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ABSTRACT 

Accelerated Discontinuous Galerkin Solvers with the Chebyshev Iterative Method 

on the Graphics Processing Unit 

by 

Toni Kathleen Tullius 

This work demonstrates implementations of the discontinuous Galerkin (DG) 

method on graphics processing units (GPU), which deliver improved computational 

time compared to the conventional central processing unit (CPU). The linear system 

developed when applying the DG method to an elliptic problem is solved using the 

GPU. The conjugate gradient (CG) method and the Chebyshev iterative method are 

the linear system solvers that are compared, to see which is more efficient when com

puting with the CPU's parallel architecture. When applying both methods, com

putational times decreased for large problems executed on the GPU compared to 

CPU; however, CG is the more efficient method compared to the Chebyshev iterative 

method. In addition, a constant-free upper bound for the DG spectrum applied to the 

elliptic problem is developed. Few previous works combine the DG method and the 

GPU. This thesis will provide useful guidelines for the numerical solution of elliptic 

problems using DG on the GPU. 
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Chapter 1 

Introduction 

Supercomputers are popular because of their ability to allow data-intensive compu

tations to perform in parallel, and therefore the computational time is drastically 

decreased. The discontinuous Galerkin (DG) method, a partial differential equation 

(PDE) solver, is becoming a preferred method because of its ability to allow the use 

of complex geometries. This work capitalizes on both features of DG and supercom

puting by implementing a component of the DG method using a parallel computer. 

In addition to this implementation, computable bounds on the maximum and mini

mum eigenvalues associated with the DG scheme applied to the elliptic problem are 

analyzed, and a constant-free upper bound is developed. The lower bound remains 

an open problem. 

When solving a PDE, there are many different approaches to choose from, ranging 

from the finite element method (FEM) to the finite volume method (FVM). Unlike 

the traditional FEM, the DG method allows piecewise discontinuous polynomials 

to represent the information of each element. Because of this, DG is useful when 

using unstructured meshes. Non-conforming meshes provide researchers with more 

flexibility when creating the discretized meshes and allow for better accuracy for their 

model. 

The DG method was first proposed in the 1970s. Since then, mathematicians 

gradually found the benefits of the method, and more theory of the solver is known 

today. DG is already implemented using the languages C and MATLAB [1, 2]. Re-
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search groups are now working on implementing DG using the graphics processing 

unit (GPU). The GPU is a parallel, multi-thread, many core processor that acts as 

a co-processor to the main central processing unit (CPU) [3). Recently GPUs have 

attracted the community because of their 'peak compute capability and high memory 

bandwidth, in comparison to conventional CPUs' [4). 

To take advantage of the potential of this new technology, this research imple

ments a component of the DG method on the GPU, expecting to speed up compu

tational time. This thesis solves the linear system, developed by DG, on the GPU. 

Because the GPU uses a parallel structure to execute commands, the use of inner 

products does not provide optimal performance. Therefore, the conjugate gradient 

(CG) method, a linear system solver with two inner products per iteration, may not 

be the most efficient solver. Another solver without inner products, the Chebyshev 

iterative method, will be tested and compared to CG. In order to use the Cheby

shev iterative method, a quasi-tight approximation to the maximum and minimum 

eigenvalues of the discretized matrix is needed. A section of this research investigates 

bounds to the spectrum of the DG operator. This work establishes that the CG 

method, even with three inner products, is the optimal linear system solver when 

using the GPU architecture. This is because the CG method is guaranteed to con

verge with at most M iterations, where M is the size of the matrix. The Chebyshev 

iterative method can perform thousands of iterations before it converges. 

A variety of applications ranging from flow and transport problems through a 

porous media to electromagnetics and wave propagation can be solved using the 

DG method. Mathematicians are currently working alongside engineers in the oil 

industry to show the many benefits that this method has. The work in this thesis 

applies the DG method to the elliptic problem. The Poisson equation has been seen 
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as one of the most prominent second order elliptic PDEs [5). Fast Poisson solvers are 

needed to solve many practical equations for engineers, such as the heat conduction 

equation, the electrical field computation, and pressure correction in computational 

fluid dynamics [5). With the completion of my research, the use of the DG method 

can become more appealing to engineers who specialize in any of the areas above, as 

my work focuses on reaping faster computational times. 

The remainder of the thesis is as follows. Chapter 2 and Chapter 3 give more 

background on the DG method and G PU, respectively. Chapter 4 provides a brief 

overview of the iterative solvers used within this research. The DG model problem 

and analytical work for studying the bounds to the DG spectrum are presented in 

Chapter 5. Chapter 6 describes the method used to implement the iterative methods 

on the GPU. The numerical comparisons are presented in Chapter 7. Last, Chapter 

8 gives concluding remarks about the research. 
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Chapter 2 

Discontinuous Galerkin Method 

The DG method is a numerical solver for finding a solution to a PDE. This method 

is said to be a combination of the FEM and FVM. More theory about the FEM and 

FVM solvers can be found in [6, 7]. Solving PDEs over an infinite domain can be 

difficult in obtaining an exact solution. Therefore, the domain is discretized to create 

a mesh of elements. Numerical PDE solvers approximate the solution of the PDE by 

creating polynomials representing information within each element. For most PDE 

solvers, like FEM, continuity of these polynomials between each element is required. 

However, for the DG method, no continuity restrictions across element boundaries 

are required, allowing for more complicated geometries and better accuracy. This 

research concentrates on two aspects associated with DG. First, this work implements 

a component of the DG method applied to the elliptic problem onto a supercomputer, 

causing a decrease in the computational time. Second, this thesis explores upper and 

lower bounds on the spectrum that is developed when applying the DG method. 

The DG method was first developed in 1973 by Reed and Hill, in the framework 

of a neutron transport problem (determining the probability of a neutron-nuclear re

action occurrence) [8]. This scheme was designed mainly for hyperbolic equations. 

Around a similar time frame, discovered independently of Reed and Hill, discontin

uous finite element methods were proposed for elliptic and parabolic equations [9]. 

Since then analysis for elliptic, parabolic, and hyperbolic equations has been exten

sively researched [10]. 
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2.1 DG method versus other numerical solvers 

Like the FEM and FVM, DG relies on creating a weak formulation of the equation, 

resulting in a simplified problem to solve and an approximation to closely match exact 

solution. For the DG method, there are few modifications compared to FEM's bilinear 

and linear forms of the variational problem to accommodate the discontinuities at the 

boundaries of the elements. 

Two stabilizing terms are added to the bilinear form, a term corresponding to 

the fluxes and a penalty term [11]. There are different formulations of the numerical 

fluxes that have been developed over the years. Arnold, et al., conducted two studies 

that analyze the different numerical fluxes that have been introduced over the years 

[10, 12]. The choice of numerical fluxes will influence accuracy and stability of the 

method as well as properties of the stiffness matrix concerning sparsity and symmetry 

[10]. 

Figure 2.1 : DG can manage non-conforming meshes with hanging nodes (circled). 

DG has several advantages compared to FEM and FVM. For one, because there 

are no continuity constraints between elements, DG methods are well suited to handle 

complicated geometries, i.e. non-conforming meshes with hanging nodes; see Figure 

2.1. Also, DG can easily handle adaptivity strategies because refinement or unre

finement of the grid can be achieved without considering the continuity restrictions 
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typical for conforming in FEM [13]. DG methods are highly parallelizable [13]. Be

cause of discontinuities of the elements, the mass matrix is block diagonal, easily 

invertible and simple to handle in parallel. The DG method also allows easy hp

analysis. In other words, within the DG scheme, one can have different polynomial 

degrees and different sizes for each element [1]. The concept of hp-analysis is easier 

to implement for DG versus FEM and FVM. Last, this method satisfies the local 

mass conservation, whereas FEM satisfies global mass balance over the whole domain 

[1]. All of these qualities are reasons why scientists are gaining interest in the DG 

method. 

2.2 Pivotal results referenced in thesis 

Recall that one aspect of this research is studying analysis for bounds on the eigenval

ues associated with the DG scheme applied to the elliptic problem; refer to Chapter 

5 for more details. Various works have been key to investigating approximations to 

the spectrum of the DG operator. 

Antonietti proves the completeness and nonpollution of the spectrum [14], mean

ing that approximated maximum and minimum eigenvalues do exist. Another useful 

well known result is the Lax-Milgram theorem, which shows the existence and unique

ness of the DG variational problem as long as the bilinear form is continuous and 

coercive. The coercivity property explains that the bilinear form is bounded below 

by the DG-norm multiplied by a constant, C2 • 

Epshteyn and Riviere [11], Shahbazi [15], independently, derive the coercivity 

constant, C2 , which is dependent on the polynomial degree and the angles of the 

mesh elements. More recently, Ainsworth and Rankin extended Shahbazi's penatly 

parameter by allowing complicated geometries for the mesh [16]. Within this paper, a 
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brief analysis for the lower bound estimate is given for the symmetric interior penalty 

Galerkin method. This thesis concentrates on trying to extend the bound created 

by the coercivity property, desiring a bound associated with the L2-norm versus the 

DG-norm in order to find the approximation to the minimum eigenvalue. This bound 

still remains an open problem. 

When exploring an upper bound approximation for the spectrum of the DG ma

trix, trace inequalities have proven essential. Traces describe information about the 

discontinuities at the boundary of each element in the mesh. Warburton and Hes

thaven provide detailed analysis for deriving inverse trace inequalities for hp-finite 

elements (17]. In addition to those results, Ozisik, et al., present a tighter numerical 

bound to the Markov inequality (18]. All of these results were used in this research 

to find the approximation to the maximum eigenvalue to the DG operator. 

The DG scheme applied to the elliptic problem has been implemented in both 

MATLAB and C (1, 2]. Full versions and details of the MATLAB code can be found 

online, developed by Warburton and Hesthaven (2]. This research will extend the 

implementation by using an interface called Compute Unified Device Architecture 

( CUDA), a parallel architecture that executes on the G PU. More information on 

CUDA and the GPU will be given in the next chapter. 
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Chapter 3 

Graphics Processing Unit 

The GPU is a 'highly parallel, multithread, manycore processor with tremendous 

computational horsepower and very high memory bandwidth' [3]. The evolution of 

the GPU was caused by the demand for real-time, high-definition 3D graphics. The 

GPU is appropriate when computations can be conducted in data-parallel processing, 

i.e. a function executes many commands simultaneously in parallel structure. Many 

programmers who deal with large data sets can use parallel computing in order to 

decrease computational time. One aspect to this research is to execute a component 

of the DG method applied to the elliptic equation on the GPU. 

3.1 History of GPUs 

Integrated circuits, graphics processing units, personal-computer motherboards, and 

video game consoles are all major products manufactured by NVIDIA, a multinational 

corporation from Santa Clara, California [19]. In the mid 1990s, there was an increase 

in public demand for hardware-accelerated 3D graphics, especially in the gaming 

industry [20]. Microsoft and Sony demand this new hardware for some of their video 

game consoles, including Xbox and Playstation 3. Initially, operating the hardware 

for the 3D graphics was not straightforward and only limited operations could be 

performed [20]. However, as technology progressed, more advances arrived. NVIDIA's 

GeForce256, originally released in 1999, is a graphics controller chip that has a GPU 
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[21]. The GeForce256's GPU can execute billions of calculations per second. This 

was a major advancement because developers had the chance to apply additional 

enhancements to features like character animation (physics) and advanced artificial 

intelligence (logic) [21]. This architecture was used until about 2006. The newest 

generation card is NVIDIA's Tesla C2050 [22]. This card is said to 'redefine high 

performance computing and make supercomputing available to everyone' [22]. 

In 2007, NVIDIA created software that allows users to operate the GPU as a 

co-processor to the CPU, where data-intensive, parallel tasks are executed simultane

ously [23]. NVIDIA introduced a programming model called CUDA. This language 

allows communication between the CPU and the G PU. 

3.2 Compute unified device architecture 

The use of a G PU to perform general purpose engineering computations can be re

ferred to as General Purpose GPU (GPGPU) [24]. NVIDIA revolutionized GPGPUs 

in 2006-2007 by introducing a new parallel language, CUDA. The concept of GPG

PUs is to use the GPU in conjunction with the CPU to dramatically increase the 

performance compared to the conventional CPU, i.e the sequential part of the code 

runs on the CPU while the data-intensive part is executed in parallel by the GPU 

[24]. This architecture is a minimal extension of C and C++. The CUDA language 

is implemented in thousands of applications and published in research papers, includ

ing image and video processing, fluid dynamics simulations, CT image reconstruction, 

etc. [3]. 

Various PDE solvers are already executed using CUDA. In 2008, Zhao developed a 

lattice Boltzmann based algorithm that can be modified to solve elliptic Laplace and 

Poisson equations [25]. In 2010, Egloff explained how to implement finite difference 
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schemes for 1-D PDEs on the GPU [26]. There is also a team who is working on a 

software package, called FEAST [27]. This software is designed to solve PDEs using 

the FEM exploiting the floating point performance and memory bandwidth of the 

GPU. Few works have discussed linking DG to CUDA; therefore, this thesis helps 

provide useful guidelines. Klockner, et al., are currently working on applying the 

CUDA architecture to solve Maxwell's equations on a general 3D unstructured grid 

using the DG method [28]. All works provide evidence that their implementations 

increase peak performance and decrease computation times. This thesis concentrates 

on working with the DG PDE solver associated with the elliptic problem. 

Other useful papers that have guided this work are [4, 23, 29, 30], which describe 

optimal implementations for conjugate gradient. These papers also discuss using the 

Chebyshev iterative method as a pre-conditioner to the CG method [29, 30]. Li and 

Saad tested a sparse matrix-vector product kernel applied to pre-conditioned CG 

and GMRES methods [31]. Li and Saad's paper did not apply those linear solvers 

to DG. Also, Bell and Garland provide excerpts of code describing a sparse matrix

vector multiplication and provide ideas that are useful in implementing code for this 

research [32]. 

high performance sparse matrix-vector product (SpMV) kernels in different for

mats on current many-core platforms and used them to construct effective iterative 

linear solvers with several preconditioner options. Since the performance of triangu

lar solve is low on GPUs, this computation can be accomplished by CPUs. By this 

hybrid CPU /GPU computations, IC preconditioned CG method and ILU precondi

tioned GMRES method are adapted to a GPU environment and achieve performance 

gains compared to its CPU counterpart 
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3.3 Characteristics of the GPU 

One of the main reasons researchers want to code using CUDA is because of its 

advertisement in high peak performance; however, peak performance is not easily 

achieved. With this language, the programmer can control how the code is exe

cuted. To achieve high performance, careful consideration regarding the thread level 

parallelism and memory access methods while executing commands is necessary (4]. 

Another characteristic is that the peak performance associated with double precision 

is significantly less than that of single precision. For instance, the G PU card used 

within this research is NVIDIA's new Tesla C2050. The peak performance for sin

gle precision floating point operations is 1.03 T flops, while double precision floating 

point performance is 515 Gflops (22]. 

Another feature of the GPU is that CUDA has scientific libraries such as CUBLAS, 

which contains an implementation of BLAS (Basic Linear Algebra Subprograms) on 

top of the NVIDIA CUDA driver (33]. This package is very user friendly and is used 

to perform many commands in this research. 

The next trait of the G PU is a key element that is driving the research in this 

thesis. Recall that the GPU is used for running algorithms in parallel. However, the 

inner product is not optimal to solve in parallel. For example, the 2-norm of the 

vector, u, is calculated by: 

Each thread will compute the multiplication of each element but, when summing these 

values, the threads all have to communicate with each other in order to perform the 
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command. This forces the threads to synchronize, or to become serial in order to 

complete the inner product. Because of this trait, performing code with many inner 

products is not efficient. 

When applying the DG method to the elliptic problem, a linear system needs 

to be solved. Solving the linear system is the most data-intensive part to the DG 

scheme, and this thesis concentrates on executing the linear system on the GPU. 

A comparison between two linear system solvers is provided, determining whether 

the use of an optimal solver with many inner products like the CG method is more 

efficient, or if using a different solver that optimizes the hardware and contains no 

inner products will be more favorable, i.e. the Chebyshev iterative method. The next 

chapter will give more details on these two iterative methods. 
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Chapter 4 

Iterative Methods 

When the DG scheme is applied to the elliptic problem, the linear system Sx = b 

needs to be solved. One important task of this research is to implement the process 

of solving the linear system on the GPU, while decreasing the computational time 

when compared to solving on the CPU alone. Two different linear system solvers 

are tested: the CG method and the Chebyshev iterative method, i.e. a method with 

inner products versus a method without inner products. 

4.1 The CG method 

The CG method is a Krylov subspace method based on Lanczos algorithm. Consider 

the linear system, Sx = b. When S is a symmetric positive definite M x M ma

trix, the CG method can be applied. According to O'Leary, 'the conjugate gradient 

method is now the standard iterative method for solving linear systems involving 

sparse symmetric positive definite matrices' [34]. 

Before a definition of the CG method can be given, first define the standard form 

of the m-dimensional Krylov subspace where m ::::; M as 

Km(S, ro) = span{ro, Sro, ... , sm-1r 0 }, 

where r0 = b- Sx0 is the residual for the initial guess, x0 . A Krylov subspace method 

computes iterates, Xk, of the form 
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where qk_ 1 is a polynomial of degree k- 1. 

The CG method can be described as a recurrence formula that generates unique it-

erates Xk E Kk(S, r0) and converges to x* = s-1b. At each step k, iiekiis is minimized, 

where [35, 36] 

Define {p0 ,p1, ... ,Pk-l} as an S-conjugate basis, meaning pfSpi = 0 '\/j =f i. Then 

[35] 

Km(S, ro) - span{r0 , Sr0 , ... , sm-1r 0 } 

- span{ro, r1, ... , rk-1}· 

where Xk = Xk-1 + ak-1Pk-1 and ak-1 is some constant dependent on rk_1, S, and 

Pk-1. More detailed information about the Krylov subspace and the CG method can 

be found in [35, 36, 37, 38]. 

There are many reasons for using CG. This method implicitly computes the best 

polynomial with respect to the eigenvalues of S [39]. Also, the CG method is guaran-

teed to converge with a maximum of M iterations. The rate of convergence of the CG 

method depends on the distribution of the eigenvalues of matrix, S. For polynomial 

degree k, the rate of convergence is approximately [36, 40] 

2(~-1)k 
~+1 

where r;, = ~. 
"mtn 
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However, the algorithm for this method involves the computation of two inner 

products and one matrix-vector product for every iteration (see Appendix A for the 

algorithm). As discussed above, implementing inner products in parallel requires the 

use of global communication, i.e thread synchronization; therefore, computing inner 

products with the CUDA language is not advised [29]. A discussion of the Chebyshev 

iterative method, a solver without inner products, is given in the next section. 

4.2 The Chebyshev iterative method 

The Chebyshev iterative method is used to solve the linear system Sx = b. This 

method, is a Krylov subspace method, creates a sequence of polynomials, Qk(z), such 

that lqk([a, t'])l ::; 1 and Qk(O) = 1 where a, t3 E IR represents the minimum/maximum 

eigenvalue approximations to the matrix, S respectively. The polynomials used are 

the shifted and scaled Chebyshev polynomials. Recall the Chebyshev polynomials 

[35, 36, 37] is a three term recurrence relation where: 

T0 (z) - 1 

T1(z) - z 

Tk(z) 2zTk-1(z)- Tk-2(z) k = 2, 3, ... , 

where ITk(z)i ::; 1 for z E [-1, 1]. These polynomials oscillate in value between [-1, 1]. 

Using the Chebyshev polynomials on the interval [a, t)], s-1 is written as: 

k=oo 

s-1 = ~ + 2:: ckTk(z), 
k=1 

where Z = - 2-[S- /Ha I] ck = -1-(-q~)k and q~ = 1-.;c;IP. 
13 -Q 2 ' ../(i/J ' 1 + .;c;JP 

To find the solution to the linear system, this algorithm does not need knowl-

edge about the initial guess used or the right hand side of the equation; however, 
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this method requires some knowledge about the spectrum. To use this algorithm, 

approximations to the maximum and minimum eigenvalues must be provided. If the 

approximation to maximum eigenvalue is an under-estimation, it is possible that the 

method may never converge. If the maximum eigenvalue approximation is an over-

estimate, the method might take too long to converge. Tight approximations to the 

spectrum are necessary. The Chebyshev iterative method only works well for a well 

conditioned matrix, S. No spectrum that contains the origin can be used. The rate 

of convergence is determined by 

h o A 1-yla/i 
w ere agam q = l::"'i7.i. 

l+y a/{3 

2f'/ 
1 + q2k 

Unlike the CG method, the Chebyshev iterative method avoids the use of inner 

products (refer to the algorithm in Appendix A). Because of this, when implemented 

on the GPU, the Chebyshev iterative method appears to be more efficient when 

parallelizing the code due to not having to calculate the inner products. However, 

this method may take more iterations to converge versus the CG method, which 

converges with a maximum of M iterations. This work determines whether using the 

Chebyshev iterative method is preferred compared to the CG method for the G PU. 

The next chapter defines the model problem for the DG scheme when applied to 

the elliptic problem and investigates bounds for the maximum/minimum eigenvalues 

necessary for the Chebyshev iterative method. 
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Chapter 5 

Finding Bounds on the DG Spectrum 

The goal to this research is to compare two iterative linear system solvers, the con

jugate gradient method and the Chebyshev iterative method, using the GPU, then 

combine these codes with a DG code that solves the elliptic problem. In order to 

perform the Chebyshev iterative method, approximations of the maximum/mini

mum eigenvalues of the DG operator are needed. The eigenvalue problem is to find 

(0 =I= u, A) E vh X c such that 

ah(u, v) = .X(u, v) 'Vv E Vh 

(Vh is defined in the next section). The idea is to bound the spectrum and knowledge 

of the bounds exists due to of the result given by Antonietti, et al., [14] and the Lax

Milgram Theorem. Antonietti proves that the DG method is "spectrally correct" for 

a DG operator: 

• non-pollution of the spectrum 

• completeness of the spectrum 

• non-pollution and completeness of the eigenspaces. 

In other words, the paper [14] proves the properties above and in turn states that 

our spectrum is bounded. The bounds need to be precise in order to guarantee that 

the Chebyshev iterative method will converge with the optimal number of iterations. 

This chapter first defines the DG model problem for the general elliptic equation, 
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then analyzes the maximum/minimum bounds to the DG spectrum. The upper 

bound approximation to the spectrum is developed and the lower bound remains an 

open problem. 

5.1 Model problem using DG method 

5.1.1 Setup 

Let 0 E JR2 be the polyhedral domain, 80 be the boundary of the domain. Denote 

£ 2 (0) as the Hilbert space with respect to the inner product and H 8 (0) as the Sobolev 

space of order s 2:: 0. The equations for all the definitions are below respectively, 

[1, 2, 14]. 

- ( z v2) 1/2 llvii£2Cn) lr, 
H 8 (0) - { v E £ 2 (0) : \7'0 :::; lad :::; s, Dav E £ 2 (0)} 

Let Th be partitions of the domain, 0, into triangles with possible hanging nodes. 

The parameter, h, is defined as 

h =max hE, 
EETh 

where hE is the diameter of each element, E E Th. Let E 1 and E 2 be arbitrary 

elements in Th; refer to Figure 5.1. The parameter 8E1 represents the boundary of 

element E 1 . Denote r 1 as the set of all interior edges and r B as the set of all boundary 

elements. Then rh = r/ u rB. Also, define the discontinuous finite element space as 

where JP>N (E) is the space of polynomials of degree at most N on E. 
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e 

Figure 5.1 : Example of two adjacent triangular elements contained in a mesh 

5.1.2 Jumps and averages 

Recall from Chapter 2 that because DG allows discontinuities of the polynomials at 

the boundaries of the elements, this method incorporates ideas of numerical fluxes. 

Different derivations for numerical fluxes have been developed. For this research, 

jumps and averages are used to ensure the method will converge to the correct so-

lution. Before defining jumps and averages, let us introduce the concept of trace. 

'The notion of trace is used to define the restriction of a Sobolev function along the 

boundary of the element' [1]. 

Let e E f 1 , an interior face shared by Ef and E~ with ne, the outward normal 

from Ef to E~ and let v be in Vh, refer to Figure 5.1. There are two traces along 

v for the two neighboring elements [1]. The jump and average for v can be defined 

respectively as: 

[v] - (viEr) - (viE~) 

(viEr+ viE~) 
2 

{v} -

If e E fs corresponding to element, E1 , then the jump and average can be written 
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as: 

[v] = {v} =viEr 

5.1.3 Model problem 

The general elliptic problem we consider is: 

-\7 · ( K\7 u) + au - f in n 

u - uvonfv 

where K is a symmetric matrix that is bounded by constants, kf, kf E JR+ for every 

element, E, 

a(x) is a non-negative scalar constant function, and f E £ 2 (0). Also, un, UN repre

sent the Dirichlet and Neumann boundary conditions, respectfully, and rB = rvurN. 

Then the DG bilinear form, ah : vh X vh --+ lR is defined by 

ah(u, v) = L r K\7u. Vv + r auv- L 1{K\7u. ne}[v] 
EETh J E ln eErh e 

+E L 1{K\7v · ne}[u] + JgeJ30 (u,v) 
eErh e 

L(v) = 1 fv + E L 1(K\7v · ne + l:l~o v)un + L lvuN. 
0. eErv e eErN e 

The last term in ah(u, v), Jge,f3o(u, v), is a bilinear form that penalizes the jump of 

the function values: 
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The parameter (J"e is the penalty on each edge, e, that is nonnegative and real. The 

parameter, /30 , is a positive value that depends on the dimension, d = 2, f30 (d-1) ;:::: 1. 

For the rest of the research, {30 = 1. 

The parameter, E, is the stability parameter. When E = -1, we obtain the Sym-

metric Interior Penalty method (SIPG). In this case, when the penalty, (J"e, is large 

enough, then the stiffness matrix is symmetric positive definite. ForE= 1 we obtain 

the Non-Symmetric Penalty parameter method (NIPG). And for E = 0 we get the 

Incomplete Penalty parameter method (IPDG). For this research, the SIPG method 

is used. The next section will prove an upper bound to the variational problem. 

5.2 Approximated upper bound of the spectrum 

We have 

L 1 K(Vv? + 1 av2 + (c -1) L J{K'Vv · ne}[v] 
EETh E n eErh e 

+ L ~j J[v]2 
eErh e 

L KIIVvlli2(E) + allvlli2(f!) + (c- 1) L J{K'Vv · ne}[v] 
EETh eErh e 

(*) 

+ L ~j ll[v)lli2(e)· 
eErh 

The next three subsections concentrate on further bounding the four terms on the 

right hand side by llvll£2(n)· 

5.2.1 Upper bound for the first term 

This section bounds the first term in (*) such that 
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where A E R In a paper written by Ozisik, et al., a tighter upper bound for Markov's 

inequality is presented [18]. The result of this paper is below. 

Theorem 5.2.1. Markov Inequality for a planar triangle: For a planar tri-

angle, E, let JoEl be the perimeter length of E and lEI be the area of triangle 

E. Then, for a polynomial v of degree N, 

where the constants, eN, are given in the paper {18}. Define hk as the diameter 

corresponding to the ith edge fori = 1, 2, 3. The parameter 1f~ 1 = LeEaE ht, 

justification of parameter is given in Appendix B. 

Using this result, then we have 

Sum over all elements and take the maximum over the scalars, to obtain 

L KJJV'vlli2cE) < L KeN ( 1 f~ 1 ) 2 llvlli2cE) 
EETh EETh 

< eN WE~~ (k~ (If~ I) 2) L llvllhcE) 
EETh 

< eN~~ (k~ (2:: h~ )2
) L llvllhcE)· 

eE8E E EETh 

Throughout the rest of the chapter use h~Lm = LeEaE h; , so that 
E 

L KIIV'vlli2(E) 
EETh 
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5.2.2 Upper bound for third term 

This section gives the bound for third term in (*) such that 

(E- 1) :2:: 1{K'\lv · ne}[v]:::; Bllvlll2(!1)' 
eErh e 

where B E R Then using the Cauchy-Schwarz inequality, we obtain 

:2:: 1{K'\lv · ne}[v]:::; :2:: ii{K'\lv · ne}ll£2(e)ll[v]ll£2(e)· (**) 
eErh e eErh 

Warburton and Hesthaven proved two trace inequalities to bound this term, [17]. 

Theorem 5.2.2. Trace Inequality 1: For some Dt E JR. independent of hE and 

v but dependent on the polynomial degree, N, 

(II) 112 
\:;fv E JIDN(E), Ve C DE, ll'\lv · nll£2(e) :::; Dt l~l 11Vvii£2(E)· 

Ford = 2, Dt = J N(~+l), etc. Define hk as the diameter associated with 

the ith edge of the element, E, where i = 1, 2, 3. The parameter 1~ 1 = ht; 

justification of parameter is given in Appendix B. 

By applying the definition of average, the triangular inequality, Theorem 5.2.2, 

and by assuming K is scalar on each element then 

II { K'\lv · ne} ll£2(e) 
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Incorporating Theorem 5.2.1 from Ozisik et al. [18], leads to 

For the second term in ( * *), II [ v ]II £2 (e), a similar bound can be found using the second 

trace inequality of Warburton and Hesthaven [17]. 

Theorem 5.2.3. Trace Inequality 2: For some Dt E lR independent of hE and 

v but dependent on the polynomial degree, N, 

( I I ) 1/2 
Vv E IP'N(E), Ve C 8E, llviiL2(e) :::; Dt ~~~ llviiP(E)· 

Ford= 2, Dt = J<N+I)iN+2) ,etc. Define hk as the diameter corresponding 

to the ith edge of element, E, where i = 1, 2, 3. The parameter i~l1 - h~; 

justification of parameter is given in Appendix B. 

Exploiting the the definition of jump, the triangle inequality and Theorem 5.2.3, 

we have 

II [v]IIP(e) < llviEf IIP(e) + llviE~ IIP(e) 

( I I ) 1/2 ( I I ) 1/2 
< Dt l;fl llvii£2(Ef) + Dt 1 ;~ 1 llvii£2(E~)· 
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Applying the above bounds, the result becomes, 

Multiplying the terms out, we have, 

Sum over the edges to obtain 

L 1{K\lv · ne}[v] < L L II{K\lv · ne}[v]il£2(e) 
eErh e EETh eE8E 
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We developed bounds for the four terms on the right hand side separately. First, we 

bound the squared terms, starting with the term corresponding to E]_: 

< 12 max k!f """" (h~~m max h~ ) JJvlli2(Ee)· 
EETh L...J l<i<3 zE 1 

EETh -- 1 

Take the maximum over all elements, then 

where 8 - 12 maxEETh k!f maxEETh ( h~um max1::;i:s;J hk). Similarly for the second 

term, 

e L llvlli2(E)• 
EETh 

Next, we bound the crossed terms. Define \II as: 
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Then 

Define hsum = maxEETh h~um· Then 

< 4hsum ""' ""' max h; llviiJ.2(Ee) ~ ~ l<i<3 2 
EETh eE8E - - E2 

< 12hsum ""' max hl llviiJ.2(Ee) ~ l<i<3 ~E 2 
EETh -- 2 

< 12hsum max (max h1. ) ""' llvlli2(E)· 
EETh l<i<3 ~E ~ 

-- EETh 

So the bound for W becomes 
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The last term is bounded identically. Putting all the bounds together, we have 

5.2.3 Upper bound for the fourth term 

This section bounds the last term in (*) such that 

L ~~[[[v][[i,2(e) :S C[[v[[i,2(fl)· 
eErh 

Using Warburton and Hesthaven's trace inequality, Theorem 5.2.3: 

Square both sides of the inequality, then 

2 2 fe[ 2 2 fef 1 I II [v]ffP(e) :S Dt [Ei[[[v[[£2(Ei) + Dt [E~[[ V [£2(E2) 

2 ( [e[ [e[ ) 1/211 112 II 112 
+2Dt [Eif[E~[ v P(E'f) v £2(£2)· 

Using the property 2ab:::; a2 + b2 for arbitrary a, b, then 
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Multiply by the constant, fej, and sum over all edges, e, to obtain 

< L L ~j II [vJIIJ.2 (e) 
BETh eE8B 

< L L aleel (2Di 1 ~! 1 11vlli2(Bf) + 2Di 1 ~! 1 11vlli2(B~)) 
BEn eE8B 1 2 

< 2Di ( L L aleell~! 1 11vlli2(Bf) + L L aleell~!lllvlli2(B~)) · 
BETh eE8B 1 BETh eE8B 2 

Notice for the term corresponding to Ei that 

For the term corresponding to E2 and identical bound is found. Then 

< 12Di ( ~~~ CTe) (ID:~: l~l) L llvlli2(B) 
BETh 

< 6 L llvlli2(B)' 
BETh 
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5.2.4 Combining bounds 

By using the values found in the previous sections, the upper bound to the variational 

problem becomes: 

ah(v, v) = L KIIVvllhcE) + allvlli2(f!) + (~:- 1) L 1 {K\7v · ne}[v] 
EETh eErh e 

+ L ~j II [v]lli2(e) 
eErh 

< A L llvlli2(E) + allvlli2(f!) + B L llvlli2(E) + 6 L llvlli2(E) 
EETh EETh EETh 

< (A+ a+ J3 + C)llvlli2cn)· 

Substituting the results, the upper bound becomes 

5.2.5 Testing the bound 

To check this bound, the Poisson solver for curved elements is used. Information about 

the implementation of this code can be found in [2]. Recall the Poisson equation 

-.tlu =finn 

u = uv on rv 
8u 
on =UNonrN 
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There is no a function, or matrix K, and it solves the SIPG method, therefore, 

E = -1. The upper bound becomes 

ah(v,v) - L 11Vvlli2(E) + 121 L II{Vv · ne}[v]IIL2(e) + L ~~ll[v]lli2(e) 
EETh eErh eErh 

< (A+ .8 + C)llvlli2(n) 

< (4cN max(h!m) 2 + 24Dzyi(f; (max (h~um m~x h~ ) 
EETh EETh 1$~$3 E 

+ (max (hE max 2-) ) 112 
(h max (max 2-)) 112

) 
EETh sum 1$i9 h'E sum EETh 1$i9 h'E 

+ 12Dz (~~ae) (~~ 1~ 1 )) llvlli2(n)· 

Table 5.1: Results for finding approximations to the maximum eigenvalue 

N/h 0.2 0.12 0.1 0.05 0.025 

1 1.1480 1.0709 1.0433 1.0714 1.0907 

2 1.2409 1.1740 1.1446 1.1893 1.2122 

3 1.2235 1.1853 1.1549 1.2019 1.2229 

4 1.1992 1.1668 1.1378 1.1840 1.2103 

5 1.1787 1.1521 1.1221 1.1676 1.1959 

6 1.1626 1.1382 1.1086 1.1534 1.1837 

The data in Table 5.1 shows the ratio between the approximated upper limits to 

the spectrum versus the actual largest eigenvalue. The exact eigenvalues are computed 

by the eigs command in MATLAB. Essentially the ratios should be 1 or slightly 

over because an overestimation of the eigenvalues is better than an underestimation 

according to the Chebyshev iterative method theory. 
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Each row represents the different polynomial degrees, N. Each column represents 

the values of the different meshes. Five different meshes were used with 

h = 0.2, 0.12, 0.1, 0.05, 0.025. 

The results use the eigenvalues to this equation: Su = M >..u where M is the mass 

matrix. This work was done in MATLAB with code written by Warburton called 

CurvedPoissoniPDG2D [2]. The meshes were generated from Jeomcad [41]. 

5.3 Approximated lower bound of the spectrum 

This section briefly analyzes the lower bound to the variational problem. Recall the 

Lax-Milgram Theorem [1]: 

Theorem 5.3.1. Lax-Milgram Theorem: Let Vh be a real Hilbert space. Let 

ah : (Vh x Vh) -+ lR be a bilinear form that is 

• continuous: lah(u,v)l:::; CIIIullvcllvllvc 

• coercive: C2llvll~c:::; ah(v, v) 

with positive constants cl and c2. 

Let L : Vh -+ lR be a continuous linear function. Then there exists a unique 

u E Vh satisfying 

Vv E Vh ah(u, v) = L(v) 

~~ · live is defined below). 
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Define the DC - norm as 

Assuming there is a unique solution to our problem, then by Theorem 5.3.1, a lower 

bound, based on the DG-norm, is given by the coercivity property. Riviere and 

Epshteyn [11], Shahbazi [15], and Ainsworth and Rankin [16], provide a result giving 

computable values for the constant c2. 

Also recall the next well-known theorem, [42]: 

Theorem 5.3.2. Lagrange's Theorem: Let V be a finite dimensional vector 

space over N, a normed vector space. Then any two norms on V are equivalent. 

Meaning that for ll·lla, ll·llb two norms in this space, then there exists D*, D* E 

JR+ s. t. 

Applying the coercivity property and the finite dimensional vector space property, 

Theorem 5.3.2 implies that there exist constants, D* and D*, such that 

which also justifies that if the constant, D*, is found, then by Theorem 5.3.1, the 

lower bound for the spectrum becomes 

The task is then to find the constant C2D;. The proof of this bound remains an 

open problem. Analysis of the Poincare-Friedrichs inequality can be found in [9], but 
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the constant not given explicitly. Also, an inverse bound to Theorem 5.2.1 can be 

formulated. The inverse bound for Theorem 5.2.3 has already been developed and 

can be found in [43]. More careful consideration is needed before a result can be 

given. This remains an open problem. 

The next chapter will discuss the method for coding in CUDA. 



35 

Chapter 6 

Method Used to Implement in CUDA 

Now that analysis of the bounds of the DG spectrum applied to the elliptic problem 

are explored, the next task is to continue with the implementation of the linear system 

solvers in CUDA. Once these methods are developed, a previously written DG code 

provided by Riviere [1] and the iterative solvers are combined in order to find which 

method is more efficient when using CUDA. 

6.1 Formatting implementation 

The first step is to create code such that the DG matrix can be transformed in com

pressed sparse row (CSR) format. Riviere's code is written such that when forming 

the DG matrix, the matrix is stored in dense format and the linear system is solved 

using LAPACK routines. The code written for this thesis is converted to CSR format 

and is solved by the CG and Chebyshev iterative methods. This format is a popular, 

general-purpose sparse matrix representation. CSR stores its information in three 

vectors: ptr, indices, and data. For am x n matrix, ptr is of length m + 1 and stores 

the offset into the ith row [32]. The indices vector stores the column number that the 

data is in. The data vector stores the values of the non-zero entries. Both the length 

of the indices vector and the data vector equal the number of nonzero entries in the 

matrix. An example from [32] is given below. 
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1 7 0 0 ptr [ 0 2 4 7 9 ] -

0 2 8 0 

[ 0 3 ] 8= indices - 1 1 2 0 2 3 1 
5 0 3 9 

0 6 0 4 data [ 1 7 2 8 5 3 9 6 4 ] 

Riviere's code is also in double precision. Recall from Chapter 3 that single preci-

sion provides significantly better peak performance than when using double precision. 

Therefore, to expect better performance from the CUDA framework, the data values 

are 'cast' down to single precision. 

6.2 Implementing solvers using CUDA 

Once the DG code has the correct sparse format, the next step is to implement the 

linear solvers using CUDA. This is slightly different than the standard C code, because 

different commands are needed to help communicate with the GPU. 

To inform the GPU to execute commands, there is a function called a kernel. The 

kernel is executed using a large number of parallel threads, where each thread runs the 

same commands simultaneously. The G PU and CPU have separate memory pools, 

i.e., information on the GPU cannot be accessed from the CPU and vice-versa. This 

implies that when using the GPU, space must be allocated before information from 

the CPU can be sent to the G PU; refer to Figure 6.1. Once the data is on the G PU, 

the kernel is called to execute the commands. Finally the GPU sends the information 

back to the CPU. The programmer must make sure to perform few transfers from 

the CPU to the GPU in order to reduce the bottleneck caused by the transfer of the 

information. For the iterative method implementations, CUBLAS commands were 

used. As an example of the protocol, say there exists a vector h_mat, of length nnz 



Path for CUDA Processing 

Send Computed Info 
back to CPU 

Figure 6.1 : Procedure when com1nunicating with the GPU 
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on the host (CPU). To send this vector to the device (GPU), another vector, d_mat, 

must be first be allocated, then information from h_mat can be transferred to d_mat. 

The com1nands to allocate space on the device and send the information from the 

host to the device are seen below [3, 33]. 

cublasAlloc(nnz, sizeof(float), (void**) &d_mat) 

cublasSetVector(nnz, sizeof(float), h_mat, 1, d_mat, 1) 

A kernel is then called to perform the necessary operations on the G PU. To review the 

result found by the G PU, the information is sent back to the CPU with the CUB LAS 

command, 

cublasGetVector(nnz, sizeof(float), d_mat, 1, h_mat, 1). 

Once the CPU has the information, com1nands can continue to be executed on the 

CPU or results can be printed. Next step is understanding how the kernel is executed. 

6.3 Structure of GPU 

Define a thread as being the smallest unit that can execute a command; a a warp is a 

collection of 32 threads. Within this language, these threads can be organized using 

grids of threads. A thread block is defined as a group of threads that share a common 
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pool of shared memory and cooperate together efficiently [44]. Each thread block 

has a maximum of 512 threads. Blocks of the same dimension that execute the same 

kernel commands are grouped together in a grid block. Threads of different blocks 

share a different memory pool. In other words, the threads in each block cannot 

communicate and synchronize with each other. 

All of these threads and blocks have thread identifications. CUDA has built in 

variables that help to describe the identification for each of the threads. For example 

a 1-D block and grid, has identifications like, 

blockDim.x \\the dimension in the grid 

blockldx.x \\the ID of the block within in the grid 

threadldx.x \\the ID of the thread within the block 

To access the complete identification of a particular thread, the command is 

int thread_id = blockDim.x*blockidx.x + threadldx.x; 

These threads can be formulated in 1-D, 2-D, or 3-D structure. For example, to 

inform the kernel to use a 1-D block of size nnz with nnz threads in each block, 

before the kernel is called [3], type the commands, 

dim3 dimThreadBlock(nnz) \\Dimension of the block 

dim3 dimGridBlock(nnz); \\Dimension of the grid 

To call the kernel function, MV _multiply, the dimensions of the blocks and grids 

must be given by using<<<,>>>. 

MV_multiply<<< dimGridBlock, dimThreadBlock >>>(d_ptr, d_indices); 

The remainder of the variables, (d_ptr, d_indices), are input and output arguments 

needed for that kernel. These variables are already allocated on the GPU. 
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The algorithms in Appendix A are used when implementing the kernels for the two 

linear system solvers. In order to perform inner products, the CUBLAS command, 

cublasSdot, is called. Bell and Garland's implementation of CSR matrix vector mul

tiplication is used in both CG and the Chebyshev iterative codes [32]. Kernels needed 

to compute the rest of the calculations are created. The next chapter provides the 

results for when these iterative solvers were applied to Riviere's DG code for solving 

the Laplace problem. 
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Chapter 7 

Numerical Results 

This chapter provides numerical results that incorporate the implementation de

scribed in Chapter 6 and an existing DG code, written in C, provided by Riviere 

[1]. These numerical results determine which iterative solver is best suited when 

using CUDA. 

The code given by Riviere [1] solves the Laplace equation, 

-D.u = f 

with Dirichlet boundary conditions on a square domain [0, 1] x [0, 1]. The Chebyshev 

iterative method and the CG method written in the languages CUDA and C, are 

applied to Riviere's DG code. 

Table 7.1 : Meshes used throughout the numerical testing. 

Meshes Num ofElem h Dof N = 1 Dof N = 2 

mesh1 4 1 12 24 

mesh2 22 0.2500 66 132 

mesh3 110 0.1250 330 660 

mesh4 544 0.0625 1632 3264 

mesh5 1168 0.0450 3504 7008 

mesh6 2190 0.03125 6570 13140 

mesh7 3630 0.0250 10890 21780 

mesh8 5440 0.0200 16320 32640 
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For these simulations, the Tesla C2050 card along with the CPU by AMD Opteron(tm) 

Processor 148 is used. Eight different triangular meshes are generated. These meshes 

are created from an element grid generator called Gmsh [45]. Table 7.1 describes the 

range of h, the number of elements, and the degrees of freedom for each mesh when 

performing the DG method. Images of the meshes used can be found in Figure 7.1. 

Table 7.2 : Eigenvalues used corresponding to different ae, N = 1, and meshes. 

Meshes max eig min eig max eig min eig max eig min eig 

O'e = 10 O'e = 10 O'e = 100 O'e = 100 O'e = 1000 O'e = 1000 

mesh1 20 0.9339 200 0.9949 2000 0.9995 

mesh2 19.41 0.2803 194.68 0.2906 1945.5 0.2918 

mesh3 19.67 0.0636 196.997 0.0639 1970.3 0.0639 

mesh4 19.78 0.0110 198.02 0.0110 1980.4 0.0110 

mesh5 19.89 0.0056 198.98 0.0056 1989.9 0.0056 

mesh6 19.80 0.0029 198.23 0.0029 1982.5 0.0029 

mesh7 19.96 0.0017 199.67 0.0017 1996.8 0.0017 

mesh8 19.95 0.0010 199.54 0.0010 1995.5 0.0010 

Before describing the results, first note that the tolerance was set at 10-4 for both 

methods. When solving the Chebyshev iterative method, the eigenvalues were found 

by MATLAB's eigs command. For the larger problems where MATLAB could not 

load the matrices, approximated values were found using LAPACK'S dgeev command. 

Tables 7.2 and 7.3 present the eigenvalues for this study. 

Additionally, two different parameters were varied, a e and N. Tests were run for 

all eight meshes, ae = 10, 100, 1000, and N = 1, 2. Similar results are found through 

all the runs, therefore, the first six images correspond for when ae = 100 and N = 1. 

Figure 7.2 gives the times it takes for the CG method and the Chebyshev iterative 
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Table 7.3 : Eigenvalues used corresponding to different ae, N = 2, and meshes. 

Meshes max eig min eig max eig min eig max eig min eig 

CTe = 10 CTe = 10 CTe = 100 CTe = 100 CTe = 1000 CTe = 1000 

mesh1 25.91 0.0182 270.95 0.0439 2722.2 0.0475 

mesh2 24.76 0.0126 258.85 0.0169 2600.9 0.0173 

mesh3 25.40 0.0120 263.73 0.0149 2647.6 0.0151 

mesh4 25.57 0.0095 265.45 0.0098 2664.7 0.0098 

mesh5 25.53 0.0053 264.92 0.0054 2660.3 0.0054 

mesh6 25.63 0.0031 267.35 0.0031 2665.3 0.0030 

mesh7 25.66 0.0020 266.59 0.0022 2666.2 0.0022 

mesh8 25.70 0.0012 268.43 0.0011 2668.4 0.0012 

method to solve the DG linear system. All values calculate only the time it takes 

for the linear system to solve. Time was not considered when finding maximum and 

minimum eigenvalues and also when formulating the DG matrix. It can easily be 

seen from Figure 7.2 that the Chebyshev iterative method takes at least two orders 

of magnitude longer to compute compared to the CG method. This implies that the 

CG method outperforms the Chebyshev iterative method. It seems counterintuitive 

that the Chebyshev iterative method takes longer to converge when it does not have 

any inner products. The values below show that time it takes for the CG method and 

the Chebyshev iterative method to complete one iteration. Clearly, because of the 

inner products, the CG method takes longer than the Chebyshev iterative method. 

Notice that this is for a 16,320 x 16,320 matrix, N = 1, and O"e = 100. 

the size of the matrix is 16320 

elapsed time for CG: 0.002110 

elapsed time for the Chebyshev iterative method: 0.000760 
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iteration count = 1 

The next set of values provides a breakup of time between the different kernels for 

the CG method. These values are accumulations for each iteration. Again this is a 

16,320 x 16,320 matrix, and the two inner products take longer to compute than the 

matrix vector multiplication kernel. 

the size of the matrix is 16320 

number of non zeros = 185168 

elapsed time for Matrix Vector Multiply kernel: 0.267620 

elapsed time for cublasSdot kernel: 0.194517 

elapsed time for Update1 kernel: 0.053182 

elapsed time for cublasSdot kernel: 0.192549 

elapsed time for Update2 kernel: 0.050227 

elapsed time for Total time: 1.175548 

iteration count = 689 

gflops = 0.312711 

The reason why the CG method outperforms the Chebyshev iterative method is due 

to the large number of iterations it takes for the Chebyshev iterative method to 

obtain the desired accuracy. Figure 7.3 expresses that the number of iterations for 

the Chebyshev iterative method is drastically higher compared to the CG method. 

For example, for the last mesh, mesh8, with matrix dimension size 16,320, it takes 

about 546, 739 iterations for the Chebyshev iterative method to converge while for the 

CG method, only 689 iterations are needed. This is 3 orders of magnitude difference. 

The next two graphs give more information on the convergence of the two methods 

and the eigenvalue distribution. Figure 7.4 and Figure 7.5 give only information for 
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when Cie = 100, N = 1, and mesh5. Figure 7.4 compares the residuals for each iter

ation. By looking at this graph, the conjugate gradient method is clearly converging 

at a much faster rate every iteration. For the Chebyshev iterative method, there is 

an initial jump down, then there is a slow decrease in the residual deceasing at an av

erage rate a value slightly below 1, i.e. 0.9967. The Chebyshev iterative method took 

100243 iterations to converge versus the conjugate gradient method taking 547 iter

ations. In the figure, only residuals for a thousand iterations were portayed. Figure 

7.5 provides the distribution for the spectrum. In this graph, you can see where the 

clusters of eigenvalues are. The CG method converges faster when there are clusters 

of eigenvalues. This explains the faster convergence rate in Figure 7.4. 

Also, the different hardware is compared in the next two figures. Times for the 

CG implementations in CUDA and C are given in Figure 7.6 for the eight different 

meshes. Notice, for the first three meshes, the C code is faster than the CUDA code. 

This is due to the lag time it takes for information to transfer back and forth between 

the CPU and G PU. For mesh8, there was at least an order of magnitude difference 

in the computed time. This shows that using the GPU for large problems decreases 

the time drastically compared to the conventional CPU. Similar results are found in 

Figure 7. 7 comparing the times for the Chebyshev iterative method to converge for 

the two languages. It was not until the fourth mesh, where the matrix is relatively 

big, when work on the GPU is completed faster than the CPU. 

Figure 7.8 gives a graph conveying the Gflops/sec for each different mesh and each 

solver executed using CUDA. The performance increases linearly as the number of 

elements increase and the degrees of freedom increase. In viewing these numbers, the 

performance is very small. To figure out why the codes doh not seem very efficient, a 

different algorithm is compared. CUSP is a library for sparse linear algebra and graph 
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computations on CUDA and, within this library, the CG algorithm is implemented 

[46]. Figure 7.9 shows the Gfiops/sec comparing the CG method using my algorithm 

and the CUSP algorithm. The values are very similar. I suspect that if using larger 

matrices, 100,000 x 100,000, the performance will be more promising. 

The last two figures compare the penalty parameters for a specific polynomial 

degree and a given mesh. Time values from mesh5 are given in Figure 7.10 and 

7.11. Again, results from the CG method and the Chebyshev iterative method solved 

on the GPU are given. Figure 7.10 shows that as the penalty parameter increases, 

the times it takes for both methods to converge also increases. The same is true 

for changing the polynomial degree, as seen in Figure 7.11. Comparing Figures 7.10 

and 7.11 side by side, notice that as the polynomial degree gets bigger, the time will 

also increase for both methods to converge. Tests for higher degree polynomials are 

currently unavailable until alterations in the DG C code can be made to formulate 

the stiffness matrix into sparse format versus dense. Similar results are given for the 

different meshes; therefore those results are not included. 

Various tests were given in this results section. Comparisons between the Cheby

shev iterative method and the CG method using CUDA are given. Tests also showed 

the difference of the two methods using C and CUDA for both methods. To make 

sure the code was working efficiently, the CG CUDA code is compared to the CUSP 

library, which also solves the CG method in CUDA. Last, two different parameters 

were varied to see how computing the methods were affected. From these results, CG 

is the more effective solver for the GPU compared to the Chebyshev iterative method 

for larger problems. This is because the Chebyshev iterative method uses many more 

iterations compared to the CG method, i.e. enough iterations to increase the time to 

surpass what it takes to complete the inner products needed in the CG method. I 
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also showed, from Figures 7.6 and 7.7 that with large data sets, the GPU speeds up 

computational time. Ideally, these tests were to be conducted with approximations to 

the maximum and minimum eigenvalues applied to the Chebyshev iterative method. 

However, after running numerical simulations with exact eigenvalues, there is no need 

to continue the study. The next chapter will provide some concluding remarks. 
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Figure 7.3 : Iteration count comparing the 
CG vs. the Chebyshev iterative method 
using CUDA where (J"e = 100 and N = 1 
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Figure 7.7 : Times in CUDA and C for 
Chebyshev iterative method to converge 
where O'e = 100 and N = 1 

Compares Gflopsjsec between CUDA and CUSP for CG 
0.7 r;::::::====:::r---,----r----.-----.---,-~ 

0 .5 

u 
Q) 

~ 0.4 
0. 
0 

C3 0.3 , , 
0.2 

, 

0.1 

0 
3 4 5 6 7 8 
Different meshes 

Figure 7. 9 : The G flops/ sec calculated for 
CG executed using CUDA and CUSP with 
parameters were set to 0' e = 100 and N = 1 



1 
~jme of CG and Chebyshev for mesh5 varying u and N = 1 

-+ - CUDA CG 
-&- CUDA Chebyshev 

. -+···· -- .... 
+------

10-1 '-------~-----~-------'-----' 
10 100 

Penalty, u 
1000 

Figure 7.10 : Comparing time for both 
methods while varying CYe when N = 1 us
ing CUDA 

50 

Tim~ for CG and Chebyshev for mesh5 varying u and N = 2 
10 

-+· CUDACG 
-&- CUDA Chebyshev 

....... .. .. ... --.,.,.. 
...... .... + .... 

10-1 '-------~-----'----------'--------' 
10 100 

Penalty, CJ 

1000 

Figure 7.11 : Comparing time for both 
methods while varying CYe when N = 2 us
ing CUDA 



51 

Chapter 8 

Conclusions 

This work integrates the use of supercomputers, the DG method, and an eigenvalue 

problem. There are two main ideas presented in this research. The first was to ana

lyze approximations for the maximum and minimum eigenvalues of the DG operator 

applied to the elliptic equation. A constant-free bound for the maximum eigenvalue 

is developed. The minimum eigenvalue bound remains an open problem. 

The second goal was to implement the Chebyshev iterative method and the CG 

method using C and CUDA, a software library that communicates with the GPU. 

A comparison was made between the two methods combined with the DG method 

when applied to the elliptic problem in order to determine which proved to be the 

most effiecint method using the GPU framework. The CG method, a linear system 

solver with two inner products per iteration, is more effective for larger problems 

versus the Chebyshev iterative method, an algorithm with no inner products. This 

is due to the fact that the Chebyshev iterative method takes many more iterations 

to converge, which increased the time needed to compute so much that the time it 

takes to complete the inner products of the CG method was shorter. 

There are two directions to proceed with this work. First, complete the analysis 

for the lower eigenvalue of the variational problem. Another direction for this work is 

to test two other methods similar to both the CG method and the Chebyshev iterative 

method. The first method is to use these Chebyshev polynomials up to degree r, then 

perform the CG method until the residual converges to a given tolerance. The reason 
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for performing this pre-conditioned method is because in parallel computing, the 

Chebyshev iterative method can perform for a preset number of times, without any 

use of an inner product, then use the CG method to converge to the solution in fewer 

iterations, implying fewer inner products. The other method is to first estimate the 

eigenvalues using the Lanczos/CG method for the first k iterations. Starting with the 

k+ 1 iteration, the Chebyshev iterative method is used to converge to the solution. By 

using the CG method first, initializing the eigenvalues is not necessary. Therefore this 

method avoids having over/under estimates for the eigenvalues which may or may not 

allow the Chebyshev iterative method to converge. Also, this algorithm reduces the 

times the CG method is performed compared to the standard CG method; therefore 

the number of inner products are again reduced. 

One area of study, which is of particular interest, that can benefit from this thesis 

is the area of heat transfer, solving the steady state conduction equation. With this 

work, engineers with heat transfer specialties can be more efficient in solving for 

temperature profiles through a heat sink when a heat flux is applied. This is only one 

of many applications in which this work will contribute. 

This thesis is one of the few works that combine the ideas of the DG method 

and CUDA. It provides mathematicians and engineers knowledge of which numerical 

linear system solver is more effective between the two tested when applying DG to 

the elliptic problem. It also provides the proof for a constant free upper bound of the 

DG spectrum as it is applied to the elliptic problem. 
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Appendix A 

A.l Algorithms 

In this Appendix the codes for the two numerical solvers are provided: CG and the 

Chebyshev iterative method. 

A.l.l Code for the CG method: 

More information about this method can be found from Saad [47]. 

1 % This method computes Ax = b using the conjugate gradient method 

2% input A a MxM symmetric Positive Definite 

3% 

4% 

5% 

6% 

7% 

8% 

9 r 

10 p 

Output 

r. 
' 

b 

X 

tol 

X 

r 

i 

a Mxl vector 

a Mxl vector, 

the stopping 

the solution 

the residual 

the number of 

llrold=r'*r; 

12 for i = 1:size(A,1) 

13 Ap = A*p; 

14 alpha r o l d / ( p ' * Ap ) ; 

15 X X+ alpha*P; 

16 r r alpha*Ap; 

17 rnew = r '* r; 

initial guess 

critiera 

iterations performed 

Matrix 
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18 if(norm(r))< tol 

19 break; 

20 end 

21 p = r + (rnewfrold)*P; 

22 rold = rnew; 

23 end 

A.1.2 Code for the Chebyshev iterative method 

This method can be found in many locations. I referenced Saad [36] and Golub [37]. 

1 function [x, r, i]= cheby_iter(A,x,b,L_max,L_min,maxit,tol) 

2 % this function solves Ax = b for x in R'n 

3% it is an iterative method that does not use an inner product 

4 % but needs the L_max and L_min 

5 

6% input 

7% 

8% 

9% 

10 % 

11 % 

12 % 

13 % 

14 % 

15 % output 

16 % 

17 % 

18 r b - A*x; 

A A is an nxn matrix 

x x is the initial guess 

b right hand side nxl 

M preconditioner matrix nxn 

L_max 

Lmin 

maxit 

tol 

X 

r 

i 

do not have this in because just identity for now 

max eigenvalue of inv (M)*A 

min eigenvalue of inv (M)*A 

max number of iterations 

tolerance for convergence 

final solution 

residual 

number of iterations used 

19 d (Lmax + L_min) /2; 

20 c (Lmax- L_min)/2; 
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21 for 1: maxit 

22 z r. 
' 

23 if i = 1 

24 p = z· 
' 

25 alpha 2/d; 

26 else 

27 beta = alpha*alpha*C*C/4; 

28 alpha 1/(d-beta); 

29 p = z + beta*p; 

30 end %end if statement 

31 X x + alpha*p; %perform linesearch 

32 r b- A*X; %r = r- alpha*A*P; 

33 if norm( r) < tal 

34 break 

35 end %end of if 

36 end %end of for 
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Appendix B 

B.l Supplementary proofs 

In this Appendix proofs for some parameters which are useful in helping to prove the 

maximum bound to the variational problem are given. These values are dependent 

of the mesh used. These supplementary proofs were referenced in Chapter 5. 

B 2 P f £ IBEI d lei . roo or constants lET an jEj 

Observe the picture of a triangular element. This image will be useful in proving the 

values. 

~·. h 1 : 
E • 

• 

Figure B.l : An arbitrary triangle element, E, in the mesh 

B.2.1 Value for 
1
1;

1 

Let e be the edge corresponding to the ith side in element; E. Also observe that 

lEI = ~eihk, refer to Figure B.l. Then 

lei 
lEI 



B.2.2 Bound for IBEI 
lEI 

Based on Figure B.1, the perimeter, !BE!, and area, lEI, of the element can be 

defined as 

!BEl -

lEI 

respectively. This implies 

!BEl 
lEI 

e1 + e2 + e3, 

1 1 1 2 1 3 
2,e1hE = 2,e2hE = 2e3hE, 
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