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ABSTRACT 

Nested QoS: Providing Flexible SLAs in Shared Storage Systems 

by 

Hui Wang 

The increasing popularity of storage and server consolidation introduces new chal­

lenges for resource management, capacity provisioning, and application performance 

guaranteeing. In addition, the bursty nature of storage workloads results in a large gap 

between the peak and the average capacity required to meet response time bounds, 

leading to low overall server utilization and high cost. This situation is driving the 

development of elastic QoS models that allow clients greater flexibility in adopting 

SLAs tailored to their workload characteristics and performance requirements, while 

allowing the service provider opportunities to optimize provisioning and scheduling 

decisions. 

This thesis presents a novel service model, called the Nested QoS model, for 

multiplexing concurrent bursty workloads in shared storage systems. The solution 

employs two strategies together: systematically classifying requests with a graduated 

QoS and flexibly scheduling the classified portions. The results show that the Nested 

QoS model provides ( i) performance isolation and strong performance guarantees for 

both well-behaved and misbehaving workloads; (2) a flexible and auditable elastic 

SLA definition; and (3) improved server utilization. 
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Chapter 1 

Introduction 

1.1 Overview 

Server and storage consolidation are becoming increasingly common in data centers, 

due to the economies of shared infrastructure, the benefits of centralized management, 

high reliability, and lower operating cost. However, the increased resource consolida­

tion also introduces new challenges for performance isolation, resource provisioning, 

capacity planning, and meeting client's performance Quality of Service (QoS) ex­

pectations. This situation is even more serious for storage systems, because of the 

dependence of service time on access characteristics, and the burstiness of many stor­

age workloads. 

There are several large data centers established by large companies like IBM [1], 

Google [2] and Amazon [3]. These data centers provide compute and storage services 

for individual and enterprise applications. In this thesis we only focus on storage 

resource and services. In these data centers the clients purchase storage space to 

store and retrieve their data, while the service providers provision and manage the 

underlying physical resources in order to meet the client's accessibility and reliability 

requirements. These requirements are typically defined by Service-level Agreements 
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(SLAs) between the client and the service provider. 

An SLA is a negotiated agreement between a service provider and a customer. 

It is usually defined in measurable terms so that services received by the customers 

can be monitored and compared against the QoS specified by the SLA [4]. SLAs 

define a number of Service Level Objectives (SLOs) like bandwidth, latency, uptime, 

etc. In storage and server consolidation environments, well-defined SLAs and QoS 

models should specify the following items: first, the SLAs should define the workload 

properties. It is not possible for the service provider to guarantee specific performance 

without a description of the workload; second, it should be possible to verify the 

charges for services, and to demonstrate SLA violations on the part of either the 

client or the provider. Typical performance SLAs are usually described in terms of 

minimum throughput guarantees [5, 6] (lOPS) or response time bounds [7, 8] for rate­

controlled clients. Figure 1.1 shows a general framework for sharing a storage server 

among multiple clients. The requests of multiple clients are routed to the shared 

storage server which must schedule the competing requests to meet performance QoS 

defined by the SLAs. 

There are several challenges to provide QoS in a shared storage server. First, since 

the storage system is shared by multiple concurrent workloads, the performance of 

well-behaved clients should not be hurt by the behavior of other clients that may try 

to monopolize the server. In other words, the service provider should provide perfor­

mance isolation for different clients based on their workload and QoS requirements. 



Clients 
Shared 
Storage 

Figure 1.1 : A General Sharing Environment 
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Second, storage workloads tend to be very bursty [9, 10, 11]: i.e., the instantaneous ar-

rival rate during some time intervals is significantly higher than the long-term request 

arrival rate. The peak capacity required to handle short-duration bursts of requests , 

n1ay be an order of magnitude or more than the long-term average requirement. Pro-

vi ding capacity based on the peak rate can result in significant over-provisioning, 

increasing capital expenditures and power and cooling infrastructure for servers. The 

server is significantly underutilized during the non-bursty periods, resulting in low 

server efficiencies. This has been confirmed by measurements in actual data cen-

ters [12]. Furthermore, fine-grained run-ti1ne capacity management is only partially 

successful since the workload is unpredictable and can change drastically over small 

time intervals. For storage devices which incur appreciable latency in transitioning 
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between states and where idle power consumption is significant, the operational and 

energy costs of over provisioning can be very high. Accurate provisioning is com­

plicated by the bursty nature of storage workloads [9, 13) and sharing by multiple 

clients. Third, mechanisms to handle excess traffic from clients that exceed their 

SLAs limits need to be handled carefully by the storage server. Unlike the case of 

communication protocols in networking systems, dropping requests when the system 

is oversubscribed is not a viable option for storage systems, since storage 10 protocols 

do not generally support automatic retransmission mechanisms. 

The situation described above is driving the development of elastic QoS mod­

els that allow clients greater flexibility in choosing SLAs tailored to their workload 

characteristics and performance requirements, while allowing the service provider to 

optimize provisioning and scheduling decisions. 

1.2 Problems Addressed in The Thesis 

We use three examples to illustrate the problems we are trying to address in this 

thesis. 

Example I Consider in a shared system with two clients CA and CB. The SLAs 

of both clients require a throughput of 100 lOPS (lOs Per Second) and worst-case 

latency bound of 100 ms. C A sends requests at a uniform rate of 100 lOPS, while 

CB sends 50 requests in a burst, every 500 ms. If each client had its own server with 

100 lOPS capacity, then all the requests of C A will have a 10 ms response time, while 
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the worst-case latency of request of Cs is 500 ms. If both workloads are consolidated 

on a single server of capacity 200 lOPS, the execution profile of both workloads can 

change drastically. If requests are served in the order of arrival, then the requests 

of C A will be delayed by the requests of Cs , and can face latencies of up to 250 

ms. A good QoS model should isolate the performance of contending workloads, and 

prevent them for affecting each other's performance in a negative way. 

Example II Consider client C A of Example I which sends requests at a uniform 

rate of 100 lOPS and has a latency requirement of 10ms. The workload can expect 

a 10ms response time with a server of capacity 100 lOPS. Now suppose CA slightly 

alters its pattern by bursting in the first 100 ms of each 1 second interval. Specifically, 

suppose it sends 6 requests at the start of the interval followed by 4 requests every 

20ms apart, before reverting to its stipulated arrival rate of 1 request every 10 ms for 

the remainder of the interval. This local violation (violation at the beginning of each 

second) will delay not only the first 5 of the 6 requests in the burst at the start of the 

interval but also the following 4 well-behaved requests in the 100 ms interval. That 

is, the number of requests that miss the deadline is almost double the number that 

violated the arrival SLAs. A good QoS model should localize the temporary violation 

and prevent it from affecting the well-behaved part of the workload. 

Example III How much capacity is required to make sure that all the good 

requests of the workload in Example II, meet their 10 ms deadline? The 5 requests at 

the start of the interval and the requests arriving 20 ms later should all finish within 
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30 ms, which implies a capacity of 7 lOs / 30 ms= 233 lOPS. Thus the required 

capacity to meet the response time has doubled because of the presence of a few bad 

requests. A good QoS model should provide guarantees for the well-behaved part of a 

workload with minimal capacity. 

The three examples just described motivate us to define three principles (Pl 

through P3) that QoS schedulers in storage consolidation environments should satisfy. 

• Pl: Inter-client Isolation (Do not harm others) - This is the fundamental 

requirement of performance isolation which requires that clients be insulated 

from the behavior of other concurrently executing clients sharing the resource. 

Specifically, the system should encapsulate a client so that any bad behavior 

on its part is not allowed to adversely affect other well-behaved clients. If a 

client exceeds its stipulated SLA and sends more requests in a time interval 

than allowed by its contractual agreement, it should not be allowed to garner 

additional service at the expense of other well-behaved clients. 

• P2: Intra-client Isolation (Do not harm oneself) - This is simply the per­

formance isolation requirement applied to a single client. It asserts that the 

well-behaved and ill-behaved portions of a workload should also be isolated 

from each other, so that the effects of the bad behavior are temporally local­

ized. In other words, if the client exceeds its SLAs during some time interval, it 

may be penalized during this period but once its behavior becomes compliant 
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it should start receiving its SLAs guarantees again. 

• P3: Capacity Requirements- The service provider should provide a rich set 

of SLAs specifications with different cost and performance QoS guarantees to 

satisfy a diverse set of client needs. Scheduling algorithms should minimize the 

capacity required to meet the set of SLAs and support accurate estimation of 

capacity requirements. Finally, it should be possible to audit the workload and 

observed performance, to verify if both parties had met their SLAs requirements 

in case of dispute. 

In this thesis, we present a novel service model, called Nested QoS, which can fulfil 

all the three properties P1 to P3. The model permits flexible SLAs for the clients 

sharing a server, with significantly smaller capacity provisioning requirements than 

previous approaches [14, 7]. The Nested QoS model formalizes the observation that 

a disproportionate fraction of server capacity is used to handle the small tail of highly 

bursty requests. It classifies the workload with several traffic envelopes defined by 

Token Buckets [15], which are described in detail in Chapter 3. By choosing different 

traffic envelopes with different performance guarantees and capacity requirements, 

clients can tailor the SLAs to their workloads in accordance with their expectations 

and budgets. We also propose a scheduling framework for efficiently and flexibly 

sharing a server among multiple concurrent clients. Our approach combines two 

orthogonal techniques to significantly reduce the capacity requirements of the server: 

(i) use of the Nested QoS model to classify workloads and (ii) scheduling algorithms 



8 

Algorithms Proportional pClock This thesis 

Share 

Proportional Yes Yes Yes 

bandwidth allocation 

Fairness Yes Yes Yes 

(Fine grained) (Coarse grained) (Coarse grained) 

Latency Control No Yes Yes 

Workload Isolation Yes Yes Yes 

(Pl) 

Bad-Region Isolation No No Yes 

(P2) 

Capacity Saving NA No Yes 

(P3) 

Table 1.1 : Comparison of Scheduling Algorithms 

that multiplex server capacity between the fragments of the classified workloads to 

meet the SLAs. 

The results in this thesis are compared against two well-known schedulers, Pro­

portional Share (PS) and pClock as summarized in Table 1.1. PS allocates clients 

weighted bandwidth at a fine granularity so that the difference between the alloca-
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tions of any two backlogged clients is always bounded by 1. In contrast, pClock and 

our scheduler are designed to handle short-term bursts of requests by allowing tempo­

rary unfairness in the bandwidth allocations. These two schedulers therefore provide 

latency control for workloads independent of their throughput requirements, unlike 

PS where response time and throughput are coupled. The issues related to workload 

isolation, bad-region isolation, and capacity requirements are discussed in Chapter 3. 

1.3 Contributions 

This thesis proposes a model called Nested QoS for providing performance SLAs in 

a shared server environment. The advantages of Nested QoS are: 

(i) Allows defining flexible SLAs based on workload characteristics and client's 

willingness to pay. 

(ii) Allows service provider to increase degree of consolidation and lower costs. 

(ii) Intuitive model and easy to implement. Permit audit and arbitration in case 

of dispute. 

(iii) Provides simple capacity estimation based on the Nested QoS parameters. 

1.4 Thesis Organization 

The rest of the thesis is organized as follows: Chapter 2 introduces storage systems 

models and current QoS models in storage systems. The limitations of those models 

are also discussed. In Chapter 3 we start by introducing the token bucket model, 
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with which we characterize the workload. Section 3.1.2 describes our Nested QoS 

model based on the token bucket model. In Section 3.1.3 we analyze how the Nested 

QoS model meets the three properties defined above. The scheduling framework and 

algorithm are also discussed in Chapter 3.2. Chapter 4 presents the performance 

evaluation. Finally, we conclude the thesis in Chapter 5 . 
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Chapter 2 

Background and Related Work 

This chapter describes the background and the related work. In Section 2.1 we first 

introduce three popular storage systems models. The challenges arising in shared 

storage environments are also discussed. In section 2.2 we present three QoS models 

that have been used in storage systems, and discuss the strengths and limitations of 

those models. 

2.1 Storage System models 

The rapid growth of IO-related applications like web search engines, web services, and 

online video, lead to the growing requirements of high reliability, usability, efficiency, 

and simpler management. In the past decades, several storage models have been 

developed to meet the requirements of data accessing for different applications. 

2.1.1 Direct Attached Storage (DAS) 

One of the most commonly used storage models is Direct Attached Disk (DAS), which 

is widely used in personal laptops, desktops and small organization servers. In a DAS 

system, one or more disk drives are directly connected to the server through SCSI or 

IDE interfaces [16]. Figure 2.1 show the architecture of a DAS system. 
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LAN 

Clients Servers 

Figure 2.1 : Direct Attached Storage Architecture 

DAS is suitable for accessing small amounts of local data from a server and has 

the benefit of cost-efficiency. However, DAS also has many limitations. One obvious 

limitation is reliability. As shown in Figure 2.1, a client can access the disk storage 

only through the connected server. A failure or crash of the server could cause the 

non-availability of the stored data. Another limitation is the difficulty of sharing free 

space. The free space on one disk cannot be shared by other clients, without additional 

1niddle-ware solutions or a clustered file system. Because of those limitations, other 

storage models have been developed. We will discuss those models in the following 

sections. 



2.1.2 Network Attached Storage (NAS) 
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JE)~~ 

NFS/CIFS 
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NAS Devices 

Figure 2.2 : Network Att ached Storage Architecture 
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Network Attached Storage (NAS) is a file-level storage device that is set up with 

its own network address rather than being directly attached to a computer server 

(like DAS). It exports storage data at a file level and can be accessed over a computer 

network by heterogeneous clients. The clients access the NAS devices via a network 

file system protocols like NFS and CIFS [16, 17]. 

A number of factors are making NAS a very popular solution. First , NAS is a 

convenient method of sharing files among multiple computers and makes efficient use 

of data centre space. Second, it offers a convenient way for simple installation and 

management. As the volume grows, NAS systems can provide scalable solutions that 



can be upgraded more easily and more cost-effective than DAS. 

2.1.3 St orage Area N etwork (SAN) 

LAN 

Servers 

Clients 

torage Area Network 
Fiber Channel 

SAN Storage 

Figure 2.3 : Storage Area Network Architecture 

14 

A Storage Area Network (SAN) is a dedicated, high performance storage network 

that transfers data between front-end servers and storage devices, as shown in Fig-

ure 2.3. SAN is connected to the server with high speed Fibre Channel, which allows 

for simultaneous gigabyte communication between the different components in the 

network [16, 17]. Because of this high speed connection, it is ideal for moving large 

chunks of data across distances. Unlike NAS which exports file level data, SAN ex-

ports block level devices in a distributed environment. The distributed architecture 

of SANs offers higher levels of performance and availability than other storage mod-
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els. Dynamic load balancing across the network enables SANs to provide fast data 

transfer while reducing I/0 latency and server workload. In effect large numbers of 

users can be served by the SAN without creating bottlenecks on the LAN and the 

server network. Because of those properties, SANs is good for bandwidth intensive 

storage such as data-bases, transaction processing and video. However, the cost for 

high performance storage arrays connected to the SAN and Fiber Channel switches 

can be high. 

2.1.4 Summary 

Shared storage systems like NAS, SAN or clustered storage consisting of individual 

storage devices stitched together by middle-ware, face the following challenges: 

• Performance isolation 

The storage server should provide performance isolation for the clients sharing 

the system. Well-behaved clients should not encounter performance degradation 

because of the behavior of other clients. That is, the performance should be 

guaranteed independent of the behavior of other clients. 

• Capacity estimation 

The storage server should provide enough resources for the clients to meet their 

performance SLAs, while avoiding over-provisioning. Accurate capacity estima­

tion to guarantee the performance of all the clients is a big challenge. 
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Several QoS service models have been proposed to address those problems. We will 

introduce these models in Section 2.2. 

2.2 Related Work 

2.2.1 Proportional Sharing Model 

A large body of QoS-based resource allocation and scheduling work deals with the 

issue of proportional sharing (in terms of bandwidth allocation). The general idea 

is to emulate the behavior of an ideal (continuous) Generalized Processor Sharing 

(GPS) [18] scheduler in a discrete system, and divide the resource at a fine granularity 

in proportion to client weights. In the simplest proportional sharing model, each client 

i has a weight wi, and the server allocates capacity in proportion to the weight wi. 

In particular, suppose A(t) is the set of active clients at time t, then client i E A(t) 

is allocated a bandwidth of Cwd EjEA(t) Wj, where C is the capacity of the server. 

A large number of algorithms have been proposed for proportional resource sharing 

e.g. Fair Queuing [19], WFQ [8, 20], WF2Q [14], Start Time Fair Queuing [5], 

SelfClocking [21], Leap Forward [22] etc. 

In [23], Gulati et al. considered an enriched resource model that includes reser­

vations and limits in addition to weights. Reservations define a lower bound on the 

allocation made to a client, while limits define upper bounds on their allocation. They 

also described a scheduler, mClock, that provides fine-grained proportional allocation 

subject to reservation and limit constraints. 
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To sum up, proportional sharing model focuses on the bandwidth allocation in 

proportion to specified weights, possibly modulated by lower and upper bounds. In 

these models, it is not possible to specify an independent response time requirement 

that is independent of its throughput. That is, those works did not explicitly address 

the problems of latency control. In addition, these models do not directly address the 

issue of capacity planning. 

2.2.2 Service Curves Model 

A second QoS model focuses on providing latency controls along with bandwidth 

allocation [8, 7] based on service curves [24, 25]. In addition to providing minimum 

bandwidth guarantees, individual requests are guaranteed a maximum response time 

provided the client traffic satisfies stipulated constraints on burst size and arrival rate. 

Cruz et al. [8, 20] utilize the service curves concept to regulate workload patterns and 

arrival rates. They provide the SCED [8] algorithm to schedule workloads specified 

by service curves. However, a major problem of the SCED algorithm is that it may 

result in starvation of a client which uses spare system capacity. Gulati et al. propose 

an algorithm pClock [7], which uses a token bucket to control the arrival burst size 

and flow rate, and provide a synchronization scheme to avoid starvation. In contrast 

to setting "earliest possible value" as a deadline, pClock sets the deadline of a request 

to be as late as possible. This allows pClock greater flexibility in scheduling spare 

capacity. 
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An important issue not addressed by these methods is the impact that a badly­

behaved workload (one which violates its arrival constraints) has on its own per­

formance and QoS guarantees. Since the existing methods do not isolate the non­

compliant part of the workload from its well-behaved portions, even small violations 

can lead to loss of QoS guarantees over extended (unbounded) portions of the work­

load. In addition, only a single response time guarantee is supported by this model, so 

the flexibility is limited and the provisioned capacity requirements are high. We will 

discuss this problem in detail later in Chapter 3. Furthermore, the capacity required 

to guarantee the performance is based on worst-case behavior of all the workloads. 

If the total capacity is less than the worst-case requirement, the performance is not 

predictable. That is, how much a client's performance is degraded depends on local 

workload patterns rather than the QoS parameters. 

2.2.3 Workload Shaping Model 

The work more closely related to the Nested QoS are network QoS models where traf­

fic shaping is used to decompose the workloads, and provide performance guarantees 

in terms of bandwidth and latency. There is a lot of work related to network QoS, 

like Network calculus [26], QoS in Packet Networks [27], Early Detection [28], and 

D-BIND [29) etc. Typically, arriving network traffic is made to conform to a token­

bucket model by regulating the arrivals, and dropping requests that do not conform 

to the bucket parameters. With this drop-and-retransmission mechanism, the work-
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load performance is guaranteed for the admitted portion of the workload, and the 

server utilization is maximized. However, drop-and-retransmission is not generally 

acceptable in storage systems, whose protocols do not support automatic retry. 

The Nested QoS model classifies different portions of the workload into different 

classes and schedules them with different response time bounds. Empirical study 

of storage workloads to show the benefits of exempting a fraction of the workload 

from response time bounds was presented in [30], and used in the design of a slack­

based two-level scheduler for a single client workload in [31]. However, there was no 

formal QoS model underlying the approach, that precluded specifying a well-defined 

SLA. The Nested QoS model provides a formal (but intuitive and enforceable) way to 

specify the notion of QoS. Furthermore, the model is easy to enforce, and mutually 

verifiable in case of dispute. 

To conclude, the current QoS-based scheduling methods in storage systems do not 

support flexible latency controls. Their underlying SLAs are based on a single latency 

bound for the entire workload. As a consequence the server capacity requirements 

are high, and the server are highly under utilized. By using SLAs based on the 

Nested QoS, capacity requirements of a client are reduced significantly, since the 

extreme portions of the workload have relaxed latency requirements. Furthermore, 

the performance of a badly-behaving workload is still precisely defined by the SLAs. 

In the previous models, even temporary SLAs violations by the client could result in 

non-predictable performance for the offending workload. The details will be discussed 
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in the next chapter. 

2.3 Summary 

In this chapter, we described various storage models commonly used in both desktop 

and enterprise-class systems. Strengths and limitations are also discussed for each 

model. We summarized the challenges arising in shared storage systems in Section 2.1. 

In Section 2.2 we presented three existing QoS models and discussed their limitations. 

In this thesis, we address these challenges arising in shared storage systems, by 

providing a novel Nested QoS service model. 
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Chapter 3 

Nested QoS Model 

In this chapter we will introduce the Nested QoS service model and describe its 

operation in detail. Section 3.1.1 starts by presenting the idea of token buckets 

(TBs) [15], which we use to regulate the request traffic. Section 3.1.2 introduces the 

Nested QoS model. Section 3.1.3 discusses how the token bucket and the Nested QoS 

model classify the workloads and satisfy the Properties (P1-P3) defined in Chapter 1. 

We also introduce how to implement the Nested QoS model in a storage system and 

how to apply the Nested QoS to serve multiple clients in Section 3.2. A scheduling 

framework and algorithm based on the Nested QoS service model are presented in 

Section 3.2.1. Finally, capacity estimation analysis is provided in Section 3.2.2. 

3.1 Nested QoS Model 

In Chapter 1 we have explained that each client in a shared storage environment has 

SLAs that specify the performance it will receive provided its input traffic satisfies 

stipulated restrictions. It requires that the workload should be properly defined by 

certain parameters, in order to provide the performance guarantee for each client. 

However, defining the restriction of a workload is not easy. Describing a workload 

with only throughput or burst size is not enough. For example, suppose there are 
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two clients that have the same throughput of 1000 requests/second and worst-case 

response time requirement of 5 milliseconds. Client A sends requests in a uniform 

way, which is one request per millisecond, while client B sends a burst of 10 requests 

every 10 milliseconds. The capacity required for the client A to meet its SLA is 1000 

lOPS, compared with 2000 lOPS for Client B. 

In [32) we analysed the factors that affect the resource requirements and workload 

performance, and concluded that it is the burst size, burst frequency, and throughput 

that determines the capacity requirement and workload performance. Inspired by 

this, we use the token bucket to characterize the workload in the Nested QoS model. 

In [32) we also found that the capacity required is not linear with the response time 

bound. By relaxing the response time guarantee for a small fraction of the workload, 

there is a very sharp reduction in the capacity needed. This is also the foundation of 

our original motivation of the Nested QoS. We will introduce the token bucket and 

the Nested QoS model in the following sections. 

3.1.1 Token Bucket Traffic Envelope 

In order to characterize the burst size, burst frequency and throughput, we use a 

TB to describe the arrival pattern of a workload. A TB has two parameters (a, p), 

in which a is the bucket size and p is the rate at which tokens are generated. The 

tokens will keep increasing at the rate of p until reaching the bucket size of a (overflow 

situation). In any time interval of length T, the total number of tokens generated is 
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limited by a+ pT. This property allows one to regulate a workload's maximum burst 

size (a), throughput (p), and frequency of maximum-sized bursts (a j p). 

When using TB as the traffic envelope for a workload, the traffic specification 

is provided by a token bucket, which asserts that for any time interval of length T 

the number of requests sent by the client should be no more than a+ pT. A usual 

implementation of the traffic envelope is to assume a reservoir (the bucket) initially 

filled with a tokens that is fed fresh tokens at a constant rate of p; however, the 

maximum number of tokens in the reservoir is capped at a. Whenever a new request 

arrives it removes a token from the bucket if it is not empty. As long as the request 

finds a token when it arrives, the traffic meets its SLAs constraint and is considered 

well behaved. A request that arrives when there is no token in the bucket is considered 

to be a bad request, and the client is considered to be ill behaved. 

Figure 3.1 shows an example of an upper bound (heavy line) on the arrival traffic 

(dashed line) induced by a (a, p) token bucket. The client is well behaved in the 

interval [0, a) since all arrivals lie below the upper bound restriction, but ill-behaved 

between times a and b, where the arrivals exceed the upper bound constraint. The 

SLAs guarantee the requests of client i a response time limit of 8i provided its arrival 

traffic is within the stipulated ( ai, Pi) token bucket arrival constraint. 
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As mentioned at the beginning of this Chapter, storage workloads are very bursty, 

and guaranteeing a small response time to all requests requires very high capacity. 

However, by relaxing the tight response time bound for a small fraction of the work-

load there is a very sharp reduction in the capacity needed [32, 30, 31]. We formalize 

those properties and propose a novel Nested QoS service model to provide elastic SLA 

in storage systems. 

Figure 3.2 shows the abstract architecture of the Nested QoS service model. The 

workload W of a client consists of a sequence of requests. The performance SLAs in 

terms of latencies are determined by multiple nested classes 0 1 , C2 · · · Cn· Class Ci is 

specified by three parameters: (O"i, Pi, 6i), where (O"i, Pi) are token bucket parameters 
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and 8i is the response time bound. Ci consists of the maximally-sized subsequence 

of requests of W that is compliant with a (cri, Pi) token bucket: that is, the number 

of requests in any interval of length t is upper bounded by cri +Pit, and no other 

request of W can be added to the sequence without violating the constraint. The 

token bucket provides an envelope on the traffic admitted to each class by limiting 

its burst size (cri) and arrival rate (pi)· All requests inC have a response time limit 

For example, a 3-class Nested QoS model (30, 120 lOPS, 500ms), (20, 110 lOPS, 

50ms), (10, 100 lOPS, 5ms) indicates that: all the requests in the workload that lie 

within the (10, 100 lOPS) envelope have a response time bound of 5ms; the requests 

within the less restrictive (20, 110 lOPS) arrival constraint have a latency bound of 
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50ms, while those conforming to the (30, 120 lOPS) arrival bound have a latency 

limit of 500ms. 
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Figure 3.3 : An Example for Workload Classification 

To give an example of request classification, Figure 3.3 shows the filtering of the 

Exchange workload from Microsoft as it goes through the token buckets. 
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The Nested QoS model formalizes the observation that a disproportionate fraction 

of server capacity is used to handle the small tail of highly bursty requests. It offers 

a spectrum of response time guarantees based on the burstiness of the workload and 

allows clients define the classes and performances flexible. In Section 3.2.3 we will 

discuss how to choose the TB parameters to classify the workload. 

3.1.3 Model Analysis 

Next we will discuss how the Nested QoS and token bucket satisfy the three properties 

(Pl-P3) defined in Chapter 1. 

When a client sends more requests than agreed to by the SLAs, we call this a vio­

lation. A simple approach to isolation the violation part is to police the traffic of each 

client and then simply drop the requests that exceed the arrival upper bound. These 

discarded (bad) request will need to be submitted again later. Such an approach may 

be suitable in some environments like in computer networks where the protocols au­

tomatically provide mechanisms for retransmission and recovery from dropped packet 

transmissions. However, storage protocols are not designed to handle lost requests; 

dropping requests from oversubscribed clients in this situation will result in a cascad­

ing series of undesirable events, possibly culminating in the eventual failure of the 

application. 

The pClock algorithm [7] provides a second approach to this problem based on 

delaying the requests of the ill-behaved client. A bad request arriving at time t is 
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Figure 3.4 : Effect of Bad Requests on Later Requests. (a) Three bad requests arrive 

at p. (b) Bad requests delayed to conform to SLAs. (c) Later requests delayed by 

bad requests at p. (d) Later requests meet deadline if requests at p are removed 
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treated as if it had actually arrived at a later time t' > t, such that at t' the arrival 

would meet the upper bound. Figure 3.4 shows the arrival traffic of a hypothetical 

workload. In Figure 3.4(a) there are three bad requests arriving at time p. These will 

be treated as if they had actually arrived at the later times pl, p2, and p3 respectively 

as shown in Figure 3.4(b). Instead of scheduling them to finish by their true deadlines 

p + <5, they will instead be treated as if their deadlines were delayed to pl + <5, p2 + <5 

and p3 + <5 respectively. The delay makes the requests appear to satisfy the arrival 

specification and thereby protects other clients from being affected. However the 

assigned deadlines for these bad requests are later than their true deadlines, and 

hence are not guaranteed to meet the response time SLA. 

A drawback of delaying bad requests as described above is the cascading effect 

that can have on subsequent requests. Continuing with the previous example, suppose 

that the subsequent requests of the client after time pare at times r, s, t and so on, 

at a rate p = 1 as stipulated by the SLAs (see Figure 3.4(c)). Because the three bad 

requests at p were delayed, the requests following them will also need to be delayed to 

remain within their SLAs constraint. Hence, these requests will be treated as arriving 

at times r', s' and t' with correspondingly delayed deadlines r' + <5, s' + <5 and t' + <5 

respectively. 

Potentially all future requests of this client could miss their deadlines because 

of the small overburst that occurred in the past. Hence, while the technique of 

delaying bad requests can insulate other clients from the ill-behaved one, it violates 
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our second property P2: it does not isolate the good portions of a client's workload 

from the effects of its own badly behaved parts. If we remove the three bad requests 

arriving at time p from the input stream, the requests arriving at r, s, twill be good 

and will be finished by true deadlines r + b, s + b and t + b as shown in Figure 3.4 (d). 

In the Nested QoS, the removed requests will not be discarded, but will instead be 

classified as a higher class (not shown in the figure) requests with a later deadline. 

To sum up, the Nested QoS model addresses Pl by classifying the bad requests 

into a higher level class, which has low priority and won't compete with the requests 

from other well-behaved clients. Also, the Nested QoS model addresses P2 by de­

. composing the workload into different classes and independently scheduling them with 

differing QoS requirements. We refer to this as providing graduated QoS guarantees. 

The server capacity required to meet QoS guarantees depends upon the capacity re­

quirements of the individual clients and the scheduling policy. A typical performance 

SLAs guarantees a client's requests a maximum response time of b provided it is 

"well-behaved", i.e. it conforms to the arrival upper bound implied by a specified 

token bucket. Each client i estimates its capacity /1i based on its maximum burst size 

ai, response time bi and average rate Pi for each class. 

In addition to using decomposition to limit individual capacity requirements, ca­

pacity can be reduced by using scheduling to exploit the heterogeneity in the QoS 

requirements of concurrent clients. We discuss two scheduling policies Fair Queuing 

(FQ) and Earliest Deadline First (EDF) below. 
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Fair Queuing (FQ) An FQ scheduler divides the available capacity among the 

n clients in a fine-grained manner in proportion to their weights. The system capacity 

is CFQ = Li J.li· Client i is assigned a weight wi = J.LdCFQ so that it receives at least 

J.li capacity at a fine-grained intervals during operation. 

Earliest Deadline First (EDF) In contrast to FQ, the EDF scheduling policy 

minimizes the capacity requirements needed to meet a set of deadlines, by exploiting 

the differences in the response times of different clients. The pClock scheduler [7] uses 

EDF scheduling and always selects the request with the smallest (earliest) deadline. 

A simple example to illustrate the potential benefit follows. Consider two clients that 

each send a burst of 50 requests every lOOms. The first client requires a response 

time of 50ms for its requests and the second requires lOOms. The capacity needed for 

the first client is 50 requests/50 ms = 1000 lOPS, while that for the second client is 

50 requests/100 ms = 500 lOPS. A fair scheduler would use a server of 1500 lOPS 

and multiplex the two workloads evenly in a 2 : 1 ratio; in the first 50ms it would 

complete 50 requests of client 1 and 25 requests of client 2, while in the next 50ms it 

would do the remaining 25 requests of client 2. Both clients meet the deadlines for 

all their requests. 

An EDF scheduler would change the order of service so that it does all 50 of client 

l's requests first (since they have a smaller deadline), followed by the 50 requests 

of client 2. This requires a capacity of only 1000 lOPS to finish all requests by 

their deadlines. Due to this potential for reduced capacity we will use an EDF-based 
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scheduler in this thesis. However, simple direct use of EDF will not work, in the sense 

that isolation properties Pl and P2 can be violated if not done correctly. Intuitively 

this is because clients are much more closely coupled under EDF scheduling so the 

requirements for flexibility clash with the need for strict regulation. For instance, 

suppose client 1 misbehaved and sent 100 requests instead of 50. Since alllOO requests 

will have a shorter deadline than client 2's requests, they will all be served first in an 

EDF schedule, completing after lOOms. All the requests of client 2 will have missed 

their deadline. In contrast, a fair scheduler will not delay any of client 2's requests 

past their deadline, and delay only the requests of the offending client, client 1. 

The capacity estimation for Nested QoS is presented in Section 3.2.2. 

3.2 Scheduling Framework Based on the Nested QoS Model 

In this section, we present the scheduling framework and algorithm based on the 

Nested QoS model, and apply the model to multiple clients. Figure 3.5 shows a 

overall architecture of our system for a 3-level Nested QoS model for n client. The 

framework consists of two components: request classification and request scheduling. 

Request Classification The workload from each client is first classified by 

their own Request Classifier. The Request Classifier classifies the requests from clients 

i into several classes Ci,j, each of which provides a different response time guarantee 

bi,j. Figure 3.6 shows the detailed information of Request Classifier. 

The Request Classifier is implemented using a cascade of token buckets, B1 , B2 · · • Bn 
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(innermost is B 1). Bi has parameters (a-i, Pi) that regulates the number of requests 

that pass through it in any interval. Initially Bi has O"i tokens; an arriving request 

removes a token from the bucket (if there is one) and passes thorough to Bi-I (or Q1 

if i is 1); if there are no tokens in Bi the request goes into the queue Qi+I instead. 

Bi is filled with tokens at a constant rate Pi, but the maximum number of tokens is 

capped at O"i· The buckets filter the arriving workload so that queue Q1 receives all re­

quests of class C1 , Q2 receives requests of C2 - C1, and Q3 receives requests of C3 - C2 . 

Request Scheduling The queues of each client are exposed to the scheduler, 

which is responsible for multiplexing the server among the different clients so that 

response times of individual requests in the clients can be guaranteed. By ensuring 

that requests in queue Qi,j meet a response time of 8i,j, the SLAs of the Nested 

QoS model can be met. The scheduler services requests across the queues within 

a client based on their deadlines using an Earliest Deadline First (EDF) policy. In 

Section 3.2.2 we provide a method to compute the capacity required to meet the SLAs 

specified by the Nested QoS model parameters. 

3.2.1 Scheduling Algorithms 

Request Arrival: When the rth request from client i arrives at time t it will go 

through the Request Classifier as shown in Figure 3.6. First the Request Classifier 

invokes TokenUpdate(), which updates the number of tokens in each class of TB 
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Symbols Meaning 

C.· t,J Class j of client i 

B·· t,J Token Bucket at level j of client i 

Qi,j Queue at level j of client i 

O"i,j, Pi,i Token Bucket parameters of Ci,j 

sr:. 
t,J Start tag of request r in Q i,j 

fi,j Finish tag of request r in Qi,j 

MinR- · t,J Minimum Finish tag of pending 

requests in Qi,j 

<I> Set of requests waiting for 

server scheduling 

Table 3.1 : Symbols 



1. Request Arrival (request r, client i, time t): 

begin 

TokenUpdate(Bi,j, t) for all levels j of client i; 

RequestClassification(r, i, t); 

If r is classified as ci,k; 

RequestTagging(r, Ci,k, t); 

Insert r into Q i,k; 

end 

2. Scheduler: 

begin 

If (<I> is empty) 

return; 

Let t be current time; 

Select r in <I> with the smallest finish tag M inFi,j; 

Dispatch request r to server; 

end 

Algorithm 1: Algorithm Structure 
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TokenUpdate(Bi,h t): 

begin 

/*The biggest burst allowed is bounded by ai,/ / 

Let .6. be the time difference between current time 

and the previous time that Bi,j was updated; 

tokens(i,j) += .6. * Pi,j; 

lf(tokens(i,j) > ai,j) 

tokens( i, j) = ai,j; 

end 

RequestClassification(r, client i, t): 

begin 

Find the token bucket with the smallest index k that satisfies: 

(tokens(i, k + 1) >= 1) & (tokens(i, k) < 1) 

Vj 2:: (k + 1), tokens(i, j) -= 1; 

Classify r E Ci,k+ 1; 

end 

RequestTagging(r, Ci,k, t): 

begin 

If (Qi.j is empty) 

MinFi 1· = fr .· 
' 't,J' 

end 

Algorithm 2: Algorithm Components 
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at the current time. Then it invokes RequestClassification() which classifies the 

request into a specific class. If there are no tokens in Bi,j-1 but there is at least one 

token in Bi,j, it means the workload arrival satisfies the traffic limitation defined by 

Bi,j but does not satisfy Bi,j-1 . The rth request is then classified into Ci,j and placed 

into Qi,i· The start tag, si, is set to the current time t and J[ is set to sr + 8i,i . If 

all TBs of client i have at least one token at t, it means the rth request satisfies the 

limitation of the most stringent class Ci,1 , the request is placed in Qi,1 and assigned 

a response time of 8i,1 . In the process of RequestClassification(), the tokens of each 

bucket are also updated. 

Scheduler: The system scheduler selects the request to dispatch to the server 

based on an Earliest Deadline First (EDF) policy among the requests waiting in the 

queues. Because the finish tag in each queue of each client is in an ascending or­

der, the scheduler only needs to compare the finish tag of the first request from each 

queue, which reduces the compute complexity. A complete description is provided in 

Algorithms 1 and 2. 

Summary We summarize the salient features of our method. First, the use of 

graduated QoS allow the system to provide very good QoS guarantees at a fraction of 

the capacity required to provide 100% guarantees. The use of an EDF scheduler allows 

the capacity requirements to be further reduced by exploiting the heterogeneity in 
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the client QoS requirements. The scheduler thereby addresses property P3. Next, the 

use of classification rather than simple delay allows our scheduler to uph~ld property 

P2 of isolating the good and bad portions of an individual workload. The TB based 

traffic envelopes can regulate workloads automatically and allow us to guarantee the 

isolation property Pl. 

In Chapter 4 we provide experimental validation of our method using several 

block-level real storage traces to validate specific features of the Nested QoS, as well 

as the benefits possible in practice as well. 

3.2.2 Capacity Planning 

In the Nested QoS model, the workload W consists of a sequence of requests arriving 

at times 1, 2, 3, .... The classification splits W into classes C1 , C2 , • · • Cn· Ci consists 

of the requests of W that are output by the token bucket Bi. All requests in Ci have a 

response time no more than 8i. From the nested definition, we require that ai :::; ai+b 

Pi :::; Pi+l and 8i :::; 8i+l· The problem is to estimate the server capacity required to 

meet the SLAs. We define a busy period to be an interval in which there are one or 

more requests in the system. 

Lemma 1 With EDF scheduling, the capacity of a single workload required for all 

requests to meet their deadlines in the n-level Nested QoS model satisfies: 

(1) 
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Proof: We bound the maximum number of requests that need to finish by timet, 

where t = 0 is the start of a system busy period. Define "li(t) to be the number of 

tokens in bucket Bi at time t. By definition, "li(O) = IJi for all i = 1, · · · , n. Define 

Nt(a, b) to be the maximum number ofrequests with deadline less than t, which enter 

any of the queues Q1 , Q2 , · · ·, Qn in the interval (a, b). Let j, 1 ::; j ::; n, be the 

largest index for which t 2: <5j. Define Ti = t - <5i, 1 ::; i ::; j, and for notational 

convenience let Tj+ 1 = 0. Then 

(2) 

Now Nt(Ti+1, Ti) consists exactly of the requests that have been admitted by bucket 

Nt(Ti+1, Ti) ::; "li(Ti+l) +Pi X (Ti- Ti+1)- "li(Ti) 

Summing both sides of formula (3) for all i = 1, · · · , j 

(3) 

2:i=1 Nt( Ti+1, Ti) :S 2:i=1 Pi X ( Ti - Ti+1) + 2:{=1 ( 'fli ( Ti+I) - 'fli( Ti)) 

Rewriting the last summation of the right hand side of the equation ( 4): 

2:i=1 ('fli( Ti+1)- 'fli( Ti)) = 2:{:;:;('fli( Ti+I)- 'f7i+1 (Ti+l)) +'f]j(Tj+I)- 'f71 (71) 

we also have 

(6) 

(4) 

(5) 

(This can be proved by induction over the arrival instants of requests. The number of 

tokens in bucket Bi at any time is no more than the number of tokens in any bucket 

Bj, j > i. For the base case, equation (6) holds since IJi::; IJi+ 1 , for all i = 1, · · · , n-1. 

The details of the proof are omitted.) 
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By substituting and dropping all negative terms of equation (5): 

(7) 

Now, 

Hence, 

(11) 

The capacity (C) required to finish these Nt(O, t) requests by timet is upper bounded 

by Nt(O, t)jt. Hence: 

c::; (jilt+ E{::::f(1 +Pi X (bi+l- bi))/t- Pi X bi/t +Pi (12) 

C<p· - J (13) 

Otherwise, the RHS is maximized when t takes on its smallest value, which is bi. In 

this case, the inequality reduces to: 

(14) 

The above two inequalities must hold for all values of t, and hence for all possible 

values of j, 1 ::; j ::; n. 

Putting it all altogether we get: 
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Lemma 2 With EDF scheduling, the capacity of a single workload required for all 

requests to meet their deadlines in the Nested QoS model, when all Pi are equal to p, 

is given by: 

(15) 

For the case when all Pi are equal to p, and the class parameters are multiples of 

the base value: 

Lemma 2.1: Let a = 8i+I/8i, {3 = ai+Ifai and A = {3/a be constants. The server 

capacity required to meet SLAs is no more than: max1~j~n {p, Ai(ai/81) + (j-

1)jai81 + p(1- 1/Ai)}. For A< 1, the server capacity is bounded by ai/81 + p, 

which is less than twice the capacity required for servicing cl. 

Lemma 3: Consider a shared server environment where there are m workloads each 

with n classes. Let ai,j, Pi,j, 8i,j denote the parameters for class j of workload i. 

Suppose the 8i,j are arranged in non-decreasing order, and denoted by f:l.k (1 :S k :S 

m * n). Define Nf (a, b) to be the maximum number of requests in workload i with 

deadline less than t, which enter any of the queues Q1 , Q2 , · • ·, Qn in the interval 

(a, b). Then the maximum number of requests that need to finish by time t from all 

workloads is Ntll(O, t) = L.:;:1 Nf(O, t). Nf(O, t) is given by (2) and (11). Then the 

total capacity Call form workloads are given: 

Vk, Call :S max{L.:;:1 Nt (0, f:l.k)/ f:l.k, L.::1 Pi,n} (17) 

and Nt (0, !::l.k) is given by (2) and (11). 
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3.2.3 Workload Parameters 

In this section, we describe how the Nested QoS parameters of a workload will typ­

ically be determined. The client first decides the number of classes and their sizes 

(as a fraction of workload size) by empirically profiling the workload to achieve a sat­

isfactory tradeoff between capacity required (cost) and performance. (Usually three 

classes appear to be sufficient over a variety of workloads.) Using a decomposition 

algorithm (see [31]) one can determine the minimum capacity K:1 required for a frac­

tion !I of the workload to meet the deadline 1h. We choose p1 = K:1 and a1 = p181. 

We similarly profile each of the classes, and find a pair of (a2 , p2) which satisfy that 

a fraction of h requests fall into class 2 defined by (a2 , p2 ); and then find a pair of 

(a3, p3) which satisfy that a fraction of h requests fall into class 3 defined by (a3, p3). 

According to the Nested QoS definition, the parameters should satisfy: a 1 ~ a2 ~ a 3 , 

and PI ~ P2 ~ P3· The method of how to choose the parameters is described in [33] . 
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Chapter 4 

Performance Evaluation 

4.1 Experimental Setup 

In this section, we describe the results of an empirical evaluation of our scheduling 

method (also referred to as Graduated QoS) using both a process-driven system 

simulator Yacsim [34] and a prototype in Linux kernel. In Section 4.2 to Section 4.4 

we use Yacsim simulation to evaluate the Nested QoS model. In Section 4.5 we use 

results from prototype in Linux to show the performance of the Nested QoS model. 

In the experiments, we used three types of real block-level storage application traces 

from the UMass Storage Repository [35]. We conducted experiments focused on 

illustrating the properties Pl to P3 detailed in Chapter 1: ( i) Can we isolate badly­

behaved workloads from good ones so that they do not affect the performance of the 

latter? ( ii) Can we localize regions of bad behavior of a single workload so as to avoid 

affecting its well-behaved regions? (iii) Can we provide high quality of service with 

low provisioned capacity? 
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Figure 4.2 Wl and W2 are well-behaved workloads. Response time distribution and 

CDF of Wl and W2 with three scheduling n1ethods: Nested QoS, pClock, WF2Q. 
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Figure 4.3 : The bandwidt h allocation for well-behaved Wl and W2 by three methods: 

Nest ed QoS , pClock, WF2Q. 
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(b )Response time distribution of W2 
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Figure 4.4 Response time distribution and CDF of Wl(violation) and W2 with three 

scheduling methods: Nested QoS, pClock, WF2Q. 
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4.2 Workload Isolation 

Workload isolation is a basic requirement in shared storage systems. In this experi­

ment we explore how well the Nested QoS can isolate badly-behaved workloads from 

well-behaved ones. 

In the experiment, we uses two block-level workloads WI and W2. WI is a 

WebSearch workload with a long term average arrival rate of 330 lOPS; W2 is a 

Financial Transaction workload with a long term average arrival rate of I20 lOPS. 

The arrival patterns are shown in Figure 4.I(a). In a second experiment WI increases 

its instantaneous arrival rate to around 700 lOPS between time 600 and 700 seconds, 

as shown in Figure 4.I(b). We compared three schedulers: Nested QoS, pClock and 

WF2Q [14]. We first look at how the three schedulers isolate Wl and W2 when both 

of them are well-bahaved, as shown in Figure 4.I(a). By profiling the workloads, the 

token bucket parameters for WI and W2 are set to (20, 330IOPS), (40, 360IOPS), 

(200, 400IOPS) and (7, I30IOPS), (I4, I43IOPS), (28, I58IOPS) respectively. A 

system capacity of 628 lOPS is provisioned for the two traces. With this capacity, all 

methods can guarantee that no less than 90% of the requests finish within a deadline 

of 50ms, and 95% of the requests finish within a deadline of 500ms, and IOO% of the 

requests of both workloads will finish in no more than 5000ms. Figure 4.2(a) and 

(b) show the response time performance of WI and W2 when both workloads are 

well behaved, and Figure 4.2(c) and (d) show the corresponding response time CDF 

of WI and W2. Figure 4.3(a), (b) and (c) show the bandwidth allocation for WI 
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and W2. Both of the workloads bandwidth (Wl (330 lOPS) and W2(120)IOPS) are 

guaranteed by all three methods, as shown in Figure 4.3. 

Now we look at the performance of WI and W2 when Wl violates SLAs. A good 

method should isolate the behavior of WI and guarantee the performance of W2. 

Figure 4.4(a) and (b) shows the response time distribution of WI (violation) and 

W2 when Wl violates its SLAs. The response time CDF of WI (violation) and W2 

are also shown in Figure 4.4(c) and (d). From Figure 4.2(b)(d) and Figure 4.4(b)(d) 

we can see that the well-behaved workload W2 is isolated from the bad behavior 

of WI. The performance of W2 does not change when Wl sends more requests. 

Performance of WI is degraded because it sent more requests during 600s- 700s, as 

shown in Figure 4.2(a)(c) and Figure 4.4(a)(c). A notable fact in Figure 4.2(a)(c) 

and Figure 4.4(a)(c) is that all the three methods show a performance degradation 

for WI, but the degradation is different in the three cases. Nested QoS can still 

guarantee that 94% of the requests meet their deadline, while pClock and WF2Q are 

noticeably degraded to 75.4% and 75.3%. Theoretically, pClock using EDF scheduler 

should have better performance than WF2Q, because the EDF scheduler is able to 

use the deadline difference from W2 to reduce the response time of WI, without 

affecting the performance of W2, while the WF2Q scheduler strictly allocates the 

capacity in proportion to the weights; hence the excess capacity is used to decrease 

the response time of the well-behaved flow even below its required value, and is not 

used to reduce the penalty faced by Wl. In this experiment, the deadline is set to 
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be 50 ms for both WI and W2, and pClock cannot use the spare capacity from W2. 

So the performance of pClock and WF2Q are almost the same. In Section 4.4 we 

provide the comparison of pClock and WF2Q with different deadline limits for the 

multiplexed workloads, and the results show the advantage of pClock over the WF2Q 

scheduler. In general, Nested QoS outperforms the other two methods because of its 

ability to isolate bad regions. We will explain that in detail next. 

4.3 Bad-Region Isolation 

Next we will explore how our method isolates the bad-region of a workload without 

affecting the good-regions, and maximizes the number of requests that meet their 

deadline. We use the same workloads described in Section 4.2; WI has an average 

arrival rate 330 lOPS and W2 an average rate I20 lOPS. The deadlines for WI and 

W2 are 50ms. The sever capacity of 628 lOPS is provided for all the three scheduling 

methods. In the experiment W2 is always well behaved, while WI violates its SLA 

by sending requests at a rate of about 700 lOPS during the 600s-700s interval (as 

shown in Figure 4.I (b)). This corresponds to exceeding the stipulated arrivals by 

about 6% for the whole trace. As shown in Figure 4.6(a) and (b), Nested QoS allows 

a much greater fraction of WI (about 94%) to meet its deadline compared to 75.4% 

and 75.3% achieved by pClock and WF2Q, respectively. The measured response times 

during and after the badly-behaved region are shown in Figures 4.7(a) and (b) for the 

Nested QoS and pClock schedulers, respectively. As can be seen, with Nested QoS 
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Figure 4.6: Response time distribution for Wl and Wl (violation) with three schedul-

ing methods: Nested QoS , pClock, WF2Q. 
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Figure 4. 7 : Wl violates its SLA and sends more requests from 600s to 700s. Nested 

QoS isolates the bad region and still guarantee the well-behaved part. However pClock 

delays all of Wl 's requests from 600s all the way up to 790s. 
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most of the requests during this interval still meet their deadline, and only a few of 

them have longer response time. The well-behaved requests after this region (after t 

= 700 s) are not affected. In contrast, pClock delays all the requests of Wl not only 

during the interval (600- 700)s, but all the way after the burst to about 790s. This 

is because when the violation happens the Nested QoS isolates the badly-behaved 

requests by moving them out of this request stream to a higher level class and allow 

well-behaved requests after the violation to meet their guaranteed deadlines. 

The performance of W2 is the same with or without the violation by Wl. We do 

not show the performance of W2 because it is isolated from Wl . We also compared 

the performance of W2 using the WF2Q scheduler. The response time of Wl is 

similar to that of pClock. This is because both pClock and WF2Q delay the violating 

requests which in turn affects the later requests. 

4.4 Reduced Capacity Provisioning 

We now explore the relationship between capacity provisioning and performance. 

By profiling, the capacity required by different schedulers to achieve a certain QoS 

is determined empirically. We find that the Nested QoS scheduler provides signifi­

cantly better performance at reduced capacity compared to the other schedulers. Our 

method reduces capacity using both decomposition and the EDF policy. The former 

reduces capacity by decomposing the workload and providing different response times 

for its badly behaved portions. EDF exploits the spare capacity arising from having 
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Figure 4.8 Reduced capacity requirements for different deadlines using Nested QoS 
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We first evaluate the performance of the Nested QoS for a single workload. In this 

experiment, five workloads are used to evaluate Nested QoS separately. W1 and W2 

are WebSearch workloads with a long term average arrival rate of 330 lOPS; W3 and 

W 4 are Financial workloads with a long term average arrival rate of 100 lOPS; W5 

is an Exchange Server workload with a long term average arrival rate of 910 lOPS. 

Our performance goal in this experiment is to have at least 90% of the requests meet 

a deadline of 81 , at least 95% of the requests meet a deadline of 82 , and all requests 

that satisfy the SLA face a maximum latency of 83 . Since pClock and WF2Q use a 

single-level QoS model, we set the performance goal to be a deadline of 81 for 100% 

of the workload. We compare the capacity requirements for the Nested QoS and the 
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single-level QoS for values of (h equal to 5 ms, 10 ms, 20 ms and 50 ms. The capacity 

required in each case are shown in Figure 4.8. For all cases, Graduated QoS saves 

capacity significantly, while still providing comparable performance. 

For the performance with multiple workloads, we first conducted experiments by 

multiplexing workloads of the same type. In this experiment, we use two Exchange 

workloads with deadlines of 50ms and lOOms respectively. We vary the server capacity 

from 2000 lOPS to 6000 lOPS and monitor the number of requests meeting their 

deadlines. Figure 4.9(a) shows the performance with the three schedulers. We can see 

that the Nested QoS can provide better performance guarantees than both pClock and 

WF2Q. As seen in Figure 4.9(a), with a capacity of 2000 lOPS, our method guarantees 

80% of the workload while pClock and WF2Q can only guarantee 40% and 22% 

respectively. In order to achieve a 90% guarantee, our method requires about 2500 

lOPS while pClock and WF2Q require about 3500 lOPS and 4000 lOPS respectively. 

The difference of pClock and WF2Q shows the benefit of EDF scheduling, while the 

gap between our method and WF2Q can be attributed to both the decomposition 

and ED F policy. 

In the second experiment, we multiplex workloads of different types. Two Ex­

change workloads with deadlines of 50ms, and two Web Search WS workloads with 

deadlines of lOOms and one Financial Transaction FinTran workload with a deadline 

of 200ms are run concurrently. Figure 4.9(b) shows similar performance as Fig­

ure 4.9(a) for each scheduler. 
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4.5 Linux Implementations 

We implement the Nested QoS framework as a Linux Loadable Module for Linux 

Kernel 2.6.32. The module builds a block device, which schedules requests using the 

Nested QoS algorithm, and sends requests to a physical backing device. The module 

also provides interfaces for users to set the parameters of the Nested QoS model: 

burst size, throughput and latency. A workload generator is also created to generate 

random lOs or replay lOs from a real workload trace file. The system is implemented 

in the Linux 2.6.32 kernel on a Dell Server with Intel(R) Core(TM)2 Quad 2.83GHz 

CPU and 4GB memory. The backing device is a lTB Seagate SATA hard drive. The 

capacity of the hard drive is about 100 lOPS for random 4KB IO. 

In this section, we will use several traces from MSRC storage to test the perfor­

mance of the Nested QoS. We first examine the performance of the Nested QoS for a 

single workload. Then we apply the Nested QoS model to multiple workloads. 

4.5.1 Single Workload 

We first examine the performance of the Nested QoS for a single workload. The 

workload we used here is a prxy workload from Microsoft storage. The long term 

average throughput is 300 lOPS, and burst rate is up to 550 lOPS, as shown in 

Figure 4.10. The parameters for Nested QoS are (2, 100, 20ms), (3, 110, lOOms) and 

(5, 120, lOOOms), which show that the three latency levels are 20ms, lOOms, and 1000 

ms. Because the backing device rate is about 100 lOPS, we slow down the arrival 
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Now we compare the latencies obtained by the Nested QoS and the pClock (same 

as the WF2Q for a single workload). Figure 4.11(a) shows the response time distri-

bution and CDF using the Nested QoS and the pClock. As shown in Figure 4.11, 

the Nested QoS gets 76% of its requests finished in 20 ms, while pClock only gets 

27% of its requests completed in 20 ms. The CDF of the response time is shown in 

Figure 4.11(b). 

4.5.2 Multiple Workloads 

Now we compare the performance of multiple workloads using the Nested QoS and 

the pClock. prxy is the workload we used in last section; proj is a workload from 
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Figure 4.11 : Request response t ime distribution and CDF for prxy workload using 

Nested QoS and pClock 
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project server. The long term average throughput is 25 lOPS, and burst rate is up 

to 260 lOPS, as shown in Figure 4.12. We slow down the prxy by a factor of 4 and 

keep the proj at the original arrival rate. The parameters for the Nested QoS are 

(2, 100, 20ms) , (3, 110, 200ms) and (5, 120, 1000ms) for prxy, and (2, 20, 20ms), 

(3, 22, 200ms) and (4, 25, 1000ms) for proj. Figure 4.13 and Figure 4.14 show the 

performance for prxy. 
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Figure 4.12 : Arrival rate of proj workload 

As shown in the Figure 4.13, the Nested QoS gets 80% of requests finished in 20 

1ns for both the prxy and the proj, while for the pClock, less than 20% of its requests 

completed in 20 ms. The CDF of the response time is shown in Figure 4.14. This 

experiment shows that the Nested QoS is also suitable for multiple workloads , and 

can achieve performance isolation. 



63 

100 

90 

80 

70 

60 
c 

.Q 
t5 
~ 

LL 

<20 20-50 50-100 100-200200-500500-1000 >1000 
Response Time (ms) of prxy 

(a) prxy workload 

80 

70 

60 

50 

c 
0 

n 4o 
~ 

LL 

30 

20 

10 

<20 20-50 50-100 100- 200200-500500-1000 >1000 
Response Time (ms) of proj 

(b) proj workload 

Figure 4.13 Response t ime distribut ion for multiple workloads 



20 .... .. .. ·' 

10 _.,_ Nested QoS 
- pCiock 

O L_--~----~----~----~=====c====~ 
<=20 20-50 50-100 100-200 200-500 500-1000 >1000 

Response Time (ms) 

(a) prxy workload 

- Nested QoS 
- pCiock 

OL_ ____ L_ ____ L_ ____ ~----~====~====~ 

<=20 20-50 50-100 100-200 200-500 500-1000 >1000 
Response Time (ms) 

(b) pmj workload 

Figure 4.14 Response time CDF for multiple workloads 

64 



65 

4.6 Summary 

In this chapter, we first use simulation to evaluate the Nested QoS model in three 

aspects: (1) contending workloads performance isolation, (2) local violation perfor­

mance isolation, and (3) improved server provisioning. The results show that the 

Nested QoS model and framework can meet the three properties and get good per­

formance. We also implemented a prototype in Linux, and demonstrated the working 

of the Nested QoS in an actual system. 
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Chapter 5 

Conclusions and Future Work 

5.1 Conclusions 

This thesis has proposed a novel Nested QoS model for providing performance SLAs in 

shared storage systems. The model allows defining flexible QoS based on the client's 

workload characteristics and willingness to pay, and it also allows the service provider 

to increase the degree of consolidation and to lower costs. A method of capacity 

provisioning for the Nested QoS is also provided. The model is easy to implement 

and enforce, and also easy to audit and arbitrate when disputes over SLAs violations 

between clients and service providers occur. 

The thesis also provides a method to implement the Nested QoS model in storage 

systems. The scheduling framework based on the Nested QoS model employs two 

strategies together: systematically classifying workloads to provide each workload 

with a graduated QoS, and efficiently scheduling the classified requests of all the 

workloads. The results show that it achieves the three properties Pl to P3: isolation 

of different workloads from each other, isolation of the bursty portions of a single 

workload from its well behaved portions, and improved server utilization for small 

relaxations of the QoS. 
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5.2 Future Work 

This thesis proposes a Nested QoS model for providing flexible performance SLAs in 

storage systems. However, there is one limitation which needs to be solved in the 

future. 

The limitation is how to choose the parameters for the Nested QoS model. Cur­

rently, we use an off-line method to pick the (a, p) in the model by profiling the work­

loads. In the future, we will improve this procedure and provide an online method to 

dynamically adjust the parameters based on the workload's properties. 
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