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ABSTRACT 

Cypress Creek is an urbanizing watershed in the Gulf Coast region of Texas that contributes 

the largest inflow of urban runoff containing suspended solids to Lake Houston, the primary 

source of drinking water for the City of Houston. Historical water quality data was 

statistically analyzed to characterize the watershed and its pollutant sources. It was 

determined that the current sampling program provides limited information on the complex 

behaviors of pollutant sources in both dry weather and rainfall events. In order to further 

investigate the dynamics of pollutant export from Cypress Creek to Lake Houston, fully 

distributed hydrologic and water quality models were developed and employed to simulate 

high frequency small storms. 

A fully distributed hydrologic model, Vjlo ™, was used to model streamflow during small 

storm events in Cypress Creek. Accurately modeling small rainfall events, which have 

traditionally been difficult to model, is necessary for investigation and design of 

watershed management since small storms occur more frequently. An assessment of the 

model for multiple storms shows that using radar rainfall input produces results well 

matched to the observed streamflow for both volume and peak streamflow. 

Building on the accuracy and utility of distributed hydrologic modeling, a water quality 

model was developed to simulate buildup, washoff, and advective transport of a 

conservative pollutant. Coupled with the physically based Vjlo™ hydrologic model, the 

pollutant transport model was used to simulate the wash off and transport of total 

suspended solids for multiple small storm events in Cypress Creek Watershed. The 

output of this distributed buildup and wash off model was compared to storm water 
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quality sampling in order to assess the performance of the model and to further 

temporally and spatially characterize the storm events. This effort was the first step 

towards developing a fully distributed water quality model that can be widely applied to a 

wide variety of watersheds. It provides the framework for future incorporation of more 

sophisticated pollutant dynamics and spatially explicit evaluation of best management 

practices and land use dynamics. This provides an important tool and decision aid for 

watershed and resource management and thus efficient protection of the sources waters. 
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Chapter 1 · Introduction 

Lake Houston is an important source of drinking water for the City of Houston, with 

approximately 300,000 cubic meters of water withdrawn daily (Chellam, 2008), to 

provide drinking water for approximately 1 million customers (Smyer, 2008). This is 

projected to increase to 1,360,000 cubic meters per day by 2030 (Chellam et al, 2008). 

Unfortunately, the lake experiences seasonal algal blooms and stratification during warm 

weather. This eutrophication is associated with nutrient inflow and suspended solids 

from the seven watersheds draining into the lake. Increasing urbanization within the 

watersheds is expected to increase urban runoff with loads of nutrients, suspended solids, 

and bacteria. The combination of nutrient enrichment combined with bacterial 

impairment increases the cost of water treatment for the drinking water purification plant 

on Lake Houston. 

In order to address the rising water treatment costs, source protection measures need to be 

implemented within the watersheds draining into the lake. Seven watersheds, 

encompassing 5,021 km2, drain into the lake (See Figure 1-1 ). Cypress Creek, the most 

highly urbanized of these watersheds, is impaired for bacteria(TCEQ, 2008a) and listed 

on the 2008 303-d concerns list for nutrient enrichment (TCEQ, 2008b ). Because of its 

contribution of urban and agricultural runoff to the lake, knowledge of the water quality 

in Cypress Creek is necessary for protection of the City of Houston's water supply. 
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Previous efforts to address the pollutant loading to Cypress Creek were based on 

statistical analysis of historical water quality data (Miertshcin & Associates, Inc., 2009). 

Limited water quality modeling has been performed to assess pollutant transport during 

storm events. By developing and applying a fully distributed pollutant washoff and 

transport model, the pollutant loading to Cypress Creek can be further investigated and 

characterized. Ultimately, water resource management and watershed protection can be 

assisted by distributed hydrologic and water quality modeling. 

9 
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Current water quality models use lumped approaches which parameterize the watershed 

by aggregating similar spatial areas and applying values to the assumed homogeneous 

area (Bicknell et al., 2001). This limits the utility ofthe models due to the lack of 

spatially explicit pollutant source and transport information. The development of a fully 

distributed pollutant washoff and transport model takes advantage of the advancements in 

physically based hydrologic modeling, radar rainfall technology, and GIS spatial data 

processing. With the improved accuracy ofhydrologic prediction (Vieux, 2004), the 

current limitation of some lumped models (Singh et al., 2005) in simulating small storms 

can be overcome. This project focused on the model development to simulate small 

storms due to the higher frequency of events and thus greater impact on water quality. 

Traditional lumped model approaches overestimate streamflow in smaller events (Chen et 

al., 1995; Singh et al., 2005). To overcome the limitations of lumped water quality 

models, a physically based, fully distributed model can be coupled with an independent 

pollutant washoff and transport model. This provides improved accuracy of hydrologic 

simulation as well as the utility of detailed spatial information on pollutant transport. 

l.l.Objectives 

The goal of the proposed project is to develop a water quality model using distributed 

hydrologic modeling for the simulation of pollutant buildup, washoff, and transport in 

Cypress Creek watershed. The developed model simulates the movement of pollutants 

through a watershed during rainfall events in order to provide a tool for addressing the 

large export of TSS from the influent watersheds to Lake Houston after storms (Matty et 

al., 1987; Sneck-Fahrer et al., 2005). This water quality model could then be applied to 
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other watersheds, notably the other watersheds flowing into Lake Houston, for a 

comprehensive storm water management in the greater Lake Houston watershed. Even 

further, the pollutant washoff and transport model could be applied for other watersheds 

with different slope and soil characteristics in order to develop a robust simulation 

program for the investigation of a variety of water quality problems. 

This is accomplished by the following objectives: 

Objective 1: Evaluate historical water quality data of pollutant loads to Lake Houston for 

both low flow and storm events, using statistical techniques and load 

duration curves to characterize pollutant and watershed behavior. 

Objective 2: Develop a rainfall runoff model for Cypress Creek incorporating antecedent 

moisture condition and soils data, calibrated for small storm using 

NEXRAD radar rainfall. 

Objective 3: Create a fully distributed pollutant washoff and transport model for Cypress 

Creek Watershed and link with Vjlo™ hydrologic data output. 

Objective 4: Collect water quality samples during storm events to assess the pollutant 

loads in Cypress Creek throughout the rising and falling limbs of a 

hydro graph. 

Objective 5: Calibrate and validate pollutant washoff and transport model using the 

stormwater concentrations of TSS. 

1.2. Significance 

The City of Houston (COH), the fourth largest city in the U.S relies primarily on Lake 

Houston for drinking water for 3.5 million customers. The Lake has water quality 
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concerns from environmental and public health standpoints which have resulted in an 

increase in the cost of drinking water treatment. These concerns were investigated in the 

early 1980's as part of a comprehensive lake study assessing pollutant loading (Bedient et 

al, 1980), and found that significant loading was entering Lake Houston from Cypress 

Creek Watershed. Further studies in the same time period found that Cypress Creek was 

a major contributor of E. coli, nutrients, and suspended sediment loads to Lake Houston 

(Newell, 1981). During storm events, significant urban runoff flows from Cypress Creek 

into Lake Houston (Matty et al., 1987, Sneck-Fahrer, 2005). Due to the significant 

impact that storm-related pollutant export from Cypress Creek has on Lake Houston's 

water quality, it is important to investigate stormwater quality (Oden and Graham, 2008). 

These studies have found that periodic single grab sampling was found to be inadequate 

for useful estimation of the pollutant export from the watershed. 

During the past three decades of increased urban development, the aforementioned water 

quality problems have persisted and intensified. This research is an effort to continue 

addressing the need for source water protection, by providing the best geo-spatial science, 

advanced models, and datasets to predict pollutant loading to Lake Houston from the 

influent watersheds. A fully distributed model of pollutant washoff and transport will 

provide an estimation of the pollutant concentration throughout a storm event. This can 

provide a future tool for spatially explicit analysis of pollutant sources and transport 

during rainfall events. In an effort to proactively protect water resources, the model can 

be used to evaluate the effects of different management strategies, land use changes, or 

climate scenarios. This water quality model was developed to use the output from any 
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fully distributed hydrologic model and runs independently so that it can be further tested 

and applied in other watersheds with different physical attributes in the future. 

A fully distributed approach was undertaken for modeling pollutant transport and 

modeling, in order to provide greater spatial resolution than is provided by currently 

available lumped models. One of the limitations of lumped water quality models is the 

challenges in modeling the hydrology of small storm events. It is important to model the 

hydrology of small storms, because the high frequency of these events makes their impact 

on water quality greater than low frequency, high magnitude storms. Utilizing distributed 

hydrologic modeling takes advantage of the improved accuracy achieved by distributed 

rainfall-runoff simulation. 

1.3. Description of the Study Area 

Cypress Creek is a 797 km2 (308 me) watershed north of the city of Houston in north 

Harris County with the upstream, western portion in Waller County. It flows 80 km (50 

river miles) to Lake Houston and is a complex watershed with a variety ofland uses and 

covers. The western upstream part of the watershed is undeveloped primarily as 

cultivated agricultural fields. The eastern portion of the watershed has primarily 

residential development and is home to most of 216,000 residents (ESRI, 2000). 

Furthermore, the watershed has experienced rapid urbanization in the past decade, losing 

much of its forest cover to residential development. Based on the 2002 Land Cover 

analysis performed by the Houston-Galveston Area Council (H-GAC, 2002), low and 

high intensity development accounted for approximately 16% of the watershed. This 
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development increased to approximately 36% by 2008 (H-GAC, 2008). Additionally, 

forested areas decreased from 22% in 2002 to 11% in 2008 whereas grasslands decreased 

from 51% to 33% (See Table 1-1 and Figure 1-3). 

T bl 1 1 L d a e - an use an d cover c h ange fi rom 0 m ;ypress 2002 t 2008 . c ree a ers e C kWt hd 
Percentaae Land Use 

Open 
land Cover Developed Cultivated Grassland Forest Wetland Bare Water Other 

11333 
2002 4.2 8.3 72.5 4.7 7.9 0.3 2.1 
2008 6.5 69.7 10.1 0.7 8.5 2.9 1.5 0.2 

Change in% 
0:5 Land Cover . 2.2 .. 61.4 -62.4 ~4.o.:.·· 2,5 ... -0.6 0.2 

11332 
2002 12.0 6.3 55.0 19.6 5.5 0.2 1.4 
2008 29.7 34.1 13.5 5.0 10.6 3.2 1.2 2.6 

Change in% 
Land Cover 11.1 27.& .41.5 . •14.i1·; r 5i1 3.{} ~o.2 2.6 

11328 
2002 28.9 0.3 33.0 33.7 2.2 0.7 1.1 
2008 65.5 5.2 9.6 6.6 7.1 1.5 0.7 3.9 

Change in% ... 
Land Cover 36;6 .. '4,8 . -23.4 ~21-2 ... ·•·· ·. ·4:8 OJl·•.· .. ~.4 3.9 

Total Watershed 
2002 16.5 4.5 51.0 21.2 3.7 2.6 0.4 
2008 36.8 2.5 32.7 11.2 11.0 2.2 2.5 1.1 

Change in% 
Land Cover 2(f3: ··~2.1 -18.3 ~10.0 .·.· .7(3 •0.4) 2.1 1.1 
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----======Kilometers 
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Figure 1-2. Locations of water quality stations in Cypress Creek 

The changes in land use primarily occurred in the downstream and central portions of the 

watershed (See Figure 1-3 ). In the upstream portion of Cypress Creek (gauged by 

11333), the primary change in land use was a minor loss in forest (Table 1-1 and Figure 

1-3), although there was a reclassification of pastures from grassland to cultivated. In the 

center of the watershed (gauged by 11332), there were greater losses in forest cover as 

well as grassland (See Table 1-1 ). By 2008, these areas (See Figure 1-3), were 

developed. In the downstream area (gauged by 11328), forest was converted to 

developed and residential. The land cover modification from forested to developed has 

significantly increased the impervious cover throughout the middle to downstream areas 

of the watershed. 
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Figure 1-3. Land cover for Cypress Creek in (a) 2008 and (b) 2002 
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Cypress Creek watershed is relatively flat with sandy loam soils. The major soil group is 

a Wockley series (See Figure 1-4), permeable alfisol (NRCS, 1976). Using the Natural 

Resource Conservation Service (NRCS) soil survey, the soil characteristics were 

processed in order to create spatial datasets for soil infiltration characteristics. The values 

assigned to each general soil class are in Table 1-2. 



N 
--c::::~Km 
0 5 10 

Addicks Bernard_Edna Hatliff Ozan 
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Figure 1-4. Cypress Creek soil taxonomy (NRCS, 2006) 

Table 1-2. Infiltration parameters of soils in Cypress Creek (NRCS, 2006) 
Wettmg 

Soil Type 
Loamy Sand 
Sandy Loam 
Sand 
Silty Clay Loam 
Loam 
Clay Loam 

Effective 
Porosity 
(em/em) 

0.401 
0.412 
0.417 
0.432 
0.434 
0.390 

Front 
Suction 

(em) 

6.130 
11 .010 
4.950 
27.300 
8.890 

20.880 

Hydraulic 
Conductivity 

(cm/hr) 

3.302 
3.302 
10.160 
0.254 
3.302 
0.254 

In the areas close to the stream, or the near riparian area, as well as the center of the 

watershed have a moderate hydraulic conductivity and higher effective porosity (Figure 

1-5). The implication of urbanization in the region with these characteristics is that the 

17 
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increase in impervious cover will increase the runoff and decrease erosion potential. On 

the other hand, soils in the upstream and overland portion of the watershed have a high 

hydraulic conductivity and mid-effective porosities (Figure 1-5). The 67% higher 

hydraulic conductivities in these overland areas results in lower runoff potential than the 

near riparian areas. The spatial variability of soil properties further highlights the need 

for distributed water quality modeling to select and design best management practices 

(BMPs) that are appropriate for the hydrology, soil properties, and land cover. 



Figure 1-5. Cypress Creek soil (a) hydraulic conductivity, (b) wetting front suction, and 
(c) effective porosity 

1.4. Water Quality in the Study Area 

Water quality data have been collected intermittently within Cypress Creek since1980. 

Monitoring stations were operated by the City of Houston, Water Quality Control and 

19 



20 

Health and Human Services. This historical data has been analyzed with various 

statistical methods including trend analysis, multivariate analysis, and load duration curve 

analysis. 

A comparison ofthe dry flow and storm flow loading of total suspended solids (TSS), E. 

coli, total dissolved solids (TDS), total phosphorus, chloride, and nitrate found that storm 

loading ofTSS and E. coli are much greater than low flow loading (See Appendix A). 

However for the other constituents, storm flow loading does not overwhelm the dry flow 

loading. This suggests that simulation of runoff related transport ofTSS and E. coli is 

key to addressing these water quality impairments. 

Trend analysis was performed using the Mann Kendall and Seasonal Kendall trend test in 

order to establish whether the concentration and loading rates of the previously 

mentioned constituents has increased during the time period of intense urban 

development (See Appendix B for methodological details and conclusions). Increasing 

trends in nitrate, TDS, E. coli, and chloride were found for the station in the down stream 

urbanized portion of the watershed. In contrast the only trend detected was an increasing 

trend in chloride at the station located in the center of the watershed. The increasing 

trend in chloride, which is attributed to wastewater treatment plants (Sawyer et al., 2006), 

would indicate an increasing influence of the permitted discharges. The trends identified 

indicate that the increased urban runoff and waste water discharge resulting from the 

urbanization in the downstream and center of the watershed could potentially be linked 

with the water quality degradation in Cypress Creek. 
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The analysis ofthe historical water quality data indicates an intricate mix of pollutant 

sources which are active in both low flow and storm flow stream conditions. The 

complexity of the pollutant loading to the stream during various flow conditions denotes 

the need for further analysis of pollutant loading via load duration curves and 

multivariate analysis as well as detailed modeling of storm flow loading. 

l.S.Summary 

Cypress Creek is a rapidly urbanizing watershed which is key to protecting the source of 

drinking water for the City of Houston. The watershed's soil and slope characteristics 

mean that this urbanization will result in increases in runoff and pollutant loading. This 

project's overarching goal was to investigate the export of pollutants from Cypress Creek 

Watershed, in order to support water resource protection and address degradation of 

water quality in Lake Houston. Analysis of water quality data collected during a period 

of rapid urbanization illustrates the need for advanced hydrologic and pollutant transport 

modeling. Further statistical analysis of the historical water quality data, hydrologic 

modeling, and simulation of pollutant washoff and transport were conducted to meet the 

objectives ofthis study. 

1.6.0rganization of this Document 

This document is the compilation of various article published throughout the research 

process. The reader will find three separate manuscripts, that at the time of submission of 

the dissertation were at various stages of publication, including (Chapter 2) Targeted 

Application of Seasonal Load Duration Curves using Multivariate Analysis in Two 
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Watersheds Flowing into Lake Houston, published in the Journal of American Water 

Resources Association; (Chapter 3) Radar Rainfall Application in a Distributed 

Hydrologic Modeling for Cypress Creek Watershed, Texas submitted to the Journal of 

Hydrological Engineering; and (Chapter 4) Modeling of Pollutant Washoff and Transport 

Using Fully Distributed Hydrologic Modeling. 



Chapter 2 : Targeted Application of Seasonal Load 
Duration Curves using Multivariate Analysis in Two 

Watersheds Flowing into Lake Houston 

Aarin Teague1, Philip B. Bedient2, Bimur Guven3 
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Originally Published in the Journal of the American Water Resources Association , June 

2011, Volume 47, Issue 3, pp 620-634, DOl: 10.1111/j.1752-1688.2011.00529.x 

Abstract: Water quality is a problem in Lake Houston, the primary source of drinking 

water for the City of Houston, Texas, due to pollutant loads coming from the influent 

watersheds, including Spring Creek and Cypress Creek. Statistical analysis of the historic 

water quality data was developed in order to understand the source characterization and 

seasonality of the watershed. Multivariate analysis including principal component, 

cluster, and discriminant analysis provided a custom seasonal assessment of the 

watersheds so that loading curves may be targeted for season specific pollutant source 

characterization. The load duration curves have been analyzed using data collected by the 

USGS with corresponding City of Houston water quality data at the sites to characterize 

the behavior of the pollutant sources and watersheds. Custom seasons were determined 

for Spring and Cypress Creek watersheds and pollutant source characterization compared 

between the seasons and watersheds. 
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2. Introduction 

Water quality assessment is often based upon sampling for numerous water quality 

parameters at a limited set of conditions (Smith et al., 1997). Most notably, water quality 

assessments through regulatory regimes include limited storm water sampling (Strobl and 

Robillard, 2008; Park et al., 2006) which has the potential of sampling bias and does not 

provide a complete understanding of the stream conditions. Watershed protection efforts 

often include a hydrologic modeling component (Shirmohammadi et al., 2006), which 

allows for the evaluation of varying scenarios, the optimization of resource allocation, 

and the selection ofbest management practices (Refsgaard et al., 2005; Santhi et al., 

2006; Jayakrishnan et al., 2005). 

The purpose of this paper is to compare two watersheds that drain to Lake Houston, near 

the city of Houston. The two watersheds were compared through a combination of 

multivariate analysis techniques and load duration curves. This framework was used to 

assess seasonality and sources of nitrates, total phosphorus, and E. coli. 

The appropriate study areas for testing hydrologic models can be determined by 

comparing different watersheds. Identification of similar and dissimilar watersheds 

provides a basis for selection of watersheds that can be appropriately compared for a 

variety of scenarios through hydrologic models. A distinct part of this identification is 

understanding the influence of seasonality and source characterization, which is 

important for the appropriate application of water quality models by resource managers in 

development of watershed protection plans. In particular, the selection of Best 



Management Practices (BMPs) requires knowledge of the seasonality and character of 

sources in order for BMPs to be structured to fit the seasons during which certain 

pollutant sources are primarily active. 
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Assessing the influence of seasonality and source characterization can be accomplished 

through linking multivariate analysis with load duration curves. Multivariate statistical 

techniques, including principal component analysis, cluster analysis, and discriminant 

analysis are used as unbiased methods in analyzing water quality data including data 

reduction and interpretation (Suk and Lee, 1999) while load duration curves are used to 

characterize violations of the water quality standard by the stream flow condition at 

which the violations occurred (Babbar-Sebens and Karthikeyan, 2009). These methods 

have been widely applied for the characterization and evaluation of temporal and spatial 

variations caused by natural and anthropogenic processes (Panda eta/., 2006; Alberto et 

al; 2001; Bengraine and Marhaba, 2003; Singh et al, 2004; Shrestha and Kazama, 2007; 

Najafpour et al, 2008), including the identification of seasonality and its effects on water 

quality parameters (Vega et al., 1998; Shrestha et al., 2008; Ouyang et al., 2006). 

Principal Component Analysis (PCA) is an unbiased pattern recognition technique used 

to decrease the dimensionality of the dataset without loss of variability (Mahloch et a/., 

1974; Parinet eta/., 2004). Cluster Analysis (CA) uses the information gleaned from 

principal component analysis to classify samples of principal components into clusters of 

like members (Boyer et al. 1997). With this unbiased cluster analysis, the parameters or 

variables which have the greatest power to sort samples into clusters are determined 

through Discriminant Analysis (Singh et a/., 2005). 
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Through multivariate techniques, a large dataset of historical water quality data can be 

reduced using PCA to its most important factors (Ouyang, 2005; Haag and Westrich, 

2002) and the temporal variation in water quality can be assessed (Razmkhah eta/., 

2010) to determine clusters of months that have similar water quality characteristics 

(Kumar et al., 2009). This unbiased, custom determination of seasons provides a novel 

temporal framework to classify water quality samples that is unique to each watershed. 

Additionally, identification of the parameters which discriminate between seasons and 

the underlying correlations between parameters provide insight into the influence of 

seasonality on the water quality (Koklu et al., 2010). Based on these seasons, the water 

quality dataset can be segmented, and load duration curves can be assessed by season for 

time specific source characterization. 

Load duration curves are plots of actual pollutant loading to a stream superimposed on 

the allowable loading to the stream. This technique is often used in the development of 

watershed protection plans as well as in the calculation of total maximum daily loads 

(TMDLs) (Ward et al., 2009; USEPA, 2007). Load duration curves give insight into the 

patterns of loading throughout a variety of flow conditions, notably through the 

characterization of pollutant sources as point or non-point sources (Johnson eta/., 2009). 

The research presents a novel approach to characterizing pollutant sources that are active 

during a specific water quality season. A framework developed using a combination of 

multivariate techniques and load duration curves was used to evaluate the water quality 
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characteristics of two watersheds, Spring Creek and Cypress Creek, discharging into 

Lake Houston, a source of the City of Houston's drinking water. The objective ofthis 

paper is to compare these two watersheds based on (1) determination of watershed 

specific seasons, (2) season-specific source characterization through load duration curves, 

and (3) discriminating parameters and associated correlations. Multivariate analysis was 

performed on the available water quality and stream-flow data and load duration curves 

were developed for E. coli, nitrates, and total phosphorus. The developed framework can 

be used to select appropriate watersheds to be used for future hydrologic modeling efforts 

and to improve water quality monitoring. 

2.1. Background 

2.1.1. Study Area 

Lake Houston was the primary source of drinking water for the City of Houston, with 

approximately 300 million liters of water withdrawn daily (Chellam eta/., 2008). 

Unfortunately the lake was listed as impaired for bacteria and with concerns for nutrient 

enrichment and chlorophyll on the Texas Commission on Environmental Quality (TCEQ) 

2008 303-d list (TCEQ, 2008b; TCEQ, 2008c). The lake experiences seasonal algal 

blooms attributed to high levels of nutrients draining into the lake from the watersheds. 

Spring and Cypress Creek drain to Lake Houston (Figure 2-1 ), covering an area of 1,964 

km2 north of the city ofHouston. These two watersheds are part ofthe San Jacinto River 

Basin located west ofthe lake and were rapidly urbanizing. The comparison of land use 

in the two watersheds is presented in Table 2-1. Of all the watersheds draining to Lake 

Houston, Cypress Creek watershed had the most active urban development (Liscum and 
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East, 2000) and contributed the greatest nutrient loading to the lake (Sneck-Fahrer et al. , 

2005). The nutrient loading from Cypress Creek was associated with eutrophication 

within the Lake and thus was implicated in the challenges of treating water to meet 

drinking water standards (Oden and Graham, 2008). 

--~====::J Kil om ete rs 
0 3.75 7.5 15 

High Intensity Development D Cultivated - 'Noody 't/'Jetla nd 

Low 1 ntensity 0 e"v"eo lopm e nt Grassland He tbaceous Wet I and 

- De ·veloped Openspace - Forest - Bare 

Figure 2-l.Watersheds flowing into Lake Houston with labeled water quality monitoring 
stations 
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Table 2-1. Land use breakdown ofS~ring Creek and Cy~ress Creek Watersheds 

Land Use S~ring c~~ress Total {km2} 

High Density Development 4.08% 7.93% 111 

Low Intensity Development 3.17% 6.01% 85 

Open Development 0.34% 6.01% 52 

Cultivated 35.51% 53.19% 838 
Grass & Shrub Lands 50.57% 20.13% 753 
Forest 1.31% 1.21% 25 
Woody Wetland 2.49% 2.16% 29 
Herbaceous Wetland 1.00% 3.00% 36 
Bare Land 1.53% 0.36% 21 

Oe.en Water 0% 0% 0 

Total {km2} 1174 792 1966 

The USGS streamflow gages, water quality stations, stream impairments, concerns and 

number of permitted outflows are outlined for each watershed in Table 2-2. Both 

watersheds were classified for contact recreation, public water supply, and high aquatic 

life use (USEP A, 2009), making their bacterial impairments and concerns for nutrient 

enrichment of particular concern for protecting the drinking water source for the City of 

Houston. Potential bacterial sources include failing septic systems, illicit stormwater 

connections, parking lot storm water runoff, agricultural runoff, pet waste, and avian 

wildlife populations (H-GAC, 2004a and 2004b). Nutrient pollution comes from these 

potential sources in addition to treated wastewater outfalls, runoff with fertilizers applied 

to lawns, golf courses, and croplands. 
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Table 2-2 .Comparison of watersheds by monitoring and impairment 
#Permitted Permitted 

USGS Wastewater Wastewater 
Streamflow 303-d List Outfallsc Outflow 

Watershed Gase WQGases lmeairments• Concemsb (cfs) 

Nitrates, Total 
08069000, 11328, Phosphorus, 

Cypress 08068740, 11332, Depressed DO, Orthophosphorus, 
Creek 08068800 11330 Bacteria lmQaired Habitat 101 107c 

Nitrates, Total 
Phosphorus, 

Spring 08068500, 11313, Depressed DO, Orthophosphorus, 
Creek 08068275 11314 Bacteria lmeaired Habitat 14 35d 

a. (TCEQ, 2008b}, b. (TCEQ,2008c}, c. (H-GAC, 2008} d.(USEPA, 2010} 

Physical characteristics of the two watersheds, including watershed length, soils, and 

slopes, are compared in Table 2-3. Both Spring and Cypress watersheds have primarily 

sandy loam soils, leading to less erosion potential than other regional watersheds with 

clay soils (NRCS, 2006). Therefore urbanization and other changes in impervious cover 

increases the runoff rate within these watersheds. Both of these streams were in their 

natural state in the upper portion of the watershed which was primarily undeveloped (H-

GAC, 2008). In contrast the stream channels in the lower, urbanized portions of the 

watersheds, have been widened with some concrete present for erosion control. The 

highly urbanized, lower, eastern part of Cypress Creek, upstream of the most downstream 

water quality monitoring station (station 11328 in Figure 2-1), watershed contained most 

of Cypress Creek's 101 permitted wastewater outfalls. A majority of these outfalls were 

small package plants serving Municipal Utility Districts (MUDs) (H-GAC, 2004a), 

representing a large number of point sources. Monthly sampling of the average outfall 

discharge (H-GAC, 2009) was similar to the low flow stream-flow (USGS, 2010) thus 

potentially linking low-flow pollutant loading with these and other point sources. 



Table 2-3. Watershed characteristics 

Watershed 

Cypress 
Creek 

Stream 
Length 
(km) a 

78 

Tributaries 

Little Cypress Creek, Snake Creek, 
Mound Creek, Faulkley Gully, Fine Sandy 

Turkey Creek Loams 
Willow Creek, Walnut Creek, 

Average 
Overland 

Slopec 

0.18% 

Spring Panther Branch, Mill Creek, Brushy Loamy 
Creek 111 Creek, Bear Creek Fine Sand 0.31% 
a. Calculated from TSARP LIDAR Data (TSARP, 2005), b. STATSGO (NRCS, 2006), 
c. Calculated from Tx Elevation Dataset (USGS, 2007) 

2.1.2. Analysis Techniques 

2.1.2.1. Principal Component Analysis 

Principal component analysis (PCA) is a group of pattern recognition techniques 

(Simeonov et al., 2003) that are used to reduce the dimensionality of a data set, while 
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retaining the largest possible variability of the original dataset (Singh et al., 2004). PCA 

is based on the eigenvector decomposition of the covariance or correlation matrix 

(Bengraine and Marhaba, 2003; Morales, 1999). Principal components form the best 

linear approximation of the original variables (Dechesne et al., 2005) and are orthogonal 

or non correlated to each other (Li and Zhang, 201 0) while producing maximum variance 

(Helena, 2000). For example in Table 2-4, the variables are transformed into principal 

components which reduce the dataset and reflect the influence of factors that incorporate 

multiple variables. According to the Kaiser criterion, only principal components with an 

eigenvalue greater than one should be retained (Liu et al., 2003). PCA is sensitive to 

outliers, missing data, and poor linear correlations between variables due to poorly 

distributed variables (Sarbu and Pop, 2005). 
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Table 2-4. Example of data reduction by principal components 
Variables Principal Component 

Temperature 
Sulfate Concentration PCJ = -0.41 * EC + 0.52 *Temp+ 0.47 * Su + 0.5 * Exc 
~P~e-~-e-nt~E~x-c-e-ed~a-n_c_e_o7fF~I~ow~.-=--~ 

E. coli Concentration 
PC2 = -0.59 * EC + 0.78 * TSS Total Suspended Solids 

Principal component analysis has been used to empirically identify the main processes of 

nutrient transport for development of simplified diagnostic models (Petersen eta/., 2001 ), 

identify useful pollution indicators and delineate polluted areas (Wu and Wang, 2007), 

determine pollutant source apportionment (Simeonov eta/., 2003), and to discriminate 

the individual effects of season and anthropogenic activity on water quality (Vega eta/., 

1998). PCA is most often used to interpret large datasets for characterization and data 

reduction, as it provides information on the most meaningful parameters which describe 

the whole data set and summarizes the statistical correlations among variables with 

minimal loss of the original information (Helena eta/., 2000). 

2.1.2.2. Cluster Analysis 

Cluster Analysis is an unsupervised pattern recognition method that groups samples into 

clusters based on similarity of the samples' characteristics (Lee eta/., 2004; Zhou eta/., 

2007). This technique exposes intrinsic structure and underlying behaviors of a dataset 

with no prior assumptions concerning the data (Vega eta/., 1998). The goal is for the 

clusters to exhibit high intra-cluster homogeneity and high inter-cluster heterogeneity 

(Shrestha and Kazama, 2007). Hierarchical methods, including Ward's method, form 

clusters sequentially, starting with the most similar of objects then with each step forming 
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higher clusters, or clusters with greater membership, until a single clusters containing all 

the samples is obtained (Alberto eta/., 2001; Gupta eta/., 2009). Ward's method uses an 

analysis of variance (ANOV A) approach to evaluate the similarity of clusters with the 

goal of minimizing the sum of squares of any two clusters (Venugopal et a/., 2009). The 

results of cluster analysis assist in interpreting large datasets and identifying patterns 

(Vega eta/., 1998). The optimal number of clusters can be determined by finding the 

local maxima in the pseudo F statistic (DeGaetano, 1996). Cluster analysis has been used 

to optimize water quality monitoring strategies (Zhou eta/., 2007), characterize hydro­

chemical regimes of groundwater (Suk and Lee, 1999), and determine sources of fecal 

pollution (Hagedorn eta/., 1999). 

2.1.2.3. Discriminant Analysis 

Discriminant Analysis (DA), also called supervised pattern recognition or canonical 

variate analysis (Shin and Fong, 1999), determines the variables that discriminate 

between clusters of observations. This technique is used to calculate discriminant 

functions for describing the differences between clusters, to predict cluster membership 

of observations, and ultimately data reduction. Given prior knowledge of observation 

cluster membership, DA determines the significance of different variables (Ellison et al., 

2009) by analyzing dependence using canonical correlation. Forward stepwise DA, a 

specific DA technique, is a process where variables are included in a discriminant 

function one at a time, starting with the greatest significance, until no changes to the 

discriminant function are achieved (Singh eta/., 2004). At each step, an F-test from 
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analysis of covariance of the selected set of discriminating variables is performed with a 

significance level of 0.15 for a variable to enter or leave the function. 

DA has been used to identify sources of fecal pollution using antibiotic resistance 

patterns (Harwood eta/., 2000), predict biologic conditions of a benthic environment 

(Shin and Fong, 1999), develop eco-region classifications for water quality patterns 

(Ravichandran eta/., 1996), and to confirm anthropogenic origin of nutrients in aquifers 

(Lambraikis eta/., 2004). When evaluating data for each watershed, DA identifies the 

variables that best differentiate between clusters of months or seasons. 

2.1.2.4. Load Duration Curves 

Load duration curves (LDC) are constructed by first evaluating flow duration curves. 

Historical streamflow data are ranked in descending order and the percent exceedance is 

calculated (rank/total number of points). The streamflow (ft3/s) is then plotted versus the 

percent exceedance. A flow duration curve provides information about the percentage of 

time a particular streamflow value was exceeded over some historical period, thus 

providing a hydrologic "signature" of a catchment (Cigizoglu and Bayazit, 2000). Load 

duration curves are an extension of flow duration curves, where water quality violations 

are characterized by the flow condition at the time of occurrence. For a load duration 

curve, the allowable load is calculated by multiplying the streamflow data by the water 

quality standard concentration for streams and represents the theoretical mass loading 

rate of pollutant that the stream can recieve and remain in compliance with the water 

quality standard. Actual loads are calculated by multiplying the measured concentration 



35 

of the water quality constituent by the streamflow that occurred at the time of 

measurement The allowable and actual load are then plotted against the percent 

exceedance of the corresponding streamflow (Bonta and Cleland, 2007). 

Actual loads that fall below the allowable load curve are considered to be in compliance 

with water quality standards whereas points above the line indicate water quality 

violations (Figure 2-2). The LDC is then examined to determine the flow conditions 

where a majority of water quality standard violations occur. Flow conditions are divided 

into different categories of flow: 0 to 1 0% exceedance , High Flows; 1 0-40% exceedance 

, Moist Conditions; 40-60%, Mid-Range Flows; 60-90% exceedance, Dry Conditions; 

and 90-100% exceedance, Low Flows (Morrison and Bonta, 2008; USEPA, 2007). 

Load Duration Curve 
-Allowable Load • Actual Load 

Moist Flows Low Flows 

E 1.0E+15 tfR'*"'~~~~~·"'"'·:.;,.;~~~~~~+'i-:~~~~~~~~~~-t.""~~ 
C'O 
Q) ..... en 1.0E+14 ~~~~~~~;;;;-::"o/:c-'0g~~~~s:'"':.:,s:~-~~~~~f~~~~·+.fu""~~fl 
Q) 

-;5 1.0E+13 -lllli<~~~~~~~'-2-"'~~~~-<""""""'--'-'''"'"'"''i-;H**'~~~~~~~-~++'~ 
0 -
-s:: 1 .OE+10 C'O -:::1 

0 1 .OE+09 a.. 

1.0E+08 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

%Exceedance 

Figure 2-2. Example of a load duration curve 
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Water quality standard violations that occur near the high flow category are associated 

with rainfall events with the pollutant source characterized as non-point. In contrast, 

violations that occur near low flows are associated with dry weather with the pollutant 

sources characterized as point sources (USEP A, 2007). This technique has been used in 

addressing water quality concerns in Total Maximum Daily Load (TMDL) programs 

(Cleland, 2003). 

2.2. Data and Methods 

Streamflow data were acquired from the United States Geologic Survey (USGS, 2010) 

and water quality data collected from 2000 to 2008 by the City of Houston, was acquired 

through the Houston-Galveston Area Council (H-GAC, 2008) water quality monitoring 

website from the water quality monitoring stations in Figure 1. The water quality 

monitoring stations were located with USGS streamflow gauges on bridges across the 

streams in the downstream portion of the watershed. The water quality parameters used 

for analysis are listed in Table 2-5, along with summary statistics by stations. For the 

multivariate analysis, a dataset for each watershed was amassed with the water quality 

data sorted according to month and the median value for each water quality parameter 

calculated for each monitoring station. The mean of the monitoring station median 

values for each water quality parameter was determined and a z-scale transformation was 

applied to the monthly medians data for each parameter so that the variables have a zero 

mean and unit variance, a requirement for principle component analysis (Ouyang et al, 

2006). The normality of the transformed variables was then tested using the 

Kolmorogov-Smimov test with 95% or higher confidence. The variable Percent Flow 
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Exceedance is the percent exceedance of the streamflow associated with the streamflow 

at the time of water quality sample collection. This provides a measure of the streamflow 

condition that can be compared between watersheds with differences in flow. 
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Table 2-5. Variabl d' 1 . 1 . 
Spring Creek Watershed C press Creek Watershed 

11313 11314 11328 11330 11332 

Parameter Count Median Std Dev Count Median Std Dev Count Median Std Dev Count Median Std Dev Count Median Std Dev 

Flow (CMS) 72 2.2 29.1 65 0.7 11.3 198 1.8 15.5 21 1.7 7.9 102 0.5 9.0 
%Flow 
Exceedance 72 0.4 0.3 65 0.3 0.3 198 0.1 0.1 21 0.4 0.3 102 0.5 0.3 
Temperature 
(a C) 72 21.9 6.2 65 20.6 5.9 194 22.3 6.3 21 25.8 4.5 101 21.7 6.4 
Conductivity 
(IJO) - - - - - - 126 586.5 274.1 21 677.0 258.2 92 433.5 244.4 
Dissolved 
Oxygen (mg/L) 60 7.2 2.3 51 6.9 2.7 182 7.7 1.9 20 7.2 1.1 98 7.4 1.9 
pH 47 7.6 0.7 56 7.8 0.6 151 7.7 0.5 19 7.8 0.5 97 7.6 0.4 
Total Alkalinity 
(mg/L) 21 86.0 48.0 32 46.0 24.8 - - - - - - - - -
Total 
Suspended 
Solids (mg/L) 40 36.0 98.0 47 19.0 27.4 141 29.0 63.9 40 16.5 49.0 77 21.0 47.8 

Total Dissolved 
Solids (mg/L) - - - - - - 106 427.0 132.4 15 475.0 131.5 78 333.5 123.4 
Total Organic 
Carbon (mg/L) 26 9.7 4.1 37 10.0 4.3 - - - - - - - - -

Chloride (mg/L) 46 44.8 26.1 56 33.0 18.0 144 60.0 35.5 21 86.0 35.0 97 46.0 30.7 
Sulfate (mg/L) 46 12.1 6.8 56 7.0 9.5 193 19.0 8.6 21 20.0 7.5 97 14.0 6.7 

Ammonia (mg/L) - - - - - - 128 0.1 0.1 21 0.1 0.1 97 0.1 0.2 
Nitrate (mg/L) 46 2.0 2.8 56 0.3 1.1 122 4.3 4.0 18 6.0 3.9 59 2.9 2.4 
Total 
Phosphorus 
(mg/L) 44 0.7 0.5 50 0.2 0.3 64 1.5 0.8 18 1.8 1.0 78 0.9 0.6 
Ortho-
Phosphorus 
(mg/L) 45 0.3 0.4 54 0.0 0.3 - - - - - - - - -
E. coli 
(MPN/dL) 32 229.0 1041.1 40 277.5 3602.4 121 720.0 10121.2 19 820.0 1885.1 95 213.0 3649.0 

Variables used in analysis reflect the available data. 
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2.2.1. Multivariate Analysis 

The statistical software SAS (SAS, 2003) was used to perform each of the multivariate 

analyses. First, principal component analysis was applied to the normalized dataset of 

each watershed in order to identify the underlying factors having the most influence on 

the variability of the dataset. The first step in principal component analysis was to 

calculate the correlation matrix (Bengraine and Marhaba, 2003) using the transformed 

dataset. Then eigenvector decomposition was performed on the correlation matrix 

(Morales et al., 1999). The corresponding eigenvectors were used to create the weighted 

linear combination of variables or principal components (Singh et al., 2004). The number 

of principal components in each dataset was selected using the Kaiser criteria (Thyne et 

a!., 2004). 

The calculated principal components for each month were employed in Ward's clustering 

analysis, an agglomerative hierarchical clustering technique (Astel et al., 2006). Using 

squared Euclidean distances as a measure of similarity, the most similar elements are 

sequentially grouped in clusters (Alberto eta!., 2001). This step-by-step method uses 

analysis of variance (ANOVA) to minimize the sum of squares of the potential clusters at 

each step (Zhou, et al. 2007). The optimal number of clusters was evaluated using the 

local maxima of the pseudo-F statistic for selection of the appropriate level of clustering 

(DeGaetano, 1996). 



Cluster membership was used with the original transformed data in forward stepwise 

discriminant analysis in order to identify the variables most influential to determining 

cluster membership. Discriminant analysis builds linear functions using the most 

influential variables to predict cluster (Muxika et al, 2007) membership by sequentially 

adding each variable to the function in a forward stepwise procedure (Shrestha et al., 

2008). At each step the influence of the variable to the predictive power of the 

discriminant function is assessed and the variables reducing the predictive power 

removed form the function. This is evaluated using an F-test at each step with a 

threshold of 0.15 for addition or deletion of a variable to the discriminant function and 

the process stopped until no variables can be added or deleted. 
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These variables identified by discriminant analysis to have the most influence on cluster 

membership were then utilized to repeat principal components and cluster analyses, in 

order to refine the cluster membership. The final clusters were then analyzed with the 

original transformed data using Duncan's Multiple Range test. The cluster means for 

each variable in the discriminant function were then compared at the 95% confidence 

level. Then based on the mean comparison the clusters were characterized as having 

high, medium, or low values for each parameter. 

2.2.2. Targeted Load Duration Curves 

The final cluster membership was then used to group the raw water quality data into 

"seasons". Streamflow data were obtained from the USGS for the most downstream 

gauge listed in Table 2-2, for the period 2000 through 2008 and the percent accidence 
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calculated by ranking the samples, largest to smallest, and then dividing by the total 

number of samples. The streamflow data were then multiplied by the water quality 

standard in order to calculate the allowable pollutant loading into the stream. The 

allowable load was based on the Texas Commission on Environmental Quality (TCEQ) 

adopted water quality geometric mean standard for streams of 126 MPN/dl (Most 

Probable Number per 100mL) for E. coli, and the screening criteria of0.69 mg/land 1.95 

mg/1 for total phosphorus and nitrate (2008a). These parameters were chosen for LDC 

analysis because these pollutants were identified as watershed impairments and concerns. 

The raw water quality data reported by the Houston- Galveston Area Council for the 

downstream water quality stations (See Figure 2-1) were then used with the 

corresponding USGS reported streamflow measurement at the time of water quality 

sample collection to calculate the actual load. The actual loads were then segmented 

according to the clusters of months determined by cluster analysis for each watershed. 

For each watershed and cluster of months, load duration curves were developed for E. 

coli, nitrates, and total phosphorus loads. The curves were then examined for season 

specific source characterization. If the actual loading exceeded the allowable loading 

near dry to low flow conditions in the flow exceedance range greater than 60% , the 

pollutant sources were characterized as point sources. On the other hand if the violation 

occurred near moist to high flow conditions, or in an flow exceedance range less than 

40%, the pollutant sources were characterized as non-point sources. In the cases where 

load duration curve had violations in multiple flow conditions the pollutant sources were 

characterized as both point and non-point. The violations were examined to identify the 
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flow condition in which a majority of the violations occur. When a preponderance of 

violations occur in the moist to high flow conditions, the pollutant sources are 

characterized as mostly non-point with some point sources. Likewise, when the 

preponderance of the violations occur in the dry to low flow conditions with some 

violations in the higher flow conditions, the pollutant sources are characterized as mostly 

point sources with some non-point sources present. When the violations are more evenly 

present near both the high and low flow conditions, the sources are characterized as either 

point and non-point or non-point and point, depending on which condition in which there 

were more violations. 

The raw water quality dataset was sorted according to the seasons determined by the 

cluster analysis. Pairwise linear correlation coefficients were then calculated for each 

season's raw water quality data with complete records for the variables of streamflow, 

total suspended solids, total dissolved solids, nitrate, total phosphorus, chloride,and E. 

coli concentration. The parameters that were found to be significantly correlated, at 

p~O.OS, were compared between the seasons to evaluate the temporal variation of water 

quality parameters (Wu et al., 2009). 

2.3. Results 

A summary of the results of multivariate analysis guided source characterization based 

upon the LDCs for both watersheds is presented in Figure 2-3. Correlations between 

water quality parameters in each season are presented in Table 2-6. 



43 

Source Characterization (a) 

Cluster 1 E. Coli Non-Point Dec Jan 

Nitrates Non-Point & Point 

Total Point 
Phosphorus 

Cluster 2 ~·-· Coli ~·-·-·· Mostly Point 

:Nitrates Point & Non-Point : 

I Total Mostly Point I 
• Phosphorus • ._._. -·-·-·· Outliers E. Coli Non-Point 

Nitrates Point 

Total Point 
Jul Jun 

Phosphorus 

Cluster 1 
E. Coli Non-Point & Point 

(b) 

Nitrates Point Dec Jan 

Total Non-Point & Point 
Phosphorus 

Cluster 2 
~.- .. ,.. . -.- .• Coli Point & Non-Point 

:Nitrates Non-Point & Point : 

I Total Point & Non-Point I 
• Phosphorus • ._.- ...... -.-.. 

Outliers E. Coli Non-Point 

Nitrates Point 

Total Point 
Phosphorus Jul Jun 

Figure 2-3.Spring Creek (a) and Cypress Creek (b) season specific characterization LDC 
results 
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Table 2-6 .Seasonal correlation between water quality variables using raw data from the 
downstream water quality statiOns 

Spring Creek (11313) Cypress Creek (11328) 

Variables 
Cluster Cluster 

Outliers 1 2 Outliers 1 2 

Months Aug, Nov 
Dec,Jon, Feb, Apr, Moy, Jun, 

Feb, Dec 
Jan,Apr, Jun, Mar, May, Jut, 

Mar Jut Seo. Oct Aua. Seo Oct Nov 

#Samples 7 16 24 8 28 30 

Flow Total Suspended Solids 0.97* 0.55* 0.21 0.51* 0.63* 0.47* 

Total Dissolved Solids No Data No Data No Data -0.76* -0.62* -0.59* 

Nitrate -0.72* -0.48* -0.47* -0.66* -0.42* -0.41* 

Total Phosphorus -0.51 -0.35* -0.43* -0.65* -0.28 -0.53* 

Chloride -0.85* -0.38* -0.58* -0.67* -0.42* -0.63* 

E. coli -0.25 0.17 0.003 0.58* 0.75* 0.79* 

Total Suspended Solids Total Dissolved Solids No Data No Data No Data -0.57* -0.49* -0.62* 

Nitrate -0.73* -0.58* -0.33 -0.69* -0.30 -0.36* 

Total Phosphorus -0.63 -0.34 0.14 -0.65* -0.28 -0.52* 

Chloride -0.98* -0.56* -0.38* -0.52 -0.41* -0.59* 

E. coli -0.26 0.61* -0.10 0.78* 0.97* 0.61* 

Total Dissolved Solids Nitrate No Data No Data No Data 0.98* 0.99* 0.95* 

Total Phosphorus No Data No Data No Data 0.95* 0.74* 0.96* 

Chloride No Data No Data No Data 0.94* 0.87* 0.86* 

E. coli No Data No Data No Data -0.36 -0.41* -0.40* 

Nitrate Total Phosphorus 0.85* 0.83* 0.59* 0.94* 0.86* 0.56* 

Chloride 0.83* 0.94* 0.89* 0.98* 0.96* 0.69* 

E. coli -0.87* 0.26 -0.37 0.38 -0.18 -0.15 

Total Phosphorus Chloride 0.83* 0.78* 0.74* 0.85* 0.89* 0.91* 

E. coli -0.70* 0.35 -0.34 0.19 -0.11 -0.13 

E. coli Chloride 0.40 0.36 -0.41 0.03 -0.19 -0.12 
* p<O.OS 

2.3.1. Spring Creek Watershed 

Spring Creek cluster analysis divides the temporal data into three clusters of months 

(Figure 2-3a). The first cluster includes the cool weather months of December, January, 

February, and March; which Duncan's Multiple Range Test identifies as having high E. 

coli concentration in comparison to other seasons. The second cluster includes the warm 

weather months of April, May, Jun, July, September, and October. The outlier months 

were August and November. The outlier months were identified as statistically different 

than the rest of the dataset as defined by an extreme standard score with less than a 10% 

probability density. Comparatively, Houston's climate generally has a short cool season 
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and a long warm to hot season with most of rain falling in late spring and early fall 

(NOAA, 2010). The rainy season generally includes months in the second cluster. 

Discriminant analysis shows that E. coli, temperature, sulfate, total suspended solids, and 

percent exceedance accounted for 85% of the variability between these clusters. 

Using the seasons determined by multivariate analysis, season specific load duration 

curves were developed for E. coli, nitrate, and total phosphorus loading. For E. coli 

loading into Spring Creek, the warm weather months (Cluster 2) months show violations 

of the water quality standard mostly in the mid-range to dry conditions, leading to a 

characterization of mostly point sources with some non-point sources (Figure 2-4a). 

Sources of nitrates were characterized as both point and non-point sources and total 

phosphorus sources were characterized as mostly point sources (Figure 2-3a). This 

characterization is supported by a weak negative correlation between flow and nutrients 

and a lack of correlation between flow and E. coli (Table 2-6). 
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Figure 2-4. Load duration curves for characterization of Escherichia coli sources in 
Spring Creek in (a) Cluster 2, (b) Outliers, and (c) Cluster 1. 
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The load duration curve for the outlier points show a majority of the violations in the high 

flow and moist conditions (Figure 2-4b) leading to a characterization of non-point 

sources. The sources of nutrients are characterized as point sources (Figure 2-3a). This 

characterization is supported by a lack of correlation between flow and E. coli and a 

negative correlation between flow and nutrients (Table 2-6). 

The cool season months have violations of the water quality standard primarily in the 

high flow to moist conditions (Figure 2-4c) leading to a characterization of E. coli 

sources as non-point. The nutrient sources in the cool season months were characterized 

as point sources with some impact from non-point sources (Figure 2-3a). The 

characterization is supported by a negative correlation between nutrients and flow along 

with a strong positive correlation between nutrients and chloride (Table 2-6) an 

indication of a common source for both nutrients and chloride, which traditionally has 

been associated with waste water contamination (Sawyer et al., 2006), a key point source 

within the watershed . 

Cypress Creek Watershed 

According to multivariate analysis, Cypress Creek water quality data is best classified 

into three clusters or seasons (Figure 2-3b). The first cluster includes the months of 

January, April, June, August and September. The results of Duncan's Multiple Range 

Test characterize this season as having "low streamflow" in comparison to the other 

clusters of months. The second season includes the months ofMarch, May, July, 

October, and November and has low phosphorus concentrations in comparison to the 
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other seasons. The outlier months are February and December, which are characterized 

as high flow and high E. coli concentrations in comparison to the other seasons. This 

non-intuitive segmentation, which does not follow climatic variation, is thought to be the 

result of the flow conditions at which samples were taken in these periods, which is 

slightly skewed to mid-range flows. Discriminant analysis determined that the 

parameters of dissolved oxygen, flow, sulfate, conductivity, E. coli concentration, total 

suspended solids, and total phosphorus concentration were the most discriminating 

parameters to sort data into seasons and thus accounted for approximately 83% of the 

variability between the seasons. 

Analysis of the LDC for total phosphorus and nitrate in the outlier of February and 

December months leads to a point source characterization, whereas E. coli sources for the 

same period were characterized as non-point. This was supported by analyzing the 

correlations between water quality parameters (Table 2-6). Flow and nutrients were 

strongly negatively correlated while flow and E. coli were positively correlated indicating 

that low flows occurred with high nutrient loading and high flows occurred with high E. 

coli loading. At the same time, chloride and total dissolved solids were negatively 

correlated to flow and positively correlated to nutrients. Thus the positive correlation 

between chloride and nutrients supports a common source between chloride and 

nutrients. As such, the lack of correlation between E. coli and chloride along with a 

positive correlation among total suspended solids, flow, and E. coli indicates different 

sources for E. coli and chloride for the outlier months. 
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The load duration curve for the first cluster on months reveals violations of the nitrate 

criterion primarily in the mid-range flows and dry conditions leading to a source 

characterization of mostly point sources with some non-point sources. A negative 

correlation between flow and nitrate indicates a point source. Furthermore, a positive 

correlation between nitrate and chloride indicates a common source between nitrates and 

chloride. In contrast, the load duration curves for E. coli and total phosphorus show 

violations of the water quality standard throughout all flow conditions. Thus the sources 

are characterized as both non-point and point. 

The load duration curves for total phosphorus and nitrate loading in the second cluster of 

months show that the water quality criteria is violated primarily in the dry and mid-range 

flow with some in the moist conditions. Thus the sources of phosphorus and nitrate are 

characterized as both point and non-point. Likewise, the E. coli violations occurred 

throughout all flow conditions, leading to a mixed point and non-point source 

characterization. Furthermore the correlation between water quality parameters does not 

provide strong support of a distinct characterization of sources. 

2.4. Discussion 

The process of developing season specific load duration curves based upon multivariate 

analysis provided a framework for characterizing sources in Spring Creek, where as the 

results for Cypress Creek highlight the need for improved sampling programs that takes 

into account flow condition when water quality samples are taken in order to address both 
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low flow and high flow conditions. Both point and non-point sources were identified as 

being active in specific time periods. In both watersheds the outlier months exhibited 

point sources for nutrients and non-point sources for E. coli. In addition, E. coli 

concentration was a discriminating variable between the seasons for both watersheds. 

However, total phosphorus concentration was a discriminating variable for differentiating 

between seasons in Cypress Creek but not Spring Creek. This is reflected in the point 

source characterization of phosphorus loading to Spring Creek in all of the seasons. In 

contrast, Cypress Creek has non-point sources of phosphorus present in both seasons, but 

not in outlier months. 

When examining the correlations between water quality variables in each season, both 

watersheds show positive correlation between nutrients and chloride (Table 2-6). In 

addition, for a majority of the clusters, there is positive correlation between flow and total 

suspended solids as well as negative correlation between flow and nutrients. Therefore 

for the majority of the time, both watersheds have nutrient sources associated with waste 

water treatment plants. 

The results suggest that in Spring Creek, where non-point sources are responsible for the 

violations of the E. coli standard during cold weather months, watershed protection plans 

implementing best management practices should take into account the seasonal 

variability of vegetation based BMPs. In addition, warm season characterization of point 

sources of nutrients and E. coli suggests that watershed protection plans should consider 
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bacterial re-growth downstream from wastewater treatment plants, thus allocating greater 

resources to improve effluent from point source discharges. 

However, the results of this analysis are only effective with sampling programs that 

reflect the range of flow conditions of the stream and take into account seasonality. The 

results of the analysis can identify groups of months in which the sampling 

disproportionately represents a particular flow condition. For instance, Figure 2-4c, 

shows that the sampling in cluster 2 of Spring Creek disproportionately represents the 

higher flows. The improved sampling program should include both routine low flow 

sampling and storm sampling that encompassed the wide range of flows of storm 

hydrographs. Thus the presented framework allows for the identification of components 

of the sampling program that can be improved. 

2.5. Summary and Conclusions 

Two watersheds near Houston, Texas were compared through a framework of 

multivariate analysis and load duration curves. Water quality data were analyzed using 

principal component, cluster, and discriminant analysis. The data were segmented into 

clusters or "seasons" of months with similar water quality conditions that are 

characteristic ofthe watershed. Duncan's multiple range test was used to compare the 

water quality data between these clusters through identification of parameters which 

distinguish each cluster. These custom seasons were then used to target load duration 

curves to characterize pollutant sources. Correlations between parameters in each season 

were then examined to further characterize the pollutant sources. Spring and Cypress 
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Creek watersheds were compared through this framework in order to understand the 

influence of seasonality and source characterization for each of the watersheds. Water 

quality data describing Spring Creek were segmented into three identifiable seasons that 

reflect the climate of the region and the pollutant sources characterized for E. coli and 

nutrients. In contrast, the seasons determined for Cypress Creek were less intuitive and 

do not reflect the climate of the region. 

Water quality datasets, while often containing large amounts of data, are comprised of 

observations in a limited set of stream conditions. In order to select appropriate study 

areas for the development of water quality models, watersheds should be evaluated to 

understand the similarities and differences. The presented framework of analysis provides 

a method for identification of seasonality and characterization of pollutant sources. In 

addition, the understanding gained through this framework of comparison can be used to 

evaluate and improve the sampling efforts currently in place. The application of this 

comparison has provided the basis for future hydrologic and water quality modeling 

efforts in an attempt to better understand stream processes as they impact the poor water 

quality of Lake Houston. 



Chapter 3: Radar Rainfall Application in a Distributed 
Hydrologic Modeling for Cypress Creek Watershed, 

Texas 

Aarin Teague, Jason Christian, and Philip Bedient 
Submitted to the Journal of Hydrologic Engineering 

Abstract 

53 

Recent advances in hydrologic models have depended on the use of radar rainfall input in 

physically based, fully distributed models. Previous research conducted for case studies 

near Houston, Texas have focused on the use of radar rainfall for large storm events such 

as tropical storms and hurricanes. A fully distributed model, Vflo ™, was used to model 

streamflow during small storm events in the Cypress Creek Watershed, near Houston, 

Texas. Two events were simulated both with rain gage corrected radar data and 

exclusively with rain gages, while a third event was modeled exclusively with rain gage 

data. The modeled streamflow was then compared, using peak streamflow, time to peak, 

and volume streamflow, to the USGS observed streamflow to evaluate the model 

performance between radar and rain gage input. A comparison of the models for the 

events shows that the radar input results better match the observed streamflow for the 

streamflow volume and peak streamflow. 

3. Introduction 

A significant goal of current research to improve the use of distributed hydrologic 

modeling is to improve the ability to accurately predict and simulate streamflows 

(Carpenter et al., 2004). Several studies have identified the high degree of sensitivity that 

such hydrologic models have to the rainfall inputs (Sunet al., 2000, Carpenter et al, 2001, 
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Koren et al., 1999). Radar rainfall provides high spatial and temporal resolution input 

data (Borga, 2002) that, when corrected for bias, has been shown to improve the accuracy 

ofhydrologic model performance (Vieux and Bedient, 2004). 

Hydrologic models are typical tools in the development of watershed protection plans, 

providing simulation of rainfall-runoff processes. Fully distributed hydrologic models 

provide the ability to simulate the spatial variability of hydrologic processes over the 

landscape of a watershed (Yilmaz et al., 2008). As such, fully distributed hydrologic 

models are important tools for assessing (1) the effects ofland-use change, (2) the 

influence of geospatial inputs, and (3) the movement of pollutants and sediment (Smith et 

al., 2004). When combined with radar rainfall, fully distributed hydrologic models 

improve the accuracy of hydrologic prediction (Vieux et al., 2009). Recent advances in 

computing resources and availability of radar rainfall data have allowed for 

improvements in rainfall-runoff modeling (Delrieu et al., 2009). 

The objective of this study was to present a case study comparing the performance of a 

fully distributed physically based hydrologic model using either radar rainfall or rain 

gage data input for Cypress Creek Watershed, near Houston Texas. The hydrologic 

model was calibrated and evaluated specifically for small storms, which have been poorly 

studied past hydrologic research. This watershed is poorly monitored by rain gages 

(Figure 3-1 ); thus radar rainfall provides greater density of rainfall data input for the fully 

distributed model. 
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...... ~======~km 
Rain Gauges 0 5 10 20 

Figure 3-1.Rain gage network in Cypress Creek (rain gage density for area draining to A 
is 182km2 per rain gage, rain gage density for area draining to B is 79 km2 per rain gage, 
and rain gage density for area draining to C is 67 km2 per rain gage) 

3.1. Background 

3.1.1.Radar Rainfall 

Radar derived rainfall data have been used in numerous applications for hydrologic 

modeling, including the use of a real-time flood alert system (Fang et al, 2009 ; Sharif et 

al, 2010), watershed assessment models for Total Maximum Daily Loads (TMDLs) (Wu 

et al, 201 0), and pollutant transport models (Shaw et al, 201 0). It has been found that 

radar rainfall provides a more accurate computation of the rising limb and peak 

streamflow ofhydrographs than rain gages (James et al, 1993). Furthermore, streamflow 

volumes are better matched with the use of bias corrected radar data than with rain gages 

alone (Einfalt et al. , 2004 ). 

An important advantage of radar rainfall is that it provides information on the spatial 

distribution of rainfall, allowing for its use in fully distributed hydrologic models 
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(Carpenter et al, 2001). However radar rainfall alone is unable to accurately capture 

rainfall amounts (Kim et al, 2008). In order to correct for error in raw radar rainfall data, 

the radar must be calibrated to rain gages (Seo, 1998). The estimate of rainfall by radar 

when compared to rain gages can be biased by rain gage errors, radar errors, or the 

inherent difference between point estimates by rain gages and aerial estimations by radar 

scans (Ahnert, 1983). Evaluation of radar estimates with gage measurements have shown 

that large rainfall events tend to be underestimated where as small rainfall amounts are 

overestimated (Seo and Breidenbach, 2002). 

Next Generation Weather Radar (NEXRAD) radar is provided by the National Weather 

Service (NWS) through an array of Weather Surveillance Radar-1988 Doppler (WSR-

88D). NEXRAD uses a 10 em wavelength to record reflectivity, radial velocity, and 

spectrum width of the reflected wave (Bedient et al., 2000). The measured reflectivity is 

used to calculate rainfall rate using the empirically based Z-R relationship (Krajewski and 

Smith, 2002). Vieux et al. (1998) showed that precipitation in the Houston area is 

adequately represented by the tropical Z-R relationship (Rosenfeld, 1993), 

Z = 200Rl.2 (3-1) 

where Z is the reflectivity (mm6m"3) and R is the rainfall rate (mmhr-1). This approach 

has been used to reconstruct multiple large events in the Houston region (Bedient et al, 

2007). Bias in the radar estimations is corrected by comparing the 24 hour rain 

accumulation estimated by the radar to that of the rain gage measurements, and then 
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adjusting the coefficient in the Z-R relationship (Equation 3-1) (Vieux and Bedient, 

1998). 

3.1.2.Fully Distributed Hydrologic Model 

Vjlo™ is a fully distributed hydrologic model developed by Vieux et al. as a refinement 

of r. water.fea (Vieux and Gauer, 1994). It has been used extensively in the Houston and 

Texas Gulf Coast region to model and predict flooding from extreme rainfall events. The 

Vjlo™ model has previously been used to model a tributary to Cypress Creek, Little 

Cypress Creek, in order to evaluate flood storage using a 100 year design storm (Fang et 

al, 201 0). Fang et al. used Vjlo™ in their flood alert system (F AS) to model real-time 

response with radar rainfall to forecast flooding in Brays Bayou for the Texas Medical 

Center of Houston (2009). In addition, Vjlo™ models have been developed for White 

Oak Bayou (Safiolea et al, 2005), Horsepen Bayou, and Clear Creek, all watersheds in 

and around Houston, Texas. The modeling efforts in Brays Bayou were supported by an 

extensive rain gage network that monitored a mostly homogenous urban watershed. In 

contrast Cypress Creek watershed has a complex mix of land use and is relatively poorly 

monitored by a sparse rain gage network (See Fig 3-1). 

Vjlo™ uses finite element solutions ofthe kinematic wave equation for runoff routing. 

The solution for both overland and channel flow were derived from the Saint Venant 

equations for unsteady free surface flows. It is derived from the continuity and 

momentum equations (Borah, 2003). The one-dimensional continuity equation is 

aQ aA 
-+--q=O, ax at 

(3-2) 
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where Q is the flow rate, A is the cross-sectional area, q is the lateral inflow, x is length, 

and t is time. The momentum equation is simplified to 

S0 = S1 , (3-3) 

where So is the slope (length/length) and Stis the friction slope (length/length). The 

continuity and momentum equations are used to solve for discharge through 

(3-4) 

where P for overland flow is assumed to be 5/3. The conveyance factor a is 

a= km JS: 
n 

(3-5) 

where n is the Manning's coefficient, and km is the dimensionless kinematic flow number. 

Overland flow is calculated from the surface flow modeled by Manning's equation as 

(3-6) 

where is vis the flow velocity (length/time), S1 is the overland slope (length/length), B is 

the width of flow (length), his the depth of flow (length), and n is the Manning's 

coefficient, which is based on surface characteristics (Vieux, 2004). 

Runoff moves from overland cells into channel cells. Open channel flow can simplified 

to the form 

_ aQ .aQfJ-I(aQ) q--+av -at at (3-7) 

which takes into account the change in the ratio of flow depth to flow width. This 

formulation can then be solved by finite element analysis, which is an efficient way to 

transform partial differential equations into ordinary differential equations (Vieux, 2004). 

By translating the 2-D grid into 1-D finite elements, or partial discretization, the system 

becomes computationally more efficient. The result is a system of equations for each 
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element incorporating the boundary conditions of the grid cell, which can then be solved 

in matrix form by numerical methods. 

The Vfio™ model solves the Green & Ampt infiltration and saturation excess equations 

for runoff generation (Vieux, 2004). Geospatial data representing elevation, soils, and 

land use (Figure 3-2a, b, and c) are incorporated as parameters for the solution of these 

relationships. Precipitation input can be radar rainfall data, interpolated from rain gage 

data, or simulated design storms. The model is used to simulate runoff and other 

hydrologic quantities at any location within the study area, thereby supporting the 

generation of hydrographs for the selected locations in the watershed. 
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Figure 3-2. Data used to build Vjlo™ model including (a) elevation, (b) land use, (C) 
soils, and (d) waste water treatment plant discharge 
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3.2. Study Area 

Cypress Creek is a 797 km2 (308 me) watershed located north of the city of Houston and 

contained in north Harris and Waller counties. It flows for 50 river miles to Lake 

Houston, the primary source of drinking water for the City of Houston 

(Chellam, 2008). This watershed is the primary contributor of urban runoff and pollutant 

loading to Lake Houston (Sneck-Fahrer, 2005). The western upstream part of the 

watershed is undeveloped primarily as cultivated agricultural fields. The eastern portion 

of the watershed has primarily residential development and is home to most of216,000 

residents (ESRI, 2000). Cypress Creek watershed is relatively flat with sandy loam soils 

(Figure 3-2c) which have greater infiltration and less erosion potential. As a result, 

increases in impervious cover increase runoff. 

The watershed has multiple USGS stream gages to monitor streamflow. Three of the 

gages were used in this study for evaluation and comparison of the modeled streamflow. 

The first gage USGS 0808740 (Station A in Figure 3-1) receives runoff from 363.4 km2 

(140.3 mi2) of primarily grassland and agricultural areas. The second gage, USGS 

08068800 (Station B), receives runoff from 550.2 km2 (212.8 mi2) of grassland, 

agricultural, forested, and low intensity residential areas. The third gage, USGS 

08069000 (Station C), receives runoff from 737.7 km2 (285.2 mi2) of grassland, 

agricultural, forested, and low to high intensity residential areas. 

Little Cypress Creek, a sub-area of the Cypress Creek Watershed, was previously 

modeled using Vjlo™ by Fang et al. (2010) in order to assess the necessary flood storage 



capacity required by urbanization. This work focused on large storms including a 100 

year design storm. The lessons learned and associated datasets from this smaller scale 

study were instrumental in the modeling efforts of this current study. 

3.3. Method 

A Vjlo™ model was developed for Cypress using geospatial datasets as shown in Table 

3-1. Each ofthe datasets was processed into grids consisting of22 acre cells (or 300 

meter on a side) in order to spatially represent the watershed. The 797 km2 (308 mi2) 

watershed is represented by a total of25,070 cells. 

Soils Data 

Land Use Data 
HEC RAS Cross Sections 
TWDB Lake Evaporation 
Base flow 

Statsgo 

TSARP 
TSARP 
TWDB 
H-GAC Permitted 
Outfalls, WNTP 

Data Processe 

Slope 
Flow Direction 
Flow Accumulation 
Infiltration 
Hydraulic Conductivity 

Wetting Front 
Soil Depth 
Initial Saturation 
Impervious 
Roughness 
Channel Geometry 
Evapotranspiration 

(TSARP -Tropical Storm Allison Recovery Project ;HEC RAS- Hydrologic Engineering 
Centers River Analysis System; TWDB- Texas Water Development Board; H-GAC­
Houston-Galveston Area Council ; WNTP- Waste Water Treatment Plant) 

A digital elevation model (DEM) created from Lidar data (Figure 3-2a) gathered by the 

Tropical Storm Allison Recovery Project (TSARP) in 2006 was processed in Arc View 
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using spatial analyst tools to create a slope grid using the process reported by Fang et al. 

(2010) to create a flow direction grid. 

Vjlo™ uses the Green & Ampt equation (Vieux and Bedient, 2004) to solve for the 

infiltration of water through the soil surface. This requires data including hydraulic 

conductivity, wetting front, effective porosity, soil depth, initial saturation, abstraction, 

and impervious cover. Soils data for Cypress Creek were taken from the NRCS soil 

survey (2006), (Figure 3-2c). Using the percentage of sand, silt, and clay for each soil 

classification, the effective porosity, wetting front, and hydraulic conductivity were 

extrapolated (See Table 3-2). Soil depth was assumed to be the depth of the first layer of 

soils as reported in the soil survey. 

Table 3-2. Green & Ampt parameters based on soil type 

Soil Class 

Sand 
Loamy Sand 
Sandy Loam 
Silty Clay Loam 
Loam 
Clay Loam 

Effective Porosity Wetting Front Hydraulic Conductivity 
(cmA3fcmA3) Suction (em) (cm/hr) 

0.417 4.95 11.78 
0.401 6.13 2.99 
0.412 11.01 10.90 
0.432 27.30 0.10 
0.434 8.89 0.34 
0.390 20.88 0.10 

Land use data collected through the TSARP project (2006) (Figure 3-2b) was used to 

determine the Manning's overland roughness coefficient, n. Roughness ranged from 

0.012 to 0.15. In addition, each land use category was assumed to have a percent 

impervious value. 



The channel was specified by the use of cross section cells, where the most recent 

detailed cross section surveys from a HEC-RAS (Hydrologic Engineering 
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Center, 2002) model from TSARP (2006) were used to delineate the channel. To 

simulate the additional streamflow produced by significant wastewater treatment plants, 

baseflow was added to the cells corresponding to the location of known outfalls. The 

flow rate ofbaseflow to act as a surrogate from effluent was estimated from average 

monthly monitored discharge rates reported by the Houston-Galveston Area Council (H­

GAC, 2009). Figure 3-2d shows the locations of the outfalls. 

The model was then calibrated at three locations within the watershed as shown in Figure 

3-1 (Stations A, B, and C) for two rainfall events July 7, 2009 and September 22, 2009 

with radar rainfall data by adjusting the roughness factor. 

NEXRAD data collected by the National Weather Service at Dickinson, Texas, was used 

for the July 7, 2009 and September 22, 2009 events. Reflectivity data were processed by 

Vieux and Associates, in Norman, Oklahoma, using the tropical Z-R relationship to 

estimate the rainfall rate (Vieux and Bedient, 1998). In order to ensure the quality of the 

rainfall rate estimations the estimated R was calibrated to the rain gages in and around the 

watershed by adjusting of the coefficient in the Z-R relationship. Table 3-3 outlines the 

agreement of radar and rain gauge data before and after calibration adjustment. Rainfall 

data were delivered in ascii grids with a resolution of 1 km at 5 minute intervals. The 

total rainfall depths from the radar data for July 7, 2009 and September 22, 2009 are 

shown in Figures 3-3 and 3-5 respectively. 
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Table 3-3. Radar calibration statistics 
MFB AD CAD RD 

Average Calibrated Relative 
Mean Field Difference Average Dispersion 

Start End Bias (%) Difference(%) (%) 

7/7/2009 4:05 7/8/2009 6:00 1.82 39.20 17.40 21.00 
9/22/2009 17:05 9/22/2009 5:00 0.61 102.90 11.10 14.10 
9/22/2009 5:05 9/22/2009 15:00 1.24 18.90 7.50 9.10 

9/22/2009 15:05 9/23/2009 16:00 1.54 34.00 19.30 21.70 
9/23/2009 16:05 9/25/2009 6:00 2.04 43.00 12.70 15.80 

For each rainfall event the model was run for 48 hours past the end of the rain event. In 

addition, for three rainfall events, July 7, 2009, September 22, 2009, and August 16, 

2010, the model was run using rain gage rainfall data. Rain gage data were acquired 

from the Harris county Office of Emergency Management (HCOEM) for the rain gages 

shown in Figure 3-1. The rain gage data were spatially distributed using an exponential 

weighting function by the Vjlo™ model. The total rainfall depths estimated from rain 

gage data are shown for the three events are in Figures3- 4, 3-6, and 3-7. 

For each model run, the results were then plotted as hydrographs to compare the modeled 

and observed streamflow. Observed streamflow was taken at three USGS stream gages 

in the watershed: 08068720 (A), 08068800 (B), and 08069000 (C). The total volume of 

streamflow, time of peak, and peak streamflow was compared to the USGS streamflow 

observed at the three stream gages. In addition, the runoff depth and rainfall depth were 

used to calculate the runoff ratio (k) as the ratio of runoff depth to rainfall depth for each 

event. 
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3.4. Results 

The model results were compared for radar rainfall and rain Gage rainfall input. The 

hydrographs for the July 7, 2009 rainfall event using radar input are in Figure 3-3, where 

as the observed versus modeled hydrographs using rain gage data are in Figure 3-4. The 

observed streamflow and modeled streamflow for the September 22, 2009 event using 

radar rainfall input is in Figure 3-5 and using rain gage data is in Figure 3-6. The 

observed and modeled streamflow for the August 16, 2010 event are in Figure 3-7. Table 

3-4 shows the differences in total streamflow volume and time difference in peak. 
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Figure 3-3 . Modeled streamflow using radar rainfall for July 7, 2009 for stations (A), (B), 
and (C) 
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Figure 3-4. Modeled streamflow using rain gage rainfall data for July 7, 2009 for stations 
(A), (B), and (C) 
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Figure 3-5. Modeled streamflow using radar rainfall data for September 22, 2009 for 
stations (A), (B), and (C) 
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Figure 3-6. Modeled streamflow using rain gage rainfall data for September 22, 2009 for 
stations (A), (B), and (C) 
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Figure 3-7. Modeled streamflow using rain gage rainfall data for August 16,2010 for 
stations (A), (B), and (C 
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T bl 3 4 C a e - ompanson o mo e e an o serve f did db d tr amfl s e ow 
% Volume Difference Peak difference (hr) Runoff Coeffient (mm/mm) 

Station Station Station 
Rainfall Event A B c A B c A B c 
Radar7/7/2009 35.96 14.50 4.90 16.33 0.07 3.75 0.05 0.04 0.35 
Rain Gage 7/7/09 54.00 12.00 44.00 5.33 7.25 3.33 0.05 0.10 0.40 
Radar 9/22/09 43.30 3.00 8.00 0.08 3.25 3.92 0.07 0.10 0.17 
Rain Gage 9/22/09 119.19 78.39 70.65 8.92 1.75 5.08 0.03 0.07 0.13 
Rain Gage 8/16/2010 35.00 14.56 13.54 1.00 1.75 1.67 0.08 0.17 0.28 
Average 57.49 24.49 28.22 6.33 2.81 3.55 0.06 0.10 0.27 

The July 7, 2009 event was preceded by 15 days of dry weather. The total rainfall depth 

with radar input was 0.5 inches (12.7 mm), whereas the rainfall depth with rain gages was 

0.28 inches ( 7.11 mm). Most ofthe rain fell in the downstream portion of the watershed 

(See Figures 3-3 and 3-4). With rain gage data, there was 44% difference in volume 

between the modeled and observed streamflow at the downstream point C. With the use 

of radar rainfall, the difference in volume was 4.9%. The difference in timing of the peak 

streamflow was 3.3 and 3.8 hours, respectively. At the midpoint of the watershed (point 

B), the volume differences were more similar with 14.5% for radar and 12% for rain gage 

data. The peaks matched well for the radar with a time difference of 0.0695 hours for 

radar input. There was a peak difference of 7.25 hours for rain gage input. The modeled 

runoff coefficient for the entire watershed, as estimated from station C, was calculated at 

0.35 when radar was used to model the rainfall-runoff processes and was 0.40 when rain 

gages were used. 

In the September 22, 2009 rainfall event, most the rain fell in the upstream portion of the 

watershed (see Figures 3-5 and 3-6). When modeled exclusively with rain gages, there is 

a 70% difference in modeled versus observed volume of streamflow and the time 

difference in peaks is 5 hours at the downstream gage (C). When modeled with radar 
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rainfall, the hydrographs for this event show an 8% difference volume at the most 

downstream point (C). The time differences in the peak streamflow at station C was 5.1 

hours when modeled with rain gages and 3.9 hours when modeled with radar. The peak 

streamflow at this station is overestimated when modeled with Radar and underestimated 

with rain gage input. This over and underestimation of peak streamflow is also the result 

at stations A and B. At station B, there was a 3% volume difference when modeled with 

radar and 78% when modeled with rain gages. When modeled with radar, the shape of 

the hydrograph shows a double peak which is not present in the observed flow. The 

modeled streamflow for this station differs from the observed at this station by 3% for 

radar input and by 78% for rain gage data. However, the rain gage model peaked closer 

to the observed peak with a time difference of 1.8 hours whereas the radar model peaked 

with a 3.3 hour time difference. For the most upstream gage (Station A), the model 

differed from the observed volume of streamflow by 43% for radar and 119% for rain 

gage. The time of peak was well matched by the model using radar data input with a 

time difference of 0.1 hours. The time difference between the observed and rain gage 

modeled streamflow was 8.92 hours. The runoff coefficient varied from 0.17 to 0.13 

when radar and rain gage data were used to model the rainfall-runoff processes. 

The August 16, 2010 rainfall event was modeled exclusively with rain gage data (See 

Figure 3-7). The volume differences at station C showed a 13.5% difference in volume 

and a 1 hour time difference in peak streamflow. At the mid-point in the watershed (B), 

there was a 14.6 volume difference and 1.8 hour time difference in peak. At the 

downstream most point, the volume difference was 13.5% and the time difference in 



streamflow peak was 1.7 hours. Using the rain gage data to model the rainfall-runoff 

processes resulted in a calculated runoff coefficient of 0.28. 

3.5. Discussion 
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A comparison of rain gage and radar rainfall for the July 7th event shows that the model 

ultimately performs better at the downstream most station (C), which is where most of 

the rainfall fell. It should be noted that the radar rainfall data estimated nearly twice the 

amount of rainfall than the rain gage data. Furthermore the streamflow rate at the mid 

and upper watershed was comparatively smaller than downstream with 0.4 and 0.9 ems 

versus 28 ems. It is often very difficult to model streamflows in the lower range (Gan, et 

al., 1997), especially where infiltration is a big factor, so this result follows previous 

findings. 

For the September 22 event, most of the rain fell in the upstream portion of the watershed 

(Station A). However a comparison of the radar and rain gage rain total maps (See 

Figures 3-5 and 3-6), shows that the greatest rain depths recorded by the NEXRAD radar 

were in locations not monitored by rain gages. The model results best matched the 

magnitude and timing of the peak best at the upstream station, A, when radar data were 

used. However the volume differences were the greatest for the upstream section for 

both radar and rain gage data. This illustrates the radar data's dependence on rain gage 

data quality, as the radar data were calibrated to the rain gage observed data. 



75 

A comparison of the model results between the two events tested show that the model 

performs best in terms of timing and the shape of the hydro graph at the station nearest to 

the mass of the rainfall. Furthermore, the model more closely matches the observed 

peak, timing of peak, and volume of streamflow in events with greater rainfall depths. 

For instance, at the upstream portion of the watershed (station A), the model performed 

better for the September 22nd, event where the rainfall primarily fell upstream of station 

A, than for the July 7th event where the rainfall primarily fell near station C. 

Furthermore, the total depth of rainfall that fell in this portion of the watershed was 

greater. This follows other studies (Gan et al., 1997), which have determined that 

distributed hydrologic models simulate large rainfall events better than rainfall events 

with small depths. 

Overall, the radar input improved the estimations of streamflow in terms of volume for 

both of the events. However it should be noted that the quality of radar data is 

intrinsically tied to the quality of the rain gage network because the radar is corrected 

based on the rain gage measurements. The upstream portion of Cypress Creek, 

monitored by Station C only has two rain gages. Thus this portion of the watershed has a 

rain gage density of 182 km2 per rain gage. Rainfall is both over and underestimated in 

this data poor section. At station B, the rainfall is collectively monitored by 7 rain gages, 

with a density of 79 km2 per rain gage. The downstream station, C, has a density of 67 

km2 per rain gage. Given the improved estimations of total streamflow volume at the 

down stream station in comparison to the upstream station, it can be concluded that the 

downstream portion of the watershed benefits from the higher density of rain gages. 
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When the calculated runoff coefficients were compared between the rain gage and radar 

modeled rainfall events, it can be seen that for both events, the runoff coefficients 

roughly agreed. Although there was a wide range in calculated values between the 

events, the coefficients fell within the published values for flat sandy soils for suburban 

residential and pasture areas (Haan et al., 1994). By comparing the magnitude ofthe 

estimated runoff coefficients, it can be observed that the rainfall runoff processes in the 

downstream section, which has the highest runoff coefficient, dominate the watershed 

response. Because of the sandy soils of the watershed, the residential and urban 

development, in the downstream portion of the watershed, dramatically increases the 

runoff in comparison to the undeveloped, upstream portion of the watershed. 

3.6. Conclusion 

A fully distributed model was created for the Cypress Creek Watershed in order to 

simulate rainfall runoff processes using both radar rainfall and rain gage data. The 

hydrographs of the modeled streamflow resulting from using the model with both radar 

and rain gages were then compared in terms of volume streamflow, peak time, and 

magnitude of peak. It was found that the model performed better with radar rainfall than 

with rain gages in terms of streamflow volume and peak flow. Between the compared 

events, the volume differences between modeled and observed streamflow varied by an 

order of magnitude between radar and rain gage datasets. The July 7th, 2009 event varied 

between 4.9% and 44% whereas the September 22nd, 2009 varied between 8% and 71% 

for radar and rain gage modeled storms, respectively. The modeled streamflow best 
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matched the observed streamflow for the station where the greatest depths of rainfall fell. 

However, the portions of the watershed with a low density of rain gages, to which the 

radar could be calibrated, performed poorly in comparison to portions of the watershed 

with a greater density of rain gages. In other words, the quality of radar rainfall data was 

dependent on the rain gage network in that the density of the rain gage network directly 

impacts the quality of the radar rainfall data. While radar represents a significant 

improvement in hydrologic analysis, it must be accompanied with a robust rain gage 

network to ensure quality of the data, especially for smaller storm events. 

The use of radar rainfall in distributed hydrologic improves modeling of rainfall runoff 

processes in comparison to exclusive use of rain gages, especially in poorly gauged 

watersheds, such as Cypress Creek where the rain gage density ranged from 67 to 182 

km2 per rain gage. Advances in computing resources that allow for more efficient use of 

distributed models allow for greater use of radar rainfall in the modeling, management, 

and forecasting of water resources. Thus radar rainfall is a valuable data source for 

hydrologic study. The findings of this study to evaluate the use of radar rainfall to model 

small rainfall events will be used in future model development and analysis to include 

water quality. 
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Chapter 4 : Modeling of Pollutant Wash off and Transport 
Using Fully Distributed Hydrologic Modeling 

Aarin Teague, Jason Christian, and Philip Bedient 
Submitted July 2011 to Hydrological Processes 

Abstract 

Advances in hydrologic modeling have been shown to improve the accuracy of rainfall-

runoff simulation and prediction. Building on the capabilities of distributed hydrologic 

modeling, a water quality model was developed to simulate buildup, washoff, and 

advective transport of a conservative pollutant. Classical washoff and transport 

relationships were utilized similarly to current lumped models. The spatially explicit 

model output provides greater spatial information on the dynamics of pollutant 

movement during storm events as well as a greater density of temporal information than 

current resource limited sampling data. 

Coupled with the physically based Vjlo™ hydrologic model, the pollutant transport 

model was used to simulate the washoff and transport of total suspended solids for 

multiple storm events in Cypress Creek Watershed. The model was calibrated and 

applied to small storm events. Since small storms occur more frequently, accurately 

modeling small rainfall events, which have traditionally been difficult to model, is 

necessary for the investigation and design of watershed management practices. The 

output of the distributed buildup and washoff model was compared with storm water 

quality sampling in order to assess the performance of the model. For a majority of the 

storms modeled, the model performed with an acceptable degree of error using root mean 
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squared error and normalized mean squared error metrics. The model output was then 

analyzed to temporally and spatially characterize the storm events. This effort was the 

first step in developing a fully distributed water quality model. As such it provides the 

framework for the incorporation of more sophisticated pollutant dynamics and a spatially 

explicit evaluation of best management practices and land use change. 

4. Introduction 

Stormwater quality in streams continues to present challenges for protecting water 

resources. Pollutant transport models are valuable tools for the investigation and 

management of watersheds (Mannina and Viviani, 2010) as well as design and evaluation 

of measures to protect the sources of water supplies. Physically based water quality 

models combine mathematical models of buildup and washoff (Avellaneda et al., 2009). 

These complex processes, which vary temporally and spatially, create technical 

challenges for the development of storm water quality models (Dotto et al., 201 0). 

Current water quality models such as Hydrologic Simulation Programmed in Fortran 

(HSPF) and Storm Water Management Model (SWMM), both lumped models, are 

capable of simulating single rainfall events. Lumped models parameterize the watershed 

by aggregating similar spatial areas and applying values to the assumed homogeneous 

area (Bicknell et al., 2001). Although HSPF provides well matched simulation ofhigh 

flows, intermediate storm flows are generally underestimated and low flows are generally 

overestimated (Chen et al., 1995; Singh et al., 2005). Physically-based, distributed 

models have been introduced as a way to improve predictive capability by including 

spatially variable physical parameters (Min and Wise, 2010). Advances in GIS provide 
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physical data that make it possible to model hydrologic and water quality processes with 

greater accuracy, detail, and utility. While lumped models lack the spatial refinement to 

simulate the effects of specific best management features or land use changes (Nikolaidis 

et al., 1998), distributed models provide the necessary detail to simulate important 

watershed features that effect water quality. 

Previously developed water quality models such as SWMM and HSPF have well 

established methods which use a lumped approach for simulating the washoff and 

transport processes. SWMM was designed to model urban watersheds (Huber et al., 

1975; Rossman, 2004), and thus is best used for homogeneous urban areas. In contrast, 

HSPF is capable of modeling watersheds with mixed developed and undeveloped land 

uses. While HSPF can simulate single events with a user-defined timestep, it was 

designed for continuous simulation (Borah et al., 2006). Both HSPF and SWMM lack 

the spatial refinement to model the effect of specific best management practices (BMPs) 

such as street sweeping, vegetative filter strips, or detention basins (Shoemaker, et al., 

2005) in a spatially explicit manner. To provide more comprehensive modeling, the 

Better Assessment Science Integrating point and Nonpoint Sources (BASINS) tool 

incorporates HSPF with other hydrologic and water quality models. By coupling other 

models with HSPF, such as Kineros, which simulates sediment transport (Guber et al., 

2009), some BMPs can be modeled. 

Recent advances in hydrologic modeling provide the basis for development of models 

which incorporate the necessary spatial refinement to accomplish detailed pollutant 
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transport simulation. However, few water quality models take advantage of fully 

distributed hydrologic models or the use of radar rainfall. The improvements in 

simulation and prediction of streamflow, (Vieux et al., 2004) as well as the utility 

provided by spatially explicit pollutant data, warrant further effort to refine water quality 

modeling. By applying well established modeling approaches for washoff and transport 

to advanced hydrologic simulation, a foundation for a fully distributed water quality 

model has been developed in order to take advantage of the improved accuracy of 

hydrologic modeling. This is the first step towards building a water quality model that 

can be used to model BMPs, land use changes, and pollutant loading in a spatially 

explicit manner. 

The objective of this study was to develop a pollutant washoff and transport model that is 

coupled with a physically based, fully distributed hydrologic model. This was 

accomplished through the application of a hydrologic model, Vjlo™ for the study 

watershed, Cypress Creek Watershed. The output ofthe hydrologic model was then used 

as input for an independent washoff and transport model. The model was used to 

simulate total suspended solids (TSS) and was compared to storm water sampling data, in 

order to assess model performance for small rainfall events. The model output was then 

used to further analyze the dynamics of the storm events by evaluating the existence of a 

first flush behavior and the spatial distribution of pollutant washoff loading. 
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4.1. Background 

4.l.l.Ful/y Distributed Hydrologic Modeling 

Rainfall-runoff processes were simulated using the physically based hydrologic model, 

Vjlo™. While there are a variety of models that provide distributed simulation and 

prediction ofwatershed hydrology, such as MIKE SHE (Vasquez, 2002), TUFLOW 

(Syme, 2001), TOPNET (Bandaragoda, 2004), and Gridded Surface Subsurface 

Hydrologic Analysis (GSSHA) (Byrd, 2005), Vjlo™ was selected due to extensive 

application within the Texas Gulf Coast region (Fang et al., 2010; Fang, et al., 2008; 

Safiolea, 2006, Duncan, 2011; Vieux and Bedient, 2004) and proven performance in low­

slope urbanized watersheds (Vieux and Vieux, 2006). Vieux has published detailed 

documentation of the model and its applications (2004). The kinematic wave analogy is 

used to route runoff from overland flow to channel flow, according to a flow direction 

grid derived from a digital elevation model (DEM). Infiltration is calculated using the 

Green & Ampt Equation (Kim et al., 2008) and overland flow is modeled using 

Manning's equation (Vieux et al., 2009). An advantage ofusing this model is that 

geospatial data representing elevation, soils, and land use are incorporated as parameters 

to solve these relationships. It uses the Galerkin's formulation of finite elements for the 

solution of the kinematic wave analogy (Vieux, 2004) with a finite difference solution to 

time discretization subject to the Courant condition (Vieux et al, 2009). 
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4.1.2.Po/lutant Buildup 

The type and rate of pollutant buildup is dependent on land use, human activities, and 

season (Overton and Meadows, 1976). The accumulation of a pollutant on a surface can 

be calculated by different relationships such as linear, power, exponential, and Michaelis-

Menton function (Barbe et al, 1996). Among the different modeling options used by 

models, such as SWMM and HSPF, is the linear buildup function. The rate of 

accumulation of a pollutant can be modeled using the linear function as 

dP =C 
dt 

where P is the pollutant mass, t is time, and C is the constant rate of accumulation. 

(4-1) 

Observed pollutant loading shows that there is an upper limit on the amount of buildup, 

often influenced by degradation, wind, or human activity (Alley and Smith, 1981). In 

addition, runoff does not completely remove pollutant from the land surface, leaving 

residual mass. While the linear function may not always be adequate to describe buildup 

(Chen and Adams, 2007), it is considered to be an appropriate model in the absence of 

extensive water quality sampling data. 

4.1.3.Pollutant Washoff 

Washoff is the process of removal of soluble and particulate pollutants by rainfall and 

runoff(Vaze and Chiew, 2003). Falling raindrops create turbulence and overland flow 

loosens particles from the surface, transporting the particles through the watershed with 

the water flow. Storm water quality models traditionally conceptualized the washoff 



process as driven by the energy of raindrop impact or the shear stress of the runoff 

(Brodie and Rosswall, 2007). 

The washoff rate is the first order differential equation (Soonthornnonda et al., 2008, 

Butcher, 2001, Stieber et al., 1999) 

dP =-kP 
dt 

(4-2) 

which describes the rate at which pollutant mass, P, is removed from the land surface 
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relative to the coefficient, k. Both SWMM and HSPF assume that this coefficient would 

vary in direct proportion to the rate of runoff (Butcher, 2003; Barbe et al., 1996) over the 

subcatchment, r (depth/time), as 

k = ( 2.30 Jr 
WSQOP 

(4-3) 

where WSQO P is the runoff depth that results in wash off of 90% of solids from the land 

surface (Deliman et al., 1999). Typical values for krange from 10.16 mm (0.4 in.) to 

17.78 mm (0. 7in) for impervious surfaces (Butcher, 2003; Sartor and Boyd, 1972), and 

are generally greater than 25.4 mm (lin) for rougher pervious surfaces (Yagow et al., 

2001). 

4.1.4.Pollutant Transport 

Pollutants can be transported through advection, dispersion, or diffusion. However, due 

to the time scale of a single storm, fully entrained particles and solutes are transported 

overwhelmingly by shallow overland flow (Singh, 2002a). Therefore, transport can be 

modeled based exclusively on advection (Bicknell, 2001). As a result, pollutant transport 
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by overland flow can be modeled using the dynamic equations of free-surface flow, also 

known as Saint Venant equations (Akan, 1987). This may not accurately represent the 

natural environment, where pollutants are subject to other transport, biochemical, and 

biological processes. Despite these limitations, it is assumed that pollutant transport by 

diffusion and dispersion as well as biochemical reactions are negligible (Singh, 2002a; 

Singh, 2002b ), and transport is sufficiently modeled by advection. 

Advective transport in shallow overland flow can be adequately approximated by the 

kinematic wave analogy (Singh, 2002a; Singh, 2002b, Akan, 1987), similar to the 

approach for modeling hydrology. Kinematic wave is a simplification of the Saint 

V enant equations and is basically a mass balance of the pollutant movement in runoff, 

run-on, rainfall deposition, pollutant flux from the land surface, and accumulation of 

pollutant in the overland flow (Akan et al., 2000). Mathematically this takes the one 

dimensional form 

(4-4) 

where Cis the concentration ofthe pollutant in runoff(mass/volume), CR is the 

concentration in rainfall (mass/volume), Q is the overland flow rate (volume/time), his 

the depth of runoff (length), P is the mass of pollutant on the surface of the land 

(mass/area), I is the intensity rainfall (depth/time), tis time, and xis the length in the x 

flow direction (Akan, 1987). The first term is the change in mass flux of the pollutant in 

the runoff over time. The second term is the net flux of pollutant in the runon and runoff, 

over the distance dx. The third term is the change in mass of pollutant per area of land 
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surface over time. The term on the right hand side is the mass of pollutant falling on the 

surface during rainfall. 

4.2. Methodology 

The development of the washoff and transport model is dependent on the fully distributed 

hydrologic model, Vjlo™ (Vieux Inc., 2011). This rainfall-runoff model output, in the 

form of spatially explicit discharge data for each time step of the simulation, served as the 

input of the independent washoff and transport model (See Figure 4-1) and was then 

analyzed using ArcMap 9.3 (ESRI, 2008). Both the hydrologic and washoff and 

transport model were developed for the study watershed, Cypress Creek, and used to 

simulate the rainfall-runoff processes coupled with washoff and convective transport of 

TSS for lower flow rainfall events. The simulated TSS concentration was then compared 

to observations ofTSS collected during the modeled storm events to assess the 

performance of the washoff and transport model. 



Vflo TM Hydrologic Simulation 

RADAR 

Java Application: Washoff & 
Transport 

Pollutant Loading Rate 
(mass/area/time) 

Wash-off Function 

dP 
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dt 

Transport 
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Hydrograph 

Pollutograph 

Figure 4-1. Development of water quality model coupled with distributed hydrologic 
modeling 

4.2.1.Hydrologic Model Development 
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A Vjlo™ model of Cypress Creek watershed (Figure 4-2) was previously developed using 

Lidar elevation, NRCS soils data, and Tropical Storm Allison Recovery Project (TSARP) 

land use and cross section datasets (Teague et al., 2011). Four storm events were 

simulated using the Vjlo™ model. The characteristics of the events are described in 
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Table 4-1, and the spatial rainfall distributions are shown in Figure 4-3 . The storms 

varied between 7.64 mm and 39.4 mm of average rainfall, and are thus considered small 

or minor storm events in the Texas Gulf Coast region. Two of the events, the July 7, 

2009 and September 22, 2009 storms were modeled using radar rainfall data that was 

calibrated to the rain gauge network. The other two events were modeled using an 

exponential interpolation of data from the rain gauge network. The resultant discharge 

and depth of flow data from the simulation of the storm events served as the hydrologic 

basis of the pollutant washoff and transport model described below. 

Table 4-1. Storm event characteristics 

Storm 
Event Duration (hr) 

7-Jul-09 7.00 
22-Jul-09 3.25 
22-Sep-09 9.75 

7 -Jul-1 0 10.00 

Average Maximum Average 
Rainfall Intensity Intensity 

Depth (mm) (mm/hr) (mm/hr) 

12.70 
12.20 
39.37 
7.62 

79.25 
35.56 
40.64 
40.64 

_ Sampling Station 

= Major Roads 

1.81 
3.75 
4.04 
0.76 

----=====:::J Km 
0 10 20 

Figure 4-2. Cypress Creek Watershed on the Texas Gulf Coast 

Observed 
Streamflow 
Peak (CMS) 

28.60 
6.77 
34.83 
31 .15 

7'» « \~ 
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Total Rainfall (mm) D <6.35 12.4 25.4 

0 2.5 5 

Figure 4-3 . Spatial distribution of total rainfall for (a) July 7, 2009, (b) July 22, 2009, (c) 
September 22, 2009, and (d) July 7, 2010 
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4.2.2. Washoff - Transport Model Formulation 

The washoff and transport model was developed in the Eclipse development environment 

using Java (Eclipse, 2001 ). The application uses the kinematic wave analogy to 

calculate the mass ofTSS in the runoff from each cell in a grid representing the 

watershed. This mass balance approach accounts for the washoff, deposition, and the 

pollutant runon from other cells, so that the pollutant discharge from each cell can be 

determined (See Figure4- 4). 

Deposition 

Run on 

Figure 4-4 . Mass balance of pollutant solved over a grid 

Pollutant washoff and transport were modeled based upon the previously discussed 

conceptual framework using the same grid as the Vjlo™ simulation. The algorithm to 

accomplish this is conceptualized within the following steps: (1) Estimate the pollutant 

loading to the land surface; (2) Determine the mass of pollutant entering the runoff in 

terms of pollutant washoff, point source loading, and pollutant runon; (3) Use the 

continuity equation to calculate the concentration of pollutant in the flow leaving each 
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cell. ( 4) Repeat for the next time step. The result of the algorithm is a distributed 

simulation of the mass of pollutant in runoff throughout the watershed over time. 

4.2.2.1. Buildup 

The first step of the algorithm, to calculate the pollutant loading to the surface, uses a 

land use dataset to determine the loading rate. When possible, locally available data 

regarding the population and distribution of pollutant sources should be used to create 

spatially explicit estimates ofthe potential loading rate (Teague et al., 2009). The HSPF 

default settings were used to assign loading rates based on land use according to Table 4-

2 (Bicknell et al., 2001). The time since the last storm with a depth greater than 6.35 mm 

(0.25 in), the depth assumed to result in runoff (Butcher, 2003), was uniformly applied to 

the loading rates throughout the watershed to estimated the pollutant buildup on the land 

surface. 

Table 4-2. Buildup rates for total suspended solids based on land use 
TSS 

Land Use (kg/Ha/yr) 

Residential 560 
Industrial 560 
Cropland and Pasture 2242 
Herbaceous Rangeland 56 
Mixed Rangeland 56 
Forest Land 56 
Water 28 
Forested Weiland 28 
Non-Forested Wetland 28 
Bare 22 

*(Bicknell eta/., 2001) 
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4.2.2.2. Washoffand Transport 

The mass of pollutant washed off the land surface can be calculated for each time step 

usmg 

(4-5) 

where Po is the initial pollutant mass per unit area on the land surface, and P1 is the mass 

per unit area of the pollutant washed off the land surface. Runon, or the mass entering 

the cell through the runoff from other cells, is calculated using, 

Runon(i,j,t) = IQCM. (4-6) 
i,j 

The required initial condition was assumed to be 20 mg/L for cells representing a channel 

and the near riparian area based on initial water quality sampling data. Overland cells 

were given an initial concentration of 1 mg/L (Deng et al. 2005). 

Point source flows include the known effluent from permitted discharges (H-GAC, 

2009), that were primarily municipal utility district (MUD) waste water treatment plant 

effluent discharges (H-GAC, 2009). For the purposes of this study, it was assumed that 

the treatment plants would discharge at the reported monthly average flow rate and at a 

concentration of 13 mg/L (TCEQ, 2010). It was known that the point source behavior 

was highly variable and was thought to contribute to the pollutant loading to the stream 

during storm events, however there was no available data to estimate the influence of the 

timing and magnitude of such events. Therefore, the point sources were represented by 

the average monthly discharge, Q(i,j,t) and the assigned concentration ofthe effluent, 

C(i,j,t) by the relationship 
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Mass(i,j,t) = LQ(i,j,t~(i,j,t)M (4-7) 

for each grid cell in the model, were Mass(i,j,t) is the mass loading within each timestep 

for each grid cell. 

Advection of a fully entrained constituent was simulated according to the method used in 

the ADVECT subroutine ofHSPF using the continuity equation (Bicknell et al., 2001). 

The model solves for the concentration, C, of the pollutant at each time step through 

C .. ) _ {Imass;n +(C(i,j,t-1)*(h(i,j,tXL\xY -Svol(t-1))) 
(l,j,t - ( 2) 

h(i.j.t)(L\x) + Evol(t)) 
(4-8) 

where h is the depth of runoff, Svol is the outflow component of the discharge based on 

the start of the timestep, and Evol is the outflow component of the discharge based on the 

end of the timestep. The l:mass;n is the sum ofthe mass flowing into the grid cell, 

including washoff from the land surface, runon, point source flows, and pollutant in the 

precipitation. This study assumed that there was no TSS in the rainfall. 

The application described was applied for the study watershed, Cypress Creek, described 

later in the methods section, using distributed geospatial datasets including flow 

direction, channels, land use, and point source effluent discharge rates. The flow 

direction data were derived from Lidar elevation dataset (TSARP, 2006). Land use data 

(HGAC, 2008) were used to parameterize the washoff coefficient and total suspended 

solids loading rate, as shown in Table 4-2, using the default values suggested by the 

USEPA's HSPF model. Depth and flow rate ofthe water, the output ofthe hydrologic 



model, were used to simulate the movement of TSS by calculating the mass balance of 

TSS in each grid cell. 

4.2.3. Calibration 
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The washoff and transport model was calibrated by adjusting the loading rate of total 

suspended solids onto the land surface. The initial pollutant mass in or near riparian grid 

cells, or the cells that correspond to the channels, was multiplied by a loading factor. The 

loading factor was adjusted until the pollutographs matched the sampling data for the two 

calibration storms. In other words, the initial mass of pollutant in areas with higher rates 

of runoff discharge was multiplied by this loading factor. The final calibrated loading 

factor was spatially varied, depending on the average velocity of the runoff in the storm, 

with a loading factor of 25 applied to areas with velocity greater than 0.1 m/s. This was 

considered an acceptable approach because of the higher potential for pollutant 

contribution from riparian and near riparian areas, which capture loading from previous 

runoff events (Newham et al., 2005). The calibration storms were the July 7, 2009 and 

September 22, 2009 rainfall events. The calibrated model was then used to simulate TSS 

washoff and transport for two additional events, July 22, 2009 and July 7, 2010. 

4.2.4.Analysis of Results 

The outputs from the java application were matrices of estimated pollutant concentration 

for the watershed grid at each time-step of the simulation. The results were post­

processed in ArcMap for visualization and analysis purposes. The estimated 

concentration at the down-stream water quality sampling station (Figure 4-2) was 



selected and plotted as a time series, in order to compare the results to the sampled 

concentration. 

The performance of the model was assessed using the root mean squared error (RMSE) 

and normalized mean square error (NMSE) in order to quantifY the difference between 

the modeled and the sampled observations. The RMSE was calculated by 

RMSE= i=l 

n 
(4-9) 

where n was the number of samples, y; was the actual observed value, and yp; was the 

modeled value (Stow et al., 2003). The RMSE is the average model error. The 

normalized mean square error is in turn calculated as 

I(Y;- Yp,Y 
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NMSE = ....:.i=:::.I ___ _ 

I(Y;-yy 
(4-10) 

i=l 

where y is the mean of the observed data (Castelli et al., 2003). This performance 

indicator represents the sum of squared errors normalized by the estimated variance of 

the data (Chau, 2003). Values ofless than or equal to 1 for the NMSE metric are 

generally considered to indicate a good model and the goal is for the RMSE to be as low 

as possible (Poli and Cirillo, 1993). 

The flow averaged concentration of TSS for each event, or event mean concentration, 

EMC, (Sansalone, 1996), was calculated using both the observation and modeled data 
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n 

Jc(t)Q(t)dt 
EMC=M =-=-0----V n . 

JQ(t)dt 
(4-11) 

0 

where M is the total mass of constituent over the entire event duration , Vis the total 

volume of flow over the entire event duration, Q(t) is the streamflow, C(t) is the 

constituent concentration, and n is total number of time steps in the event duration 

(Huber, 1993). The EMC calculated from the observed and modeled data were compared 

to assess agreement between modeled and observed data. This is especially critical in 

resource limited studies, where only a limited number of water quality samples are 

available. 

Stormwater monitoring data is often reported as EMCs (Charbeneau and Barret, 1998), 

however it doesn't provide an indication of the temporal aspect ofthe pollutant loading, 

such as the first flush phenomenon (Sansalone, 1996). The first flush concept describes 

the disproportionate mass of pollutant that is loaded in the stream during the initial stages 

of a storm event (Hathaway and Hunt, 2011 ). The observation of first flush is 

inconsistent in urban watersheds, anddependent on storm size, rainfall intensity, 

watershed characteristics, hydrologic conditions, and transport factors (Deletic, 1998). 

There are a variety of definitions and methodologies to describe first flush, with mass 

based approaches most commonly used for evaluation. The mass based first flush is 

indicated by greater delivery of the constituent mass during the rising limb of the runoff 

hydrograph (Sansalone and Cristina, 2004). The percent total modeled mass of 

suspended sediment and volume of streamflow is calculated by 
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k 

I Q (t )dt 
v (t) = ~ * 100 

I Q (t )dt 
(4-12) 

0 

k 

JQ(t )c(t )dt 

M(t)=! *100 

JQ(t )c(t )dt 
(4-13) 

I 

Where V(t) is the percent of total volume runoff, M(t) is the percent oftotal mass in the 

streamflow, Q(t) is the streamflow, and C(t) is the constituent concentration through the 

modeled station, k is the sample time, and n is the total time of event. Using the 

modeled TSS concentration and streamflow, the M(t) and V(t) were calculated and then 

plotted for each event, in order to examine the temporal behavior of the mass loading in 

relation to the volume of streamflow, focusing on the period prior to peak streamflow 

(Berretta and Sansalone, 2011) . 

In addition, the sum of mass washed off and the point source loading for each storm was 

determined by subtracting the mass remaining on the land surface at the end of the event 

from the estimated mass of TSS present on the surface at the start of rainfall and then 

adding the estimated total mass loading for the duration of the event from the point 

sources using the spatial analyst feature in ArcMap. This analysis was examined in order 

to compare the sources of pollutant loading for each ofthe modeled storms. 
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4.2.5. Water Quality Sampling 

In order to validate and calibrate the water quality results of the washoff and transport 

model, storm water quality samples were collected at a downstream sampling point. 

Water samples were collected as grab samples for rainfall events in the 1.5 through 3 inch 

range at the most downstream gauge of Cypress Creek watershed before it flows into 

Lake Houston (See Figure 4-2). Samples were preserved on site and then analyzed by the 

City of Houston Water Quality Laboratory. Total suspended solids were measured using 

EPA method 160.2. Sample collection timing and interval was guided using radar 

rainfall and advance hydrologic modeling, in order to attempt capturing the data 

reflecting a range of samples that reflect the storm water pollutant washoff and transport 

throughout the watershed. 

4.2.6.Study Area 

The model was tested using the study watershed, Cypress Creek is a 797 km2 (308 mi2) 

watershed north of the city of Houston on the Texas Gulf Coast (Figure 4-2 ). It flows 80 

river km (50 miles) to Lake Houston, which serves as the primary source of drinking 

water for the City of Houston (Chellam et al., 2008). This watershed has been the primary 

contributor of urban runoff and pollutant loading to Lake Houston (Sneck-Fahrer et al., 

2005), creating challenges in treating the water for potable use. Although rapidly 

urbanizing, Cypress Creek is a complex watershed with varied land use. The western 

upstream sections of the watershed are primarily agricultural, forest, and pasture land use. 

In contrast, the eastern, downstream portion of the watershed is residential and urban 



development. Cypress Creek watershed is relatively flat with sandy loam soils, which 

have a greater infiltration potential and less erosion potential 

4.3. Results 
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Radar rainfall and rain gauge data was used to model the rainfall-runoff processes in 

Cypress Creek for four storm events. A comparison of the modeled versus observed 

streamflow is shown in Figure 4-5. The hydrologic model was evaluated at multiple 

points within the watershed (Teague, 2011). Overall the model simulated the hydrology 

of the watershed at an acceptable level. The magnitudes of the streamflow peaks were 

well matched, but the model generally was late in timing. The difference between 

modeled and observed streamflow total volume ranged between 7% and 18% (Table 4-3). 

The July 7, 2009 storm, which exhibited the greatest difference in volume, was a higher 

intensity storm primarily center in the downstream portion of the watershed. The greatest 

percent difference in the peak streamflow was exhibited by the July 22, 2009 storm 

which was the shortest duration storm event that occurred primarily in the center of the 

watershed. 
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Figure 4-5. Modeled and observed streamflow for (a) July7, 2009, (b) July 22, 2009, (c) 
September 22, 2009, and (d) July 7, 2010 

Table 4-3. Results ofhydrologic modeling 

Storm Event 

7-Jul-09 
22-Jul-09 

22-Sep-09 
7-Jul-10 

Observed Modeled 
Peak Peak 

(CMS) (CMS) 

28.60 31.40 
6.77 5.40 

34.83 34.07 
31.15 29.97 

Difference in 
Volume Difference Peak Streamflow 

(%) (%) 

18.34 
-13.87 
-15.39 

7.64 

9.8 
-20.2 

-2.2 
-3.8 

The simulated hydrology then served as the input to the washoff and transport model. 

The simulated concentration of TSS is plotted along with the storm water quality 

sampling data as pollutographs in Figure 4-6, in order to assess the model performance. 
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Figure 4-6. Modeled and observed TSS concentrations for (a) July 7, 2009, (b) July 22, 
2009, (c) Septermber 22, 2009, and (d) July 7, 2010 

The first event, July 7, 2009 (a), matched the approximate shape of the pollutographs 

from the observed data, but underestimated the maximum concentration 15%. The July 

22, 2009 event (b) again matched the approximate shape ofthe observed pollutograph, 

and approximately matched the magnitude of the samples. The simulated TSS 

concentration of the September 22,2009 event (c) matched the observed data on the 

rising limb ofthe hydrograph. However, samples taken late on the falling limb of the 

hydrograph were grossly underestimated. All of the TSS measurements for the fourth 

event (d), on July 7, 2010 were taken on the falling of the hydrograph. The modeled data 
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was roughly in range of the observed data, but did not capture the variability of the 

sample results. 

The metrics ofRMSE and NMSE were used to evaluate the agreement ofthe modeled 

and observed data and are reported in Table 4-4 along with the EMCs calculated from 

both the modeled and observed data. The best match of the modeled rainfall event was 

for the July 22, 2009 storm. The greatest amount of error was exhibited by the 

September 22, 2009 event, due primarily to the two late sampling points on the falling 

limb of the hydro graph. Due to the time lag between the peak of the streamflow and 

these sampling points, it is suspected that these sample points are not valid for inclusion 

in the dataset. When the values are excluded from the dataset, the model shows good 

agreement, according to the NMSE and a 7.6% difference in the EMC. Overall, multiple 

storms have NMSE of less than one, making the washoff and transport model an 

acceptable simulation of TSS for these character of events. One event, July 7, 2010, had 

a NMSE of greater than one, indicating poor model performance within the small time 

scale of sample collection. 

Table 4-4. Assessment of the washoff and transport model for the modeled rainfall events 

Storm RMSE (mg/L) 
7-Jul-09 19.34 

22-Jul-09 4. 78 

22-Sep-09 
7-Jul-10 

18.27 
16.98 

NMSE(mg/L) 
0.61 
0.26 

0.30 
2.56 

Modeled EMC Observed EMC 
(mg/L) (mg/L) 

146.49 158.59 
41.74 39.18 

136.11 (54.03)* 127.11, (140.24)* 
88.87 83.91 

* With non-applicable data points removed, ( ) calculated with non-applicable data points 
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The entire dataset of modeled versus observed TSS concentrations were plotted in Figure 

4-7. Overall the modeled data matches fairly well, as evidence by a linear regression 

with a slope of0.98 and-? of0.87. From this, it can be concluded that the TSS 

concentration is slightly underestimated by the distributed washoff and transport model. 
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The difference in modeled EMC versus observed EMC ranged from 3.6% to 61.4%. The 

best match was for the July 22, 2009 storm, and the largest difference was with the 

September 22, 2009 storm. This latter discrepancy is mainly due to the underestimation 

on the falling limb of the hydro graph. It is important to note that due to the limited 

number of samples, the observational data is an incomplete picture of the TSS loading 
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dynamics. Therefore large differences in the EMC reflect uncertainty in both the model 

as well as the limited data. 

The temporal dynamics ofthe simulated mass loading of TSS was analyzed by the 

calculation of the percent mass loading and the percent volume streamflow and then 

plotted versus the normalized time of the storm shown in Figure 4-8. The model of the 

July 7, 2009 event (a) shows that prior to the peak in streamflow, the percentage of mass 

loading exceeded that of the percent of volume streamflow. However the differences 

were not substantial, and thus the first flush was only weakly exhibited in the washoff 

model. The July 22, 2009 (b) model does not exhibit first flush phenomenon at all, as 

evidenced by the cumulative percent volume exceeding the cumulative percent mass 

loading throughout the duration of the storm. This event did not have a lengthy prior 

buildup period and occurred soon after a previous event, which would have washed off 

much of the TSS built up on the surface. Furthermore, this was a low intensity event 

with a uniform rainfall distribution over a longer duration than the other three modeled 

events. In fact, the mass loading and volume are roughly proportional, so the event can 

be characterized as "flow- limited" where the critical factors limiting the washoff process 

is the flow rate and volume of water (Ma et al., 2010). The event on July 7, 2010 (d) also 

did not exhibit high mass loading during the rising limb of the hydro graph. In contrast, 

third event on September 22, 2009 (c), showed distinctive first flush phenomenon, with 

the percent mass loading disproportionate to the volume streamflow, especially prior to 

peak streamflow. In this case, the critical limiting factor in the washoff process was the 

mass of pollutant on the surface available for transport, and the event is characterized as 

"mass limited" (Sheng et al, 2008). 
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Figure 4-8. Percent mass and volume flow through curves (a) July 7, 2009, (b) July 22, 
2009, (c) Septermber 22, 2009, and (d) July 7, 2010 

The fully distributed data output of the washoff transport model was used to visualize the 

distributed loading of TSS resulting from both washoff and point sources for the duration 

of the storm event, seen in Figure 4-9. For the July 7, 2009 storm (a), most of the loading 

occurred in the urban, downstream portion of the watershed. A similar spatial loading 

pattern was exhibited for the July 7, 2010 storm (d), although the there was a more 

extensive area of washoff in the upstream, agricultural portion of the watershed. The July 
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22, 2009 (b) event had a more even distribution of loading in the downstream and middle 

of the watersheds, which are primarily urban and suburban developed areas. In contrast, 

the September 22, 2009 event (c), which exhibited strong first flush characteristics, had 

most of the loading in middle to upper-middle portions of the watershed. At the time of 

the event, there was extensive urban development and residential construction occurring 

in this area of the watershed, potentially contributing to the TSS loading during the 

rainfall event. By identifying areas that contribute greater pollutant mass to the stream 

during storm events, the source of pollutants can be spatially estimated. This would then 

provide the basis for spatially located BMPs to address the pollutant loading and 

transport. 
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(b) 

(c) 

(d) 
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101 - 1,000 1,001 - 10,000 > 10,000 

Figure 4-9. Spatial distribution of total washoff and waste loading to Cypress Creek 
during (a) July 7, 2009, (b) July 22, 2009, (c) September 22, 2009, and (d) July 7, 2010 
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4.4. Discussion 

The washoff and transport model exhibited good performance for a majority of these 

small rainfall events when compared to a storm water quality sampling of TSS. In 

general, the rising limb of the hydrograph is matched better than the falling limb of the 

hydrograph; however the limited number of observations restricts the assessment of 

model performance. 

In the case of the September 22, 2009 storm, the model performed well on the rising limb 

of the pollutographs. However it did not match well for the two data points past the peak, 

which were sampled at 24 hours past the hydrologic peak, when the influence of point 

sources is greater. These two points account for the higher RMSE as well as the 

discrepancy in the modeled versus observed EMC. However, when these points are not 

included in the dataset, the model performs adequately, similar to the other storms. This 

lower flow, receding streamflow regime has been difficult to simulate and predict (Singh 

et al., 2005; Krause et al., 2005). Furthermore, point sources are a source of uncertainty. 

During storms, the hydraulic shock of the event results in a decrease in treatment plant 

performance as well as solids washout (Lessard and Beck, 1990). Therefore, the 

behavior of the many point sources within the watershed is unknown and could be a 

source of error in the simulation of pollutant transport. 

The model also performed well for the July 7, 2009 and July 22, 2009 events. The 

highest RMSE was for the July 7, 2009 event, but the observed TSS for this event was of 

higher magnitude than the other events, and the samples were taken during a short 
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interval of the total storm simulation. The event had a longer build-up period, and greater 

maximum intensity of rainfall than any of the other storms. The modeled and observed 

EMC differed by 5.9% and 3.85% for the July 7, 2009 and July 22, 2009 storms, 

respectively. Even though the model performed poorly for the July 7, 2010 event, the 

observed and modeled EMCs differed only by 13.4%. Comparing all the modeled and 

observed data, Figures 4-6 and 4-7, shows that there is good general agreement. The 

modeled data provided a greater duration and density of data points than was feasible to 

collect given the limited resources for storm water sampling. Ideally, further storm water 

sampling at a greater frequency during storm events would be conducted to more 

extensively evaluate model performance. 

The modeled TSS concentration throughout each of the events was then analyzed to 

further study the temporal dynamics of the mass loading ofTSS in Cypress Creek. It was 

shown that the events varied from mass limited to flow limited events. The September 

22, 2009 event strongly exhibited a first flush behavior where as the July 22, 2009 event 

exhibited no first flush phenomenon. The comparison of cumulative percent mass and 

volume streamflow is often analyzed, for BMP design purposes, for the control of the 

storm water pollution. The goal is to determine the volume of water that must be 

captured by the BMP in order to capture a fraction of the pollutant loading (Kayhanian 

and Stenstrom, 2005). These curves will vary from event to event based on variations of 

the hyetograph, antecedent buildup duration, and point source behavior (Betrand­

Krajewski et al, 1998). Because Cypress Creek is a large and complex watershed without 

evident first flush, BMP selection, placement, and design should be considered on the 



110 

sub-watershed scale (Sansalone and Cristina, 2004) targeting the spatially variable 

sources and associated variable travel times. The fully distributed nature of the washoff 

and transport model allows for this level of detailed analysis. Further development of 

this fully distributed water quality model will provide a valuable tool for resource 

management and planning. Because this model allows the user to develop and analyze 

the data at any point in the watershed, this analysis can be implemented at multiple 

locations within the watershed for spatially targeted BMP design and placement. For 

instance, BMPs such as vegetated filter strips and retention basins can be sized and the 

expected performance quantified. This allows for the optimal location for the greatest 

impact by BMPs to be determined. 

The distributed output of the washoff and transport was analyzed to identify the regions 

of high loading for each of the simulated events, thus providing an estimate of the 

primary source areas. Two of the events, which did not exhibit first flush phenomenon, 

had the highest loading from the downstream, urban areas of the watershed. In contrast, 

the event which distributed first flush phenomenon had the greatest loading in the center 

of watershed. This fully distributed output provides a foundation for future model 

development such as BMP functions, sediment transport routines, or non-conservative 

pollutant mass balance modules. 

When analyzing the fully distributed output from the washoff and transport model, in 

terms of washoff mass and TSS concentration, it must be remembered, that due to 

resource limitation, the model was only calibrated to a single down stream location, thus 
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limiting the assessment and validation of the model. Future studies should incorporate 

storm water quality sampling at multiple locations within the watershed. By sampling 

more extensively both spatially and temporally, the washoff and transport model can be 

improved and evaluated with greater confidence. 

Furthermore, future development of the model should include other transport processes, 

so that the model can be extended to other non-conservative constituents. However the 

current framework is an appropriate foundation for developing a fully distributed water 

quality model. The benefit of extending and improving this model, include the ability to 

spatially locate best management practices (BMPs) and simulate their impact. In addition 

the influence of land use change, wetland loss, and low impact developments can be 

assessed in a spatially explicit manner. Moreover a fully distributed pollutant transport 

model can be linked with spatially explicit estimates of pollutant loading (Teague et al, 

2010) in order to analyze pollutant source populations and areas in a risk based 

framework. Future effort should include application of the model to simulate pollutant 

transport within different watersheds with different topography, soils, and land use 

characteristics to verify the robustness ofthe model. 

4.5. Conclusions 

A distributed pollutant buildup, washoff, and transport model was developed in order to 

build upon the advancements in fully distributed hydrologic modeling. Coupled with the 

physically based rainfall-runoff model, Vjlo™, this water quality model ran 

independently as a Java application. The model was applied to simulate the transport of 
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TSS in Cypress Creek watershed during rainfall events. Multiple events were simulated 

and the model was found to perform satisfactorily. The model's spatial and temporal 

output was then used to calculate the mass flow to analyze the first flush behavior of the 

watershed and spatial loading for each of the storms. 

The framework of modeling the pollutant dynamics as represented in a distributed 

watershed grid, is a first step towards advanced modeling of pollutant transport. Despite 

the current limitations of this model, it provides a foundation for implementation of more 

complex pollutant dynamics and watershed features. This is the first step towards 

applying advanced hydrologic modeling and GIS technologies for the development of a 

fully distributed water quality model. Future efforts should include: further application 

within watersheds with different physical characteristics to ensure the robustness of the 

model, further development of the model to simulate the effect ofBMPs, and the 

inclusion of the transport of specific non-conservative pollutants and other transport 

processes. This will allow for spatially explicit investigation of best management 

practices and land use evolution, both of which are key questions for resource 

management and planning. 
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Chapter 5 : Conclusions 

In order to address the problem of water quality degradation in Lake Houston that results 

from pollutant loading from Cypress Creek watershed, a variety of statistical and 

modeling analyses were performed. The overall objective of this analysis was to develop 

a framework to investigate and address the pollutant loading to Cypress Creek and 

subsequent transport to Lake Houston. 

Multivariate analysis, including principal component, cluster, and discriminant analysis, 

was used to determine the underlying seasonal pattern of the water quality data and then 

target load duration curves. This framework, combined with analysis of the correlations 

between water quality variables, was used to characterize pollutant sources. The analysis 

suggests that Cypress Creek has a complex mix of pollutant sources. Furthermore, the 

sources are not specifically tied to a climatic season. The presented method was shown 

to provide interpretation of large, complex, water quality datasets for improved decision 

support of BMP selection and resource management. 

With the knowledge ofthe complexity of pollutant sources in Cypress Creek, stormwater 

quality was further investigated with hydrologic and water quality modeling. The analysis 

focused on small storm events, which are more frequent, and account for a majority of 

pollutant loading from Cypress Creek to Lake Houston. 
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A fully distributed hydrologic model was developed using the physically based model, 

Vjlo™. NEXRAD radar rainfall or data from the existing rain gauge network was used to 

simulate high frequency small storms with less than two inches average rainfall. Based 

on a comparison of storm simulations using both radar rainfall and rain gauge data input, 

it was concluded that the spatial and temporal resolution of radar data improved the 

accuracy of hydrologic performance. 

The results from the Vjlo™ hydrologic simulation were then used as input into the 

independent pollutant washoff and transport model. The output of the water quality 

model was distributed estimations of total suspended solids concentration (TSS), as well 

as mass ofTSS washed off the land surface at each time step of the simulation. The 

simulated concentration at the downstream water quality station was then compared to 

observed concentrations ofTSS. For the four storms simulated, the model matched the 

observed TSS concentrations fairly well. The model output was then used to characterize 

the storm characteristics. It was determined that only one of the four storms exhibited a 

first flush behavior based on model output. Furthermore, the distributed washoff data 

was analyzed to determine the exported mass ofTSS throughout the watershed. In each 

of the storms, the near riparian areas exhibited the greatest amount of wash off. 

The presented pollutant washoff and transport model provides the foundation for future 

development of a water quality application that simulates pollutant dynamics within a 

watershed. Advanced hydrologic modeling and GIS datasets allow for a spatially explicit 
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analysis environment which can be used for sophisticated analyses of land use changes, 

best management practices, and other watershed characteristics. 

Overall, the presented analyses have been shown to provide valuable tools for evaluation 

of water quality data and simulation of pollutant movement during rainfall events. These 

applications are the first step towards future development of a more comprehensive 

approach to managing water quality degradation and threats to the sustainability of our 

water resources. 
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Appendix A . Water Quality Statistics 



Table A- l.Water 

ount 
Cone. Median 
Cone. StdDEV 
Load Median (mg/s) 
Load StdDEV (mg/s) 
Mid 's Flow 

Count 
Cone. Median 
Cone. StdDEV 

Count 
Cone. Median 
Cone. StdDEV 
Load Median (mg/s) 
Load StdDEV 

unt 
Cone. Median 
Cone. StdDEV 
Load Median (mg/s) 
Load StdDEV 

Statistics for C 

Streamflo\ (mg/L) 

229 183 
54 29 

560.92 74.12 

36 
5.38 

44.77 
3,555.87 

354.72 
11123.43 

137 
438 

133.01 
777.22 

3,316.40 

40 
481 .5 
77.78 

604.58 
94.84 

22 
409 

79.51 
896.50 
156.92 

1,857.47 
892.12 

108 
65 

35.63 
136.50 
242.79 

94 
18.04 

116.95 
25.43 

208.54 
240.51 

2.07 
8.75 
2.75 
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93 
580 

8,268.61 
15,943.62 

7,622,145.22 

24 
215 

597.68 
2,570.40 
9,816.17 

430 
1,647.80 
8,289.54 

31 ,730.00 
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Table A- 2.Water Quality Statistics for Cypress Creek at Steubner Airline Road (Gauge 
11330) 
Overall 

TDS TSS CHLORIDE N03-N PHOS-T E COLI 
Month Streamflow (efs) (mg/l) (mg/l) (mg/l) (mg/l) (mg/l) (MPN/dl) 

Count 42 27 29 29 15 15 32 
Cone. Median 71 .00 391 .00 17.00 83.00 4.32 1.65 1055.00 
Cone. StdDEV 859.22 156.99 52.51 34.38 3.37 0.84 18211 .21 
load Median (mg/s) 1,600 30.64 138.86 13.83 4.73 36,253 
load StdDEV (mg/s) 5,588 2656.53 130.39 8.66 8.00 7,865,247 
Low Flows (<23 cfs) 
Month Streamflow (efs) TDS TSS CHLORIDE N03-N PHOS-T ECOLI 
Count 1 1 1 1 0 0 1 
Median (mg/l) 23.00 499.00 17.00 102.00- - 100.00 
StdDEV (mg/l) - - - - - - -
Median (mg/l) 409.89 13.96 83.79- - 821 .10 
StdDEV (mg/l) - - - - - -
Dry Flows(23-50efs) 
Month Streamflow (efs) TDS TSS CHLORIDE N03-N PHOS-T ECOLI 
Count 14 5 13 13 3 3 7 
Median (mg/l) 33.50 477.00 12.00 93.00 7.11 2.65 320.00 
StdDEV (mg/l) 4.80 64.05 5.77 9.14 1.39 0.38 201 .20 
Median (mg/l) 619 17.14 122.64 8.54 3.35 3,770 
StdDEV (mg/l) 96 6.03 14.71 3.72 0.08 2,191 
Mid Range's Flow (50-87 efs) 
Month Streamflow (efs) TDS TSS CHLORIDE N03-N PHOS-T ECOLI 
Count 8 7 5 5 4 4 7 
Median (mg/l) 64.38 440.43 24.00 70.02 6.94 1.86 954.29 
StdDEV (mg/l) 11 .87 74.50 18.15 22.65 2.15 0.29 717.49 
Median (mg/l) 1,024 32.00 189.00 15.33 4.07 15,808 
StdDEV (mg/l) 303 45.79 58.28 7.84 1.16 13,448 
Mfetflowsffl~751c~J 
Month Streamflow (efs} TDS TSS CHLORIDE N03-N PHOS-T ECOLI 
Count 10 7 7 7 5 5 9 
Median (mg/l) 213.00 283.00 47.00 40.00 1.92 0.73 1300.00 
StdDEV (mg/l) 164.52 117.62 27.19 16.69 1.47 0.49 4162.90 
Median (mg/l) 2,025 262.29 183.93 13.64 5.98 129,484 
StdDEV (mg/l) 887 575.02 104.59 3.62 4.65 363,719 

Month Streamflow (efs) TDS TSS CHLORIDE N03-N PHOS-T ECOLI 
Count 9 7 3 3 3 3 8 
Median (mg/l) 1410.00 142.00 106.00 9.00 0.39 0.38 3850.00 
StdDEV (mg/l) 1108.39 17.19 101 .53 3.61 0.31 0.19 33406.52 
Median (mg/l) 7,906 5337.86 352.50 14.35 15.10 2,731 ,050 
StdDEV (mg/l) 8,026 5368.42 201 .33 16.28 10.40 14,022,594 

Table A- 3.Water Quality Statistics for Cypress Creek at Grant Road (Gauge 11332) 
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Flow (efs) (mg/L) (mg/L) Cl (mg/L) 

77 77 58 77 48 76 
18.00 21 .00 299.50 44.00 1.63 0.81 275.00 

336.99 47.79 118.93 30.40 2.26 0.65 15205.85 
Load Median 10.00 263.36 30 .36 2.62 0.85 1,865 
Load Std Dev 1170.67 2082.42 103.47 4.08 4.33 1,066,866 
Low Flows 

Flow (efs) (mg/L) (mg/L) Cl (mg/L) (mg/L) (mg/L) (MPN/dL) 

14 14 7 14 6 6 14 
6.20 12.50 453.00 83.00 5.29 2.00 110.00 
0.61 6.08 74.42 18.40 1.01 0.59 189.29 

2.62 101.46 17.96 1.08 0.40 254.78 
1.37 17.36 4.21 0.27 0.15 451.40 

Flow (efs) (mg/L) (mg/L) Cl (mg/L) (mg/L) (mg/L) (MPN/dL) 

Count 20 20 16 20 12 15 20 
Cone Median 10.50 16.00 393.50 63.00 4.01 1.30 165.00 
Cone Std Dev 2.82 9.76 69.81 15.68 1.64 0.45 112.49 
Load Median 6.46 150.66 22.41 1.82 0.56 547.07 
Load Std Dev 5.36 51 .36 7.53 0.86 0.12 557.71 
Mid 

Flow (efs) (mg/L) (mg/L) Cl (mg/L) (mg/L) (mg/L) (MPN/dL) 

Count 14 14 12 14 7 12 13 
Cone Median 21 .00 12.00 286.50 39.60 2.89 0.91 430.00 
Cone Std Dev 6.60 13.28 98.54 21 .83 2.38 0.52 2083.22 
Load Median 9.50 244.28 30.04 2.33 0.77 2,610.69 
Load Std Dev 11.46 52.40 12.05 1.53 0.26 22,318.91 
Wet Flows 

Flow (efs) (mg/L) (mg/L) Cl (mg/L) (mg/L) (mg/L) (MPN/dL) 

Count 22 22 17 22 7 19 22 
Cone Median 133.00 63.00 239.00 17.05 0.48 0.50 1065.00 
Cone Std Dev 147.61 64.82 45.12 9.59 0.64 0.28 27570.66 
Load Median 366.16 1,510.81 84.21 3.04 2.67 71 ,356.57 
Load Std Dev 933.55 1,264.70 131.06 5.77 3.58 1,554,647.52 

Flow (efs) Cl (mg/L) 

Count 7 7 6 7 6 7 7 
Cone Median 1110.00 85.00 146.00 7.00 0.20 0.27 3873.00 
Cone Std Dev 346.76 23.87 25.99 0.76 0.05 0.05 2685.85 
Load Median 3,006.40 6,920.84 237.86 6.49 10.70 1,274,454.09 
Load Std Dev 1,619.45 2,256.66 77.59 2.52 4.28 1,611 ,094.58 
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Table A- 4.Water Quality Statistics for Cypress Creek at House-Hahl Road (Gauge 
1133 

Flow (efs) (mg/L) (mg/L) Cl (mg/L) (mg/L) (mg/L) (MPN/dL) 

Count 136 111 108 40 21 21 55 

Cone Median 5.80 15.00 326.00 48.50 1.58 0.69 200.00 

Cone StdDev 130.37 29.35 177.47 88.05 2.65 0.90 7054.14 

Load Median 1.83 63.04 8.46 0.42 0.15 511 

Load StdDev 195.54 638.49 39.67 1.37 1.76 1,094,289 

Low Flows 

Flow (efs) Cl (mg/L) (mg/L) (mg/L) (MPN/dL) 

Count 19 16 15 2 1 1 2 

Cone Median 0.19 15.00 509.00 92.50 9.31 3.45 215.00 

Cone StdDev 0.28 8.63 120.00 17.68 35.36 

0.17 2.94 2.12 0.16 0.06 47 

0.27 4.76 1.02 7 

Flow (efs) (mg/L) (mg/L) Cl (mg/L) 

Count 39 34 33 16 7 7 19 

Cone Median 1.70 11 .50 432.00 85.50 3.65 1.18 160.00 

Cone StdDev 0.77 37.12 193.09 122.46 2.23 0.77 309.74 
Load Median 0.90 25.14 5.25 0.22 0.11 91 

Load StdDev 1.33 14.16 5.90 0.22 0.05 212 
Mid 

Flow (efs) (mg/L) (mg/L) Cl (mg/L) (mg/L) (mg/L) (MPN/dL) 

Count 25 20 21 8 5 5 11 
Cone Median 6.00 8.00 339.00 37.50 1.58 0.45 110.00 
Cone StdDev 2.27 9.65 115.50 9.19 0.36 0.27 114.60 
Load Median 1.54 85.88 7.91 0.32 0.09 350 
Load StdDev 3.39 40.17 1.60 0.06 0.05 341 

Flow (efs) (mg/L) (mg/L) Cl (mg/L) (mg/L) (mg/L) (MPN/dL) 

Count 39 34 29 12 6 6 15 
Cone Median 28.00 26.00 232.00 21.15 0.31 0.27 540.00 
Cone StdDev 34.44 32.37 113.62 20.35 0.21 0.38 6599.34 
Load Median 24.81 236.80 30.90 1.02 1.21 10,889 
Load StdDev 120.09 312.95 45.90 0.79 0.81 239,931 

Flow (efs) (mg/L) (mg/L) Cl (mg/L) (mg/L) (mg/L) (MPN/dL) 

Count 14 7 10 2 2 2 8 
Cone Median 361.00 44.00 126.00 6.50 0.20 0.28 930.00 
Cone StdDev 172.18 13.81 36.09 2.12 0.00 0.08 15997.25 
Load Median 627.61 2,023.55 136.68 4.49 5.84 133,982 
Load StdDev 266.90 820.36 9.92 1.77 0.69 2,824,054 
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B.l Introduction 

Lake Houston is the primary source of drinking water for the City of Houston. Over 146 

billion gallons are treated annually for 2 million customers (City of Houston, 2008). The 

lake is impaired for bacteria (TCEQ, 2008) and has concerns for nutrients and 

Chlorophyll-A (TCEQ, 2008). The watersheds flowing into the lake are also impaired 

for bacteria and have concerns for nutrients and depressed dissolved oxygen. With rising 

water treatment costs, the degraded influent has become a key concern for the City of 

Houston and thus protecting the watersheds is a chief priority. In order to efficiently 

manage the water quality of Lake Houston, an understanding of the watersheds and the 

relationship between pollutant loads and the influent flows is required. 

Statistical analysis was performed to characterize the water quality of Cypress Creek. 

This was accomplished by (A) comparing the median concentration and loading of storm 

and low flow conditions, (B) analyzing the temporal trends in both concentration and 

loading, (C) establishing the low flow stream profile to assess the influence of point 

sources in the downstream section of the watershed, and (D) comparing the storm flow 

related pollutant concentration to ascertain the pollutant relationships during rainfall 

events. 

B.2Background 

Long-term water quality data is commonly used to detect trends in pollutants over time 

and as well as to identify, describe, and explain major factors that affect trends in water 

quality (Yu, 1993). The Mann-Kendall test, also known as Kendall's tau statistic is a 
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nonparametric test for monotonic trends in a time series (Kaha, 2004). The test is derived 

from a rank correlation test for two groups of observations (Haan, 2002). It is tolerant of 

outliers but requires that data are serially independent (Hamed, 1988). The Mann 

Kendall test is robust towards missing values, seasonal effect and non-normality (Larsen 

et al, 1999). Previous research has applied Mann-Kendall test to identify longer term 

effects of urbanization (Boeder, 2008) and to link stream flow with long term 

meteorological changes (Bum, 2002). 

The null hypothesis assumed for the test states that the data (x1, •••.. xn) are a sample of n 

independent and identically distributed random variables, in other words the data does 

not have trend or serial correlation. The alternative hypothesis, Ha of a two sided test, 

states that the distribution of Xk and x1 are not identical for all kJ less than n with knot 

equal to j. Each value in the series X(t+ 1) is compared to X(t) and assigned a score z(k) 

calculated as 

{ 
1. . . ifX(t) > X(t + 1) 

z(k)= O ... ifX(t)=X(t+1) 

-1.. .ifX(t) < X(t + 1) 

The z(k), score is then used to calculate the Mann-Kendall statistics by 

N(N-1)12 

S = Iz(k) 
k=l 

where N is the total number of observations. The test statistic for N?:.1 0, where the 

samples include at least 10 years of data is 



S+m 
u =--=== 

c ~V(S) 

where m=1 if S<O and m=-1 if S>O, and the variance, V(S) is calculated by formula 

V(S) = [N(N -1)(2N + 5)] 
18 

The hypothesis of no trend is rejected if lucl>zi-a/2 where a=O.OS 
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The Seasonal Kendall test is applied to address situations where data displays seasonality 

(Hirsch, 1982). By dividing the data into seasonal groups, performing the Mann-Kendall 

test on each seasonal group, and then summing the results, the effect of seasonality is 

removed (Hirsch, 1984 ). In effect, the result of inter-season dependence is eliminated. 

This method has been used in various applications including the assessment of how 

seasonality influences the detection acid rain impacts (Taylor, 1989), evaluation of 

spatial-temporal variability of water quality (Krusche, 1997), and review of the 

effectiveness of water quality management strategies (Cude, 2001 ). 

The null hypothesis of the seasonal Kendall test states that for each of p seasons the n 

observations (years) are randomly ordered. The alternative hypothesis states that a 

monotonic trend exists in one or more seasons (Hirsch, 1984). The test statistic for each 

season thus becomes 

sg = L:sgn(xjg -xiJ g = 1,2, ... ,p. 
i<j 

This makes the Seasonal Kendall test statistic 
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It is assumed that the data are independent and thus covariance terms equal zero. 

B.3 Data and Methods 

Water quality data have been collected intermittently within Cypress Creek since 1980. 

There are three monitoring stations within the watershed (see Figure B-1) operated by the 

City of Houston, Water Quality Control and Health and Human Services. Historical 

water quality and streamflow data were analyzed using basic statistics and trend analysis 

in order to assess the general relationship of pollutant dynamics and streamflow. 

----=====Kilometers 
0 5 10 2P 

Figure B-1.Location of water quality stations in Cypress Creek Watershed 

B. 3. 1 Basic Statistical Analysis 

A flow duration analysis was performed using the streamflow at each station. Historical 

streamflow data were ranked in descending order and the percent exceedance calculated 

(rank/total number of points). Streamflow observations were divided into different 

categories: 0 to 10% exceedance , High Flows; 10-40% exceedance , Moist Conditions; 

40-60%, Mid-Range Flows; 60-90% exceedance, Dry Conditions; and 90-100% 
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exceedance, Low Flows (Morrison and Bonta, 2008; USEP A, 2007). Low flows and dry 

conditions were considered to be associated with dry weather. In contrast, moist 

conditions and high flows were associated with rainfall events. Mid range flows were 

most often associated with rainfall events but can also be during dry periods, if the point 

sources were active. 

The water quality data was segmented according to the flow condition, so that the median 

value and standard deviation in each streamflow regime could be determined. These 

basic statistics were determined for both the concentration and loading rate. Loading rate 

was calculated by 

Load= Q*C 

where Load is the loading rate (mass/time), Q is the streamflow (volume/time), and Cis 

the concentration (mass/volume). The loading rates for each station were then compared 

in order to determine the relative influence of rainfall-associated loading compared to dry 

weather loading. 

8.3.2 Trend Analysis 

Further statistical analysis of the water quality dataset was performed to determine if 

temporal trends exist within the dataset. By assessing if trends exist within the 

concentration and loading of the sampled constituents, conclusions can be drawn about 

urbanization and associated increase of pollutant sources within watershed. 
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Water quality data was collected by the City of Houston Health and Human Services and 

Water Quality Control departments at three locations within Cypress Creek ranging from 

1980 to 2009. Streamflow discharge was measured by the USGS at the same locations of 

water quality sampling. The USGS trend testing utility (Helsel, 2006) was used to test 

for trend in stream flow and water quality parameters including streamflow, chloride, 

nitrate, total phosphorus, E. coli, and total dissolved solids using Mann-Kendall test at a 

95% confidence level. Then the same utility was used to test for seasonal trends using a 

two season division of data using the Seasonal Kendall test also at 95% confidence. The 

presence of a trend was determined and the Kendall's tau statistics computed in order to 

assess the magnitude and direction of the trend. 

8.3.3. Low Flow and Storrnwater Quality Sampling 

Low flow water quality samples were collected as in-stream grab samples along the path 

shown in Figure B-2. Samples were taken before and after each permitted outfall on the 

sample path in order to establish a baseline for the constituent concentrations at low flow 

as well as investigate the influence of the outfalls in the downstream of Cypress Creek. 

The concentrations of E. coli, nitrate, total phosphorus, and total suspended solids {TSS) 

were measured by the City of Houston Water Quality Laboratory, using the techniques in 

table B-1. Total dissolved solids (TDS) were measured on site using a Hach hand probe. 



150 

• 08 · 2 

• 21 

• 22 - 25 

• 26 - • g 

Figure B-2. Sampling path for low flow in-stream sampling 

Table B- I. Techniques to measure constituent concentrations 
Sample Storetcode Method 
E. coli 31616 SM 9223-B, IDEXX Colilert 
N03-N 620 EPA 300.0, Rev 2.0 

Total Phosphorus 665 EPA 365.3 
TSS 530 EPA 160.2 

The percent difference from the water quality standard was calculated using the 

applicable Texas Commission on Environmental Quality (TCEQ) water quality standard 

or screening level (Table B-2). These values were then plotted versus the distance along 

the stream relative to the sample starting point. 
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Table B- 2. Water quality standards 

Constituent Standard 

Total Suspended Solids (TSS) 13 mg/L 
Total Dissolved Solids (TDS) 600 mg/L 
Nitrate 1.95 mg/L 
Total Phosphorus 0.69 mg/L 
E. coli 200 mg/L 
a) (TCEQ,2008), b)( H-GAC, 2010), c) (TCEQ, 2010) 

Stormwater samples were collected at the downstream streamflow gage (point C in 

Figure B-1) and the constituent concentrations measured as described for the low-flow 

samples. Grab samples were taken from the stream during the storm event on both the 

rising and falling limb of the hydro graph. Due to the resource intensive nature of 

sampling throughout a storm event, NEXRAD rainfall was used to evaluate the suitability 

of the rainfall event for modeling and sampling by determining the intensity, total depth, 

and location of rainfall. Previous modeling with Vjlo™, using design storms and actual 

rainfall events, was used to estimate the travel time of the runoff from origin to the 

downstream sampling location, which was then used to direct travel of sampling teams to 

the watershed as well as the duration of sampling. Rainfall data and previous hydrologic 

modelling was also used to guide the necessary time and interval of sampling. This was 

done in order to balance density of data collected with the available time and resources. 

The water quality observations for the different constituents were then plotted against 

each other to assess the relationships between the parameters. Linear regression was 

performed and the coefficient of determination (R2) value calculated. Each of the 

relationships was examined to determine the general agreement between the constituents 

and thus characterize the similarity of pollutant source types. Ifthere was a linear 



relationship between the constituents, as determined by regression analysis, then the 

sources were considered to be similar. 

B.4 Results 

8.4. 1 Basic Statistics 
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The median and standard deviation of water quality parameters at each station are 

reported in Appendix A. Streamflow from each gauging and water quality station was 

analyzed via flow duration analysis to determine the breakdown of the flow regimes to 

determine the low, dry, mid-range, wet, and high flows. With these general conditions, 

the median concentration and loading rate for rainfall and dry weather related 

streamflows. A comparison of the loading rates is illustrated by Figure B-3. 
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TSS (mg/s E. coli (MPNfs) 
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Total Phosphorus (mg/s) 
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Figure B-3. Comparison of low flow and storm flow loading rates 

Point sources are associated with low flow loading. In contrast, both point sources and 

the diffuse, non-point sources are associated with storm flow loading. By comparing the 

median loading rates of low flow and storm flow loading, the relative influence of the 

different sources can be assessed. Figure B-3 illustrates that TSS and E. coli have large 

differences between the low flow and storm flow loading rates. For TDS, total 

phosphorus, nitrate, and chloride, the difference in the median loading rates is 

approximately a single order of magnitude or less. For most constituents, the loading 



154 

increases from upstream to downstream of Cypress Creek due to the cumulative effects 

of runoff through the watershed as well as the large number of point sources in the down 

stream portion of the watershed. However, the storm flow loading of E. coli does not 

follow this spatial pattern. Instead, the storm loading rate at the most upstream gage is 

greater than the two middle gages. This suggests that the non-point sources from the 

upstream agricultural area heavily influence the stream at this gauge. For each of the 

other stations, the dry loading is similar in magnitude to the storm flow loading, 

suggesting that point sources heavily influence the total loading at these gages. 

Overall, the comparison of storm and low flow loading shows the importance of rainfall­

runoff modeling to address non-point sources of TSS and E. coli as part of a 

comprehensive water resource management plan. On the other hand, plans to address 

nutrient loading to Cypress Creek, should include further investigation of point sources. 

8.4.2 Trend Analysis 

The results of trend testing using the Mann-Kendall test are summarized in Table B-3, 

and the trend testing using the Seasonal Kendall test are in Table B-4. The tests were 

assessed at a 95% confidence level, and the p-values, and Kendall's tau reported. 
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T bl B 3 M a e - ann K dlltr d en a en 1 . analySIS 
Concentration Loading 

#Years of Trend at Kendall's #Years of 1\enaaws 
Station Constituent Data 0.05 p-value tau Data Trend at 0.05 p-value tau 

113328 Q 29 Yes 0.001 0.137 10 Yes 0.0053 0.159 
C/ 29 No 29 Yes <0.0000 0.413 
EC 9 Yes 0.0197 0.141 9 Yes 0.0421 0.123 
N03 10 No 10 Yes <0.0000 0.412 
TP 26 Yes <0.0000 -0.39 26 No 
TDS 14 Yes 0.0254 -0.118 14 Yes <0.0000 0.224 

11332 Q 10 No 
Cl 9 Yes 0.0049 0.154 9 Yes <0.0000 0.3 
EC 9 No 9 No 
TP 20 No Insufficient Data 
TDS 15 No 9 No 

11333 Q 10 No 
TDS 9 No 9 No 

T bl B 4 S a e - easona en a ren lK dllt d 1 . analySIS 
Concentration Loading 

#Years or 1 rena at 1\enaaws #Years or 1\enaaws 
Station Constituent Data 0.05 p-value tau Data Trend at 0.05 p-value tau 

113328 Q 29 Yes 0.0399 0.211 10 No 
Cl 29 No 29 Yes 0.0002 0.436 
EC 9 No 9 No 

N03 10 No 10 Yes 0.0369 0.378 
TP 26 Yes 0.0018 -0.393 26 No 

TDS 14 No 14 No 

11332 Q 10 No Insufficient Data 
Cl 19 Yes 0.0394 0.286 Insufficient Data 
EC Insufficient Data Insufficient Data 
TP 18 No Insufficient Data 

TDS 9 No Insufficient Data 

11333 Q 10 No 
TDS 9 No 9 No 

There were insufficient data to perform the trend analysis for all the constituents at each 

station. For the most upstream station (11333), where there has been little land use 

change and there were few permitted discharges (See Figure B-4), there was no trend 

detected in the streamflow or total suspended solids (Table B-4 and B-5). In the center of 

the watershed, the only trend that was identified was an increasing trend in both chloride 

concentration and loading. The most downstream station had increasing trends in 

streamflow over the last 10 and 20 year periods. While there was no trend in the 

concentration of chloride and nitrate, there was an increasing trend in the loading of these 

constituents. On the other hand, a decreasing trend in the concentration of total 



phosphorus was identified. Both E. coli and TDS showed increasing trends for both 

concentration and loading. 

Water Quality StationsA 
--===::::~ Kilometers 

10 • Outfalls 0 2.5 5 

11333 11332 11328 
Streamflow D D D 
Chloride 

Total 
Dissolved 
Solids 

Total 
: Phosphorus 

E. coli 

Insufficient 
Data 

Insufficient 
Data 

Insufficient 
Data 

Insufficient 
Data 

Concentration 1J .fi Loading 1J Streamflow 

1Jincreasing Trend.[} Decreasing Trend D 
Figure B-4 .Trend analysis of water quality data 
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8.4.3 Storm and Low Flow Sampling 

Additional low flow sampling along the lower 10 km of Cypress Creek was performed in 

order to establish a baseline concentration of the sampled constituents as well as to 

observe the impact of the different permitted discharges in this region. The percent 

difference of the measured concentration from the water quality standard for each 

constituent was plotted against the sampling path distance in Figure B-5 . The vertical 

lines denote the locations of the permitted discharges, or in other words the point sources 

in the lower portion of the watershed. 
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As illustrated in Figure B-5, the only constituent for which the stream was in compliance 

with the standard is TDS (a). In contrast, the TSS concentration (b) exceeded the water 

quality standard for Cypress Creek by over 1 00%. There were only screening standards 
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available to assess nitrate and total phosphorus ( c and e). The stream was generally 20% 

higher than the screening level. The largest difference from the water quality standard 

was the E. coli concentration (d). The general pattern for each constituent was that the 

largest change in constituent concentration is observed at the Ponderosa Joint Powers 

discharge point. This would suggest that additional investigation and observation needs 

to be performed to assess the impact of the point sources in both low flow and storm flow 

conditions. Furthermore, future sampling at low flow conditions, should be performed at 

a greater spatial density to further investigate the impact of point source loading into the 

stream. 

Sampling during storm flow conditions was performed at the downstream gauging station 

during four rainfall events. The goal was to observe the constituent concentrations on 

both the rising and falling limbs of the hydro graph. The relationships between the 

different constituents are shown by the regression analysis of the storm water observations 

in Figure B-6. It can be seen that there is a linear relationship amongst TDS, total 

phosphorus, and nitrate, and between TSS and E. coli. 
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B.S Discussion 

The present analysis, with its limited dataset was restricted in its utility for 

characterization of the watershed and its pollutant sources. Given the severity of water 

quality violations and the city of Houston's dependence on the water for domestic 

consumption, it is important that more frequent sampling be performed through a wider 

range of flow conditions. This will provide an appropriate breadth of data in order to 

study the nature of water quality violations and characterize the sources and behavior of 

pollutant sources. With further study of the stream, water quality trends will provide 

valuable information for appropriate watershed management. 

Within the past 10 years, urban development has resulted in an increase in both point 

sources and urban runoff, primarily in the downstream portion of Cypress Creek. During 

this same time period there was an increasing trend in streamflow for the downstream 

gauge and a lack of trend in the upstream station. While the mid-watershed station 

lacked a trend for streamflow, the increasing trend in both the concentration and loading 

of chloride shows that this region was also influenced by point source discharges, 

including waste water treatment plants. Chloride is generally attributed to waste water 

treatment plant effluent (Sawyer et al, 2006). While there was no trend in chloride 

concentration at the down stream station, there was an increasing trend in chloride 

loading. This difference is attributed to the increasing streamflow. This same pattern 

was displayed by nitrate. This would suggest a common source for both nitrate and 

chloride. 



162 

A large number of point source outfalls were located in the downstream portion of the 

watershed (Figure B-4 ). The similar behavior of nitrate and chloride suggests that these 

outfalls are the source of nitrate loading to the stream. In contrast, the decreasing trend in 

total phosphorus concentration combined with a lack of trend in loading indicates that the 

source of phosphorus is not associated with point sources but rather non-point sources. 

Increasing trends in both the concentration and loading of E. coli signifY complex sources 

and transport dynamics. 

When the low flow water quality observations are examined (Figure B-5), a profile of the 

stream can be developed. The percent difference from the water quality standard or 

screening level was used in order to normalize the different magnitudes of the various 

constituents. For each constituent, a significant change can be observed corresponding to 

the Ponderosa Joint Powers permitted discharge. The TDS concentration decreased, 

where as the TSS, nitrate, total phosphorus, E. coli concentration increased. The average 

TSS concentration for low flows as assessed through this sampling and the historical 

water quality sampling, is approximately 20 to40 mg/L. 

The storm flow observations were analyzed to identity the relationships between different 

water quality constituents. The positive linear relationship between TDS, nitrate, and 

total phosphorus indicates a similar source as well as transport dynamics. The linear 

relationship between TSS and E. coli, is expected because it is assumed that E. coli will be 

attached to the suspended solids. As such, the concentration ofTSS is an acceptable 

surrogate for storm water modeling of E. coli. Likewise the correlation of nitrate and 



total phosphorus with TDS indicates that TDS could be used as a surrogate for these 

constituents. 
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Statistical analysis of both historical and custom water quality sampling data has 

provided valuable information regarding the differences between low flow and storm 

flow pollutant loading to the stream. The conclusions from this information were used to 

guide future water quality sampling, parameter assumptions, and modeling. 

B.6 Conclusions 

Historical water quality collected from Cypress Creek watershed was analyzed in order to 

compare low flow and storm flow median concentration and loading rates. While storm 

flow loading of E. coli and TSS were significantly larger than the low flow loading, this 

was not the case for chloride or nutrients. This lead to the conclusion that storm flow 

loading of suspended solids and bacteria was significant. Consequently, addressing this 

pollutant export requires detailed stormwater sampling. Trend analysis was then 

performed using the Mann Kendall and Seasonal Kendall trend tests to ascertain the 

presence of trends in the water quality constituent concentration and loading. Trends 

existed in both the concentration and loading of the constituents in the downstream of the 

watershed, but not the upstream of the watershed. The increasing trends occurred during 

a period of intense urbanization. Specialized low flow and storm flow sampling were 

performed to acquire additional information regarding the relationships between 

constituents during storm flows and to establish a baseline of constituent concentration 

during low flows. Additionally, a single point source was observed to have significant 
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impact on the spatial profile of pollutant concentrations along the creek during low flow 

sampling. 

By analyzing the basic statistics and trends for both low flow and storm flow events a 

number of conclusions were drawn regarding the relative influence of dry and rainy 

weather on pollutant loading to the stream. These conclusions were used to guide future 

water quality modeling efforts. 
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