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Abstract 

An Automated System for Cryo-Electron Microscopy 
Sample Preparation 

by 

Zachary J. Thompson 

Cryo-electron microscopy (CryoEM) is a procedure that has become popular for 

imaging radiation intolerant structures under electron microscopes. CryoEM involves 

maintaining the sample at cryogenic temperatures throughout the imaging process. 

This has the effect of minimizing damage caused by the electron beam, and results 

in higher quality images than can be obtained through more traditional imaging 

methods. 

The preparation of samples for cryo-electron microscopy studies is currently a la-

bor and time intensive process. Samples must be applied to an imaging substrate 

under tightly controlled environmental conditions, formed into a thin film, vitrified 

with liquid ethane, and placed into temporary storage under cryogenic conditions. 

The grid preparation process is very sensitive to procedural factors, thus the sue-

cessful creation of viable samples depends on tightly controlling the conditions under 

which grids are prepared. Several devices which automate portions of the specimen 

preparation process are currently in use; however, these systems heavily rely on a 



human operator to function properly. 

This thesis describes a system that is capable of fully automating the sample 

preparation process. The resulting system minimizes the need for human input dur­

ing specimen preparation, improves process control, and provides similar levels of 

environmental control. Testing shows that the resulting system is capable of prepar­

ing samples without human interaction. 
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Chapter 1 

Introduction 

Cryo-electron microscopy is a process in which specimens are prepared for and im­

aged under an electron microscope while being maintained at cryogenic temperatures. 

The sample is prepared (or fixed) for imaging in an electron microscope through a 

process known as vitrification. Vitrification, the most commonly used fixing method, 

is a technique that involves freezing a sample at such a high rate as to prevent the 

growth of ice crystals within the specimen. In an aqueous solution, this procedure 

results in an amorphous ice with embedded specimen. The resulting vitrified sam­

ple has physical and chemical properties that closely mimic those of the un-fixed 

sample[!]. 

This thesis present the development and design of a system that automates the 

sample preparation process. 

1.1 Background 

Since its introduction, the electron microscope has revolutionized the study of both 

organic and inorganic structures at the nanoscale. By its nature, electron microscopy 

allows for the inspection of structures in unprecedented detail; however, samples must 

be specially prepared for imaging with an electron microscope. Traditionally, the 

preparation process often involved methods that had deleterious effects on the struc­

ture of samples, especially biological ones. Furthermore, radiation damage effected 

by the necessary use of an electron beam makes detailed examinations of radiation­

delicate structures problematic[2]. 
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Cryo-electron microscopy ( CryoEM) has repeatedly shown itself as a viable mech­

anism for imaging biological specimens. CryoEM is a process in which specimens are 

imaged using an electron microscope while kept under cryogenic temperatures, usually 

at or below -180°C. Cryogenic temperatures have the effect of protecting biological 

specimens from the most degrading effects of the electron beam and the ultra-low 

vacuums present within the microscope[3). 

The preparation of samples for CyroEM procedures has been well documented[4) 

and generally consists of four steps. 

1. Application of sample to to the imaging substrate 

2. Removal of excess sample from the substrate 

3. Vitrification of sample 

4. Short term storage of sample 

The first step in preparing a specimen for CyroEM imaging involves application 

of the sample to the imaging substrate, also known as a grid. A typical grid is a thin 

copper disc on the order of 3mm in diameter. The grid has a series of perforations, 

between which the specimen is suspended. The diameter of the grid, the size/shape of 

the holes, and the coating of the grid can be adjusted to fit the needs of the particular 

imaging study. Figure 1.1 shows a typical CryoEM grid. The grids are very delicate, 

and special care must be taken to grip the grid only on its outer circumference to 

avoid damaging the imaging area. To apply specimen to a grid, the operator grips the 

grid with a pair of tweezers and applies several micro-liters of an aqueous suspension 

of the specimen to the central area of the grid using a micropipette or similar tool. 

The second step is the removal of excess specimen from the imaging grid. The 

purpose of this step is to ensure that the specimen forms a thin-film within the 
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Figure 1.1 
coating. 

Typical CryoEM imaging grid. This grid is shown sans any carbon 

perforations of the grid and does not bead on the surface of the grid. A thin-film 

is desirable as it limits electron scattering during the imaging process , resulting in a 

clearer picture[5]. Thin films also promote the rapid freezing of the sample due to 

their high surface-area to volume ratio[1). The removal process is known as blotting 

and involves bringing filter paper into contact with the grid surface. The filter paper 

absorbs any excess specimen from the grid while a portion of the sample remains 

suspended within the grid perforations. Typically, this step is done in a high-humidity 

environment to retard evaporation of the thin-film after blotting. Blotting pressure 

and time should be monitored to provide control over the amount of sample removed 

from the imaging grid, allowing for the creation of thin films upon the imaging grid 

of a predictable and reproducible thickness. Care must be taken to minimize bending 

of the grid during the blotting process, as this can irreparably damage the grid and 

render it unfit for introduction into the electron microscope. 
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The third step involves the vitrification of the sample. For biological specimens, 

vitrification usually is conducted in liquid ethane at temperatures between -180 and -

175°C. Liquid ethane is used as the freezing cryogen because it is capable of supporting 

cooling rates of -105 Kjsec: high enough such that vitreous ice is formed when a thin­

film sample is submerged. Crystalline ice is undesirable as ice crystals harm biological 

structures and cause artifacts in the imaged specimen. Vitreous ice, being amorphous 

in nature, has none of these characteristics. Liquid ethane is created by condensing 

gaseous ethane in a liquid nitrogen cooled dewar. The sample is vitrified immediately 

after blotting by plunging the sample grid into the ethane bath and holding it there 

for several seconds. For successful vitrification to occur, the liquid ethane must be 

maintained at a temperature near its melting point. If the liquid ethane bath is too 

warm, crystalline ice will form instead of vitrified ice. If the ethane bath is too cold, 

then it will freeze and the imaging grid will be destroyed during the plunge-freezing 

process when the grid impacts the frozen ethane. 

The final step in preparing a sample for CryoEM studies is placing the sample 

into short-term storage for transport to the electron microscope. Liquid nitrogen is 

usually used as the storage cryogen, though any system that maintains the sample's 

temperature below the specimen's devitrification temperature can be used[6]. If liquid 

nitrogen is used, the grid is transferred from the liquid ethane and submerged in 

liquid nitrogen, where it is then placed into a storage device. The transfer between 

the liquid ethane and liquid nitrogen must occur very quickly, or the sample will re­

crystalize when its temperature reaches the de-vitrification temperature. For aqueous 

specimens, this temperature is around -133°C[l]. 
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1.2 Previous Work 

The first practical electron microscope was created in the early 1930s by Rusk and 

Knoll. Even early in its development, the benefits of the electron microscope over 

traditional optical systems were obvious. The greatest advantage that electron mi­

croscopes systems held over competing systems was their vastly superior resolving 

power: even early systems could resolve details several magnitudes of order smaller 

than other methods[7]. 

Interest in the electron microscope steadily increased, and its performance was 

unmatched in a variety of fields. However the inability to successfully image many 

biological samples limited the usefulness of the electron microscope to a field that 

could derive great benefits from its resolving power. 

Early electron microscopy studies of biological specimens left much to be desired: 

imaged specimens often lacked enough contrast to distinguish between structures 

within the sample. Chemical fixing methods have proven successful at preserving 

samples for imaging and improving contrast, but chemically fixing the samples of­

tentimes introduces distortions within the structure of the sample. These distortions 

make the interpretation of of images produced via chemical fixing methods diffi.cult[4]. 

Freezing of samples using traditional means also proved problematic. Under most 

conditions, liquid water freezes to form crystalline ice. During the freezing process, 

growing ice crystals can impede on delicate biological structures and either distort or 

damage them[6]. Freezing of samples also results in the separation of the sample into 

areas containing pure ice and highly concentrated specimen particles that cannot 

represent the distribution of specimen particles prior to freezing(8]. Furthermore, 

crystalline ice results in the scattering of the electron beam when a sample is imaged 

under an electron microscope. Artifacts in the final image caused by the scattering 
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effect limit the ultimate resolution of samples embedded in crystalline ice[9]. 

A remedy to the problems associated with fixing biological specimens was rec­

ognized with the discovery of vitrification of pure water and diluted aqueous sus­

pensions [10, 11]. Specimens that were vitrified maintained physical and chemical 

characteristics that were closer to those of the un-fixed specime. The key to the cre­

ation of vitrified ice is freezing the sample so fast that ice crystals do not have enough 

time to form: on the order of -105 K/sec. 

In 1984, Adrian et al. reported the vitrification and imaging of biological specimens 

under an electron microscope[! J. The procedure outlined in this seminal paper is 

largely the same procedure used to this day: an aqueous suspension of specimen is 

applied to an electron microscope grid, the grid is blotted with filter paper to form 

a thin film of sample within the perforations of the grid, the grid is plunge frozen 

in liquid ethane that is near its freezing point, the grid is quickly transferred to a 

liquid nitrogen storage bath, and the grid is transferred into the electron microscope 

for imaging. 

Early on, it was noted that evaporation of the thin film after blotting caused 

an increase in the concentration of specimen in the image sample, changes to the 

structure of the sample, and evaporative cooling of the sample [12]. Evaporation 

of the thin film also results in 'dry grids': sample grids whose sample has mostly 

evaporated leaving only dehydrated specimen. To combat this problem a variety of 

solutions were proposed. Some solutions involved plunge-freezing the sample very 

quickly after the blotting process was completed in an effort to minimize evaporation 

of the solvent[13]. However, the most common design involved the control of humidity 

around the grid during and immediately after the blotting process. 

Murray and Ward designed a system that passed a stream of humidified air over 
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the grid to prevent evaporation [14]. Most designs, however, entail the creation of a 

humidity controlled chamber that isolates the grid from ambient conditions during 

preparation. Methods for maintaining constant humidity levels within the chamber 

fall into two primary categories: ultrasonic systems and forced evaporative methods. 

Systems that operate using forced evaporation rely on the circulation of air over 

a water saturated porous medium[15, 16], or on the humidification of air bubbles 

as they pass through a temperature-controlled bath[13]. Ultrasonic systems atomize 

a water bath by introducing a high-frequency waveform to the liquid. The energy 

introduced to the water is dissipated when wave peaks at the surface of the liquid 

break free and are ejected into the air as individual droplets[17]. Several devices have 

made use of ultrasonic humidification systems [18, 19, 20] 

Temperature control during sample preparation allows for control over tempera­

ture dependent chemical and biological reactions taking place within the sample, and 

can minimize micro-convective flow within the sample[15]. Early designs were only ca­

pable of maintaining temperatures within the chamber at above-ambient conditions[15, 

14]; however, subsequent devices were able to maintain temperatures above and below 

ambient[13, 18, 19, 21, 22]. 

While most early systems relied on manual blotting techniques[14, 15], subsequent 

systems incorporated semi-automatic and automatic systems to improve the consis­

tency of blotting [13, 18, 19, 21]. These systems implemented electromechanical or 

pneumatic actuators that could blot the imaging grid in a highly controlled and repro­

ducible manner. More recently, designs have been published that attempt to minimize 

the delay time between blotting and vitrification by utilizing an optimized blotting 

method[13]. 

More recent systems have automated other portions of the CryoEM imaging pro-
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cess. Potter et al. described a system capable of automatically loading imaging grids 

into a transmission electron microscope[23]. Ge et al. have described a system for 

preparing samples for imaging under a scanning electron microscope[24]. 

1.3 Commercial Systems 

This section presents the basic design element present within two commercial vitrifi­

cation devices, the Gatan Cryoplunge and FEI Vitrobot. 

1.3.1 Gatan Cryoplunge 

The Gatan Cryoplunge vitrification device is shown in Figure 1.2. The Cryoplunge 

consists of a support tower that encloses the pneumatic and electronic controls of the 

device. On the front of the tower, a small cylindrical glass environmental chamber 

is present. Within the environmental chamber are pneumatically actuated blotting 

pads and a passive humidification system. Sensors actively monitor the temperature 

and humidity of the environmental chamber. 

The blotting pads of the Cryoplunge are circular and can be rotated about their 

axes. During blotting, the grid is positioned midway between the blotting pads and 

aligned with their outer circumference. The pads are then extended towards one an­

other using pneumatic actuators. After blotting is completed, the operator manually 

rotates the blotting pads 90° so that fresh blotting paper will be available to the next 

grid. 

Directly below the environmental chamber is the cryogenic workstation. The 

cryogenic workstation consists of a temperature-controlled ethane cup, a temporary 

storage area for processed specimens, and a funnel for remotely filling the station 

with liquid nitrogen. 
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A pneumatically actuated piston passes through the center of the environmental 

chamber and aligns with the ethane cup. A door on the floor of the environmental 

chamber allows the piston to pass through the chamber and approach the ethane cup. 

During operation, a pair of electron microscopy tweezers and grid are installed 

onto the end of the piston. The piston is retracted into the environmental chamber 

and the grid is aligned with the outer edge of the blotting pads. The operator passes 

a micropipette through the side port of the chamber and applies a sample to the 

imaging grid. The system then blots the sample from the grid, opens the bottom 

door of the environmental chamber, and plunges the grid into the ethane bath at 

1. 7m/ sec[25]. The operator then manually transfers the grid to the storage area and 

resets the device for the next use. The Cryoplunge is able to process four grids before 

the blotting paper in the device must be replaced. 

Figure 1.2: Gatan Cryoplunge (left) and FEI Vitrobot (right) showing major features. 
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1.3.2 FEI Vitrobot 

The FEI Vitrobot vitrification device is shown in Figure 1.2. The Vitrobot consists of 

a support tower that encloses the pneumatic and electronic controls of the device. On 

the front of the tower, a stainless steel and teflon environmental chamber is present. 

Within the environmental chamber is an electrically driven blotting mechanism, ul­

trasonic humidifier, thermoelectric temperature control device, and sample cup for 

automatic deposition. Sensors actively monitor the temperature and humidity of the 

environmental chamber. 

The blotting pads of the Vitrobot are circular and can be rotated about their 

axes. During blotting the grid is aligned with the outer edge of the blotting pad. 

After blotting is completed, the Vitrobot automatically rotates the blotting pad in 

preparation for the next imaging grid. 

Directly below the environmental chamber is the cryogenic workstation. The cryo­

genic workstation consists of an ethane cup, a temporary storage area for processed 

specimens, and a funnel for remotely filling the station with liquid nitrogen. The 

temperature of the ethane cup is not automatically maintained. The operator man­

ually controls the temperature of the ethane by placing a device onto the cryogenic 

workstation that transfers excess heat from the ethane bath to the liquid nitrogen or 

by introducing warm gaseous ethane to the cup. 

A pneumatically actuated piston passes through the center of the environmental 

chamber and aligns with the ethane cup. A door on the floor of the environmental 

chamber allows the piston to pass through the chamber and approach the ethane cup. 

During operation, a pair of electron microscopy tweezers with grid are installed 

onto the end of the piston. The piston is retracted into the environmental chamber 

and the grid is aligned with the outer edge of the blotting pads. If automatic sample 
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deposition is desired, the grid is then submerged into a sample bath that is located 

within the environmental chamber. When manual deposition is desired, the operator 

passes a micropipette through the side port of the chamber and applies a sample to 

the imaging grid. The system then blots the sample from the grid, opens the bottom 

door of the environmental chamber, and plunges the grid into the ethane bath at 

great speed. The operator then manually transfers the grid to the storage button and 

resets the device for the next use. The Vitrobot is able to process 18 grids before the 

blotting paper in the device must be replaced. 

1.4 Motivation 

The process of preparing samples for cryo-electron microscopy studies is a labor and 

time intensive process. Even when using the most advanced commercial equipment[16, 

26, 27, 28], operators are forced actively participate in the preparation of each indi­

vidual grid. 

Figure 1.3 shows the steps in the grid preparation process that are currently 

automated and those which require a human operator. Currently, the only processes 

that are automated with commercial systems are the blotting and plunge-freezing 

steps. Operators must manually grasp each blank imaging grid with a pair a electron 

microscopy tweezers, install the tweezers within the plunge freezing device, apply 

sample to to the imaging grid, transfer the vitrified specimen between the ethane 

bath and liquid nitrogen storage area, and store the grid in a grid storage button. 

Because the operator is intimately involved with the grid preparation process, 

they are sensitive to the conditions required to successfully prepare a specimen. The 

sensitivity to the grid preparation process and the lack of reliance of the hard-coded 

instructions of a machine provide ample room for the operator to improvise and im-
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Grasp 
Install 

Apply Blot Plunge Transfer Install Grid Tweezer in 
Blank Grid f+ Freezing f+ Sample to f+ Sample f+ Freeze f+ Grid to f+ in Storage 
In Tweezer 

Device 
Grid From Grid Grid LN2 Button 

I 

I 1 Repeat for each desired 
[ Not Currently) ( CurrenUy ) J sample grid 

J Automated Automated 

Figure 1.3 : Steps involved in preparation of single grid for imaging in electron mi­
croscope. Steps colored red are automated in commercial systems. 

prove upon the specific procedures necessary to successfully prepare a given specimen. 

A fully automated sample preparation system has the potential to negate this 

advantage. However , a device or system that completely divorces the user from the 

method of its operation tends to impart less knowledge about the status of the process 

to the user. A common example of this phenomenon would be rise in popularity of 

countertop breadmakers. These devices only require the user to provide the necessary 

ingredients , while they automate the rest of the breadmaking process. Breadmakers 

provide minimal feedback to the user about the breadmaking process and generally 

only provide cryptic feedback on the current status of the machine. Breadmakers 

only allow minimal modification to the pre-programmed recipe. Because the bread-

maker shields the user from the breadmaking process, the operator has no hope of 

truly understanding the steps necessary to bake a successful loaf of bread. In short , 

the breadmaker problem involves the insufficient transfer of information between the 

device and user. 

The intention of this project is to automate the grid preparation process without 

encountering the breadmaker problem. This means that the resulting system should 
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provide information about the current status of the grid preparation process, indicate 

the steps involved in the preparation process, and allow for flexibility in defining the 

preparation procedure for a given specimen. The system should also impart as much 

knowledge as possible about the grid-preparation process to the user. 

Commercial vitrification systems solve the breadmaker problem by involving the 

user in nearly every step of the grid-preparation process. These systems, at the very 

least, require a highly trained operator to process grids successfully. In essence, these 

devices sidestep the problem of skill transfer by requiring an expert to successfully 

operate. Our proposed system does not require an expert human operator, however 

the machine itself is designed to maximize the amount of information presented to 

the operator. 

Moreover, because human interaction is vital to the functioning of commercial 

systems, they are susceptible to malfunctions precipitated by human error, require 

extensive training, and can be cumbersome to use even for the most skilled opera­

tor. Inconsistencies between prepared samples can be triggered by small changes in 

the grid preparation process. These changes are difficult to control when a human 

operator is a functional unit in the system. 

In this thesis, the development of a device capable of automating the preparation 

of samples for cryo-electron microscopy studies is presented. The system has been 

dubbed ASPECT: Automated Sample Preparation Entity for Cryo-TEM. ASPECT 

provides flexibility in preparing specimens, is easy to operate, provides extensive 

information regarding the status of the device, and drastically reduces the need for 

active human participation in the grid preparation process. The ASPECT device 

presented in this thesis minimizes inconsistencies in prepared samples by eliminating 

human input during the sample preparation process. 



Chapter 2 

Design Rationale 

Two commercially available automated vitrification systems inspired the design 

of the ASPECT system and serve as the benchmark to witch the performance of 

the ASPECT system is judged. The Cryoplunge and Vitrobot are currently used 

in laboratories around the world, and their performance characteristics are well un­

derstood. These commercial systems only automated a small portion of the grid 

preparation process as described in section ?? . During development of the ASPECT 

system, an effort was made to improve upon the design philosophies represented by 

the Cryoplunge and Vitrobot only when significant performance or usability gains 

were achievable. As a result, the design lineage of some systems in the ASPECT 

device can be directly traced to subsystems present in the Vitrobot and Cryoplunge 

devices. 

This chapter presents the design rational behind the subsystems of the ASPECT 

device. For more detailed information on the systems present within the final AS­

PECT device, please see chapter ?? . 

2.1 Adept Cobra 600 and Grid Handling 

The Adept Cobra 600 is a selectively compliant assembly robotic arm (SCARA) that 

has proven itself capable of performing a variety of assembly and pick-and-place type 

procedures[29]. In the ASPECT system, the Cobra transfers the imaging grid between 

stations where deposition, blotting, vitrification, and storage occur. The Cobra was 

chosen primarily for its relatively large workspace and capability to operate at a high 
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rate of speed (>100in/sec)[30]. The large size of the Cobra's workspace allows for 

flexibility when placing other hardware elements of the ASPECT system. The high 

rate of speed gives the ASPECT device the capability to process grids much faster 

than competing devices. Furthermore, the positional accuracy of the Cobra is high 

enough to reliably place the grid at any position within the environmental chamber. 

The Cobra was also chosen because of the Adept Technology's good track-record 

of producing reliable and safe industrial robotics. A custom robotic system could 

have integrated better with the ASPECT device, but the development of a reliable 

custom robot was not in the scope of this project and would have hindered the rapid 

development of ASPECT. 

2.2 Grid Capacity 

The ASPECT system is designed to process a maximum of twelve grids before are­

supply of blotting paper, grid storage buttons, and imaging grids is necessary. This 

capacity was decided upon after consulting with personnel familiar with the opera­

tional characteristics of both the FEI Vitrobot and Gatan Cryoplunge. 

The maximum capacity of the Cryoplunge is four grids, and was deemed insuffi­

cient for certain imaging tasks. Similarly, the maximum capacity of 18 grids provided 

by the Vitrobot was rarely taken advantage of. A capacity of 12 grids was determined 

to represent a happy medium between the two devices, and was settled upon as a 

design constraint for the ASPECT system. 

2.3 Environmental Chamber Access Doors 

Areas of the vitrification device containing cryogens must be located where they will 

not be exposed to the high humidities present within the environmental chamber. 
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This precaution prevents the formation of frost on structures exposed to the cryogens 

and the absorption of liquid water into the ethane bath[15]. 

To facilitate rapid plunge freezing, the ethane bath must still be readily accessed 

from the environmental chamber. Both the Cryoplunge and Vitrobot systems locate 

the cryogenic workstation directly below the environmental chamber. The worksta­

tion is accessed from the chamber via a sliding-door that opens during the plunge­

freezing process. 

In the ASPECT device, a similar approach is taken. The cryogenic workstation is 

located directly below the environmental chamber and separated from the chamber 

with a sliding door. Before plunge-freezing, the door slides open to expose the ethane 

cup to the environmental chamber. ASPECT then plunge freezes the sample and 

transfers the sample to storage before exiting the workstation and closing the sliding 

door. 

A second door on the front of the ASPECT's environmental chamber allows the 

Cobra's end effector to enter the environmental chamber. 

2.4 Automated Sample Deposition 

The FEI Vitrobot has the ability to automatically apply sample to the imaging grid. 

The Vitrobot literally dips the entire grid into the specimen[31]. While this method 

is functional, it requires a relatively large volume of sample that can be problematic 

to obtain if the sample is very expensive or rare. 

In the ASPECT system, a Chemyx Fusion 100 Syringe pump is used to automat­

ically deposit specimen onto the surface of the grid. This method is preferable to 

the dipping method as the volume of sample necessary is limited only by the geome­

try of the syringe. A syringe with a smaller volume requires less sample to function 
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properly. 

The ASPECT device also has a manual deposition mode that allows the operator 

to apply sample directly to the surface of the grid using a micropipette. The manual 

deposition mode is used when sample volumes are too small to be accommodated by 

the syringe pump. 

2.5 Blotting Mechanism 

Besides the automatic grid handling system, the biggest difference between ASPECT 

and commercial systems is the implementation of a linear blotting mechanism in the 

ASPECT device. 

The grid handling mechanism present in commercial systems consists of a pair of 

stainless steel tweezers mounted on a pneumatically actuated vertical piston. The 

piston is only capable of translating the tweezers along its vertical axis. As a result, 

both the Vitrobot and Cryoplunge must have a mechanism that presents fresh blotting 

paper to the imaging grid while accounting for translation of the grid solely on the 

vertical axis. 

These systems both solve this problem by implementing a pair of circular blotting 

pads as shown in Figure 2.1. During the blotting process, the grid is held in a fixed 

position between the pads so that the grid falls just inside the outer circumference of 

the blotting pad. The blotting pads are rotated about their axis until unused blotting 

paper is aligned with the grid. Finally, the blotting pads are extended towards the 

grid until they make contact with it. 



_Blotting ~ 
Motion 

_........___ Blotting 
~ Motion-

1 

Figure 2.1 : Principles of rotational blotting mechanism. Grid (gold) is held between 
blotting pads. Pads move towards grid to perform blotting action. Pads rotate about 
central axis to expose unused blotting (colored sections) paper to grid. 

The blotting pads in commercial systems require two actuations, one to blot the 

grid and another to rotate the pad and present fresh paper to the grid. These ad-

ditional actuations complicate the control framework for the devices and introduce 

more points where failure can occur. 

The Adept Cobra is not constrained to the vertical axis when positioning the 
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grid within the ASPECT device. As a result, the ASPECT system is not required to 

place the grid in the same position each time blotting occurs. In the ASPECT system, 

the blotting pads are linear in nature. Instead of blotting on the circumference of a 

circular blotting pad, the ASPECT system blots along the length of a linear blotting 

pad. The grid is placed at a different position along the pads during each blotting 

cycle. Thus, the pads do not need additional actuations to present fresh blotting 

paper to the grid. The linear blotting pads in the ASPECT device require only a 

single actuation to blot the imaging grid, as opposed to two actuations in commercial 

systems. This design results in a mechanically straightforward and more reliable 

actuator design as well as a simpler control framework. 

2.6 Humidification System 

The maintenance of a high relative humidity during the blotting process retards the 

evaporation of the thin-film from the imaging grid and helps to ensure that the sample 

is fully hydrated when vitrification occurs. The humidification systems present in 

commercial systems either rely on the evaporation of water from a porous sponge or 

on atomizing water into the atmosphere of the environmental chamber. 

The humidification system present in the Gatan Cryoplunge is of the passive 

variety. Air from the environmental chamber is passed over a porous cellulose sponge 

that has been soaked in water. As the sponge slowly evaporates, the humidity of the 

environmental chamber increases. Though this system maintains the humidity of the 

environmental chamber at or near 100%, it has one large drawback: it takes a long 

time to reach 100% humidity. According to Gatan's system specifications, it takes 

the Cryoplunge 15 minutes to reach 100% relative humidity[16]. 

The humidification system present in the FEI Vitrobot operates fundamentally 
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differently than the one in the Cryoplunge. Instead of relying on the passive evapo­

ration of a sponge, the Vitrobot implements an ultrasonic humidification system that 

actively saturates the air with water vapor. The ultrasonic humdifier in the Vitrobot 

is capable of humidifying the environmental chamber in less than one minute[20]. 

Both passive and active humidifications systems were tested with prototypes of 

the ASPECT system. The performance of both humidification methods in the proto­

type chambers mirrored the performance of these systems in the commercial devices: 

ultrasonic humidification systems provided much faster humidification of the environ­

mental chamber. To capitalize on the increased performance of the active humidifi­

cation system, the final ASPECT environmental chamber was designed to utilize an 

ultrasonic humidifier. 

2. 7 Environmental Chamber Temperature Control 

Temperature control of the environmental chamber in the ASPECT system is imple­

mented using a thermoelectric temperature control device that was salvaged from a 

non-functional Vitrobot. Testing of the system revealed that the temperature control 

device was only able to heat/cool the ASPECT environmental chamber to tempera­

tures within 5°C of ambient. The Peltier effect chip that provides the heating/cooling 

effect was replaced with a higher wattage unit to compensate for the increased volume 

and poor insulation of ASPECT's environmental chamber. Subsequent tests with the 

modified temperature control unit revealed that the ASPECT's environmental cham­

ber could reach temperatures 20°C above ambient and 5°C below ambient. 
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2.8 Ethane Cup Temperature Control 

Ethane cup temperature control systems present in commercial grid preparation sys­

tems fall into two broad categories. Passive systems, like the system present in the 

Vitrobot, rely on the human operator to monitor and maintain the temperature of 

the ethane bath. Active systems, as implemented in the Cryoplunge system, maintain 

the temperature of the ethane bath at a user-specified level without the intervention 

of the operator. 

The ethane cup in the Vitrobot is thermally coupled to the liquid nitrogen bath. 

If left on its own, the ethane bath would freeze and inflict damage to the grid and 

tweezers during the plunge freezing operation. To maintain the temperature of the 

bath, the operator periodically allows additional warm gaseous ethane to enter the 

ethane cup. By introducing this warm gas, the temperature of the entire bath is 

increased and freezing of the ethane is be postponed. 

Active heater systems, similar to those employed in the Gatan Cryoplunge and 

Electron Microscopy Sciences EMS-002[28], do not require the operator to manually 

monitor and maintain the temperature of the ethane bath. Instead, these systems 

actively maintain the temperature of the ethane bath using heating elements. 

2.8.1 ASPECT Ethane Temperature Control Evolution 

The ethane temperature control system in the ASPECT device was designed to auto­

matically monitor and control the temperature of the ethane bath. The temperature 

of the ethane bath is monitored using a cryogenic temperature sensor that is sub­

merged within the the bath. A Kapton-film resistive heating element is used to 

maintain the temperature of the ethane bath and to prevent freezing of the cryogen. 
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2.8.1.1 Version One 

Figure 2.2A shows a cross section of an early design for the ethane cup temperature 

control support bracket. Fig 2.2E shows a photograph of this design with installed 

film heater and cryogenic temperature sensor being placed into the ethane cup. The 

temperature sensor and heating element are mounted onto an acrylic scaffolding and 

submerged into the ethane bath. The scaffolding was designed to be removable to 

facilitate cleaning of the ethane cup. A U-shaped cutout in the scaffolding allows 

the grid to be introduced into the center of the ethane cup without impacting the 

scaffolding. When deemed necessary, the controller framework energizes the heating 

element in an effort to maintain the temperature of the ethane bath. This design 

proved effected at controlling the temperature of the ethane bath, but problems with 

the design were soon discovered. 

The most obvious problem with the early design was a very long time lag between 

the powering-up of the heating element and registration of a temperature change by 

the temperature sensor. This problem resulted in an ethane temperature that would 

not settle at a single value, but would oscillate about the desired temperature with 

an amplitude of 3-5°C. It is believed that the time lag was caused by insufficient 

thermal mixing of the cryogen due to the placement of the heating element in the 

topmost portion of the ethane cup. Buoyancy forces caused the warmed ethane to 

remain at the top of the ethane cup and resulted in very slow mixing with the cooler 

ethane at the bottom of the cup. The thermal stratification of the cryogen is also 

believed to have contributed to the poor vitrification performance of the ASPECT 

device because the specimen was initially exposed to the warmer ethane at the top 

of the cup instead of the near-freezing ethane at the bottom of the cup. 
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Figure 2.2 : Several designs used to mount the heating element and temperature 
sensor in the ethane cup. Designs A-C submerge the heating element in the ethane, 
and contain support structures for the film heater and temperature sensor. Image D 
represents the final design and only submerges the temperature sensor. In designs A­
D the circular hole represents the mount point for the cryogenic temperature sensor. 
In designs A-C , vertical slits are used to mount the Kapton-film heating element. 
Image E is a photograph of the structure represented by design A. 

A second problem with the initial design of the temperature control hardware was 

the very delicate nature of the scaffold used to support the heater and temperature 

sensor. The scaffolding was very brittle, especially at cryogenic temperatures , and 

was very easy to break when installing into the ethane cup. 

2.8.1.2 Version Two 

A second design was proposed to address the problems encountered in the first design. 

This design is shown in Figure 2.2B. This design placed the heating elements at 
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the bottom of the ethane cup, located the temperature sensor above the heating 

elements, and greatly increased the the cross-sectional area of scaffolding. Because 

the scaffolding lacks the u-shaped cutout, the grid is held between the scaffolding 

and the wall of the cup during vitrification. The temperature control performance of 

this scaffolding was impressive: all of the temperature oscillations exhibited by the 

previous design were eliminated. Furthermore, the scaffolding was physically much 

stronger than the previous design and did not break as easily during insertion into 

the ethane cup. 

The second design had two deficiencies. The first involved the gradual buildup of 

frozen ethane on the walls of the cup after operating for 10-15 minutes. This buildup 

caused problems when plunge-freezing a grid. If the frozen ethane became to thick, 

the grid would impact the frozen ethane during the plunging process and become 

severely damaged. 

The more serious problem with the second design was the gradual evaporation of 

the liquified ethane from the cup. To increase the strength of the newer scaffolding, 

the U-shaped channel was removed from its design. This removal resulted in the 

creation of a 'fin' that extended from the ambient conditions above the surface of the 

ethane bath into the bath itself. During operation, thermal energy was transferred 

from the ambient atmosphere into the uppermost sections of the ethane bath and and 

resulted in evaporation of the bath. The heat transfer was severe enough to cause the 

ethane bath to simmer. Over a period of 5 minutes, roughly 25% of the ethane bath 

would evaporate. 
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2.8.1.3 Version Three 

A third design for the scaffolding was designed and implemented as shown in Fig­

ure 2.2C. This design reintroduced the u-shaped cutout from the first design and the 

orientation of the heater /sensor elements from the second design. The design also 

featured a cross-section that was wider than that of the first design, but still narrow 

enough to minimize heat transfer into the ethane bath. 

After several weeks of usage, a flaw inherent to the design of our control system and 

ethane cup scaffolding became apparent. Under certain conditions, it was possible to 

provide power to the heating element without the liquid ethane bath being present. 

When this occurred, it resulted in the rapid heating of the Kapton-film heater and the 

support scaffolding. Without a means to efficiently dissipate the heat, the resulting 

high temperatures caused the scaffolding to melt and rendered the heating element 

inoperative. 

2.8.1.4 Version Four 

The fourth and final design of the temperature control system solved the overheat­

ing problem. Instead of submerging the heating element in the ethane bath, the 

heating element is wrapped around the external circumference of the ethane cup. 

The aluminum of ethane cup acts as a sink for the heat produced by the heater. 

Even with no cryogen present, the heating element does not become hot enough to 

cause damage to itself or to other elements in the system. The scaffolding within 

the ethane cup was redesigned to support only the cryogenic temperature sensor as 

shown in Figure 2.2D. The scaffolding was designed to mount semi-permanently to 

the vitrification dewar via a support bracket. The semi-permanent nature of this in­

stallation allowed the cross-sectional area of the temperature sensor support scaffold 
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to be further minimized. 

2.9 Software Control Evolution 

The goal of the control framework within the ASPECT system is to present a single 

user-interface to the operator that provides full control over every subsystem present 

within the system. The control framework includes both the software and hardware 

elements necessary to interface with and control the ASPECT device. 

Early on, it was decided that National Instruments LabVIEW would be used as 

the primary development environment for ASPECT. LabVIEW was chosen because 

of its support for multiple operating systems (Mac OSX, Linux, and Windows) as well 

as its compatibility with of a wide variety of hardware interface devices. Lab VIEW 

also provides a graphical user interface editor that provides an avenue the operator 

with an easy-to-use and readily customizable graphical-user-interface. 

The desire to present the operator with a single user interface presented some 

unique challenges. Specifically, the control framework utilized by the Adept Cobra 

had to be made available for use by the Lab VIEW system. 

Adept Technology provides a C++ library that allows for the control of Adept 

robots from devices that do not natively support the Adept V + operating system. 

Lab VIEW's ability to execute C++ code would have provided an easy avenue for 

controlling the Cobra from within the Lab VIEW environment, however the necessary 

Adept libraries were too expensive and fell outside the budget for ASPECT. Instead, 

a variety of hardware and software interfaces were implemented and tested with the 

ASPECT system. 
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2.9.1 Version 1- Human in the Loop 

The initial version of the software control framework utilized a human operator as 

an intermediary between the Lab VIEW environment and the Adept system. When 

Lab VIEW indicated to the operator that the Cobra should perform a specific motion, 

the operator would manually execute the motion using the Adept system. 

This control framework was short-lived, and was only used to verify that the 

Lab VIEW code worked as expected. 

2.9.2 Version 2 - AutoiT 

Subsequent efforts to integrate the Lab VIEW environment and Adept systems fo­

cused on implementing a direct software interface between the systems. A Windows 

program, known as Auto IT [32], was chosen to act as an intermediary between Lab­

VIEW and the Adept terminal window. AutoiT is a program that can take control 

over the Windows environment and perform actions based on scripts that are written 

by the user. AutoiT scripts have the ability to launch and close programs, move 

application windows, enter text, and perform many other tasks. 

AutoiT scripts were written to perform any action that involved usage of the 

Adept systems. These actions included executing the Adept terminal window pro­

gram, powering up the Cobra, calibrating the Cobra, and executing programs on the 

Cobra. 

When the control loop within Lab VIEW determined that an action should be 

performed by the Cobra, a specific AutoiT script would be executed from within the 

Lab VIEW environment. This script would bi.-ing the Adept terminal window to the 

foreground, enter text into the terminal to load and execute the desired program, and 

return the Lab VIEW interface to the foreground. 
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The AutoiT system showed the feasibility of controlling the Cobra robot from 

within LabVIEW, however many problems plagued its implementation. The most 

serious problem was the lack of communication between the Lab VIEW environment 

and the Adept system. Because of the unidirectional nature of the AutoiT interface, 

Lab VIEW had no method to determine whether a command had been received and 

executed by the Adept system. To further complicate matters, AutoiT did not reliably 

perform all actions it was commanded to perform. As a result, the ASPECT device 

oftentimes performed unexpectedly. 

2.9.3 Version 3- Hardware Interface with Soft Emergency Stop 

The poor reliability of the AutoiT-based control system highlighted the need for 

bi-directional and error tolerant communication between the Lab VIEW and Adept 

systems. This need was fulfilled with version three of the interface. This version 

was hardware based and communication occurred over digital inputs and outputs 

provided by the Adept system and by a pair of National Instruments USB data 

acquisition boards. 

When a motion was required by the Cobra robot, a digital signal was sent by 

Lab VIEW to the Adept system via digital lines between the systems. Depending 

on the status of these lines, the Adept system could calibrate the Cobra, move it to 

various positions within its workspace, or halt the execution of any running program. 

The hardware interface also allowed the Adept system to relay its status LabVIEW. 

Lab VIEW used this data to verify that the Adept system was performing as expected. 

In the event of a malfunction, Lab VIEW as able to take actions to correct the problem. 

The performance of version three of the control system was very good in most 

circumstances. However, version three relied on software to control the emergency 
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stop functions between the Adept and Lab VIEW systems. The software emergency­

stop did not reliably stop the system and was rectified in version four of the control 

system. 

2.9.4 Version 4- Hardware Interface with Hard Emergency Stop 

To further increase the reliability of the emergency stop systems, a hybrid hardware­

software emergency stop system was implemented. This system does not rely on the 

emergency stop signal to propagate through the software present in the Adept of 

Lab VIEW systems. Instead, the emergency stop signal is intercepted and processed 

by custom logic circuitry. If an emergency stop signal is present, this circuitry cuts 

power to the entire ASPECT system. 

Version four represents the most recent control structure present in the ASPECT 

system. More information on its implementation can be found in sections 3.4 and 3.5. 



Chapter 3 

Experimental Setup 

The ASPECT device is capable of vitrifying specimens for cryo-electron microscopy 

studies with minimal human interaction. This chapter describes the hardware and 

software systems that are implemented in ASPECT device. 

ASPECT represents the evolution of the commercial systems that are currently 

on the market. These systems implement a variety of automatic features that endear 

them to laboratories worldwide, however their overall performance is limited by their 

utter reliance on the human operator. To overcome this limitation, the ASPECT 

system has been designed to fully automate all portions of the grid preparation process 

while requiring little, if any, human interaction. 

Our system can divided up into four primary subsystems: 

1. Grid Handling 

2. Sample Deposition, Blotting, and Vitrification 

3. Environmental Control 

4. Process Control 

Figure 3.1 gives a view of the environmental chamber and vitrification dewar from 

the ASPECT system. The vitrification dewar is where the vitrification and storage 

of imaging grids occurs. Images A, D and E in Figure 3.1 show the vitrification 

dewar positioned underneath the environmental chamber. This is the position of the 

vitrification dewar during grid processing. 
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1. Humidifier Reservoir 
2. Vitrification Dewar 
3. Chamber Heater/Cooler 
4. RH and Temp. Sensors 
5. Blotting Mech. Linear Actuator 
6. Front Door 
7. Gasket for Cobra arm 
8. Grid Storage Box 
9. Cobra End-effector 

Figure 3.1 Views of environmental chamber from multiple angles. 
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The environmental chamber contains systems for maintaining the relative humid­

ity and temperature of the chamber. The chamber also houses the blotting mecha­

nism. A pair of doors on the environmental chamber allows the end-effector of the 

Cobra to enter and exit the chamber. A pivoting door on the front of the chamber 

allows the Cobra to enter the chamber to access the blotting and deposition stations. 

Image E in Figure 3.1 shows the Cobra's end effector poised to enter the chamber 

through the front door. A sliding door located in the base of the chamber allows the 

Cobra to access the vitrification dewar. 

The remainder of the chapter is dedicated to the discussion of the subsystems that 

make up the ASPECT device. 

3.1 Grid Handling 

The heart of the ASPECT device is the grid handling system. The system operates 

by transferring grids between stations within the device where deposition, blotting, 

vitrification, and storage occur. A commercially available Adept Cobra 600 4DOF 

SCARA type robot is utilized to transfer the grid between stations. A PHD #19060-

2-001 parallel jaw pneumatic gripper is fixed to the end effecter of the Cobra robot. 

A pair of Pelco 5044-SV reverse-operation carbon-tipped tweezers is affixed to the 

pneumatic gripper via an ABS plastic mounting block as shown in Figure 3.2 . The 

tweezers are oriented between the jaws of the gripper such that the actuation of the 

gripper causes the tweezers to open and close. 

The tweezers chosen feature removable and replaceable carbon-fiber tips. The 

main benefit of carbon-tipped tweezers is that the tips are replaceable in the event 

that they are damaged. 

The use of carbon tipped tweezers also minimizes conduction cooling of the tweezer 
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body when the tweezer is submerged in a cryogen. This has the effect of preventing 

the build-up of large amounts of frost on the body of the tweezer that can break off 

and contaminate the sample. 

Figure 3.2 : End effector of Cobra showing pneumatic gripper with installed carbon­
tipped tweezers. 
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3.1.1 Grid Storage 

Grid storage is divided into three areas within the ASPECT system; blank-grid stor-

age, cryogenic temporary storage, and cryogenic permanent storage. 

Blank grid storage takes place in an acrylic grid-storage box that is fixed to the 

support table. The box can be seen in Figure 3.1E. The box measures 2.0x0.5x2.0 

inches. Along the top edge of the box, a series of 12 shallow grooves have been cut. 

These grooves each accept a single blank imaging grid. When retrieving a grid, the 

tweezers are opened and centered above the grid. When the tweezers are closed, the 

grid is gripped on its outer circumference and lifted out of the grid-box. The grooves 

are arranged in two parallel rows, while the columns are offset from one another as 

shown in Figure 3.3. This offset prevents damage to neighboring imaging grids as the 

tweezers open and close during the gripping process. Pink highlights in Figure 3.3 

show the area swept by the tweezer tips during the gripping process. 

c- _) 

Figure 3.3 : Top view of grid holder box. Horizontal black stripes are holding cells for 
imaging grids. Pink vertical stripes denote area swept by tweezers during gripping 
motion. 

Cryogenic temporary storage takes place within the outer compartment of the 
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vitrification dewar. The vitrification dewar contains a support mechanism capable of 

holding three custom designed grid buttons. Figure 3.4 shows a view of the vitrifica­

tion dewar with a single installed button. Figure 3.5 shows a close up of a button. 

Transfer to cryogenic temporary storage occurs immediately after the sample is 

vitrified. The Cobra robot quickly transfers the imaging grid from the ethane bath 

and deposits it within one of the diamond shaped cavities in the grid storage button. 

The vitrification dewar is able hold three buttons at any given time, and each button 

is capable of holding four prepared grids, thus the system is able to accommodate 

twelve processed grids at any given time. 

Figure 3.4 : Vitrification dewar showing one installed button. 
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The grid storage buttons are keyed so that they can only be installed into the 

vitrification dewar in a single orientation. A secondary key on the storage button 

and their support mechanism prevents the installation of commercially available grid 

storage buttons into the device. This feature was necessary because the position and 

orientation of the diamond cavities within commercial buttons varies con iderably 

from one button to the next. Before the grid is inserted into the storage cavity, it 

must be aligned with the cavity so that the grid does not impact the button during 

the insertion process. Poor tolerances in commercial buttons resulted in many dam-

aged grids during early testing of the ASPECT device. The design of the secondary 

key allows ASPECT buttons to be used in any equipment that accepts standard com-

mercial buttons, however commercial buttons cannot be installed into the ASPECT 

system. 

Figure 3.5: View of grid storage buttons. Commercial button shown on left, ASPECT 
shown on right 

Cryogenic permanent storage takes place in a separate commercially available 

dewar. The operator transfers the filled grid buttons from the vitrification dewar 

to the storage dewar using a device known as a 'button rod'. The button rod is a 
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Teflon rod roughly 6in long. One end of the rod is flared to match the diameter of 

a grid storage button. A threaded brass stud projects from the flared end of the rod 

and mates with corresponding hole in the center of the button. The flared end of 

the rod prevents the grids from escaping the button during transport. The operator 

mates the flared end of the rod with the submerged button and then transfers the 

button/rod unit to a permanent storage area, where it is submerged in liquid nitrogen 

until needed for imaging. 

3.1.2 Environmental Chamber Access 

The environmental chamber is designed to admit the passage of the Cobra's end­

effector with attached tweezer. The access system consists of two electronically actu­

ated doors and a passageway cut into the roof of the chamber that allows the Cobra 

to move through the environmental chamber. 

The front door to the environmental chamber is roughly 12" high and 3" wide. 

The door pivots 90° to admit the Cobra's end-effector. The door is actuated with a 

standard-sized high-torque digital hobby servo. The door is removable without tools 

to ease access to the interior of the environmental chamber. Views of the front door 

can be seen in Figure 3.1 and 3.7. 

The floor door allows the Cobra's end effector to access the vitrification dewar 

directly from within the environmental chamber. The floor door slides open and 

closed on a pair of teflon linear rails and is actuated by a DC electric motor via a 

rack and pinion gear set. 

The passageway cut into the roof of the chamber allows the Cobra to translate 

within the chamber without impacting the chamber. The passageway is sealed with 

gaskets that allow the Cobra to translate through the chamber while minimizing the 
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escape of atmosphere from the environmental chamber 

3.2 Sample Deposition, Blotting, and Vitrification 

This section describes the systems involved with deposition, blotting, and vitrification 

of the specimen. 

3.2.1 Sample Deposition 

Sample deposition in the ASPECT system occurs either manually or automatically 

depending on the preferences of the operator and on the demands of the particular 

imaging study. The operator is able to easily toggle between manual and automatic 

modes using the ASPECT graphical user interface. 

Manual deposition occurs outside of the chamber. After the grid is removed from 

the grid-storage box, the grid is positioned so that it can be easily accessed by the 

operator. The operator then proceeds to apply the specimen to the surface of the 

grid using a micropipette or similar instrument. Once the sample has been applied, 

the operator indicates to ASPECT system that the specimen has been applied. The 

system then transfers the grid into the environmental chamber so that blotting can 

occur. 

Automatic deposition occurs within the chamber. A syringe pump is placed out­

side the chamber and a syringe filled with the desired specimen is installed into the 

pump. The syringe needle passes through a port on the side of the environmental 

chamber. During processing, the grid is transferred from the grid-storage box to the 

environmental chamber where it is positioned O.lmm from the tip of the syringe nee­

dle. The syringe pump then deposits the desired volume of sample onto the imaging 

grid. The grid is then transferred to the blotting station within the chamber. 



39 

3.2.2 Grid Blotting 

A photograph of the blotting mechanism is shown in Figure 3.6. The system is located 

within the humidity chamber and consists of two parallel stainless-steel rails that run 

between the side walls of the environmental chamber. A pair of support pads are 

supported lengthwise between the two rails. The support pads are able to translate 

along the length of the rails. A pair of linear actuators are cantilevered off each wall 

of the environmental chamber. The actuators pass through the walls of the chamber 

and attach to one of the support pads. The actuators translate the pads along the 

length of the rails. 

Each support pad mates with its corresponding blotting pad using magnets that 

are embedded into the faces of each pad. The blotting pads consist of a 4xlxl" piece 

of acrylic into which magnets have been embedded. One long side of the blotting pad 

is covered with a soft foam rubber material. Filter paper is stretched across the foam 

rubber and fastened in place using magnetic clips that attach to the smaller faces of 

the blotting pads. Section 4.0. 7 describes the installation of the blotting pads. 

During the blotting process, the grid is placed midway between the fully-retracted 

blotting pads such that the face of the grid is parallel to the faces of the blotting pads. 

The pads are extended towards the grid until they come into contact with the grid 

and squeeze the grid with the desired amount of force. After the desired blotting time 

has elapsed, the pads are retracted and the grid is transferred into the liquid ethane 

bath for vitrification. 
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1. Linear Actuator 
2. Support Pad 
3. Foam Covered Blotting Pad 
4. Guide Rail 
5. Magnetic Blotting Paper Clip 
6. Floor Door 
7. Environmental Chamber Wall 

Figure 3.6 : Top view of blotting mechanism showing blotting pads in their fully 
retracted position 

The ASPECT system is also able to control the force applied to the imaging grid 

during the blotting process. The force applied to the grid is a function of the stiffness 

of the foam backing material present within the blotting pads and the compression 

of the foam. The force is controlled by specifying an overlap distance to the blotting 

pads. An overshoot distance of Ocm will cause the pads to come into contact with each 

other but will exert no force on an imaging grid held between them. By increasing 

the amount of overshoot during the blotting process, the operator can modify the 

amount of force applied to the imaging grid. 
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A P-controller is used to control the linear actuators during the blotting process. 

The loop-rate for the P-controller is not bounded, and thus runs as fast as the system 

can support. 

3.2.3 Vitrification 

Vitrification takes place in a liquid ethane bath that is located within a liquid nitrogen 

cooled dewar. During vitrification, the grid is plunged into the ethane bath for several 

seconds before it is transferred to a liquid nitrogen cooled grid button for storage. 

The temperature of the ethane is maintained just above its freezing point by a system 

that is described in section 3.3.3. 

3.3 Environmental Control Systems 

The ASPECT system contains an environmental chamber that is both temperature 

and humidity controlled. The conditions within the chamber can be adjusted to meets 

the needs of the particular imaging study. Typically, a high humidity is desirable to 

retard evaporation of sample from imaging grids after blotting. 

The environmental system consists of an ultrasonic humidifier, thermoelectric 

heating/ cooling apparatus, air circulation fans, and sensors for measuring the relative 

humidity and temperature within the chamber. Figure 3.1 shows labeled photographs 

of the environmental chamber from various angles. Figure 3.7 shows a solid rendering 

of the environmental chamber, with the chamber highlighted in green. 
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Figure 3. 7 : ASPECT system. Environmental chamber highlighted green. 

3.3.1 Humidification System 

The humidification system consists of an Ocean Mist DK-24 ultrasonic humidifier , 

water reservoir, ventilation fan, and a Rense HX-748-T-11 relative humidity sensor. 

The ultrasonic humidifier is submerged in a water reservoir as shown in Figure 3.8. 

A ventilation fan , also shown in Figure 3.8 draws fresh air from the exterior of the 

chamber, through the water reservoir , and over the ultrasonic humidifier. The hu­

midified air is then forced into the environmental chamber using the same fan. 



43 

Figure 3.8 : Humidification system. Water highlighted green for clarity. 

The humidifier is actuated via a standard electromechanical relay. When the 

control framework detects that the humidity has fallen below a user-specified level a 

control signal activates the relay and subsequently the humidifier. 

3.3.2 Environmental Chamber Temperature Control 

The temperature control system consists of a ThermoCool thermoelectric heating as­

sembly with a Laird Technologies 120W thermoelectric chip. A Carrel NTC008WPOO 

temperature sensor is used to monitor th temperature within the environmental 

chamber. 

When the temperature of the environmental chamber is within the user-specified 

range , no power flows into the thermoelectric device and the chamber temperature 
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gradually acclimates towards ambient . When the controller detects that the tempera­

ture has fallen outside the user-specified range, current is supplied to the device. The 

direction of current through the thermoelectric chip determines whether the chamber 

will be heated or cooled. The change of direction is accomplished using a DPDT 

power-relay wired as shown in Figure 3.9. 

Peltier Device 

DPDT 

Figure 3.9 : Method for switching current direction through thermoelectric chip. 

3.3.3 Ethane Cup Environmental Control 

The temperature control system for the ethane cup consists of a 30W Kapton film 

heating element, Omega Engineering CY670D-CU cryogenic temperature sensor, and 

an acrylic support bracket . The installed bracket can be seen in Figure 3.4. 

The film heater is wrapped around the outer circumference of the ethane cup and 

aligned with the bottommost edge of the cup. The heater is located at the bottom of 
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the ethane cup to promote thermal mixing of the fluid when power is enabled and to 

prevent the formation of frozen ethane at the bottom of the cup. The temperature 

sensor is located at mid-level within the cup and is support d by an acrylic bracket 

that is rigidly attached to the vitrification dewar. The support bracket is constructed 

from 1/8" acrylic. A profile view of the support bracket is shown if Figure 3.10. The 

cross ectional area of the vertical support member was made as small as po sible to 

minimize the conduction of heat into the ethan bath. 

-140°C 
Gaseous Nitrogen 

-181°C 
Liquid Ethane 

Figure 3.10 : Cross sectional view of cryogenic sensor mounting hardware showing 
temperature environments. 

Temperature control of the ethane bath is accomplished using a PD controller 

as shown in Figure 3.11. The desired ethane temperature and measured ethane 

temperature are inputs to the controller. Gains for the PD controller were determined 

through manual tuning. The output of the PD controller is converted into a PWM 

waveform. The PWM waveform corresponds to the desired power output of heating 

element. A correction factor is added to the PWM signal to maintain a baseline 

output of the heater when the desired equilibrium temperature has been reached. 
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This correction factor was determined through experimentation, and corresponds to 

a duty cycle of 15.2% and a thermal output of 5W. The PWM waveform is routed to 

the film heater via a USB data acquisition card and a high-speed reed relay. 

L___ _________ Measured Ethane Temperature ____ _J 

Figure 3.11 : PD Control system for ethane heater. 

3.4 Process Control 

Figure 3.12 shows a flowchart that illustrates the relationships between the various 

hardware and software layers present within the ASPECT system. 

At its highest level, the control of the ASPECT system is accomplished using a 

state machine based master control program (MCP) running under National Instru-

ments LabVIEW. The MCP determines what procedure the system must undertake 

next based on the previous state, input from operators, and on the operational status 

of hardware and software devices connected to the system. Low level functions within 

the MCP framework are implemented using hard-coded step sequencing, monitoring 

algorithms running in parallel with the main control structure, and hardware based 

emergency stop functions. 
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Figure 3.12 : An overview of the hardware/software systems of the ASPECT system. 

A slave control program (SCP) runs concurrently to the MCP. The SCP is run on 

the Adept MV Controller under the V+ operating system[33]. The SCP controls the 

Cobra robot and receives commands from the MCP over digital I/0 lines provided 

by a National Instruments USB data acquisition device (DAQ). 
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The MCP communicates with other elements of the system using a pair of National 

Instruments DAQ boards as well as a Prolific Technologies USB to serial converter. 

The DAQ boards connect the MCP directly to sensors and actuators within the 

system and serve as an interface between the MCP and the SCP. 

3.4.1 Lab VIEW Based Control 

The core of our device is Microsoft Windows 7x64 machine running National Instru­

ments Lab VIEW. A custom MCP program running under Lab VIEW is used primarily 

as a scheduling and coordinating agent between the various subsystems of ASPECT. 

All control signals are routed through a pair of National instruments USB data acqui­

sition devices or through a Prolific Technologies USB to serial converter cable. More 

information on the hardware interfaces utilized within the ASPECT system can be 

found in 3.4.4 

3.4.1.1 Graphical User Interface 

The user interface to the device is displayed on the Windows host machine and is 

implemented using the tools available within the LabVIEW environment. During 

runtime, the user has direct control over a variety of the parameters of the system. 

These controls are provided through a tabbed interface as shown in Figure 3.13. 

Settings are categorized according to their function and placed under the appropriate 

heading. 

1. G lo hal Controls Provides controls that must be specified for the system to 

function. These include the number of grids to be processed, the save path for 

data storage, and controls that initialize the calibration procedure and begin 

processing grids. 
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2. Timing Allows for the control of all timing parameters within the system. 

These include blotting times, delay times between steps, and freezing times. 

3. Environmental This tab allows the operator to modify parameters that affect 

the environmental conditions of the environmental chamber and ethane cup. 

The operator can set desired temperatures and humidities, disable/enable the 

environmental actuators, and control these actuators manually. 

4. Blotting Here the user can specify a preference for dual or single sided blotting 

as well as the blotting force applied to the grid. 

5. Manual Controls When operating the system in semi-automatic mode, con­

trols here allow the operator to provide various commands to the system. 

6. Debug Controls These controls are used to control a system in an almost 

purely manual mode. They are not used during normal operations. 

The user interface also provides the operator real-time information on the tem­

perature and humidity levels within the environmental chamber and the temperature 

within the ethane bath. A secondary display (not shown) informs the user on the 

current operational status of the robot. 

During grid preparation, the MCP records information on the status of the system 

during the preparation of each grid. This data includes the data/time, grid number, 

temperature and humidity of the environmental chamber, temperature of the ethane 

bath, blotting force, and blotting time. In the case of an internal system fault, error 

information is also written to the file. 
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Figure 3.13 : Graphical user interface for ASPECT system 
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A large emergency stop button is also constantly visible to the user. When ac-

tivated, this button kills power to the entire system within one-quarter of a second. 

Further information on the emergency stop system can be found in section 3.5. 
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3.4.2 Adept V + Software Control 

An Adept MV Controller running the V + operating environment is used for control 

of the Cobra robot. The slave control program, SCP, runs on the Adept systems, and 

is subservient to the MCP running under LabVIEW. Commands are issued by the 

MCP to the SCP via a hardware interface that is described further in section 3.4.4 . 

The Adept V + operating system and associated hardware allow for the operator 

to interact with the system in several different ways. A user may launch programs and 

monitor the status of a running program using the manual control pendant. The user 

can also interact with the controller through a remote terminal connection. In the 

ASPECT system, this terminal connection is provided over an ethernet connection to 

the same Windows computer running the MCP program. This connection allows the 

user to create, launch, and monitor programs on the Adept system from a familiar 

Windows interface. The ethernet interface also allows flexibility when physically 

locating the host PC with respect the the Adept system. 

During operation of the ASPECT system, the user has minimal interaction with 

the Adept terminal. Before a grid can be processed, the user must power up the 

Cobra, calibrate the robot, and launch the slave control program (SCP) on the Adept 

system. These text commands are issued through the Adept terminal. After these 

commands are issued, the MCP has control over the Adept system and the user 

interacts only with the graphical user interface provided by the MCP. 

The SCP continually monitors the digital input lines provided by the MV Con­

troller. When the MCP issues a command over these lines, the SCP launches a new 

program that corresponds to the specific command issued by the MCP. These sub­

programs contain to specific movements that the Cobra should perform during the 

operation of the ASPECT system. Before beginning any robot movements, these 
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sub-programs check to ensure that any movements performed by the Cobra will not 

impact structures within the workspace. This feature is implemented by assigning a 

set of safe-zones within the Cobra's environment to each sub-program. If the Cobra's 

position falls within a safe-zone, then the the sub-program continues to execute and 

the Cobra is free to move to its commanded position. If the sub-program is executed 

and the Cobra's position falls outside one of these safe-zones, then an error code is 

reported, the SCP closes, and an emergency-stop is issued. 

During run-time, the SCP provides feedback to the user through the terminal 

window. This output includes the current status of the robot, what motion is currently 

being performed, and the status of various software safety interlocks. 

3.4.3 MCP - SCP Communication Protocol 

The MCP and SCP programs communicate with one another over a parallel interface 

as depicted in Figure 3.14. 

Lines 0-1 are outbound lines from the MCP that instruct the SCP to begin ex­

ecution of a subprogram, verify that the Cobra falls into a safe-zone, or report the 

position of the Cobra to the MCP (not currently implemented). 

Lines 2-7 are outbound lines from the MCP that specify the desired subprogram 

the SCP. These lines are in binary-coded-decimal format, and code for a maximum of 

39 possible subprograms. Lines 2-5 are also used for control of ASPECT emergency 

stop system (see section 3.5). 

Lines 8-10 are inbound lines from the SCP that communicate status of the Adept 

system to the MCP. These lines are used to indicate to the MCP when a subprogram 

has begun execution, and when that subprogram has finished execution. The MCP 

uses this information to coordinate the motions of the Cobra with the operations of 
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other devices wit hin the ASPECT system. 

MCP 
- Digital Lines 0-7 ----. 

SCP 
Nl Labview ..--- Digital Lines 8-10 - AdeptV+ 

Lines 0-1 
MCP Specify Operation to SCP 

Lines 2-7 
MCP Specify Program Number to SCP 

Lines 8-10 
SCP Report Status to MCP 

Figure 3.14: Bidirectional communication protocol between MCP and SCP programs. 

3.4.4 Hardware Interace E lements 

This section describes the hardware devices that provide interface the MCP and SCP 

to each other and to other elements of the system. 

3.4.4.1 National Instruments Interface Devices 

A pair of National Instruments USB data acquisition devices are the primary interface 

between Lab VIEW and the rest of the system. A USB-6009 provides both digital and 

analog I/0. A USB-6051 provides additional digital I/0 lines. A Prolific Technology 

USB to serial converter is also utilized. Figure 3.12 gives a high-level overview of the 

tasks each device performs. 

Analog input lines on the USB-6009 are used by the MCP to monitor the temper-

ature and humidity sensors within the system and to to monitor the position-sensing 

potentiometers installed within the blotting mechanism. Digital output lines on the 

USB-6009 are used with supporting circuitry to control the blotting mechanisms , 

floor-door, ethane heater, ultrasonic humidifier, and Peltier cooling device. 
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Digital I/0 lines on the USB-6051 DAQ are used to communicate with the Adept 

hardware, provide e-stop functionality, and to power on the system. 

3.4.4.2 Adept Technologies Hardware Devices 

An Adept Technologies MV controller with installed AWCII interface card provide the 

operating environment and digital interface options to the Cobra robot. The AWCII 

board interfaces with an Adept CIP-2 interface panel and manual control pendant. 

The MV Controller is a self contained cabinet that contains all the hardware 

and software necessary to interface with the Cobra robot. The MV Controller runs 

a version of the V + operating system that has been customized by Adept. User 

designed programs are run within the V + system. In the ASPECT device, the MV 

controller runs the SCP program as described in section 3.4.2. 

The AWCII is an expansion card that installs into the MV Controller chassis. 

The AWCII expands the input/output capability of the MV Controller by providing 

additional serial, parallel, and ethernet connectivity options. ASPECT utilizes both 

the parallel and ethernet options for communication between Adept supplied hard­

ware and other elements in the ASPECT system. The ethernet interface is used in 

conjunction with Adept DeviceNET to provide a terminal interface to the operator 

on a Microsoft Windows based host machine. The parallel port interface provides 

several dozen digital input/output lines that are the primary communication channel 

between the MCP and SCP programs. More information on the hardware/software 

interface between LabVIEW and V+ can be found in sections 3.4.1 and 3.4.2. 

The CIP-2 interface panel plugs into the AWCII expansion board. The CIP-2 

provides a hardware emergency stop button,acts as a breakout box for the digital 

I/0 lines, and controls the power state of the Cobra. 
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The Adept manual control pendant plugs into the CIP-2 interface panel. The 

pendant allows for full control of the Cobra in manual mode, provides an additional 

emergency stop button, and can act as an interface device for programs running on 

the MV controller. 

3.4.4.3 Miscellaneous Interface Devices 

A Prolific Technologies USB to DB9 serial converter is used to interface the Windows 

PC with a Pololu #207 hobby servo controller. The servo controller is used to control 

the servo that actuates the front door. 

3.4.5 Circuit Elements 

Custom circuitry interfaces the sensors and actuators of ASPECT system to the 

National Instruments DAQ boards. This section describes the functionality of these 

circuit interfaces. 

3.4.5.1 Power Supplies 

A standard off-the-shelf ATX computer power supply is used to provide power to the 

system. A switchable 12V rail provides primary power and is rated at 15 amps. A 

constantly powered 5V rail provides power to circuit elements necessary to enable 

primary power and to the circuit elements that provide emergency stop functionality. 

5 and 7.5 Volt Supplies: 5V and 7.5V rails are implemented with a pair of 

LM317T voltage-regulators. The source voltage for these regulators is the 12V 

ATX rail. The 5V and 7.5V rails are subsequently used to power all circuitry 

present in the ASPECT system. 
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Constant Current Sources: Both the cryogenic temperature sensor and environ­

mental temperature sensor are powered by constant current sources of lOJ.LA and 

100J.LA respectively. These current sources are implemented using an LM234Z 

constant current source. 

Power Enable:The contacts of a pair of 5V SPST-NO electromechanical relays are 

placed in series with the "Power On" line of the ATX power supply as shows 

in Figure 3.15. Both relays must be in the closed position for the 12V line of 

the ATX power supply to become active. One relay is interfaced to the USB-

6051 DAQ through a PNP darlington power transistor. The actuator signal for 

relay 3 is inverted before being fed to the relay. In order to close both relays 

the digital line connected to the NPN transistor must be driven high while the 

inverted digital line must be driven low. This design minimizes the chances 

that the system is unintentionally powered up. The power for these relays is 

supplied by a constantly energized 5V line from the ATX power supply. Please 

see section 3.5 for more information on electrical power control in the ASPECT 

system. 

Digital 10 Buffers All outbound communication lines from the NI DAQ boards to 

the Adept CIP-2 interface panel are routed through non-inverting hex buffers. 

Theses buffers allow the low-current output of the NI DAQ devices to drive 

the more current hungry optocoupled input circuitry present within the CIP-

2 interface panel. Outbound signals from the CIP-2 are also routed through 

non-inverting buffers. 

H-Bridge Control H-bridge logic is used to control the DC motors around which 

the blotting mechanisms and floor-door are based. A ST Microelectronics 
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L298N dual bridge driver provides power to both blotting mechanisms. An 

NTE 1716 DC motor driver powers the floor door. Two digital control lines for 

each motor specify its power state: off, brake, rotate clockwise, rotate counter 

clockwise. These control lines are provided by the USB-6009 DAQ. 

3.5 Safety Systems 

The Adept Cobra is a powerful robot and is capable of moving at very high velocities. 

In the ASPECT system, the Cobra is run at 80% of its maximum speed, and can 

cause serious injury to operators if appropriate safety precautions are not taken. 

Because the Cobra operates in close proximity to its human operators, a robust 

emergency stop system is required to minimize injury to personnel and damage to 

system components in the event of a system failure. Furthermore, to prevent operators 

from unintentionally powering up the ASPECT system, a hybrid hardware/software 

safety interlock system has been implemented. Figure 3.15 gives an overview of the 

ASPECT emergency stop, power, and safety interlock systems. 

3.5.1 Emergency Stop 

In the event of a system malfunction, an emergency stop system disconnects power 

to the entire ASPECT system. The emergency stop system consists of two hardware 

buttons located on the Adept CIP-2 interface panel as well as on the manual control 

pendant. A software emergency stop button has been implemented within the MCP 

program. All hardware emergency stop buttons conform with OSHA Category 1 

requirements[34]. The software emergency stop button does not conform to any 

software emergency stop standard because none exists. 
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I t 

Figure 3.15 : Emergency stop and safety interlock systems. 12V rail is not powered 
until relays 2-4 are closed. 
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The Adept MV Controller provides two emergency stop lines for use by user­

supplied equipment. During normal operation these lines are closed. To issue an e­

stop signal, at least one of these lines must be broken. An open e-stop line immediately 

disconnects the power from the entire Adept system. In the ASPECT device, one of 

these lines is used to issue e-stop commands via the emergency stop button located 

in the MCP program. 

When the e-stop button is depressed, the MCP signals 1-1-1-1 on the first four dig­

ital lines that are normally used to specify sub-program selections to the SCP. These 

digits were selected because they code to a value greater than 9 in the binary-coded­

decimal format utilized by the SCP program. Under normal operating conditions, a 

1-1-1-1 input would cause errors if introduced to the SCP. However this problem is 

of little importance because in an emergency situation all programs running on the 

Adept system are automatically killed. 

The 4-bit signal is routed through a four-way AND logic gate as shown in Fig­

ure 3.15. The signal is then inverted and used to trigger an electromechanical SPST­

NO relay via a NPN darlington transistor. This logic has the effect of closing the 

relay when the 1-1-1-1 signal is not present. When the 1-1-1-1 signal is present, the 

relay opens and trips the emergency stop condition to the Adept system. 

The Adept MV controller provides a single unpowered line that is designed to sig­

nal external user-supplied devices when an emergency stop condition has occurred. 

Under normal operating conditions, the Adept e-stop signal relay maintains the con­

tinuity of this line. When an e-stop occurs, or when the system exits high-power 

mode, the relay opens and breaks the continuity of any circuit attached to this line. 

In the ASPECT system, this line is used to provide e-stop functionality to all non­

Adept supplied equipment. The line is powered with the persistent 5V line from the 
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ATX power supply. The coils of SPST-NO relay are placed in series with the 5V 

power supply and the Adept e-stop signal relay. The contacts of relay 4 are placed in 

series with the 'Power On' line from the ATX power supply. When the Adept system 

receives an e-stop signal, the Adept e-stop signal relay opens and disconnects power 

to relay 4, thus opening its contacts and breaking the continuity of the 'Power On' 

line. When the continuity of this line breaks, the ATX power supply enters standby 

mode and powers down the 12V rails upon which the remainder of the system relies 

on for power. 

3.5.2 Timed Interlock 

The integration of the emergency stop systems and power systems presents a problem 

when the operator wants to power up the system. When the system is powered down, 

all of the relays powered off of the 12V rail are in the open position. This means that 

the e-stop line triggered by the MCP (relay 1 in Figure 3.15) is indicating to the 

Adept system that an e-stop is present. Because the Adept system is receiving an 

e-stop command, the e-stop signal relay is open, which prevents relay 4 in Figure 3.15 

from enabling power to the 12V rails. In short, the system is stable if relay 1 and 

relay 4 are either both on or both off. A situation in which only one relay is on quickly 

results in that same relay also transitioning to the off state. To successfully power 

on ASPECT, a condition must be created in which the states of relays 1 and 4 are 

not coupled to one another. Furthermore, this condition must only be temporary in 

nature so as to not effect the emergency operation of these relays. 

To allow for powering of the system, a 555 timer circuit in monostable mode is 

used to trigger relay 4. When a temporary switch is depressed, the timer circuit closes 

relay 4 for a period of 20 seconds. Once this relay is closed, the operator can power 
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on the remainder of the system. If the system has not been fully powered within the 

twenty second window, then relay 4 will open as the timer output falls to ground and 

the ASPECT system will power off. When the system is fully powered, the e-stop 

monitoring relay is closed and relay 4 is powered even when the output of the timer 

circuit goes low. 

3.5.3 DAQ Hi/Lo Power Requirement 

To further reduce the occurrence of situations in which the ASPECT system can be 

inadvertently powered up, the outputs of two lines from the USB-6051 DAQ must be 

driven high and low before the system can be powered on. The high signal is routed 

through a darlington NPN transistor to power relay 2 as shown in Figure 3.15. The 

low signal is inverted before powering relay 3 in the same manner. The contacts of 

relays 2 and 3 are placed in series with ATX 'Power On' line. Only when the contacts 

of relays 2-4 are closed does the 12V rail of the power supply become energized. 

3.5.4 Power-up Procedure 

To successfully power up the ASPECT system, the user must understand how the 

emergency stop system interacts with the power supply. The system cannot be com­

pletely powered on until all emergency stops have been cleared, the timed interlock 

has been enabled, and the Adept Cobra has entered high-power mode. The following 

procedure describes how to successfully power up the system 

1. Execute MCP Program in Lab VIEW to clear e-stop conditions controlled by 

MCP 

2. Trigger timer circuit to temporarily power up system 
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3. Enable high power mode within Adept system to close the emergency stop signal 

relay 

Once these steps have been completed, the ASPECT system is fully powered up 

and ready to begin processing grids. The system will remain powered-up until an 

emergency stop command is issued or until the system has complete processing a set 

of grids. 



Chapter 4 

System Operations 

This chapter describes the setup and operation of the ASPECT device. The 

chapter is written in the chronologically beginning with the steps that should be 

undertaken first to successfully utilize the ASPECT system. 

4.0.5 Sample Selection 

The decision to manually or automatically deposit samples on the grid is determined 

partly by the volume of sample that is available. Sample volumes of greater than 0.25 

mL can utilize the automatic deposition mode. For samples with smaller volumes, a 

manual deposition mode is available. In this mode, the user manually deposits sample 

to the grid using a micropipette. 

By default, automatic sample deposition is selected. The operator needs to specify 

the desired sample volume under the 'Blotting' tab in the MCP interface. A button 

under the 'Manual' tab of the MCP allows the operator to select manual deposition. 

4.0.6 Grid Cleaning 

Before use, all imaging grids must be cleaned to remove any impurities and to maxi­

mize the hydrophobic qualities of grid's carbon coating. Grids are washed in acetone 

to remove any surface impurities, and then plasma cleaned. During plasma cleaning, 

the grids are enveloped in a plasma for several seconds. At the end of this process, 

the grids are removed from the device and are ready for use. 
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4.0. 7 Blotting Paper Installation 

Whatman #1 blotting paper is cut into rectangular strips 1" wide and 6" long. These 

strips are installed onto the removable blotting pads using magnetic clips as shown 

in Figure 4.1. The completed blotting pad assembly then clips magnetically onto the 

support as shown in Figure 4.1. The process is then repeated for the second blotting 

pad. 

Figure 4.1 : Installing blotting paper. Foreground shows clipping blotting paper onto 
blotting pad. Background shows blotting pad installed into ASPECT. 
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4.0.8 Humidifier Setup 

The ultrasonic humidifier is placed within the empty humidifier reservoir. The reser­

voir is the then filled with water until the level of the water is at least lcm above 

the highest point of the humidifier. The reservoir is then placed in its designated 

position at the rear of the device such that the reservoir's vent is aligned with the 

inlet port of the environmental chamber. Figure 3.8 show the humidifier installed on 

the environmental chamber, the water has been highlighted green for clarity. 

4.0.9 Blank Grid Installation 

Blank imaging grids are installed into slots cut into the grid storage box as shown in 

Figure 4.2. The box is capable of holding a maximum of twelve grids. 

Figure 4.2 : Installing a grid into the grid-storage box. 
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4.0.10 Dewar Cooling 

The outer section of the vitrification dewar is filled with liquid nitrogen. The nitrogen 

is periodically replaced as it boils off. The dewar is fully cooled when the vigorous 

boiling action of the liquid nitrogen has subsided to a simmer The cooling process 

typically takes 5-10 minutes. 

4.0.11 Power Up 

The ASPECT system should be powered up as described in section 3.5.4. 

The Cobra robot should be calibrated and moved to its home position by executing 

the 'calib' program from the Adept terminal interface or manual control pendant. 

4.0.12 Ethane Condensing 

The desired temperature of the ethane should be specified within the MCP program, 

typically -181°C. When the ethane cup temperature reaches -160°C, the ethane cup 

can be filled. 

To fill the cup the operator inserts a hollow glass application wand into the ethane 

cup as shown in Figure 4.3. The wand is connected to a pressured regulated ethane 

source at 5-10 PSI. The operator opens the ethane check valve and allows the gas to 

flow into the cup. When the gas touches the cooled walls of the cup, it immediately 

condenses into a liquid. The operator continues to fill the cup into the liquid is just 

below the lip of the cup. When the cup is full, the operator shuts off the ethane flow 

and removes the wand. 
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Figure 4.3 : Condensing ethane into ethane cup. Liquid nitrogen has been omitted 
for clarity. 

4.0.13 Storage Button Installation 

A storage button is threaded onto the mating end of the button handling rod. The 

button is submerged in liquid nitrogen for several minutes or until it reaches equilib-

rium temperature. The button is then inserted into the button stand that is located 

within the vitrification dewar as shown in Figure 4.4. The button handling rod is then 

unscrewed from the button and removed. The user should install as many buttons as 

necessary to hold the desired number of processed grids. 



68 

Figure 4.4 : Installing grid storage buttons into vitrification dewar with button han­
dling rod. Liquid nitrogen has been omitted for clarity. 

4 .0.14 D ewar Installation 

The liquid nitrogen is topped off and the vitrification dewar is slid under the envi-

ronmental chamber until it contacts the bump stops under the chamber. 

4.0. 15 Specify Grid Preparation Settings 

Within the MCP program, the operator specifies the conditions under which the grids 

will be processed. These conditions include: 

1. Ethane Temperature 
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2. Environmental Chamber Temperature 

3. Environmental Chamber Relative Humidity 

4. Blotting Time 

5. Blotting Force 

6. Sample Volume 

7. Total Number of Grids to Process 

8. Specify One or Two Sided Blotting 

9. Specify Manual or Automatic Sample Deposition 

10. Specify Path for Results File 

11. Specify Various Delay Times 

4.0.16 Sample Application 

When the desired parameters have been set, the operator executes the SCP program 

through the Adept terminal interface. The operator begins processing grids by click­

ing the 'begin' button within the MCP user interface. If the operator has selected 

automatic sample deposition, then the system immediately begins to process grids. 

If manual sample deposition is desired, then the Cobra removes a grid from the grid 

storage box and waits for the operator to apply a sample using a micropipette. When 

the operator indicates to the MCP that the sample has been deposited, the system 

proceeds to blot, vitrify, and store the grid. 
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4.0.17 Blotting, Vitrification, and Storage 

After a sample has been applied to the grid, the Cobra transfers the grid into the 

environmental chamber and places the grid in position for blotting. The blotting pads 

are extended until they come into contact with the grid at the desired force level. After 

the user-specified blotting time has elapsed, the blotting pads retract and the sliding 

door separating the environmental chamber and vitrification dewar retracts. The grid 

is then plunged into the liquid ethane for five seconds, and then quickly transferred 

from the ethane bath into the liquid nitrogen. The grid is then placed into an empty 

slot within a grid button. The Cobra then exits the environmental chamber and 

begins to process any remaining grids. 

4.0.18 System Power Off 

When all grids have been processed, the Cobra is transferred to its home position. 

The MCP then issues an emergency stop command to power-off the entire system. 



Chapter 5 

System Performance 

The performance of the ASPECT system is dependent on a variety of factors, not 

the least of which is the skill of the operator in determining the optimum sample 

preparation parameters. Early in the design process, a concerted effort was made 

to provide the operator with a large latitude in selecting these parameters, thus 

maximizing the range of sample preparation conditions available. 

This section presents the performance of the ASPECT system. The section does 

not present an in-depth investigation of the ideal sample preparation parameters, as 

these are highly dependent on the sample being tested. 

5.1 Environmental Control 

The creation and maintenance of a stable environment is vital to successful prepa­

ration of of electron microscopy grids. Our system is able to maintain stable en­

vironmental conditions in both the environmental chamber and within the ethane 

bath. 

5.1.1 Environmental Chamber Humidity Control 

The humidification system of the ASPECT device is capable of maintaining the hu­

midity of the environmental chamber at levels high enough to retard evaporation of 

the thin film after blotting. Figure 5.1 shows the relative humidity within the cham­

ber as a function of time during the processing of a single grid. The graph shows 

that the humidification system is able to keep the chamber humidity at a consistently 
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high level throughout the preparation process . Shading on the figure indicates when 

the doors of the chamber have been opened to admit the passage of the Cobra's end-

effector. The graph shows that the system is able to maintain a high relative humidity 

within the chamber regardless of the status of t he doors. No drop in humidity was 

detected. 
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Figure 5.1 : Relative humidity within ASP ECT system while processing single grid. 
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5.1.2 Ethane Bath Temperature Control 

Accurate temperature control of the ethane bath is vital to the successful vitrification 

of a specimen. The goal of the system is to maintain t he ethane bath at the lowest 

possible temperature so as to maximize the cooling rate of the submerged specimen. 

Figure 5.2 shows the performance of our system at m aintaining the temperature of 

the ethane bath. The programmed ethane temperature is -181.4°C , just above the 

freezing point of ethane at standard pressure. The graph shows that the system is 

able to maintain the ethane temperature to within 0.5°C. Tweezers are introduced 

into the cup in the section that is highlighted green. The data indicates that the 

introduction of a tweezer into the ethane bath causes no discernible increase in the 

ethane temperature . 
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Figure 5.2 : Temperature of the liquid ethane bath during processing of single grid 



5.2 Grid Handling 

5.2.1 Damage 
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When properly calibrated, the system does not physically damage the grids. Damage 

can occur, however, during some emergency-stop situations, when specific hardware 

fails to function properly, or when the operator fails to set-up the ASPECT system 

properly. Taken together, grid damage from all sources affects less than 10% of grids, 

with the vast majority of damage being precipitated by human error. This rate is 

comparable to rates attained when preparing grids using traditional methods[35]. 

5.2.2 Vitrified Specimen Transfer Time 

Once vitrified, a sample will revert to its crystalline form if its temperature rises 

above the devitrification temperature[36]. For aqueous samples, this temperature is 

around -140°C. The transfer time is defined as the amount of time that the grid is 

not submerged in a cryogen during transfer between the liquid ethane bath and liquid 

nitrogen baths. Highly trained operators using commercially available systems can 

transfer the grid between the ethane and nitrogen baths in as little os 0.4 seconds. 

A Sony high-speed video camera was used to film the ASPECT system performing 

the same motion. It was found that the system is capable of transferring the grid 

between the ethane nitrogen in only 0.0875 seconds: a 4.5 fold improvement over 

manual transfer . The drastically reduced transfer time minimizes the chance that 

the specimen devitrifies due to exposure to heightened temperatures during transfer. 

5.2.3 Single Grid Processing Time 

A stopwatch was used to time the ASPECT system processing a single grid in manual 

deposition mode. Blot time was set to one second, vitrification time was set to five 
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seconds, and all other user selectable delays were set to zero seconds. The ASPECT 

system was able to fully process and store a grid in 27 seconds. Trained professionals 

can process complete grids in as little as 90 seconds, but average 3-5 minutes per 

grid[35]. The ASPECT system processes grids between 4.5 and 15 times faster than 

competing methods. 

5.2.4 Button Processing Time 

The ASPECT system was timed while processing a full button ( 4 grids) in manual 

deposition mode. Blot time was set to one second, vitrification time was set to five 

seconds, and all other users selectable delays were set to zero seconds. The ASPECT 

system was able to process an entire button one one minute and forty-three seconds. A 

trained operator will spend 15 minutes preparing an entire button using a traditional 

system[35]. The ASPECT system provides 7.5 fold improvement over competing 

methods. 

5.3 Vitrification Results 

As of this writing, the ASPECT system has yet to successfully vitrify a specimen. 

All imaged specimens have contained crystalline ice. 

The presence of crystalline ice indicates that either the cooling rate of the grids 

is not high to support the formation of vitreous ice, or that the specimens devitrify 

during the time between vitrification and imaging. 

The temperature of the ethane bath has been verified to be cold enough to vitrify 

samples, thus current work is focusing on identifying heat sources within the sys­

tem that could cause devitrification of the samples. Two likely culprits have been 

identified. 



76 

The first possibility is that the grids devitrify during transport to the electron 

microscope at Baylor College of Medicine. During transport the grid-storage buttons 

are affixed to button handling rods and submerged in a shallow bath of liquid nitrogen. 

It is possible that any sloshing of the liquid nitrogen during transport temporarily 

exposes the grids to the ambient conditions of the storage dewar. This slight increase 

in temperature may lead to devitrification of the samples. To prevent this, all future 

samples will be stored in a dewar with a much larger volume of liquid nitrogen. This 

will ensure that the buttons remain submerged during transport. 

The second, and more likely, possibility is that the use of carbon-tipped tweezers 

prevents the sample grids from vitrifying. All current grid preparation systems use 

stainless steel electron microscopy tweezers. Because of its low specific heat, the 

stainless steel cools very rapidly when it is exposed to the liquid ethane, this prevents 

the tweezers from conducting heat into the imaging grid. The carbon tweezers have a 

specific heat that is three times that of stainless steel. It is believed that the tweezer 

tips retain enough heat when submerged in liquid ethane to prevent the vitrification 

of the sample grid. The heat from the tweezers is transferred to the grid and either 

prevents vitrification in the ethane bath, or devitrifies the sample during transfer to 

the grid storage button. To test this hypothesis, the carbon-tipped tweezers in the 

ASPECT device are being replaced with stainless steel tweezers. 



Chapter 6 

Conclusion 

The preparation of samples for cry-electron microscopy studies is a well under­

stood process, and countless devices and procedures have been developed to assist 

researchers in preparing these samples. Current grid preparation methods have one 

major drawback though, they are highly dependent on a well-trained human operator 

to be successful. The necessity of highly trained operators narrows the potential user 

pool of this technique. Furthermore, inconsistencies in the prepared grids can be a 

problem if the operator is unable to follow the grid preparation procedure faithfully. 

In this project, the goal was to design a device capable of preparing samples 

for cry-electron microscopy studies without the need for human interaction. The 

resulting device, ASPECT, has proven itself capable of automating all aspects of the 

grid preparation process. The performance of each subsystem present within the 

ASPECT device meets or exceeds the performance levels of similar subsystems from 

current commercial grid preparation systems. Figure 6.1 gives an overview of the 

performance of the ASPECT system compared with two other common commercial 

systems. 

Though the performance of the individual subsystems of the ASPECT device 

indicate that the system should be capable of vitrifying samples of similar or better 

quality than competing systems, to date all imaging grids produced with the ASPECT 

system contain crystalline ice instead of amorphous ice. The apparent inability of the 

ASPECT system to successfully vitrify samples is currently under investigation, and 

several potential fixes are currently being implemented. 
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Figure 6.1 : Performance overview of ASPECT syst em compared to commercial grid 
preparation systems. 

The future outlook of the ASPECT system and similar devices is bright, though. 

By demonstrating that a fully automated grid preparation system is possible to de-

sign and operate, the work presented in this thesis raises the possibility that the 

preparation of technically demanding specimens will be much simpler in the future. 
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For example, time-resolved studies involve the imaging of a chemical or biological 

reaction as it progresses .. A fully automated system, such as ASPECT, would also 

be able to vitrify several of these grids in short order, and produce a time-lapse series 

of images detailing the progression a specific reaction. 

The ASPECT system has been designed to prepare samples for cryo-electron mi­

croscopy studies. Though the ASPECT system has yet to produce a vitrified spec­

imen, the performance of the various subsystems within ASPECT device indicate 

that the system will be able to successfully produce samples in the future. In short, 

the ASPECT system shows promise as a method for preparing samples for electron 

microcopy. 
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