RICE UNIVERSITY

Dynamic Assertion-Based Verification for SystemC

by
Deian Tabakov

A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE

Doctor of Philosophy

APPROVED, THESIS COMMITTEE:

Mode Vards

Moshe Y. Vardi, Chair
Karen Ostrum George Professor
in Computational Engineering

Kartik Moafiram

Assistant Professor of

Electrical and Computer Engineering
and Computer Science

I /A

Luay Nakhleh
Associate Professor of Computer Science
and Biochemistry and Cell Biology

Houston, Texas

December, 2010

ABSTRACT

Dynamic Assertion-Based Verification for SystemC

by

Deian Tabakov

SystemC has emerged as a de facto standard modeling language for hardware and
embedded systems. However, the current standard does not provide support for tem-
poral specifications. Specifically, SystemC lacks a mechanism for sampling the state
of the model at different types of temporal resolutions, for observing the internal state
of modules, and for integrating monitors efficiently into the model’s execution. This
work presents a novel framework for specifying and efficiently monitoring temporal
assertions of SystemC models that removes these restrictions.

This work introduces new specification language primitives that 1) expose the
inner state of the SystemC kernel in a principled way, 2) allow for very fine control
over the temporal resolution, and 3) allow sampling at arbitrary locations in the
user code. An efficient modular monitoring framework presented here allows the
integration of monitors into the execution of the model, while at the same time
incurring low overhead and allowing for easy adoption. Instrumentation of the user
code is automated using Aspect-Oriented Programming techniques, thereby allowing
the integration of user-code-level sample points into the monitoring framework.

While most related approaches optimize the size of the monitors, this work focuses
on minimizing the runtime overhead of the monitors. Different encoding configura-

tions are identified and evaluated empirically using monitors synthesized from a large

benchmark of random and pattern temporal specifications.

The framework and approaches described in this dissertation allow the adoption
of assertion-based verification for SystemC models written using various levels of
abstraction, from system level to register-transfer level. An advantage of this work
is that many existing specification languages can be adopted to use the specification
primitives described here, and the framework can easily be integrated into existing

implementations of SystemC.

Acknowledgments

I would like to extend my sincere gratitude to my adviser Professor Moshe Y. Vardi.
His guidance and support have been invaluable and his belief in me unfaltering. I
cannot ever hope to repay the time and efforts that he devoted to my growth both
academically and as a person; I can only hope that I will have the opportunity to pay
this debt forward to a colleague or a student.

I would like to thank Dr. Kartik Mohanram and Dr. Luay K. Nakhleh for serving
as members of my dissertation committee. Their questions, comments and suggestions
have helped me distill the arguments and clarify the exposition. I appreciate the time
and efforts that they put in reading and evaluating my dissertation and presentations.

I also thank Eli Singerman and Gila Kamhi for hosting me during my internship
with Intel’s Design Technology and Solutions Division. Their insightful comments and
many discussions about this work have helped me understand the specification needs
of the actual practitioners of dynamic verification. I would also like to acknowledge
that this work was supported in part by a grant from the Intel Corporation.

I owe thanks to all past and present students in the Verification and Algorithms
research groups who helped me find my bearings in the department. I have had many
stimulating discussions with Seth Fogarty, Sumit Nain, Guogiang Pan, Ben McMahan
and Kristin Y. Rozier.

I owe special thanks to Ioan Sucan for his help untangling thorny C++ issues and
for the countless hours we have spent in discussion and exchange of ideas.

Last but not least, I would like to thank my parents, Evelina and Todor, and my

wife Linh, for their support and encouragement.

Contents

Abstract

Acknowledgments

Introduction

1.1 Designerisis e

1.2 SystemC e

1.3 Design verification L.
1.3.1 Formal verification,
1.3.2 Dynamic verification
1.3.3 Trade-offs between dynamic and formal verification
1.3.4 Limitations of design verification

1.4 Assertion-based verification L.

1.5 Contributions of thisthesis.
1.5.1 Specification primitives for SystemC
1.5.2 Monitoring framework for SystemC
1.5.3 Automatic instrumentation of user code
1.5.4 Automatic generation of efficient monitors

1.6 Outlineofthethesis,

Fundamentals of SystemC

2.1 SystemC as a modeling language
211 Modules
2.1.2 Hierarchical modules

2.1.3 Interfaces, ports, and channels

ii

0 00 N O Ut Ut W = -

e S et
>R W N =

214 SystemCevents 29
2.1.5 Datatypes. e 31
2.2 SystemC as a simulation environment 32
2.2.1 Parallel execution o Lo 32
2.2.2 Signalsand channels 33
2.2.3 Delta notifications and delta-cycles 34
2.2.4 Timed notifications and advance of simulation time 34
2.2.5 The start of a simulation 35
2.2.6 Simulation semantics of SystemC 35
2.3 Summary and discussiono 37
Specification Primitives for SystemC 38
3.1 Existing languages oo, 38
3.1.1 Brief history of assertion language standards 38
312 Overviewof PSL, 40
3.1.3 Overview of SystemC Verification Standard 41
3.14 Overview of NSCaand TLA 41
32 Relatedwork 42
3.3 Deficiencies in existing languages 43
3.3.1 Inflexible abstractionlevels. 43
3.3.2 Lack of mechanisms for user-code specification 44
3.3.3 Lack of definition of execution trace 45
3.4 Kernel-level primitives 46
3.4.1 Kernelphases 46
342 SystemCevents 49
3.5 User model primitives 50
3.5.1 Classdatamembers 50

3.5.2 Statement-level primitives 50

3.5.3 Function calls

Library code state

Execution trace

New specification primitives

3.8.1 Kernel-level primitives

3.8.2 User-code primitives

Using primitives as clock expressions

Summary and discussion

Monitoring Framework for SystemC

4.1 Introduction and motivation

Exposing the simulation semantics

4.1.2 A model implementing squaring via addition

4.1.3 A model implementing an airline reservation system

Related work

Modifications of the kernel

Determining when monitors are activated

4.3.2 Handling communication with monitors

Instrumentation of the MUV

Experimental results

Framework overhead

4.5.2 Monitoring overhead

4.5.3 Airline reservation system

4.6 Summary and discussion

Aspects of Temporal Monitoring of SystemC

5.1 Introduction and motivation

5.2 Preliminaries

5.2.1 Aspect-Oriented Programming

50
51
52
53
54
56
60
62

64
64
64
65
68
70
72
73
75
78
80
80
80
84
87

5.2.2 Monitoring framework o000 91
53 Related Work 91
5.4 User-code primitives oo o L 92
54.1 Exposing functioncalls, 93
5.4.2 Exposing function execution 93
5.4.3 Exposing function parameters and return values 94
54.4 Exposingsyntaxo 95
5.4.5 Exposing private variables 0oL, 96
5.5 Implementation 96
5.5.1 Exposing functioncalls 96
5.5.2 Exposing function execution 98
5.5.3 Exposing function parameters and return values 99
5.5.4 Exposingsyntax 100
5.5.5 Exposing private variables 102
5.6 Experimental evaluation, 103
5.7 Summary and discussion 104
Optimized Temporal Monitors 107
6.1 Introduction and motivation, 107
6.2 Relatedwork 109
6.3 Theoretical background 111
6.3.1 Badprefixes 111
6.3.2 Automata on infinitewords 111
6.3.3 Automataon finitewords 112
6.34 From NFW tomonitors 113
6.4 Monitor generation L o 114
6.4.1 State minimization Lo 114

6.4.2 Alphabet representation 114

6.4.3
6.4.4
6.4.5

Alphabet minimization
Monitor encoding L L.

Configuration space

6.5 Experimentalsetup

6.5.1
6.5.2

SystemCmodel

Properties

6.6 Experimentalresults

6.6.1
6.6.2
6.6.3
6.6.4
6.6.5

State minimization
Alphabet representation
Alphabet minimization
Monitor Encoding oo

Best configuration

6.7 Summary and discussion L oL

7 Conclusion and Perspectives

7.1 Summary of contributions L.

7.2 Adopting the framework oL

7.2.1
7.2.2
7.2.3
7.2.4

Adopting the new specification primitives
Exposing the operations of the SystemC kernel
Exposing user code primitives00 0L

Generating efficient monitors from properties

7.3 Futuredirections e

A Source code of the Adder model

Bibliography

ix

117
118
127
127
127
128
130
131
131
131
132
134
136

140
140
142
142
143
143
143
144

146

153

Chapter 1

Introduction

1.1 Design crisis

One logarithmic graph with 4 data points on a straight line led to the following

observation in a 1965 issue of the Electronics magazine:

The complexity for minimum component costs has increased at a rate of
roughly a factor of two per year [...] Certainly over the short term this

rate can be expected to continue, if not to increase. [Moo65]

The author of these now famous words was Gordon Moore, a chemist and a
physicist, and co-founder of Intel Corp. 10 years later, Moore updated his prediction,
stating that “the new slope might approximate a doubling every two years, rather
than every year.” [MooT75]

In the decades since, Moore’s Law has been widely misunderstood and often mis-
quoted, and has been invoked when discussing capacities of dynamic RAM modules
and hard disk drives, the computational power of microchips, and the number of
megapixels in consumer digital cameras. In a 1995 speech, Gordon Moore looked

back over the 30 years since he first stated his famous “law”, and joked:

The definition of “Moore’s Law” has come to refer to almost anything re-
lated to the semiconductor industry that, when plotted on semi-log paper,

approximates a straight line. [Mo095]

Part of the reason for the popularity of Moore’s Law is its uncanny accuracy.

Indeed, if we plot the number of transistors on commodity processors versus time,

starting with the early designs in 1960 and going through the latest microprocessor
from the Itanium family?, the curve is clearly exponential. However, as our ability
to put more transistors on a die has increased, so has the complexity of the designs.
Addressing the increasing complexity has led to an increasing level of abstraction in
designs.

In the 1960s and 1970s it was possible to design circuits at the transistor level. As
the circuits grew bigger, designers started thinking in terms of gates. In the 1990s,
tools for automatic synthesis of gate-level designs allowed the practitioners to adopt
an even higher level of abstraction: Register Transfer Level (RTL). This move was
widely acclaimed as a revolution of the design process [Fos08].

However, in the 2000s a new type of devices started to become more commonplace,
for example, cell phones, network routers, and smartcards, collectively called systems-
on-chip (SoC). A SoC often consists of more than one processor, and contains on-chip
and external memory, analog and digital signal processors, peripheral devices, and
complex on-chip buses. Such systems are often capable of running a modern operating
system such as GNU Linux or Windows Mobile. The software and the hardware of
such systems are tightly connected, with the software both controlling the hardware,
and requiring it to run. Designing and debugging software for such systems is a
difficult task by itself, usually requiring many months and even years. Shrinking
time-to-market made it all but impossible to wait for the hardware to be designed,
taped out, and for the first prototypes to roll off the production floor, before starting
to design the software. Instead, there is increasing pressure to co-design the hardware
and the software together, a task not well suited for RTL.

Another problem with RTL is that a micro-architecture is usually specified by
a natural language document, referred to as the micro-architectural specification

(MAS) [Var07]. It is increasingly difficult to design RTL from such informal and

1At the time of writing of this thesis, the latest Intel microprocessor was Tukwila, with more
than 2 billion transistors on a single die

often underspecified documents. Moreover, if there are errors in the RTL, it is al-
most impossible to determine whether the error was in the original design, or in the
translation of the design from MAS to RTL, as the RTL serves as both the micro-
architectural model and its implementation [Var07].

The divergence between what engineers could put on the chip and what the de-
signers could simulate and verify, has been increasing, leading Gadi Singer, one of
Intel’s Vice Presidents, to issue a call to action for the electronic design automation

(EDA) industry:

We have a very good flow generally to go down from RTL to layout. How-
ever, RTL was established two decades ago. Since then, complexity has
grown severalfold and the EDA industry has not provided a similar level
of support for design and refinement at the next level. This is a level that

is an absolute requirement to deal with the growing complexity [Goe05).

The need to move beyond the register transfer level motivated academic and
industrial research into language for “system-level” design. A new language would
ideally support specification and design at various levels of abstraction, incorporation
of embedded software, and creation of executable specifications. One of the most
popular languages that were intended to answer the needs of the design community

is SystemC.

1.2 SystemC

SystemC (IEEE Standard 1666-2005) is both a modeling and a simulation language:
designs can be created with various levels of details, and then they can be com-
piled into executables using standard C++ compilers?. The core language consists of
macros for modeling fundamental components of hardware designs, such as modules

and signals. SystemC also provides hardware-oriented data types like 4-valued logic

2A detailed introduction to SystemC follows in Chapter 2.

and arbitrary-precision integers. The implementation of SystemC distributed by the
Open SystemC Initiative (OSCI) also provides a reference simulator that is linked to
the user code and drives the simulation. Various vendors supply their own simula-
tors, which provide additional support for debugging and co-simulation with other
hardware description languages.

One of the reasons for SystemC’s success is that it allows designers to model
systems at several abstraction levels, from the most concrete (gate level) through the
most abstract (system level) [GLMS02]. Individual components can be replaced freely
without affecting the rest of the design, thus allowing the engineers to investigate
alternative approaches and new ideas. This also allows the design process to be
parallelized, with different teams working on different components simultaneously.

As a simulation framework, SystemC provides an event-driven environment, where
important occurrences like writing to a signal, a clock tick, or a token being con-
sumed from a channel are each represented by an event. Synchronization between
events and processes is done behind the scenes by SystemC’s simulation kernel. The
kernel keeps track of events, schedules processes to run, and updates the values of
signals and channels in a fashion that mimics concurrent execution, even though in
reality the processes are run sequentially. The seamless integration between hardware-
like components (modules, signals) and software (processes) makes SystemC a prime
choice for prototyping and testing hardware and hybrid systems early in the design
process [CA02].

The object-oriented encapsulation of classes in C++ is naturally extended in Sys-
temC to protect each module’s internal data members (representing local memory)
from other modules and processes, except through explicitly defined interfaces. C++’s
inheritance capabilities allow for the creation of modular designs in SystemC, which,
in turn, facilitate reuse and make IP transfer possible [BGMO04].

Various libraries provide further functionality. For example, a popular library

called TLM (short for Transaction-Level Modeling) defines channels, interfaces, and

protocols that streamline and standardize the development of high-level models in
which complex communication and protocols are reduced to a single “transaction”.
These factors have helped propel SystemC as a de facto industry-wide standard mod-
eling language, less than a decade after its first release, and with this increase in use

came the increasing need to verify the designs written in SystemC.

1.3 Design verification

Before we can check if the behavior of a design is correct, we need to have a “yardstick”
against which the behavior is compared. Behavior of the design over time is often
expressed using temporal formulas [Pnu77]; in his dissertation such temporal formulas
are called properties of the design. A specification is a set of asserted properties, which
describe intended behavior of the system. Informally, the goal of design verification
is to ensure that the actual behavior of the design is consistent with its specification.
If an inconsistency is discovered, the verification tool can usually produce a witness
of the violation: a trace which corresponds to an execution of the model and which
violates the specification. There are two major directions of research in this field:

formal verification and dynamic verification.

1.3.1 Formal verification

One feature that all formal verification methods share is that they produce a mathe-
matical proof that the design can never violate the specification. If the design is not
written in a formalism with formal semantics, it needs to be translated before model
checking can be applied. Practical application is limited to small blocks that contain
mostly control logic such as state machines, as opposed to blocks that are used to
transform data, such as multipliers [CHO7).

One common application of formal verification is in equivalence checking: showing
that two models have the same behavior. Usually it is done after a refinement step or

after some optimizations (e.g., clock-tree synthesis) to ensure that the functionality

of the model or the circuit is still correct [Ber03]. In these cases the old model serves
as a specification for the new one. Equivalence checking can also be used to verify
the correctness of the output of the synthesis tool, for example, when synthesizing

netlists from RTL.

1.3.2 Dynamic verification

While formal verification checks if all executions of the system conform to the speci-
fication, dynamic verification checks if a particular execution of the model conforms
to the specification. This approach involves executing the model under verification
(MUV) in some environment, while running checkers in parallel with the model. The
checkers typically monitor the inputs to the MUV and ensure that the behavior or
the output is consistent with the expected behavior or output and, if a violation is
detected, return the trace of execution leading to the violation. Dynamic verification
is weaker than formal verification because it provides no guarantees that the system
can never violate the specification. It is sometimes called “functional verification”
(see, e.g., [Ber03, Fos08, Piz07]) and “runtime verification” (see, e.g. [CR07,LS09]).
This thesis uses the term “dynamic verification” to highlight the distinction from
“formal verification”.

There are two major approaches to dynamic verification: black boxr and white box.
The difference is mainly in the amount of information exposed to the verification

framework:

e Black bor. When using this paradigm, dynamic verification is performed with-
out any knowledge of the details of implementation of the design. All verification
is done through explicitly declared interfaces. A disadvantage of using this ap-
proach is that an error may occur inside the design without manifesting itself
at the interface. However, an advantage of using black box dynamic verification
is that the verification effort does not depend on the specific implementation.

Pure black-box dynamic verification is impractical for large designs because

they have too many internal signals and states to effectively verify all of the
functionality from the periphery [Ber03]. Black box verification is mostly used
to specify the behavior of third-party designs and libraries.

e White box. This method gives the verification framework full access to the
internal structure and implementation of the MUV. Verification efforts can focus
on specific blocks or individual functions. In case an error is detected, it is
reported sooner than when using black box verification, and it is usually easier to
identify the incorrect implementation. White box dynamic verification requires
detailed knowledge of the implementation of the design, which is often available

only to the engineers who are writing the model.

1.3.3 Trade-offs between dynamic and formal verification

e Capacity vs. Completeness. Formal verification has capacity limits and is
best applied to small blocks with critical importance (for example, arbiters
and bus controllers). Even small models can have a large state space, which
makes formal verification intractable. Dynamic verification has fewer capacity
limitations, however, it cannot provide a complete verification solution. In
contrast to formal verification, dynamic verification does not constitute proof
that the model conforms to the specification, and corner cases may remain

unexercised, resulting in undiscovered bugs.

e Formal semantics. Formal verification requires that the model has well defined
formal semantics. In particular, C++ is known to lack formal semantics [Vel05),
which means that formal verification methods are restricted to a subset of C++.
As a consequence, formal verification of SystemC requires that the model be
translated to another language (e.g., abstract state machines [GHT04]) with

formal semantics.

1.3.4 Limitations of design verification

Although design verification is crucial for uncovering design or implementation bugs,
successful application requires good understanding of its limitations. One possible
source of frustration comes from specification errors: a specification may misrepresent
the design intent, thus triggering a false positive. Software engineers have faced this

issue for decades: in 1990 Moser and Melliar-Smith wrote

“Even carefully written formal specifications are prone to error, and expe-
rience has shown that unverified specifications are comparable in reliability

to untested programs [MMS90].”

Lam goes even further and claims that even “missing specifications” can be considered
a type of specification errors [Lam05].

Another issue is that in most applications, specifications do not provide complete
functional coverage. This means that even if the specifications have been proven to
hold in full, there may still be undetected errors. The correctness of the model is not

an absolute measure; it is always with respect to specific specification of its behavior.

1.4 Assertion-based verification

Monitors (also called “functional checkers” or just “checkers”) are used as aids for
dynamic verification. In the late 1990s, manually written monitors were a traditional
part of the simulation environment (see, e.g., [GBA*99]). Typically, a monitor ob-
serves the execution of the MUV and issues a warning or terminates execution if the
observed behavior deviates from the expected behavior. In cases when deviation is
observed, the problem and its source are easier to identify and debug. Furthermore,
using monitors automates the analysis of the tests results and allows a large number
of random test vectors to be executed without the need for immediate attention by

a verification engineer. The disadvantage is that writing and maintaining monitors

manually is an expensive and laborious process, and for intricate specifications it is
very easy to make mistakes when constructing the monitor by hand.

Automated monitor generation was first proposed by Abarbanel et al. [ABG*00],
who used the FoCs tool to generate VHDL monitors from specifications written in
a temporal language based on Computation Tree Logic (CTL) and regular expres-
sions [BBL98]. Their overall experience with FoCs was very favorable, particularly be-
cause it allowed to “[leverage] the same formal rules for model checking of small design
blocks as well as for simulation analysis across all higher simulation levels.” [ABG*00].

The advantage of automatic generation of monitors from specifications was ac-
knowledged almost immediately by the industry (see, e.g., US Patent 6591403, “Sys-
tem and method for specifying hardware description language assertions targeting a
diverse set of verification tools” [BF03], which was submitted in October 2000). The
term “assertion-based verification” (ABV) started to be used in white papers from
the electronic design automation (EDA) vendors in 2002 (see, e.g., [Syn02]), in peer-
reviewed papers in 2003 (see, e.g., [NAPF*03]), and in books in 2003 (e.g., [FKLO03]).
The industry also recognized the need for temporal languages that can express prop-
erties related to ongoing behavior, such as p must hold until g is true [AFF102]. As-
sertions are most commonly used to facilitate verification, hence the name assertion-
based verification. Some authors even prefer using the term assertion-based design
to emphasize the idea that assertions should be introduced in the earliest stages of
the design process [BZ08, FKL03].

Among the several advantages of using ABV is the modular nature of assertions:
each one is a partial specification of the system, and those specifications can be
added incrementally, as time permits. Designs with thousands of assertions are not
uncommon [BZ08], and the only practical way to build such a set of specifications is
to add them to the design and to debug them one at a time.

Another advantage of using ABV is that once the assertions have been added to a

particular design, they can be reused across different refinement steps (with possible

10

minor modifications to the sampling rate; see Chapter 3 for a full discussion). Some
designs are constructed with reuse in mind and the associated assertions serve both
as a formal description of the design, as well as constraints on the inputs that detect
and reject incorrect usage.

A further benefit of using ABV in the initial specification of the design is that
the assertions allow the verification and the design teams to base their work on a
common set of formal properties. This usage of assertions supplements the natural
language description of the design, and is an important part of the documentation of
the design.

A successful ABV solution requires three components:

1. A formal declarative language for expressing assertions and a formal definition
of a trace of execution. The semantics of some temporal operators can only be

defined with respect to an execution trace.

2. A monitoring framework capable of observation of the execution trace. This
includes both the ability to decide the truth value of any atomic formula, and
the ability to sample the values of atomic formulas at all states on the execution

trace.

3. A mechanism for automatic generation of monitors from specifications. The

monitor must detect all finite executions of the model that violate the property.

This thesis addresses all of these issues and provides a complete framework for
applying assertion-based verification to SystemC. Components of the framework are

discussed briefly in this chapter, and at length in the subsequent chapters.

11

1.5 Contributions of this thesis
1.5.1 Specification primitives for SystemC

There have been a few attempts to adapt temporal specification languages to SystemC
(see discussion of related work in Chapter 3), but they suffer from several drawbacks.
Previous works do not address the most fundamental issue for temporal specification
languages: a precise definition of a trace of execution. Moreover, existing temporal
specification languages cannot handle the different levels of abstraction that may
coexist in a single SystemC design, and cannot be adapted easily as the model is
refined. Another issue is that existing temporal specification languages for SystemC
focus on the hardware-oriented nature of SystemC and ignore the fact that SystemC
models both hardware and software.

This thesis describes a new approach to defining temporal languages for SystemC.
The starting point is a precise definition of a SystemC trace. Intuitively, a trace is
a sequence of states in the execution of the model. Defining this notion precisely for
SystemC is nontrivial because it requires finding a good abstraction of the simulation
semantics of SystemC. It is then argued that modern specification languages fail to
identify important Boolean properties relevant to the execution of SystemC models.
This thesis proposes enriching the Boolean layer with a new set of atomic propositions,
exposing the operations of the SystemC kernel, as well as the control flow and the
syntax of the user code, thereby making the temporal specification language more
expressive. Finally, this work leverages the fact that the clock-sampling mechanism
available in modern temporal specification languages offers a way to express temporal
properties at different levels of abstraction. A fine sampling would correspond, for
example, to subcycle-level abstraction, while coarser sampling would correspond, for
example, to transaction-level abstraction. Since any Boolean expression can be used
as a clock expression, the additions to the Boolean layer that is proposed here also

provides a much finer control over the temporal resolution.

12

The new primitives proposed in this dissertation are at the Boolean layer and can
be added easily to existing temporal specification languages such as PSL [PSLO07];
all that is needed is to adapt the underlying syntax for state assertions. The main
feature of the resulting framework is the ease with which properties can be expressed
at different levels of abstraction, without having to use different languages. This

contribution was published as [TVKSO08].

1.5.2 Monitoring framework for SystemC

The traditional approaches to dynamic verification involve connecting a separate
checker module in parallel with the MUV for each property to be checked. The
difficulty of applying this approach to SystemC is that it only allows monitoring the
state of the model when control is passed to the checker module. Thus, this approach
cannot be applied to monitor properties that refer to finer temporal resolution, e.g.,
referring to a particular SystemC event. This dissertation argues that the specifica-
tion primitives discussed earlier require that certain nominal information about the
kernel, specifically, kernel phases and event notification, has to be exposed to the
monitors.

Once it becomes clear that the SystemC kernel needs to be exposed, the two
key questions are how to do it with small changes to an existing implementation,
and how to avoid performance penalties. On one hand, optimizing for performance
alone would require direct modification of the existing source code to hook the new
functionality to the existing data structures. This would require the monitoring
framework to be rewritten for each SystemC implementation, limiting portability. On
the other hand, optimizing for portability would require adding a layer of indirection
that abstracts away the concrete implementation of the SystemC kernel, which would
slow down the execution. Since each optimization affects negatively the other, the
challenge is to find a good balance between the two. This thesis describes an approach

that accomplishes both small change and low performance overhead. The necessary

13

changes to the SystemC code are modularized to make it easy and fast to modify
existing implementations. The framework can easily adapt to changes in the SystemC
semantics that may be added in future releases.

This dissertation shows that monitoring SystemC properties using the frame-
work presented here has reasonable overhead (0.05% — 1% per monitor) and that
the marginal cost of additional monitors decreases. As proof of concept, the frame-
work is used to specify and check properties of two SystemC models. Based on the
empirical results it is argued that the additional expressive powers and flexibility of
the framework does not incur a prohibitive performance hit. This contribution was

published as [TV10a].

1.5.3 Automatic instrumentation of user code

The benefits of object-oriented encapsulation and data hiding inherent in SystemC
are deterrents for effective monitoring. Access to internal variables is granted only to
the objects’ own processes and is denied to the monitors, which execute as external
processes. A key requirement for monitoring the specification language primitives
described earlier is allowing monitoring processes access to all internal variables, even
those marked protected or private. The third contribution of this work is defin-
ing a simple yet powerful approach for exposing the execution flow, the syntax, and
the state of the user code, without requiring extensive annotation or manual instru-
mentation from the model designers.

The approach presented here uses Aspect-Oriented Programming (AOP) [KIL*97]
techniques to expose function calls and returns, the actual parameters passed to
functions, the return values of functions, and the precise instances when the function
execution starts and ends. In addition, the approach presented here allows identifying,
via regular expressions, any line or a set of lines of code, and exposing them to
the monitoring framework as atomic propositions. Empirical results show that the

overhead due to automated instrumentation of the user code is very low (~ 0.5 x

14

10~*% of baseline execution time per monitor call).

1.5.4 Automatic generation of efficient monitors

The last component of assertion-based verification for SystemC calls for a method
for generating runtime monitors from formal properties. For simple properties it may
be feasible to write the monitors manually; however, in most industrial workflows,
writing and maintaining monitors manually would be an extremely high-cost, labor-
intensive, and error-prone process.. This work uses existing approaches to construct
a Deterministic Finite Word automaton (DFW) from a temporal property, such that
the automaton accepts the finite traces that violate the property. Many works have
elaborated on that approach; this thesis follows the algorithm presented in [dRO5].
Most of prior work on this subject has focused on the underlying algorithmics
or on heuristics to generate smaller monitors or on fast monitor generation. In this
thesis the focus is shifted toward optimizing the runtime overhead that monitor ex-
ecution adds to simulation time. This reflects more accurately the priorities of the
industrial applications of monitors. A large SystemC model may be accompanied by
dozens and even hundreds of monitors, so lower runtime overhead is a crucial opti-
mization criterion, much more than monitor size or monitor-generation time. This
work identifies several algorithmic choices that need to be made when generating
temporal monitors for SystemC and presents extensive experimentation to identify
the configurations that lead to superior performance. We investigate the effect of
individual optimizations on the runtime overhead of monitors, leading to the identi-
fication of a combination of optimizations that exhibits the best overall performance.

This contribution was published as [TV10b].

1.6 Outline of the thesis

Chapter 2 gives introduction to SystemC and discusses its simulation semantics.

Chapter 3 presents new specification primitives that allow existing temporal lan-

15

guages to handle a rich set of SystemC properties. The mechanisms for exposing the
operations of the SystemC kernel are described in Chapter 4. Chapter 5 presents
techniques for automating the instrumentation of the user code, and Chapter 6 shows
how to generate efficient monitors. Conclusions and future work are described in

Chapter 7.

16

Chapter 2

Fundamentals of SystemC

SystemC is a system-level design framework that is capable of handling both hard-
ware and software components. It allowed a designer to combine complex electronic
systems and control units in a single model, to simulate and observer the behavior,
and to check if it meets the performance objectives. In 2005 the SystemC language
reference manual (LRM) was ratified as IEEE 1666-2005 standard.

In the past, the design process for embedded systems has been mostly serial,
moving from the architecture designers to the hardware designers to the hardware
verification team and finally to the software team, and each team has been using a
different language to implement and refine their portion of the design. This approach
is known as “waterfall schedule” among project managers [BD05]. Such workflows
may work for designs consisting of a few thousands of lines of RTL code, but it quickly
becomes inefficient when the designs get bigger and more complex.

Many contemporary systems consist of application-specific hardware and software,
and tight production cycles make it impossible to wait for the hardware to be manu-
factured before starting to design the software. In a typical system-on-chip [CCH*99],
for example, a cell phone, there are hardware components that are controlled by soft-
ware. In addition, many hardware design decisions, for example, numeric precision
or the width of communication buses, are determined based on the needs of the soft-
ware running on them. This has led to a design methodology where hardware and
software are co-designed in the same abstract model. The partitioning between what
will be implemented in hardware and what will be written as software is intentionally

left blurry at the beginning, allowing the designers the ability to consider different

17

configurations before committing a functional block to silicon or C.

One of the reasons for SystemC’s popularity is its ability to parallelize the design
process. SystemC allows blocks implemented at different abstraction levels to run
together in the same model. Different components can be refined in parallel, using
the abstract model as a blueprint showing how the different blocks interact. Com-
munication between modules is specified using well-defined interfaces, which allows
two blocks that conform to the same interface to be swapped seamlessly. This gives
designers the ability to explore alternative approaches early in the design process,
before committing to a particular architecture.

In the strict sense of the word, SystemC is not a new language. In fact, it is a
library of C++ classes and macros that model hardware components, like modules and
channels; provide hardware-specific data types, like 4-valued logic types; and define
both abstract and specific communication interfaces, like Boolean input. SystemC
is built entirely on standard C++, which means that every SystemC model can be
compiled with a C++ compiler. The compiled model has to be linked with a SystemC
simulator (for example, the OSCI-provided reference implementation) to produce an
executable program.

Software typically executes sequentially, partly because most computer architec-
tures have a single CPU core, and partly because a single thread of execution is easier
to manage by the operating system. However, in a hardware system, many compo-
nents execute simultaneously. For example, when using a cellphone to make a call,
we activate simultaneously a radio subsystem that handles two-way communication
with the cell tower, a signal processing unit that converts voice to signal and signal
to voice, and a display controller that shows details about the conversation on the
screen. Simulating such a system in software requires the ability to simulate a large
number of tasks executing simultaneously, and is critical for the early stages of the
design.

SystemC addresses this issue by providing mechanisms for simulating (in software)

0 3O Ui W=

18

parallel execution. This is achieved by a layered approach where high-level constructs
share an efficient simulation engine [GLMS02]. The base layer of SystemC provides
an event-driven simulation kernel that controls the model’s processes in an abstract
manner. The kernel leverages a concept borrowed from hardware design languages,
called delta cycle, to give the executing processes the illusion of parallel execution.
The details of the simulation semantics of the kernel, the mechanisms for simulating
parallel execution, and the way the kernel interacts with the MUV are described in

the second half of this chapter.

2.1 SystemC as a modeling language

2.1.1 Modules

SystemC modules are the most fundamental building blocks. Similar to C++ objects,
modules allow related functionality and data to be incorporated into individual enti-
ties and to remain inaccessible by the other components of the system unless exposed
explicitly. This allows modules to be developed independently and to be reused or
sold in commercial libraries [BGM04]. As an example, the skeleton of a SystemC

module is presented in Listing 2.1:

SC_MODULE (Nand) {
// Definitions of processes, internal data, etc

SC_CTOR(Nand) {
// Body of constructor, process registration,
// sensitivity lists, etc.

}
}i
Listing 2.1: Skeleton code for defining a SystemC module.
In this code fragment, SC_MODULE is one of SystemC’s macros, which declares
a C++ class named “Nand”. Like any other C++ class, a module can declare local

variables and functions. SC_CTOR is another predefined macro that simplifies the

definition of a constructor for the module. A constructor of a module serves the same

QDO Ok W

19

purpose as a constructor of a C++ class (i.e., initializing local variables, executing
functions, etc.), but has some additional functionality that is specific to SystemC.
For example, the processes of the module have to be declared inside the constructor.
This is done using pre-defined SystemC macros that specify which class functions
should be treated by the SystemC kernel as runnable processes. After declaring each
process, the user can optionally specify its sensitivity list. The sensitivity list may
include a subset of the channels and signals defined in the module, as well as externally
defined clock objects or events. Whenever there is a change of value of any of the
channels or signals listed in the sensitivity list, the corresponding process is triggered

for execution. Listing 2.2 illustrates these concepts.

SC_MODULE (Nand) {
// Definitions of ports
sc_in <bool> A, B; // Input signal ports
sc_out<bool> F; // Output signal port

// Definitions of processes
void some_function() {

F.write(! (A.read() && B.read()));
}

SC_CTOR(Nand) {
// Process registration, sensitivity lists, etc.
SC_METHOD (some_function); // Indicate that this function
// 1is a ‘'‘method process’’
gsensitive << A << B;

}

}i
Listing 2.2: A SystemC module of a NAND gate

This code fragment declares two input and one output signals of type bool
(lines 3-4). The function some_function () defined on lines 7-9 implements the
expected functionality of the NAND gate. Nothing distinguishes this function from
any other standard C++ function, until the macro on line 13 declares it to be a pro-
cess. SC_METHOD indicates that this process is a method process. When triggered, a

method process executes from start to finish. In particular, a method process cannot

1
2

20

suspend while waiting for some resource to become available. In contrast, a thread
process may suspend its execution by calling wait (). The state of the thread process
at the moment of suspension is preserved, and upon subsequent resumption (for ex-
ample, when the waited-for resource becomes available) the execution continues from
the point of suspension. Thread processes are declared using the macro SC_THREAD.
Both thread and method processes can define a sensitivity list. Each sensitivity list
declaration applies to the process immediately preceding the declaration. Line 15
indicates that the method process some_function () should be triggered as soon
as one of the input signals changes its value.

Any function that is declared as a method process can also be declared as a thread
process, at the cost of simulation performance.Nevertheless, certain functionality can-
not be expressed easily using method processes, so the extra cost of thread processes
is outweighed by their expressiveness. For example, when a process needs to write to
a buffer that is currently full, it is very common to suspend execution until the buffer
becomes available. An example illustrating such processes is presented later in this

chapter.

2.1.2 Hierarchical modules

Building modules that include other modules is as easy as using C++ objects inside
another C++ class. For example, we can use the model of a NAND in Listing 2.2 to
design a module implementing an EXOR gate. Figure 2.1 shows how the gates need
to be connected.

We need three “wires” (labeled S1, S2 and S3) to connect the inner gates to each
other. The two inputs signal ports (labeled A and B) and the output signal port
(F) can be connected directly to the gates, thus we do not require additional wires.

Listing 2.3 shows the SystemC implementation.

SC_MODULE (Exor) {
// Definitions of ports

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

21

Figure 2.1 : An EXOR gate implemented using 4 NAND gates.

sc_in <bool> A, B; // Input signal ports
sc_out<bool> F; // Output signal port

// Four instances of the Nand module
Nand nl, n2, n3, n4;

// Three Boolean ‘'‘wires’’
sc_signal<bool> S1, S2, S3;

// No definitions of processes needed. All functionality
// is already implemented in the NAND gates

SC_CTOR(Exor) : nl(‘‘N1’’), n2(*'N2’’), n3(''N3’’), n4(*'‘N4’’)

{

// Connect the wires
N1.A(A);

N1.B(B) ;

N1.F(S1);

N2.A(A);
N2.B(S1);
N2.F(S2);

N3.A(S1);
N3.B(B) ;
N3.F(S3);

N4 .A(S2) ;
N4.B(S3) ;
N4.F(F) ;
} // End of constructor

34

22

! Listing 2.3: A SystemC module of an EXOR gate using 4 NAND gates.

Just like the Nand module, the Exor module has two Boolean input signal ports
and one Boolean output port, defined on lines 3—4. The four instances of the NAND
gate are declared on line 7, and the three inner “wires” are represented by Boolean
signals declared on line 10. In the constructor the wires are connected to the proper
ports of the modules. For example, on lines 18-20 we connect Exor input signal A
to the input port of N1 named A. Exor input signal B is connected to input port B
of N1, and signal S1 is connected to the output port of N1, which is named F (see
Listing 2.3). We connect similarly the remaining Nand modules.

Notice that there is no ambiguity between the input and output signal ports of
the EXOR gate and the NAND gates, even though they all share the names A, B
and F. The input ports of the NAND gates are defined inside the modules, and are
accessed through the instance names of the modules, e.g., N1.A or N3 .F using the
C++ operator “()”, while the input ports of the Exor module are defined locally
and can be accessed directly. Also notice that the Exor module does not define any
processes. The processes already defined in the Nand module carry out the necessary
functionality. This example illustrates that complicated models can be easily built

from existing components with minimal effort.

2.1.3 Interfaces, ports, and channels

In traditional hardware models all communication and synchronization between pro-
cesses is done using signals. SystemC allows the designers to raise the level of abstrac-
tion significantly, allowing the processes to exchange arbitrary data. Communication
is done using interfaces, ports, and channels, which work together to hold and trans-

mit data.

23

Interfaces

SystemC interfaces are sets of “operations”, represented by functions. Only the func-
tion name, parameter, and return value are specified, without any restrictions how
the operation is to be implemented.

A commonly used interface in SystemC is sc_signal_in_ i£<T>, which pro-
vides a virtual function virtual const T& read() const, allowing reading of
arbitrary data (represented by the template argument T). Another commonly used
interface, sc_signal_ inout_if<T>, provides a virtual function
virtual void& write(const T&) = 0 that allows writing of arbitrary data
of template type T. The particular way of carrying out the operations specified in the

interface is determined by each channel implementing the interface.

Ports

Ports in SystemC allow modules to connect to and communicate with their envi-
ronment. Ports are actual objects that are instantiated inside modules, and pass
communication requests from the module to the channel. Having an intermediary
object that handles the communication allows the module’s processes to remain ig-
norant about the channel that carry out the communication, as long as the processes
use the correct operations as defined in the interface.

Each port declaration specifies the operations that the port is able to perform,
i.e., the port’s interface. For example, the following statement:
sc_port< sc_signal in if<bool> > p; declares a port p that can access a
channel using the functions declared in the sc_signal_ in_ if<bool> interface.
As discussed earlier, this interface provides the operation const bool& read().
Thus, we can use the port to read a Boolean value from the channel attached to the
port by calling p.read ().

In the two examples presented earlier in Listing 2.2 and Listing 2.3, the code im-

plementing the NAND gate and the EXOR gate contains port declarations that han-

N O Otk N

24

dle the communication of the module with the environment. For example, lines 3—4 in

Listing 2.3 declare sc_in <bool> A, Band sc_out<bool> F. Heresc_in <bool>
is actually shorthand notation for sc_port< sc_signal_in if<bool> >, and
similarly, sc_out<bools> isshorthand for sc_port< sc_signal_inout_if<bool> >.
Calling A.read () and F.write () (lines 7-9 in Listing 2.2) is allowed because the
corresponding ports use the sc_signal in if and sc_signal_inout_if in-

terfaces.

Channels

While interfaces describe what operations are available at the ports, channels de-
fine how those operations are implemented. Different channels can implement the
same interface, and one channel can implement multiple interfaces. As an exam-
ple, the implementation of an EXOR gate in Listing 2.3 uses three “wires” of type
sc_signal<bool> to connect the Nand modules; sc_signal<T> is a pre-defined
SystemC channel that implements both se_signal in if<T> and

sc_signal inout if<T> interfaces.

Producer-consumer model

The next example shows communication between modules through a shared channel.
The model consists of two modules, Producer and Consumer, and they commu-
nicate using a bounded capacity FIFO. We first define the interfaces through which
the modules communicate, then show the code implementing the Producer and the

Consumer, and finally present the code for the FIFO.

template <class T>
class write if : virtual public sc_interface {

public:
virtual void write(T& token) = 0;
virtual void reset () = 0;

}i

10
11
12
13
14
15

03O Tt W

— e e e
G W~ O

25

template <class T»>
class read_if : virtual public sc_interface {

public:
virtual T& read() = 0;
virtual int num_available() = 0;

! Listing 2.4: Communication interfaces for the producer-consumer model
Listing 2.4 shows a typical SystemC interface definition. It is required that all
user-defined interfaces extend sc_interface (line 2, 10). In SystemC the oper-
ations allowed on the interfaces must be encoded as pure virtual functions. The
implementing channel is required to provide concrete definitions of those functions.
Every second the Producer (Listing 2.5) writes a character to the FIFO with
50% probability, and every second the Consumer (Listing 2.6) reads a character
from the FIFO with 50% probability. It is important to point out that the 1-second
intervals apply only to simulation time and not to wall-clock time. Wall-clock time is
the actual time it takes to run the compiled executable model, and simulation time
reflects the apparent time as perceived by the SystemC processes in the model. In
the case of the producer-consumer model we can simulate thousands of seconds of

simnulation time in one wall-clock second.

SC_MODULE (Producer) {
// Definitions of ports
sc_port< write_ if<char> > out; // Output port

// Definitions of processes

void producer_process() {
const char* str = ‘‘Hello world!’’;
const char* p = str;

while (true) {
if (rand() % 2) ({
out.write(*p);
D++;
if (1*p) {
p = str;

16
17
18
19
20
21
22
23
24
25
26
27
28
29

0O Ok Wi

26

}
}

wait (1, SC_SEC);
}
}

SC_CTOR (Producer) {
// Process registration, sensitivity lists, etc.
SC_THREAD (producer_process); // thread process

// No sensitivity list

}

}i
Listing 2.5: A SystemC model of a Producer

The producer has only one port (line 3) that uses the interface write_ if<chars>
declared earlier, and only one process (lines 6-21). The infinite while-loop writes a
character through the output port and then suspends itself explicitly (line 19) using
a call to the built-in function wait (). Time in SystemC is defined using a numeric
value and a time unit; in this case, SC_SEC is the pre-defined unit corresponding
to seconds. Since producer_process () contains a wait () statement, it has to
be declared a thread process (line 25). Also notice that no sensitivity list is needed.
Once triggered, the producer_process () never terminates, thus it will not need
to be triggered again.

The Consumer module is presented next in Listing 2.6.

SC_MODULE (Consumer) {
// Definitions of ports
sc_port< read_if<char> > in; // Input port

// Definitions of processes
void consumer_process() {

while (true) ({
if (rand() % 2)
std: :cout << in.read();

}

13
14
15
16
17
18
19
20
21
22
23

0O Otk W

27

wait (1, SC_SEC);
}
}

SC_CTOR(Producer) ({
// Process registration, sensitivity lists, etc.
SC_THREAD (consumer_process); // thread process

// No sensitivity list

Listing 2.6: A SystemC model of a Consumer

The Consumer model is very similar to the Producer model. An input port is
declared on line 3 and the functionality of the module is implemented on lines 6-15.
The consumer_process () uses an infinite while-loop with explicit suspension of
execution (line 13), and thus it must be declared a thread process (line 19).

One challenge presented by the Producer and the Consumer modules is that
characters are produced and consumed nondeterministically. Since the FIFO has
bounded capacity, it may eventually be full when the Producer attempts to store
another character, or it may be empty when the Consumer attempts to read another
character. The design of the FIFO, presented in Listing 2.7, handles this via blocking

read () and write () operations.

template<class T>

class fifo : public sc channel,
public write if<T>,
public read_if<T> {

private:
int max = 10; // Capacity of the FIFO
T* data[max];
int num_elements = 0;
int first = 0;
sc_event write_ event, read_event;

public:

// Implementation of the read if

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

28

virtual T& read() {
if (num_elements == 0) {
wait(write_event) ;

}

T* token = datal[first];

-- num_elements;

first = (first + 1) % max;
read_event.notify () ;
return token;

}

virtual int num_available() {
return num_elements;

}

// Implementation of the write if
virtual void write(T& token) {
if (num_elements == max) {
wait (read_event) ;

}

data[(first + num_elements) % max] = &token;
++num_elements;
write_event.notify();

}

virtual void reset () {
num_elements = 0;
first = 0;

! Listing 2.7: A SystemC model of a (blocking) FIFO

Like every user-defined channel, fifo must derive from the pre-defined class
sc_channel. In order to handle the communication between the Producer and the
Consumer, the £ifo must also implement the interfaces write_if and read_if.
This is declared explicitly on lines 2—4.

The fifo defines private local data to store tokens and to keep track of the

total number of tokens, as well as the location in the array where the next token

29

will be stored (lines 7-11). The rest of the code implements the functions defined in
read_if (lines 16-30) and write_ if (lines 34-47).

The implementation of the read () function checks if there is something to read,
and if there are no tokens currently in the FIFO, the function suspends execution
with a call to wait (write_event) (line 18). Execution can resume only after
write_event has been notified. The intended behavior of this piece of code is that
execution will resume only after there is something to read from the FIFO. Ensuring
that this is the case is the responsibility of the designer of the FIFO. In this case
write_ event is notified only on line 41 right after a token is placed in the FIFO,
thus we can expect correct behavior from the code.

The implementation of write () similarly checks if there is space for one addi-
tional token in the FIFO. If this is not the case, execution is suspended until the FIFO
is nonempty, by issuing a call to wait (read_event) on line 36. The expectation
of the designer is that read_event is notified if and only if there is space in the
FIFO. The only place where read_event is notified is on line 24, right after a token
has been consumed from the FIFO, thus the designer can expect the code to execute

correctly.

2.1.4 SystemC events

As seen in Listing 2.7 (line 11), SystemC events are represented by objects of the
pre-defined class sc_event. An event determines whether and when a process is
triggered or resumed, and usually represents a condition that may occur during simu-
lation. The meaning of each event object is determined by the designer, and reporting
that the condition represented by the event object has occurred is done by notifying
the event object.

A very commonly occurring condition in SystemC is the change of value of a signal.
Internally, SystemC defines for each sc_signal an associated event, accessible via

function call value changed_ event (), that is notified whenever the value of the

30

signal is written or modified [IEE06]. For example, the implementation of a NAND
gate in Listing 2.2 defines a process that is sensitive to input ports; implicitly, the
process is sensitive to the value changed event () associated with the signals
connected to each port.

The effect of the notification of an event e causes all processes that are sensitive
to e (or have called wait (e)) to be triggered or resumed. There may be, however,
some delay from the instance when e .notify () is issued and when its effect takes

place, depending on the argument passed to notify ():

e Calling notify () without arguments constitutes immediate notification. Any
and all processes that are sensitive to the event are triggered before the function
call notify () returns. Triggering a process is not equivalent to starting it,
however. In SystemC there is a pool of processes that are ready to execute in
the current simulation cycle. Triggering a process simply adds the process to

this pool. This notion will be made more precise in Section 2.2.

e Calling notify () with a zero-valued time unit (e.g., (0, SC_SEC) or, more
commonly, SC_ZERO_TIME) delays the effect of the event notification until
all currently triggered processes have finished executing. Between the instance
when notify () is called and when its effect takes place there may be an arbi-
trarily long delay (in terms of wall-clock time) during which all other runnable
processes take their turn to execute. During that delay, however, the simulation
clock does not advance, so the notification of the event and its effect happen
in the same instance of time as measured by the simulation clock. This type of

event notification is called delta-delayed notification.

e Calling notify () with a non-zero argument delays the effect of the notification
by the requested number of time units. The argument is added to the current
value of the simulation clock, and the event is put in a queue, ordered by the

scheduled notification time. This type of event notification is called time-delayed

31

notification.

If the event notification is pending (i.e. it is delta-delayed or time-delayed) it
can be canceled, which removes any pending effect of the event. It is also allowed
to wait for an event for some bounded amount of time, and then resume execu-
tion even if the event was not notified. For example, a process issuing a call to
wait (2, SC_SEC, some_event) resumes execution after 2 seconds of simula-

tion time, unless some_event is notified earlier.

2.1.5 Data types

A SystemC model can use all C++ data types. This is convenient for the designers of
the model’s software, but not sufficient for hardware designers. One example why this
is the case is given by Grotker et al. [GLMS02]: in software, a loop ranging from 0 to
31 would be indexed by an int variable, even though only 6 bits would be sufficient.
Implementing this in hardware would require a 6-bit register and a 5-bit adder, and
using a 32-bit register and a 32-bit adder would be wasteful. To accommodate the
needs of hardware designers, SystemC provides a rich set of hardware-oriented data
types.

For example, fixed-precision integral type sc_int<W> and sc_uint<W> encode
numbers from —2%-1 to (2W~! — 1) and from 0 to (2% — 1) accordingly. These
types are limited to 64 bits. Arbitrary-precision integral types sc_bigint<W> and
sc_biguint<W> can fit and operate on integers bigger than 64 bits, at the cost of
worse performance.

The native C++ type bool is often implemented as a short int, so SystemC
provides a replacement sc_bv<W> which can also encode bit-vectors. 4-valued logic
values can be encoded using sc_logic and a vector of logic values can be encoded
using sc¢_1v<W>. SystemC also provides a library for fixed-point arithmetic with

corresponding data types.

32

2.2 SystemC as a simulation environment

The simulation semantics of SystemC is similar to that of hardware-design languages
like VHDL. It is based on the principle that new events are generated as a result of
the execution of processes, which were triggered by earlier events. This defines partial
order on the executing processes and the notification of SystemC events. This section

explores in detail the simulation semantics of SystemC.

2.2.1 Parallel execution

In order to simulate parallel execution, SystemC executes processes sequentially, but
hides the effect of each process until all “parallel” processes have been executed and
each one has reached a synchronization point: either a call to wait () or process
termination. For example, values written to signals are not immediately readable
by other processes executing “in paralle]” with the writing process. Execution of
processes is controlled by the SystemC kernel.

The (sequential) execution of “parallel” processes defines one phase of the overall
execution of the model, called evaluation phase. Before the evaluation phase begins,
the SystemC kernel creates a list of all processes that it must run. Processes on this
list are called runnable processes. Nondeterministically and sequentially, the kernel
removes a process from the list and gives it execution control; the process is now
running. As soon as the running process suspends itself it becomes waiting. Control
is transferred back to the kernel which then removes another process from the list
and gives it execution control. The simulation semantics imposes non-preemptive
cooperative execution of processes, that is, once the kernel gives a process execution
control the kernel cannot take it back. The process must explicitly give back the
control by reaching a synchronization point.

During its execution, a running process may request the notification of an event.
If the request is for an immediate notification (see 2.1.4), all processes waiting on the

event become runnable immediately, and are added to the pool of runnable processes.

33

If the event notification is time-delayed or delta cycle-delayed, it is collected by the
kernel but not acted upon during the evaluation phase.

It is also possible to have two or more processes requesting the notification of
the same event during the same evaluation phase. In those cases the request with
earlier effect survives, and the other one is canceled. For example, if a delta-delayed
and a time-delayed notification are requested in the same evaluation phase, the time-
delayed notification is canceled while the delta-delayed notification remains. Likewise,
an immediate notification cancels any pending time- or delta-delayed notification

requests.

2.2.2 Signals and channels

After the end of the evaluation phase the kernel makes visible any changes of val-
ues of signals and channels, during the so called update phase. If a process wrote
a new value to an sc_signal, the new value becomes the value of the signal.
This change of value notifies the signal’s value _changed event () using a call to
notify (SC_ZERO TIME). If there are processes that are sensitive to changes of
the signal, the effect of event notification is to make those processes runnable. The
event notifications are collected by the kernel but are not acted upon in this phase.
SystemC distinguishes a type of channel called primitive channels. Those are chan-
nels that perform simple communications or synchronization, and in particular, do not
define their own processes. sc_signal is one example of a primitive channel, but the
user can define their own by extending sc_prim channel. Every primitive chan-
nel inherits the function sc_prim channel::request_update (). During the
evaluation phase of the simulation, a primitive channel may request update(),
which indicates to the kernel that the channel should be placed in the kernel’s update
queue. During the update phase the kernel removes nondeterministically channels
from the update queue and calls update () on them. This gives user-defined primi-

tive channels the opportunity to delay the effect of any updates of the values in the

34

channel until the end of the evaluation phase.

2.2.3 Delta notifications and delta-cycles

After updating all channels in the update queue, the SystemC kernel handles all pend-
ing delta-delayed notification requests. For each such request the kernel determines
which, if any, processes are triggered by the event; those processes are added to the
list of runnable processes to be executed in the subsequent evaluation phase. If the
list of runnable processes is non-empty, the kernel starts another evaluation phase.
The evaluation phase, the update phase and the delta notification phase together
form a delta-cycle. A delta-cycle represents execution in suspended time within the
same clock cycle. In other words, the simulation clock does not advance during the
execution of delta-cycles. It is quite common to have multiple delta-cycles within the
same cycle of the simulation clock. SystemC, like VHDL, uses delta-cycles to impose
a partial order on simultaneous actions. It is a common device for interpreting zero-

delay semantics [GLMS02].

2.2.4 Timed notifications and advance of simulation time

If at the end of a delta-cycle there are no funnable processes, the kernel checks for
any pending time-delayed event notifications. If there are none, the simulation is
finished. Otherwise, the kernel advances the simulation time to the earliest time-
delayed event and makes runnable all processes that are waiting for the event. It
then starts another delta cycle. Notice that the only way to advance the simulation
time is through timed events. If a model does not use timed events, simulation time
will remain at O regardless of how many delta cycles are executed. Timeless models
are often used during the early stages of design, and will be discussed further in

Chapter 3.

2.2.5 The start of a simulation

The simulation of a SystemC model starts with an initialization phase. All primitive
channels execute their update () methods, which may trigger delta-delayed events.
All processes are made runnable with the exception of processes that explicitly request
not to be initialized. The delta-delayed events then take effect, potentially making
runnable some of the processes that requested not to be initialized. This concludes

the initialization phase, and the kernel enters into the first delta-cycle.

2.2.6 Simulation semantics of SystemC

The simulation semantics of SystemC, which is defined in natural language in [IEE06],

is presented in pseudo code below.

e e e el e
© 0SSy O

DN NN
> w o

X
9

PC « all primitive channels
P « all processes
R «— (/* Set of runnable processes */
D «— @ /* Set of pending delta notifications */
U — 0 /* Set of update requests */
T «— @ /* Set of pending timed notifications */
/* Start initialization */
/* Collect all update requests in U */
for all chan € U do
run chan.update ()

: end for
: for all p€ P do

if p is initializable and p is not clocked thread then
R «— RUp /* Make p runnable */
end if

: end for
: for alld € D do

D~ D\d
for all p € P do
if p is triggered by d then
R — RUp [* Make p runnable */
end if
end for /* End of Initialization phase */

: end for

36

25: repeat

26: while R # () do /* New delta-cycle begins */

27 for all r € R do /* Ewvaluation phase */

28: R~ R\r

29: run 7 until it invokes wait () or terminates
30: end for

31: for all chan € U do /* Update phase */

32: run chan.update ()

33: end for

34: for all d € D do /* Delta notification phase */
35: D~D \ d

36: for all p € P do

37: if p is triggered by d then

38: R~ RUp /* p is now runnable */

39: end if

40: end for

41: end for

42: end while /* End of delta-cycle */
43: if T # 0 then

44: Advance the clock to the earliest timed delay ¢.
45: T—T\t

46: for all p € P do /* Timed notification phase */
47 if ¢ triggers p then

48: R — RUp /* p is now runnable */

49: end if

50: end for

51: end if

52: until end of simulation

The execution of a SystemC application starts with the Elaboration phase, during
which all modules are instantiated and channels are bound to ports, and some chan-
nels may register a request_update () (line 8). Then the kernel enters the Initial-
ization phase (lines 9-23). During the Initialization phase all channels with pending
updates are updated (lines 9-11), all initializable SC_.THREADs and SC_METHODs are
made runnable (lines 12-16), and pending delta notifications cause their dependent
processes to become runnable (lines 17-23). Next the kernel starts a delta-cycle and
runs all runnable processes one at a time (Evaluation phase, lines 27-30). During this

phase pending channel updates are collected in U, and pending event notifications

37

are collected in D. The evaluation phase is followed by an update phase (lines 31-33)
where all collected channel update requests are executed and writes to signals take
effect. After that the kernel enters the delta-notification phase (lines 34-42) where
notified events trigger their dependent processes. Note that immediate notifications
may make new processes runnable during the execution of lines 27-30.

If at this point there are runnable processes the kernel loops back to line 26 and
starts another evaluation phase and a new delta-cycle. Alternatively, if there are
no more runnable processes, the kernel advances the simulation clock to the earliest
timed-delay notification (essentially, a notification that is explicitly set to be notified
after some delay). All processes sensitive to this event are triggered (lines 46-50) and
the kernel loops back to line 25 and starts a new delta-cycle. This process is repeated
indefinitely, unless the designer has specified a fixed simulation time or all processes

have terminated.

2.3 Summary and discussion

This chapter presents a brief introduction to the fundamentals of SystemC. It de-
scribes the main building blocks of SystemC models (modules), and the fundamental
communication primitives (ports, interfaces, and channels). The simulation seman-
tics of SystemC, consisting of the phases of the kernel and the connection between
events and processes, is also presented. There are more details about SystemC than
can be included in a single chapter; the interested reader should consult Grotker et
al. [GLMS02] for further information. The Language Reference Manual [IEE06] is
also a great resource.

One key point in this chapter is that the execution of a SystemC model is an
interplay between the user code and the kernel, mediated by SystemC events. This
interplay forms the basis of the monitoring framework presented in the remainder of

this thesis.

38

Chapter 3

Specification Primitives for SystemC

The first requirement for an assertion-based verification framework for SystemC is a
formal specification language that can describe the expected behavior of the model’s
execution. In the past, design specifications have been given in natural language
documents [Var07|, but natural language is inherently ambiguous and it is easy to
miscommunicate or misinterpret the intended functionality of the design. In current
design flows the specification provides a baseline for many implementations devel-
oped by different organizations, and a formal language with precise semantics is a
must [BGMO04]. This chapter describes some existing specification languages and
points out why they are not sufficient to express properties of SystemC models. It

then shows how those languages can be augmented to express SystemC properties.

3.1 Existing languages
3.1.1 Brief history of assertion language standards

Industrial languages that can specify not only Boolean conditions (such as the C++’s
assert (ptr != NULL)) but also their relationship over time are a fairly modern
invention. Their theoretical foundations, however, go back to the days of Aristo-
tle [OH95).

Ancient Greeks and medieval philosophers were interested in the connection be-
tween time and logic, but the interest disappeared during the Renaissance. Devel-
opment of modern temporal logic did not start in earnest until Prior’s work (see,
e.g., [Pri57]), who extended propositional logic with two temporal connectives, one

for the past and one for the future. Using logic to specify the behavior of circuits

39

was envisioned by Church [Chu57]. He observed that the execution of a circuit can
be represented by an infinite word, where each letter represents the set of all Boolean
variables that hold at each step of the circuit. In modern terms, Church was describ-
ing a trace of execution. Church posed a decision problem: given a circuit and a
formula, does the formula hold in all executions of the circuit. To answer this prob-
lem, Biichi [Biic62] showed a non-elementary construction, which involved automata
on infinite words (Biichi automata). Applying temporal logic to specify correctness
of non-terminating programs was proposed by Pnueli [Pnu77]. Pnueli introduced
Linear Temporal Logic (LTL): propositional logic with next (X) and until (U) op-
erators. An alternative way of specifying temporal properties, called Computation
Tree Logic (CTL), was proposed by Clarke and Emerson [CE81]. Vardi, Wolper, and
Sistla [WVS83,VW94] opened the way for practical use of LTL by replacing the then-
current non-elementary translation from LTL to (nondeterministic) Biichi automata
with an exponential construction.

In the early 1990s, researchers at IBM developed the temporal language Sugar,
which was a syntactic simplification (or sugaring) of CTL [Fos08]. Researchers at
Intel developed the ForSpec temporal language [AFF*02|, what was based on LTL.
Both Sugar and ForSpec were donated to Accellera Formal Verification Technical
Committee as candidate languages for standardization. This led to the creation of
the Property Specification Language (PSL) [EF06], which became IEEE Standard
1850-2007. PSL adopted the syntax of Sugar and the linear temporal semantics of
ForSpec. As a nod to Sugar, a branching-time extension was also included [Var09].

In a parallel thread, in 2002 Accellera was working on creating a new version of
Verilog, that would combine hardware verification and hardware description in one
language [Fos08]. This effort led to the creation of SystemVerilog, which became
IEEE Standard 1800-2005. A major component of SystemVerilog was an assertion
language called SystemVerilog Assertions (SVA) [VR05]. SVA adopted many of the

features of PSL, so the remainder of this thesis focuses on PSL as a representative of

40

both specification languages.

3.1.2 Overview of PSL

PSL is a powerful assertion language, consisting of four layers of descriptions. The
Boolean layer is used to build expressions that are, in turn, used by the other layers.
It consists of Boolean expressions of the underlying modeling language, as well as the
symbols true and false. These expressions describe the system state in a single in-
stance. Since different modeling languages use different syntax, PSL defines different
flavors. The most recent version of PSL, IEEE 1850-2005, defines VHDL, Verilog,
SystemVerilog, SystemC, and General Description Language (GDL) flavors.

The temporal layer describes the temporal relationships between expressions. It
defines Sequential Extended Regular Expressions (SEREs), which describe chains of
events or Boolean primitives. Some aspects of SEREs are equivalent to conventional
regular expressions, for example, the * operator. Others are SERE-specific, for ex-
ample, the fusion operator ;, which requires that both SEREs much hold together,
and the length-matching operator &&, which requires that both argument SEREs oc-
cur, and both SEREs start and terminate at the same time. The temporal layer also
includes the temporal operators from LTL like always, eventually, etc.

The wverification layer includes directives which instruct the verification tool how
to use the properties and sequences, for example, assert and cover.

The modeling layer is used to model the behavior of design inputs and to model
auxiliary hardware (e.g., a state machine) that is not part of the design, but is needed
for verification.

One of the most important features of PSL is the concept of clock context. Every
property, sequence, and built-in function is evaluated only in instances in which the
clock context holds. Thus, clock expressions, distinguished by the operator @, allow
the user to set the granularity of time. Any Boolean expression can be used as a clock

expression. The base clock context is true, i.e., the granularity of time is determined

41

by the verification tool. An event-driven simulation typically has a fine-grained model
of time, while a cycle-based simulation typically has a more coarse-grained model of

time.

3.1.3 Overview of SystemC Verification Standard

The SystemC Verification Standard (SCV) [IS03] was proposed by the SystemC Veri-
fication Working Group as a “robust standard for developing test benches and verifica-
tion [intellectual property] for [system-on-chip] designs.” [IS03] The standard suggests
a methodology for creating test benches by connecting the MUV to a test-generating
object via a special channel called transactor. The transactor is responsible for trans-
lating each test vector to a sequence of read/write calls using the interface provided
by the MUV. SCV also includes a library of objects that facilitate recording of values
of variables as they are sent by the transactor to the MUV, and an API that allows
the transactor to indicate when a new transaction starts and when a transaction ends.
The recorded values can be stored in a database or output to a user-selected file. SCV
does not provide a mechanism for generating the transactor automatically, so it needs
to be constructed manually by the user following the guidelines proposed by SCV.
One of the main contributions of SCV is the ability to generate constrained and
weighted randomized variables. The user can specify a range and a particular distri-
bution of the random variables, as well as to indicate that certain values should never
be generated. SCV then provides a mechanism for getting an unbounded number
of values subject to the criteria specified by the user. The current version of the
standard does not provide support for specifying or checking temporal properties. Its

focus is on test generation and recording.

3.1.4 Overview of NSCa and TLA

Kasuya et al. from Jeda Technologies argued that “PSL and SVA mainly target

temporal transitions at the cycle-accurate modeling layer. The primitives in both

42

languages are designed for checking the cycle-by-cycle behavior of signals.” [KTZ06]
Jeda Technologies went on to develop temporal languages for SystemC that allow
specifications at higher levels of abstraction. They describe two languages for Sys-
temC inspired by SVA. NSCa is an adaptation of SVA and is aimed at cycle-level
verification. TLA is a variant aimed at transaction-level verification [KT07}.

The NSCa (short for “native SystemC assertions”) library defines an SVA-like
language for specifying temporal properties of SystemC models. At the atomic level
the properties can refer to the values of any signal or variable. The properties can
be placed anywhere in the code and the values referred to in the property must be
in scope. In addition, NSCa allows the notification of any signal to be used as an
atomic expression in temporal formulas.

NSCa is not applicable to clock-less models, so Kasuya and Tesfaye propose an-
other language (TLA, short for “transaction-level assertions”) that exposes the se-
quence of steps of the model without depending on the clock. This language requires
the user to setup callbacks (essentially, function calls) that ”report an event occur-
rence at the point of transaction processing” [KT07).

Both languages require that the assertions be added to the source code of the

model at the location where the assertion is expected to hold.

3.2 Related work

There have been a few attempts to adapt temporal languages to SystemC. Ecker et
al. [EEST05] describe an implementation of a SystemC Assertion Library inspired
by Accellera’s Open Verification Library. The library defines 11 properties, most of
which are invariance properties and a few are simple temporal templates. The library
does not provide a mechanism for defining new temporal templates.

GroBe and Drechsler [DG02, GD03] use a C++ representation of bounded LTL
formulas, which are then compiled together with the SystemC model. Their approach

is limited to gate-level models. Before the start of each simulation, the SystemC

43

kernel polls each gate and obtains its type and primary inputs. Grofle and Drechsler’s
approach is to use this information to build a Binary Decision Diagram [Bry86,Bry92]
representation of the circuit and to use a fixpoint algorithm to check if an illegal state
is reachable. Since most SystemC models are designed several levels of abstraction
above gate-level, this approach has very limited practical application.

Traulsen et al. [TCMMAO07] translate SystemC models into Promela models, which
enables them to use the model checker Spin to verify LTL properties. Habibi, Gawan-
meh, and Tahar advocate using PSL [HGT04] and SVA [HT04] for SystemC, but do
not propose an adaptation.

Karlsson et al. [KEPO06] use Petri-nets [Pet81] to create a formal representation
of the SystemC model at the statement level (i.e., each statement is represented by
one place and one transition). Ecker et al. [EES*06] propose an extension of PSL
and SVA to express properties of sc_events. A disadvantage for both of these two
approaches is that the formal model has one level of abstraction.

Pierre and Ferro’s framework [PF08, PF10] samples at the statement level, and
then only considers those states which are relevant to the property, thus providing a
somewhat more flexible temporal resolution. This approach shares the same drawback
as all existing approaches: the state of the library code and the state of the simulation

kernel are not taken into consideration.

3.3 Deficiencies in existing languages

Current works on temporal languages for SystemC are lacking in several respects.
This section identifies the weaknesses and gives a brief sketch how they can be ad-

dressed, and the rest of this chapter contains a detailed discussion.

3.3.1 Inflexible abstraction levels

A temporal language should be adaptable to different levels of abstraction in the
design of the model. One of the strengths of SystemC is modeling at different levels

44

of abstraction; during the design process the model typically gets refined, evolving
from a system-level model to a gate-level model. Using multiple languages, one for
each abstraction level, makes it difficult to reuse or adapt the specifications as the
model is refined. Jeda Technologies’ solution to use NSCa and TLA for different levels
of abstractions is not flexible enough for a model under active development.
SystemC also allows modules developed at different levels of abstraction to be ex-
ecuting together in the same model. For example, it is possible to execute a Producer
module driven by a clock signal, communicating with a Consumer module driven
only by the module’s inputs. The specification language should be able to specify
properties that relate to the execution of a model with mixed abstraction levels.
This work identifies a new set of atomic propositions that allow the specification
to refer to the execution of the SystemC kernel. It is shown how exposing the kernel’s

operation is essential for specifying properties at different temporal resolution.

3.3.2 Lack of mechanisms for user-code specification

The existing specification languages are approaching the issue mostly from a hard-
ware perspective and are ignoring the fact that a SystemC model is, fundamentally,
a C++ program. SCV, for example, adopts a “black-box” view of the MUV and
only considers the input/output variables passing through the transactor. There is
a large body of work on specification and model checking of Java, C++ and C code
(e.g., [BR02,BCC*05, CDHR02, HIMS03, BCH*04]) and the specification primitives
used there should be adapted for SystemC.

This work addresses these concerns by extending the Boolean layer of PSL-like
specification languages with primitives that refer to the state of the user code, for
example, values of module variables, and Boolean atomic propositions that refer to the

control flow of the execution, for example, the call or return of a particular function.

45

3.3.3 Lack of definition of execution trace

All (linear) temporal languages are interpreted over execution traces, therefore before
we can define the semantics of temporal properties for SystemC we need a precise
definition of an execution trace. None of the existing languages addresses this issue.
Traditionally, a trace has been defined as a sequence of states in the execution of
the model, but there has been remarkably little discussion in the literature about the
definition of SystemC traces.

Hardware-oriented languages such as PSL or SVA usually assume an underlying
notion of a clock-cycle-level trace. However, such an approach fails to take into
account the unique simulation semantics of SystemC, which allows for a much finer
grained temporal resolution. For example, algorithmic-level SystemC models are often
timeless, with the simulation being completely driven by events and the simulation
clock making no progress during the whole simulation [GLMS02, MMMCO06]. In fact,
the whole simulation can consist of a single delta cycle, if the simulation is driven
solely by immediate event notifications. Thus, clock-cycle-level temporal resolution
is clearly inappropriate for such models. Also note that PSL’s default sampling rate
is tool dependent, so the semantics of a PSL specification may change between two
different implementations of the SystemC kernel.

This work gives a precise definition of a SystemC trace. Intuitively, a trace is a
sequence of states in the execution of the model. First, we abstract the simulation
kernel and define its state with respect to this abstraction. Second, we recognize that
one needs to distinguish between the SystemC model developed by the designer and
the set of SystemC libraries used by this model. While the state of the model is
fully detailed, the libraries are modeled only at the level of their exposed interfaces.
Finally, we define the notion of a trace with respect to these abstractions of the kernel

and the model’s code (both user code and library code).

46

3.4 Kernel-level primitives
3.4.1 Kernel phases

It is not immediately clear why the state of the kernel needs to be referenced in Sys-
temC specifications. For example, in the work of Kroening and Sharygina [KS05],
the kernel is abstracted away completely. Each process is modeled as a labeled tran-
sition system, and the global system is defined as a product of these local transition
systems. The transitions of the global system are defined according to the simulation
semantics, which requires that “components must synchronize on shared actions and
proceed independently on local actions” [KS05]. Under this model synchronization
occurs when a process encounters a wait () or a notify () instruction. The ob-
servable behavior of their abstraction of execution matches well the execution of a
SystemC model.

Similar philosophy has been adopted by Karlsson et al. [KEP06], who abstract
the processes defined by the user code to Petri nets, and the SystemC scheduler is
emulated by connecting the Petri nets in such a way that a process that terminates
or suspends itself automatically triggers the next process. Ecker et al. [EES*06], and
Pierre and Ferro [PF08], likewise do not model the kernel. Thus, on the surface, it
may seem that taking into account the state of the kernel would only complicate the
semantics.

This may sound reasonable at first, but one soon realizes that many important
properties require some knowledge of the state of the kernel. A consistency property
may be required to hold all the times, at the evaluation-phase boundary, at the
delta-cycle boundary, or at a timed-cycle boundary. If the kernel is abstracted away
completely, then there is no way to make these distinctions and specify the consistency
requirement properly. We conclude, therefore, that the state of the kernel must be
exposed to a certain extent, in order to enable the user to specify properties at different

levels of abstraction. (For a discussion how such exposure is to be implemented, see

47

Chapter 4.) This approach of exposing the state of the kernel to some extent was
taken by Moy et al. [Moy05, MMMCO06]. Their work formalizes SystemC models in
terms of communicating state machines, where the kernel is modeled as a particular
state machine (Figure 3.1). Thus, the state of the kernel is exposed at an abstraction

level corresponding to this specific state machine.

Notify
Selected
Process

Process
Running

Time
Elapse

Selecting
Process

Update
Delta

Figure 3.1 : Kernel states proposed by Moy et al.

Once one accepts the principle of exposing the kernel state, the question remains at
what abstraction level to expose the kernel. Moy et al. offer a specific abstraction, but
their choice is open to criticism. Their formalism is somewhat less detailed than the
simulation semantics in SystemC’s Language Reference Manual (LRM) [IEE06]. One
could offer other abstractions of the kernel, but without some guiding principle such
abstractions are also open to criticism. The guiding principle of this work is that
the abstraction should abstract away the kernel implementation, but expose fully
SystemC’s simulation semantics, as described in Figure 7?7 in Chapter 2. A coarse
abstraction might hide details that may be of importance to some users. Thus, an
abstraction at the level of the simulation semantics is as generic as possible, enabling
further abstraction if required by specific applications.

This thesis abstracts the simulation semantics, as described in Figure ?? in Chap-
ter 2, by the state machine shown in Figure 3.2. This abstraction may seem, at first

sight, to be somewhat too detailed. A simpler abstraction of the kernel would consider

49

enables users to use coarser abstractions if needed. Rather than trying to anticipate all

possible uses of SystemC, exposing the semantic fully is the most justifiable approach.

3.4.2 SystemC events

Recall that SystemC events are objects derived from the pre-defined class sc_event.
A particular “waiting” process does not becomes “runnable” until the event on which
the process is waiting is notified. For example, if a TLM channel is full, a thread that
wishes to write to the channel may suspend itself by calling wait (ok_to_put).
As soon as there is free space on the channel, the channel notifies the ok_to_put
event, and the waiting thread is moved to the pool of “runnable” processes among
which the kernel selects the next process to run.

Most core SystemC objects have an associated event that indicates that some
change has occurred. For example, an sc_signal has an event that is notified
when the signal changes; an sc_fifo has an event for writing to and an event for
reading from the channel; an se¢_clock’s positive and negative edges are represented
by events. Thus, events are the fundamental synchronization mechanism in SystemC,
and keeping track of when a particular event is notified allows to pinpoint the instant
in time when something important happens. In the particular example mentioned
before, the user might want to specify that every time ok_to put is notified the
number of items in the channel is strictly smaller than the capacity of the channel.

PSL’s and Jeda Technologies’ treatment of events is to allow them to be used as
clock expressions, though the issue when events are actually notified is not discussed
explicitly. The position adopted by this work is that the fundamental role played by
events in the execution of SystemC models justifies fully exposing event notification
in the kernel’s state. In essence, the instance in time when event notification takes
place is elevated to the Boolean layer. This means that properties can refer directly
to event notification, for example, specifying that ok _to put is notified at least

once every clock cycle.

50

3.5 User model primitives
3.5.1 Class data members

The state of the user model is the full state of the C++ code of all processes in the
model, which includes the values of all class/module variables, the location counter,
and the call stack. The perspective adopted in this work is that of ”white-box val-
idation”, which means that the state of the model should be fully exposed. Thus,
the property languages should consider all class members to have public access,

including those that are declared as private or protected.

3.5.2 Statement-level primitives

As argued earlier, a property specification language for SystemC ought to consider
SystemC as a system-level language, rather than a hardware-level language. This
requires that the execution of a SystemC model be exposed also at the source-code
level [BCH*04]. The specification writer should be allowed to refer explicitly to
statements being executed by their syntax; for example, a specification should be

able to refer to invocations of statements matching a particular regular expression.

3.5.3 Function calls

A popular style of modeling and a widely used library of pre-defined interfaces and
objects, collectively referred to as Transaction Level Modeling (TLM) [Ghe06], is
particularly important during the early stages of design exploration and prototyping.
TLM abstracts communication by focusing on what data is transferred and which
entities are communicating with each other, disregarding such details of the commu-
nication as specific protocols and timing. The duration of the function call, during
which execution context is transferred from the initiating object to the callee, is often
referred to as transaction. Exposing function calls is thus crucial.

Furthermore, as method invocation is central to the execution of object-oriented

51

code, the values of arguments passed to and returned from invoked methods should
also be exposed, by exposing the values of the formal parameters of the method upon
invocation. In essence, we are requiring traces of SystemC model to include both
state and transition descriptions, in contrast to standard models of temporal logics
that are typically state based [Pnu77]. By exposing both semantics and syntax of the
model, we enable properties that relate source code and execution; for example, we
can specify that for every port connected to a specific channel, the write () interface
method call is passed only positive numbers as arguments. In order to simplify the
process of referring to individual statements in what could be many thousands of
lines of code, we provide several pre-defined labels for important locations. This is

discussed further in Section 3.8.

3.6 Library code state

Most SystemC models rely heavily on external libraries (the TLM library, for ex-
ample). These libraries encapsulate crucial components of SystemC models, such as
signals and channels. When formalizing the notion of SystemC state, it needs to
decide how to formalize the state of libraries. One approach would be to extend the
white-box approach to library code, but users need to be familiar with libraries only
at the API level, and not at the implementation level. Furthermore, while in many
cases the code of the library is available, in others the library may be supplied as
compiled code, thereby hiding the internal state.

Kroening and Sharygina [KS05] do not discuss how they handle library code.
Moy et. al’s approach [MMMC05,Moy05] is to provide specific state-machine models
reflecting the functionality of TLM constructs. The benefit of this approach is that
it preserves important information about the structure and behavior of the design.
A major drawback is that this requires manual effort to develop formal models for
libraries. These formal models may have to be revised when libraries are revised.

To attain generality, this thesis adopts the philosophy that library code should be

52

treated as a black box. For example, when specifying the behavior of a pre-defined
library object, for example, t1m_fifo, the state of the queue should be exposed
without exposing implementation details. Furthermore, the state of a library should
be exposed only in terms of the API of that library. Consider, for example, the TLM
1.0 library. Properties should not have access to the state of the t1m_fifo other
than via side-effect-free function calls, for example, via the peek method. Of course,
when library source code is available, users can choose to treat it as a part of the user

model and view it from a white-box perspective.

3.7 Execution trace

A SystemC trace is a sequence of states corresponding to the execution of the model.
Such execution consists of an alternation of control between the kernel, on one hand,
and the model and the libraries on the other hand. We have discussed so far how we
formalize the state of the kernel, the model, and the libraries. It remains to discuss at
what level of granularity we formalize the transition from one state to its successor.
When the kernel is executing, we follow transitions in the state machine described
in Figure 3.2. When the kernel selects a process to run or a channel to update, control
passes to that process, which then runs until it terminates or is suspended via a wait
statement. With respect to transitions of processes, we follow the “large-step seman-
tics” approach [Win93]. Under this approach we focus only on the overall effect of
each statement, as opposed to considering the individual subexpressions. For exam-
ple, y = x++; consists of two subexpressions (y = x; andx = x + 1;), but we
ignore the valuations of the variables during the execution of the subexpressions. We
believe that this matches the level at which programmers and verification engineers
think about the source code. By following large-step semantics our framework may
miss rare cases where a property is violated in a subexpression. For example, suppose
that a program invariant requires that z must always be positive, and suppose that

z = 1. During the execution of the expression y = (x--) + (x++); the value of

53

x is temporarily set to 0 by the x- - subexpression, but since the value of z is restored
back to 1 by the x++ subexpression, no violation of the property will be reported.
Modern design practices discourage the use of complex subexpressions that change
the valuation of variables, therefore the choice of large-step semantics over small-step
semantics is justified.

Finally, each invocation of a library method, for example, invoking a channel-
interface method, is modeled to return in one step. This is consistent with the black-

box view of libraries adopted here.

3.8 New specification primitives

From a high level point of view the execution of a SystemC model alternates between
user code and the kernel, and the events provide a bridge between the two. Having
given a definition of an execution trace, this thesis now defines a set of specification
primitives for SystemC models that make explicit the transfer of control between the
kernel and the user-code.

Notice that specification languages like PSL and SVA are already quite expres-
sive temporarily, so no extension is necessary for their temporal layer in SystemC.
Thus, the focus in this section is on extending the Boolean layer. The new set of
primitives introduced here not only allows the specification of a richer set of proper-
ties, but also provides a uniform mechanism for controlling the temporal resolution
of the specification language. Unlike Kasuya and Tesfaye’s approach [KT07], which
requires a separate language for clock-based and transaction-based models, the frame-
work presented here allows for greater flexibility in the temporal granularity of the
specification, and is general enough that it can readily be adapted for any temporal
language with the notion of clock expressions.

Table 3.1 summarizes the new specification primitives.

specification_primitive
usercode_ezpression
location_proposition

argument_primitive
syntaz_erpression
function_identifier

param_list
kernel_expression
phase_expression

event_expression

54

usercode_ezpression | kernel_ezpression
location_proposition | argument_primitive

[before | after] {code label | syntaz_expression }

| function_identifier:{entry | exit | call | return}
function_identifier : non-negative_integer
Junctiongying _, Boolean (CUrr-statement, ...)
return_type class name: : functionname (param.list)
| ¥ classmname::functionmname (param_list)

| $ %::functionmname (param_list)

[paramtypel, paramtype2, ... | %]
phase_expression | event_expression
kernel_phase == [MON_INIT_PHASE BEGIN

| MON_INIT PHASE_END

| MON_INIT UPDATE_PHASE BEGIN
| MON_INIT UPDATE_PHASE_END

| ...
| MON_METHOD_SUSPEND
| MON_THREAD_SUSPEND)]
event_name.notified

Table 3.1 : Proposed specification primitives

3.8.1 Kernel-level primitives

Kernel phases

A kernel_expression is an expression about the state of the kernel. This work intro-

duces primitives for exposing the current phase (phase_ezpression) and when events

are notified (event_ezpression).

When the kernel has the thread of control, the execution trace makes transitions

that reflect the changing phases of the kernel. A primitive kernel_phase is added that

exposes the current phase. The primitive returns a value in the set of sample points

presented in Table 3.2 corresponding to our abstraction of the kernel in Figure 3.2.

The primitive kernel_phase allows the user to define properties whose evaluation is

triggered by different phases of the kernel.

Example 1 (Stable states) Variable p in module mod must be 0 in all stable states

55

MON.NIT_PHASE_BEGIN
MON_INIT_PHASE_END
MON_INIT_-UPDATE_PHASE BEGIN
MON_NIT_UPDATE_PHASE_END
MON_NIT_DELTA_NOTIFY _PHASE BEGIN
MON_NIT DELTA NOTIFY_PHASE_END
MON_DELTA_CYCLE_BEGIN
MON_EVALUATION_PHASE_BEGIN
MON_EVALUATION_PHASE_END
MON_UPDATE_PHASE_BEGIN
MON_UPDATE_PHASE_END
MON_DELTA_NOTIFY_PHASE BEGIN
MON_DELTA_NOTIFY_PHASE_END
MON_DELTA_.CYCLE_END
MON_TIMED_NOTIFY_PHASE_BEGIN
MON_TIMEDNOTIFY_PHASE_ END
MON_METHOD_SUSPEND
MON_THREAD_SUSPEND

Table 3.2 : Sample points corresponding to the kernel phases according to the ab-
straction presented in Figure 3.2

(i.e., states when no process is executing):
ALWAYS ((mod::p == 0) @ ((kernel phase == MONMETHOD_SUSPEND) | |

(kernel phase = MON_THREAD_SUSPEND))).

Example 2 (Stable states — coarser sampling rate) Variable p in module mod
must be 0 at the end of delta cycles

ALWAYS ((mod::p == 0) @ (kernel_phase == MON_DELTA_CYCLE_END)).

Event notifications

During the execution of the user code a process may request an event to be notified.
Event notifications (event_ezpression) allow the specification to refer to the instance
when the notifications actually takes place. Note that the mechanisms described ear-
lier expose function calls at the source-code level, and event notification requests and
cancellations (i.e., calls to notify () and cancel ()) are exposed via the user-code

primitives. However, these primitives do not expose the particular state when the ac-

56

tual notification is carried out (i.e., when the dependent processes are made runnable
by the kernel). For each event we propose a primitive notified which is true whenever
the kernel carries out the actual notification. For immediate notifications this hap-
pens concurrently with the function call to notify () ; for delta-delayed notifications
it happens during the earliest delta-notification phase; for time-delayed notifications
it happens during the corresponding timed-notification phase. Note that both delta-
delayed and time-delayed notification requests can be subsequently canceled, therefore
a call to notify () with a non-negative argument does not guarantee that notified
will be true in the future. The role of this primitive is particularly important when
referring to events that are notified implicitly, e.g. when an sc_signal changes
value, a built-in event returned by the function call value_changed_event () is

notified by the kernel in the delta notification phase that immediately follows.

Example 3 The requirement that a signal changes in every delta cycle can be ez-
pressed as

ALWAYS ((kernel phase == MON_DELTA NOTIFY_PHASE BEGIN) ->
((! (kernel.phase == MON_DELTA NOTIFY_PHASE_END)) UNTIL

signal_name.value_changed_event.notified)).

Example 4 Variable p in module mod must be 0 at the rising edge of clock cl:

ALWAYS (cl.posedge.notified -> mod::p == 0).

3.8.2 User-code primitives

A usercode_expression is a specification primitive about the state of the user model.
Under this category are included Boolean atomic propositions about the location
counter (location_proposition): execution of a specific statement, call and return
of functions, and start and end of execution of functions. Also included are non-
Boolean primitives referring to the arguments and return values of functions (argu-

ment_primitive).

57

The definition of a trace explicitly keeps track of the location counter during the
execution of the user model. With each location in the source code of the model we
associate a Boolean variable that is true precisely in those states where the statement
that is about to be executed corresponds to the location_proposition. Two optional
modifiers, before and after, allow the specification to refer, respectively, to the state
immediately before and immediately after that statement is executed (the default
behavior corresponds to specifying before). Using this primitive allows the specifi-
cation of forbidden or mandatory paths in the execution of the compiled model, e.g.,
if execution reaches locationi it should not reach location2. It also allows the

specification of properties that must hold at particular locations in the code.

Identifying functions

Some of the primitives proposed in this work refer to function calls, return values,
and values of function parameters. The specification identifies the required functions
by means of function_identifiers, adopted from the framework of aspect-oriented pro-
gramming (discussed in Chapter 5). A function_identifier may list the return type of
the functien (or “void” for functions without a return type); the specification can
also use “%” to match any return type. Thus, $ foo () refers to all functions named
foo (), while int foo () refers to the subset containing all functions named foo ()
that return int.

A function_identifier may also contain the module or class name where the func-
tion is defined, or use “%” to indicate that the function may be defined in any class.
For example, $ bar: :foo () matches all functions named foo () in module or class
bar, and ¥ %::foo() indicates that the function foo () may be defined in any
class. Global functions are identified by omitting the class, e.g., int foo ().

Functions can be distinguished further by specifying the list of parameter types
(param_list) within the function_identifier, or using “%” to match any list of param-

(-

eter types. For example, ¥ foo(int) and % foo (%) both match the function

58

void foo(int), while the latter also matches the functions void foo (char)

and void foo(float).

Syntax matching atomic propositions

Inspired by BLAST [BCH*04], we also propose adding a primitive curr_statement of
type string that exposes the syntax of the statement that is about to be executed.
As mentioned earlier in Section 3.5, this mechanism enables properties that relate
syntax and semantics. PSL and SVA allow using functions defined in the underlying
HDL language, which in the context of SystemC means that we can use a number of
C++ functions that operate on strings and return Booleans (syntaz_ezpression) and
pass curr_statement as an argument. Of particular interest are regular expression
matching and string comparison functions, because they allow the user to quickly
identify a set of “important” locations in the source code without having to introduce
labels manually. As an example, one can use this mechanism to identify all locations

in the user model where a particular statement is executed.

Example 5 (Matching source code via regular expression) Variable pointera
in module mod should not be NULL before dereferencing it:

ALWAYS (mod::a = NULL) @ (‘‘\xa’’ || '‘a->’")

Atomic propositions exposing start and end of function execution

The specification of pre- and post-conditions requires evaluating assertions at spe-
cific locations in the source code that are difficult to identify automatically via the
mechanisms described so far. Inspired by SLIC [BR02], we introduce two additional
primitives, entry and exit, that refer to the location immediately before the first
executable statement, and the location immediately after the last executable state-
ment, in a function. In some cases the pre-condition may need to refer to the values
of the formal parameters passed on to the function. If the function is a part of the

user model, one can use the names of the variables on the parameter list. We also

59

propose an alternative mechanism (previously used in both BLAST [BCH*04] and
SLIC [BRO2]) to refer to the value of each parameter according to its order. For a
function func(typel paraml, type2 param2, ...), we define implicit variables func:1,
func:2, etc., whose values (and types) are equal to the values (and types) of the formal
parameters of the function at the entry point (i.e., the values of the variables before

the first statement in the function has been executed).

Example 6 (Precondition) One desirable precondition for a function
float long.division (double dividend, double divisor) in module FPU is
that the second parameter should not be 0 at the time when the function starts execu-
tion:

ALWAYS ('‘float FPU::long.division(%)’’:2 != 0) @

(*‘float FPU::long.division(%)’’:entry).

Atomic propositions exposing call and return of functions

This mechanism is inadequate for the specification of pre- and post-conditions of
functions defined in a proprietary library because the source code is not exposed in
the execution trace. For cases like this we introduce another set of primitives that we
adopt from SLIC [BRO2]. For each function call to function_identifier we introduce
the primitives function_identifier : call and function_identifier : return to refer,
respectively, to the location in the source code that contains the function call and
to the location immediately after the function call. (Note that here we assume that
function calls are not nested.) The values of the arguments can be accessed via
implicit variables function_identifier : 1, function_identifier : 2, etc., whose types
match the types of the arguments to the function, and whose values are precisely
the values of the actual parameters at function_identifier : call. Another implicit
variable, function_identifier : 0, is defined as the value returned by the function,
and it is only defined at function_identifier : return. This mechanism allows the

specification of properties of proprietary functions and objects even if the library does

60

not expose their states directly (e.g., a proprietary channel). For example, we can
ensure that a channel contains only positive values by specifying that the arguments
to all relevant calls to write () are always positive. As a second example, we can
express the property that the channel behaves like a queue by using PSL’s modeling
layer to temporarily remember two values written to the channel, and then verifying

that the values are returned in the same order via the channel’s read () method.

3.9 Using primitives as clock expressions

Notice that the clock-sampling mechanism available in PSL and SVA offers a way
to express temporal properties at different levels of abstractions. A fine sampling
would correspond, say, to subcycle-level abstraction, while coarser sampling would
correspond, say, to transaction-level abstraction. Since in PSL and SVA any Boolean
expression can be used as a clock expression, the additions to the Boolean layer
proposed here also provide a much finer control over the temporal resolution. We
show that this approach enables us to tailor temporal languages to SystemC in a
uniform way; all that is needed is to adapt the underlying syntax for state assertions.
The main feature of the resulting framework is the ease with which properties can be
expressed at different levels of abstractions, without having to use different languages.

Traditionally (e.g., [EF06,VR05,KT07]) sampling is done at the boundary of clock
cycles. The framework presented here can easily provide the same functionality by
using the event notification primitive described earlier. Note that an sec_clock
exposes two events, posedge_event and negedge_event, which are notified ev-
ery time the value of the clock changes and the new value is, respectively, 1 and
0. Using posedge_event.notified and/or negedge_event.notified as clock ex-
pressions we can sample at the boundaries of half-clock or clock cycles. Clearly,
the user is not limited to the simulation clock. If finer grained resolution is re-
quired, one can sample at the boundary of delta cycles by using (kernel_phase

== MON_DELTA_CYCLE_END) as a clock expression (sampling at the end of delta cy-

61

cles), or at the end of execution of each process by sampling at ((kernel phase ==
MON_THREAD SUSPEND) || (kernel_ phase == MON_THREAD SUSPEND)), which
corresponds to the phases where SystemC threads and methods suspend execution.
One can even sample at the boundary of the individual statements in the source code

(which is the default sampling rate).

Example 7 (Clock expressions) For this ezample we borrow some of PSL’s syn-
tax. The property that every call to function req () is followed within 3 clock cycles
(of clock c1) by a notification of event ack can be expressed as

default clock = cl.posedge.notified;

ALWAYS (req():call -> next[3] ack.notified).

Example 8 (Clock expressions — coarser temporal resolution) If the acknowl-
edgment needs to be received within 8 delta cycles instead, all we need to do is change
the clock expression:

default clock = (kernel phase == MON_DELTA CYCLE_END) ;

ALWAYS (reqg():call -> next[3] ack.notified).

The same mechanism allows specifying coarser sampling rates as well. In a
transaction-level or system-level model one is typically interested in its behavior
at event notification instances or at function calls. Jeda Technologies’ framework
provides this functionality in a separate language (TLA), but they require the user
to setup callbacks (essentially, function calls) that ”report an event occurrence at
the point of transaction processing” [KT07]. In our framework this can be done by
using as clock expressions the event-notification primitives introduced earlier. For
example, in a transaction-level model we can sample at the instances when the an
sc_fifo is written to (by sampling at data_written _event.notified), or when
a signal changes value (by sampling at value_changed.event () .notified), etc.

The advantage of our framework is that it is using the same language throughout

62

the refinement process as the model is transformed from higher to lower levels of

abstraction.

3.10 Summary and discussion

This chapter points out three major deficiencies in existing temporal languages for
SystemC: 1) lack of definition of an execution trace, 2) lack of flexibility to handle
modeling at different abstraction levels, and 3) failure to take advantage of well-
known and widely used primitives for software specification. This chapter proposes
a precise definition of SystemC traces, which captures the alternation between the
user code and the kernel. It also defines a systematic way for enriching existing
specification languages with a set of Boolean properties, which, together with existing
clock-sampling mechanisms in PSL and SVA, allow the sampling of the execution
trace with flexible temporal and transactional resolution. This framework enables
the specification of properties at different levels of abstraction.

The notion of a state presented here encompasses information about the ker-
nel (current phase and notification of events), as well as statement-level information
about the user model, and publicly exposed state of the libraries. The level of de-
tails preserved in the states makes it possible to define a rich set of new properties
about the execution of the SystemC model. Moreover, the user can specify a range
of sampling rates, from the most coarse (transaction- and system-level) to the most
detailed (statement level) by combining clock expressions with the primitives intro-
duced in this chapter. The framework presented here is general enough that it can be
adopted by most existing temporal specification languages by simply enriching the
set of allowed atomic expressions.

Bringing techniques from software verification to the SystemC world is the second
contribution of this chapter. The fact that SystemC models should be viewed as
software models has been ignored so far. The result is a minimal yet highly expressive

extension of PSL/SVA.

63

The framework proposed here is equally applicable to dynamic verification and
formal verification. Enabling a dynamic verification path would require a minimal
“one-time” addition to SystemC’s simulation kernel source code to expose a part
of SystemC kernel’s internal state and data structures. The user code will have
to be instrumented to allow the monitors to observe the behavior of the relevant
components, and the monitors will be compiled and executed together with the model.
These issues are addressed in Chapters 4 and 5.

Applying formal methods to SystemC is an active area of research with several
different approaches (e.g. using communicating state machines [MMMCO06, Moy05],
Petri-nets [KEPO06), or leveraging Promela/SPIN [TCMMO07]). All of these works pro-
pose some FSM-like abstraction of the SystemC kernel, and no two abstractions are
the same. The model presented in this paper corresponds directly to the simulation
semantics as described in the SystemC LRM [IEE06] and is the most detailed model
without making any assumptions about the particular kernel implementation. The
FSM in Figure 3.2 can easily be adopted by existing and future formal verification ap-
proaches. Exposing the syntax further allows the analysis of the model from a purely
software point of view. The techniques used in SLIC [BR02] and BLAST [BCH*04]

can and should be applied to formal verification of SystemC.

64

Chapter 4

Monitoring Framework for SystemC

4.1 Introduction and motivation
4.1.1 Exposing the simulation semantics

The specification primitives proposed in Chapter 3 require that the simulation se-
mantics of SystemC be exposed as a part of the system state. Specifically, they
require exposing the phase of the simulation kernel and event notification. Moy et
al. [MMMC06,Moy05] also proposed exposing information from the kernel, but their
abstraction is motivated by the types of properties they want to check. This thesis
argues that the abstraction should expose fully SystemC’s simulation semantics, as
described in [IEE06]. A coarse abstraction might hide details that may be of impor-
tance to some users. Thus, an abstraction at the level of the simulation semantics is
as generic as possible, enabling further abstraction if required by specific applications.

In addition to proposing the exposure of the kernel phases, Chapter 3 proposes
exposing the notification of SystemC events. Recall that event notifications can be
requested in the user model by calling the notify () method of class sc_event.
The actual moment when the event is notified is determined by the kernel depending
on the type of each event notification, the status of the other processes in the model,

and the kernel phase. There are three types of event notification:

1. notify () with no arguments: immediate notification. Notification happens

upon execution.

2. notify(SC_ZERO_TIME) ornotify (0, SC_SEC): delta notification. No-

tification is postponed until the delta-notification phase.

65

3. notify(time) with a non-zero time argument: timed notification. Notifi-

cation happens during a subsequent timed-notification phase.

Pending event notifications can be canceled using the cancel () method, pending
timed notifications are canceled by delta notifications, and pending delta notifications
are canceled by immediate notifications.

Below we present two SystemC models and some properties that cannot be ex-
pressed (and monitored) without reference to kernel phases and events. The same
two models and the temporal properties described here are also used to evaluate

empirically the performance of our proof-of-concept implementation.

4.1.2 A model implementing squaring via addition

The first SystemC model implements a squaring function by using repeated incre-
menting by 1. The system consists of an Adder module that implements addition
a + b by triggering b copies of add_1 () process, each of which adds 1 to a.

We use a delta-delayed notification of a driver_event to suspend the driver
and allow the add_1 () processes to initialize. Then the driver uses immediate noti-
fication of an add1l_activate_event to activate the add_1 () processes, which
then proceed to execute sequentially within the same delta cycle. At the end of exe-
cution, each add_1 process (immediate-) notifies an addition event. Thus, the
result a+b is calculated within two delta cycles and using b (immediate) notifications
of the addition_event.

The Adder is embedded inside a Squarer module, which implements c? by repeat-
edly calculating the sum of ¢ and running total. The squarer waits until the next
clock cycle before calculating the next addition. It takes ¢ clock cycles to complete
the calculation.

This simple model is intentionally inefficient. Notice that it is driven by all three
types of event notifications (immediate, delta-delayed, timed). It also allows us to

vary the size of the model by varying the number of processes. A small piece of code

27

66

illustrating the functionality of the Adder is presented below in Listing 4.1; the full

source code is available in Appendix A.

void adder: :driver() {
while (true)

}

}

//Suspending until values on the inputs change
wait (inputl.value_changed event() |
input2.value_changed event());

il = inputl.read();
i2 = input2.read();
a = 1il;

for (int i=0; i < i2; i++) {
sc_spawn(sc_bind(&adder::do_addl, this));
}

// Allow the do_addl() processes to initialize

// by suspending until the next delta-cycle

driver_ event.notify(SC_ZERO_TIME) ;

wait (driver_event);

addl_activate event.notify(); // immediate notification

// Suspend for a delta-cycle to allow all
// computations to complete

driver event.notify(SC_ZERO TIME) ;
wait(driver_event);

result.write(a);

28 wvoid adder::do_addl() {

wait (addl_activate_event) ;

(La) = (La) + 1;

addition_event.notify(); // immediate notification

29
30
31
32

}

Listing 4.1: A code snippet from the Adder model

A correct implementation of the Adder must satisfy the following property:

ALWAYS (adder.addl._activate_event.notified && adder..a > 0) ->

((adder.addition_event.notified -> (adder..a > 0))

UNTIL ‘‘result.write(aa)’’) (1)

67

ie., if a > 0 at addl_activate_event, then a > 0 at every instance when the
addition_event is notified until the result is pushed to the output wire. Sampling
at such low temporal resolution is not possible under the current SystemC standard.
The best we can do is to check the value of a before the driver_event is notified,
and to check it again when the result is being written to the wire. There is no
mechanism to check an assertion at particular event notifications, so the intermediate
steps cannot be verified.

Another property of the Adder is

default clock = (kernel._phase == MONDELTA_CYCLE_END) ;

ALWAYS ((*‘i1l

inputl.read();’'’:after) ->
(within [2] ((‘‘result.write(a);’’) &&

adder::.a == adder::il + adder::i2))) (2)

i.e., the correct result is always returned within 2 delta cycles of receiving the inputs (a
and b). This property also cannot be monitored using the current SystemC standard.
A monitoring process can count the delta cycles in which it is triggered, but there
might be delta cycles when the monitor is not triggered, and the monitor would not
be able to count those. Thus, there is no way of determining that precisely two delta
cycles have passed.

These limitations stem from the way the SystemC kernel is designed. The kernel
makes the effect of event notifications visible only to the processes waiting for those
events. While this is sufficient for simulation purposes, it makes monitoring some im-
portant properties impossible. What is missing is a mechanism for alerting monitors
immediately after an event and for alerting monitors that a delta cycle is about to
start or end. However, event notification (and delta cycle determination) is done by
the kernel and is not exposed to the rest of the system. The solution to this issue is

to expose some of the internal state of the kernel for monitor-only privileged access.

68

4.1.3 A model implementing an airline reservation system

The second SystemC model implements a system for reserving and purchasing air-
plane tickets. The users of the system submit requests by specifying the starting and
the ending airports of the trip, the dates of travel, and a few other pieces of data. The
system uses a randomly generated flight database to find a direct flight or a sequence
of up to three connecting flights. Those are returned back to the user for approval.
If the user would like to purchase a ticket, she submits payment information that is
processed and stored, and the individual legs of the trip are booked.

Internally the system uses several modules connected by finite-capacity channels.
Each module has a fixed amount of local memory, implemented as bounded queues,
to store the requests that are currently pending processing or are waiting to be sent
to another module. The modules use events to synchronize reading and writing to
the internal memory. All modules except the I/O modules are connected to the same
(slow) clock, and the I/O modules are connected to another (faster) clock. This allows
stress-testing the behavior of the system when there are more requests than it can
process. This model is intended to run forever. It approximates actual subsystems
currently used in hardware design. A piece of code from the flight _planner

module is presented below.

/**
* Receives requests from the master module. Adds
* new requests to the new_planning requests queue
* if there is space available, otherwise blocks
* until space becomes available.
*/
void flight planner::receive_new_requests() {
while (true) {
tlm _tag t t;
if (! in from master->nb _can get(&t)) {
tlm _tag_t tag;
wait (in from master->ok_to_get(&tag));
}
token t* req = new token_t();
in from master->nb_get(req);

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

69

if (reqg->get payload() == PLAN)
unsigned int curr_size =
new_planning_ requests.size();
if (curr_size >= queue_size) {
wait (new_requests_nonfull);
}

new planning requests.push(req->get_request());
new requests_nonempty.notify(SC_ZERO_TIME) ;
wait () ;
} // it was a new request
else {
handle_special_request(reg->get_request(),
reqg->get_payload()) ;
}

} // receiving loop
} //receive new requests()

Listing 4.2: A code snippet from the Airline Reservation System model
One safety property of the system is that whenever some process notifies the event
new_requests nonfull, the corresponding queue (new.planning requests)
must have capacity for storing at least one request. Formally,
ALWAYS (new.requests.nonfull.notified ->

(new_planning_requests.size() < capacity)) (3)

Notice that placing this assertion at the locations where the event notification is re-
quested may lead to false negatives. Even if the assertion fails in that location, a
subsequent process may cancel the event notification and the property would still be
satisfied. This example demonstrates further the need for sampling at event notifica-
tions.

In order to meet performance objectives, the system must propagate each request
through each channel (or through each module) within 5 cycles of the slow clock.
This property is a conjunction of 16 bounded liveness assertions similar to the one
shown below.

// Modeling layer: keep track of requests as they come in

std: :map< int, sc.time > requesttime;

token_t* t;

70

int request.id;

default_clock = slow.clock.posedge.notified;

// Propagate through iomodule within 5 clock ticks
ALWAYS ((‘‘status_t iomodule::receive_transaction(%)’’:entry) ->
(({t = ‘‘status_.t io.module::receive_transaction(%)’’:1;
request_id = t->get_request ()->get request_id() ;
requesttime[request_id]1= sc_time_stamp();}) &&
(within [5] (‘% io.module::send_tomaster(%)’’:entry &&
({t =**% io.module::send tomaster(%)’’:1;
request_id = t->get_request () ->get_request_id() ;
requesttime[request_id] - sc_time._stamp() <=
5 * slow.clock.get.period();}))))

) AND ... (4)

Monitoring Property (4) requires a process that is aware of the slow clock and can
be triggered from multiple processes in a non-deterministic sequence. Implementing
a monitor of this type using the existing SystemC kernel would require major instru-
mentation of the model in order to store and propagate the required information. A
more scalable and easier to use approach is to allow the creation of monitors that are
accessible by all processes and at the same time have access to the kernel’s internal
information. The framework presented here solves these and many other problems
to allow monitoring of important and previously untestable properties of SystemC

models.

4.2 Related work

Several groups have proposed modifying the standard SystemC kernel in order to
expose race conditions that may occur under alternative schedulings.

Helmstetter et al. [HMMCMO6] apply dynamic partial-order reduction techniques

71

to explore alternative schedulings during simulation. They distinguish communica-
tion operations on events (wait () and notify()) and variables (read() and
write()), and use them to define partial ordering of process execution. Alterna-
tive schedulings are produced by permuting the execution of processes subject to
the partial ordering. They modify the standard SystemC scheduler by replace the
process election code with an interactive version, and adding code to keep track of
communication actions [HMMCMO6].

Blanc and Kroening [BK10] point out that the SystemC standard allows imple-
mentations of the kernel to adopt a deterministic scheduling policy. Consequently, a
model with an inherent data race may not exhibit it even after multiple simulations.
The combinatorial explosion in the number of interleavings between processes makes
it intractable to check all possible schedules. Instead, [BK10] employ formal methods
to statically pre-compute dependencies between SC_THREADs and SC_METHODs and
use those dependencies to prune the exploration of concurrent behaviors. Then they
generate a static scheduler that replaces the dynamic scheduler in the reference im-
plementation. The new scheduler leverages partial-order reduction and explores the
remaining possible interleavings exhaustively [BK10].

Sen et al. [SOAO08] propose a technique they call “predictive runtime verification”
that preserves concurrency information about the execution and exploits it to find
both actual and potential errors in the execution. Like [BK10], Set et al. exploit
a partial-order execution trace instead of the total order execution trace produced
by the reference scheduler. [SOA08] augment the scheduler with a new object that
keeps track of event notifications and derives process dependencies as the model is
executed. The resulting partial-order trace is then passed to an external verification
tool, which determines whether the assertion holds or not [SOAO0S].

Braun et al. [BGR02| evaluate different strategies for checking temporal specifi-
cation properties in a SystemC model. They consider two fundamentally different

approaches: 1) an add-on library (a collection of SystemC objects) that implements

72

functions for checking temporal properties, and 2) an interface module that con-
nects the SystemC model with an external test-bench environment (in particular,
TestBuilder). The properties are limited to Finite LTL properties and the temporal
resolution is fixed to the resolution of the simulation clock.

A number of proprietary specification languages for SystemC come with a moni-
toring framework. One of the more serious industrial efforts is by Kasuya and Tesfaye
(Jeda Technologies) [KT07]. This work provides a set of primitives to express cycle-
accurate and TLM-based temporal primitives, but no mechanism for adapting to

different levels of abstraction.

4.3 Modifications of the kernel

Our first goal is to introduce minimal changes to the reference implementation in
order to expose the actions of the kernel in a systematic way, while the behavior of
the kernel (and thus the simulation semantics) remain unchanged. Only those steps
described by the SystemC standard [IEE06] are exposed. Any implementation that
follows the standard can be modified in a similar way.

One way to expose the state of the kernel is to implement an API that returns
the current phase of execution of the kernel and relevant data, and another way is to
modify the kernel to send updates about its execution. Notice that in the first case
it is not clear how the monitors will be alerted when the kernel reaches a particular
sample point. Busy waiting of the monitor will not allow other code (including kernel
code) to execute, and using multi-threading inside the simulation does not guarantee
that the monitor’s thread (OS-level, as opposed to SystemC-level) will be active while
the kernel is in a particular phase. On the other hand, if the kernel sends updates (via
function calls), the monitor will be triggered and will execute as soon as the relevant

sample point is reached. This is the mechanism that we chose to implement.

© 00Uk W -

—_
- O

73

observer

+m_simc: sc_simcontext*

+init_begin()-: void

+init_update_begin(): void

+and so on...(): void

+init_end(): void

+evaluate_begin(): void

+evaluate_process_running_begin(): void

+and so on...()
+register_monitor(mon:mon_monitor*,inst:sample_point): void

Figure 4.1 : Partial class diagram for observer

4.3.1 Determining when monitors are activated

One immediate problem is that this approach requires the kernel to have access to all
monitors. While it is conceivable to add the necessary data structures to the existing
code, it would require extensive modifications. Our intention is to add as few new lines
of code as possible so that our framework can be applied to a wide range of SystemC
implementations. To that end, we encapsulate all additional functionality in a new
object, observer, and connect the existing code to it via callbacks. observer
stores references to the monitors, receives updates of the kernel state, and then notifies
the monitors that need to execute at the current sample point (Figure 4.1). The
observer implements a callback for each phase of execution of the kernel. The code

in Listing 4.3 below illustrates the main idea.

enum sample point {
MON DELTA CYCLE_END,

class mon_observer {
public:

void delta_cycle_end() ({
unsigned int num_elements =

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
4
45
46

74

arr_mon_sets[MON_DELTA CYCLE_END] ->size();
if (num_elements > 0) {
monitor set::const_iterator it;
for (it = arr_mon_sets[MON DELTA_CYCLE_END] ->begin();
it != arr_mon_sets[MON DELTA_ CYCLE_END] ->end() ;
it++) |
mon_prototype* mp = *it;
mp->callback_delta_cycle_end();

}
}
}
void register monitor(mon_ prototype* mon, sc_event* eve) {
if (events to monitor_sets[eve] == 0) {
std::set<mon_prototype*>* n =
new std::set<mon_prototype*s () ;
eve->register observer(this) ;
n->insert (mon) ;
events to monitor sets[eve] = n;
}
else {
(events_to_monitor_sets[eve])->insert (mon) ;
}
}

void event notified(sc_event* event) {
monitor_ set::const_iterator it;
for (it = events_to _monitor_sets[event]->begin() ;
it != events_to monitor_sets[event] ->end() ;
it++) {
mon_prototype* mp = *it;
mp->callback event notified(event);

}
}
} // class observer

Listing 4.3: Partial listing of the source code of the Observer object

The kernel source code is then modified to call the observer callback functions
at the locations where a change of phase occurs. (In the OSCI reference implementa-
tion, the particular file that is modified is sc_core: : sc_simcontext.cpp.) For
example, Listing 4.4 shows a snippet of actual code (from sc_simcontext.cpp)

with our modification:

1
1

1
2
3
4
)
6
7
8
9
0
1

75

while (true) ({
// EVALUATE PHASE
m_execution phase = phase_evaluate;

// One new line of code added below
if (observer != 0) { observer->evaluate begin(); }

while(true) {
// execute method processes
sc_method handle method_h = pop_runnable_method() ;

Listing 4.4: A code snippet from sc_core: : sc_simcontext .cpp

4.3.2 Handling communication with monitors

The communication between the observer and the monitors is also via callbacks. How-
ever, that also raises another programming issue. The observer needs to be designed to
communicate with objects that it knows nothing about at the time when the observer
is compiled. To resolve that issue we define an abstract class, mon_prototype, that
serves as a base class for all monitors (Figure 4.2). This class declares a virtual
callback function for each type of sample point on the execution trace, for example,
virtual callback_init_phase_begin() and

virtual callback evaluate phase begin(). Each monitor implements
the callback functions that are relevant to its execution and that implementation is ex-
ecuted instead of the empty virtual implementation defined in mon_prototype.

Monitors request to be notified by issuing a call to the observer’s

register monitor() function. For example, a monitor for the Adder might use
register monitor(this, MON_DELTA CYCLE_BEGIN) in order to be alerted
at the start of each delta cycle. For each kernel phase, observer maintains a list
of monitors that have requested to be alerted when the kernel reaches that particular
phase. As soon as the kernel notifies (via a function call) the observer that the ker-
nel is entering another phase, the observer calls the callback function corresponding

to this kernel phase for each monitor that has requested to be notified.

76

mon_prototype

+callback_init_phase_begin(): void
+callback_init_update_phase_begin(): void
+callback_init_end(): void
+callback_evaluation_phase_begin(): void
+callback_evaluation_phase_end()(): void
+and so on...()

+callback_event_notified(e:sc_event*): void

Figure 4.2 : Partial class diagram for mon_prototype

Monitors register with specific events directly and are alerted only when those
events are notified. As an example, a monitor for the Adder would use
register monitor(this, addition_event) torequest to be alerted as soon
as the kernel notifies the addition_event. The communication mechanism is the
same as the communication mechanism for kernel-level sample points, with the only
difference that communication is initiated from the sc_event object. Implementing
this idea requires minimal changes to the code of sc_core: :sc_event.cpp.

Notice that the changes to the kernel are intended to be compiled once, together
with the rest of the SystemC code, into a static library (for example, 1ibsystemc.a
in the case of the OSCI reference implementation) and linked with the user code. It
is possible for a commercial implementation to adopt all of the changes proposed here
and provide the simulator in binary without revealing proprietary source code.

The observer is instantiated from the user code at the end of elaboration in
sc_main () and the observer instantiates all monitors before the simulation starts.
This allows observer to pass references to user-code modules to monitors that
monitor user-code properties, for example, values of variables. It is not until the end
of elaboration that these references become valid, so instantiating the monitors earlier
is not possible.

In case the model does not contain any properties to be monitored, there is negli-

gible overhead in the modified kernel. If the user does not instantiate observer, the

7

kernel’s pointer to observer defaults to 0. Before issuing any callback, the kernel

checks if the observer is non-zero, and only then it issues the callback, for example,
if (observer != 0) { observer-supdate begin(); }

Thus, in a simulation without monitors the kernel’s overhead consists of checking a

conditional at every sample point and event notification.

One may object to our decision to modify the kernel by arguing that there are
several implementations of the kernel. Our response is that the language proposed in
Chapter 3, which enables the expression of rich temporal properties, requires some
kernel-level information to be exposed. Our modifications, however, only expose
details that are described in the LRM [IEE06] and should be portable to any imple-
mentation that follows the standard. Furthermore, our changes of the existing code
(of the OSCI implementation) are minimal and localized, and we believe that other
implementations would be easily modified.

We want to note that there are many alternative ways of modifying the kernel
(see, e.g. [BK10,SOA08, HMMCMO06]) but none of the previous works has achieved
the temporal resolution and kernel-monitor communication provided by our modifica-
tions. Other reasonable approaches for monitoring temporal SystemC properties have
been explored by Broun et al. [BGR02], one of which requires no modifications of the
kernel at all (at the cost of 4 times slower execution speed than a comparable approach
with a modified kernel). The novelty of our approach is that it introduces a generic
monitor object that can be refined to check any safety LTL property [AKT*06] and
can sample at much finer (e.g., at the boundaries of delta cycles), as well as much
coarser temporal resolution (e.g., at the boundaries of timeless transactions), than
any existing approach.

In future releases of SystemC, the simulation semantics and the kernel may change,
for example, adding new simulation phases. The modular framework that we describe
in this work can be modified easily to handle changes in the kernel. For each new

phase in the kernel, the observer will need to be extended to handle one additional

78

callback, and the modified kernel will need to be instrumented with one additional
line of code. Similarly, removing a phase from the kernel requires deleting a callback
from the observer, and deleting (rather, not adding) a line of code in the instrumented

kernel.

4.4 Instrumentation of the MUV

Each monitor inherits from the base class mon_prototype the declarations of all vir-
tual functions, and implements only those callbacks that are relevant to the property
that is monitored. Each monitor then registers itself with the observer indicating
which sampling points it is interested in. For example, if the property is

ALWAYS (p==0) @ (kernel phase == MONDELTA CYCLE_BEGIN)

(i-e., p==0 must hold at the beginning of each delta cycle) the corresponding monitor
overwrites the function callback delta.cycle begin () to check if p is equal to
0. The monitor then registers itself with the observer using the following function
call:

observer->register_property(this, MON_DELTA CYCLE_BEGIN) ;
for the sampling point MON_DELTA CYCLE_BEGIN.

In some cases properties refer to variables that are either private or protected.
We adopt the perspective of “white-box validation”, which means that the state of
the model should be fully exposed to the monitors. This is consistent with the view
in Chapter 3, which considers all class members to have public access for verification
purposes. We use the C++ friend class declaration to give the monitors access to
the data members of the monitored modules, while still preserving the encapsulation
and the limited access that the designer intended.

Monitoring user-code variables or other user-code data structures is done at the
boundaries of statements. This brings up the question of how modules can receive
references to the monitors. The difficulty stems from the fact that the monitors are

instantiated after the user-code modules, so they cannot be passed to the modules as

OO UL W

79

arguments. Our solution is to have the observer maintain a list of monitors that
need to be triggered at user-code sample points. The observer does not handle the
communication with those monitors. Instead, it defines a
mon_prototype* get monitor_by index(int) function that returns a par-
ticular monitor by its index in the list. The instrumentation in the MUV then handles
the communication with the monitor by issuing pre-defined callbacks. Each callback
depends on the variable or data structure being monitored, and must be defined in
the monitor.

For example, in the following code snippet, we are monitoring the execution of

statements matching the regular expression ***. = input?.read()’’:

while(true) ({
wait (inputl.value_changed_event() |
input2.value_changed event());
int i1 = inputl.read();

// Callback to notify monitor 42 that a statement matching
// the RE '‘'*, = input?.read()’’ has been reached
observer->get_mon_by index(42)->location_loc21();

// End instrumentation

int i2 = input2.read();

// Callback to notify monitor 42 that a statement matching
// the RE ''*. = input?.read()’’ has been reached
observer->get_mon_by index(42)->location_loc21();

// End instrumentation

Listing 4.5: Illustrating statement-level monitoring of of the Adder model

The approach described here may seem cumbersome when the monitored proper-
ties are static assertions. Indeed, in those cases a simple assert () statement placed
at the relevant location in the code will “monitor” the property more efficiently. No-
tice, however, that our framework is designed for monitoring temporal properties that

assert ()’s cannot handle. Moreover, with automated user code instrumentation

80

(see Chapter 5) and automated monitor generation (see Chapter 6) the framework
can handle a large number of properties without significant manual effort from the
user.

The framework presented here is backward-compatible with existing SystemC
models, which can be linked against the modified 1ibsystemc.a library without
linking errors. In order to activate the monitoring framework the user model needs to
instantiate an object derived from class observer, and instantiate one or more

monitors that are derived from class mon_prototype.

4.5 Experimental results

We modified version 2.2.0 of the OSCI simulator and compiled it using the default

settings in the Makefile. The empirical results below were measured on a Pentium 4

/ 3.20GHz CPU / 1 GB RAM machine running GNU Linux.

4.5.1 Framework overhead

First we compiled each of the two models described below, without monitors and
without an observer, using both the modified kernel and the original OSCI kernel. We
ran a simulation of each version separately and measured a decrease of performance
of less than 0.5% when using the modified kernel. We also compiled the models with
an observer and no monitors (using the modified kernel) and measured an additional
slow-down of the execution time of less than 0.25%. We did not observe any significant
memory increase in either of those cases. Thus, our modifications of the kernel do

not lead to a significant loss of performance compared to the unmodified kernel.

4.5.2 Monitoring overhead

For the rest of our experiments we measured the effect of running with a different
number of monitors and monitoring the properties that we introduced in Section 4.1.

Each data point represents the median of 10 measurements. In each case we first ran

W N -

81

the model without an observer, monitors, or user code instrumentation to establish
the baseline, and then ran several simulations with instrumentation and an increasing
number of copies of the same monitor. The results we report are the cost of each
copy of the monitor as a percentage of the baseline.

When using the testing methodology described above it is important to consider
the possibility of caching effects: if the system were reusing the results of previous
computations, averaging the execution time would be meaningless. Our implemen-
tation avoids these issues because we create each copy of the monitor as a separate
instance of the same class. Since we are not using static variables, each instance
contains its own copy of the class data, thus memory use is proportional to the num-
ber of copies of the monitors. Furthermore, each instance is handled as a generic
mon_prototype object, so it is impossible for the SystemC kernel to reuse compu-
tations. Finally, the behavior of each monitor is determined by the communication it
receives from the SystemC kernel, and the C++ compiler cannot determine statically
that each monitor is doing identical computations, therefore compile-time optimiza-

tions will not prevent each monitor from executing.

Squaring via addition

The first property checked was Property (1): the value of the Adder’s a variable is al-
ways positive, monitored whenever addition event is notified. Since the overhead
of checking the property a > 0 is minimal, the results mostly expose the overhead
of the monitoring framework. For comparison purposes, we measured separately the
performance when sampling at the addition_event notifications, and when sam-
pling at the end of each delta cycle. The following code snippet shows the key parts

of the monitor that checks the safety property at addition_event:

SE*

* ALWAYS (adder.addl_activate_event.notified && adder._a > 0) ->
* ((adder.addition event.notified -> (adder._a > 0))

* UNTIL ‘‘result.write(_a)’’)

82

*/

5

6

7 // The constructor

8 monl (observer* obs, adder* objl) : mon_prototype() {

9 observer = obs;

10 objectl = objl;

11 // Register with the events

12 objectl->addl activate event.register property(this);
13 objectl->addition_event.register property(this);

14 }

16 // Overwrite the default virtual void function
17 virtual void callback event notified(sc_event* e) {

18 if (e == &(objectl->addition_event)) ({

19 adder_addition_event notified = true;

20 step();

21 adder_addition_event notified = false;

22 }

23 else if (e == &(objectl->addl_activate_event notified)) {
24 addl_activate_event notified = true;

25 step();

26 addl_activate_event notified = false;

27 }

28

29 else {

30 std::cout << ‘‘Unknown event in monitor ’’ << std::endl;
31 exit (1) ;

32 }

33 } // callback event notified()

34

35

36 // State machine corresponding to the temporal property
37 void step() {

38 current_state = next_state;

39 next state = -1;

40

41 if (current_state == 0) ({

42 if (addl_activate_event notified) {
43 next state = 1;

44 }

45

46

)

48

83

Squarer: Overhead per monitor for Property (1)

OI: T
©
S
©
@ 0.4f]
0 X c
©
£ 0.3
s —%— At event notifications
6 —5- At the end of delta cycles
£ 0.2} :
(O]
Q.
®
So -
()]
3
0 —
10’ 10° 10°

Number of monitors

Figure 4.3 : Monitor overhead as a percentage of baseline (i.e., execution without
monitors) for Property (1) using two different temporal resolutions

Listing 4.6: Partial implementation of a monitor for Property (1)

In each case we instantiated between 10 and 1000 copies of the monitor. The
execution time to calculate 1000? without monitors is ~14 seconds. The results are
reported as percentage overhead per monitor (Figure 4.3).

As the number of monitors increases, the overhead of the framework is amortized
over more monitors, thus the average overhead per monitor decreases. Also notice
that sampling at event notifications is much more expensive than sampling at the end
of delta notifications. Each delta cycle involves (for 1000%) 1000 event notifications,
so the monitor is invoked 1000 times more often. We would also like to point out that

while the average overhead per monitor is negligible (~0.5%—0.003%), the cumulative

84

effect of running 1000 monitors is significant. In the first case (sample at event
notification) the execution is slowed down 363% when running with 1000 copies of the
monitor (such overhead is not uncommon in industrial applications). The effect is less
pronounced when sampling at the end of delta cycles, incurring a total performance
penalty of 3.6% when running with 1000 monitors.

Property (2) asserts that the adder correctly calculates the sum and returns the
result within two delta cycles of reading the input. Notice that this property combines
information from the user code (getting the values of the relevant variables) and the
kernel (getting information about each delta cycle). We evaluated this property for
different sized models — 500, 1000, 1500, and 2000 processes, calculating, respectively,
5002, 10002, 15002 and 2000%. The results are in Figure 4.4. The behavior we observe
is that increasing the number of processes in general reduces the overhead per monitor.
The more processes we have, the more work the system needs to do in each delta cycle,
thus the effect of the monitoring becomes a smaller fraction of the overall execution.
The overhead per monitor averages around 0.01% and the worst cumulative slow-down

we observed was by 12.9%, when using 1000 monitors on a 500-process model.

4.5.3 Airline reservation system

We checked two properties of the system:

1. The incoming queue has capacity for another request whenever the

incoming.reqnonfull event is notified (Property (3)), and

2. Every request is propagated through a channel within 5 clock cycles of the slow
clock, and it is sent out from each module within 5 slow clock cycles of its

receipt by the module (Property (4)).

Since the system is designed to operate indefinitely, we measured the performance
by simulating for 1 million cycles of the slow clock. The wall-clock execution time of

the system without monitors is ~27 seconds. The monitoring overhead is presented

Squarer: Overhead per monitor for Property (2)

0.1 .
> ——-500 processes
£ 0.09; 1000 processes]
% 0.08 1500 processes ||
o 2000 processes
S 0.07} .
X

N

Overhead per monitor

10° 10°
Number of monitors

Figure 4.4 : Monitor overhead as a percentage of baseline for Property (2)

85

86

ARS: Overhead per monitor for Properties (3) and (4)

-t
H

—— Property 3 (safety)
—— Property 4 (liveness) |
—/— Both properties

-
—L/‘ N

Overhead per monitor (% of baseline)
o
{
&l

NN 3
0.6}]
0.4}]
0.2}]
}\[—I
! = = 5 i
0 - 1
10" 10° 10°

Number of monitors

Figure 4.5 : Experimental results for monitoring Properties (3) and (4) in the airline
reservation system

as percentage of that baseline (Figure 4.5). Checking Property (3) is relatively inex-
pensive, and the results are consistent with the previous results. Property (4) is much
more expensive. The monitor contains a state machine that tracks the arrival and
the departure of each request as it travels through the model. This requires a lot of
communication from the model to the monitor, as well simulating a state transitions
inside the monitor. Running the system with 1000 copies of both monitors slows it
down by 715%. Although this is quite significant, it is not unusual. A ten-fold slow-
down of the simulation when monitoring complicated properties is often observed in

the industry.

87

4.6 Summary and discussion

This chapter introduces a monitoring framework for the specification language pro-
posed in Chapter 3, that allows monitoring of temporal properties of SystemC at
different levels of resolution, both in clocked and clockless models. The framework
requires very small changes to the existing code of the kernel and encapsulates the
new functionality in two new objects. A SystemC installation augmented with the
new objects allows temporal properties to refer to event notifications and simulation
phases. The changes to the kernel cause a negligible slow-down (less than 0.5%) of
the simulation speed.

As proof of concept, several types of properties of two SystemC models, involving
components from different modules, were implemented and tested at sub-clock-cycle
and sub-delta-cycle resolution. The user code was instrumented to allow observation
of the relevant parts of the model state. The experimental results show that for most
properties the overhead is quite small and running hundreds or thousands of monitors
does not have a prohibitive cost (usually less than 0.2% per monitor). More complex
properties are naturally more expensive, but even in this case the overhead is typically
less than 1% per monitor and further optimizations may improve the performance.

The primary of focus of this chapter is on creating an efficient monitoring frame-
work, therefore the monitors and the user-code instrumentation was done by hand.
Doing so for more complicated temporal properties would require substantial manual
effort from the user. Thus, it is important to automate the process of instrumenting
the user code to allow monitoring of statement-level primitives. Chapter 5 addresses
this issue. Automated generation and integration of specification monitors with the

framework presented here is the subject of Chapter 6.

88

Chapter 5
Aspects of Temporal Monitoring of SystemC

5.1 Introduction and motivation

The specification primitives defined in Chapter 3 propose enriching the Boolean layer
of PSL and SVA, making specification languages more expressive. The primitives can
be split roughly into two groups: primitives related to the execution of the kernel,
and primitives related to the execution of the user code. The user code primitives
that have to be exposed are meant to enable white-box validation, which means that
the C++ code of all processes in the model, the values of user-define variables, loca-
tion counter, and the call stack are first-class members of the property specification
language [BCH*04]. This allows a very flexible temporal resolution of the ezrecution
trace. In particular, it enables specification of properties across a wide spectrum of
temporal granularities, from cycle level to transaction level.

Chapter 4 shows how to expose the semantics of the SystemC kernel in a modular
way without a serious performance hit. This chapter shows how to expose to the
monitoring framework the execution flow, the C++ syntax and the state of the user
code. The difficulty is that the very philosophy of object orientation is an obstacle to
white-box validation. The benefits of object-oriented encapsulation and data hiding of
modules, ports, and channels are deterrents for effective monitoring, because access to
internal variables is limited to the objects’ own processes. Good software-engineering
practices suggest keeping internal data private and exposing it only via dedicated
function calls or ports. Most other works (see discussion later) focus on using only
the publicly available data members, exposing the execution of user code only at the

level of function calls and returns, or requiring manual instrumentation. In contrast,

89

our work automate low-level monitoring of user-code primitives.

Exposing the state of the model and the flow of its execution is a cross-cutting
aspect of the model’s behavior, and some of the desired exposure can be achieved using
the Aspect-Oriented Programming (AOP) paradigm [KIL*97] (see Subsection 5.2.1).
Directly using AOP, however, requires users to manually generate fairly sophisticated
AOP code. We get around that by adding a layer of abstraction above the level of
AQP, so that verification engineers can use a simple declarative language to describe
the desired primitives to be exposed. Our framework pre-processes user declarations
and automatically generates AOP advices, which are then woven into the user code
automatically using AspectC++ [SGSP02]. We show how to expose the values of
local module-level data members, even those marked protected or private, all
invocations of a specific function, arguments passed to and returned from user-code
functions, and statements being executed, without requiring additional annotations
or instrumentation by the user or knowledge of AOP.

Some exposure, for example, exposing all locations in the code where a variable a is
divided by or is incremented, cannot be achieved using AOP. We have identified some
of those limitations and propose an alternative method, based on pattern matching,
for identifying and instrumenting locations in the source code.

Detecting violations of the property requires constructing a deterministic monitor
that uses the exposed values and locations. The user can generate such monitor by
hand or using an automated tool. The monitor is integrated with the instrumented
code via simple function callbacks implemented in the monitor. The techniques pre-
sented in Chapter 6 show how the monitor construction can be automated, but the

framework presented here is applicable to any monitor construction.

90

5.2 Preliminaries
5.2.1 Aspect-Oriented Programming

Aspect-Oriented Programming [KIL+97] is based on the idea of separation of concerns
at source code level. In many systems there are requirements that do not partition
cleanly into objects, for example, synchronization, logging, and locking/unlocking.
AOP allows such concerns (called aspects) to be programmed separately and then
composed with the rest of the source code (by an aspect weaver) into a coherent
program [EFBO01].

The insertion points where the aspects are weaved are referred to as join points. A
join point may refer to a function, an attribute, a type, or a variable. A pointcut is a
set of join points, described by a pointcut expression. An advice declaration specifies
the code that should run when the join points specified by a pointcut expression are
reached. There are four types of advices: before advices, which are executed before
the join point, after advices, executed after the join point, and around advices, which
are executed in place of the join point. The fourth type of advice, introduction,
extends classes with new functions or data members. All advices are declared inside
an aspect declaration. For a detailed discussion of AOP and AspectC++ we refer the
reader to [SGSP02].

Two key features of AOP are 1) quantification: i.e., the same aspect code can
have effect in many locations, and 2) obliviousness, or the idea that the places (join
points) where the aspects have effect need not be specially prepared to receive these
enhancements [TLSS10, EFB01]. These features make AOP particularly well suited
for instrumenting code for monitoring, because they do not require additional efforts

from the designer of the model.

91

5.2.2 Monitoring framework

In order to get references to specific monitors we leverage the monitoring frame-
work presented in Chapter 4 for handling all monitors and for activating them at
the necessary sample points. Each monitor that we construct in this chapter derives
from mon_prototype, and in addition defines callbacks that are called from the
instrumented code to communicate with the monitor. We also take advantage of the
monitor observer object. Recall that at instantiation, each monitor registers
with the mon_observer, which builds a list of all monitors. mon_observer pro-
vides a function, get_monitor by index(), that returns a (generic) mon_prototype*
pointer to any of the monitors. Our implementation uses this mechanisms to obtain
pointers to monitors from the instrumented code and to call the appropriate callback

from the instrumented code.

5.3 Related Work

AOP has been applied to instrumenting Java programs (see, e.g., [dH05, Bod05,
HJ08]). The AOP weaver for Java, Aspectd, is very mature and widely used. A lot
of ideas from Java-based AOP have been transferred to C++-based AOP, but adoption
is still lagging.

Niemann and Haubelt [NH06] use AOP to expose function calls in the user code,
and then check (off-line) the trace against the specification using SVA. They associate
with each monitored function an atomic proposition that is true iff the function
has been called but has not yet returned. Our solution exposes function calls and
returns, which allows us to emulate the functionality of [NHO06], but we also expose
the function parameters and return value, and arbitrary code statements based on
pattern matching. Unlike the off-line post-processing mechanism used by Niemann
and Haubelt, we monitor the specification online. As soon as illegal behavior is
detected the execution of the model can be terminated or reset to a known good

state.

92

Endoh et al. [EIIKO08] propose using AOP join points directly as Boolean atomic
propositions. Intuitively, the atomic proposition associated with a join point holds
iff the execution of the model reaches the join point. They do not expose internal
variables of the model, nor do they expose parameters of functions or return values
of functions. Their approach requires the user to generate the AOP code manually.
We expose a richer set of primitives and we use a higher level of abstraction for
declaring primitives, from which the AOP advice code is generated automatically by
our pre-processor.

Déharbe and Medeiros [DM06] use AspectC++ to instrument SystemC for met-
rics collection, injecting different algorithms into processes (e.g., substituting in dif-
ferent cache policies), fault injection, and hardware-level polymorphism. Kasuya et
al. [KHT04] adopt AOP to the Jeda programming language to facilitate adding de-
bugging messages and measuring code coverage. Tartler et al. [TLSS10] deal with
instrumentation of a running program using the AOP paradigm (i.e., dynamic weav-

ing). None of these works applies AOP to monitoring.

5.4 User-code primitives

Our approach provides a mechanism for referring to a rich set of user code primitives
in property specifications, without requiring the user to instrument the code manually
or to write AOP advices. Primitives are declared by the user via a high-level language,
and after that they can be used in any of the properties. We use a configuration file
to store all primitive declarations, properties, and optional parameters for our pre-
processor and the monitor generator. A command-line interface allows the options
specified in the configuration file to be overridden. The primitives that can be used

are described below.

93

5.4.1 Exposing function calls

Certain assertions need to be checked immediately before a particular function call is

made, or immediately after a particular function call returns. The declaration
location locl ''\% bar::foo()’’:call

declares a Boolean atomic proposition 1oc1 that holds immediately before the exe-

cution of the model reaches a call-site of a function foo () of class bar. Similarly,

a Boolean loc2 that holds immediately after the return of the function is declared

using

location loc2 ‘‘'% bar::foo()’’:return.

Example 9 Suppose that we have a model consisting of two modules: producer and
consumer, that are connected by a channel. The producer defines a blocking call
send () to push tokens to the channel, and the consumer defines a non-blocking call
receive nb() to read from the channel. We want to specify that send () remains

blocked until receive_nb () has returned. We declare the following primitives:

location send_start ‘'‘'% producer::send()’’:call
location received '‘'% consumer::receive nb()’’:return

location send _done ‘'‘% producer::send()’’:return

and use them to specify the expected behavior:

ALWAYS (send_start -> (!send_done UNTIL received)) |

5.4.2 Exposing function execution

Exposing the start and end of execution of user-defined functions allows the specifi-
cation of pre- and post-conditions and is done by the declarations
location loc3 ''% bar::foo()’’:entry

location loc4 ‘'‘'% bar::foo()’’:exit

94

Both the call primitive and the entry primitive signal that the function foo ()
is about to execute, but they hold in different locations in the user text. The call
primitive holds at the call-site of £oo (), while the entry primitive holds immedi-
ately before the execution of the first statement of foo (). Similar is the distinction
between return and exit: exit holds immediately after the last statement of the
function, while return holds immediately after the function returns.

Another key distinction is that entry and exit can only be used with user-
defined functions. This restriction is motivated by the property language presented
in Chapter 3. To attain generality, library code is treated as a black box, and the state

of library objects is allowed to be exposed only through publicly declared interfaces.

5.4.3 Exposing function parameters and return values

Exposing the values of function parameters according to their location in the pa-
rameter list allows the specification of pre-conditions without requiring the user to
know the name of the actual parameters used in the function body declaration. The
primitive declaration

value int varl ‘‘float bar::foo(...)’’:2
declares an (integer) variable varl whose value is equal to the 2-nd parameter of
function foo () at the time when the function starts executing. Notice that the
function may be defined in a library, but the function call is a part of the user code.
Following the specification framework presented in Chapter 3, we would like to expose
the function parameters for both user-defined and library-defined functions. However,
due to a limitation of AspectC++, this primitive is available only for user-defined
functions.

Exposing the return values of functions allows the specification of post-conditions
for functions. The variable ret in the following declaration is assigned the return
value of foo ():

value ret ‘‘float bar::foo(...)’’:0

95

Unlike the previous primitive, this one is available for both user-defined and library-

defined functions.

Example 10 Referring to the producer-consumer model described earlier, suppose
that if the channel is full, send () is supposed to block for a few cycles and then
timeout and return NULL. We want to assert that if the return value is NULL then
the channel does not have free space. Here we assume that the channel defines function
num.available (), and the channel instance is called my_channel. We declare

the following primitives:

location send_done ‘'‘% producer::send()’’:return

value return value ‘‘'STATUS_T producer::send()’’:0

and use them in the property:
ALWAYS ((send done && ‘‘(ret_val == NULL)’’') ->

‘' (my_channel->num_available() == 0)’'’) |

Notice that the monitor generator interprets every quoted string as an atomic

”»

proposition, hence the second “->” is not interpreted as an implication.

5.4.4 Exposing syntax

Sometimes it may be desirable to assert that a particular C++ statement (or a set
of C++ statements) is reached during the execution of the model. In other cases,
assertions may need to be checked immediately before or immediately after some
statements. This requires exposing the syntax of the user code to the monitoring
framework. The primitive declaration

plocation loc5 ‘‘/ *a’’:before
declares a Boolean atomic proposition 1oc5 that holds immediately before the exe-

cution of all statements where we divide by the variable a. The dual,

96

plocation locé ‘‘balance *= * *;’’:after
holds immediately after all statements matching the regular expression * *balance

= *k k.11
Lk .

5.4.5 Exposing private variables

Referring to values of private or protected class variables (i.e., local storage) of mod-
ules is critical for white-box validation of models. The declaration

makevisible my class
is issued after a particular property, and declares a SystemC module or a C++ class
my_class fully visible to the monitoring framework. This enables references to its

class variables in the monitor corresponding to the property.

5.5 Implementation

Our implementation uses the monitoring framework described in Chapter 4 to obtain
references to the monitors from the instrumented user code. The monitors are agnostic
about the semantics of the primitive Booleans used in the property: these primitives
are treated as Boolean expressions that determine state change in the monitors. The
monitors expect these Boolean primitives to be assigned correct values prior to the
execution of monitor steps. In this section we show how the primitives described in

Section 5.4 are assigned values.

5.5.1 Exposing function calls

Exposing 1location primitives, e.g.,

location locl ''% bar::foo()’’:call
is done by creating a communication interface between the user code and the monitor,
and then instrumenting the user code to communicate with the monitor. The monitor
defines a callback function callback_locl () and a local Boolean variable loc1l.

The monitor expects that the callback function callback._locl () is be called from

[erap—y

O O 00O Utk WK -

97

the user code as soon as the execution of the user code reaches the function call
bar::foo().

During initialization the monitor sets all Boolean variables corresponding to user-
defined 1ocations to false. The execution of a callback function callback_loc1l ()
consists of the following sequence of steps: 1) The associated Boolean variable 1oc1
is set to true; 2) The monitor executes one step; and 3) locl is set to false.

The instrumentation of the user code must call the monitor’s callback.locl ()
function immediately before the function call to bar: : foo (). Our implementation
creates an AOP advice that carries out the communication with the monitor from

the user code:

advice call ("% bar::foo()"): before() ({
// Start new inner scope

{

extern sc_core::mon_observer* observer;
mon_prototype* mp = observer->get monitor by index(42);
my monitor42* mon42 = (my_monitor42*) mp;

// This callback implemented only by my monitor42
mon42->callback locl();

}
} // advice

Listing 5.1: AOP advice to expose function calls of bar: : foo ().

The AOP advice in Listing 5.1 uses an inner scope to prevent variable name
conflicts. This also ensures that no variable declared during the execution of the
advice code will remain in scope after the end of the execution of the advice code.
A pointer to the mon_observer object observer is obtained using its external
declaration. This example assumes that the 42-nd property refers to the location
declaration locl. The function call observer->get monitor by_index(42)
returns a pointer to the 42-nd monitor as an abstract mon_prototype object (see
Chapter 4). It is recast to the type my monitor42* so that the callback function
defined by the 42-nd monitor (i.e., mon42->callback_locl ()) can be used.

=

O © 0o~ Utk W

1

98

Exposing the locations immediately after the return of a function call is done in
a similar way as in Listing 5.1, but replacing before with after in the generated
AOP advice (see Listing 5.2). The advice is activated upon the function’s return and

it calls the monitor’s callback function corresponding to the location primitive:

advice call("% bar::foo()"): after() {
// Start new inner scope

{

extern sc_core::mon_observer* observer;
mon_prototype* mp = observer->get_monitor_by index(21);
my monitor42* mon2l = (my_monitor2l*) mp;

// This callback implemented only by my_monitor2l
mon2l->callback_locil() ;

}

} // advice
Listing 5.2: AOP advice to expose the return of function bar: : foo ().

5.5.2 Exposing function execution

Primitives associated with the start and the end of functions are handled by the
monitors in the same way as call and return primitives: the monitor declares a Boolean
variable corresponding to the location primitive, and this variable is set to true
via a callback. In order to instrument the user code we generate an AOP advice that
is activated when the monitored function starts or finishes executing.

As an example, if the user declares

location loc3 '‘'% bar::foo()’’:entry
our implementation generates an AOP advice very similar to the one presented in
Listing 5.1, but replacing advice call () by advice execution() (see List-
ing 5.3. This changes the location where the instrumented code is inserted: instead

of instrumenting the call-site, the advice is inserted at the beginning of the function

body.

advice execution("% bar::foo()"): before() {

S © 00U W

[y —Y
p—

99

// Start new inner scope

{

}

extern sc_core::mon_observer* observer;
mon_prototype* mp = observer->get_monitor by index(42);
my_monitor42* mon42 = (my monitor42+*) mp;

// This callback implemented only by my monitor42
mon42->callback locl();

} // advice
Listing 5.3: AOP advice to expose start of execution of function bar: : foo 0.

For the declaration

location loc3 ‘'‘'% bar::foo()’'’:exit

we generate an advice similar to the one presented in Listing 5.1, but changing the

first line to advice execution(‘'‘% bar::foo()’’) :after:

advice execution("$% bar::foo()"): after() {
// Start new inner scope

{

}

extern sc_core::mon_observer* observer;
mon_prototype* mp = observer->get monitor_ by index(42);
my monitor42* mon42 = (my _monitor42+*) mp;

// This callback implemented only by my monitor42
mon42->callback locl();

} // advice
Listing 5.4: AOP advice to expose end of execution of function bar: : foo ().

5.5.3 Exposing function parameters and return values

For each monitored value primitive myval, e.g.,

value int myval ‘‘'% bar::foo(...)’’:2

the monitor defines a callback function callback.myval (T v), where T is the

type of myval. The monitor also declares a local variable value_of myval of type

T. The monitor expects that callback myval () is called upon execution of the

function bar: : foo ().

00 ~NO Ot W

100

The function callback.myval () sets the value of val_of _myval equal to the
value of the parameter v and returns without running the monitor. The callback
function here serves only as a communication channel to expose the value of the
monitored parameter, but the property is not automatically evaluated at this callback.
If the user wishes a property to be evaluated when the monitored function is executed,
the user can add the execution of the function to the list of sample points for the
property.

Instrumenting the user code is done by an automatically generated AOP advice.
The advice for

value int myval ‘‘'% bar::foo(...)’’:2
is presented in Listing 5.5. The advice uses the built-in AOP function call tjp->arg (n)
which exposes the n-th parameter of the function (counting up from 0). tjp->arg (n)
returns a void* pointer that needs to be cast to the type of myval before it is passed

to the monitor via the callback.

advice execution("int driver::foo(...)"): before() {
// Inner scope

{

extern sc_core::mon_observer* observer;
mon_prototype* mp = observer->get_monitor_ by index(42);
my monitor42* mon42 = (my_monitor42*) mp;

// Obtain the value to send to the monitor

int value to_send = (int) *(int *)tjp->arg(1);
mon42->callback myval(value_ to_send) ;

Listing 5.5: AOP advice to expose function parameters of bar: :foo ().

5.5.4 Exposing syntax

Declarations of plocation primitives, e.g.,
plocation locé ‘'‘balance *= *.*;’’:after

are handled by the monitor as 1ocation primitives: for each plocation the moni-

N OOt W

101

tor declares a callback function and a local Boolean variable. The value of the variable
is set to true by the callback, the monitor executes a step, and the variable is set to
false before the callback returns.

Instrumenting the user code to expose statements that match regular expressions
cannot be done using the AOP framework. Thus, our implementation pre-processes
all user-code files and identifies the source code locations that need to be instru-
mented, using pattern matching. At each such location we insert code that obtains
a reference to the correct monitor and makes the callback. For example, the injected

code corresponding to the plocation defined above is presented in Listing 5.6:

// Code fragment injected without using the AOP framework.

{

extern sc_core::mon_observer* observer;

mon_prototype* mp = observer->get _monitor_ by index(42);
my monitor42* mon42 = (my monitor42*) mp;
mon42->callback locé6() ;

Listing 5.6: Code fragment injected in the source code to expose syntax.

This code is identical to the AOP advice code presented earlier in Listing 5.1.
However, when using the AOP-based instrumentation the advice code executes with
the support of the AOP framework. In particular, AOP allows C++ header files to be
inserted automatically in the instrumented source code files. The AOP aspect that
is generated by our implementation carries an #include directive that injects the
monitor header file in all instrumented user-code files; casting the mon_prototype
objects to the derived monitor types (e.g., my monitor42) would otherwise be im-
possible. When injecting instrumentation code without the help of the AOP frame-
work, our implementation injects the required #includes in the user code where

plocation primitives are exposed.

N OO AW

102

5.5.5 Exposing private variables

All modules and channels in SystemC extend the pre-defined objects sc_module
and sc_channel, which are implemented internally as C++ classes. To expose their
private and protected data members we use C++’s £riend mechanism. Intu-
itively, a monitored module declares the monitor class as a £riend class, which gives
the monitor unrestricted access to all internal data members. We show how to do

this automatically via an aspect introduction.

AOP introductions allows adding new data members and functions to a class [GSPSO01].

However, AOP does not restrict the advice code that can be weaved via an introduc-
tion. Since introductions extend the static structure of classes, an introduction advice
can also be used to declare the monitoring class as a friend class. Our implemen-
tation generates a named pointcut reveal (), in respect to which we define the

introduction (Listing 5.7):

pointcut reveal() = ‘‘bar’’ || ‘‘bas’’;

advice reveal() : slice class {
friend class monitoroO;
friend class monitorl;

)i
Listing 5.7: AOP advice to expose private and protected data members of modules
“bar” and “bas”.

Notice that Listing 5.7 specifies explicitly all monitors that require privileged
access to modules bar and bas. It is tempting to use the superclass instead and
limit the list to a single declaration, i.e.,

friend class mon_prototype
and avoid listing the individual monitor classes. This declaration, however, would not
have the desired effect. In C++, a subclass cannot claim friendship by inheritance.
One of the reasons for this restriction is that otherwise a malicious class would be

able to extend a trusted class, and would gain trivially unrestricted access.

103

5.6 Experimental evaluation

We used version 2.2.0 of the OSCI simulator, which was modified using the monitoring
framework presented in Chapter 4 and compiled using the default settings. We ran
all experiments on Ada, Rice’s Cray XD1 compute cluster (rcsg.rice.edu/ada).
Each of Ada’s nodes has two dual core 2.2 GHz AMD Opteron 275 CPUs and 8GB
of RAM.

We used the SystemC model implementing a system for reserving and purchasing
airplane tickets, which was presented earlier in Chapter 4. Recall that the model
simulates user-submitted requests for air travel and the system uses a randomly gen-
erated flight database to find a direct flight or a sequence of up to three connecting
flights. Those are returned to the user for approval, payment and booking. Internally
the system uses modules connected by bounded-capacity channels. This model is in-
tended to run forever. It approximates actual subsystems currently used in hardware
design.

We measured the performance by simulating for 1 million clock cycles. The av-
erage wall-clock execution time of the system over 10 runs without instrumentation
is ~33 seconds. We call this the “baseline” execution. We next added a simple
assert true specification that is checked at increasing number of locations in the
source code. For each experiment we wrote a configuration file containing the spec-
ification and declared the locations at which the specification was to be checked.
Our implementation generated the corresponding AOP advice and the monitor. The
advice was then weaved into the user source code using AspectC++. The instru-
mented code and the monitor code were compiled and executed using the same input
parameters as the baseline execution. At the end of execution the monitor reported
how many times it had been called, which corresponds to the number of times the
instrumentation had been exercised. Since we are using a very simple monitor, any
slow-down of the execution is due to the instrumentation.

Figure 5.1 presents the number of times the monitor was called and the corre-

104

sponding execution overhead of the user-code as a percentage of the baseline execu-
tion time. We observe a linear increase in the overhead as we increase the number of

calls.

—y
-
-

;N

-
(=)
T
[

Monitoring overhead (percentage of baseline)

2O 0.5 1 1.5 2 25 3 3j5 4 45
Number of monitor calls x10°

Figure 5.1 : Instrumentation overhead as a percentage of the baseline runtime in-
creases linearly as we increase the number of calls to the monitor

Figure 5.2 shows the cost of the instrumentation per monitor call, as a percentage
of the baseline execution. Our data suggest that there is a fixed cost of the instrumen-
tation, which, when amortized over more and more calls, leads to lower average cost.

The average cost per call stabilizes after 300,000 calls, and is less than 0.5 x 1074%.

5.7 Summary and discussion

A successful monitoring framework for SystemC requires access to internal variables of

modules and channels, and the ability to trace the execution of threads and methods.

105

1.8f .

1.6 .

1.2 4

e
©
T

L

Percentage overhead per call
o
o

o
'S
T
1

0.2 1 1 1 1 1
0 0.5 1 1.5 2 25 3 35 4 4.5

Number of monitor calls x 10°

Figure 5.2 : Instrumentation overhead per monitor call as a percentage of the baseline
runtime

This chapter describes a framework for exposing a rich set of user code primitives via
automated generation of AOP advice and automated instrumentation of source code
files. The mechanisms presented here are easy to use and do not require the users to
instrument the code manually or to be experts in AOP.

The solution presented here allows the users to declare specification primitives
referring to the value of internal variables, the values of parameters passed to function
calls, and function return values. Tracing of the execution of processes is enabled by
allowing statement execution or function call to be used as an atomic proposition. The
correct behavior of the model can then be specified by forming temporal formulas and
clock expressions using these primitives, without requiring manual instrumentation

of the user code to expose the primitives. The experimental results show that the

106

automated instrumentation of the user code leads to very low execution overhead.
One limitation of the instrumentation approach presented is that arguments of
functions calls are not exposed if the called function is not defined in the user code.
This affects the monitoring of calls of library functions. We expect that future versions
of AspectC++ will include this functionality, thereby removing the limitation from

the instrumentation approach presented here.

107

Chapter 6

Optimized Temporal Monitors

6.1 Introduction and motivation

Recall that assertion-based verification (ABV) allows the designer to asserts proper-
ties that capture design intent in a formal language, e.g., PSL [EF06] or SVA [VRO5].
The model then is verified against the properties using dynamic verification or formal
verification techniques. The focus of formal verification is the correctness of the model
under verification (MUV), while the focus of dynamic verification is the correctness
of a particular execution trace of the MUV.

Leucher and Schallhart give the following definition of dynamic verification.

Definition 1 (Dynamic verification [LS09]) Dynamic verification is the disci-
pline of computer science that deals with the study, development, and application
of those verification techniques that allow checking whether an execution trace of an

MUYV satisfies or violates a given correctness property.

Checking whether an execution trace meets the correctness property is typically
performed by a monitor. As pointed out earlier in Chapter 1 and Chapter 4, for
simple properties it may be feasible to write the monitors manually (c.f., [GBA*99)]);
however, in most industrial workflows, writing and maintaining monitors manually
would be an extremely high-cost, labor-intensive, and error-prone process [ABG*00].
This has inspired both academia and industry to search for methods for automated
generation of monitors from temporal properties.

Formal, automata-theoretic foundations for monitor generation for temporal prop-

erties have been laid out in [KVO01], which showed how a deterministic finite word

108

automaton (DFW) can be generated from a temporal property such that the automa-
ton accepts the finite traces that violate the property. Many works have elaborated
on that approach, cf. [AKT*06,BLS06,dR05,FS04,Gei01, GHO1]); see the discussion
below of related work. Many of these works, e.g. [AKT*06], handle only safety prop-
erties, which are properties whose failure is always witnessed by a finite trace. Here,
as in [dRO5], we follow the framework of [KVO01] in its full generality and we consider
all properties whose failure may be witnessed by a finite trace. For example, the
failure of the property “eventually ¢” can never be witnessed by a finite trace, but
the failure of the property “always p and eventually ¢” may be witnessed by a finite
trace.

Apriori it is not clear how monitor size is related to performance, and most works
on this subject have focused on underlying algorithmics or heuristics to generate
smaller monitors or on fast monitor generation. This work shifts the focus toward
optimizing the runtime overhead that monitor execution adds to simulation time. We
believe that this reflects more accurately the priorities of the industrial applications
of monitors [AKT*06]. A large model may be accompanied by thousands of mon-
itors [BZ08], most of which are compiled once and executed many times, so lower
runtime overhead is a crucial optimization criterion, much more than monitor size or
monitor-generation time. In this paper we identify several algorithmic choices that
need to be made when generating temporal monitors for monitoring frameworks im-
plemented in software. We conduct extensive experimentation to identify the choices
that lead to superior performance.

Identified in this chapter are four issues in monitor generation: state minimiza-
tion, should nondeterministic automata be determinized online or offline; alphabet
representation, should alphabet letters be represented explicitly or symbolically; al-
phabet minimization, should inconsistent alphabet letters be eliminated; and monitor
encoding, how should the transition function of the monitor be expressed. These op-

tions give us a configuration space of 27 different ways of generating a monitor from

109

nondeterministic automata.

We evaluate performance using a model representing an adder that was described
in Chapter 4. Its advantages are that it is scalable and creates events at many different
level of abstractions. For temporal properties we use linear temporal formulas. We
use a mixture of pattern and random formulas, giving us a collection of over 1,300
temporal properties. Our experiments identify a specific configuration that offers the

best performance in terms of runtime overhead.

6.2 Related work

Most related papers that deal with monitoring focus on simplifying the monitor or
reducing the number of states. Using smaller monitors is important for in-circuit
monitoring, say, for post-silicon verification [BZ08], but for pre-silicon verification,
using lower-overhead monitors is more important. Very few prior works focus on
minimizing runtime overhead.

Several papers focus on building monitors for informative prefizes, which are pre-
fixes that violate input assertions in an “informative way.” Kupferman and Vardi [KV01]
define informative prefixes and show how to use alternating automata to construct
nondeterministic finite word automata (NFW) of size 2°®¥) that accept informative
prefixes of an LTL formula 9. Kupferman and Lampert [KLO6] use a related idea
to construct NFW automata of size 20®) that accept at least one prefix of every
trace that violates a safety property ¥. Two constructions that build monitors for
informative prefixes are by Geilen [Gei01] and by Finkbeiner and Sipma [FS04].
Ceilen’s construction is based on the automata-theoretic construction of [GPVW95],
while that of Finkbeiner and Sipma is based on the alternating-automata framework
of [KV01]. Neither provide experimental results.

Armoni et al. [AKT+06] describe an implementation based on [KV01] in the con-
text of hardware verification. Their experimental results focus on both monitor size

and runtime overhead. They showed that the overhead is significantly lower than

110

that of commercial simulators. Stolz and Bodden [SB06] use monitors constructed
from alternating automata to check specifications of Java programs, but do not give
experimental results.

Giannakopoulou and Havelund [GHO1] apply the construction of [GPVW95] to
produce nondeterministic monitors for X—free LTL formulas, and simulate a deter-
ministic monitor on the fly. They provide one experimental result from the early
testing of their implementation. A weakness of their approach is that their LTL
semantics distinguishes between finite and infinite traces, which implies that LTL
properties may have the different meaning in the context of dynamic and formal
verification.

Morin-Allory and Borione [MABO6] show how to construct hardware modules
implementing monitors for properties expressed using the simple subset [PSLO7] of
PSL. Pierre and Ferro [PF08] describe an implementation based on this construction,
and present some experimental results that show runtime overhead, but do not present
any attempts to minimize it. Boulé and Zilic [BZ08] show a rewriting-based technique
for constructing monitors for the simple subset of PSL. They provide substantial
experimental results, but focus on the monitor size and not on runtime overhead.

D’Amorim and Rogu [dR05] show how to construct monitors for minimal bad pre-
fizes of temporal properties without any restrictions whether the property is a safety
property or not. They construct a nondeterministic finite automaton of size 2°0¥)
that extracts the safety content from 1, and simulate a deterministic monitor on the
fly. They present two optimizations: one reduces the size of the automaton, while
the other searches for a good ordering of the outgoing transitions so that the overall
expected cost of running the monitor will be smallest. They measure experimen-
tally the size of the monitors for a few properties, but do not measure their runtime
performance. A similar construction, but without any of the optimizations, is also

described by Bauer et al. [BLS06].

111

6.3 Theoretical background

6.3.1 Bad prefixes

Let AP be a finite set of atomic propositions and let £ = 24P be a finite alphabet.
Given a temporal specification 1 over AP, we denote the set of models of the speci-

fication with L(y) = {w € £ | w |= ¢}. Intuitively, £(1) represents the set of valid
executions given by property .

Let u € £* denote a finite word (in the context of dynamic verification, u repre-
sents a particular execution trace of the MUV). Clearly, checking the correctness of u
with respect to a specification 4 is equivalent to checking if u is an element of £(v).
Dynamic verification produces finite-length execution traces, and because of that it
focuses on properties whose failure can be detected during finite execution. The con-
cept of a bad prefiz, first proposed by Kupferman and Vardi [KVO01], formalizes this

idea of failure after finite number of steps:

Definition 2 (Bad Prefix [KVO01]) A finite word u € £* is a bad prefix for some
language C iff forally e ¥, z-y € L.

Intuitively, a bad prefix cannot be extended to an infinite word in £. A minimal

bad prefir does not have a bad prefix as a strict prefix.

6.3.2 Automata on infinite words

Temporal properties of non-terminating systems are often compiled to non-deterministic
automata on infinite words; such automata were first formalized by Biichi [Biic62] and

are named Bichi automata in his honor.

Definition 3 (Biichi automaton [Biic62]) A nondeterministic Biichi automaton
on words (NBW) is a tuple A= (£,Q,6,Q° F), where ¥ is a finite alphabet, Q # 0
is a finite set of states, § : Q x ¥ — 29 is a transition function, Q° C Q is a set of

initial states, and F' C @ is a set of accepting states.

112

Given a NBW A = (2,Q,6,Q°% F), if ¢ € §(q,0) then we say that we have a
transition from q to ¢’ labeled by 0. We extend the transition function § : Q x X — 29
to § : 29 x T* — 29 as follows: for all Q' C Q, §(Q’,a) = U,eqd(g, a), and for all
o € ¥*, 6(q,a0) = 8(6(q,a),0).

A run of A on a word w = apa, ... € L¥ is a sequence of states goq; . . ., such that
g0 € Q° and ¢;; € 6(g;, a;) for some a; € T. For a run r, let Inf{r) denote the states
visited infinitely often. Notice that since A has a finite number of states, Infr) is
always non-empty. A run r of A is called accepting iff Infr) N F # 0.

The word w is accepted by A if there is an accepting run of A on w. For a given
Linear-Time Logic (LTL) or PSL/SVA formula 1, we can construct an NBW that
accepts precisely £(3) [VW94]. This work uses SPOT [DLP04], an LTL-to-NBW
tool, which is among the best available in terms of performance [RV07]. Analogous

translators are available for PSL and SVA (see, e.g., [BFH05]).

6.3.3 Automata on finite words

A nondeterministic automaton on finite words (NFW) is a tuple A = (T, Q, §, Q°, F).
An NFW can be determinized by applying the subset construction, yielding a deter-
ministic automaton on finite words (DFW) A’ = (2,29, ,{Q°}, F’), where §'(S, a) =
Uses d(s,a) and F/ = {S : SN F # @}. For a given NFW A, there is a canonical
minimal DFW that accepts £(A) [HU79]. In the remainder of this chapter, given an
LTL formula 1, we use Ayxpw(%) to mean an NBW that accepts L£(v)), and Anrw (%)
(respectively, Aprw(1)) to mean a an NFW (respectively, DFW) that rejects the
minimal bad prefixes of L(%).

Building a monitor for a property v requires building Aprw(1). Our work is based
on the construction by d’Amorim and Rosu [dR05], which produces Anpw (). Their
construction assumes an efficient algorithm for constructing Angw(v) (e.g., [DLP04],
when the specification is expressed in LTL, or [BFHO05], when the specification is in

PSL). Below we sketch the construction of [dR05] and then we show how we construct

113

Aprw ().

Given an NBW A = (T, Q, 6, Q% F) and a state ¢ € Q, define 47 = (2, Q, J, q, F).
Intuitively, A? is the NBW automaton defined over the structure of A but replacing
the set initial states with {q}. Let empty(.A) C Q consist of all states ¢ € @ such that
L(A7) = 0}, i.e., all states that cannot start an accepting run. The states in empty(.A)
are “unnecessary” in A, because they cannot appear on an accepting run. We can
compute empty(.A) efficiently using nested depth-first search [CVWY92]. Deleting the
states in empty(.A) is done using the function call spot: :tgba: :prune_scc(),
which is available in SPOT.

To generate a monitor for ¥, d’Amorim and Rosu build Angw(v) and remove
empty(Answ(1)). They then treat the resulting automaton as an NFW, with all
states taken to be accepting states. That is, the resulting NFW is A = (X, Q’, &, Q°N
Q,Q"), where Q' = Q — empty(A), and ¢’ is § restricted to Q' x £. When started

with Anpw(v), we call the resulting automaton A%, (1).

Theorem 1 [dRO05] A%%,(1) rejects precisely all bad prefizes of 1.

6.3.4 From NFW to monitors

From now on we refer to A%.,() simply as Anpw(¥). Anrw(v) is not useful as
a monitor because of its nondeterminism. One way to construct a monitor from
Anrw(1) is to determinize it explicitly using the subset construction. In the worst
case the resulting Aprw(v)) is of size exponential of the size of Anrw(%), which is
why explicit determinization has rarely been used. We note, however, that we can
minimize Aprw(v), getting a minimal DFW. It is not clear, a priori, what impact
this determinization and minimization will have on runtime overhead.

An alternative way of constructing a monitor from Aypw(1) that avoids the
potential for exponential blow up of the number of states is to use Aynrw(?) to
simulate a deterministic monitor on the flyy d’Amorim and Rogu describe such

a construction in terms of nondeterministic multi-transitions and binary transition

114

trees [dR0O5]. Instead of introducing these formalisms, here we use instead the ap-
proach in [AKT*06, TV05], which presents the same concept in automata-theoretic
terms. The idea in both papers is to perform the subset construction on the fly, as we
read the inputs from the trace. Given Ayxrw(v) = (£, @, 4, Q% Q) and a finite trace
ag, - . ., an—1, We construct a run Py, ..., P, of Aprw () as follows: Py = {Q°} and
P11 = Usep, (s, a;). The run is accepting iff P, = (for some ¢ > 0 , which means
that we have read a bad prefix. Notice that each P; is of size linear in the size of
Anrw(), thus we have avoided the exponential blowup of the determinization con-

struction, with the price of having to compute transitions on the fly [AKT*06, TV05].

6.4 Monitor generation

We now describe various issues that arise when constructing Aprw(v).

6.4.1 State minimization

As noted above, we can construct Aprw() on the fly. We discuss in detail below
how to express Aprw(1)) as a collection of C++ expressions. The alternative is to
feed Anrw(%) into a tool that constructs a minimal equivalent Appw(v)). We use
the BRICS Automaton tool [Mg04]. Clearly, determinization and minimization, as
well as subsequent C++ compilation, may incur a nontrivial computational cost. Still,
such a cost might be justifiable if the result is reduced runtime overhead, as assertions
have to be compiled only once, but then run many times. A key question we want to
answer is whether it is worthwhile to determinize Ayrw (1)) explicitly, rather than on

the fly.

6.4.2 Alphabet representation

In our formalism, the alphabet ¥ of Aypw (%) is & = 24P, where AP is the set
of atomic propositions appearing in 9. In practice, tools that generate Aypw(1)

(SPOT in our case) often use B(AP), the set of Boolean formulas over AP, as the

115

automaton alphabet: a transition from state q to state ¢’ labeled by the formula 0 is
a shortcut to denote all transitions from ¢ to ¢’ labeled by o € 24P, when o satisfies
6. When constructing Aprw(v) on the fly, we can use formulas as letters. Automata-
theoretic algorithms for determinization and minimization of NF'Ws, however, require
comparing elements of ¥, which makes it impractical to use Boolean formulas for
letters. We need a different way, therefore, to describe our alphabet! . Below we

show two ways to describe the alphabet of Anpw(v) in terms of 16-bit integers.

Assignment-based representation

The explicit approach is to represent Boolean formulas in terms of their satisfying
truth assignments. Let AP = {p1,p2,...,pn} and let F(py,po,...,pn) be a Boolean
function. An assignment to AP is an n-bit vector a = [ay,ay,...,a,]. An assign-
ment a satisfies F iff F(ay,as,...,a,) evaluates to 1. Let A™ be the set of all n-bit
vectors and let [: A" — Z, return the integer whose binary representation is a,
ie, I(a) = a12" 1 + a2 2 + ... + a,2°. We define sat(F) = {I(a) : a satisfies F}.
Thus, the explicit representation of the automaton Ayrw () = (B(AP),Q, 6, Q°, F)
is A%Ew(¥)= ({0,..,2" =1}, Q, buss, @, F) , Where ¢’ € 8,04(g, 2) iff ¢’ € (g, 0) and
z € sat(o).

BDD-based representation

The symbolic approach to alphabet representation leverages the fact that Ordered
Binary Decision Diagrams (BDDs) [Bry86, Bry92] provide canonical representations
of Boolean functions. A BDD is a rooted, directed, acyclic graph with one or two
terminal nodes labeled O or 1, and a set of variable nodes of out-degree two. The

variables respect a given linear order on all paths from the root to a leaf. Each path

1BRICS Automaton represents the alphabet of the automaton as Unicode characters, which
have 1-to-1 correspondence to the set of 16-bit integers.

116

represents an assignment to each of the variables on the path. For a fixed variable
order, two BDDs are the same iff the Boolean formulas they represent are the same.

As an example, Figure 6.1 shows the BDD representation of the Boolean formula
(z1 « x2) Vz3. Solid edges represent assignment of true, and dashed edges represent

assignment of false.

Figure 6.1 : A BDD representing the Boolean formula (z; <« z2) V z3

The symbolic approach uses SPOT’s

spot: :tgba.reachable_iterator breadth first: :process_link ()

function call to get a reference to all Boolean formulas that appear as transition labels
in Ayrw(?). The formulas are enumerated using their BDD representation (using
SPOT’s spot: : tgba.succ.iterator: : current_condition () function call),
and each unique formula is assigned a unique integer. We thus obtain .A%%, (1)
by replacing transitions labeled by Boolean formulas with transitions labeled by the
corresponding integers. While the size of B(AP) is doubly exponential in |AP|, the
automaton Anpw(v) is exponential in ||, so the number of Boolean formulas used

in the automaton is at most exponential in |1

117

From NFW to DFW

We provide both A%s.(1) and A%% (1) as inputs to BRICS Automaton, produc-
ing, respectively, minimized A%gy/ () and A%%,, (). We note that neither of these
two approaches is a priori a better choice. LTL-to—automata tools use Boolean for-
mulas rather than assignments to reduce the number of transitions in the generated
nondeterministic automata, but when using .A%g,,(1) as a monitor, the trace we
monitor is a sequence of truth assignments, and .A%4g, (1) is not deterministic with
respect to truth assignments. As a consequence, there is no guarantee that at each

step of the monitor at most one state is reachable.

6.4.3 Alphabet minimization

While propositional temporal specification languages are based on Boolean atomic
propositions, they are often used to specify properties involving non-Boolean vari-
ables. For example, we may have the atomic formulas (a == 0), (a == 1), and
(a > 1) in a specification involving the values of a variable int a. Notice that in
this example not all assignments in 247 are consistent. For example, the assignment
(a == 0) && (a == 1) is not consistent. By eliminating inconsistent assign-
ments we may be able to reduce the number of letters in the alphabet exponentially.
Identifying inconsistent assignments requires calling an SMT (Satisfiability-Modulo-
Theory) solver [dMBO08]. Here we would need an SMT solver that can handle ar-
bitrary C++ expressions that evaluate to type bool. Not having access to such an
SMT solver, we use the compiler as an improvised SMT solver.

A set of techniques called constant folding allow compilers to reduce constant ex-
pressions to a single value at compile time (see, e.g., [CT04]). When an expression
contains variables instead of constants, the compiler uses constant propagation to
substitute values of variables in subsequent subexpressions involving the variables.
In some cases the compiler is able to deduce that an expression contains two mu-

tually exclusive subexpressions, and issues a warning during compilation. We con-

118

struct a function that uses conjunctions of atomic formulas as conditionals for dummy
if/then expressions, and compile the function (we use gcc 4.0.3). To gauge the
effectiveness of this optimization we apply it using two sets of conjunctions. Full al-
phabet minimization uses all possible conjunctions involving atomic formulas or their
negations, while partial alphabet minimization uses only conjunctions that contain
each atomic formula, positively or negatively.

We compile the function and then parse the compiler warnings that identify in-
consistent conjunctions. Prior to compiling the Biichi automaton we augment the
original temporal formula to exclude those conjunctions from consideration. For ex-
ample, if (a == 0) && (a == 1) is identified as an inconsistent conjunction, we

augment the property ¥ to ¥ A G(!((a == 0) A (a == 1))).

6.4.4 Monitor encoding

We describe five ways of encoding automata as C++ monitors. Not all can be used
with all automata directly, so we identify the transformations that need to be applied
to an automaton before each encoding can be used.

The strategy in all encodings based on automata that are nondeterministic with
respect to truth assignments (i.e., Ayrw(t) and minimal A%, (1)) is to construct
the run Py, Py,. .. of the monitor using two bit-vectors of size |Q|: current [] and
next []. Initially next [] is zeroed, and current [§] = 1iff g; € Q°. Then, after
sampling the state of the program, we set next [k] = 1 iff current[j] = 1 and
if there is a transition from g; to gy that is enabled by the current program state.
When we are done updating next [], we assign it to current [], zero next[],
and then repeat the process at the next sample point. Intuitively, current [] keeps
track of the set of automaton states that are reachable after seeing the execution trace
so far, and next [] maintains the set of automaton states that are reachable after
completing the current step of the automaton.

Notice that when the underlying automaton is deterministic with respect to truth

119

assignments (i.e., AZs (1)), after each step there are precisely 1 or 0 reachable states.
In those cases it is inefficient to use bit-vector encoding of the set of reachable states,
because this set is guaranteed to be singleton. Thus, when constructing monitors
from deterministic automata, we use int current and int next to keep track
of the run of the automaton. Initially, current = j iff g; is the initial state. Then
we set next = k iff the transition from g; to gj is enabled at the first sample point;
since the automaton is deterministic, at most one transition is enabled. We continue
in this fashion until the simulation ends or until none of the transitions in the monitor
is enabled, indicating a bad prefix.

The details of the way we update current[] (respectively, current) and
next [] (respectively, next) are reflected in the different encodings. As a run-
ning example, we show how to construct a monitor for the property ¢ = G(p —
(gvXqVXXgq)). The first step is to use SPOT to construct a NBW automaton that
accepts all traces satisfying ¢. Next, we use SPOT to construct Ayxrw(p), which is
presented in Figure 6.2.

Figure 6.2 : Anpw(yp) constructed from the specification ¢ = G(p — (¢VvXqVXXq))
using the algorithm of d’Amorim and Rogu. Double circles represent accepting states,
and state 2 is the initial state.

Nondeterministic encodings

Two novel encodings, which we call front_nondet and back_nondet, expect that

the automaton transitions are Boolean formulas, and do not assume determinism.

OO U W

120

Thus, front _nondet and back_nondet can be used with Aypw(v) directly. They
can also be used with A%2,(v) and A%, (1), once we convert back the transition
labels from integers to Boolean formulas as follows. In A%5,(¢), we calculate the
assignment corresponding to each integer, and use that assignment to generate a con-
junction of atomic formulas or their negations. In A%, (1) we relabel each transition
with the Boolean function whose BDD is represented by the integer label.

The front nondet encoding uses an explicit 1£ to check if each state s of
current [] is enabled. For each outgoing transition ¢ from s it then uses a nested
if with a conditional that is a verbatim copy of the transition label of ¢ to determine

if the destination state of ¢ is reachable from s. Listing 6.1 illustrates this encoding.

/**
* front nondet encoding
*/
test_monitoro0::step() {
if (status == MON_UNDETERMINED) ({
// Property has not been determined to fail so far
num_steps++; // Current length of execution trace

for (int i = 0; i < 3; i++) {
current[i] = next[i];
next [i] = 0;

}

if (current[0]) {
if(! (p) && (q))
next [1] = 1;
if((p) && (qQ))
next [0] = 1;
Y // if

if (current[1]) {
if((p) && (q))
next [0] = 1;
if (! (p) && (q))
next [2] = 1;
Y // if

if (current[2]) {

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
4
45
46
47
48
49
50
51
52
53
54

© 00U WN -

—
- O

121

if((p) && (q@))
next [0] = 1;
if (! (p) && (q@))
next [2] = 1;
if (! (p) && ! (q))
next [2] = 1;

Yy // if

// Check if there were enabled transitions
bool not_stuck = false;
for (int i = 0; i < 3; i++) {
not_stuck = not_stuck || next[i];
}

if (! not_stuck) {
// None of the transitions were enabled

#ifdef MONITOR REPORT FAIL_IMMEDIATELY

SC_REPORT_WARNING("Property failed", "Critical error");
std::cout << "Property failed after " << num_steps
<< " steps" << std::endl;
#endif
status = MON_FAIL;
}
} // 1if (status == MON_UNDETERMINED)
} // step()

Listing 6.1: Illustrating front _nondet encoding of the automaton in Figure 6.2.

The back nondet encoding uses a disjunction that represents all of the ways
in which a state in next [] can be reached from the currently reachable states.

Listing 6.2 illustrates this encoding.

/**
* back nondet encoding
*/
test_monitor0::step() {
if (status == MON_UNDETERMINED) {
// Property has not been determined to fail so far
num_steps++; // Current length of execution trace

for (int i = 0; i < 3; i++) {
current [i] = next[i];
next [i] = 0;

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

122

}

next [0] = (current[2] && ((p) && (q))) ||
(current[1l] && ((p) && (q))) ||
(current[0] && ((p) && (q)));

next [1] = (current[0] && (!(p) && (q)));

next [2] = (current[2] && (! (p) && (q)))

|l
(current[1] && (!(p) && (q))) ||
(current[2] && (! (p) && !(qg)));

// Check if there were enabled transitions
bool not_stuck = false;
for (int i = 0; i < 3; i++) {

not_stuck = not_stuck || next[i];

}

if (! not_stuck) {
// None of the transitions were enabled

#ifdef MONITOR REPORT FAIL IMMEDIATELY

SC_REPORT WARNING("Property failed", "Critical error");
std: :cout << "Property failed after " << num_steps
<< " steps" << std::endl;
#endif
status = MON FAIL;
}
} // if (status == MON_UNDETERMINED)
} // step()

Listing 6.2: Illustrating back.nondet encoding of the automaton in Figure 6.2.

Deterministic encodings

Three novel deterministic encodings, which we call front_det_switch,

front_det_ifelse, and back_det, expect that the automaton has been deter-
minized using assignment-based encoding. Thus, these three encodings can be used
only with A%s,(v). Note that we work with A%g(v) directly and do not convert
the automaton alphabet from integers back to Boolean functions. Instead, at the

beginning of each step of the automaton we use the state of the MUV (i.e., the values

123

of all public and private variables, as exposed by the framework of [TVKS08]) to
derive an assignment a to the atomic propositions in AP (). We then calculate an
integer representing the relevant model state mod_st = I(a), where a is the current
assignment, and use mod_st to drive the automaton transitions.

Referring to the running example automaton presented in Figure 6.2, we first
show how to convert the Boolean expressions on the transitions to integers using
assignment-based integer representation. Table 6.1 shows the integer encoding of
all possible assignments of values to p and q. We then construct A%gy(¢) in Fig-

ure 6.3. Determinizing and minimizing A¥s,/(¢) using BRICS Automaton produces

ass v(), which in this case is identical to A%y (p).

plqll int
010 0
01 1
110 2
111 3

Table 6.1 : Assignment-based encoding for the transitions of the Aypw () in Fig-
ure 6.2

Figure 6.3 : A%2u(p) for ¢ = G(p — (¢VXqVXXq)). Determinizing A%, (¢) using

BRICS Automaton produces A%, (@), which is then minimized. The minimized

Sew(p) in this case is identical to A%y (p).

The back._det encoding is similar to back_nondet in that it encodes the au-
tomaton transitions as a disjunction of the conditions that allow a state in next []
to be enabled. The difference is that here we use an integer instead of a vector to

keep track of the (at most one) state that is reached in the current step of the au-

0O Ui W N

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

124

tomaton, and the transitions are driven by mod_st instead of by Boolean functions.

See Listing 6.3 for an illustration of this encoding.

/**

* back_det encoding

*/

test_monitor0::step() ({
if (status == MON_UNDETERMINED) ({
// Property has not been determined to fail so far
num_steps++; // Current length of execution trace

current = next;

next

_1;

// Calculate the system state index
int system_state_index = 0;

system_state_index += (p) ? (1 << 1) : 0;
system_state_index += (gq) ? (1 << 0) : 0;
if (((current == 2) && (system state index == 3)) ||
((current == 1) && (system state index == 3)) ||
((current == 0) && (system_state_index == 3)))
{ next = 0;}
else if (((current == 0) && (system_state_index == 1)))
{ next = 1;}
else if (((current == 2) && (system_state_index == 1))
||
((current == 1) && (system _state_index == 1)) ||
((current == 2) && (system_state_index == 0)))

{ next = 2;}

// Check if there were enabled transitions
bool not_stuck = (next != -1);
if (! not_stuck) {

// None of the transitions were enabled

#ifdef MONITOR REPORT FAIL IMMEDIATELY
SC_REPORT_WARNING("Property failed", "Critical error");
std::cout << "Property failed after " << num_steps

#endif

}

status

<< " steps" << std::endl;

MON_FAIL;

} // if (status == MON_UNDETERMINED)

125

41 } // step()
Listing 6.3: Illustrating back_det encoding of the automaton in Figure 6.3.

The front_det_switch and front_det_ifelse encodings are similar, but
differ in the C++ constructs used to take advantage of the determinism in the automa-
ton. Applying front_det_switch to the automaton in Figure 6.3 is illustrated in
Listing 6.4 and front_det_ifelse is illustrated in Listing 6.5.

1 /**

2 * front det switch encoding

3 =*/

4 test_monitoro0::step() ({

5 if (status == MON_UNDETERMINED) {

6 // Property has not been determined to fail so far
7 num_steps++; // Current length of execution trace
8

9 current = next;

10 next = -1;

11

12 // Calculate the system state index

13 int system state _index = 0;

14 system_state_index += (p) ? (1 << 1) : 0;
15 system state index += (q) ? (1 << 0) : O;
16

17 switch (current) {

18 case 0:

19 switch (system state index) {

20 case 1: next = 1; break;

21 case 3: next = 0; break;

22 } // inner switch/case

23 break; // the outer case

24

25 case 1:

26 switch (system state_ index) ({

27 case 3: next = 0; break;

28 case 1: next = 2; break;

29 } // inner switch/case

30 break; // the outer case

31

32 case 2:

33 switch (system state_index) ({

w
1N

case 3: next = 0; break;

35
36
37
38
39
40
41
42
43
4
45
46
47
48
49
50
51
52
53
54

00O Ut WN K

2
2

case 1l: next
case 0: next

; break;
; break;

} // inner switch/case
break; // the outer switch/case

} // switch (current)

// Check if there were enabled transitions

bool not stuck = (next
if (! not_stuck) ({

1= -1);

// None of the transitions were enabled

#ifdef MONITOR REPORT_ FAIL IMMEDIATELY

SC_REPORT WARNING("Property failed",
std::cout << "Property failed after " << num steps

<< " steps" << std::endl;

#endif

status = MON_FAIL;

}

} // if (status == MON_UNDETERMINED)

}

Listing 6.4:

Figure 6.3.

/**

* front det_ifelse encoding

*/
test
if

_monitoro0::step() {

(status == MON_UNDETERMINED)

// Property has not been determined to fail so far
num_steps++; // Current length of execution trace

current = next;
next = -1;

{

// Calculate the system state index
int system_state_index = 0;
(p) ? (1L << 1) : 0;

system_state_index +=
system_state_index +=

if (current == 0) {

(@) ? (1

if (system_state_index ==

else if (system_state_ index

} // if (current == ..

-)

<

)

< 0) : 0;

{ next = 1;
=3) { next

}

2;

"Critical error");

}

126

Illustrating front_det_switch encoding of the automaton in

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
4
45
46

127

else if (current == 1) ({
if (system state index == 1) { next = 1; }
else if (system state index == 3) { next = 2; }
else if (system state _index == 0) { next = 1; }
} // if (current == ...)
else if (current == 2) {
if (system state index == 3) { next = 2; }
else if (system state index == 1) { next = 0; }
} // if (current == ...)

// Check if there were enabled transitions
bool not_stuck = (next != -1);
if (! not_stuck) (

// None of the transitions were enabled

##ifdef MONITOR_REPORT_ FAIL_ IMMEDIATELY

SC_REPORT_WARNING("Property failed", "Critical error");
std::cout << "Property failed after " << num steps
<< " steps" << std::endl;
#fendif
status = MON_FAIL;
}
}
}

Listing 6.5: Illustrating front_det_ifelse encoding of the automaton in
Figure 6.3.

6.4.5 Configuration space

The different options allow 27 possible combinations for generating a monitor, sum-

marized in Table 6.2.

6.5 Experimental setup
6.5.1 SystemC model

Our experimental evaluation is based on the Adder model discussed in Chapter 4. As

areminder, the Adder implements a squaring function by using repeated incrementing

128

State Alphabet Alphabet Monitor Encodin
Minimization | Representation | Minimization &
no Not required front nondet
BDDs back_nondet
none front_nondet
partial backnondet
yes .
assignments full front_det_ifelse

front_det_switch

back_det

Table 6.2 : The configuration space for generating monitors.

by 1. We used the Adder to calculate 1002 with 1,000 instances of a monitor for the
same property. Since we are mostly concerned with monitor overhead, we focus on
the time difference between executing the model with and without monitoring. We
compiled the Adder model with a virgin installation of SystemC (i.e., without the
monitoring framework presented in Chapter 4) and averaged the runtime over 10
executions. This established the baseline time.

To calculate the monitor overhead we averaged the runtime of each simulation
over 10 executions and subtracted the baseline time. Notice that the overhead as
calculated includes the cost of the monitoring framework and the slow-down due to

all 1,000 monitors.

6.5.2 Properties

We used specifications constructed using both pattern formulas and randomly gen-
erated formulas. We used LTL formulas, as we have access to explicit-state LTL-to-
automata translators (SPOT, in our case). The construction of NBWs is orthogonal

to the issues we study here, as the framework is applicable to any specification lan-

129

guage that produces NBWs.

We adopted the pattern formulas used in [GH06] and presented below:

lw(n) = (...(PUpz))... Upn)Upnp1
ru(n) = pU@EU(. .. (PnUpns1)- - .))
cl(n) = \/ GFp;

=1

2(n) = N GFp;
i=1

qq(n) = /\(Fpi V Gpiy1)
i=1

rr(n) = A(GFp;V FGpit1)
i=1

ss(n) = \/ Gp;
=1

In addition to these formulas we also used bounded F and bounded G formulas,

and a new type of nested U formulas, presented below:

f1(n)
f2(n)
91(n)
92(n)

Gp— (gVXqV...VXX...Xq))
G(p— (¢gvX(gvX(gV...VXq)...))
Glp— (gAXgAN...ANXX...Xq))
Glp— (AX(@ANX(gAN...NXq)...)))

G(pl - (plU(p2 A ng(pg R (pn A anpn+1)))) -)

In our experiments we replaced the generic propositions p; in each pattern formula

with Boolean expressions of type (a == 100"2 - 100(n - i - 1)), wherea

is a variable representing the running total in the Adder. For each pattern we scaled

up the formulas until all 27 configurations either timed out or crashed. Most config-

urations can be scaled up to n = 7, and the bounded properties f1(n), f2(n), g1(n)

130

and g2(n) can be scaled to n = 16. We identified 127 pattern formulas for which at
least one configuration could complete the monitoring task.

The random formulas that we used were generated following the framework of
Daniele et al. [DGV99], using code provided by Kristin Y. Rozier. For each formula
length there are two parameters that control the number of propositions used and
the probability of selecting an U or a V operator (formula length is calculated by
adding the number of atomic propositions, the number of logical connectives, and
the number of temporal operators). We varied the number of atomic propositions
between 1 and 5, the probability of selecting an U or a V was one of {0.1, 0.3, 0.7,
0.95}, and we varied the formula length from 5 to 30 in increments of 5. We used the
same style of atomic propositions as in the pattern formulas. For each combination
of parameters we generated 10 formulas at random, giving us a total of 1200 random

formulas.

6.6 Experimental results

We ran all experiments on Ada, Rice’s Cray XD1 compute cluster.? Each of Ada’s
nodes has two dual core 2.2 GHz AMD Opteron 275 CPUs and 8GB of RAM. We ran
with exclusive access to a node so all 8GB of RAM were available for use. We allowed
8 hours (maximal job time on Ada) of computation time per configuration per formula
for generating Biichi automata, automata-theoretic transformations, generating C++
code, compilation, linking with the Adder model using the monitoring framework
presented in Chapter 4, and executing the monitored model 10 times.

We first evaluate the individual effect of each optimization. For each formula we
partition the configuration space into two groups: those configurations that use the
optimization and those that do not. We form the Cartesian product of the overhead

times from both groups and present them on a scatter plot.

2rcsg.rice.edu/ada

131

6.6.1 State minimization

Fig. 6.4 shows the effect of determinization and state minimization on the automa-
ton size. We observe that in most cases minimizing the automata (i.e., minimizing
ass () and A%, (p)) produces smaller automata than the equivalent Anrw(p). It
is known [HU79] that in the worst case, nondeterministic automata are exponentially
more succinct that the corresponding minimal deterministic automata. Our experi-
mental results show that the worst case blow up is avoided for the types of formulas
that are likely to be used in practice, and, in fact, for some formulas we see three
orders of magnitude smaller deterministic automata. This observation goes against
the traditional justification for constructing monitors from nondeterministic rather
than deterministic automata.
In Fig. 6.5 we show the effect of state minimization on the runtime overhead. A
few outliers notwithstanding, using state minimization lowers the runtime overhead

of the monitor.

6.6.2 Alphabet representation

Figure 6.6 shows that using assignments leads to better performance than BDD-based
alphabet representation. Our data shows that in the vast majority of cases, using
assignments leads to smaller automata, which again suggests a connection between

monitor size and monitor efficiency.

6.6.3 Alphabet minimization

Our data shows that partial- and full- alphabet minimization typically slow down the
monitor (see Figure 6.7). We think that the reasons behind it are two-fold. On one
hand, the performance of gcc as a decision engine to discover mutually exclusive con-
junctions is not very good (in our experiments it was able to discover only 10%-15%
of the possible mutually exclusive conjunctions). On the other hand, augmenting the

formula increases the formula size, but SPOT does not take advantage of the extra

132

—~ 4
D10 ¢ x
g 3 XX x x
[
o xX X X
L
[V L »
N xxx x x ¥x x x X x
g k x <X g‘xx * %
= 100 ¥ x xx x ,’(‘i"xx x ¥ % % x&
£ Woekpo X X o ¥
o § X R x A
© k x §§ll%§1&* % X -
g ‘ x %, X! fo X P X ,e%
“— x ‘~ i #(%
o - E xx%
‘= g
SRS S Y <
E s ¥ x"ii on/ % x
-003 x X o }wx *
[h}
o° ¥ K i 5
5 ! | s V44 x
2 X X
g o
10' § § o x
Q X X X xxxX o
N X X
U) x X X X XXX X
c X X X
..9 x X X
(]
E x
[@]
5.0
10 1 1 1 PR |
< 10’ 10 10° 10*

Automaton size with determinization and minimization (log)

Figure 6.4 : Number of states in the automaton with and without state minimization.

information in the formula and typically generates bigger Biichi automata. If we man-
ually augment the formula with all mutually exclusive conjunctions we do see smaller

Biichi automata, so we believe this optimization warrants further investigation.

6.6.4 Monitor Encoding

Finally, we compared the effect of the different monitor encodings (Fig. 6.8). Our
conclusion is that no encoding dominates the others, but two (front nondet and

front_det_switch)show the best performance relative to all others, while back _det

10"
X X KX
xX X M x
) %% %
o IO M M x x
5 \ % %X * wX
10 - X 3¢ X X
20 N ek
8 | hE e B et %
& eHR '& X
~ X = %
c Ex %*?’i‘g ¥ %
g 1 X X X 308 X 8
@© 10' | SR % xx XX
N EXRE x
= o< g X ¥ x %
= % % M
c i%* Xx;& x
E i X x
[% Y w &
x
8 w X l)!:? % x
»n 10" X X g# X
- [K
3 H % %
o ” y * Ty o
- L [ot X
= b & X x X
s
? : e %
Q 107"} g B
c
> X X X XOO00OMMOK X X
O X XX XI000008K X X
XX
10-2 PP | P | R |
10% 10™ 10° 10'

Overhead with state minimization (seconds)(log)

133

Figure 6.5 : The size of the determinized/minimized automaton in most cases is

smaller than the size of the corresponding nondeterministic automaton.

has the worst performance. Comparing front nondet and front_det_switch

directly to each other (Fig. 6.9) indicates that

front_det_switch delivers better performance for all but a few formulas.

Overhead when using BDDs (seconds)(log)

X
¥
31
X
gx
x%
-
xx % XM X X
»* ** =
ol K = g X
X xx ¥
. o %;ﬁ K
% X xX
i x "g X

§ x
10" X “%¥ %
X
X X
X OO X
X KOOSO x X
XXX X

10‘2 e | X sl " ft i sl N i a ol

! 0 10’ 10°

Overhead when using assignments (seconds)(log)

134

Figure 6.6 : Using assignments for alphabet representation leads to better perfor-

mance than using BDDs.

6.6.5 Best configuration

The final check of our conclusion is presented in Figure 6.10, where we plot the

performance of the winning configuration against all other configurations. There are

a few outliers, but overall the configuration gives better performance than all others.

135

—~
(@]
o x x
% x X X X X x
W X%

'8 . x x
8 10" | % -4 "
(0] x x
7 %X x> x X% X x x
~ X X K XX X boA x
g x‘ x)&&x’& X X x X3

X x
— *x hx xx vx
S 0 b 5 g xx x’* X >¢5 %X ’gi x
— Xy Xxm X XX X 2 R X

[X% X ;p(»(
£ RV S
= x’“ x’“" . WX X
E o x 1%
et
.8 0 X w
«© 10 3
& | X% o
© X *
< Fox ox ¥ X
§ y
o 10" X X
g ' § o o
_qé X X X500 aa———————— X x X > X
o O IS S s ——————
g) X XX
o
10-2 el N 1 : . 1)
107 107 10° 10' 10° 10°

Overhead without alphabet minimization (seconds)(log)

Figure 6.7 : Effect of alphabet minimization on monitor overhead. We do not see
significant advantage in using alphabet minimization, but this may be due to the
particular tool chain that we used.

Based on the comparison of individual optimizations we conclude that front_det _switch
encoding with assignment—based state minimization and no alphabet minimization is

the best overall configuration.

136

6.7 Summary and discussion

Together with the specification formalism proposed in [TVKSO08], and the monitor-
ing framework described in [TV10a], this work provides a general ABV solution for
temporal monitoring of SystemC models. We have identified a configuration that
generates low-overhead monitors and we believe that it can serve as a good default
setting. We note, however, that practical use of our tool may involve monitoring tasks
that are different than the synthetic load that we used for our tests. Recent develop-
ments in the area of self-tuning systems show that even highly optimized tools can be
improved by orders of magnitude using search techniques over the configuration space
(c.f., [Hoo08]). One possible extension of our work is to apply different optimizations
to different types of formulas. For example, our data show that when the minimized
automaton (A%, (1) or A%2,.(1)) has more states than the unminimized automaton
(AnrFw(¥)), generating a monitor using Anrw() leads to smaller runtime overhead.
This observation can be used as a heuristic, and further investigation may reveal that
for different classes of formulas different configurations yield the best results. Thus,
we have left the user full control over the tool configuration.

The specification formalism proposed in Chapter 3, the monitoring framework de-
scribed in Chapter 4, the techniques for automated instrumentation of the user code
in Chapter 5, and the work presented in this chapter complete the necessary steps
toward a general ABV solution for temporal monitoring of SystemC models. Chap-
ter 7 summarizes the contributions of this dissertation and presents some possible

extensions of this work.

137

o
=
P
@
°
[=
]
]
o,
[« %]
x]
*ome B T o
X be 4
&x x
s xx
x
b
=)
L) o~ -) 0 g -
e e e e e =4
sBuipoous Jeuio |Iv
‘o ‘o
- -
S
g H
s 2
j @
o
=) 5 o J
-2 - c
X x 2
X
o
X XK
x
b q
L) o~ - o 0 by e © o~ -) T « '0_
(=} [=) =} © =) =) © [=) [=) (=} (=} =}
- - - - - - - - - - - -
sbBuipoous 1ey1o |Iy sBuipoosus 18410 Iy
X xx X
)
‘o (=
x X -
x
% X % » X 2
X - I
> =
% o,]
% ¥ %’I
o
8 20X =<1
- (<]
<=
x X x;s s %
XX &
)S< »
by by
L) o~ - o) « e o« o~ -) 0 by e
© =) =) (=} =) =) (=) =) =) © =) o
- - - - - - - - - - - -
sBuipoous 18yio | sBuipooua 18u10 Iy

Figure 6.8 : Comparison of the monitor overhead when using different encodings.
Each subplot shows the performance when using one of the encodings (z-axis) vs. all
other encodings (y-axis).

138

X X
X XK XOOOO0OOXXX XXX X X X X X X

2 X000 XXX X X X X X X X X

1
'o

(60))(spuooas) #mucmc..“co: JO peayIanO

10°

1072

10

(seconds)(log)

Overhead of front_det_switch

Figure 6.9 :

Overhead of other configurations (seconds)(log)

10" |

-
(=]
-
T T T —rT
IR D RN B JD0H0C KK K X XK X X
OISR ONOBEEDNNEE K XX X

10 |

L
X X X3X000K

X
X

Pz H““1.o" ‘ H““1.o° ..1.0‘ —1.02 . ‘103
Overhead of front_det_switch + assignments (seconds)(log)

Figure 6.10 : Best overall performance

139

140

Chapter 7

Conclusion and Perspectives

7.1 Summary of contributions

The starting point of this dissertation is a detailed discussion of the simulation se-
mantics of SystemC and of the types of properties that may need to be verified. The
execution of a SystemC model is much more detailed than the execution of an RTL
model, both in temporal resolution and in the amount of information that is accessible
in the model. Existing specification languages fail to take advantage of this informa-
tion, and, as a result, designers are limited in the way they can apply assertion-based
verification to SystemC models. This dissertation identifies primitives that are essen-
tial to the execution of a SystemC model and elevates them to the Boolean layer of
PSL-like languages. Specifically, the phases of the kernel and notification of events are
exposed to the specification language, as well as the control flow, the call stack and
the source code statements of the model. These primitives are derived from an ab-
straction of the SystemC simulation semantics, and are independent of the particular
implementation of SystemC.

Simply allowing the specification to refer to these primitives is not sufficient by it-
self, because we also need a mechanism for determining if these primitives hold or not.
This issue can be split in two parts: determining the values of specification primitives
related to the execution of the kernel and notification of events, and determining the
values of primitives related to the execution of user code. This dissertation describes
a framework for exposing the actions of the kernel without prohibitively slowing down
the simulation speed. This is done by adding an intermediary object that observes

the actions of the kernel and also keeps track of the kernel phases (or event noti-

141

fications). When a sample point relevant to the execution of some set of monitors
is reached, only those monitors are activated. The functionality required for storing
and communicating with the monitors is incorporated in a few new objects that can
be added to existing implementations of SystemC. Only a few lines of existing kernel
code need to be modified to integrate the new functionality within the kernel. As a
result, the operations of the kernel are exposed using low overhead and in a highly
portable manner.

The second type of exposure required by the specification primitives is at the
source-code level of the SystemC model. Exposing the execution of functions calls
and their return is critical for specifying the behavior of SystemC models early in
the design stage. Exposing the values of class and module variables to the moni-
toring framework without interfering with the data encapsulation provided by the
object-oriented design allows using white-box verification transparently from the user
and without requiring extra annotations. Exposing the syntax allows sampling the
state of the user model at statement-level resolution. User-code exposure is achieved
using low-overhead instrumentation of the code via automatically generated Aspect-
Oriented Programming (AOP) advices.

The mechanisms for generating monitors for temporal properties present both
theoretical as well as practical challenges. Dynamic verification can only detect fail-
ure of properties if such failure happens after a finite number of steps. This is done
by detecting prefixes that cannot be extended to a correct execution trace. A very
elegant construction by d’Amorim and Rosu allows the construction of a nondetermin-
istic automaton on finite words that rejects precisely all bad prefixes for a particular
temporal property. Building a deterministic monitor from a nondeterministic au-
tomaton, however, requires making several algorithmic choices. One point of concern
is how to handle nondeterminism. This dissertation discusses two paths: explicit
determinization of the automaton or using on-the-fly determinization in the monitor.

Determinizing explicitly requires a way to represent as integers the Boolean formu-

142

las that guard the automaton transitions; this dissertation shows two mechanisms
how to achieve this task. A new optimization that detects and removes inconsistent
atomic propositions is also proposed. Five different options for encoding automata
as C++ monitors are described. All combinations of these algorithmic choices are
tested empirically on a wide variety of temporal formulas, and one configuration is
distinguished as having the best overall performance. It should also be pointed out
that the monitor generation techniques discussed here are applicable not only to Sys-
temC, but also to any verification framework that requires constructing monitors in
software.

This dissertation has made it possible to specify SystemC properties at fine-
grained temporal resolution, has proposed a low-overhead exposure of kernel state
and user-code state, has automated the instrumentation of user code and has demon-
strated techniques for generating low-overhead monitors automatically. These contri-
butions form a complete and efficient dynamic assertion-based verification framework

for SystemC.

7.2 Adopting the framework

Adopting the framework presented in this dissertation requires very little effort. This

section summarizes the necessary steps.

7.2.1 Adopting the new specification primitives

The framework presented in this dissertation exposes the operations of the SystemC
kernel and the user code in accordance with the specification primitives presented in
Chapter 3. One way one can take advantage of this framework is by incorporated
our proposed Boolean primitives in a specification language that has a temporal
layer, such as LTL, PSL, or SVA. Monitors can then be generated automatically from
properties. If the specification language supports clock expressions, the primitives can

be used further to control the temporal resolution of the execution trace. Another

143

way the user can use the framework is by constructing monitors manually and simply

using the provided exposure of the operations of the kernel and the user code.

7.2.2 Exposing the operations of the SystemC kernel

Adopting the monitoring framework presented in Chapter 4 requires adding the source
code of mon_observer and mon_prototype to the SystemC kernel source code.
In addition, the SystemC scheduler needs to be augmented with fewer than twenty
lines of code to make possible the communication between the scheduler and the
observer. In the reference implementation of SystemC provided by OSCI, the
source code files that will need to be modified are sysc/kernel/sc_simcontext .cpp
and sysc/kernel/sc_event.cpp. After that, the kernel will need to be re-
compiled and thereafter the new functionality described in this dissertation will
be available to the user. A patch that contains the new source code files and can
apply the required changes to the existing source code is available from http:

//www.cs.rice.edu/CS/Verification/

7.2.3 Exposing user code primitives

The approach presented in Chapter 5 uses an AOP tool called AspectC++ to instru-
ment automatically the user code. At the time of writing of this dissertation, this
tool is available for download for free from http://www.aspectc.org/. The
approach presented in this dissertation involves generating AOP advices from user-
provided declarations of primitives. We implemented a tool that parses the declara-
tions and generates the corresponding advices; the tool is available for free online at

http://www.cs.rice.edu/CS/Verification/.

7.2.4 Generating efficient monitors from properties

The work presented in Chapter 6 makes use of an LTL-to-automata tool called SPOT.
At the time of writing of this dissertation, SPOT is available for free from http:

144

//spot.lip6.fr/wiki/. Alphabet minimization is done using the gcc compiler,
available for free from http://gcc.gnu.org/. Determinization and minimization
of nondeterministic automata on finite words was done using a tool called BRICS
Automaton, available for free from http://www.brics.dk/automaton/. We
wrote a tool we call monitor master that integrates with SPOT to create the
nondeterministic automaton from which the monitor is built. We used the LBT for-
mat described at http://www.tcs.hut.fi/Software/maria/tools/1lbt/
as the output format. We extended BRICS Automaton to parse automata in LBT
format, perform determinization and minimization, and output the resulting automa-
ton in LBT format. We built into monitor_master the required functionality to
send the automaton to BRICS Automaton and parse the minimized automaton
without leaving monitor_ master. The tool then synthesizes a C++ monitor ac-
cording to the options selected by the user. monitor master is available for free

from http://www.cs.rice.edu/CS/Verification/.

7.3 Future directions

One possible extension of the work presented in this dissertation is on specifying
the power requirements of circuits. Recent work by Liu et al. [LTSA10] shows how
SystemC can be used for high-level power modeling. Dhanwada et al. [DLNO05] aug-
ment SystemC transaction-level models to perform transaction-level power estima-
tion. These and other existing techniques would benefit from a mechanism to specify
formally the power requirements of the system and to monitor the power consumption
estimation during simulation. Such specification can be done at different architectural
resolutions (e.g., at the system level or at level of individual modules), as well as at
different temporal resolution. A future direction of research is adapting th techniques
presented in this dissertation to monitor such specifications.

Another possible extension is in monitoring analog and mixed signals in Sys-

temC models. OSCI announced recently an integration of analog and mixed signals

145

(AMS) in SystemC [GBVEQ08]. The new extension provides functional modeling, ar-
chitectural exploration, virtual prototyping, and integration validation for ”embedded
analog/mixed-signal systems.” In order to maintain an acceptable simulation perfor-
mance while modeling the architecture’s behavior with sufficient accuracy, the AMS
framework requires using dedicated simulation kernels synchronized with the standard
SystemC kernel [GBVEOS]. Thus, integrating the monitoring framework presented in
this dissertation with the new AMS simulation framework would require establishing
a new abstraction of the interplay between the different AMS simulation kernels, as

well as defining a new notion of an execution trace.

© 00O U W

R e
_w N = O

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

Appendix A

Source code of the Adder model

#ifndef ADDER H
#define ADDER H

#include "global.h"

##ifdef WITH OBSERVER

extern mon observer* observer;

#endif

class adder : public sc_module {
SC_HAS PROCESS (adder) ;

public:

// The constructor
adder (sc_module_name module_name, int num_mons) ;

sc_in < int > inputl, input2;
sc_out< int > result;

void driver() ;
void do_addil();

protected:

int _a;

sc_event addition_event;

sc_event driver event;

sc_event addl_activate_event;
}; //class

146

34

© 00O Uk W

[g et
DU WN O

17
18
19
20

21

22
23

24
25
26
27
28

29

30
31
32
33

34
35

#endif
Listing A.1: Source code of adder.h

#include "adder.h"

// The constructor
adder: :adder (sc_module_name module_name, int num_mons)
sc_module (module name) {

SC_THREAD(driver);
sensitive << inputl << input2;

void
adder: :driver() ({
DP->dprint (4, "driver(): Start execution\n");

while (true) {

DP->dprint (5, "driver(): Suspending until the values on the
inputs change\n") ;
wait (inputl.value changed event() | input2.

value changed event());

DP->dprint (5, "driver(): The values on the inputs have
changed\n") ;

DP->dprint (5, "driver(): Reading from the input ports\n");

int addentl = inputl.read();

int addent2 = input2.read();

147

DP->dprint (5, "driver(): inputl = %4, input2 = %d\n", addentl

, addent2) ;

DP->dprint (5, "driver(): Initialize the local memory to %d
and spawn %d processes\n", addentl, addent2);

_a = addentl;

for (int i=0; i < addent2; i++) {

DP->dprint (5, "driver(): Spawning an addl process (seq %d)\

n", i+1);
sc_spawn(sc_bind(&adder::do_addl, this));

}

148

36

37 // Allow the do_addl() processes to initialize

38 // by suspending until the next delta-cycle

39 DP->dprint (5, "driver(): Notifying the driver event (
SC_ZERO_TIME delay)\n");

40 driver event.notify(SC_ZERO_TIME) ;

41

42 DP->dprint (5, "driver(): Suspending until the driver event is
notified\n");

43 wait (driver_ event) ;

44

45 DP->dprint (5, "driver(): Resume execution after the driver
event is notified\n");

46

47 DP->dprint (5, "driver(): notifying the addition event (
immediate notification)\n");

48 addl activate_event.notify();

49

50 // Suspend for a delta-cycle to allow all

51 // computations to complete

52 DP->dprint (5, "driver(): Notifying the driver event (
SC_ZERO_TIME delay)\n");

53 driver_event.notify(SC_ZERO_TIME) ;

54

55 DP->dprint (5, "driver(): Suspending until the driver event is
notified\n");

56 wait (driver event);

57

58 DP->dprint (5, "driver(): Resume execution after the driver
event is notified\n");

59

60 DP->dprint (5, "driver(): Writing the result (%d) to the \"
result\" port\n", _a);

61 result.write(a);

62 }

63 :

64 //Unreachable

65 DP->dprint (4, "driver(): Finished execution. The value of the

addent is %d\n", _a);

66 assert (false) ;

67 }

68

69

70 wvoid

71 adder::do_addi() {

72

73

74
75
76
77

78
79
80
81

82
83
84
85
86

87

© 00O Uk WN

DN DN b= = = e e
O © 00N Uk WNHO

DP->dprint (4,
addent is
DP->dprint (6,

149

"do_addl(): Starting execution. The value of
%¥d\n", _a);
"do_addl(): Suspending until the waiting event is

notified\n");

wait (addl_activate_event); N

DP->dprint (6,
event was

"do_addl(): Resuming execution after waiting
notified\n") ;

(La) = (La) + 1;

DP->dprint (7,

"do_addl(): The value of the addent was

incremented\n") ;

DP->dprint (6,

"do_addl(): notifying the addition event\n");

addition_event.notify(); //immediate notification

DP->dprint (4,
addent is

"do _addl(): finishing execution. The value of
%d\n" ’ _a) H

Listing A.2: Source code of adder.cc

#ifndef DRIVER H

#define DRIVER .

H

#include "global.h"

class driver:public sc_module {

SC_HAS_PROCESS(driver) ;

public:

// The constructor
driver(sc_module name module name, int input);

// Input and
sc_out <int>
sc_in <int>

sc_in <bool>

output ports
outputl, output2;
result;

clk;

22
23
24
25
26
27
28
29
30
31
32

UL WN

10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

150

protected:
// Local memory
int initial_number;
int running total;

void generate_task() ;
void get_result();

}i

#endif
Listing A.3: Source code of driver.h

#include "driver.h"

VAL
* The constructor
*/
driver: :driver (sc_module name module_name, int input) :sc_module (
module name) {
initial number = input;
running_total = 0;

// Initialize the output ports to guarantee deterministic
simulation

outputl.initialize(0);

outputl.initialize(0);

// This process will not be initialized
SC_THREAD (generate_task) ;

sensitive << clk.pos();
dont_initialize();

// Notice that this process will not be initialized
SC_METHOD (get_result) ;

sensitive << result;

dont_initialize();

/**
* Generates a new problem for the connected arithmetic unit
*/

void

151

30 driver::generate task() {

31 DP->dprint (4, "generate task(): started execution\n") ;

32

33 for (int i = 0; i < initial number; i++) {

34

35 int to_outputl = running total;

36 int to_output2 = initial number;

37

38 DP->dprint (6, "generate task(): writing %d to port \"outputl
\"\n", to_ outputl);

39 outputl.write(to_outputl);

40

41 DP->dprint (6, "generate task(): writing %d to port \"output2
\"\n", to_output2);

42 output2.write(to output2);

43

44 DP->dprint (5, "generate task(): suspending until the next
clock tick\n");

45 wait();

46

47 DP->dprint (5, "generate_ task(): resuming after return from \"
wait ()\"\n");

48)

49

50

51 DP->dprint (4, "generate task(): finished execution\n");

52

53 DP->dprint (2, "generate task(): %d = 2 = %d\n", initial number
, running total);
54 sc_stop() ;

55

56 }

57

58

59 /**

60 * Checks the result of the operation
61 =*/

62 void

63 driver::get_result() {

64 DP->dprint (4, "check result(): started execution\n");
65

66 DP->dprint (5, "check result(): reading from port

67 \"result\"\n");

68

69 running total = result.read();

70
71

72
73
74

N O Ut W N

152

DP->dprint (5, "check result(): the value of the port is %d\n",
running_total) ;

DP->dprint (4, "check_result(): finished execution\n");

}

#ifndef GLOBAL_H
#define GLOBAL H

Listing A.4: Source code of driver.cc

#include "debug printer.h"
#include <systemc.h>

#endif

Listing A.5: Source code of global.h

[ABG+00]

[AFF+02]

[AKT*06]

[BBLYS)

[BCC+05]

153

Bibliography

Y. Abarbanel, I. Beer, L. Gluhovsky, S. Keidar, and Y. Wolfsthal. Focs:
Automatic generation of simulation checkers from formal specifications.
In CAV’00: Proc. of the 12th International Conference on Computer
Aided Verification, pages 538-542, 2000.

R. Armoni, L. Fix, A. Flaisher, R. Gerth, B. Ginsburg, T. Kanza,
A. Landver, S. Mador-Haim, E. Singerman, A. Tiemeyer, M.Y. Vardi,
and Y. Zbar. The ForSpec temporal logic: A new temporal property-
specification logic. In Proc. 8th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, volume
2280 of LNCS, pages 296-211, Grenoble, France, April 2002. Springer-
Verlag.

R. Armoni, D. Korchemny, A. Tiemeyer, M.Y. Vardi, and Y. Zbar.
Deterministic dynamic monitors for linear-time assertions. In Proc.
Workshop on Formal Approaches to Testing and Runtime Verification,

volume 4262 of Lecture Notes in Computer Science. Springer, 2006.

I. Beer, S. Ben-David, and A. Landver. On-the-fly model checking of
RCTL formulas. In Computer Aided Verification, Proc. 10th Inter-

national Conference, volume 1427 of LNCS, pages 184-194. Springer-
Verlag, 1998.

L. Burdy, Y. Cheon, D. Cok, M. D. Ernst, J. Kiniry, G. T. Leavens,
K. R. M. Leino, and E. Poll. An overview of JML tools and appli-
cations. Software Tools for Technology Transfer, 7(3):212-232, June

[BCH*04]

[BDO5]

[Ber03]

[BFO3]

[BFHO5]

[BGMO4]

[BGRO2]

[BK10]

[BLS06]

154

2005.

D. Beyer, A. J. Chlipala, T. A. Henzinger, R. Jhala, and R. Majumdar.
The BLAST query language for software verification. In SAS’04: Static
Analysis, 11th International Symposium, pages 2-18, 2004.

D. C. Black and J. Donovan. SystemC: From the Ground Up. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2005.

J. Bergeron. Writing Testbenches: Functional Verification of HDL
Models, Second Edition. Springer, February 2003.

B. F. Bass and H. D. Foster. System and method for specifying hard-
ware description language assertions targeting a diverse set of verifica-

tion tools. Patent, 07 2003. US 6591403.

D. Bustan, D. Fisman, and J. Havlicek. Automata construction for

PSL. Technical report, The Weizmann Institute of Science, 2005.

A. Bunker, G. Gopalakrishnan, and S. A. McKee. Formal Hardware
Specification Languages for Protocol Compliance Verification. ACM

Transactions on Design Autom. of Elec. Sys., 9(1):1-32, January 2004.

A. Braun, J. Gerlach, and W. Rosenstiel. Checking temporal proper-
ties in SystemC specifications. High-Level Design Validation and Test
Workshop, 2002. Tth IEEE International, pages 23-27, Oct. 2002.

N. Blanc and D. Kroening. Race analysis for systemc using model

checking. ACM Trans. Des. Autom. Electron. Syst., 15(3):1-32, 2010.

A. Bauer, M. Leucker, and C. Schallhart. Monitoring of real-time
properties. In FSTTCS’06: Foundations of Software Technology and
Theoretical Computer Science, 26th International Conference, volume

4837 of LNCS, pages 260-272. Springer, 2006.

[Bod05)

[BRO2

[Bry86]

[Bry92]

[Biic62]

[BZ08]

[CA02]

[CCH*99]

[CDHRO02]

155

E. Bodden. Efficient and expressive runtime verification for Java. In
Grand Finals of the ACM Student Research Competition 2005, 2005.
Winner paper of the Grand Finals.

T. Ball and S. Rajamani. SLIC: A specification language for interface
checking. Technical report, Microsoft Research, January 2002.

R.E. Bryant. Graph-based algorithms for Boolean-function manipula-

tion. IEEE Trans. on Computers, C-35(8), 1986.

R.E. Bryant. Symbolic boolean manipulation with ordered binary-

decision diagrams. ACM Computing Surveys, 24(3):293-318, 1992.

J.R. Biichi. On a decision method in restricted second order arithmetic.
In Proc. Internat. Congr. Logic, Method. and Philos. Sci. 1960, pages
1-12, Stanford, 1962. Stanford University Press.

M. Boulé and Z. Zilic. Generating Hardware Assertion Checkers.
Springer Publishing Company, Incorporated, 2008.

L. Charest and E. M. Aboulhamid. A VHDL/SystemC comparison in
handling design reuse. In Proceedings of 2002 International Workshop

on System-on-Chip for Real-Time Applications, pages 79-85, Banff,
Canada, July 2002.

H. Chang, L. Cooke, M. Hunt, G. Martin, A. J. McNelly, and L. Todd.
Surviving the SOC revolution: a guide to platform-based design. Kluwer

Academic Publishers, Norwell, MA, USA, 1999.

James C. Corbett, Matthew B. Dwyer, John Hatcliff, and Robby. Ex-
pressing checkable properties of dynamic systems: the Bandera Speci-
fication Language. International Journal on Software Tools for Tech-

nology Transfer (STTT), 4(1):34-56, 2002.

[CES1]

[CHO7]

[Chu57]

[CRO7]

[CT04]

[CVWY92]

[DGO02]

[DGV99]

156

E.M. Clarke and E.A. Emerson. Design and synthesis of synchroniza-
tion skeletons using branching time temporal logic. In Proc. Workshop
on Logic of Programs, volume 131 of LNCS, pages 52-71. Springer-
Verlag, 1981.

H. B. Carter and S. G. Hemmady. Metric Driven Design Verification.
Springer Publishing Company, Incorporated, 2007.

Alonzo Church. Application of recursive arithmetic to the problem of
circuit synthesis,. In Summaries of talks presented at the Summer In-
stitute for Symbolic Logic, Cornell University 1957, pages 3—50, Prince-
ton, 1957. Institute for Defense Analyses.

F. Chen and G. Rogu. MOP: an efficient and generic runtime veri-
fication framework. In OOPSLA ’07: Object-Oriented Programming,
Systems, Languages and Applications, pages 569-588, New York, NY,
USA, 2007. ACM.

K. D. Cooper and L. Torczon. Engineering a Compiler. Morgan Kauf-
mann, 2004.

C. Courcoubetis, M.Y. Vardi, P. Wolper, and M. Yannakakis. Memory
efficient algorithms for the verification of temporal properties. Formal

Methods in System Design, 1:275-288, 1992.

R. Drechsler and D. Grole. Reachability analysis for formal verifica-
tion of SystemC. In Furomicro Symposium on Digital Systems Design,

pages 337-340, 2002.

M. Daniele, F. Giunchiglia, and Moshe Y. Vardi. Improved automata
generation for linear temporal logic. In CAV ’99: Proc. 11th Int. Conf.
on Computer Aided Verification, pages 249-260, London, UK, 1999.
Springer-Verlag.

[dHO5)

[DLNOS5]

[DLP04]

[DMO6]

[dMBO08]

[dRO5]

[EES*05]

[EES*06]

157

M. d’Amorim and K. Havelund. Event-based runtime verification of
java programs. In WODA ’05: Proceedings of the third international
workshop on Dynamic analysis, pages 1-7, New York, NY, USA, 2005.
ACM.

N. Dhanwada, I. Lin, and V. Narayanan. A power estimation method-
ology for systemc transaction level models. In CODES+ISSS ’05:
Proceedings of the 3rd IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis, pages 142-147, New

York, NY, USA, 2005. ACM.

A. Duret-Lutz and D. Poitrenaud. SPOT: An extensible model check-
ing library using transition-based generalized Biichi automata. Model-

ing, Analysis, and Simulation of Computer Systems, 0:76-83, 2004.

D. Déharbe and S. Medeiros. Aspect-oriented design in SystemC: im-
plementation and applications. In SBCCI ’06: Proceedings of the 19th
annual symposium on Integrated circuits and systems design, pages

119-124, New York, NY, USA, 2006. ACM.

L. Mendonga de Moura and N. Bjgrner. Z3: An efficient SMT solver.
In TACAS’08: Tools and Algorithms for the Construction and Analysis
of Systems, 14th International Conference, pages 337-340, 2008.

M. d’Amorim and G. Rogu. Efficient monitoring of w-languages. In
Proc. 17th International Conference on Computer Aided Verification,

pages 364-378, 2005.

W Ecker, V Esen, T Steininger, M Velten, and J Smit. Implementation
of a SystemC assertion library, 2005.

W. Ecker, V. Esen, T. Steininger, M. Velten, and M. Hull. Specification

[EF06)

[EFBO1]

[EITKO08]

[FKLO03)

[Fos08]

[FS04]

[GBA*99]

[GBVEOS]

158

language for Transaction Level Assertions. HLDVT’06: IEEE Interna-
tional High-Level Design, Validation, and Test Workshop, pages 77-84,
2006.

C. Eisner and D. Fisman. A Practical Introduction to PSL. Springer,
New York, Inc., Secaucus, NJ, USA, 2006.

T. Elrad, R. E. Filman, and A. Bader. Aspect-oriented programming:
Introduction. Commun. ACM, 44(10):29-32, 2001.

Y. Endoh, T. Imai, M. Iwamasa, and Y. Kataoka. A pointcut-based
assertion for high-level hardware design. In ACP4IS ’08: Proc. AOSD

workshop on Aspects, components, and patterns for infrastructure soft-

ware, pages 1-6, New York, NY, USA, 2008. ACM.

H. Foster, A. Krolnik, and D. Lacey. Assertion-Based Design. Kluwer
Academic Publishers, Norwell, MA, USA, 2003.

H. Foster. Assertion-based verification: Industry myths to realities
(invited tutorial). In CAV ’08: Proceedings of the 20th international
conference on Computer Aided Verification, pages 5-10, Berlin, Hei-

delberg, 2008. Springer-Verlag.

B. Finkbeiner and H. Sipma. Checking finite traces using alternating
automata. Form. Methods Syst. Des., 24(2):101-127, 2004.

D. Geist, G. Biran, T. Arons, M. Slavkin, Y. Nustov, M. Farkas,
K. Holtz, A. Long, D. King, and S. Barret. A methodology for the
verification of a “system on chip”. In DAC ’99, Proc. 36th Design
Automation Conference, pages 574-579, New York, NY, 1999. ACM.

C. Grimm, M. Barnasconi, A. Vachoux, and K. Einwich. An introduc-

tion to modeling embedded analog/mixed-signal systems using systemc

[GDO3]

[Gei01]

[GHO1]

[GHO6)

[Ghe06]

[GHTO4]

[GLMS02]

[Goe05]

[GPVWO5]

159

ams extensions. White Paper, 2008. Available online.

D. Grofie and R. Drechsler. Formal verification of LTL formulas for

SystemC designs. In ISCAS (5), pages 245-248, 2003.

M. Geilen. On the construction of monitors for temporal logic proper-

ties. Electr. Notes Theor. Comput. Sci., 55(2), 2001.

D. Giannakopoulou and K. Havelund. Automata-based verification of
temporal properties on running programs. In Int. conf. on Automated

Software Engineering, page 412, Washington, DC, USA, 2001. IEEE.

J. Geldenhuys and H. Hansen. Larger automata and less work for
LTL model checking. In In Model Checking Software, 13th Int. SPIN
Workshop, volume 3925 of LNCS, pages 53-70. Springer, 2006.

F. Ghenassia. Transaction-Level Modeling with Systemc: TLM Con-
cepts and Applications for Embedded Systems. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2006.

A. Gawanmeh, A. Habibi, and S. Tahar. Enabling SystemC verification
using Abstract State Machines. In Proc. Languages for Formal Specifi-

cation and Verification, Forum on Specification and Design Languages,

2004.

T. Grotker, S. Liao, G. Martin, and S. Swan. System Design with
SystemC. Kluwer Academic Publishers, Norwell, MA, USA, 2002.

R. Goering. A call to action for the EDA industry. EETimes, June
2005. Available online.

R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper. Simple on-the-fly

automatic verification of Linear Temporal Logic. In P. Dembiski and

[GSPS01]

[HGTO4]

[HJO8]

[HIMS03]

[HMMCMO6]

[Hoo08]

[HTO04]

160

M. Sredniawa, editors, Protocol Specification, Testing, and Verification,

pages 3-18. Chapman & Hall, August 1995.

A. Gal, W. Schrder-Preikschat, and O. Spinczyk. AspectC++:
Language proposal and prototype implementation. In OOPSLA’01:
Object-Oriented Programming, Systems, Languages and Applications,

2001.

A. Habibi, A. Gawanmeh, and S. Tahar. Assertion based verification of
PSL for SystemC designs. In International Symp. on System-on-Chip,
pages 177-180, 2004.

K. W. Hamlen and M. Jones. Aspect-oriented in-lined reference moni-
tors. In PLAS ’08: Proceedings of the third ACM SIGPLAN workshop
on Programming languages and analysis for security, pages 11-20, New

York, NY, USA, 2008. ACM.

T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software verifica-
tion with BLAST. In Tenth International Workshop on Model Checking
of Software (SPIN), volume LNCS 2648, 2003.

C. Helmstetter, F. Maraninchi, L. Maillet-Contoz, and M. Moy. Au-
tomatic generation of schedulings for improving the test coverage of
Systems-on-a-Chip. In FMCAD ’06: Proceedings of the Formal Meth-
ods in Computer Aided Design, pages 171-178, Washington, DC, USA,
2006. IEEE Computer Society.

H. H. Hoos. Computer-aided design of high-performance algorithms.
Technical report, University of British Columbia, 2008.

A. Habibi and S. Tahar. On the extension of SystemC by SystemVer-
ilog assertions. FElectrical and Computer Engineering, 2004. Canadian

Conf. on, 4:1869-1872 Vol .4, 2-5 May 2004.

[HU79]

[IEE06]

[1S03]

[KEP06)

[KHT04]

[KIL*97]

[KLO6]

[KS05)

161

J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, 1979.

IEEE Std 1666 - 2005 IEEE Standard SystemC Language Reference
Manual, 2006.

C. Ip and S. Swan. A tutorial introduction on the new SystemC veri-

fication standard. White paper, 2003. Available online (6 pages).

D. Karlsson, P. Eles, and Z. Peng. Formal verification of SystemC
designs using a Petri-net based representation. In DATE ’06: Pro-
ceedings of the conf. on Design, automation and test in Europe, pages
1228-1233, 3001 Leuven, Belgium, Belgium, 2006. European Design

and Automation Association.

A. Kasuya, E. Hawk, and T. Tesfaye. Verification applications of
aspect-oriented-programming (AOP). In DvCON’04: Design and Ver-
ification Conference, 2004.

G. Kiczales, J. Irwin, J. Lamping, J. Loingtier, C. V. Lopes, C. Maeda,
and A. Mendhekar. Aspect-oriented programming. In ECOOP’97:
European Conference on Object-Oriented Programming, pages 220-242,
1997.

O. Kupferman and R. Lampert. On the construction of fine automata
for safety properties. In ATVA’06: Proc. of the International Sym-
posium on Automated Technology for Verification and Analysis, pages

110-124, 2006.

D. Kroening and N. Sharygina. Formal verification of SystemC by
automatic hardware/software partitioning. In MEMOCODE’05: 3rd
ACM/IEEE International Conference on Formal Methods and Models
for Codesign, pages 101-110, 2005.

[KT07]

[KTZ06]

[KVO01]

[Lam05]

[LS09]

[LTSA10]

[MABOS6)

[MMMCO5]

162

A. Kasuya and T. Tesfaye. Verification methodologies in a TLM-to-
RTL design flow. In DAC’07: Proc. 44th Design Automation Confer-
ence, pages 199-204, 2007.

A. Kasuya, T. Tesfaye, and E. Zhang. Native SystemC Assertion mech-
anism with transaction and temporal assertion support. In EDA Tech

Forum (Available Online), September 2006.

O. Kupferman and M.Y. Vardi. Model checking of safety properties.
Formal methods in System Design, 19(3):291-314, November 2001.

W. K. Lam. Hardware Design Verification: Simulation and Formal
Method-Based Approaches (Prentice Hall Modern Semiconductor De-
sign Series). Prentice Hall PTR, Upper Saddle River, NJ, USA, 2005.

M. Leucker and C. Schallhart. A brief account of runtime verification.
Journal of Logic and Algebraic Programming, 78(5):293 — 303, 2009.
The 1st Workshop on Formal Languages and Analysis of Contract-
Oriented Software (FLACOS’07).

F. Liu, Q. Tan, X. Song, and N. Abbasi. Aop-based high-level power
estimation in systemc. In GLSVLSI ’10: Proceedings of the 20th sym-
posium on Great lakes symposium on VLSI, pages 353-356, New York,
NY, USA, 2010. ACM.

K. Morin-Allory and D. Borrione. Proven correct monitors from PSL
specifications. In DATE’06: Proc. Conf. on Design, automation and
test in Europe, pages 1246-1251. European Design and Automation
Association, 2006.

M. Moy, F. Maraninchi, and L. Maillet-Contoz. LusSy: A toolbox for

the analysis of systems-on-a-chip at the transactional level. In Inter-

[MMMCO6]

[MMS90]

[Mg04]

[Moo65]

[Moo75)

[Moo095]

[Moy05]

[NdPF+03]

[NHO6]

163

national Conf. on Application of Concurrency to System Design, June

2005.

M. Moy, F. Maraninchi, and L. Maillet-Contoz. LusSy: an open tool
for the analysis of systems-on-a-chip at the transaction level. Design

Automation for Embedded Systems, 2006.

L. E. Moser and P. M. Melliar-Smith. Formal verification of safety-
critical systems. Softw. Pract. Ezxper., 20(9):799-811, 1990.

A. Mgller. dk.brics.automaton. http://www.brics.dk/automaton/,
2004.

G. E. Moore. Cramming more components onto integrated circuits.

FElectronics, 38(8):114-117, April 1965.

G. E. Moore. Progress in digital electronics. In Technical Digest of the
Internlational Electron Devices Meeting. IEEE Press, 1975.

G. E. Moore. Lithography and the future of Moore’s Law. In Proc.
Society of Photo-Optical Instrumentation Engineers, volume 25, 1995.

Matthieu Moy. Techniques and Tools for the Verification of Systems-
on-a-Chip at the Transaction Level. PhD thesis, INPG, Grenoble,
France, December 2005.

J. A. Nacif, F. M. de Paula, H. D. Foster, C. J. N. Coelho Jr., F. C.
Sica, D. C. da Silva Jr., and A. O. Fernandes. An assertion library for
on-chip white-box verification at run-time. In Proceedings of the 4th
IEEEFE Latin-American Test Workshop (LATW’03), Natal, RN, Brazil,
February 2003.

B. Niemann and C. Haubelt. Assertion-based verification of transaction

level models. In ITG/GI/GMM Workshop, pages 232-236, 2006.

[OHO5]

[Pet81]

[PFO8]

[PF10]

[Piz07]

[Pnu77]

[Pri57]

[PSLO7]

[RVO07]

[SB06)

[SGSP02]

164

P. @hrstrgm and P.F.V. Hasle. Temporal logic: from ancient times to
artificial intelligence. Studies in Linguistics and Philosophy, 57, 1995.

James L. Peterson. Petri Net Theory and the Modeling of Systems.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 1981.

L. Pierre and L. Ferro. A tractable and fast method for monitor-
ing SystemC TLM specifications. IEEE Transactions on Computers,
57:1346-1356, 2008.

L. Pierre and L. Ferro. Enhancing the assertion-based verification of
TLM designs with reentrancy. In Proc. 8th Int’l Conf. on Formal Meth-
ods and Models for Codesign. IEEE, July 2010.

A. Piziali. Functional Verification Coverage Measurement and Analy-

sis. Springer Publishing Company, Incorporated, 2007.

A. Pnueli. The temporal logic of programs. In Proc. 18th IEEE Symp.
on Foundation of Computer Science, pages 46-57, 1977.

A. Prior. Time and Modality. Oxford University Press, 1957.

Standard for property specification language (PSL). IEC 62581:2007
(E), pages 1-156, 2007.

Kristin Y. Rozier and Moshe Y. Vardi. LTL satisfiability checking.
In Proc. 14th Int. SPIN conference on Model checking software, pages
149-167, Berlin, Heidelberg, 2007. Springer.

Volker Stolz and Eric Bodden. Temporal assertions using AspectJ.

Electron. Notes Theor. Comput. Sci., 144(4):109-124, 2006.

O. Spinczyk, A. Gal, and W. Schréder-Preikschat. AspectC++: an
aspect-oriented extension to the C++ programming language. In CR-
PIT ’02: Proceedings of the Fortieth International Conference on Tools

[SOA0S]

[Syn02]

[TCMMO07]

[TLSS10]

[TVO5]

[TV10a]

[TV10b]

[TVKS08]

165

Pacific, pages 53—-60, Darlinghurst, Australia, Australia, 2002. Aus-

tralian Computer Society, Inc.

A. Sen, V. Ogale, and M. S. Abadir. Predictive runtime verification of
multi:processor socs in systemec. In DAC ’08: Proceedings of the 45th
annual Design Automation Conference, pages 948-953, New York, NY,

USA, 2008. ACM.

Inc. Synopsis. Assertion-based verification. White Paper, May 2002.

Available online.

C. Traulsen, J. Cornet, M. Moy, and F. Maraninchi. A SystemC/TLM
semantics in Promela and its possible applications. In 14th Workshop

on Model Checking Software SPIN, July 2007.

R. Tartler, D. Lohmann, F. Scheler, and O. Spinczyk. AspectC++:
An integrated approach for static and dynamic adaptation of system

software. Knowledge-Based Systems, 2010(in press), 2010.

D. Tabakov and M. Y. Vardi. Experimental evaluation of classical
automata constructions. In LPAR’05, 12th Int. Conf. on Logic for
Programming, Artificial Intelligence, and Reasoning, pages 396-411,
2005.

D. Tabakov and M.Y. Vardi. Monitoring temporal SystemC properties.
In Proc. 8th Int’l Conf. on Formal Methods and Models for Codesign,
pages 123-132. IEEE, July 2010.

D. Tabakov and M.Y. Vardi. Optimized temporal monitors for Sys-
temC. In Runtime Verification, 2010.

D. Tabakov, M.Y. Vardi, G. Kamhi, and E. Singerman. A temporal
language for SystemC. In FMCAD ’08: Proc. Int. Conf. on Formal

[Var07]

[Var09]

[Vel05]

[VRO5]

[VW94]

[Win93)]

[WVS83)

166

Methods in Computer-Aided Design, pages 1-9. IEEE Press, 2008.

M. Y. Vardi. Formal techniques for SystemC verification. In DAC

’07: Proceedings of the 44th annual conf. on Design automation, pages

188-192, New York, NY, USA, 2007. ACM.

M. Y. Vardi. From philosophical to industrial logics. In ICLA ’09:
Proceedings of the 8rd Indian Conference on Logic and Its Applications,
pages 89-115, Berlin, Heidelberg, 2009. Springer-Verlag.

Todd L. Veldhuizen. C++ templates are Turing complete, 2005.

S. Vijayaraghavan and M. Ramanathan. A Practical Guide for Sys-
tem Verilog Assertions. Springer, New York, NY, USA, 2005.

M.Y. Vardi and P. Wolper. Reasoning about infinite computations.
Information and Computation, 115(1):1-37, November 1994.

G. Winskel. The formal semantics of programming languages: an in-

troduction. MIT Press, Cambridge, MA, USA, 1993.

P. Wolper, M.Y. Vardi, and A.P. Sistla. Reasoning about infinite com-
putation paths. In Proc. 24/th IEEE Symp. on Foundations of Computer
Science, pages 185-194, Tucson, 1983.

167

Index

advice (AOP), 90

assertion-based verification, 8-10

Biichi automaton, 39, 111
bad prefix, 111
BDD, see binary decision diagram

binary decision diagram, 115

computation tree logic, 9, 39

CTL, see computation tree logic

design under verification, see model un-
der verification

deterministic finite word automaton, 14,
112

DFW, see deterministic finite word au-
tomaton

DUV, see design under verification

dynamic verification, 6, 7

EDA, see electronic design automation
electronic design automation, 3
equivalence checking, 5

event notification, 30

execution trace, 45, 52

FoCs, 9

formal verification, 5, 7
ForSpec, 39

functional verification, 6
introduction (AOP), 90

Jeda Technologies
NSCa, 42
TLA, 42

join point (AOP), 90

linear temporal logic, 39, 109, 112

LTL, see linear temporal logic

MAS, see micro-architecture specifica-
tion

micro-architecture specification, 2

model under verification, 6, 18, 41, 44

Moore’s Law, 1

MUYV, see model under verification

NBW, see nondeterministic Biichi au-
tomaton on words

NFW, see nondeterministic finite word
automaton

nondeterministic Biichi automaton on

words, 111

nondeterministic finite word automaton,
112
NSCa, see Jeda Technologies, NSCa

pointcut (AOP), 90

PSL, 39, 112
clock expression, 40
semantics, 40—41
SERE, 40

PSL Layers
Boolean, 40, 53
Modeling, 40
Temporal, 40
Verification, 40

register transfer level, 2
regular expressions, 9

runtime verification, 6

SCV, see SystemC Verification Stan-
dard
SERE, see PSL, SERE
SoC, see system-on-chip
Sugar, 39
SVA, 39
system-on-chip, 2, 16
SystemC, 3
abstraction, 4, 35
channels, 24

delta cycle, 18

168

delta-delayed notification, 30

events, 29—49

immediate event notification, 30

interfaces, 23

kernel phases, 35, 46

modules, 18-22

ports, 23

process, 19

SC_CTOR, 18

SC_.MODULE, 18

sensitivity list, 19

time-delayed notification, 30
SystemC Assertion Library, 42
SystemC Verification Standard, 41

SystemVerilog, 39

TLA, see Jeda Technologies, TLA
TLM, see Transaction Level Modeling
Transaction Level Modeling, 4, 50

user code specification, 44

verification, 5, 8
black box, 6, 44
white box, 6, 7

