the spill-out determines the width 

of the smeared plasmon-induced electron density. An increased spill-out density will 

introduce a further smearing of the induced electron density and may thus reduce the 

field enhancements even further, relative to classical results. 

4.4 Extrapolation to larger particles 

Classical electromagnetic calculations in the quasistatic regime, where retardation ef-

fects can be ignored, are scale invariant. For nanorods in this regime, the magnitudes 

of the electromagnetic field enhancements are determined solely by the aspect ratio 

(, and not by the particle size. The behavior seen in the quantum calculations is 

slightly different. In Fig. 4. 7 we show the field enhancements as a function of the 

scaled distance from the surface of the tip, d = djb, where dis the distance from the 

rod surface (as defined in the red inset of Fig. 4.5), for different size nanorods with 

the same ( = 3. The dashed line shows the scale-invariant classical enhancements, 

which increase monotonically with decreasing d. The solid lines are the field en­

hancements calculated using TDDFT. The quantum mechanical effects are not scale 

invariant, since they are determined by the electronic structure and the electron spill-

out (Eq. ( 4.1)). The quantum calculations differ from the classical results only at 

physical distances smaller than d = dQM = 0.5 nm from the particle surface. As the 

particles get larger, then, the quantum calculations differ from the classical results 
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at smaller values of d. When the particle size is increased, the maximum quantum 

field enhancement near the surface increases monotonically, asymptotically approach­

ing the scale-invariant electrostatic result. In real systems this limit would never be 

reached since retardation effects, which reduce the field enhancements, begin to play 

an important role when the physical dimensions of the nanorod becomes larger than 

a quarter of the plasmon wavelength. 

Although the present calculations are performed for small model systems, the re­

sults are robust and show only small changes as the overall sizes of the structures 

are increased. It is clear that our prediction that the classical electromagnetic field 

enhancements break down near the nanoparticle surface is a real effect. The predicted 

distances where this breakdown happens (around 0.5 nm) are most likely underesti­

mated. For more realistic size particles, the electron spill-out is likely to extend to 

larger distances, due to the closer spacings of the electronic states of the nanoparticle. 

In addition, our quantum approach is based on the local density approximation, which 

neglects the electron image potential. The image potential will lower the potential 

barrier in the vacuum direction and will therefore increase the equilibrium electron 

spill-out n near the surface. Since the induced charge density 8n involves excitations 

of electrons out of their ground state, it is likely that the image potential will have 

an even more significant effect on the profile of the induced charge 8n and thus on 

the induced electric field enhancements. 

Another important point is that our study focuses on rods with smooth edges. 

Even the most elongated rods considered do not have sharp tips. We expect particles 

with sharp edges to have more pronounced quantum size effects due to the increased 

electron density near the sharp tips. 

Our TDDFT calculations confirm the tunability of the longitudinal and transverse 

dipolar plasmon modes predicted using classical electromagnetic modeling. The most 
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Figure 4. 7: Electromagnetic field enhancements as a function of d = d/b along the 
rod axis for rods of ( = 3. The dashed line represents the scale-invariant classical 
result. The solid lines show the quantum mechanical results for rods of different sizes: 
19, 63, 151, 294, 882, and 2171 electrons (from bottom curve and up). 
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important insight we have gained from the first-principles calculations is that the field 

enhancements show significant differences from classical predictions at positions closer 

than 0.5 nm from the nanoparticle surface. These differences arise from the electronic 

structure of the particles and from the spatial distribution of the plasmon-induced 

electron surface charges. 



CHAPTER 5 

Dimers 

Recently, there has been an increasing interest in understanding the plasmonic be­

havior of two nanoparticles in close proximity to each other.[75, 76, 47, 77, 78, 79, 

80, 81, 82] Such nanoparticle pairs, known as "dimers" are important for understand­

ing the dynamics of hybridized plasmons in complex nanostructures. The intense 

current interest surrounding this geometry is due, in part, to the extremely large 

field enhancements predicted to appear in narrow dimer junctions, which have direct 

applications in single molecule surface enhanced spectroscopies. [83, 84, 85, 86, 87, 88] 

Although nanoparticle dimers have been extensively studied both experimentally 

and theoretically,[89, 90] so far, theoretical investigations have mostly employed clas­

sical approaches. In such classical descriptions, the nanoparticle surfaces are modeled 

as abrupt and sharp terminations of the particles. These approaches reveal distinct 

behaviors in two different regimes: when the particles are close to each other but 

not touching, and when the particles are touching with conductive overlap. In the 

non-touching regime, the dipolar dimer plasmon redshifts monotonically with de­

creasing interparticle separation. When conductive overlap is established between 

the nanoparticles, a new plasmon mode is enabled. This is the Charge Transfer Plas­

mon (CTP)[47] and involves conduction electrons flowing back and forth between the 
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two nanoparticles. The resonant frequency of the CTP blueshifts when the overlap 

between the two nanoparticles is increased. Classical descriptions predict an abrupt, 

discontinuous transition from non-touching to touching particles as the distance be­

tween nanoparticles is continuously reduced. [77, 4 7] 

In the investigation of dimers, a purely classical description breaks down in the 

limit of nearly touching nanoparticles. In this regime, electrons can tunnel between 

the nanoparticles and thus, in principle, enable a CTP. Moreover, the finite electron 

density distribution in the junction between the particles can screen the plasmonic 

interactions responsible for the strong redshift of dimer plasmons observed in the clas­

sical regime. It is evident that a quantum mechanical approach involving realistic elec­

tron density profiles and including effects such as tunneling and screening is essential 

to accurately describe the optical properties of closely spaced nanoparticles.[91, 92, 93] 

In this chapter we present fully quantum mechanical calculations of the plas­

monic properties of metallic nanosphere dimers. We present calculations for differ­

ent nanosphere sizes and various nanosphere separations. We identify three distinct 

regimes of interactions between the two nanoparticles. In the classical regime, where 

the nanosphere separation is larger than 1 nm, the electron potential between the 

two particles is characterized by a large potential barrier that prevents electrons 

from transferring between the nanoparticles. In this regime, each nanosphere re­

mains neutral during a plasmon excitation. The plasmonic coupling between the 

nanospheres can be well described using classical approaches such as Plasmon Hy­

bridization (PH) [94] and results in optically active, "bonding" hybridized plasmons 

that redshift strongly with decreasing interparticle separation. [4 7, 90] As the inter­

particle distance is reduced, one approaches the crossover regime, which occurs for 

interparticle separations smaller than 1 nm but larger than 0.5 nm. Here the classical 

description breaks down and quantum mechanical effects begin to play an important 
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role in the optical response of the system. In the crossover regime the electron po­

tential between the two nanoparticles is characterized by a narrow barrier through 

which electrons may tunnel. The charge transfer across the junction reduces the 

electromagnetic interactions between the two particles, resulting in a much smaller 

hybridization and a less pronounced redshift of the bonding dipolar dimer plasmons. 

Interparticle separations smaller than 0.5 nm define the conductive regime. Here, 

the Fermi level of the system lies above the electron potential barrier separating the 

two particles, and the conductance of the junction is large. A CTP appears with an 

intensity that increases and an energy that blueshifts as the interparticle separation 

is further decreased. The energy and width of the CTP resonance depend sensitively 

on the touching profile and on the electronic structure of the individual nanoparticles. 

As before, we do our calculations using the jellium model, where the ionic back­

ground charge of the particles is replaced by a uniform charge density n 0 that ter­

minates at the nanoparticle surfaces. The value of n 0 was fixed to a Wigner-Seitz 

radius of r 8 =3 Bohr, which is a typical value for many noble and simple metals. We 

have used a pseudopotential (see eq. 2.8) V0 = -2.72 eV to set the Fermi energy of 

the dimers at 4.0 eV below the vacuum level. Fig. 5.1 shows the equilibrium electron 

density and self-consistent effective Kohn-Sham potential for a nanosphere dimer of 

sphere radii R = 12 Bohr and interparticle separation d = 1 Bohr. The figure re­

veals a finite electron density and low potential barrier in the narrow junction, as is 

expected for short interparticle separations. 

A polarizable background may be included in our TDDFT calculations, as we 

have done for the nanorods in chapter 4. In the investigation of dimers, however, we 

neglect the background polarizability of the metal and focus on the effects mediated by 

the coupling of electrons to emphasize the plasmon energy shifts caused by changing 

interparticle separations. 
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The radii R of the nanoparticles refer to the radii of the jellium spheres which are 

half a lattice plane spacing larger than the physical sizes of the nanoparticles. For 

noble and simple metal crystals, the spacing between close-packed planes is typically 

around 5 Bohr. The dimer separation distances d refer to the separation of the 

jellium edges of the respective nanoparticles. Thus the physical separation D of the 

nanoparticles is related to d as D=d+5 Bohr. The polarization of the incident light is 

assumed to be oriented along the dimer axis and only the longitudinal dimer plasmons 

will be discussed. 

5.1 Optical Absorption 

We first focus on the absorption spectra of nanoparticle dimers. In Fig. 5.2 we show 

the dipolar optical absorption O"( w) as a function of photon energy nw for dimers 

consisting of nanospheres of radius R=16 and 24 Bohr, placed at various separations 

d from each other. The nanosystems contain 302 and 1018 conduction electrons, 

respectively. For large separations (of the order of the individual sphere radii) the 

dimers behave as two individual nanospheres with dipolar sphere plasmon resonances 

at nominally 5 eV. As the separation distance becomes smaller, the dipolar (l=1) 

dimer plasmon resonance redshifts monotonically until a separation distance of about 

d=10 Bohr. For this separation, the R=16 dimer resonance occurs at 4.8 eV and 

the R=24 dimer resonance at 4.2 eV. This redshift is a classical effect caused by the 

electromagnetic interactions of the plasmons of the individual nanospheres leading 

to the formation of hybridized dimer modes. [94] The reason the R=24 resonance is 

more strongly redshifted is that, for small systems, the electromagnetic interactions 

are scale invariant, i.e. in the classical regime the dimer plasmon resonances depend 

on the dimer geometry as the ratio d/ R. Thus, the sphere plasmon modes in the 

larger dimer are more strongly coupled and redshifted for the same fixed separation. 
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For the R=24 dimer, a second dimer resonance appears at approximately 5.5 eV for 

d=lO Bohr. This is the predicted[94] bonding hybridized quadrupolar (l=2) dimer 

resonance, which appears in the dipolar optical spectra because of the hybridization 

with dipolar individual nanosphere plasmons. [94, 4 7] The quadrupolar dimer reso­

nance only appears for small nanosphere separations and redshifts only weakly with 

separation because of the lower magnitude of quadrupolar interactions. [94] 

For separations in the interval 10>d>3 Bohr, the dimer plasmon resonances do 

not shift significantly in energy. This is the crossover regime where electrons begin 

to tunnel between the two nanoparticles. The conductance of the junction between 

the nanospheres is too small for a CTP to clearly appear. The transfer of electrons 

across the junction reduces the electric field across the junction and thus decreases the 

electromagnetic couplings responsible for the redshift and hybridization of the dimer 

plasmons. The reduced interactions caused by electron tunneling in the cross-over 

regime are the primary reason why the hybridized quadrupolar dimer resonance does 

not appear for the R=16 dimer. 

For separations below d=3 Bohr, the CTP regime, the conductance of the junction 

is large. A clear blueshifting CTP appears at an energy around 5 eV. For this mode, 

the plasmon oscillations involve both a polarization of the electron distribution of 

the individual nanospheres and a flow of electrons between the nanospheres. [77] The 

CTP is significantly broader than the classical dimer plasmons due to the dissipation 

caused by the finite junction conductivity. 

In Fig. 5.3 we report the energies of the dimer plasmon resonances as a function 

of separation distance, as extracted from Fig. 5.2. The TDDFT calculations are 

compared with the exact result from the classical PH approach. [94] It is clear that 

for large separation distances the plasmonic behavior approaches the classical result. 

For the smaller dimer, the quantum mechanical calculations begin to differ from the 
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classical ones at around d/ R=0.5. For the larger dimer, this starts to happen at 

around d/ R=0.4. This is consistent with the finding of the onset of charge transfer 

at separations d around 10 Bohr. In this crossover regime, the redshift of the dipolar 

dimer plasmon with decreasing dimer separation is smaller than the classical result. 

For the R=16 dimer, the plasmon energy displays a nonmonotonic behavior. This is 

caused by small changes of the electronic structure of the dimer and will be discussed 

in more detail below. In the CTP regime (d/ R<0.15), the particles are sufficiently 

close such that a significant charge current can flow between them. As a result, the 

plasmon modes blueshift rapidly with decreasing separation, as demonstrated also in 

classical calculations. [77, 4 7] 

In Fig. 5.4 we show the self-consistent Kohn-Sham potential UKs (see eq. 2.8) 

and electron charge density for the R=24 dimer in the three different regimes of in­

teraction. The figure shows that in the classical regime (d > 10 Bohr), a significant 

potential barrier is present between the two nanospheres. The electrons can therefore 

not tunnel between the two nanoparticles. The charge density plots show that no 

electrons are present in the junction. Hence, the plasmonic response can be under­

stood in terms of the hybridization of the neutral nanosphere plasmon modes. In 

the crossover regime (10 < d < 4 Bohr), the potential barrier is narrow and a small 

but finite electron density is present in the junction. As the external electric field is 

imposed on the dimer, the Fermi energies of the two nanospheres are shifted harmoni­

cally with respect to each other. Thus, electrons in occupied states of one nanosphere 

can tunnel into unoccupied states of the other nanosphere. The conductance of the 

junction forming between the two nanospheres is determined by the number of con­

ducting channels and their tunneling coefficients. Both quantities depend sensitively 

on the shape of the tunneling barrier and on the relative spacings between the en­

ergy levels near the Fermi energy. The non-monotonic redshift of the R=16 dimer 
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plasmon in the crossover regime seen in Fig. 5.3 is caused by small changes in the 

level spacings near the Fermi energy, as the separation distance d is varied. In the 

CTP regime ( d < 4 Bohr), the potential barrier lies below the Fermi energy and the 

electron density in the junction is large. Thus, electrons can flow freely between the 

two particles, leading to a junction conductance equal to the number of conducting 

channels times the unit of quantum conductance (e2 /h). 

5.2 Field Enhancements 

Further insight into the role of quantum mechanical effects for dimer plasmons can be 

gained by analyzing the electromagnetic field enhancements in the different regimes 

of interaction. In Fig. 5.5 we show the field enhancements for dimers at various 

separations. At the top of the figure, the maximum field enhancement in the junction 

for each separation distance studied, in both the classical and quantum pictures, 

is shown. Here it is clear that the classical and quantum descriptions diverge as 

the interparticle separation is reduced. The corresponding near field plots for the 

classical (top row) and quantum (bottom row) descriptions for these for interparticle 

separations are shown. With the classical approach, the field enhancements grow 

monotonically as the separation distance becomes smaller, becoming extremely large 

at small interparticle distances. The quantum mechanical model reveals a distinctly 

different behavior than the classical picture in the crossover and CTP regimes. In 

the classical regime (d > 10 Bohr), however, the field enhancement distributions 

are quantitatively similar. The maximum field enhancement in the center of the 

junction calculated using TDDFT is 13, which compares very well with the PH result 

of 16. In the outer part of the crossover regime, at d=8 Bohr, the maximum field 

enhancement calculated using TDDFT is 30, while PH gives 36. For d=4 Bohr, 

which is deep into the crossover regime, the quantum calculation gives a maximum 
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field enhancement of 35, which is significantly smaller than the classical enhancement 

of 65. For d=2 Bohr, which is in the CTP regime, the TDDFT enhancement is 

only 22 while the PH prediction is 110, a factor of 5 divergence between the two 

descriptions. Our investigation of the electromagnetic field enhancements clearly 

shows that quantum mechanical effects can play a major role in reducing the field 

enhancements in nearly touching nanoparticle dimers. 

Although the present model calculations were performed for two small systems 

they yield consistent results, allowing us to deduce a qualitative and semi-quantitative 

picture of the plasmonic response. For larger nanoparticle systems, the spacing be­

tween the discrete electron energy levels is smaller, thus allowing for more conducting 

channels between the two nanospheres. In this case, it is very likely that the sepa­

ration distance defining the outer boundary of the crossover regime will shift slightly 

to separation distances as large as d=15 Bohr. Such a jellium edge separation would 

correspond to a physical nanoparticle separation of 1 nm. Another factor that is likely 

to further extend the crossover boundary is the electron image potential. The present 

calculation was based on the local density approximation, which cannot describe the 

electron image potential outside the surface. The electron potential barrier between 

the two nanoparticles is therefore too sharp, leading to unphysically small electron 

tunneling rates between the two systems. [95] 

Our calculations confirm that for large nanoparticle separation distances, the 

quantum calculations agree with the predictions of the classical approach for both 

plasmon energy and field enhancement. However, for nanoparticle separations smaller 

than 1 nm, quantum mechanical effects begin to significantly influence the plasmonic 

response of the dimer. The major effect is the onset of electron tunneling between 

the two nanoparticles, resulting in significantly smaller hybridization and a strong 

reduction of the electromagnetic field enhancements across the junction. For separa-
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tions smaller than 0.5 nm, a charge transfer plasmon appears which blueshifts with 

decreasing interparticle separation. 
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Figure 5.1: Equilibrium electron density (left) and self-consistent effective Kahn­
Sham potential (right) for a nanosphere dimer of sphere radii R = 12 Bohr and 
interparticle separation d = 1 Bohr. 
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Figure 5.2: TDDFT absorption spectra for the R=16 Bohr (upper panel) and 
R=24 Bohr (lower panel) for different separations d=O, 1, 2, 3, 4, 5, 6, 7, 8, 10, 
16 and 24 Bohr (from bottom curve and up). The spectra were calculated using an 
energy broadening of 5=0.27 eV. 
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Figure 5.3: The dipolar (full circles) and quadrupolar (open circles) dimer plasmon 
energy as a function of d / R for of R= 16 Bohr (red) and 24 Bohr (blue) sphere dimers 
calculated using TDDFT. The PH result is shown with solid (dipolar) and dashed 
( quadrupolar) lines. 
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Figure 5.4: The self-consistent effective Kohn-Sham potential UKs (upper row) and 
electron charge density n(z) (lower row) along the symmetry axis, for R=24 Bohr and 
d= 16 (left) , 5 (middle) and 2 Bohr (right). The red horizontal lines mark the Fermi 
level. The solid horizontal lines are the energies of the the 60th and 30th occupied 
state below the Fermi energy. The dashed horizontal lines are the energies of the 30th 
and 60th unoccupied states above the Fermi level. 
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Figure 5.5: The upper panel show a comparison of the maximum electromagnetic field 
enhancements calculated using PH (red) and TDDFT (blue) for R=24 Bohr dimers 
of separations d=24 (A), 8(B), 4(C) and 2 Bohr (D). The lower panels compares the 
field distributions calculated using PH (top panels) and TDDFT (bottom panels)'. 
The field enhancements were calculated for resonant excitation of the dipolar dimer 
plasmon using a broadening of 5= 0.27 eV. 



CHAPTER 6 

Other Geometries 

We have looked at the plasmonic properties of both single particle systems and 

nanoparticle dimers. In chapter 4 we learned that classical calculations accurately 

predict the plasmon peak positions for single nanorods. The field enhancements at 

separations larger than about 1 nm from the nanorod surface are also described ac­

curately by classical electromagnetic models. It is in the close vicinity of the surface 

that the predictions of classical electromagnetism overestimate field enhancement 

values. For nanoparticle dimers (chapter 5) we have learned that neither the absorp­

tion spectra nor the field enhancements can be accurately modeled within a classical 

framework for small interparticle separations. These insights lead us to conclude that 

special care must be taken in modeling plasmonic properties near metallic surfaces 

or in situations where two or more surfaces are in close proximity. In this chapter we 

will study two more relevant geometries where such situations occur and special care 

must be taken in their investigation. 
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6.1 Nanoeggs to Nanocups 

We have seen how one of the most popular varieties of easily tunable nanoparticles is 

the nanoshell (a uniform metallic shell surrounding a spherical dielectric core), which 

has been widely used in applications. [29, 30, 31] The plasmon frequency of a nanoshell 

can be tuned by controlling the ratio of the shell thickness with respect to the overall 

particle diameter. A nanoshell's plasmon frequency can also be tuned by displacing 

the inner core within the shell, yielding symmetry broken non-concentric shells, or 

'nanoeggs'. When displacements of the core are larger than the shell thickness we 

get altogether new particles with different properties: 'nanocups'. The properties of 

nanoshells, nanoeggs, and nanocups have been extensively investigated. [61, 42, 43] 

The transition between the three kinds of particle (accomplished by a gradual dis­

placement of the core with respect to the metallic shell) drastically changes the optical 

behavior and is the subject of a recent study.[96] So far, theoretical investigations of 

all three varieties of this core-shell geometry, as well as of the transition between 

them, have been mostly limited to modeling based on classical electromagnetic sim­

ulations. The transition from nanoeggs to nanocups involves metallic surfaces (inner 

core and outer shell) positioned at very short separations from each other. In Fig. 6.1 

we illustrate the transition from a perfectly concentric nanoshell, to a nanoegg, to 

a nanocup, by plotting the calculated electron density of such a system for different 

core displacements. Theoretically modeling the such a situation within a purely clas­

sical picture is bound to provide results that leave out important quantum effects. 

Here we will investigate the nanoegg to nanocup transition within a purely quantum 

mechanical framework and compare the results with traditional classical approaches. 

To start our analysis, we look at the tunability of core-shell particles by calculating 

the plasmon energy as a function of core displacement. It is well known that for larger 

core displacements, nanoeggs have more red-shifted plasmon resonances. The oppo-
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site is true once we get to the nanocup regime, where larger core displacements cor­

respond to blue-shifts in the resonances.[97, 96] We begin with a perfectly concentric 

gold nanoshell of inner radius Rin = 12 Bohr, outer radius Rout= 24 Bohr, and a vac­

uum core. We define the dimensionless displacement parameter D = d/(Raut- Rin), 

where dis the physical distance that the core is displaced from the center. Since na­

noeggs are known to display a remarkably small orientation dependence, [97] we will 

focus on the case where light is polarized along the azimuthal axis of symmetry of 

the particles. In Fig. 6.2 the lowest energy plasmon mode is plotted as a function of 

the displacement parameter D. The energies obtained from classical electromagnetic 

calculations are shown in red; quantum results are shown in blue. While the classical 

and quantum descriptions predict almost the same energies for concentric shells, in 

cases where the core is closer to the outer shell surface, classical calculations grossly 

overestimate the redshift in the plasmon energies. 

For nanoeggs, the lowest energy plasmon mode is a bonding dipole excitation, 

where symmetric charges arise on the inner and outer shell surfaces. Displacing the 

core increases coupling between the surface and cavity modes, resulting in a redshift 

of the bonding plasmon energy. Classical calculations sustain shell and cavity modes 

even for arbitrarily small shell-cavity separations, where the strong coupling results 

in artificially large redshifts of the resonant frequency. This is seen in Fig. 6.2, where 

the classical plasmon energies drop drastically as D -> 1. For D > 1 we move into the 

nanocup regime, where increasing core displacements yield farther separated, duller 

edges, decreasing the coupling and blueshifting the plasmon energy. As we learned 

in chapter 4, discrepancies between classical and quantum descriptions of plasmons 

are more marked around sharper tips. This trend is confirmed in Fig. 6.2: classical 

nanocups within the 1 < D < 2 regime have strongly interacting, sharp edges leading 

to much lower energies than what a quantum description predicts, with its screened, 
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smoothed out surface charges. 

We now look at the field enhancements for the particles studied in Fig. 6.2. In 

Fig. 6.3 we plot the field enhancements 0.5 Bohr outside the surface in the direction of 

the core displacement. For nanoeggs, displacements of the core bring the cavity sur­

face charges closer to the shell, increasing field enhancements in that region. Classical 

calculations have shown that positioning the core at small separations from the outer 

surface gives rise to very large field enhancements[96], an effect that is confirmed in 

Fig. 6.3. As D---+ 1, the classical enhancements become unphysically large. For such 

cases, large hybridization between shell and cavity plasmons strengthens multipolar 

excitations, for which the largest field enhancements are obtained. In the quantum 

description, as D ---+ 1 and the metal layer between the core and the shell becomes 

increasingly narrow, electrons are forced out of this region, leaving a lack of surface 

charges that results in decreased field enhancements. In this picture, with no strongly 

coupled surface and cavity modes, there are no enhanced higher order modes that give 

rise to the large field enhancements predicted in classical calculations. 

To more closely examine the coupling between the core and shell modes, we in­

vestigate the evolution of the optical absorption and field enhancements as a function 

of frequency as we increase core displacement. In Fig. 6.4 we compare the optical 

absorption spectra (left panels) and field enhancements (right panels) obtained by 

quantum (black curves) and classical (red curves) calculations. The figure reveals 

that for perfectly concentric shells (top panels), the both the absorption spectra and 

the field enhancements are dominated by the lowest order mode. For a larger core 

displacement of d = 6 (middle panels) we see the emergence of multipolar peaks in 

the spectra, but the dominant mode is still the lowest energy bonding dipole mode. 

As the core approaches the outer shell with a displacement of d = 10 (bottom panels) 

the core-shell coupling is increased, leading to the strengthening higher order modes. 
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For this case, we see how in the classical calculations the largest absorption and field 

enhancements do not occur for the lowest energy dipole mode, but for a higher order 

mode. This is because the large hybridization that results from the narrow core-shell 

separation intensifies higher order modes. A quantum description allows for electrons 

to be forced out of the narrow core-shell junction, reducing surface charges in that 

region and decreasing the coupling between the shell and cavity modes. It is the nat­

ural electron distribution in this geometry that reduces coupling; not accounting for 

this in a calculation intensifies higher order modes which give rise to unphysical field 

enhancements. The reduced shell-cavity coupling in this quantum picture is mani­

fested by the dominance of the lowest energy dipole mode over higher order modes, 

both in the optical absorption and in the field enhancements. 

It is also of interest to analyze the spatial distribution of the field enhancements. 

In Fig. 6.5 we plot the enhancements for both a perfectly concentric nanoshell (left 

panels) and for a D = 10/12 nanoegg (right panels). In the classical picture (top 

panels), the enhancements arise as a result of two dimensional surface charges in the 

metal. Quantum mechanically (bottom panels) we account for a three dimensional 

spatial distribution of screening charges, spilling to the outside of the shell and to 

the inside of the core cavity. The more localized surface charges give rise to larger 

enhancement values at short separations from the surface, an effect that has been 

previously demonstrated in other geometries (chapter 4). Although the enhancement 

hot spots are larger in the classical description, the area over which they are spread 

is larger in the quantum picture, where the screening charges are distributed in three 

dimensions. 

We have seen how the transition from nanoshells, to nanoeggs, to nanocups is one 

in which quantum effects can significantly modify plasmonic properties. Our results 

show that a classical description significantly overestimates the shifts in plasmon 
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peaks with core displacements. In the classical description, both shell and cavity 

modes are supported even for arbitrarily narrow shell-cavity separations, giving rise 

to large coupling which enhances multipolar modes with large absorption and field 

enhancements. A quantum mechanical description is needed to account for a realistic 

electron density in narrow shell-cavity junctions, giving rise to modified, screened 

field enhancements. 

6.2 Nanomatryoshkas 

We will now discuss a nanoparticle geometry with new found popularity due to its 

ideal use for surface-enhanced Raman scattering (SERS). This kind of particle, the 

"nanomatryoshka" , consists of a spherical metallic sphere surrounded by a dielectric 

layer, which in turn is surrounded by a spherical metallic shell. An schematic il­

lustration of this geometry is depicted in Fig. 6.6. A recent study has shown that 

DNA on gold nanoparticles facilitates the formation of well-defined gold nanogaps 

that generate a highly stable and reproducible SERS signal. [98] The study described 

how to apply this technique to fabricate nanomatryoshka-type particles that generate 

enhancement factors sufficient for single-molecule detection. These particles can be 

synthesized with uniform and reproducible nanogaps of the order of 1 nm between the 

inner metallic sphere and the outer shell. It is natural that quantum effects may mod­

ify plasmonic properties of nanomatryoshka-type particles if the core-shell nanogap 

is sufficiently narrow to allow electron tunneling. Our aim here will be to show that 

for metallic nanomatryoshka-type particles, the evolution of the spectra and plasmon 

modes may be significantly modified by quantum effects. We show that such effects 

will lead to behavior that deviates from classical electrodynamical predictions. 

As explained earlier in this work, we will do our TDDFT calculations within the 

jellium model. We will neglect the background polarizability of the metal and focus 
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on the effects mediated by the coupling of the electrons on the core and the shell. 

The dimensions specified for our particles refer to the dimensions defined by the 

jellium background, which are half a lattice space larger than the physical sizes of 

the nanoparticles. For noble and simple metal crystals, the spacing between close­

packed planes is typically around 5 Bohr. Our specified gap thickness d refers to the 

separation of the core and shell jellium edges. Thus, the physical gap thickness D is 

related to d as D + 5 Bohr. 

We will start our analysis with a nanomatryoshka of center sphere radius r c = 

14 Bohr, and outer shell inner and outer radii of R81 = 18 and R82 = 24, respec­

tively. We scale down the particle dimensions dividing by a constant A, so that the 

scaled dimensions are given by (rc, R81 , R82 )/ A. In the left panels of Fig. 6. 7 we 

show the electron density calculated for particles of dimensions (rc, R81 , R82 )/ A = 

(14, 18, 24)/ A Bohr, for A = 1, 2, 3. The right panels show the corresponding optical 

absorption for each particle size. For the case of scaling constant A = 1, the core-shell 

nanogap is 4 Bohr thick, still within the crossover regime, so no significant charge 

current can flow through the gap. The electron density plot for the A = 1 case shows 

no significant electron density overlap, and the absorption spectra shows the three 

distinct peaks predicted by classical electrodynamics. For scaling constant A = 2, the 

nanogap thickness is reduced to 2 Bohr and brought within the CTP regime. The 

electron density for this case shows significant overlap between the core and the shell 

and we see the onset of a merging between the three distinct modes in the absorp­

tion spectra. The particle starts resembling a single solid sphere as a result of the 

large conduction between the core and the shell. Using a scaling constant of A = 3 

completely blurs the core-shell boundary. The particle behaves like a single sphere of 

varying density, and the absorption spectra starts resembling that of a single sphere. 

For small nanoparticles within the quasistatic regime, electromagnetic interac-
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tions are scale invariant within a classical formulation; i.e., in the classical regime the 

nanomatryoshka plasmon resonances only depend on the relative dimensions between 

the inner sphere and outer shell, so particles of dimensions ( r c, R81 , R82 ) /).. have the 

same absorption spectra for all A.. We have seen that in a quantum mechanical formu­

lation this is not the case and, as the particles are scaled down, charge conductance 

is established in the gap and the optical properties are significantly modified. 
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Figure 6.1: Calculated electron density for a nanoshell to nanoegg to nanocup tran­
sition. We start with a perfectly concentric nanoshell of inner radius 12 Bohr and 
outer radius 24 Bohr and gradually increase the core displacement: d = 0, 9, 14, 27 
(from left to right). 
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Figure 6.2: Lowest plasmon energy as a function of core displacement parameter 
d/(Rout- Rin) for a core-shell particle with outer radius Rout= 24 Bohr, inner radius 
~n = 12 Bohr, and a vacuum core. The excitation polarization is aligned with the 
azimuthal axis of symmetry of the particles. The number of electrons in the particle 
ranges from 444 for the d = 0 concentric nanoshell to 507 for d = 36 solid sphere. 
The red curve shows the classical calculations and the blue curve shows the quantum 
results. 
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Figure 6.3: Electromagnetic field enhancements as a function of core displacement 
parameter D for a core-shell particle with outer radius 24 Bohr and core radius 
12 Bohr. The red curve shows the classical calculations and the blue curve shows 
the quantum results. The enhancements are plotted for a point 0.5 Bohr outside the 
particle surface in the direction of core displacement. 
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Figure 6.4: Optical Absorption (left panels) and field enhancements (right panels) as 
a function of frequency for core-shell particles with core displacement d = 0 (top), 
d = 6 (middle), and d = 10 (bottom). The quantum results are shown in black and 
the classical results are shown in red. 



70 

14 
1 2 

50 

1 0 40 

8 30 
6 20 
4 

2 
1 0 

10 15 

10 
6 

4 5 

2 

Figure 6.5: Field enhancements for a core-shell particle with outer radius 24 Bohr, core 
radius 12 Bohr, and core displacement of d = 0 Bohr (left panels) and d = 10 Bohr 
(right panels). The top panels show the classical results and the bottom panels show 
the quantum results. 
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Figure 6.6: Schematic illustration of a nanomatryoshka. This particle consists of a 
metallic sphere surrounded by a dielectric layer, which in turn is surrounded by a 
spherical metallic shell. 
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Figure 6. 7: Calculated electron density (left panels) and optical absorption spectra 
(right panels) for nanomatryoshkas of size ( r c , Rs 1 , R 82 ) I A = ( 14, 18, 24) I). Bohr, for 
.\ = 1, 2, 3. 



CHAPTER 7 

Conclusions 

The present study provides a thorough microscopic understanding of the electronic 

structure and optical properties of novel nanostructures. Our formulation of the time­

dependent density functional theory formalism in a way that allows the treatment of 

azimuthally symmetric systems has opened the doors for the investigation of impor­

tant new structures. An efficient computational implementation of the theory has 

made it possible to do ab initio studies of electronic structure and optical absorp­

tion calculations for nanoparticles that are large enough to display collective electron 

oscillations and surface plasmon modes. 

For simple single nanoparticle systems, such as nanorods or nanoshells, classical 

electrodynamical descriptions accurately predict plasmon peak positions and optical 

absorption spectra. The field enhancements for such systems are also accurately 

modeled by classical descriptions for distances of more than about 1 nm from the 

particle surface. In the close proximity of the particle surface ( < 1 nm), a classical 

description overestimates the value of the field enhancements and realistic electron 

density distributions must be taken into account to accurately model electromagnetic 

field enhancements. 

When studying more complex nanostructures that display metallic surfaces in 
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close proximity to each other, quantum effects, such as electron tunneling and screen­

ing, may drastically reduce electromagnetic field enhancements and significantly mod­

ify plasmon resonant frequencies. Outside of such closely-touching regimes, classical 

descriptions make accurate predictions that match experimental results. We have 

compared fully quantum mechanical and classical electrodynamical descriptions for a 

wide variety of nanostructures of interest, including nanoshells, nanorods, nanoparti­

cle dimers, nanomatryoshkas, nanoeggs, and nanocups, and we have clearly identified 

the limits of validity of traditional classical models. 



CHAPTER 8 

Epilogue 

The bulk of this thesis is devoted to a thorough first-principles investigation of elec­

tronic structure and optical properties of metallic nanoparticles. Here we indulge in 

a brief excursion into classical territory. 

8.1 Enhancements are red, absorption is blue, their 

shift is deciphered and quantified too 

The field of plasmonics has been largely concerned with studying and designing nanos­

tructures with both tunable plasmon resonances and large field enhancements, to en­

able drastic increases in the cross section for surface enhanced spectroscopies such as 

SERS. One measure of the plasmonic response of a metallic nanoparticle or nanostruc­

ture commonly used involves its far-field quantities, such as absorption, scattering, 

and extinction. Another measure involves its near-field properties, such as the inten­

sity and spatial distribution of its electromagnetic field enhancements. 

A well-known phenomenon that has frequently been pointed out in the literature 

is that near-field properties peak at lower energies than the far-field quantities.[99, 
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100, 101] This redshift of the near-field peak energies with respect to the far-field 

peak energies is known to depend upon the size of the particle,[102, 103] with larger 

particles displaying a more marked shift. For large enough particles, this shift has been 

observed to be comparable to the resonance half-width. [103] A recent systematic study 

has provided a phenomenological comparison of the relationship between the near­

and far-field spectra of plasmonic particles,[104] but a simple physical explanation of 

this apparently universal characteristic of these systems is still lacking. 

Our goal here is to identify the physical origin of this shift. We will show that 

this universally observed phenomenon is a general and central consequence of the 

universal behavior of damped harmonic oscillators (HOs). Plasmons are damped 

HOs driven by the electric (and sometimes the magnetic) component of the incident 

light.[105, 106, 107, 108, 109, llO, ll1, ll2, ll3, ll4] The absorption maximum 

occurs at the resonance frequency of the oscillator. The plasmon-induced electric 

field enhancements are proportional to the plasmon-induced surface charges, which 

in turn are proportional to the plasmon amplitudes. [105] When damping is present 

for a HO, the maximum displacement amplitudes occur at a lower energy than the 

resonance frequency, with a redshift that depends on the damping. We will derive 

an analytical expression for this shift and compare it with exact electromagnetic 

calculations for the near- and far-field properties of plasmonic nanoparticles. We will 

explicitly show that intrinsic and radiative damping play a similar role in determining 

this shift and that the redshift is determined by the total damping as inferred from 

the width of the plasmon resonance in the far-field spectrum. 

8.2 The Harmonic Oscillator Model 

We start by analyzing a simple HO consisting of a particle of mass m on a spring 

with spring constant k and damping /3, driven by an external force F(t) = F0 cos(wt). 
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The displacement x(t) of the particle from its equilibrium is thus governed by 

mx = -kx- m(3x + F0 cos(wt). (8.1) 

For a plasmonic nanoparticle, the mass m would correspond to the total mass of the 

conduction electrons, the displacement parameter x corresponds to the plasmon am-

plitude, and k is the electromagnetic restoring force originating from the displacement 

of the conduction electrons.[105] In steady state, the motion is of the form: 

x(t) = D(w) cos(wt- b), (8.2) 

where the particle position will oscillate at the driving frequency w, with an amplitude 

D(w) = Fo/m 
J(wa- w2)2 + ((3w)2 

(8.3) 

and a phase, 
(3w 

tan( b) = 2 2 , 
w0 -w 

(8.4) 

where w0 = -/k[m is the resonance frequency of the oscillator (plasmon frequency). 

Equation (8.3) shows that the largest amplitude is obtained for a driving frequency 

of 

(8.5) 

i.e., redshifted from the natural frequency of the oscillator by an amount determined 

by the damping (3. Indeed, this shift is consistent with our everyday experience. For 

example, for a mechanical oscillator placed in a viscous medium, the motion is slowed 

and one would have to drive it at a slower frequency to maintain large amplitude 

motion. 

The energy absorbed by the oscillator is equal to the power delivered to the system: 
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P(t) = F(t) · x(t) = -F0D(w)w cos(wt) sin(wt- 6). (8.6) 

Taking the time average of the power we find the average absorption per oscillation 

period: 

(8.7) 

Setting d(P(t))/dw = 0 we find that the average absorption is maximum at frequency 

w = w0 ; that is, the absorption experiences a resonance at the natural frequency w0 

of the oscillator. 

A more detailed analysis shows that the time average of the kinetic energy in the 

oscillator takes the form 

(8.8) 

which is a Lorentzian centered at w0 and is directly proportional to (P(t)) from 

Eq. (8. 7). In contrast, the time average of the potential energy is given by 

(U(t)) = w5F5 1 
4m [(w0 - w)2 + (,Bw)2]' 

(8.9) 

which peaks at the same redshifted frequency WNF = Jw5- ,82 /2, as the oscillation 

amplitude Eq. (8.3). 

Since plasmons are examples of HOs, we expect that the above results derived 

for a simple HO model should apply also for the optical properties of plasmonic 

nanoparticles and nanostructures. Specifically, we expect that the intensity of the 

plasmon-induced near-field, which is proportional to the plasmon amplitude, should 

peak at a lower energy WNF than the maximum absorption, which occurs at the 

plasmon energy w0 . Since the scattering of a plasmonic nanoparticle is a consequence 
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of the acceleration of its conduction electrons, the far-field scattering and extinction 

cross sections should also peak at a similar frequency as the maximum kinetic energy, 

i.e at the plasmon energy. This coincidence has been observed in many previous 

studies. [99, 115] 

To investigate how our simple model applies in realistic situations, we use Mie 

theory to calculate the near- and far-field properties of different metallic particles. 

For simplicity we employ a Drude model (DM) for the metallic permittivities 

w2 
t:(w) = f 00 - ( B . ) , 

w w + 'l"f 
(8.10) 

where f 00 corresponds to the background dielectric constant, w8 is the bulk plasma 

frequency, and 'Y is the intrinsic damping parameter. To model Au we use w8 = 

8.9488 eV, c00 =9.5, and 'Y = 0.06909 eV. To investigate the effect of intrinsic damping, 

we will also use larger 'Y in some calculations described below. The results presented 

here do not depend on this choice of the DM for the permittivity of the metal but 

also apply for realistic dielectric data. 

In Fig. 8.1 we plot the far-field extinction cross section (blue curve) and the 

plasmon-induced near-field electromagnetic field enhancements (NFE) (black curve) 

calculated using Mie theory for a gold sphere of radius 12 nm. In this figure and 

in the following figures all spectra is normalized to unity to more clearly show the 

magnitude of spectral shifts. The peaks in the spectra correspond to the excitation 

of the dipolar Mie resonance. Such a small particle has minimal radiative damping 

and very little intrinsic damping, resulting in a negligible redshift of the near-field 

spectrum. In a situation where the damping would be larger, we would expect a 

larger redshift of the near-field spectrum. We now investigate the effect of radiative 

damping by considering a larger particle where retardation effects and consequently 

the radiative damping would be larger. 
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Figure 8.1: Mie extinction cross section (blue curve) and NFE (black curve) as a 
function of energy for a 12 nm radius gold (DM) sphere. Both spectra have been 
normalized to unity. 
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Figure 8.2: Mie extinction spectra (blue) and NFE (black) as a function of energy 
for a 150 nm radius gold (DM) sphere. The fit of the far-field peak to Eq. (8. 7) is 
shown in red. The vertical black and blue lines denote the peak positions in the 
near-field and far-field spectra, respectively. The red dashed line denotes the energy 
WNF obtained using Eq. (8.5). The spectra have been normalized to unity. 
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In Fig. 8.2 we show the far-field extinction cross section (blue curve) and the NFE 

(black curve) for a gold sphere ofradius 150 nm. For a particle of this size, retardation 

effects are prominent, resulting in both a redshift of the dipolar plasmon resonance 

and a significant broadening of the extinction peak due to radiative damping. The 

NFE spectrum is clearly redshifted from the far-field spectrum. The far-field spectra, 

obtained from rigorous electromagnetic calculations, can be fit by the Lorentzian ab­

sorption of a HO, Eq. (8.7) (red curve). The oscillator damping parameter {3 obtained 

from this fit is then used to calculate the peak position WNF of the plasmon-induced 

near-field through Eq. (8.5). This calculated WNF is shown with the dashed red line. 

The figure clearly shows that the redshift of the near-field spectra as predicted by the 

simple HO model is in almost perfect agreement with the result from Mie theory. 

We now investigate how the intrinsic damping influences the redshift of the near­

field spectrum. This can be accomplished by increasing the damping 'Y in the DM 

Eq. (8.10). In Fig. 8.3, the extinction spectra are shown for different polarizations for 

nanorods of aspect ratio 3 for two hypothetical metals with different intrinsic broad­

ening. The figure clearly shows that the redshift of the near-field spectra increases 

with increasing intrinsic damping 'Y· As in Fig. 8.2, the plasmon damping {3 can be 

obtained by fitting the extinction spectra to the result for the HO model, Eq. (8. 7) 

(red curves). Using these parameters, the results for WNF in Eq. (8.5) are shown with 

the dashed red lines. As in Fig. 8.2, the predicted redshifts of the near-field peaks 

are in almost perfect agreement with the results from electromagnetic calculations. 

Finally, we consider a more complex plasmonic system. In Fig. 8.4 we show the 

extinction spectrum and NFE spectrum for a gold nanoshell calculated using Mie 

theory. The size of the nanoparticle is sufficiently large that both the broad dipolar 

plasmon around 1.5 eV and the much narrower quadrupolar plasmon around 2.3 eV 

are visible in the far-field spectrum. The calculated near-field spectrum also displays 
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Figure 8.3: Extinction cross section (blue) and NFE (black) as a function of energy 
for a metallic nanorod of aspect ratio 3 for longitudinal polarization (left panels) and 
transverse polarization (right panels). DMs with artificially large damping are used: 
1 = 2 (top panels), 1 = 4 (bottom panels). The fits of the far-field peaks to Eq. (8.7) 
are shown in red. The vertical black and blue lines denote the peak positions for 
the calculated near-field and far-field, respectively. The red dashed lines denote the 
energy WNF obtained using Eq. (8.5). The spectra have been normalized to unity. 
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Figure 8.4: Mie extinction spectra (blue) and NFE (black) as a function of energy 
for a gold (DM) nanoshell of inner radius 75 nm and outer radius 150 nm. The fits 
of the far-field peak to Eq. (8. 7) are shown in red. The vertical black and blue lines 
denote the near-field and extinction peak energies, respectively. The red dashed line 
denote the energy WNF obtained using Eq. (8.5) The spectra have been normalized 
to unity. 
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two peaks that are redshifted compared to the far-field spectrum. As in Figures 8.2 

and 8.3, the line shape of the extinction resonances in Fig.8.4 is fitted with the HO 

result, eq. 8.7 (red curves). The dashed red lines show that the predicted NFE peaks 

obtained using Eq. (8.5) are in excellent agreement with the NFE peaks obtained 

from full electromagnetic simulations. 

In conclusion, using a simple analytical harmonic oscillator model, we have ex­

plained why the the near-field spectra of plasmonic nanoparticles are redshifted com­

pared to their far-field spectra. We have shown how this phenomenon is a direct 

consequence of the fundamental properties of damped, driven harmonic oscillators, 

and how, using such a model, one can quantitatively predict the magnitude of this 

shift. This physical insight into the behavior of plasmonic systems should be useful 

for the practical design of plasmonic nanoparticles and nanostructures for applica­

tions of both fundamental and technological interest. 
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