
RICE UNIVERSITY

Accelerated Discontinuous Galerkin Solvers with
the Chebyshev Iterative Method on the Graphics

Processing Unit

by

Toni Kathleen Thllius

A THESIS 8 UBMITTED

IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE

Master of Arts

APPROVED, THESIS COMMITTEE:

Beatrice Riviere, Chair
Associate Professor of Computational and
Applied Mathematics

~---
Tim"'<Varburton, Co-Chair
Associate Professor of Computational and
Applied Mathematics

Mark Embree
Professor of Computational and Applied
Mathematics

Houston, Texas

April, 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Rice University

https://core.ac.uk/display/10180328?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ABSTRACT

Accelerated Discontinuous Galerkin Solvers with the Chebyshev Iterative Method

on the Graphics Processing Unit

by

Toni Kathleen Tullius

This work demonstrates implementations of the discontinuous Galerkin (DG)

method on graphics processing units (GPU), which deliver improved computational

time compared to the conventional central processing unit (CPU). The linear system

developed when applying the DG method to an elliptic problem is solved using the

GPU. The conjugate gradient (CG) method and the Chebyshev iterative method are

the linear system solvers that are compared, to see which is more efficient when com

puting with the CPU's parallel architecture. When applying both methods, com

putational times decreased for large problems executed on the GPU compared to

CPU; however, CG is the more efficient method compared to the Chebyshev iterative

method. In addition, a constant-free upper bound for the DG spectrum applied to the

elliptic problem is developed. Few previous works combine the DG method and the

GPU. This thesis will provide useful guidelines for the numerical solution of elliptic

problems using DG on the GPU.

Acknowledgements

Foremost, I would like to express my sincere gratitude to my committee advisors

Dr. Tim Warburton, Dr. Beatrice Riviere, and Dr. Mark Embree for their guidance

and support throughout my work.

A special thanks to Dr. Richard Tapia, Alliances for Graduate Education and

the Professoriate (AGEP), my CAAM peers, and NSF* for their continuous support

throughout my graduate school career.

Also, thank you Theresa Chatman, AGEP coordinator, mentor, and friend; with

out you my experiences at Rice would not be the same and the AG EP program would

not be as successful.

I want to thank my family for their unending encouragement and love, especially

my mother, brother, and sister. I could not have done this work without any of you.

I dedicate this thesis to my angels: father, grandfather, grandmotherdear, and

cousin, whose memories are constantly making me strive for my best.

*This work was supported by NSF Cooperative Agreement Number HRD-0450363.

Abstract

Acknowledgements

List of Illustrations

List of Tables

Nomenclature

1 Introduction

Contents

2 Discontinuous Galerkin Method

2.1 DG method versus other numerical solvers

2.2 Pivotal results referenced in thesis .

3 Graphics Processing Unit

3.1 History of GPUs

3.2 Compute unified device architecture .

3.3 Characteristics of the GPU

4 Iterative Methods

4.1 The CG method . . .

4.2 The Chebyshev iterative method

5 Finding Bounds on the DG Spectrum
5.1 Model problem using DG method

11

iii

vii

ix

ix

1

4

5

6

8

8

9

11

13

13

15

17
18

5.1.1 Setup

5.1.2 Jumps and averages

5.1.3 Model problem ...

v

18

19

20

5.2 Approximated upper bound of the spectrum 21

5.2.1 Upper bound for the first term 21

5.2.2 Upper bound for third term . . 23

5.2.3 Upper bound for the fourth term 28

5.2.4 Combining bounds 30

5.2.5 Testing the bound 30

5.3 Approximated lower bound of the spectrum 32

6 Method Used to Implement in CUDA 35

6.1 Formatting implementation 35

6.2 Implementing solvers using CUDA 36

6.3 Structure of GPU 37

7 Numerical Results 40

8 Conclusions 51

Bibliography 53

A 59

A.1 Algorithms 59

A.1.1 Code for the CG method: 59

A.l.2 Code for the Chebyshev iterative method . 60

B 62

B.1 Supplementary proofs . 62

B.2 Proof for constants 18EI and M lEI lEI

B.2.1 Value for flh . .
B.2.2 Bound for 1f_:f1

vi

62

62

63

Illustrations

2.1 DG can manage non-conforming meshes with hanging nodes (circled). 5

5.1 Example of two adjacent triangular elements contained in a mesh . . 19

6.1 Procedure when communicating with the GPU 37

7.1 Meshes created by Gmsh used in the experiment . 47

7.2 Time comparing the CG vs. the Chebyshev iterative method using

CUDA where O"e = 100 and N = 1 . .. 48

7.3 Iteration count comparing the CG vs. the Chebyshev iterative

method using CUDA where ae = 100 and N = 1 . .. 48

7.4 Residuals for CG and the Chebyshev Iterative method at every

iteration for O"e = 100, N = 1, and mesh5 . .. 48

7.5 Distribution of the eigenvalues for O"e = 100, N = 1, and mesh5 . 48

7.6 Times in CUDA and C for CG method to converge where O"e = 100

and N = 1. 49

7.7 Times in CUDA and C for Chebyshev iterative method to converge

where O"e = 100 and N = 1 . 49

7.8 The Gfiopsfsec calculated for both CG and the Chebyshev iterative

method executed using CUDA with parameters were set to O"e = 100

and N = 1 . 49

viii

7.9 The Gflopsfsec calculated for CG executed using CUDA and CUSP

with parameters were set to ae = 100 and N = 1 49

7.10 Comparing time for both methods while varying O'e when N = 1

using CUDA . 50

7.11 Comparing time for both methods while varying O'e when N = 2

using CUDA . 50

B.l An arbitrary triangle element, E, in the mesh 62

Tables

5.1 Results for finding approximations to the maximum eigenvalue 31

7.1 Meshes used throughout the numerical testing. 40

7.2 Eigenvalues used corresponding to different ae, N = 1, and meshes. 41

7.3 Eigenvalues used corresponding to different ae, N = 2, and meshes. 42

BLAS

Nomenclature

Basic Linear Algebra Subprograms, a linear algebra

library

CG Conjugate gradient method

CPU Central processing unit

CSR Compressed sparse row format

CUBLAS CUDA's version of BLAS

CUDA Compute unified device architecture, a parallel

computing language

CUSP

DG

FEM

FVM

GPU

LAPACK

NVIDIA

Sparse linear algebra and graph computations on CUDA

Discontinuous Galerkin

Finite element method

Finite volume method

Graphics processing unit

Linear Algebra PACKage, a linear algebra library

Corporation which specializes in the development

of GPUs

PDE Partial differential equations

A Eigenvalue: A E IR such that Ax = AX

spectrum Space that contains all the eigenvalues

H 8 (0) Sobolev space

H 8 (0) = { v E L2 (0) : VO ::; Ia: I ::; s, DavE L2 (0)}

vTu Inner product: vTu = v1u1 + v2u2 + · · · + VnUn

llvll£2(n) Inner product space: llvll£2(n) = (Jn v2) 112

n Polyhedral domain

an Boundary of polyhedral domain

r h Set containing all interior and boundary edges of each

element in Th

Th Space that partitions the domain n into triangle

elements

Vh Discontinuous finite element space,

d

N

JP>N

E

8E
I8EI
lEI

e

h

M

K

[v]

{v}

Dimension d = 2

Degree of the polynomial

Space of polynomials of degree at most N

Element in mesh

Boundary of element

Perimeter of an element

Area of an element

Two adjacent elements

Edge to an element

Length of an edge

Diameter of each element

h = maxEETh hE

hE _"' 1
sum - L.Jee8E h'E

Size of matrix

Symmetric matrix bounded for each element

Penalty parameter over each edge, e

Stability parameter, for SIPG E = -1

Jump: [v] =viEr- viE~

Average: {v} =~(viEr +viE~)

xi

xii

C2 Coercivity constant

D* Constant such that llvl]vc :S D*llvl]£2(e)

Dt Constant given by trace inequalities, Dt = J (N+l)iN+2)

1

Chapter 1

Introduction

Supercomputers are popular because of their ability to allow data-intensive compu

tations to perform in parallel, and therefore the computational time is drastically

decreased. The discontinuous Galerkin (DG) method, a partial differential equation

(PDE) solver, is becoming a preferred method because of its ability to allow the use

of complex geometries. This work capitalizes on both features of DG and supercom

puting by implementing a component of the DG method using a parallel computer.

In addition to this implementation, computable bounds on the maximum and mini

mum eigenvalues associated with the DG scheme applied to the elliptic problem are

analyzed, and a constant-free upper bound is developed. The lower bound remains

an open problem.

When solving a PDE, there are many different approaches to choose from, ranging

from the finite element method (FEM) to the finite volume method (FVM). Unlike

the traditional FEM, the DG method allows piecewise discontinuous polynomials

to represent the information of each element. Because of this, DG is useful when

using unstructured meshes. Non-conforming meshes provide researchers with more

flexibility when creating the discretized meshes and allow for better accuracy for their

model.

The DG method was first proposed in the 1970s. Since then, mathematicians

gradually found the benefits of the method, and more theory of the solver is known

today. DG is already implemented using the languages C and MATLAB [1, 2]. Re-

2

search groups are now working on implementing DG using the graphics processing

unit (GPU). The GPU is a parallel, multi-thread, many core processor that acts as

a co-processor to the main central processing unit (CPU) [3). Recently GPUs have

attracted the community because of their 'peak compute capability and high memory

bandwidth, in comparison to conventional CPUs' [4).

To take advantage of the potential of this new technology, this research imple

ments a component of the DG method on the GPU, expecting to speed up compu

tational time. This thesis solves the linear system, developed by DG, on the GPU.

Because the GPU uses a parallel structure to execute commands, the use of inner

products does not provide optimal performance. Therefore, the conjugate gradient

(CG) method, a linear system solver with two inner products per iteration, may not

be the most efficient solver. Another solver without inner products, the Chebyshev

iterative method, will be tested and compared to CG. In order to use the Cheby

shev iterative method, a quasi-tight approximation to the maximum and minimum

eigenvalues of the discretized matrix is needed. A section of this research investigates

bounds to the spectrum of the DG operator. This work establishes that the CG

method, even with three inner products, is the optimal linear system solver when

using the GPU architecture. This is because the CG method is guaranteed to con

verge with at most M iterations, where M is the size of the matrix. The Chebyshev

iterative method can perform thousands of iterations before it converges.

A variety of applications ranging from flow and transport problems through a

porous media to electromagnetics and wave propagation can be solved using the

DG method. Mathematicians are currently working alongside engineers in the oil

industry to show the many benefits that this method has. The work in this thesis

applies the DG method to the elliptic problem. The Poisson equation has been seen

3

as one of the most prominent second order elliptic PDEs [5). Fast Poisson solvers are

needed to solve many practical equations for engineers, such as the heat conduction

equation, the electrical field computation, and pressure correction in computational

fluid dynamics [5). With the completion of my research, the use of the DG method

can become more appealing to engineers who specialize in any of the areas above, as

my work focuses on reaping faster computational times.

The remainder of the thesis is as follows. Chapter 2 and Chapter 3 give more

background on the DG method and G PU, respectively. Chapter 4 provides a brief

overview of the iterative solvers used within this research. The DG model problem

and analytical work for studying the bounds to the DG spectrum are presented in

Chapter 5. Chapter 6 describes the method used to implement the iterative methods

on the GPU. The numerical comparisons are presented in Chapter 7. Last, Chapter

8 gives concluding remarks about the research.

4

Chapter 2

Discontinuous Galerkin Method

The DG method is a numerical solver for finding a solution to a PDE. This method

is said to be a combination of the FEM and FVM. More theory about the FEM and

FVM solvers can be found in [6, 7]. Solving PDEs over an infinite domain can be

difficult in obtaining an exact solution. Therefore, the domain is discretized to create

a mesh of elements. Numerical PDE solvers approximate the solution of the PDE by

creating polynomials representing information within each element. For most PDE

solvers, like FEM, continuity of these polynomials between each element is required.

However, for the DG method, no continuity restrictions across element boundaries

are required, allowing for more complicated geometries and better accuracy. This

research concentrates on two aspects associated with DG. First, this work implements

a component of the DG method applied to the elliptic problem onto a supercomputer,

causing a decrease in the computational time. Second, this thesis explores upper and

lower bounds on the spectrum that is developed when applying the DG method.

The DG method was first developed in 1973 by Reed and Hill, in the framework

of a neutron transport problem (determining the probability of a neutron-nuclear re

action occurrence) [8]. This scheme was designed mainly for hyperbolic equations.

Around a similar time frame, discovered independently of Reed and Hill, discontin

uous finite element methods were proposed for elliptic and parabolic equations [9].

Since then analysis for elliptic, parabolic, and hyperbolic equations has been exten

sively researched [10].

5

2.1 DG method versus other numerical solvers

Like the FEM and FVM, DG relies on creating a weak formulation of the equation,

resulting in a simplified problem to solve and an approximation to closely match exact

solution. For the DG method, there are few modifications compared to FEM's bilinear

and linear forms of the variational problem to accommodate the discontinuities at the

boundaries of the elements.

Two stabilizing terms are added to the bilinear form, a term corresponding to

the fluxes and a penalty term [11]. There are different formulations of the numerical

fluxes that have been developed over the years. Arnold, et al., conducted two studies

that analyze the different numerical fluxes that have been introduced over the years

[10, 12]. The choice of numerical fluxes will influence accuracy and stability of the

method as well as properties of the stiffness matrix concerning sparsity and symmetry

[10].

Figure 2.1 : DG can manage non-conforming meshes with hanging nodes (circled).

DG has several advantages compared to FEM and FVM. For one, because there

are no continuity constraints between elements, DG methods are well suited to handle

complicated geometries, i.e. non-conforming meshes with hanging nodes; see Figure

2.1. Also, DG can easily handle adaptivity strategies because refinement or unre

finement of the grid can be achieved without considering the continuity restrictions

6

typical for conforming in FEM [13]. DG methods are highly parallelizable [13]. Be

cause of discontinuities of the elements, the mass matrix is block diagonal, easily

invertible and simple to handle in parallel. The DG method also allows easy hp

analysis. In other words, within the DG scheme, one can have different polynomial

degrees and different sizes for each element [1]. The concept of hp-analysis is easier

to implement for DG versus FEM and FVM. Last, this method satisfies the local

mass conservation, whereas FEM satisfies global mass balance over the whole domain

[1]. All of these qualities are reasons why scientists are gaining interest in the DG

method.

2.2 Pivotal results referenced in thesis

Recall that one aspect of this research is studying analysis for bounds on the eigenval

ues associated with the DG scheme applied to the elliptic problem; refer to Chapter

5 for more details. Various works have been key to investigating approximations to

the spectrum of the DG operator.

Antonietti proves the completeness and nonpollution of the spectrum [14], mean

ing that approximated maximum and minimum eigenvalues do exist. Another useful

well known result is the Lax-Milgram theorem, which shows the existence and unique

ness of the DG variational problem as long as the bilinear form is continuous and

coercive. The coercivity property explains that the bilinear form is bounded below

by the DG-norm multiplied by a constant, C2 •

Epshteyn and Riviere [11], Shahbazi [15], independently, derive the coercivity

constant, C2 , which is dependent on the polynomial degree and the angles of the

mesh elements. More recently, Ainsworth and Rankin extended Shahbazi's penatly

parameter by allowing complicated geometries for the mesh [16]. Within this paper, a

7

brief analysis for the lower bound estimate is given for the symmetric interior penalty

Galerkin method. This thesis concentrates on trying to extend the bound created

by the coercivity property, desiring a bound associated with the L2-norm versus the

DG-norm in order to find the approximation to the minimum eigenvalue. This bound

still remains an open problem.

When exploring an upper bound approximation for the spectrum of the DG ma

trix, trace inequalities have proven essential. Traces describe information about the

discontinuities at the boundary of each element in the mesh. Warburton and Hes

thaven provide detailed analysis for deriving inverse trace inequalities for hp-finite

elements (17]. In addition to those results, Ozisik, et al., present a tighter numerical

bound to the Markov inequality (18]. All of these results were used in this research

to find the approximation to the maximum eigenvalue to the DG operator.

The DG scheme applied to the elliptic problem has been implemented in both

MATLAB and C (1, 2]. Full versions and details of the MATLAB code can be found

online, developed by Warburton and Hesthaven (2]. This research will extend the

implementation by using an interface called Compute Unified Device Architecture

(CUDA), a parallel architecture that executes on the G PU. More information on

CUDA and the GPU will be given in the next chapter.

8

Chapter 3

Graphics Processing Unit

The GPU is a 'highly parallel, multithread, manycore processor with tremendous

computational horsepower and very high memory bandwidth' [3]. The evolution of

the GPU was caused by the demand for real-time, high-definition 3D graphics. The

GPU is appropriate when computations can be conducted in data-parallel processing,

i.e. a function executes many commands simultaneously in parallel structure. Many

programmers who deal with large data sets can use parallel computing in order to

decrease computational time. One aspect to this research is to execute a component

of the DG method applied to the elliptic equation on the GPU.

3.1 History of GPUs

Integrated circuits, graphics processing units, personal-computer motherboards, and

video game consoles are all major products manufactured by NVIDIA, a multinational

corporation from Santa Clara, California [19]. In the mid 1990s, there was an increase

in public demand for hardware-accelerated 3D graphics, especially in the gaming

industry [20]. Microsoft and Sony demand this new hardware for some of their video

game consoles, including Xbox and Playstation 3. Initially, operating the hardware

for the 3D graphics was not straightforward and only limited operations could be

performed [20]. However, as technology progressed, more advances arrived. NVIDIA's

GeForce256, originally released in 1999, is a graphics controller chip that has a GPU

9

[21]. The GeForce256's GPU can execute billions of calculations per second. This

was a major advancement because developers had the chance to apply additional

enhancements to features like character animation (physics) and advanced artificial

intelligence (logic) [21]. This architecture was used until about 2006. The newest

generation card is NVIDIA's Tesla C2050 [22]. This card is said to 'redefine high

performance computing and make supercomputing available to everyone' [22].

In 2007, NVIDIA created software that allows users to operate the GPU as a

co-processor to the CPU, where data-intensive, parallel tasks are executed simultane

ously [23]. NVIDIA introduced a programming model called CUDA. This language

allows communication between the CPU and the G PU.

3.2 Compute unified device architecture

The use of a G PU to perform general purpose engineering computations can be re

ferred to as General Purpose GPU (GPGPU) [24]. NVIDIA revolutionized GPGPUs

in 2006-2007 by introducing a new parallel language, CUDA. The concept of GPG

PUs is to use the GPU in conjunction with the CPU to dramatically increase the

performance compared to the conventional CPU, i.e the sequential part of the code

runs on the CPU while the data-intensive part is executed in parallel by the GPU

[24]. This architecture is a minimal extension of C and C++. The CUDA language

is implemented in thousands of applications and published in research papers, includ

ing image and video processing, fluid dynamics simulations, CT image reconstruction,

etc. [3].

Various PDE solvers are already executed using CUDA. In 2008, Zhao developed a

lattice Boltzmann based algorithm that can be modified to solve elliptic Laplace and

Poisson equations [25]. In 2010, Egloff explained how to implement finite difference

10

schemes for 1-D PDEs on the GPU [26]. There is also a team who is working on a

software package, called FEAST [27]. This software is designed to solve PDEs using

the FEM exploiting the floating point performance and memory bandwidth of the

GPU. Few works have discussed linking DG to CUDA; therefore, this thesis helps

provide useful guidelines. Klockner, et al., are currently working on applying the

CUDA architecture to solve Maxwell's equations on a general 3D unstructured grid

using the DG method [28]. All works provide evidence that their implementations

increase peak performance and decrease computation times. This thesis concentrates

on working with the DG PDE solver associated with the elliptic problem.

Other useful papers that have guided this work are [4, 23, 29, 30], which describe

optimal implementations for conjugate gradient. These papers also discuss using the

Chebyshev iterative method as a pre-conditioner to the CG method [29, 30]. Li and

Saad tested a sparse matrix-vector product kernel applied to pre-conditioned CG

and GMRES methods [31]. Li and Saad's paper did not apply those linear solvers

to DG. Also, Bell and Garland provide excerpts of code describing a sparse matrix

vector multiplication and provide ideas that are useful in implementing code for this

research [32].

high performance sparse matrix-vector product (SpMV) kernels in different for

mats on current many-core platforms and used them to construct effective iterative

linear solvers with several preconditioner options. Since the performance of triangu

lar solve is low on GPUs, this computation can be accomplished by CPUs. By this

hybrid CPU /GPU computations, IC preconditioned CG method and ILU precondi

tioned GMRES method are adapted to a GPU environment and achieve performance

gains compared to its CPU counterpart

11

3.3 Characteristics of the GPU

One of the main reasons researchers want to code using CUDA is because of its

advertisement in high peak performance; however, peak performance is not easily

achieved. With this language, the programmer can control how the code is exe

cuted. To achieve high performance, careful consideration regarding the thread level

parallelism and memory access methods while executing commands is necessary (4].

Another characteristic is that the peak performance associated with double precision

is significantly less than that of single precision. For instance, the G PU card used

within this research is NVIDIA's new Tesla C2050. The peak performance for sin

gle precision floating point operations is 1.03 T flops, while double precision floating

point performance is 515 Gflops (22].

Another feature of the GPU is that CUDA has scientific libraries such as CUBLAS,

which contains an implementation of BLAS (Basic Linear Algebra Subprograms) on

top of the NVIDIA CUDA driver (33]. This package is very user friendly and is used

to perform many commands in this research.

The next trait of the G PU is a key element that is driving the research in this

thesis. Recall that the GPU is used for running algorithms in parallel. However, the

inner product is not optimal to solve in parallel. For example, the 2-norm of the

vector, u, is calculated by:

Each thread will compute the multiplication of each element but, when summing these

values, the threads all have to communicate with each other in order to perform the

12

command. This forces the threads to synchronize, or to become serial in order to

complete the inner product. Because of this trait, performing code with many inner

products is not efficient.

When applying the DG method to the elliptic problem, a linear system needs

to be solved. Solving the linear system is the most data-intensive part to the DG

scheme, and this thesis concentrates on executing the linear system on the GPU.

A comparison between two linear system solvers is provided, determining whether

the use of an optimal solver with many inner products like the CG method is more

efficient, or if using a different solver that optimizes the hardware and contains no

inner products will be more favorable, i.e. the Chebyshev iterative method. The next

chapter will give more details on these two iterative methods.

13

Chapter 4

Iterative Methods

When the DG scheme is applied to the elliptic problem, the linear system Sx = b

needs to be solved. One important task of this research is to implement the process

of solving the linear system on the GPU, while decreasing the computational time

when compared to solving on the CPU alone. Two different linear system solvers

are tested: the CG method and the Chebyshev iterative method, i.e. a method with

inner products versus a method without inner products.

4.1 The CG method

The CG method is a Krylov subspace method based on Lanczos algorithm. Consider

the linear system, Sx = b. When S is a symmetric positive definite M x M ma

trix, the CG method can be applied. According to O'Leary, 'the conjugate gradient

method is now the standard iterative method for solving linear systems involving

sparse symmetric positive definite matrices' [34].

Before a definition of the CG method can be given, first define the standard form

of the m-dimensional Krylov subspace where m ::::; M as

Km(S, ro) = span{ro, Sro, ... , sm-1r 0 },

where r0 = b- Sx0 is the residual for the initial guess, x0 . A Krylov subspace method

computes iterates, Xk, of the form

14

where qk_ 1 is a polynomial of degree k- 1.

The CG method can be described as a recurrence formula that generates unique it-

erates Xk E Kk(S, r0) and converges to x* = s-1b. At each step k, iiekiis is minimized,

where [35, 36]

Define {p0 ,p1, ... ,Pk-l} as an S-conjugate basis, meaning pfSpi = 0 '\/j =f i. Then

[35]

Km(S, ro) - span{r0 , Sr0 , ... , sm-1r 0 }

- span{ro, r1, ... , rk-1}·

where Xk = Xk-1 + ak-1Pk-1 and ak-1 is some constant dependent on rk_1, S, and

Pk-1. More detailed information about the Krylov subspace and the CG method can

be found in [35, 36, 37, 38].

There are many reasons for using CG. This method implicitly computes the best

polynomial with respect to the eigenvalues of S [39]. Also, the CG method is guaran-

teed to converge with a maximum of M iterations. The rate of convergence of the CG

method depends on the distribution of the eigenvalues of matrix, S. For polynomial

degree k, the rate of convergence is approximately [36, 40]

2(~-1)k
~+1

where r;, = ~.
"mtn

15

However, the algorithm for this method involves the computation of two inner

products and one matrix-vector product for every iteration (see Appendix A for the

algorithm). As discussed above, implementing inner products in parallel requires the

use of global communication, i.e thread synchronization; therefore, computing inner

products with the CUDA language is not advised [29]. A discussion of the Chebyshev

iterative method, a solver without inner products, is given in the next section.

4.2 The Chebyshev iterative method

The Chebyshev iterative method is used to solve the linear system Sx = b. This

method, is a Krylov subspace method, creates a sequence of polynomials, Qk(z), such

that lqk([a, t'])l ::; 1 and Qk(O) = 1 where a, t3 E IR represents the minimum/maximum

eigenvalue approximations to the matrix, S respectively. The polynomials used are

the shifted and scaled Chebyshev polynomials. Recall the Chebyshev polynomials

[35, 36, 37] is a three term recurrence relation where:

T0 (z) - 1

T1(z) - z

Tk(z) 2zTk-1(z)- Tk-2(z) k = 2, 3, ... ,

where ITk(z)i ::; 1 for z E [-1, 1]. These polynomials oscillate in value between [-1, 1].

Using the Chebyshev polynomials on the interval [a, t)], s-1 is written as:

k=oo

s-1 = ~ + 2:: ckTk(z),
k=1

where Z = - 2-[S- /Ha I] ck = -1-(-q~)k and q~ = 1-.;c;IP.
13 -Q 2 ' ../(i/J ' 1 + .;c;JP

To find the solution to the linear system, this algorithm does not need knowl-

edge about the initial guess used or the right hand side of the equation; however,

16

this method requires some knowledge about the spectrum. To use this algorithm,

approximations to the maximum and minimum eigenvalues must be provided. If the

approximation to maximum eigenvalue is an under-estimation, it is possible that the

method may never converge. If the maximum eigenvalue approximation is an over-

estimate, the method might take too long to converge. Tight approximations to the

spectrum are necessary. The Chebyshev iterative method only works well for a well

conditioned matrix, S. No spectrum that contains the origin can be used. The rate

of convergence is determined by

h o A 1-yla/i
w ere agam q = l::"'i7.i.

l+y a/{3

2f'/
1 + q2k

Unlike the CG method, the Chebyshev iterative method avoids the use of inner

products (refer to the algorithm in Appendix A). Because of this, when implemented

on the GPU, the Chebyshev iterative method appears to be more efficient when

parallelizing the code due to not having to calculate the inner products. However,

this method may take more iterations to converge versus the CG method, which

converges with a maximum of M iterations. This work determines whether using the

Chebyshev iterative method is preferred compared to the CG method for the G PU.

The next chapter defines the model problem for the DG scheme when applied to

the elliptic problem and investigates bounds for the maximum/minimum eigenvalues

necessary for the Chebyshev iterative method.

17

Chapter 5

Finding Bounds on the DG Spectrum

The goal to this research is to compare two iterative linear system solvers, the con

jugate gradient method and the Chebyshev iterative method, using the GPU, then

combine these codes with a DG code that solves the elliptic problem. In order to

perform the Chebyshev iterative method, approximations of the maximum/mini

mum eigenvalues of the DG operator are needed. The eigenvalue problem is to find

(0 =I= u, A) E vh X c such that

ah(u, v) = .X(u, v) 'Vv E Vh

(Vh is defined in the next section). The idea is to bound the spectrum and knowledge

of the bounds exists due to of the result given by Antonietti, et al., [14] and the Lax

Milgram Theorem. Antonietti proves that the DG method is "spectrally correct" for

a DG operator:

• non-pollution of the spectrum

• completeness of the spectrum

• non-pollution and completeness of the eigenspaces.

In other words, the paper [14] proves the properties above and in turn states that

our spectrum is bounded. The bounds need to be precise in order to guarantee that

the Chebyshev iterative method will converge with the optimal number of iterations.

This chapter first defines the DG model problem for the general elliptic equation,

18

then analyzes the maximum/minimum bounds to the DG spectrum. The upper

bound approximation to the spectrum is developed and the lower bound remains an

open problem.

5.1 Model problem using DG method

5.1.1 Setup

Let 0 E JR2 be the polyhedral domain, 80 be the boundary of the domain. Denote

£ 2 (0) as the Hilbert space with respect to the inner product and H 8 (0) as the Sobolev

space of order s 2:: 0. The equations for all the definitions are below respectively,

[1, 2, 14].

- (z v2) 1/2 llvii£2Cn) lr,
H 8 (0) - { v E £ 2 (0) : \7'0 :::; lad :::; s, Dav E £ 2 (0)}

Let Th be partitions of the domain, 0, into triangles with possible hanging nodes.

The parameter, h, is defined as

h =max hE,
EETh

where hE is the diameter of each element, E E Th. Let E 1 and E 2 be arbitrary

elements in Th; refer to Figure 5.1. The parameter 8E1 represents the boundary of

element E 1 . Denote r 1 as the set of all interior edges and r B as the set of all boundary

elements. Then rh = r/ u rB. Also, define the discontinuous finite element space as

where JP>N (E) is the space of polynomials of degree at most N on E.

19

e

Figure 5.1 : Example of two adjacent triangular elements contained in a mesh

5.1.2 Jumps and averages

Recall from Chapter 2 that because DG allows discontinuities of the polynomials at

the boundaries of the elements, this method incorporates ideas of numerical fluxes.

Different derivations for numerical fluxes have been developed. For this research,

jumps and averages are used to ensure the method will converge to the correct so-

lution. Before defining jumps and averages, let us introduce the concept of trace.

'The notion of trace is used to define the restriction of a Sobolev function along the

boundary of the element' [1].

Let e E f 1 , an interior face shared by Ef and E~ with ne, the outward normal

from Ef to E~ and let v be in Vh, refer to Figure 5.1. There are two traces along

v for the two neighboring elements [1]. The jump and average for v can be defined

respectively as:

[v] - (viEr) - (viE~)

(viEr+ viE~)
2

{v} -

If e E fs corresponding to element, E1 , then the jump and average can be written

20

as:

[v] = {v} =viEr

5.1.3 Model problem

The general elliptic problem we consider is:

-\7 · (K\7 u) + au - f in n

u - uvonfv

where K is a symmetric matrix that is bounded by constants, kf, kf E JR+ for every

element, E,

a(x) is a non-negative scalar constant function, and f E £ 2 (0). Also, un, UN repre

sent the Dirichlet and Neumann boundary conditions, respectfully, and rB = rvurN.

Then the DG bilinear form, ah : vh X vh --+ lR is defined by

ah(u, v) = L r K\7u. Vv + r auv- L 1{K\7u. ne}[v]
EETh J E ln eErh e

+E L 1{K\7v · ne}[u] + JgeJ30 (u,v)
eErh e

L(v) = 1 fv + E L 1(K\7v · ne + l:l~o v)un + L lvuN.
0. eErv e eErN e

The last term in ah(u, v), Jge,f3o(u, v), is a bilinear form that penalizes the jump of

the function values:

21

The parameter (J"e is the penalty on each edge, e, that is nonnegative and real. The

parameter, /30 , is a positive value that depends on the dimension, d = 2, f30 (d-1) ;:::: 1.

For the rest of the research, {30 = 1.

The parameter, E, is the stability parameter. When E = -1, we obtain the Sym-

metric Interior Penalty method (SIPG). In this case, when the penalty, (J"e, is large

enough, then the stiffness matrix is symmetric positive definite. ForE= 1 we obtain

the Non-Symmetric Penalty parameter method (NIPG). And for E = 0 we get the

Incomplete Penalty parameter method (IPDG). For this research, the SIPG method

is used. The next section will prove an upper bound to the variational problem.

5.2 Approximated upper bound of the spectrum

We have

L 1 K(Vv? + 1 av2 + (c -1) L J{K'Vv · ne}[v]
EETh E n eErh e

+ L ~j J[v]2
eErh e

L KIIVvlli2(E) + allvlli2(f!) + (c- 1) L J{K'Vv · ne}[v]
EETh eErh e

(*)

+ L ~j ll[v)lli2(e)·
eErh

The next three subsections concentrate on further bounding the four terms on the

right hand side by llvll£2(n)·

5.2.1 Upper bound for the first term

This section bounds the first term in (*) such that

22

where A E R In a paper written by Ozisik, et al., a tighter upper bound for Markov's

inequality is presented [18]. The result of this paper is below.

Theorem 5.2.1. Markov Inequality for a planar triangle: For a planar tri-

angle, E, let JoEl be the perimeter length of E and lEI be the area of triangle

E. Then, for a polynomial v of degree N,

where the constants, eN, are given in the paper {18}. Define hk as the diameter

corresponding to the ith edge fori = 1, 2, 3. The parameter 1f~ 1 = LeEaE ht,

justification of parameter is given in Appendix B.

Using this result, then we have

Sum over all elements and take the maximum over the scalars, to obtain

L KJJV'vlli2cE) < L KeN (1 f~ 1) 2 llvlli2cE)
EETh EETh

< eN WE~~ (k~ (If~ I) 2) L llvllhcE)
EETh

< eN~~ (k~ (2:: h~)2
) L llvllhcE)·

eE8E E EETh

Throughout the rest of the chapter use h~Lm = LeEaE h; , so that
E

L KIIV'vlli2(E)
EETh

23

5.2.2 Upper bound for third term

This section gives the bound for third term in (*) such that

(E- 1) :2:: 1{K'\lv · ne}[v]:::; Bllvlll2(!1)'
eErh e

where B E R Then using the Cauchy-Schwarz inequality, we obtain

:2:: 1{K'\lv · ne}[v]:::; :2:: ii{K'\lv · ne}ll£2(e)ll[v]ll£2(e)· (**)
eErh e eErh

Warburton and Hesthaven proved two trace inequalities to bound this term, [17].

Theorem 5.2.2. Trace Inequality 1: For some Dt E JR. independent of hE and

v but dependent on the polynomial degree, N,

(II) 112
\:;fv E JIDN(E), Ve C DE, ll'\lv · nll£2(e) :::; Dt l~l 11Vvii£2(E)·

Ford = 2, Dt = J N(~+l), etc. Define hk as the diameter associated with

the ith edge of the element, E, where i = 1, 2, 3. The parameter 1~ 1 = ht;

justification of parameter is given in Appendix B.

By applying the definition of average, the triangular inequality, Theorem 5.2.2,

and by assuming K is scalar on each element then

II { K'\lv · ne} ll£2(e)

24

Incorporating Theorem 5.2.1 from Ozisik et al. [18], leads to

For the second term in (* *), II [v]II £2 (e), a similar bound can be found using the second

trace inequality of Warburton and Hesthaven [17].

Theorem 5.2.3. Trace Inequality 2: For some Dt E lR independent of hE and

v but dependent on the polynomial degree, N,

(I I) 1/2
Vv E IP'N(E), Ve C 8E, llviiL2(e) :::; Dt ~~~ llviiP(E)·

Ford= 2, Dt = J<N+I)iN+2) ,etc. Define hk as the diameter corresponding

to the ith edge of element, E, where i = 1, 2, 3. The parameter i~l1 - h~;

justification of parameter is given in Appendix B.

Exploiting the the definition of jump, the triangle inequality and Theorem 5.2.3,

we have

II [v]IIP(e) < llviEf IIP(e) + llviE~ IIP(e)

(I I) 1/2 (I I) 1/2
< Dt l;fl llvii£2(Ef) + Dt 1 ;~ 1 llvii£2(E~)·

25

Applying the above bounds, the result becomes,

Multiplying the terms out, we have,

Sum over the edges to obtain

L 1{K\lv · ne}[v] < L L II{K\lv · ne}[v]il£2(e)
eErh e EETh eE8E

26

We developed bounds for the four terms on the right hand side separately. First, we

bound the squared terms, starting with the term corresponding to E]_:

< 12 max k!f """" (h~~m max h~) JJvlli2(Ee)·
EETh L...J l<i<3 zE 1

EETh -- 1

Take the maximum over all elements, then

where 8 - 12 maxEETh k!f maxEETh (h~um max1::;i:s;J hk). Similarly for the second

term,

e L llvlli2(E)•
EETh

Next, we bound the crossed terms. Define \II as:

27

Then

Define hsum = maxEETh h~um· Then

< 4hsum ""' ""' max h; llviiJ.2(Ee) ~ ~ l<i<3 2
EETh eE8E - - E2

< 12hsum ""' max hl llviiJ.2(Ee) ~ l<i<3 ~E 2
EETh -- 2

< 12hsum max (max h1.) ""' llvlli2(E)·
EETh l<i<3 ~E ~

-- EETh

So the bound for W becomes

28

The last term is bounded identically. Putting all the bounds together, we have

5.2.3 Upper bound for the fourth term

This section bounds the last term in (*) such that

L ~~[[[v][[i,2(e) :S C[[v[[i,2(fl)·
eErh

Using Warburton and Hesthaven's trace inequality, Theorem 5.2.3:

Square both sides of the inequality, then

2 2 fe[2 2 fef 1 I II [v]ffP(e) :S Dt [Ei[[[v[[£2(Ei) + Dt [E~[[V [£2(E2)

2 ([e[[e[) 1/211 112 II 112
+2Dt [Eif[E~[v P(E'f) v £2(£2)·

Using the property 2ab:::; a2 + b2 for arbitrary a, b, then

29

Multiply by the constant, fej, and sum over all edges, e, to obtain

< L L ~j II [vJIIJ.2 (e)
BETh eE8B

< L L aleel (2Di 1 ~! 1 11vlli2(Bf) + 2Di 1 ~! 1 11vlli2(B~))
BEn eE8B 1 2

< 2Di (L L aleell~! 1 11vlli2(Bf) + L L aleell~!lllvlli2(B~)) ·
BETh eE8B 1 BETh eE8B 2

Notice for the term corresponding to Ei that

For the term corresponding to E2 and identical bound is found. Then

< 12Di (~~~ CTe) (ID:~: l~l) L llvlli2(B)
BETh

< 6 L llvlli2(B)'
BETh

30

5.2.4 Combining bounds

By using the values found in the previous sections, the upper bound to the variational

problem becomes:

ah(v, v) = L KIIVvllhcE) + allvlli2(f!) + (~:- 1) L 1 {K\7v · ne}[v]
EETh eErh e

+ L ~j II [v]lli2(e)
eErh

< A L llvlli2(E) + allvlli2(f!) + B L llvlli2(E) + 6 L llvlli2(E)
EETh EETh EETh

< (A+ a+ J3 + C)llvlli2cn)·

Substituting the results, the upper bound becomes

5.2.5 Testing the bound

To check this bound, the Poisson solver for curved elements is used. Information about

the implementation of this code can be found in [2]. Recall the Poisson equation

-.tlu =finn

u = uv on rv
8u
on =UNonrN

31

There is no a function, or matrix K, and it solves the SIPG method, therefore,

E = -1. The upper bound becomes

ah(v,v) - L 11Vvlli2(E) + 121 L II{Vv · ne}[v]IIL2(e) + L ~~ll[v]lli2(e)
EETh eErh eErh

< (A+ .8 + C)llvlli2(n)

< (4cN max(h!m) 2 + 24Dzyi(f; (max (h~um m~x h~)
EETh EETh 1$~$3 E

+ (max (hE max 2-)) 112
(h max (max 2-)) 112

)
EETh sum 1$i9 h'E sum EETh 1$i9 h'E

+ 12Dz (~~ae) (~~ 1~ 1)) llvlli2(n)·

Table 5.1: Results for finding approximations to the maximum eigenvalue

N/h 0.2 0.12 0.1 0.05 0.025

1 1.1480 1.0709 1.0433 1.0714 1.0907

2 1.2409 1.1740 1.1446 1.1893 1.2122

3 1.2235 1.1853 1.1549 1.2019 1.2229

4 1.1992 1.1668 1.1378 1.1840 1.2103

5 1.1787 1.1521 1.1221 1.1676 1.1959

6 1.1626 1.1382 1.1086 1.1534 1.1837

The data in Table 5.1 shows the ratio between the approximated upper limits to

the spectrum versus the actual largest eigenvalue. The exact eigenvalues are computed

by the eigs command in MATLAB. Essentially the ratios should be 1 or slightly

over because an overestimation of the eigenvalues is better than an underestimation

according to the Chebyshev iterative method theory.

32

Each row represents the different polynomial degrees, N. Each column represents

the values of the different meshes. Five different meshes were used with

h = 0.2, 0.12, 0.1, 0.05, 0.025.

The results use the eigenvalues to this equation: Su = M >..u where M is the mass

matrix. This work was done in MATLAB with code written by Warburton called

CurvedPoissoniPDG2D [2]. The meshes were generated from Jeomcad [41].

5.3 Approximated lower bound of the spectrum

This section briefly analyzes the lower bound to the variational problem. Recall the

Lax-Milgram Theorem [1]:

Theorem 5.3.1. Lax-Milgram Theorem: Let Vh be a real Hilbert space. Let

ah : (Vh x Vh) -+ lR be a bilinear form that is

• continuous: lah(u,v)l:::; CIIIullvcllvllvc

• coercive: C2llvll~c:::; ah(v, v)

with positive constants cl and c2.

Let L : Vh -+ lR be a continuous linear function. Then there exists a unique

u E Vh satisfying

Vv E Vh ah(u, v) = L(v)

~~ · live is defined below).

33

Define the DC - norm as

Assuming there is a unique solution to our problem, then by Theorem 5.3.1, a lower

bound, based on the DG-norm, is given by the coercivity property. Riviere and

Epshteyn [11], Shahbazi [15], and Ainsworth and Rankin [16], provide a result giving

computable values for the constant c2.

Also recall the next well-known theorem, [42]:

Theorem 5.3.2. Lagrange's Theorem: Let V be a finite dimensional vector

space over N, a normed vector space. Then any two norms on V are equivalent.

Meaning that for ll·lla, ll·llb two norms in this space, then there exists D*, D* E

JR+ s. t.

Applying the coercivity property and the finite dimensional vector space property,

Theorem 5.3.2 implies that there exist constants, D* and D*, such that

which also justifies that if the constant, D*, is found, then by Theorem 5.3.1, the

lower bound for the spectrum becomes

The task is then to find the constant C2D;. The proof of this bound remains an

open problem. Analysis of the Poincare-Friedrichs inequality can be found in [9], but

34

the constant not given explicitly. Also, an inverse bound to Theorem 5.2.1 can be

formulated. The inverse bound for Theorem 5.2.3 has already been developed and

can be found in [43]. More careful consideration is needed before a result can be

given. This remains an open problem.

The next chapter will discuss the method for coding in CUDA.

35

Chapter 6

Method Used to Implement in CUDA

Now that analysis of the bounds of the DG spectrum applied to the elliptic problem

are explored, the next task is to continue with the implementation of the linear system

solvers in CUDA. Once these methods are developed, a previously written DG code

provided by Riviere [1] and the iterative solvers are combined in order to find which

method is more efficient when using CUDA.

6.1 Formatting implementation

The first step is to create code such that the DG matrix can be transformed in com

pressed sparse row (CSR) format. Riviere's code is written such that when forming

the DG matrix, the matrix is stored in dense format and the linear system is solved

using LAPACK routines. The code written for this thesis is converted to CSR format

and is solved by the CG and Chebyshev iterative methods. This format is a popular,

general-purpose sparse matrix representation. CSR stores its information in three

vectors: ptr, indices, and data. For am x n matrix, ptr is of length m + 1 and stores

the offset into the ith row [32]. The indices vector stores the column number that the

data is in. The data vector stores the values of the non-zero entries. Both the length

of the indices vector and the data vector equal the number of nonzero entries in the

matrix. An example from [32] is given below.

36

1 7 0 0 ptr [0 2 4 7 9] -

0 2 8 0

[0 3] 8= indices - 1 1 2 0 2 3 1
5 0 3 9

0 6 0 4 data [1 7 2 8 5 3 9 6 4]

Riviere's code is also in double precision. Recall from Chapter 3 that single preci-

sion provides significantly better peak performance than when using double precision.

Therefore, to expect better performance from the CUDA framework, the data values

are 'cast' down to single precision.

6.2 Implementing solvers using CUDA

Once the DG code has the correct sparse format, the next step is to implement the

linear solvers using CUDA. This is slightly different than the standard C code, because

different commands are needed to help communicate with the GPU.

To inform the GPU to execute commands, there is a function called a kernel. The

kernel is executed using a large number of parallel threads, where each thread runs the

same commands simultaneously. The G PU and CPU have separate memory pools,

i.e., information on the GPU cannot be accessed from the CPU and vice-versa. This

implies that when using the GPU, space must be allocated before information from

the CPU can be sent to the G PU; refer to Figure 6.1. Once the data is on the G PU,

the kernel is called to execute the commands. Finally the GPU sends the information

back to the CPU. The programmer must make sure to perform few transfers from

the CPU to the GPU in order to reduce the bottleneck caused by the transfer of the

information. For the iterative method implementations, CUBLAS commands were

used. As an example of the protocol, say there exists a vector h_mat, of length nnz

Path for CUDA Processing

Send Computed Info
back to CPU

Figure 6.1 : Procedure when com1nunicating with the GPU

37

on the host (CPU). To send this vector to the device (GPU), another vector, d_mat,

must be first be allocated, then information from h_mat can be transferred to d_mat.

The com1nands to allocate space on the device and send the information from the

host to the device are seen below [3, 33].

cublasAlloc(nnz, sizeof(float), (void**) &d_mat)

cublasSetVector(nnz, sizeof(float), h_mat, 1, d_mat, 1)

A kernel is then called to perform the necessary operations on the G PU. To review the

result found by the G PU, the information is sent back to the CPU with the CUB LAS

command,

cublasGetVector(nnz, sizeof(float), d_mat, 1, h_mat, 1).

Once the CPU has the information, com1nands can continue to be executed on the

CPU or results can be printed. Next step is understanding how the kernel is executed.

6.3 Structure of GPU

Define a thread as being the smallest unit that can execute a command; a a warp is a

collection of 32 threads. Within this language, these threads can be organized using

grids of threads. A thread block is defined as a group of threads that share a common

38

pool of shared memory and cooperate together efficiently [44]. Each thread block

has a maximum of 512 threads. Blocks of the same dimension that execute the same

kernel commands are grouped together in a grid block. Threads of different blocks

share a different memory pool. In other words, the threads in each block cannot

communicate and synchronize with each other.

All of these threads and blocks have thread identifications. CUDA has built in

variables that help to describe the identification for each of the threads. For example

a 1-D block and grid, has identifications like,

blockDim.x \\the dimension in the grid

blockldx.x \\the ID of the block within in the grid

threadldx.x \\the ID of the thread within the block

To access the complete identification of a particular thread, the command is

int thread_id = blockDim.x*blockidx.x + threadldx.x;

These threads can be formulated in 1-D, 2-D, or 3-D structure. For example, to

inform the kernel to use a 1-D block of size nnz with nnz threads in each block,

before the kernel is called [3], type the commands,

dim3 dimThreadBlock(nnz) \\Dimension of the block

dim3 dimGridBlock(nnz); \\Dimension of the grid

To call the kernel function, MV _multiply, the dimensions of the blocks and grids

must be given by using<<<,>>>.

MV_multiply<<< dimGridBlock, dimThreadBlock >>>(d_ptr, d_indices);

The remainder of the variables, (d_ptr, d_indices), are input and output arguments

needed for that kernel. These variables are already allocated on the GPU.

39

The algorithms in Appendix A are used when implementing the kernels for the two

linear system solvers. In order to perform inner products, the CUBLAS command,

cublasSdot, is called. Bell and Garland's implementation of CSR matrix vector mul

tiplication is used in both CG and the Chebyshev iterative codes [32]. Kernels needed

to compute the rest of the calculations are created. The next chapter provides the

results for when these iterative solvers were applied to Riviere's DG code for solving

the Laplace problem.

40

Chapter 7

Numerical Results

This chapter provides numerical results that incorporate the implementation de

scribed in Chapter 6 and an existing DG code, written in C, provided by Riviere

[1]. These numerical results determine which iterative solver is best suited when

using CUDA.

The code given by Riviere [1] solves the Laplace equation,

-D.u = f

with Dirichlet boundary conditions on a square domain [0, 1] x [0, 1]. The Chebyshev

iterative method and the CG method written in the languages CUDA and C, are

applied to Riviere's DG code.

Table 7.1 : Meshes used throughout the numerical testing.

Meshes Num ofElem h Dof N = 1 Dof N = 2

mesh1 4 1 12 24

mesh2 22 0.2500 66 132

mesh3 110 0.1250 330 660

mesh4 544 0.0625 1632 3264

mesh5 1168 0.0450 3504 7008

mesh6 2190 0.03125 6570 13140

mesh7 3630 0.0250 10890 21780

mesh8 5440 0.0200 16320 32640

41

For these simulations, the Tesla C2050 card along with the CPU by AMD Opteron(tm)

Processor 148 is used. Eight different triangular meshes are generated. These meshes

are created from an element grid generator called Gmsh [45]. Table 7.1 describes the

range of h, the number of elements, and the degrees of freedom for each mesh when

performing the DG method. Images of the meshes used can be found in Figure 7.1.

Table 7.2 : Eigenvalues used corresponding to different ae, N = 1, and meshes.

Meshes max eig min eig max eig min eig max eig min eig

O'e = 10 O'e = 10 O'e = 100 O'e = 100 O'e = 1000 O'e = 1000

mesh1 20 0.9339 200 0.9949 2000 0.9995

mesh2 19.41 0.2803 194.68 0.2906 1945.5 0.2918

mesh3 19.67 0.0636 196.997 0.0639 1970.3 0.0639

mesh4 19.78 0.0110 198.02 0.0110 1980.4 0.0110

mesh5 19.89 0.0056 198.98 0.0056 1989.9 0.0056

mesh6 19.80 0.0029 198.23 0.0029 1982.5 0.0029

mesh7 19.96 0.0017 199.67 0.0017 1996.8 0.0017

mesh8 19.95 0.0010 199.54 0.0010 1995.5 0.0010

Before describing the results, first note that the tolerance was set at 10-4 for both

methods. When solving the Chebyshev iterative method, the eigenvalues were found

by MATLAB's eigs command. For the larger problems where MATLAB could not

load the matrices, approximated values were found using LAPACK'S dgeev command.

Tables 7.2 and 7.3 present the eigenvalues for this study.

Additionally, two different parameters were varied, a e and N. Tests were run for

all eight meshes, ae = 10, 100, 1000, and N = 1, 2. Similar results are found through

all the runs, therefore, the first six images correspond for when ae = 100 and N = 1.

Figure 7.2 gives the times it takes for the CG method and the Chebyshev iterative

42

Table 7.3 : Eigenvalues used corresponding to different ae, N = 2, and meshes.

Meshes max eig min eig max eig min eig max eig min eig

CTe = 10 CTe = 10 CTe = 100 CTe = 100 CTe = 1000 CTe = 1000

mesh1 25.91 0.0182 270.95 0.0439 2722.2 0.0475

mesh2 24.76 0.0126 258.85 0.0169 2600.9 0.0173

mesh3 25.40 0.0120 263.73 0.0149 2647.6 0.0151

mesh4 25.57 0.0095 265.45 0.0098 2664.7 0.0098

mesh5 25.53 0.0053 264.92 0.0054 2660.3 0.0054

mesh6 25.63 0.0031 267.35 0.0031 2665.3 0.0030

mesh7 25.66 0.0020 266.59 0.0022 2666.2 0.0022

mesh8 25.70 0.0012 268.43 0.0011 2668.4 0.0012

method to solve the DG linear system. All values calculate only the time it takes

for the linear system to solve. Time was not considered when finding maximum and

minimum eigenvalues and also when formulating the DG matrix. It can easily be

seen from Figure 7.2 that the Chebyshev iterative method takes at least two orders

of magnitude longer to compute compared to the CG method. This implies that the

CG method outperforms the Chebyshev iterative method. It seems counterintuitive

that the Chebyshev iterative method takes longer to converge when it does not have

any inner products. The values below show that time it takes for the CG method and

the Chebyshev iterative method to complete one iteration. Clearly, because of the

inner products, the CG method takes longer than the Chebyshev iterative method.

Notice that this is for a 16,320 x 16,320 matrix, N = 1, and O"e = 100.

the size of the matrix is 16320

elapsed time for CG: 0.002110

elapsed time for the Chebyshev iterative method: 0.000760

43

iteration count = 1

The next set of values provides a breakup of time between the different kernels for

the CG method. These values are accumulations for each iteration. Again this is a

16,320 x 16,320 matrix, and the two inner products take longer to compute than the

matrix vector multiplication kernel.

the size of the matrix is 16320

number of non zeros = 185168

elapsed time for Matrix Vector Multiply kernel: 0.267620

elapsed time for cublasSdot kernel: 0.194517

elapsed time for Update1 kernel: 0.053182

elapsed time for cublasSdot kernel: 0.192549

elapsed time for Update2 kernel: 0.050227

elapsed time for Total time: 1.175548

iteration count = 689

gflops = 0.312711

The reason why the CG method outperforms the Chebyshev iterative method is due

to the large number of iterations it takes for the Chebyshev iterative method to

obtain the desired accuracy. Figure 7.3 expresses that the number of iterations for

the Chebyshev iterative method is drastically higher compared to the CG method.

For example, for the last mesh, mesh8, with matrix dimension size 16,320, it takes

about 546, 739 iterations for the Chebyshev iterative method to converge while for the

CG method, only 689 iterations are needed. This is 3 orders of magnitude difference.

The next two graphs give more information on the convergence of the two methods

and the eigenvalue distribution. Figure 7.4 and Figure 7.5 give only information for

44

when Cie = 100, N = 1, and mesh5. Figure 7.4 compares the residuals for each iter

ation. By looking at this graph, the conjugate gradient method is clearly converging

at a much faster rate every iteration. For the Chebyshev iterative method, there is

an initial jump down, then there is a slow decrease in the residual deceasing at an av

erage rate a value slightly below 1, i.e. 0.9967. The Chebyshev iterative method took

100243 iterations to converge versus the conjugate gradient method taking 547 iter

ations. In the figure, only residuals for a thousand iterations were portayed. Figure

7.5 provides the distribution for the spectrum. In this graph, you can see where the

clusters of eigenvalues are. The CG method converges faster when there are clusters

of eigenvalues. This explains the faster convergence rate in Figure 7.4.

Also, the different hardware is compared in the next two figures. Times for the

CG implementations in CUDA and C are given in Figure 7.6 for the eight different

meshes. Notice, for the first three meshes, the C code is faster than the CUDA code.

This is due to the lag time it takes for information to transfer back and forth between

the CPU and G PU. For mesh8, there was at least an order of magnitude difference

in the computed time. This shows that using the GPU for large problems decreases

the time drastically compared to the conventional CPU. Similar results are found in

Figure 7. 7 comparing the times for the Chebyshev iterative method to converge for

the two languages. It was not until the fourth mesh, where the matrix is relatively

big, when work on the GPU is completed faster than the CPU.

Figure 7.8 gives a graph conveying the Gflops/sec for each different mesh and each

solver executed using CUDA. The performance increases linearly as the number of

elements increase and the degrees of freedom increase. In viewing these numbers, the

performance is very small. To figure out why the codes doh not seem very efficient, a

different algorithm is compared. CUSP is a library for sparse linear algebra and graph

45

computations on CUDA and, within this library, the CG algorithm is implemented

[46]. Figure 7.9 shows the Gfiops/sec comparing the CG method using my algorithm

and the CUSP algorithm. The values are very similar. I suspect that if using larger

matrices, 100,000 x 100,000, the performance will be more promising.

The last two figures compare the penalty parameters for a specific polynomial

degree and a given mesh. Time values from mesh5 are given in Figure 7.10 and

7.11. Again, results from the CG method and the Chebyshev iterative method solved

on the GPU are given. Figure 7.10 shows that as the penalty parameter increases,

the times it takes for both methods to converge also increases. The same is true

for changing the polynomial degree, as seen in Figure 7.11. Comparing Figures 7.10

and 7.11 side by side, notice that as the polynomial degree gets bigger, the time will

also increase for both methods to converge. Tests for higher degree polynomials are

currently unavailable until alterations in the DG C code can be made to formulate

the stiffness matrix into sparse format versus dense. Similar results are given for the

different meshes; therefore those results are not included.

Various tests were given in this results section. Comparisons between the Cheby

shev iterative method and the CG method using CUDA are given. Tests also showed

the difference of the two methods using C and CUDA for both methods. To make

sure the code was working efficiently, the CG CUDA code is compared to the CUSP

library, which also solves the CG method in CUDA. Last, two different parameters

were varied to see how computing the methods were affected. From these results, CG

is the more effective solver for the GPU compared to the Chebyshev iterative method

for larger problems. This is because the Chebyshev iterative method uses many more

iterations compared to the CG method, i.e. enough iterations to increase the time to

surpass what it takes to complete the inner products needed in the CG method. I

46

also showed, from Figures 7.6 and 7.7 that with large data sets, the GPU speeds up

computational time. Ideally, these tests were to be conducted with approximations to

the maximum and minimum eigenvalues applied to the Chebyshev iterative method.

However, after running numerical simulations with exact eigenvalues, there is no need

to continue the study. The next chapter will provide some concluding remarks.

47

--t

meshl mesh2

mesh3 mesh4

mesh5 mesh6

mesh7 mesh8

Figure 7.1 Meshes created by Gmsh used 1n the experiment

10
4

Time between CG and Chebyshev in CUDA

·+•CUDACG
-&- CUDA Chebyshev

10
2

u
Q)

-; 10° +--+
E +-- +-- +·-
~

;
;

10-2 ;fl
;

; ..
10-4

2 3 4 5 6 7 8
Different Meshes

Figure 7.2 : Time comparing the CG
vs. the Chebyshev iterative method using
CUDA where (J"e = 100 and N = 1

Re~~?uals for CG and C h e bys he v for a = 100, N = 1, and m esh

1

-- - CG I

10
3 --Chebyshev

10-
3

o'------2~00---4~00---Jl.li~-60~0--8~0-D _ _)1000

iterat ion , k

Figure 7.4 : Residuals for CG and the
Chebyshev Iterative method at every iter
ation for ae = 100, N = 1, and mesh5

10
6

10
5

10
4

10
3

10
2

10
1

10°

Iteration Count CG vs Chebyshev

..
, , ,

2

·+· CUDACG
-&- CUDA Chebyshev

3 4 5 6 7 8
Different Meshes

48

Figure 7.3 : Iteration count comparing the
CG vs. the Chebyshev iterative method
using CUDA where (J"e = 100 and N = 1

Distribution of the Spectrum for a = 100, N = 1, and mesh5
600 r------r------,----~---.,

500

i 400
c:
g:,
~ 300
0 ...
Q)

~ 200

c:

100

0
0 50 100 150 200

range of eigenvalues

Figure 7.5 : Distribution of the eigenvalues
for a e = 100, N = 1, and mesh5

10
4

Time between CUDA and C with CG

I :.:.:guoA[
10

2

u
Q)

-;- 10°
E
~

10-2

,
+- -f

10-4

2 3 4 5 6 7 8
Different Meshes

Figure 7.6 : Times in CUDA and C for
CG method to converge where O'e = 100
and N = 1

Calculates Gflops/sec when O" = 100 and N = 1
0.7

-+ • CUDACG
0.6 CUDA Chebyshev

0 .5

u
Q)

~ 0.4
0.
0

C3 0 .3

0.2

0 .1 ,Af ,

, ,

, , ,
,+

, , ,
+ ,

3 4 5 6 7 8
Different meshes

Figure 7.8 : The Gfiopsjsec calculated
for both CG and the Chebyshev iterative
method executed using CUDA with pa
rameters were set to 0' e = 100 and N = 1

10
4

10
2

u
Q)

-;- 10°
E
~

10-2

10-4

Time between CUDA and C with Chebyshev

, , , ,
4

2 3 4 5 6 7 8
Different Meshes

49

Figure 7.7 : Times in CUDA and C for
Chebyshev iterative method to converge
where O'e = 100 and N = 1

Compares Gflopsjsec between CUDA and CUSP for CG
0.7 r;::::::====:::r---,----r----.-----.---,-~

0 .5

u
Q)

~ 0.4
0.
0

C3 0.3 , ,
0.2

,

0.1

0
3 4 5 6 7 8
Different meshes

Figure 7. 9 : The G flops/ sec calculated for
CG executed using CUDA and CUSP with
parameters were set to 0' e = 100 and N = 1

1
~jme of CG and Chebyshev for mesh5 varying u and N = 1

-+ - CUDA CG
-&- CUDA Chebyshev

. -+···· --
+------

10-1 '-------~-----~-------'-----'
10 100

Penalty, u
1000

Figure 7.10 : Comparing time for both
methods while varying CYe when N = 1 us
ing CUDA

50

Tim~ for CG and Chebyshev for mesh5 varying u and N = 2
10

-+· CUDACG
-&- CUDA Chebyshev

....... --.,.,..
...... +

10-1 '-------~-----'----------'--------'
10 100

Penalty, CJ

1000

Figure 7.11 : Comparing time for both
methods while varying CYe when N = 2 us
ing CUDA

51

Chapter 8

Conclusions

This work integrates the use of supercomputers, the DG method, and an eigenvalue

problem. There are two main ideas presented in this research. The first was to ana

lyze approximations for the maximum and minimum eigenvalues of the DG operator

applied to the elliptic equation. A constant-free bound for the maximum eigenvalue

is developed. The minimum eigenvalue bound remains an open problem.

The second goal was to implement the Chebyshev iterative method and the CG

method using C and CUDA, a software library that communicates with the GPU.

A comparison was made between the two methods combined with the DG method

when applied to the elliptic problem in order to determine which proved to be the

most effiecint method using the GPU framework. The CG method, a linear system

solver with two inner products per iteration, is more effective for larger problems

versus the Chebyshev iterative method, an algorithm with no inner products. This

is due to the fact that the Chebyshev iterative method takes many more iterations

to converge, which increased the time needed to compute so much that the time it

takes to complete the inner products of the CG method was shorter.

There are two directions to proceed with this work. First, complete the analysis

for the lower eigenvalue of the variational problem. Another direction for this work is

to test two other methods similar to both the CG method and the Chebyshev iterative

method. The first method is to use these Chebyshev polynomials up to degree r, then

perform the CG method until the residual converges to a given tolerance. The reason

52

for performing this pre-conditioned method is because in parallel computing, the

Chebyshev iterative method can perform for a preset number of times, without any

use of an inner product, then use the CG method to converge to the solution in fewer

iterations, implying fewer inner products. The other method is to first estimate the

eigenvalues using the Lanczos/CG method for the first k iterations. Starting with the

k+ 1 iteration, the Chebyshev iterative method is used to converge to the solution. By

using the CG method first, initializing the eigenvalues is not necessary. Therefore this

method avoids having over/under estimates for the eigenvalues which may or may not

allow the Chebyshev iterative method to converge. Also, this algorithm reduces the

times the CG method is performed compared to the standard CG method; therefore

the number of inner products are again reduced.

One area of study, which is of particular interest, that can benefit from this thesis

is the area of heat transfer, solving the steady state conduction equation. With this

work, engineers with heat transfer specialties can be more efficient in solving for

temperature profiles through a heat sink when a heat flux is applied. This is only one

of many applications in which this work will contribute.

This thesis is one of the few works that combine the ideas of the DG method

and CUDA. It provides mathematicians and engineers knowledge of which numerical

linear system solver is more effective between the two tested when applying DG to

the elliptic problem. It also provides the proof for a constant free upper bound of the

DG spectrum as it is applied to the elliptic problem.

53

Bibliography

[1) B. Riviere, Galerkin Methods for Solving Elliptic and Parabolic Equations: The

ory and Implementation. Philadelphia, PA: Society for Industrial and Applied

Mathematics (SIAM), 2008.

[2) J. S. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Methods:

Algorithms, Analysis, and Applications. New York, New York: Springer Sci

ence+ Business Media, LLC, 2008.

[3) "NVIDIA CUDA, programming guide," NVIDIA

Corporation, vol. Version 3.0, Feburary, 2010.

http:/ /developer.download.nvidia.com/compute/cuda/3-0/toolkit/docs/NVIDIA

_CUDA_ProgrammingGuide.pdf.

[4) A. Cevahir, A. Nukada, and S. Matsuoka, "Fast conjugate gradients with mul

tiple GPUs," in ICCS '09: Proceedings of the 9th International Conference on

Computational Science, (Berlin, Heidelberg), pp. 893-903, Springer-Verlag, 2009.

[5) C. C. Douglas, G. Haase, and U. Langer, A tutorial on elliptic PDE solvers

and their parallelization. Philadelphia, PA: Society for Industrial and Applied

Mathematics (SIAM), 2003.

[6) S. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods.

New York, New York: Springer Science+Business Media, LLC, 2008.

54

[7] H. K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid

Dynamics, The finite Volume Method. London: Prentice Hall, 1995.

[8] W.H. Reed and T. Hill, "Triangular Mesh Methods for the Neutron Thansport

Equation," Technical Report LA- UR-73-4 79, Los Alamos Scientific Laboratory,

1973.

[9] D. N. Arnold, "An interior penalty finite method with disontinuous elements,"

SIAM Journal on Scientific and Statistical Computing, vol. 19, no. 4, pp. 742-

760, 1982.

[10] D. Arnold, F. Brezzi, and B. Cockburn, "Discontinuous Galerkin methods for

elliptic problems," in Discontinuous Galerkin Methods (Newport, RI, 1999), Lec

ture Notes Computational Science Engineering, p. 89, Springer, 2000.

[11] Y. Epshteyn and B. Riviere, "Estimation of penalty parameters for symmetric

interior penalty Galerkin methods," J. Comput. Appl. Math., vol. 206, no. 2,

pp. 843-872, 2007.

[12] D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini, "Unified analysis of

discontinuous Galerkin methods for elliptic problems," SIAM J. Numer. Anal.,

vol. 49, no. 5, pp. 1749-1779, 2002.

[13] B. Cockburn, G. E. Karniadakis, and C. W. Shu, "The development of discon

tinuous Galerkin methods," 1999. http:/ jconservancy.umn.edu/handle/3384.

[14] P. F. Antonietti, A. Buffa, and I. Perugia, "Discontinuous Galerkin approxima

tion of the Laplace eigenproblem," Comptder Methods in Applied Mechanics and

Engineering, vol. 195, no. 25-28, pp. 3483- 3503, 2006.

55

[15] K. Shahbazi, "Short note: An explicit expression for the penalty parameter of

the interior penalty method," J. Comput. Phys., vol. 205, pp. 401-407, May

2005.

[16] M. Ainsworth and R. Rankin, "A note on the selection of the penalty parame

ter for discontinuous Galerkin finite element schemes," Numerical Methods for

Partial Differential Equations, vol. 27, 2011.

[17] T. Warburton and J. 8. Hesthaven, "On the constants in hp-finite element trace

inverse inequalities," Computer Methods in Applied Mechanics and Engineering,

vol. 192, no. 25, pp. 2765- 2773, 2003.

[18] 8. Ozisik, B. Riviere, and T. Warburton, "On the constants in inverse inequalities

in 12 ," tech. rep., Rice University, 2010.

[19] "PTIGlobal chosen sole localization vendor to NVIDIA," 2009.

http:/ jwww. ptiglobal.com/whats_new /story/ ptiglobaLchosen_soleJ.ocalization

_vendor_to_nvidia_14.

[20] "Graphics processing unit," 2011.

processing unit.

http:// en. wikipedia.org/wiki/ Graphics

[21] "NVIDIA GeForce 256 review:GPU overview," NVIDIA Corporation, 1999.

http://www. nvnews.net /reviews/ geforce_256 / gpu_overview. shtml.

[22] "Tesla c2050/c2070 GPU computing processor," NVIDIA Corporation, 2011.

http:/ /www.nvidia.com/object/product_tesla_C2050_C2070_us.html.

[23] W. A. Wiggers, V. Bakker, A. B. J. Kokkeler, and G. J. M. Smit, "Implementing

the conjugate gradient algorithm on multi-core systems," in Proceedings of the

56

International Symposium on System-on-Chip (SoC 2007}, Tampere (J. Nurmi,

J. Takala, and 0. Vainio, eds.), no. 07ex1846, (Piscataway, NJ), pp. 11-14, IEEE,

November 2007.

[24] "What is GPU computing," NVIDIA Corporation, 2011.

http:/ /www.nvidia.com/object/GPU_Computing.html.

[25] Y. Zhao, "Lattice Boltzmann based PDE solver on the GPU," Vis. Comput.,

vol. 24, pp. 323-333, May 2008.

[26] D. Egloff, "High Performance Finite Difference PDE Solvers on GPUs," February

2010. http:/ jgpucomputing.net/?q=node/1380.

[27] C. Becker, S. Turek, and S. Kilian, "Feast: Finite Element Analysis and Solutions

Tools," http:/ /www.feast.tu-dortmund.de/index.html.

[28] A. Kloeckner, T. Warburton, J. Bridge, and J. Hesthaven, "Nodal

discontinuous galerkin methods on graphics processors," 2011.

http:/ /mathema.tician.dejsoftware/pycuda.

[29] H. Dag, "An approximate inverse preconditioner and its implementation for con

jugate gradient method," Parallel Computing, vol. 33, no. 2, pp. 83- 91, 2007.

[30] H. Dag and A. Semlyen, "A new preconditioned conjugate gradient power flow,"

Power Systems, IEEE Transactions on, vol. 18, pp. 1248- 1255, nov. 2003.

[31] R. Li andY. Saad, "Cpu-accelerated preconditioned iterative linear solvers *."

http:/ /www-users.cs.umn.edu/ saad/PDF jumsi-2010-112.pdf.

[32] N. Bell and M. Garland, "Efficient sparse matrix-vector multiplication on

CUDA," Tech. Rep. NVR-2008-004, NVIDIA Technical Report, Dec. 2008.

57

(33] "CUDA, CUBLAS library," NVIDIA Corporation.

(34] D.P. O'Leary, "Yet another polynomial preconditioner for the conjugate gradient

algorithm," Linear Algebra and its Applications, vol. 154-156, pp. 377-388, 1991.

[35] L. N. Trefethen and D. Bau III, Numerical Linear Algebra. Philadelphia, PA:

Society for Industrial and Applied Mathematics (SIAM), 1997.

[36] Y. Saad, Iterative Methods for Sparse Linear Systems, Second Edition. Society

for Industrial and Applied Mathematics, 2003.

[37] G. H. Golub and C. F. Van Loan, Matrix Computations (3rd ed.}. Baltimore,

MD, USA: Johns Hopkins University Press, 1996.

[38] G. H. G. Concus, Paul and D. P. O'Leary, "A generalized conjugate gradient

method for the numerical solution of elliptic partical differential equations,"

Tech. Rep. STAN-CS-76-533, Stanford : Computer Science Dept., School of

Humanities and Sciences, Stanford University, 1976.

[39] A. Wathen and T. Rees, "Chebyshev semi-iteration in preconditioning," Elec

tronic Transactions on Numerical Analysis, vol. 34, pp. 125-135, 2009.

(40] P. Concus, G. H. Golub, and D. P. O"Leary, "A generalized conjugate gradient

method for the numerical solution of elliptic partial differential equations," tech.

rep., Stanford, CA, USA, 1976.

[41] T. Issac, L. Wilcox, and T. Warburton, "Jeomcad,"

http:/ /www.caam.rice.edu/ timwar /Mesh Generation/ Jeomcad.html.

(42] S. Lang, Undergraduate Analysis. New York, New York: Springer Sci-

ence+Business Media, LLC, 1983.

58

(43] E. Burman and A. Ern, "Continuous interior penalty hp-finite ele

ment methods for advection and advection-diffusion equations," 2010.

http:/ /citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.153.7434.

(44] N. Fujimoto, "Faster matrix-vector multiplication on geforce 8800gtx," IEEE

International Symposium on In Parallel and Distributed Processing, pp. 1-8,

2008.

(45] C. Geuzaine and J. F. Remade, "Gmsh," 1997-2009. http:/ /geuz.org/gmsh/.

(46] N. Bell, "CUSP," 2011. http:/ /code.google.com/p/cusp-library j.

(47] Y. Saad, "Krylov subspace methods on supercomputers," SIAM Journal on Sci

entific and Statistical Computing, vol. 10, no. 6, pp. 1200-1232, 1989.

59

Appendix A

A.l Algorithms

In this Appendix the codes for the two numerical solvers are provided: CG and the

Chebyshev iterative method.

A.l.l Code for the CG method:

More information about this method can be found from Saad [47].

1 % This method computes Ax = b using the conjugate gradient method

2% input A a MxM symmetric Positive Definite

3%

4%

5%

6%

7%

8%

9 r

10 p

Output

r.
'

b

X

tol

X

r

i

a Mxl vector

a Mxl vector,

the stopping

the solution

the residual

the number of

llrold=r'*r;

12 for i = 1:size(A,1)

13 Ap = A*p;

14 alpha r o l d / (p ' * Ap) ;

15 X X+ alpha*P;

16 r r alpha*Ap;

17 rnew = r '* r;

initial guess

critiera

iterations performed

Matrix

60

18 if(norm(r))< tol

19 break;

20 end

21 p = r + (rnewfrold)*P;

22 rold = rnew;

23 end

A.1.2 Code for the Chebyshev iterative method

This method can be found in many locations. I referenced Saad [36] and Golub [37].

1 function [x, r, i]= cheby_iter(A,x,b,L_max,L_min,maxit,tol)

2 % this function solves Ax = b for x in R'n

3% it is an iterative method that does not use an inner product

4 % but needs the L_max and L_min

5

6% input

7%

8%

9%

10 %

11 %

12 %

13 %

14 %

15 % output

16 %

17 %

18 r b - A*x;

A A is an nxn matrix

x x is the initial guess

b right hand side nxl

M preconditioner matrix nxn

L_max

Lmin

maxit

tol

X

r

i

do not have this in because just identity for now

max eigenvalue of inv (M)*A

min eigenvalue of inv (M)*A

max number of iterations

tolerance for convergence

final solution

residual

number of iterations used

19 d (Lmax + L_min) /2;

20 c (Lmax- L_min)/2;

61

21 for 1: maxit

22 z r.
'

23 if i = 1

24 p = z·
'

25 alpha 2/d;

26 else

27 beta = alpha*alpha*C*C/4;

28 alpha 1/(d-beta);

29 p = z + beta*p;

30 end %end if statement

31 X x + alpha*p; %perform linesearch

32 r b- A*X; %r = r- alpha*A*P;

33 if norm(r) < tal

34 break

35 end %end of if

36 end %end of for

62

Appendix B

B.l Supplementary proofs

In this Appendix proofs for some parameters which are useful in helping to prove the

maximum bound to the variational problem are given. These values are dependent

of the mesh used. These supplementary proofs were referenced in Chapter 5.

B 2 P f £ IBEI d lei . roo or constants lET an jEj

Observe the picture of a triangular element. This image will be useful in proving the

values.

~·. h 1 :
E •

•

Figure B.l : An arbitrary triangle element, E, in the mesh

B.2.1 Value for
1
1;

1

Let e be the edge corresponding to the ith side in element; E. Also observe that

lEI = ~eihk, refer to Figure B.l. Then

lei
lEI

B.2.2 Bound for IBEI
lEI

Based on Figure B.1, the perimeter, !BE!, and area, lEI, of the element can be

defined as

!BEl -

lEI

respectively. This implies

!BEl
lEI

e1 + e2 + e3,

1 1 1 2 1 3
2,e1hE = 2,e2hE = 2e3hE,

63

