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Abstract 

A Computational Model of Jetliner Taxiing 

by 

Jeffrey C. Zemla 

The Next Generation Air Transportation System (NextGen) is transforming 

the way planes move on the ground as well as in the sky. Some of the proposed 

changes, such as automated scheduling algorithms to generate taxi clearances and 

speed-based taxi clearances, require thorough testing to ensure safety and 

reliability. Cognitive modeling is able to uniquely address these issues in a 

compromise between costly human-in-the-loop simulations and deterministic 

computer simulations. In this thesis, I present an ACT-R cognitive model to emulate 

pilot taxiing behavior in a dynamic environment, in order to predict human 

behavior in novel situations imposed by NextGen constraints. The model is validated 

by comparing taxi routes generated by the model to routes driven by real pilots 

while on the job. 
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Introduction 

As air travel becomes more prevalent, the reliability of the air transportation 

system in the United States is being called into question. The rising demand for air 

travel has resulted in a very precarious logistic situation: a weather delay or 

mechanical problem causing delays at one airport may propagate, causing delays at 

other airports around the country, or around the world. Flight delays are not only a 

nuisance to passengers; they also cost airlines billions of dollars each year (Federal 

Aviation Administration, 2008). This is not a problem that can be solved simply by 

creating a larger fleet of planes and employing more pilots; the total capacity of the 

system needs to be increased in order to address these problems. Currently, the 

throughput of the system is limited by both safety regulations and technological 

shortcomings. To expand the capacity of the system, new technologies and 

procedures must be introduced that can improve efficiency without sacrificing 

safety. 

To address this problem, the FAA, NASA, and other members of the aviation 

community have proposed an overhaul to the air transportation system known as 

the Next Generation Air Transportation System, or NextGen. NextGen is a broad plan 

to increase the overall performance of the system through the use of a collection of 

new technologies and procedures. In addition to reducing delays and saving costs, 

NextGen will also attempt to reduce the environmental impact of the air 

transportation system, all while maintaining the current high levels of safety 

associated with air travel. The FAA estimates that by 2018, NextGen will have saved 
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the industry and consumers $22 billion, 1.4 billion gallons of fuel, and reduced flight 

delays by 21% (NextGen Integration and Implementation Office, 2010). 

In order to make this vision a reality, NextGen must be thoroughly tested to 

ensure safety and reliability prior to implementation. Existing methods of testing, 

which include computer simulations and human-in-the-loop simulations, are often 

too expensive or limited in their ability to predict human behavior. In this thesis, I 

advocate a third approach: a realistic computational cognitive model that behaves 

like a human pilot, and can be used as a tool for future NextGen research. The model 

is implemented in ACT-R, a cognitive architecture that can be used for human 

performance modeling. After providing an initial overview of some of the problems 

addressed by N extGen and explaining why I believe current modeling approaches 

are insufficient, I will describe in detail how the model the model works. Finally, I 

provide a quantitative analysis of the model's performance by comparing data 

generated by the model to data from real pilots while on the job and discuss the 

implications of the model. 

NextGen Overview 

NextGen addresses a variety of largely disparate problems or shortcomings 

with the current system in a piecemeal fashion. Thus, NextGen is used as an 

umbrella term for an assortment of solutions addressing a wide range of problems. 

This piecemeal approach allows for a gradual deployment of technologies, many of 

which are scheduled to be in effect by the year 2018 (NextGen Integration and 

Implementation Office, 2010). The overarching theme behind each of the NextGen 



components is to provide a synthesis of relevant information to the people who 

need it, when they need it. 

Technology 

3 

Some of the proposed technologies will assist in reducing latency between 

takeoffs, which will increase the throughput of the system. For instance, Automatic 

Dependent Surveillance Broadcasting (ADS-B) is an enhanced positioning system in 

which planes broadcast their own position, acquired through the Global Positioning 

System (GPS), in order to provide positional information to other pilots and air 

traffic controllers at a level of detail not previously possible with traditional radar 

technology. Enhanced positioning allows for a decreased distance between aircraft 

while still maintaining safety. For example, in the Gulf of Mexico, where radar 

positioning was previously unavailable, ADS-B has reduced the minimum following 

distance between planes from 120 nautical miles to 5 nautical miles (Federal 

Aviation Administration, 2008). 

Additional technologies improve the flow of traffic on the ground. For 

instance, Airport Surface Detection Equipment- Model X (ASDE-X) provides ground 

control with a detailed map of all planes and equipment on the airport surface. 

ASDE-X collects information from a variety of sources, including ADS-B, surface 

radar, and transponders, in order to facilitate prediction of runway incursions and 

provide ground controllers with a central information source. At airports in which 

ASDE-X has been deployed, it has been responsible for up to a 50 percent reduction 

in serious runway conflicts (NextGen Integration and Implementation Office, 2010). 
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Another technology, known as data-link (Kerns, 1991), will enable aircraft to 

receive and process instructions through digital displays instead of through the 

traditional method of verbal communication with ground control. This aids pilots in 

several ways. Foremost, it reduces the working memory load of the pilot, who is no 

longer forced to retain a long list of information given to him by ground control. 

Additionally, it reduces the opportunity for error in auditory perception, e.g., 

mishearing "runway 23" instead of"runway 28." Lastly, it eliminates the possibility 

of miscommunication between pilots and ground controllers and frees up 

attentional resources of the pilot. All verbal communication with ground control 

occurs over a single radio channel, so a pilot is privy to communications between 

ground controllers and other taxiing planes. This sometimes results in a pilot 

responding to a command that was not meant for him (Flathers, 1987). In addition, 

this requires a pilot to be constantly vigilant as he listens for his own call number. 

Surface Traffic Management 

In order to achieve NextGen's vision, major airports need to improve upon 

the efficiency of their surface traffic management system. Technologies such as ADS­

B and ASDE-X are creating opportunities for advancement in surface traffic 

management by automating the generation of taxi clearances. Currently, an 

aircraft's route from the gate to the runway is determined by ground control shortly 

before it leaves the gate. The sequence in which planes are cleared and the taxi 

routes they travel are largely at the discretion of the controllers in charge. In the 

future, computer systems will automate a large portion of this process, generating 

taxi routes and departure sequences automatically, and dynamically 
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reprogramming them as necessary. This will allow ground controllers to focus more 

on safety issues, such as monitoring for potential runway incursions. This level of 

automation has not been possible in the past, as the position of each plane on the 

ground and nearby airspace was not known with enough precision to allow 

computer algorithms to operate effectively. 

There are roughly three phases of surface traffic management to consider. 

The first phase is the spot release planner. During this phase, ground controllers 

must decide when and in which order to release each plane from its "spot" -the 

point at which a plane enters the taxiway system after leaving the gate. In order to 

determine the optimal spot-release time, one must work backwards from the 

optimal takeoff time, compensating for how long it will take the plane to taxi to the 

runway, in addition to congestion and delays caused by any other aircraft on the 

taxiways (Malik, Gupta, & Jung 2010). 

The second phase to consider is the taxi scheduler. This refers to the route 

that each plane will take to get to the runway, including specific hold points. Ideally, 

each plane simply needs to take the shortest path possible from the gate to the 

runway. However, this is not always possible due to airport layouts, ground traffic, 

aircraft separation concerns, and the need to order runway takeoffs in a proper 

sequence. In addition, the taxi scheduler may provide temporal constraints in 

regards to when the plane needs to arrive at the runway. 

The last phase to consider is the runway scheduler or departure scheduler. As 

planes approach the runway, they line up into several queues and await clearance 

for departure. Departure scheduling refers to the order in which each plane is 
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released from the queue and allowed to take off. Airports traditionally operate on a 

first-come first-served basis, so that whichever plane arrives at the runway queue 

first is the first to depart. However, this is not always optimal. Aircraft are required 

to meet minimum separation requirements when departing because of the wake 

vortex created by each plane. These separation requirements differ depending on 

the type of aircraft and are not symmetrical. Since larger aircraft tend to produce 

larger wake vortices, longer delays are needed after larger aircraft take off. Thus, 

having smaller planes take off before larger planes can minimize overall delay. 

Rathinam, Wood, Sridhar and Jung (2009) have developed an approach for 

optimizing the sequence of departures that results in approximately 12 minutes of 

saved time compared to a first-come first-served approach. 

Although these three phases are typically evaluated as separate problems, 

they critically depend on each other (Balakrishnan & Jung, 2007). The departure 

scheduling sequence crucially depends on the accuracy of the spot-release planner 

and the time taken for a pilot to taxi to the runway. If one plane is late, it may end up 

in the wrong place in the queue, and the optimal departure sequence will have to be 

recalculated. Similarly, the spot-release planner is meant to work on an extended 

timeframe, scheduling up to one hour in the future (Malik, Gupta, & Jung, 2010). 

Since the spot-release planner works by anticipating taxi and departure times, the 

spot-release planner may not be of any use when these other phases are inaccurate. 

With the advent of ADS-Band ASDE-X, there is sufficient information to 

normatively optimize all three of these phases. However, this optimization crucially 
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depends on pilots' ability to adhere to ground control clearances in a timely fashion. 

If pilots are unable to do so, these optimizations cannot be realized. 

Speed-based taxi clearances 

Currently, ground controllers issue pilots a clearance that indicates the 

sequence of taxiways to follow, but does not indicate when they are expected to 

arrive at the runway. While pilots are expected to follow clearances quickly and 

safely, there are no quantitative guidelines on how long the taxiing procedure 

should take. As a result, the time that it takes for a plane to taxi from the gate to the 

runway is somewhat unpredictable, putting into question the viability of automated 

surface traffic management. 

To improve the throughput of departures, the FAA is interested in providing 

speed-based taxi clearances, also known as time-based taxi clearances and 4D 

clearances. Unlike traditional clearance instructions that only convey the route that 

the plane will take, 4D clearances include a time component, to signify that the plane 

must pass through waypoints as certain times. If the plane is travelling too fast or 

too slow, the pilot must react accordingly. Alternatively, ground control may issue a 

speed requirement, which is derived from the time requirement, to let pilots know 

how fast they should be moving at any given moment. This requirement will likely 

to result in additional cockpit instrumentation to let the pilot know how fast he 

should be moving. 

Previous research has shown that while pilots are able to adhere to 4D 

clearances, performance may not be robust enough to allow implementation oflong­

term sequencing algorithms. Foyle, Hooey, Kunkle, Schwirzke, and Bakowski (2009) 
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found that pilots were able to comply with speed-based trajectories, with time of 

arrival (TOA) errors ranging from -24 seconds (early) to 53 seconds (late). 

Subsequent research showed that providing pilots with additional constraints could 

mitigate this problem. Bakowski, Foyle, Kunkle, Hooey, and Jordan (2011) 

demonstrated that by instructing pilots to stay within speed bounds ( + 1- 1.5 knots 

of the desired speed) and follow specific acceleration and deceleration profiles (2 

knots/sec) resulted in much more accurate time of arrival predictions. 

Unfortunately, a questionnaire in the same study revealed that pilots felt the speed 

conformance ranges were too narrow: 

On average, participants reported that a+/- 3.7 knot range would be 
reasonable. It should be noted that this would likely result in very poor TOA 
errors - a simple calculation indicates that depending on the speed, each 1 kt 
error bias over a 12,000 ft taxi results in 20-40 sec error (Bakowski, Foyle, 
Kunkle, Hooey, & Jordan, 2011). 

Additionally, a majority of pilots (n=14) felt that that following these procedures in 

the real world (as opposed to flight simulators) would compromise safety, while a 

minority (n=4) indicated that it would not. 

Computer generated taxi clearances and speed-based clearances are being 

touted as important components to accomplish NextGen's vision. However, in their 

current form, these technologies and procedures are not robust enough to produce 

the desired results. Further testing is required to determine how performance can 

be improved. 

Testing 

Two traditional methods for testing new technologies and procedures have 

been human-in-the-loop (HITL) simulations and computer simulations. While these 
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are both very useful ways to test aspects of NextGen, they both have limitations as 

they exist in their current form. 

Human-in-the-loop testing is a necessary component of the iterative design 

cycle. As evidenced by Foyle et al. (2009), pilots are not capable of safely adhering 

to changes in taxiing procedures advocated by computer simulations. HITL testing 

allows researchers to address this at an early stage, when it is still possible to refine 

the procedures. Unfortunately, HITL testing can also be extremely expensive and 

time consuming. The manpower required to run such tests can be quite large, 

including pilots, engineers, air traffic controllers, and others. It is not always 

monetarily or logistically feasible to use closed-system tests to predict the effects 

that will occur because of NextGen. In addition, HITL testing may not predict 

problems that may arise when a system is deployed on a large scale. 

Alternatively, computer simulations can be used to predict the effects of 

NextGen changes. In theory, computer simulations should address both problems of 

HITL testing: they can be cheaper, and also predict problems that arise on a large 

scale. To date, however, these computer simulations have been severely limited in 

their ability to predict human performance within the system. 

NASA's Safe and Efficient Surface Operations (SESO) group has addressed the 

surface traffic management problem by exploring the feasibility and efficiency of 

various taxi scheduling algorithms with Monte Carlo simulations using the Surface 

Operations Simulator and Scheduler (SOSZ) (Wood, Kistler, Rathinam, & Jung, 2009). 

SOS2 is an extensible, fast-time simulation architecture used primarily for 

developing and testing scheduling algorithms. sosz is capable of generating 40 
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clearances for pilots based on a set of inputs, including a node-link model of the 

airport, a list of aircraft to be scheduled, and a list of departure separation times. 

SOS2 allows easy comparison of competing sequencing algorithms, including first­

come first-served. 

SOS2 also allows modelers to specify custom functions that model aircraft 

dynamics and manipulate pilot parameters. These parameters include maximum 

speed and acceleration, look-ahead distance, and separation distance. However, 

these parameters are controlled programmatically, rather than using a cognitive 

model. As such, a plane will never breach the minimum separation distance, will 

always turn at the proper taxiway, and will always respond immediately to speed 

changes or other commands issued from ground control. Thus, the simulated pilots 

in these models typically act as non-intelligent automatons that comply perfectly 

and in zero time with instructions given to them. 

This representation of pilots is critically inadequate for several reasons. First, 

real human pilots introduce a source of latency into the system that is not accounted 

for by these simulations. This latency will likely influence performance of the 

system, and should be accounted for in computer models. Second, the behavior of 

human pilots is stochastic. If given the same scenario twice, they will not perform 

identically. This variability needs to be accounted for in computer simulations. 

Lastly, human pilots are both intelligent and fallible. For instance, pilots do not 

always follow the clearance that is issued to them. Conversely, pilots are able to 

react to their environment accordingly: whereas an automaton might comply with 

instructions from ground control to cross a runway as another plane is passing, a 



11 

human pilot is able to determine that this is a dangerous action that should not be 

performed. 

SOS2 is effective for its ability to rapidly perform Monte Carlo simulations, 

resulting in a large amount of data to compare potential scheduling algorithms. 

However, it is not designed as a human performance model, and thus is insufficient 

to close the gap between existing computer simulations and human-in-the-loop 

simulations. 

A Human Performance Model 

The aim of the current project is to provide a tool to predict the viability and 

efficacy of NextGen procedures by accurately modeling pilot cognition and behavior 

during the taxiing phase. The extant model has restricted the capabilities of the pilot 

for tractability, and the need to validate fundamental components before 

implementing supplemental features. However, the model is extensible, and 

additional features may build off of the existing code base in order to evaluate novel 

scenarios. 

The model is implemented using ACT-R (Adaptive Control of Though­

Rational; Anderson, 2007), a sophisticated cognitive architecture capable of 

modeling complex cognitive tasks. ACT-R provides an infrastructure to accurately 

model pilot cognition. For example, ACT-R's goal-directed behavior can simulate a 

pilot's mental model of how information in the environment changes: When and 

where should a pilot allocate his attention? ACT-R's working memory systems may 

predict a pilot's situational awareness: How does a pilot navigate the taxiways and 

how does his recall of the taxi clearance degrade over time? 
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The model can be used to address many of the questions alluded to 

previously: How does implementing data-link instrumentation into the cockpit 

affect a pilot's ability to taxi effectively? Are pilots able to adhere to 40 taxi 

clearances, and what sort of procedural guidelines can be issued that do not 

compromise safety? How do various scheduling algorithms interact, and are pilots 

able to meet the requirements necessary to enforce these algorithms? 

Additionally, the model can serve several other useful functions. The model 

operates in real time and can be viewed from arbitrary 3D camera angles on the 

airport surface, which potentially allows it to be used as a low-cost alternative for 

training air traffic controllers without the need for real pilots to serve in HITL 

simulations. The generalizability of the model makes it a potential candidate for any 

future aviation research that would normally use HITL testing, or for any aviation 

modelers in need of mechanism for incorporating pilot cognition into their 

simulations. The primary purpose of this thesis is to validate the model as a valuable 

tool for analyses of this type. 

Overview of ACT-R 

The model is implemented using ACT -R, a framework for building 

computational models of cognition and behavior. Like previous cognitive 

architectures such as EPIC (Kieras & Meyer, 1997) or Soar (Laird, Newell, & 

Rosenbloom, 1987), the ACT-R framework attempts to model the underlying 

structural properties of the cognitive system (i.e., the mind). In this way, ACT-R 

follows in the tradition of Newell and Simon's General Problem Solver (Simon, Shaw, 
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& Newell, 1959) by creating a domain-general approach to modeling, rather than 

restricting itself to modeling a limited class of tasks. 

This domain-general approach to problem solving makes ACT-Ran ideal 

candidate for human performance modeling in aviation. As a unified theory of 

cognition, ACT-R allows the modeler to generate intricate models that involve the 

interplay of memory, vision, motor, and various cognitive components. Other 

popular cognitive modeling paradigms such as connectionism (e.g., McClelland et al., 

2010) or Bayesian networks (e.g., Griffiths, Chater, Kemp, Perfors, & Tenenbaum, 

2010) are more often used to model lower-level psychological tasks. Modeling 

higher-level tasks can be prohibitively difficult in these paradigms. While there are 

other cognitive architectures that are in the same class as ACT-R, notably EPIC and 

Soar, ACT-R is arguably the most advanced in its capabilities. For these reasons, 

ACT-R has a proven track record of modeling complex tasks in human factors and 

human-computer interaction (e.g., Ball, Gluck, Krusmark, & Rodgers, 2003; Byrne, 

2001; Fleetwood & Byrne, 2006; Salvucci, 2006; St. Amant, Horton, & Ritter, 2007). 

ACT-R is made up of many different modules that represent different parts of 

the cognitive system, such as a declarative memory module and a visual perception 

module. Each module is encapsulated, so that, e.g., the visual perception module has 

no direct access to the memory module. However, each module can write to its own 

buffer, which stores information for use in the current task. A central executive 

processor then accesses these buffers and coordinates behavior across different 

modules. 
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ACT-R delineates between two distinct forms of memory: procedural 

memory and declarative memory. Procedural memory is modeled as a set of 

"if...then" rules called production rules (or simply productions). These production 

rules examine input to the cognitive system, specifically symbolic representations of 

the environment and internal mental states that are stored in the buffers. If the 

input matches the conditions of a production rule, the production rule fires and 

produces output. This output may take the form of behavior (such as eye 

movements, hand movements, or vocal utterances) or changes to mental states 

(such as manipulation of goals, attention, or items in memory). All production rules 

are considered as potential candidates in parallel with each other, but only one 

production can fire at a time. This process is known as conflict resolution. This 

production system approach to cognition is a major conceptual difference between 

ACT-Rand other popular computational modeling approaches such as 

connectionism (e.g., McClelland et al., 2010). 

The other memory system represented by ACT -R is declarative memory, 

which is modeled as a set of chunks, or symbolic knowledge specified in 

propositional form. Chunks represent declarative knowledge that exist both in the 

mind as well as in the environment. For example, one chunk stored in long-term 

memory might represent Abraham Lincoln, whereas another chunk in the 

environment may represent the percept of an apple in the visual field. These chunks 

can serve as input to a production rule, and can be manipulated as a result of a 

production rule being fired. 
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While these memory systems are described as symbols (chunks) and rules 

for interaction with symbols (production rules), there are also subsymbolic 

processes that govern both memory modules. Production rules have utilities 

assigned to them that determine which production fires during conflict resolution if 

multiple productions are capable of firing. The system also utilizes reinforcement 

learning through a variant of the Rescorla-Wagner rule (Rescorla & Wagner, 1972), 

in which utility values are modified by rewarding production rules that perform 

well or punishing those that do not. This allows for a system that is capable of 

learning. In addition, chunks are assigned activation values that determine their 

probability of being retrieved from memory, as well as the time required to retrieve 

a chunk from memory. This activation value is based on recency and frequency of 

retrieval, and is also influenced by spreading activation (Anderson, 1983). 

ACT-R also contains a vision module to simulate high-level visual constructs, 

such as visual attention and visual search. ACT-R distinguishes between the notions 

of"what" and "where" visual systems (e.g., Goodale & Milner, 1992; Treisman & 

Gelade, 1980), in which limited information is available about the visual 

environment outside of foveal attention. Information from the "where" system is 

used to filter objects for visual search based on a set of features (such as color), 

whereas occulomotor movements are used to bring objects into focus and extract 

more detailed information using the "what" system. ACT-R also incorporates a type 

of "visual memory" by utilizing fingers of instantiation (FINSTs; Pylyshyn, 1989). 

The vision module does not simulate low-level features of the visual system, such as 

constructing percepts from raw sensory input. 
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ACT-R also contains several other modules, such as the imaginal and goal 

modules. The imaginal module is used to represent the current problem state, and 

stores chunks of information relevant to the current task. The goal module is used to 

represent intentional behavior. It allows the model to process a task using top-down 

knowledge of the task structure. 

An ACT-R model is essentially a list of chunks and production rules that 

represent the knowledge of the person being modeled. The modeler may also 

specify the value of several parameters that govern how ACT-R modules behave, in 

addition to task-specific parameters such as production utility values. When the 

model is provided a task, ACT-R will simulate behavior and produce a trace. A trace 

is a time-stamped list of actions performed by the model, reduced to their atomic 

form, such as requesting an item from memory, or shifting attention to a different 

portion of the screen. 

The trace is important because it is essentially a detailed record of how the 

model performs a task. Thus, in addition to observing the behavior produced by the 

model, the trace allows inspection into the internal mental state of the model. This is 

helpful in explaining why a certain behavior is produced, as opposed to simply 

predicting its occurrence. Such information can provides clues as to how we can 

modify the model to match human performance. 

External Environment 

Most psychological tasks modeled by ACT-Rare not purely cognitive in 

nature. In addition to cognitive components such as memory retrievals and 

manipulations of mental representations, most tasks require the model to interact 
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with some environment. The environment provides sensory input, by depicting the 

external world in a way that ACT-R can see and understand. Typically, ACT-R 

models can interact with the environment as well, producing behavior. 

In this task, it is necessary for the model to see cockpit instruments (such as 

the speedometer), other planes on the airport surface, signage on the taxiways, and 

the taxiways themselves. The model must also be able to interact with the 

environment by manipulating cockpit controls, and moving its gaze to various parts 

of the display. 

X-Piane 

When modeling an aviation task, the external environment can be quite 

complex. The dynamics of aircraft movement should be modeled as precisely as 

possible to ensure predictive validity. For this reason, the ACT-R model interfaces 

with X-Plane, a commercial flight simulator (shown in Figure 1). X-Plane is an 

extensible platform that provides realistic simulation of flight dynamics for many 

aircraft types. Additionally, it contains detailed maps of airports and taxiways at 

airports around the world. 
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Figure 1. A view of X-Plane from inside the cockpit. 

Interfacing with X-Plane has both limitations and advantages. One limitation 

is that X-Plane only operates in real time, and thus fast-time simulations are not 

possible. This limits the ability of the model to rapidly produce data. Real-time 

simulations have several advantages, however. Operating in real time allows 

researchers a transparent research environment to work with; an aviation expert 

with limited or no modeling experience should be able to watch the model being run 

and make performance assessments. It also allows for the possibility of mixed 

human-computer simulations. For example, the model could potentially be used to 

train human air traffic controllers without requiring human pilots to pilot flight 

simulators, as is typically the case. 



Virtual Cockpit 

Since ACT-R does not have machine vision capabilities, it is not able to 

directly perceive the environment from X-Plane. For the model to perceive its 

surroundings, the information available in X-Plane must be transformed into a 

representation that ACT -R can understand. 
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Figure 2. The virtual cockpit renders cockpit instrumentation, signage, taxiways, and 
planes. The ACT-R trace can be seen in the bottom right. 

For this reason, it is necessary to create a mediator, known as the virtual 

cockpit (shown in Figure 2), which is essentially a Lisp program in which the X-

Plane view has been redrawn and coded using a symbolic representation that ACT -R 

can understand-as a series of chunks. The virtual cockpit communicates with X-

Plane through its plug-in infrastructure in order to retrieve state variables, such as 
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location, heading, and velocity. These variables are used to reconstruct the view of 

the taxiways, as well as readings on the cockpit instrumentation. The taxiways 

themselves are supplied to the virtual cockpit as a node-link model, with an 

additional list of signs and their locations. Although the fidelity of the virtual cockpit 

is inferior to that of X-Plane, it captures the fundamental structure of the 

environment that is necessary for the model to interact. Extraneous information, 

such as texture and perspective are not represented in the virtual cockpit. 

The model is able to explore the environment through the virtual cockpit and 

act accordingly based on its current state. As productions fire in ACT-R, state 

variables are updated and sent back to X-Plane, which in turn modify the 

environment. In this way, the cognitive model can drive a plane in X-Plane. See 

Figure 3 for a visual depiction of this sequence. 

Figure 3. ACT-R interacts with X-Plane through the virtual cockpit. State variables 
are received from X-Plane, manipulated by ACT-R, and sent back to X-Plane. 

Related Modeling Efforts in ACT -R 

While computational modeling has been applied to aviation tasks before, 

there have been no attempts to create a general-purpose computational cognitive 
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model of pilot taxiing behavior to my knowledge. There are several previous efforts, 

however, that provide useful insight into the current problem. In particular, there 

have been several efforts that use ACT-R to predict pilot performance on a variety of 

aviation related tasks. 

Ball, Gluck, Krusmark, and Rodgers (2003) used ACT-R to simulate the 

operation of a Predator Uninhabited Air Vehicle (UAV). Their task involves 

manipulating the airspeed, altitude, and heading of a UAV in order to achieve a 

specific goal. Ball et al. also varied the level of declarative and procedural knowledge 

available to the model, and task performance was compared between three variants 

of the model, as well as performance by a human expert. 

While the UAV task did not involve a driving component, the model is similar 

to the current work in several respects. Foremost, it highlights the complexity of 

manipulating multiple aircraft controls in a dynamic environment, and ACT-R's 

ability to achieve human-like performance at such a task. It also highlights the 

importance of imbuing the model with the proper knowledge in order to 

successfully model human behavior. Lastly, Ball et al. provide novel methods of 

validating performance on a complex aviation task that may be applied to the 

current model. 

Byrne et al. (2004) examined the effect of adding a synthetic vision system 

(SVS) to the cockpit. An SVS is a computer-generated display of the outside world 

that can be used as a proxy for looking out the window when visibility is poor. 

However, the SVS is also overlaid with various pieces of information such as 

altitude, airspeed, and heading. 
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ACT-R was used to monitor flight controls while an autopilot performed a 

landing in a flight simulator. Although the addition of the SVS did not decrease task 

performance, it greatly influenced gaze location of the model (as well as the real 

pilots). In particular, the model did not use the SVS as a substitute for looking out 

the window as it was designed, but instead used the SVS as a substitute for looking 

at other cockpit gauges, such as the altimeter and speedometer. 

Although performance on the landing task stayed the same, Byrne et al. note 

that this redistribution of attention within the cockpit may have a substantial effect 

when the task is more difficult. This suggests that the cockpit layout used by ACT-R 

may affect the predictive validity of a model, and that the effects of changes in 

cockpit layout may be adequately predicted by ACT-R. Additionally, the model 

presented by Byrne et al. may serve to complement the present work. Their model 

and the present model focus on two orthogonal tasks: landing and taxiing. Since 

both models use the same underlying architecture, one could possibly merge the 

two models to perform more complex aviation maneuvers. 

Byrne and Kirlik (2005) examined pilot performance on taxiing to the gate 

after landing. Although pilots are supposed to remember and follow the exact 

clearance given to them by ground control, they often fall back on a set of heuristics 

for navigating to the gate. These heuristics include "follow the plane ahead of you" 

and "turn in the direction of the gate." While these heuristics are often successful, 

they have the potential to result in a serious runway incursion. Using ACT-R, Byrne 

and Kirlik were able to predict which heuristic or strategy pilots use in different 

circumstances. 
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The taxiing model of Byrne and Kirlik is perhaps the most relevant to the 

current model. The taxiing strategies identified by them critically influence the 

timing and route of the plane. This decision-making aspect should be subsumed 

under a larger model of pilot taxiing behavior such as the present work. 

Lastly, Salvucci (2006) created an ACT-R model of driving behavior that has 

been used to predict driving performance under varying conditions. Although this 

model is not aviation related, driving a car and driving a plane are similar in many 

respects. In particular, Salvucci defines a steering law that guides steering behavior. 

This law attempts to minimize the angle between the current and desired heading, 

while also minimizing the change in heading angle over time. Pilots may make use of 

a similar steering law, though the dynamics of the aircraft do not provide the same 

level of feedback as that of a car. 

In addition, both Salvucci's driving task and the current task can be divided 

into a few subtasks that require time-sharing. A major factor in the effectiveness of 

both models is the degree to which ACT-R can monitor and perform these subtasks 

efficiently. A good model is one that is able to optimize performance across a range 

of subtasks. 

Model Overview 

A thorough task analysis of pilot taxiing was conducted by gathering 

information from subject matter experts (commercial pilots), official airline taxiing 

documentation, and academic journal articles. Subsequently, this information was 

used as a rubric for creating the production rules in the ACT-R model. The task 

analysis identified several key goals that are required for successful performance on 
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a taxiing task. These goals include navigation, scanning the taxiway for potential 

incursions, maintaining the speed of the aircraft, steering, processing audio from 

ground control and nearby aircraft, and various pre-flight items. 

The ACT-R model contains separate routines to perform each task identified 

in the task analysis. As such, the model requires a high degree of multitasking (more 

aptly, task switching). Although ACT-R is capable of performing several actions in 

parallel if those actions utilize different modules (such as motor and visual 

modules), it does not allow multiple simultaneous activities within a module. Thus, 

ACT-R commits to a psychological theory of multiple bottlenecks (e.g., Wickens, 

1984) unlike some theories, which propose a general resource pool that allows 

multiple simultaneous cognitive processes to run in parallel, but at a fraction of the 

total efficiency (e.g., Moray, 196 7). 

To solve this problem, the model uses a goal stack strategy (Anderson, 

Kushmerick, & Lebiere, 1993) in order to transition between top-level goals and 

subgoals identified in the task analysis. At the top level, the model stochastically 

chooses a top-level goal based on the utility values specified in the model. These 

utility values roughly indicate a pilot's mental model of how often each task needs to 

be evaluated. While more complex theories of multitasking have been proposed for 

ACT-R, notably Salvucci and Taatgen's (2008) threaded cognition, such a mechanism 

would substantially increase the complexity of the model. However, as the 

capabilities of the current model are augmented, it may be necessary to reconsider 

such options. 
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Many complex motor control actions performed by the pilot, such as turning, 

corrective steering, and smooth braking cannot be adequately modeled using ACT­

R's default motor system, which is designed for simple button presses and mouse 

movements. However, these motor actions can be modeled using a closed-loop 

dynamical systems approach, where information acquired from the environment 

serves as input into a motor control algorithm. ACT-R's motor capabilities have been 

extended by modeling each motor action as standalone function that is executed 

continuously in a loop until some exit criteria are met. The parameters of these 

functions have been tuned to reflect the knowledge of expert pilots, in order to 

simulate expert pilot behavior on a taxiing task. 

Navigating 

Overview. The navigation top-level goal is required for the pilot to maintain 

situational awareness. Prior to taxiing, the pilot is issued a list of clearance 

instructions that indicate which taxiways to follow to get from the gate to the 

runway in addition to any spots where he must hold. The pilot must retain these 

instructions in memory as he navigates the taxiways. The pilot must also have an 

accurate mental map of where he is on the taxi surface, which taxiways he needs to 

turn onto, which way to turn, and where to hold. The pilot can create and update his 

mental map by looking at markings on the taxiways that indicate the current 

location, and comparing them to the pilot's taxiing route stored in memory. If the 

pilot believes that he is not where he is supposed to be, he must take proper 

recourse by getting back on track or notifying ground control. 
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ACT-R Model. The ACT-R model holds a chunk in the imaginal buffer that 

lists several pieces of information relevant to the plane's current state on the 

taxiway, including the plane's current taxiway, the last taxiway that the plane was 

on, and the next taxiway of importance. 

In addition, several chunks are stored in declarative memory that indicate 

what to do at each point along the clearance by pairing a taxiway with an action. 

These chunks are referred to as taxi-actions. For instance, a taxi-action might state: 

"turn right at taxiway A" or "hold at taxiway EL." These chunks represent a list of 

rules that guide the pilot on the airport surface. A complete list of taxi-actions makes 

up a set of clearance instructions. In a real situation, these instructions are relayed 

from ground control over the radio, and the pilot has to retain these instructions in 

memory. In the future, data-link technologies will allow pilots to receive and retain a 

list of clearance instructions using a text-based display in the cockpit. 

In the current model, clearance instructions are loaded into declarative 

memory prior to running the model. This obviates the need to receive auditory 

instructions from ground control by starting the model after this phase takes place, 

though future versions of the model may include a data-link component. Since items 

in declarative memory decay as time passes, the time taken to retrieve a taxi-action 

from memory increases the longer the model is running. In addition, the model may 

fail to retrieve the correct clearance instruction. This is particularly likely if the 

model is run multiple times without resetting its memory. This situation is 

analogous to one that may occur in real life if, for instance, a pilot who is used to 



making a routine sequence of turns at an airport is suddenly presented with a 

different required action: turn left at taxiway B instead of right. 
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When the navigation top-level goal is called, the model begins visually 

scanning all of the signs that are currently visible on the taxiway, one by one, and 

decides what to do with each one. There are two types of signs that are present on 

the taxiways: black signs, which indicate the taxiway that the plane is currently on, 

and yellow signs, which indicate the crossing taxiway. 

If the model reads a black sign, it compares its content to the current taxiway 

slot in the imaginal buffer. If the two are identical, no action is taken. If the two are 

different, the plane is on a different taxiway than the model believes. This should 

happen very rarely, but it is possible if the plane has mistakenly turned on to the 

wrong taxiway. The model currently contains no decision-making strategy for 

navigating back on course when it is on the wrong taxiway. In a real-life situation, 

subject matter experts have indicated that they will resolve the situation by radioing 

ground control or by navigating back to the correct taxiway using their knowledge 

of the airport layout or consulting a map. This task is made easier by the fact that 

commercial jetliners have both a pilot and a pilot not flying (colloquially known as 

the co-pilot), who is able to help navigate. Currently, the model simply records the 

error in the trace, so that one can see where the model went off course and perhaps 

determine the frequency of such errors. 

If the model encounters a yellow sign, it compares its content to the next 

taxiway slot in the imaginal buffer. The next taxiway may either indicate a taxiway 

that the plane should hold at, or a taxiway that the plane should turn on to. If the 
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model compares the content of the sign with the slot in the imaginal buffer and they 

are not equal, no action is taken. If the two are equal, the model makes a declarative 

memory request for a taxi-action corresponding to the taxiway listed on the sign. If 

the taxi-action indicates that a turn should be made, the turn subgoal is called. If the 

taxi-action indicates that a hold should be performed, the hold subgoal is called. 

After the turn or hold is finished, the slots in the imaginal buffer are updated to 

reflect the pilot's new position on the taxiways. When the model has read all of the 

signs that are visible, the model chooses another top-level goal. This process is 

shown as a list of production rules and transitional states in Figure 4. 
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find-first-sign 

read-black-sign-bad 

Figure 4. A rough flow chart of the production rules involved in the navigation goal. 

Maintain Speed 

Overview. In order to maintain the speed of the aircraft, the pilot must 

occasionally look at the speedometer to be aware of the plane's speed. The pilot 

must then decide how to respond based on his current speed and a target speed. 

This requires a combination of manipulating the throttle and the brakes. In a typical 

large aircraft, idle thrust is quite high, which means that the pilot only needs to 
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move the throttle forward enough to get the plane moving (known as "breakaway 

thrust"). The pilot may then move the throttle back to the idle and the plane will 

continue to accelerate. Often the pilot will only use the brakes to control the plane's 

speed after initial breakaway, though the throttle will need to be used after coming 

out of a sharp turn to regain speed. 

Pilots are also able to control the speed of the plane without actually looking 

at the speedometer. They are able to do this by relying on visual motion cues and 

kinesthetic feedback. ACT-R has no built in mechanism for speed estimation in these 

situations, and this capability is not included in the maintain speed goaJl. 

ACT-R Model. In addition to storing the location of the plane on the airport 

surface, the imaginal buffer also stores the target speed of the plane. This represents 

the maximum speed that the plane should be moving, and differs depending on 

whether the plane is traveling on a straightaway or when the plane is performing a 

turn (see Table 1). 

1 However, this capability is simulated in the hold subgoal as described in a later 
section. 
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Table 1. List of parameters used to maintain speed. 

Parameter Value 

Target speed on straightaway 15 knots 

Target speed on 90° turn 9 knots 

Braking 0.102 

Throttle 0.032 

When the maintain-speed top-level goal is called, the model fixates on the 

speedometer, and compares this value to the target speed. The model then executes 

one of three productions to manipulate the throttle depending on the current speed 

and position of the throttle. If the plane's speed drops to four knots below the target 

speed, a production fires that moves the throttle is to the forward position. If the 

plane's speed exceeds one knot below the target speed, the throttle is moved to the 

idle position. If neither of these conditions is met, a dummy production fires which 

does not move the throttle. 

Subsequently, the model fires one of three productions that manipulate the 

brake. If the plane's speed is above the target speed, then the brakes are applied. If 

the plane's speed is three knots below the target speed, the brakes are released. If 

neither of these conditions is met, a dummy production fires which does not affect 

the current state of the brakes. These values are depicted in Figure 5. 

2 Brake and throttle parameters are unitless in X-Plane. They represent a proportion 
of total brake/throttle applied, where 0 is no brake/throttle and 1 is full 
brake/throttle. The relationship between velocity and throttle/brake parameters is 
shown in Appendix 1. 
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Current Speed 
4---5 -4 -3 -2 -1 T 1 

Brakes 

Throttle apply throttle 

Figure 5. Manipulation of the brake and throttle is determined by the current speed 
relative to the target speed (T). 

When the brakes or throttle are applied, it is done at a constant rate 

(indicated in Table 1). Thus, the amount of brake applied does not increase or 

decrease as the speed of the plane changes. Since this procedure keeps the speed of 

the plane relatively stable, dynamic braking and throttling is not utilized. The 

braking and throttle parameters have been chosen to mirror real-world data while 

staying within an acceptable range of+/- 2 knots/sec (Bakowski, Foyle, Kunkle, 

Hooey, & Jordan, 2011). Ultimately, these values are free parameters that can be 

manipulated by the modeler. One may wish to change these values based on several 

factors such as: the pilot being modeled (to introduce individual variation), the type 

of plane being modeled (to reflect the notion that smaller aircraft can safely travel at 

higher speeds), and the airline being modeled (to reflect different procedural 

standards). This process is shown as a list of production rules and transitional states 

in Figure 6. 
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start 

apply-brakes no-move-brakes 

Figure 6. A rough flow chart of the production rules used to maintain speed. 

Holding 

Overview. During a pilot's clearance, he may be required to come to a 

complete stop, or hold, at one or more points along the route. Pilots are required to 

hold before crossing any runway, and are often asked by ground control to hold at 

certain taxiways to let crossing traffic pass. When a pilot approaches a hold, he 

applies the brakes in a smooth motion to ensure safety and passenger comfort In 

order to accomplish this in the smoothest motion, the pilot should apply the brake 

at the minimum level that will bring the plane to a halt at a given point. To 

determine how much brake should be applied, the pilot uses two pieces of 
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information from the environment: the current speed of the plane, and the distance 

to the hold point. 

Several tests were conducted in X-Plane to determine the stopping distance 

for a Boeing 737-800 plane using several braking parameters. Starting from a speed 

of about 10 knots, a constant amount of brake was applied until the plane came to a 

halt. The total distance needed for the plane to come to a halt was measured and 

divided by the change in speed to determine an average stopping rate ( ro) in meters 

per knot decrease in speed. The X-Plane simulations revealed a piecewise function 

for the stopping rate (see Figure 7), where the speed drops off precipitously under 

around 5.3 knots. 
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Figure 7. A plane's speed is plotted against meters traveled as it comes to a halt with 
varying amounts of brake. 
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The stopping rate was computed using only the first segment of the 

piecewise function under the assumption that any amount of brake would rapidly 

bring a plane to a halt when traveling at speeds lower than 5.3 knots. A stopping 

rate was computed for several different braking parameters, and the two values 

were plotted against each other (see Figure 8). 
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Figure 8. Several braking parameters were plotted against the observed stopping 
rate ( m ). Blue squares indicate observed values, whereas red stars indicate 
predicted values based on the fit of Equation 1. 

The relationship between braking parameter and stopping rate is fit well by 

the power function in Equation 1 (R2 > .99), where {3 is the X-Plane braking 

parameter. 
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w = 0.064/fl.695 (1) 

This function is rewritten in terms of f3 in Equation 2 in order to generate a function 

that can determine the proper braking parameter based on distance and speed. 

0.2 
{3 = ())0.59 (2) 

Conceptually, w is simply the distance to the desired stop point divided by the 

current speed. However, this value needs to be adjusted to compensate for the 

piecewise function found in the plane's stopping behavior, as shown in Equation 3. 

d 
(3) w=--

s-5.3 

As an example, suppose a plane is traveling at 10 knots (s=10), and needs to 

stop 20 meters short of a hold line in 200 meters (d=180). In this case, the pilot 

should apply a brake value ( {3) of approximately 0.023 in order to perform a smooth 

stop. 

ACT-R Model. If the navigation top-level goal identifies that a visible sign is 

identical to the next taxiway and a taxi-action indicates that a hold is to be made at 

that intersection, the hold subgoal is called. Once the hold subgoal is initiated, the 

model fixates on an object that represents the hold point, such as a sign or the 

intersection itself. The model begins visually tracking the object, so that the current 

distance to that point is continually stored and updated in the visual buffer. A hold 

production fires, which calculates and applies the amount of brake needed using 

Equation 2. 

The distance supplied to this equation is the distance to the intersection 

stored in a slot of the visual buffer of the intersection, minus 20 to ensure that the 
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plane stops 20 meters3 before the intersection. Unlike the distance value, the 

current speed is not directly available to the ACT-R model. Pilots do not (and 

probably should not) stare at the speedometer while bringing the plane to a halt, yet 

they still have a sense of how fast the plane is moving based on visual motion cues 

and kinesthetic feedback. The true velocity of the plane is supplied directly to the 

algorithm as a proxy for these senses. 

This hold production will fire every 500ms, as long as the speed of the plane 

is above 5.3 knots and the hold point is still visible. If the current speed drops below 

5.3 knots, a small, constant amount of brake is applied until the plane comes to a 

halt. If the hold point disappears from view, the pilot immediately applies full 

brakes, as he has just driven through a hold line. Although this is not necessarily a 

safe maneuver, it potentially avoids a much more serious runway incursion. Under 

normal circumstances, this does not occur in the model, but nonetheless a 

contingency is built in for off-nominal situations. 

There are two methods for coming out of a hold. Firstly, if the pilot observes 

a plane crossing the runway in front of him while he is stopped, he will wait for that 

plane to pass and then resume. Alternatively, if the pilot comes to a complete stop 

and does not see a crossing plane, the model waits several seconds and then 

assumes it is safe to resume taxiing. This process is shown as a list of production 

rules and transitional states in Figure 9. 

3 In the current model, this value is simply a constant determined from observations 
of real-world data. A noise parameter may be added to add more variability to the 
stopping point. 
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Figure 9. A rough flow chart of the production rules used to bring the plane to a 
hold. 

Corrective Steering 

Overview. It is very important for the pilot to stay as close to the center of 

the lane as possible, as deviation from the centerline may potentially result in an 

incident in which the plane's wing hits an obstacle. Ideally, the front wheel of the 

plane should be on the center taxi line. Since airplanes are very large vehicles (a 

Boeing 737-800 has a wingspan of approximately 35.7 meters), it is not always 
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possible for a pilot to visually ensure that the plane is clear of any obstructions, such 

as towers or other planes. Staying on the centerline lets the pilot know that the 

plane is laterally clear of any other obstructions. 

In order to stay on the centerline, the pilot must periodically attend to his 

location and adjust the yoke. Otherwise, the plane may start to veer slightly due to 

engine torque, wind, or simply because the yoke position must be very precise to 

follow such a narrow target. The model uses a one-point visual control model of 

steering that has been adapted from Salvucci and Gray (2004) and Salucci (2006). 

The steering model relies on a single fixation point on the center of the 

taxiway several meters in front of the plane. From this point, two angles are derived: 

the visual angle to the fixation point (Sfixation) and the angle (slope) of the taxiway 

itself (Staxiway) from the pilot's perspective. The pilot's steering angle ( q>) can then be 

computed through the regression equation in Equation 44• 

~q> = k18fixation + kz8taxiway (4) 

This equation attempts to keep the taxiway straight (Staxiway = 0), while at the 

same time keeping a visual fixation in the center of the visual field (Sfixation = 0). In 

doing so, the model avoids jerky movements that may lead to oscillation. Free 

parameters used in the current model are listed in Table 2. 

4 The ACT -R model used to collect data mistakenly contained another term, ~t, 
which was multiplied by kz. This term is a vestige from an earlier attempt at 
corrective steering which represents the time since the steering angle was last 
computed. However, this term remained relatively constant at .5 seconds. As such, 
the true k1 parameter used in the model (.25) is multiplied by ~t to arrive at the 
value for k1 shown here. This discrepancy should not affect the behavior of the 
model, but is mentioned in view of full disclosure. 
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Table 2. Free parameters used in steering equation. 

Parameter Value 

kl .125 

kz 1.0 

ACT -R Model. When the corrective steering top-level goal is called, the 

model directs its visual attention to a point on the center of the taxiway an arbitrary 

distance from the current position. This point, which represents the fixation point 

used in the steering model, is depicted in the model abstractly using a small green 

box (shown at point 4 in Figure 10). 

Figure 10. A cropped, close-up view of the virtual cockpit depicts both angles used in 
the model. Point 2 represents the current position of the plane, whereas point 4 
represents the fixation point. Angle 423 is the fixation angle (8fixation) and angle 412 
is the taxiway angle (8taxiway). Note that the red lines and numbers are not normally 
visible in the virtual cockpit. 
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If the visual angle to the fixation point is less than two degrees, it is assumed 

that the plane is roughly on the centerline, and the goal is exited. If the angle is 

greater than two degrees, it is assumed the plane is veering off course. If this occurs, 

the model begins visually tracking the fixation point in order to continuously update 

this angle. A steering production fires that computes a new steering angle to move 

the plane towards the centerline. Since the fixation point is being visually tracked, 

8fixation can be computed directly from information in the visual buffer. The slope of 

the taxiway (8taxiway) is also indirectly computed using information from the visual 

buffer and the plane's current heading. The steering production rule fires roughly 

every SO Oms until the angle to the fixation point is less than two degrees, at which 

point the goal is exited. This process is shown as a list of production rules and 

transitional states in Figure 11. 

find-center not-needed 

track-center-line 

Figure 11. A rough flow chart of the production rules used for corrective steering. 
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Turning 

Overview. In order to model the trajectory of a turn, real-world positional 

data was used to construct a mathematical function for an average turn. This 

function is used to predict the instantaneous heading of the plane at any given point 

during the turn. 
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Figure 12. A turn performed by a human pilot is plotted in two-dimensional space. 



---------------~-~--~-

43 

180 -en 
Cl) 
Cl) 160 ... 
C) 
Cl) 
"0 140 c: 
:.:.. 
C) 

120 c: 

i 
Cl) 100 :c 

80 
0 10 20 30 40 50 60 70 80 

Time (in seconds) 

Figure 13. A plane's heading changes through time as it performs a 90 degree turn. 

Figure 12 shows the position of a plane as a pilot performs a 90 degree turn. 

Figure 13 shows the heading of the plane through time for the same 90 degree turn. 

This second function was fit to a cumulative exponential function in Equation 5, 

where H is the predicted heading. 

H = Qe-kx+ c (5) 

Q represents a multiplicative constant to ensure the angle is in degrees, and c 

represents an additive constant that denotes the final desired heading of the plane. 

Conceptually, x represents time and k is a constant. However, the situation is 

complicated by the fact that the shape of the graph (Figure 13) compresses when 

the plane is travelling at higher speeds. Using a single constant fork results in wider 

turns as the speed of the plane increases. To compensate for this, k needs to be 

computed dynamically, based on the speed of the plane. Equation 6 was found to 



44 

compensate for this effect. Using an adjusted value fork ensures that the equation 

results in a good turn, independent of speed. 

l+6 
k---

18800 (6) 

Though in theory Equation 5 should yield a good turn, in practice it was 

found that this algorithm did not converge on the final heading quickly enough. This 

is perhaps due to the fact that a new heading is calculated discretely, in roughly 

SOOms intervals, though the reason is not quite clear. A corrective factor was 

applied, transforming x by multiplying by the proportion of the distance that has 

been travelled. This corrective factor is shown in Equation 7, where At indicates the 

time passed since the turn began, D represents the total distance, and M. represents 

the distance traveled so far. 

(7) 

ACT-R Model. 

If the navigation top-level goal identifies that a visible sign is identical to the 

next taxiway and a taxi-action indicates that a turn is to be made at that intersection, 

the turning subgoal is called. 

When the turning subgoal is first called, the model lowers its target speed in 

anticipation of a turn. The model then scans the visual scene for a "turning marker", 

depicted as a red square in the model. This artificial marker symbolizes the point at 

which the plane will finish its turn and stabilize its heading. This point is fixed in the 

virtual environment, unlike the dynamic marker used for corrective steering. 
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The model visually tracks the turning marker for the duration of the turn. 

The distance to this point is stored in a slot of the visual buffer, and serves as input 

to Equation 7. A turning production calculates a new heading, using Equation 5, and 

the plane's heading is updated accordingly. As the model performs a turn, the speed 

of the plane gradually increases. Sporadically, a production fires that taps on the 

brake in order to keep the speed of the plane from increasing too much. When the 

turning marker disappears from view, the turn is complete. The model raises its 

target speed and exits the turning subgoal. This process is shown as a list of 

production rules and transitional states in Figure 14. 

Figure 14. A list of production rules and transitions used to perform a 90 degree 
turn. 
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Scanning the Taxiway 

Overview. In addition to general navigation, scanning the taxiway helps the 

pilot maintain situational awareness. Scanning the taxiway involves looking out the 

cockpit window for potential incursions. While most often this means looking for 

other planes, it also applies to looking for fuel trucks, baggage trucks, or anything 

else that is not supposed to be on the taxiway or is in the path of the plane. The pilot 

must then decide what to do given the circumstances. If a collision is imminent, he 

may come to a complete stop or alter his course. If a collision is not imminent, the 

pilot may slow down, or maintain speed and continue to monitor the situation. 

ACT-R Model. When the scan-taxiway top-level goal is called, the model 

begins looking for nearby planes, scanning the environment from left to right. If 

there is a plane less than 400 meters away, it will shift its attention to that plane. 

This process repeats for each visible plane within 400 meters. Currently, the model 

provides no recourse for when a plane is too close. However, the action is recorded 

in the trace. A list of production rules and transitions used to scan the taxiway is 

shown in Figure 15. 
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Figure 15. A list of production rules involved in scanning the taxiway. 

Missing Links and Future Directions 

There are several additional tasks that pilots are responsible for that are not 

presently included in the model. While not all of these are necessarily critical for 

model simulations, these aspects need to be addressed and perhaps included in 

subsequent versions. 

Currently, scanning the taxiway is the most underdeveloped of all of the 

features implemented in the virtual cockpit. Its present purpose is simply to act as a 

filler for the time it takes for a pilot to examine his surroundings. Notably absent is 

any sort of recourse when a nearby plane is too close, or any procedure for 

following a leading plane. This could potentially lead to loss of separation 

requirements between planes. In theory, it should be possible to maintain 
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separation by employing a braking procedure very similar, if not identical to the 

mechanics employed using Equation 2 for holds. However, this procedure has yet to 

be tested for enforcing separation requirements, and as such is not included in the 

extant model. 

Future versions of the model must also include a method for communication 

betweens ground control and pilots, most likely in the form of a data-link 

component in the cockpit. The alternative, relaying clearance instructions over 

radio, necessitates audition and natural language-neither of which are a strong suit 

of ACT-R (though see Ball, Heiber, & Silber, 2007 for attempts). This will allow 

dynamic situations that are more typical of pilot taxiing. As is, the current 

simulations are likely to overpredict a pilot's ability to follow clearance instructions 

accurately. 

The model is also likely to benefit from integration with previous efforts, 

such as Byrne and Kirlik's (2005) research on taxiing heuristics. Incorporating taxi 

heuristics into the model will strengthen the ability of the model to predict 

navigational errors. Lastly, there are a variety of miscellaneous tasks that pilots 

perform that are not included in the model, such as pre-flight checklists and 

maintenance checks. However, subject matter experts have informed us that most of 

these tasks are done by the co-pilot, whereas the pilot is primarily responsible for 

actually driving the plane. As such, it is believed that incorporating these secondary 

tasks may not be necessary. 
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Model Validation 

Overview 

By using a task analysis as a basis for constructing the model, it is believed 

the model has a high level of content validity (Nunnally & Bernstein, 1994 ). ACT -R 

has been thoroughly vetted as a model of basic psychological principles, and domain 

knowledge acquired from subject matter experts contributes to the plausibility of 

the model. However content validity alone is not enough; the model also needs to be 

assessed for predictive validity. 

To ensure predictive validity, the cognitive model must be validated against 

human data. Typically, human subject data is obtained by bringing people into a 

laboratory to perform a task. Though this method is often adequate, it has several 

limitations. Foremost, the current model is intended to emulate the behavior of 

highly skilled pilots. Therefore, unlike many ACT-R models that emulate general 

human capabilities, this model requires a very specific subset of the population in 

order to be validated. Bringing real pilots into the laboratory to collect enough data 

is prohibitively expensive and logistically difficult. Secondly, data generated by 

human subjects in a lab setting is often criticized for its ecological validity, and 

sometimes with good reason. Although X-Plane is certified for use as an FAA flight 

simulator, it is only a proxy for real-world data. It is likely that data generated in a 

laboratory will approximate real-world behavior, but contain some amount of error. 

Fortunately, there is a better alternative to the traditional approach for 

obtaining human subject data for this model. NASA's Safe and Efficient Surface 

Operations (SESO) has helped develop a surface management system called SODAA 
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(Surface Operations Data Analysis and Adaptation; Brinton, Lindsey, & Graham, 

2010). The SODAA tool is designed to provide ground controllers with detailed 

information about all of the planes within their air space and, importantly, records 

the position of every plane as it taxis. 

Human data to validate the current model was obtained using the SODAA 

tool at Dallas-Fort Worth (DFW) airport. This data is then fed into X-Plane, re­

creating a time slice of taxiing behavior from DFW. Since the ACT-R model can 

interact with X-Plane, it is possible to selectively remove a plane from the SODAA 

data and see how well ACT-R performs in its place. Thus, there are two streams of 

positional data that can be compared with each other: that generated from a real 

pilot, and that generated from the ACT-R model (see Figure 16). The trajectory of 

the plane generated by the model will be compared to the trajectory of a real plane 

following the same clearance at Dallas Fort Worth (DFW) airport. 

Two taxi routes from the SODAA data were chosen for model validation. Both 

routes were driven using Boeing 737-800 in the SODAA data, and contain important 

features such as 90 degree turns, holds, and have both short and long stretches of 

taxiway. Data are collected from the model using an X-Plane plug-in that records 

position and velocity information roughly every 25 milliseconds. For a standard taxi 

route, this results in over 10,000 data points per model run. In the analyses below, 

three runs of each taxi route by the model are examined. These runs were randomly 

chosen after first eliminating any run containing serious errors-namely, any run in 

which the correct taxi route was not followed. This exclusionary criterion ensures 

that each model run can be analyzed with respect to all measures of validation. 
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Positional Data 

Overall fit. An important criterion for how well the model performs is the 

positional fit of the model trajectory to the SODAA data. For each data point in the 

model's trajectory, the nearest point on the SODAA data's trajectory was found and 

an offset was computed. In this way, positional offset from the SODAA data can be 

examined irrespective of time. The results, which are summarized in Table 35 and 

Table 4, indicate a good fit for the first route (mean deviation of 1.99m, average max 

deviation of 3.62), but a worse fit for the second route (mean deviation of 5.83m, 

average max deviation of 19.4). However, it seems the values for the second route 

may be inflated due to a poor fit from Run 4. It is important to remember that the 

positional fit shown here is relative to the SODAA data, which may contain some 

error itself, rather than an "ideal" taxi route. 

Table 3. Mean, standard deviation, max deviations, and RMSE from the SODAA path 
for route one. All values are in meters. 

Runt Run2 Run3 Average 

Mean 1.36 2.67 1.93 1.99 

Stdev 0.96 1.06 1.07 1.03 

Max 3.81 6.50 4.36 3.62 

RMSE 446.45 252.97 242.75 314.06 

5 For technical reasons, the model did not start in the identical location as its SODAA 
counterpart for route one, which artificially inflated the values in Table 3. For this 
reason, the beginning ofthe model data prior to convergence with the SODAA path 
(roughly 500 data points) was eliminated from the present analysis. 
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Table 4. Mean, standard deviation, max deviations, and RMSE from the SODAA path 
for route two. All values are in meters. 

Run4 RunS Run6 Average 

Mean 10.58 3.72 3.27 5.83 

Stdev 10.48 2.15 2.18 4.94 

Max 36.12 13.09 9.00 19.40 

RMSE 52.24 157.75 164.90 124.96 

Another way to look at the position data is to look at the offset between the 

model and the SODAA data at each point through time. Unlike the first analysis, this 

approach is sensitive to the speed at which the planes are travelling. The results, 

shown in Figure 17, demonstrate a noticeable difference in position that grows 

steadily over time. Root mean square error (RMSE) is calculated for each model run 

and listed in Tables 3 and 4. 
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Figure 17. Offset between the model and the SODAA data for route one (top) and 
route two (bottom). Each line represents a single run of the model. 
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In light of the previous analysis, it is suspected that the RMSE is driven 

almost entirely by the differing velocities of the planes, covered in a later section. As 

a cursory examination, it is worth noting that the average speed of the model in 

route one is 9.22 m/s compared to an average speed of8.15 mjs for the SODM 

data. Over the course of 350 seconds, the model is likely to pull ahead by roughly 

376 meters, which fits in well with the RMSE values observed here. 

Corrective steering. Both taxi routes contained one long stretch of taxiway 

in which the model must stay on the centerline. For this stretch, deviations from the 

centerline were recorded for each model run as well as the SODM data (Tables 5 

and 6). Several of the model's runs actually outperformed the human SODM data in 

its ability to stay on the centerline, while a few runs fared worse. 

Table 5. Mean, standard deviation, and max deviations from the centerline for route 
one and the corresponding SODM data. All values are in meters. 

Runt Run2 Run3 Average SODAA 

Mean 1.56 0.71 4.60 2.29 1.29 

Stdev 0.80 0.52 1.26 0.86 0.59 

Max 3.15 1.74 7.68 4.19 2.52 

Table 6. Mean, standard deviation, and max deviations from the centerline for route 
two and the corresponding SODM data. All values are in meters. 

Run4 RunS Run6 Average SODAA 

Mean 1.69 1.10 2.34 1.71 3.32 

Stdev 1.15 0.69 1.43 1.09 0.65 

Max 3.59 2.47 5.30 3.78 4.83 

Previous estimates of centerline deviations are typically more constrained. 

One study measuring centerline deviations for a Boeing 7 4 7 suggested an average 
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deviation of roughly .15 meters and a standard deviation of .6 meters, though a 

maximum deviation of over 6 meters (Cohen-Nir, & Marchi, 2003). Nonetheless, 

there are several reasons to believe the levels of deviation reported here are more 

than adequate for modeling purposes. 

First, even the SODAA data does not reach the level of accuracy suggested by 

Cohen-Nir and Marchi. This is likely a result of noise inherent in the data recording 

process. However, it stands to reason that it is unnecessary to outperform the level 

of the recording equipment used by ADS-B. Second, the aforementioned study 

looked only at Boeing 747 aircraft, whose wingspan is roughly 23 meters larger than 

the Boeing 737-800 used in the model. The smaller plane size allows for 

significantly more leeway in centerline deviations. Lastly, while such deviations may 

not be acceptable for real taxiing, they should be acceptable for most computer 

simulations. 

Turns. Another important characteristic of the model is how well it can 

perform turns. Figures 17 depicts a close-up of two turns as performed in routes 

one and two, respectively. Figure 18 shows the heading of each plane as it performs 

a 90 degree turn. The model heading correlates highly with the heading of the plane 

from the SODAA data through time (all r > .85 for route one; all r > .98 for route 

two )6. However, in top part of Figure 19, it is apparent that part of the discrepancy is 

that the model routinely starts turning earlier (in time) than the human pilot. This 

6 The SODAA data contained significantly less data points compared to the ACT-R 
model, due to the rate at which it samples heading information. To correct for this, 
all data was refitted by interpolating each vector to contain an equal amount of data 
points. This ensures that all data points are properly lined up in temporal order for 
correlational analyses. 
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can be corrected by shifting the human pilot curve back 10 seconds, resulting in an 

even better fit (all r > .99) for route one. 
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Another way to examine performance on turns is to look at the heading of a 

plane by its position, instead of time. This analysis is perhaps more telling, as one 

would expect the model and SODAA data to have the same heading at any spot along 

the turn, regardless of velocity; the same might not be said of a plane's heading 

through time. Again, the model's heading correlates very highly with the SODAA 

data (all r > .99). However, Figure 20 makes it apparent that the turns are not quite 

identical. This figure plots the difference between the model's heading and the 

SODAA heading by position, as it approaches the turn. Initially, the headings are 

almost identical, but they begin to deviate towards the end of the turn. This is a 

result of the SODAA data performing a wider turn than the model, as can be seen in 

Figure 18. In all, however, the model seems to do an excellent job at performing 

turns. 
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Velocity 

Velocity control is an important component of the model. The ability to 

control the plane's speed in a human-like way differentiates this model from 

deterministic models such as sosz, and provides an opportunity for future research 

involving 40 taxi clearances. 

Overall, the model's average speed for route one was 9.22 knots (including 

holds) compared to an average speed of8.15 knots in the SODAA data, and 13.33 

knots compared to an actual15.18 knots for route two. The pattern of acceleration 

and deceleration (shown in Figure 21) was measured by a correlation between the 

velocities of model and the SODAA data. The model performed respectably, with 

average correlations of .61 and .57 for the two routes. 

In route one, the model tended to run a bit faster than the SODAA data, while 

in route two the model tended to run a bit slower. Although the fit could be 

improved by modifying the target speed of the model, this would deviate from the 

advice of subject matter experts, and also risk overfitting a small set of model runs 

at the expense of generalization to novel taxi routes. However, if one has data 

regarding the distribution of individual differences in taxiing speed, the target speed 

parameter could be used to represent various pilot profiles. 
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Table 7. Average speed and time of the model compared to the SODAA data for route 
one, plus the correlation and RMSE between model velocity and SODAA velocity. 
Speed values are in meters per second. 

Runt Run2 Run3 Model SODAA 
Avera2:e 

Speed 8.87 9.08 9.71 9.22 8.15 

Time 4:57 5:40 5:48 5:28 6:32 

Correlation .72 .78 .32 .61 nfa 

RMSE 3.79 3.55 5.52 4.29 nfa 

Table 8. Average speed and time of the model compared to the SODAA data for route 
two, plus the correlation and RMSE between model velocity and SODAA velocity. 
Speed values are in meters per second. 

Run4 RunS Run6 Model SODAA 
Avera2:e 

Speed 13.34 12.37 14.28 13.33 15.18 

Time 6:26 6:03 6:00 6:10 5:34 

Correlation .47 .72 .51 .57 nfa 

RMSE 4.96 5.19 4.58 4.91 nfa 
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Figure 21. The velocity of the SODAA data through time is compared to the velocity 
of the model for route one (top) and route two (bottom). 
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General 

The most worrying aspect of the model is the number of qualitative errors it 

predicts-namely, it overpredicts the number of missed or late turns. While the 

model should predict these error types, one would expect them to be much less 

frequent than they are. In a sample of 30 turns, 20 of the turns were performed 

adequately (66%), 2 of the turns were started too late to be successful (7%), and 8 

turns were not performed at all (27%).7 

Much of this is due to the inadequacy of the current goal structure. While 

top-level goals are assigned utility values based on their importance, there are 

several components that are not included in the current model. For instance, the 

model has no concept of inhibition of return for previous goals. If a top-level goal is 

selected and then executed, the same top-level goal is just as likely to be chosen a 

consecutive time as any other top-level goal. That is, the selection of top-level goals 

are treated as independent events, which leads to some goals being performed too 

often and others being ignored for too long. Additionally, the model does not keep 

track of the goal's current status. Ideally, upon exiting goal, the model should be able 

to reassess the utility of the goal based on its completion status, a method of 

prospective goal encoding (Trafton, Altmann, Brock, & Farilee, 2003). If a goal is 

thoroughly complete, its utility should be low so that it is not executed for a while, 

7 This error rate can be improved significantly by modifying the utility values of the 
top-level goal productions. For instance, by raising the utility value of the navigate 
production from 2.0 to 2.3, the model successfully performed 26 turns (86%), 2 late 
turns (7%), and 2 missed turns (7%). This adjustment may have a deleterious effect 
on the other goals; optimal utility values have not yet been determined. The error 
rates presented in the text reflect the error rates achieved using a navigate utility of 
2.0 in order to be consistent with the other data reported. 
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whereas if an early exit from a goal is required (and thus the goal is only partially 

satisfied) a higher utility would ensure that the goal is readdressed in a timely 

manner. These concerns may be addressed by incorporating a more sophisticated 

goal selection mechanism (Trafton & Altmann, 2002). 

Another consideration is that each goal is self-contained: once a goal is 

initiated, a sequence of productions will fire without much regard for exogenous 

attention. That is, the current goal structure relies too heavily on a top-down goal 

hierarchy, rather than being influenced by feedback from bottom-up events in the 

environment. Part of the problem lies in ACT-R itself, which has no mechanisms for 

multiple object tracking (Pylyshyn & Storm, 1988) or multiple attentionalloci 

(McMains & Somers, 2004; Kramer & Hahn, 1995), which makes it difficult for ACT­

R to notice external events while it is busy with other tasks. It may be possible to 

attenuate this problem by using a modified version of EMMA (Salvucci, 2001), a 

more sophisticated model of visual attention for ACT-R. Alternatively, it may be 

possible to enable more efficient task-switching, resulting in lower latencies goal 

checks, using threaded cognition (Salvucci & Taatgen, 2008). In sum, the extant 

model appears to be approaching its limits with respect to multi-tasking behavior. 

Future versions of the model that demand even more from the simulated pilots may 

require an overhaul of the model's multitasking mechanism. 

As mentioned previously, ACT-R is also capable of generating many other 

dependent variables, such as eye movements, which can be used to validate the 

model. However, the SODAA data does not provide the necessary data to verify 

these values. In future experiments, these dependent variables may be of more 
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importance. For instance, one may wish to look at the eye gaze of a pilot after adding 

new cockpit instrumentation, or when using a heads-up display. 

Discussion 

While NextGen promises to make great improvements to our air 

transportation system, there is a critical gap in the methodologies used in the 

research and development of new technologies. Computer simulations that do not 

incorporate human cognition fail to capture an important component of the system, 

which may lead to faulty predictions. Human-in-the-loop simulations are intended 

to complement such research, but are often very costly and sometimes fail to 

capture large-scale emergent behavior. The cognitive model presented here 

addresses this gap by providing a cost-effective solution for implementing human 

cognition into larger simulations. 

Potential Applications 

One potential use of the model is to train ground controllers. Currently, 

ground controllers may be trained in a simulated environment, in which the 

simulated planes are driven by real pilots. A more cost effective solution would be to 

have these planes driven by a cognitive model. This may be particularly effective 

when considering the changes in air traffic control duties that are likely to result 

from NextGen and automated scheduling algorithms. 

Another potential use of the model might be to simulate 40 taxi-clearances, 

which entail changes to both piloting procedures as well as cockpit instrumentation. 

The model might also aid in the evaluation of real-time taxi scheduling algorithms 

being proposed for NextGen. Though the model is currently designed to operate in 
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real-time through its communication with X-Plane, the model may be adapted for 

use in a fast-time environment such as SOS2• 

The above examples highlight the advantages of using cognitive models over 

conventional methods, but are only meant to scratch the surface of possibilities. One 

great advantage of using the cognitive model is that it is modular, and can be 

implemented into a wide range of systems. While there are undoubtedly some 

situations in which the proposed cognitive model does not adequately reflect human 

behavior, the model can be augmented as needed to address issues and limitations 

as they arise. Thus, the development of the model can proceed independently of 

other research, and it is not tied to any particular implementation. 

Human-in-the-loop simulations 

Although the model is intended as a tool to replace or augment human-in­

the-loop testing, it also provides insight into how to design a better HITL simulation. 

For instance, although the model used a single set of parameters to model multiple 

pilots, it is clear from the SODAA data that these pilots can be better modeled using 

distinct parameters. HITL simulations often employ only a few pilots, which may not 

be enough to capture the true variability of individual differences in pilots in the 

real world. Care should be taken when selecting pilots for participating in HITL 

simulations to ensure that this variability is accounted for, perhaps even going so far 

as to experimentally manipulate individual differences by instructing pilots to 

follow certain guidelines. 
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ACT-R 

The model also tests the viability of using of ACT-R to model aviation related 

tasks. In all, the model re-affirms the use of cognitive architectures as a valuable and 

reliable tool for human performance modeling (Foyle et al., 2005). However, the 

model also highlights some of the weaknesses of ACT-R. Although the default motor 

system was augmented to properly account for motor operations, the limitations of 

the visual system made it difficult to model certain behaviors. 

Perhaps one of the more impressive accomplishments of the current model is 

its ability to seamlessly interact with an external environment (X-Plane) that was 

not built for the purpose of cognitive modeling. Although the current work is not the 

first ACT-R model to interface with an external simulator, most ACT-R models 

interface with a custom environment written by the model authors. Using an 

independent external environment forces modelers to address issues that may not 

have arisen otherwise, and enhances the ecological validity of the model. This 

practice may become more prevalent in the future, as the questions modelers seek 

to answer become more complex and nuanced. 

Future Directions 

The extant model still lacks some capabilities that are necessary in order to 

replace humans in HITL simulations. These capabilities include a method for 

communication between ground control and simulated pilots, a decision-making 

component to aid in taxi navigation, and a more sophisticated collision avoidance 

system that responds to nearby aircraft. 
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Apart from augmenting the model, several critical questions remain 

unanswered. While I am confident that the error rate of the model can be lowered, it 

remains to be seen whether the model can replicate the true error rate of off-

nominal situations. Despite thousands of flights every day, the runway incursion 

rate in the United States remains very small at roughly one per days (Air Line Pilots 

Association International, 2007). Can ACT-R accurately model such low probability 

events? 

Additionally, the validity of the current model has been examined 

quantitatively, but not qualitatively by subject matter experts. Expert pilots may 

notice deficient aspects of the model that were not addressed in a quantitative 

analysis. Perhaps a Turing test, in which real pilots attempt to delineate between 

videos of planes driven by the model and planes driven by the SODAA data, may 

illuminate aspects of the model that have gone unnoticed. 

Conclusion 

The present work may help fill an important role in the development of 

NextGen by providing an extensible, cost-effective method of testing that 

incorporates the best aspects of human-in-the-loop simulations and computer-

driven simulations. Although many opportunities remain for extending the 

capabilities of the model, the current validation suggests that the model is capable 

filling this role. It is believed that the model can guide future decisions regarding the 

development and deployment of NextGen. 

a Note that a runway incursion is defined as a plane located in a spot on the taxiway 
or runway where it is not supposed to be, in a situation that may lead to a collision. 
A runway incursion in itself does not necessitate a collision. 
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Appendix 1. These graphs and equations can be used to translate X-Plane braking 

and throttle parameters into more meaningful units, expressed as 

acceleration or deceleration in knots per second. 


