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ABSTRACT 

Calibration of Flush Air Data Sensing Systems Using Surrogate Modeling Techniques 

by 

Ankur Srivastava 

In this work the problem of calibrating Flush Air Data Sensing (FADS) has been 

addressed. The inverse problem of extracting freestream wind speed and angle of attack 

from pressure measurements has been solved. The aim of this work was to develop 

machine learning and statistical tools to optimize design and calibration of FADS 

systems. Experimental and Computational Fluid Dynamics (EFD and CFD) solve the 

forward problem of determining the pressure distribution given the wind velocity profile 

and bluff body geometry. In this work three ways are presented in which machine 

learning techniques can improve calibration ofF ADS systems. 

First, a scattered data approximation scheme, called Sequential Function 

Approximation (SF A) that successfully solved the current inverse problem was 

developed. The proposed scheme is a greedy and self-adaptive technique that constructs 

reliable and robust estimates without any user-interaction. Wind speed and direction 

prediction algorithms were developed for two FADS problems. One where pressure 

sensors are installed on a surface vessel and the other where sensors are installed on the 

Runway Assisted Landing Site (RALS) control tower. 



iii 

Second, a Tikhonov regularization based data-model fusion technique with SF A was 

developed to fuse low fidelity CFD solutions with noisy and sparse wind tunnel data. 

The purpose of this data model fusion approach was to obtain high fidelity, smooth and 

noiseless flow field solutions by using only a few discrete experimental measurements 

and a low fidelity numerical solution. This physics based regularization technique gave 

better flow field solutions compared to smoothness based solutions when wind tunnel 

data is sparse and incomplete. 

Third, a sequential design strategy was developed with SF A using Active Learning 

techniques from the machine learning theory and Optimal Design of Experiments from 

statistics for regression and classification problems. Uncertainty Sampling was used with 

SF A to demonstrate the effectiveness of active learning versus passive learning on a 

cavity flow classification problem. A sequential G-optimal design procedure was also 

developed with SF A for regression problems. The effectiveness of this approach was 

demonstrated on a simulated problem and the above mentioned FADS problem. 
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Chapter 1 

Introduction 

Intrusive aircraft anemometer booms have long been successfully used to measure 

air data parameters for subsonic and supersonic flight. Rapid development in aerospace 

and naval technology has continuously demanded smaller and more accurate air data 

systems. The performance of probe based air data systems suffer at high angles of attack 

or when dynamic maneuvering is required. These same conditions can lead to degraded 

flying handling qualities [1]. Errors due to vibration, poor alignment and physical damage 

during operation or maintenance can also pose significant limitations on the use of 

protruding booms. Probe based air data systems cannot be used with stealthy air or 

surface vessels because they increase the total radar cross section of the vessel which can 

potentially jeopardize the mission and risk human lives. Hypersonic flight regimes are 

another area where probe based air data systems cannot be used because the vehicle nose 

reaches extremely high temperatures that might melt the protruding boom. Also, such 

flow protruding booms cannot be used with research aircraft or surface vessels without 

disturbing the airflow or the boundary layer. Finally, air data booms are too heavy and 

costly to use with unmanned micro air vehicles (MA Vs) [2]. Reference [2] mentions that 

an 80% decrease in instrumentation weight and a 97% decrease in instrumentation cost 

can be gained by eliminating probe based air data systems from MA V s. 

In order to overcome the above mentioned drawbacks, Flush Air Data· Sensing 

(FADS) systems were developed. A popular flush air data system is a series of pressure 
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taps mounted on a vehicle periphery that can be used to derive airflow parameters. FADS 

were first developed during the X-15 program. A hemispherical nose with pressure 

sensors was installed on this hypersonic aircraft to measure stagnation pressure and wind 

direction during re-entry [3]. Further research on FADS for hypersonic vehicles was 

conducted during the Space Shuttle program [4]. After enjoying success on hypersonic 

flights the compatibility ofF ADS were tested on supersonic and subsonic flight regimes. 

The authors of the reference [5] developed and flight tested a flush air data sensing 

system for the F-18 Systems Research Aircraft (Fig. 1.1). The authors concluded that the 

developed non-intrusive technique was clearly superior to the probe based air data 

systems. They showed that FADS were unaffected by dynamic flight maneuvers and they 

performed well in high angle of attack flights. FADS are also unaffected by vibration, 

icing effects and are less prone to damage during operation and maintenance. They are an 

ideal choice for stealth vessels because they are self-sustained and give no additional 

radar cross-sectional area to the vessel signature. 

Other non-intrusive air data systems include flush mounted optical air data systems and 

flush mounted heat films. The optical air data systems transmit lasers or acoustic signals 

generated by electromechanical transducers or loud speakers through a fluid medium to 

one or multiple receivers and measure the travel time to infer air data information. Even 

though these systems are non-intrusive, they are not self-sustained and are expensive and 

heavy to use [6]. 
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180' 

Left side view looking inboard 

Figure 1.1 Flush air data system installation at the nose of the F -18 Systems Research Aircraft 

[1]. 

1.1 Challenges in Flush Air Data Sensing 

As previously mentioned, FADS infer the air data parameters from pressure 

measurements taken with an array of ports that are flush to the surface of the aircraft. 

However, because the locations of the pressure measurements are on the outer surface of 

the aircraft on geometrically simple components (e.g., hemispherical or conical nose), 

properties of the local flow fields like compressibility and flow separation can drastically 

affect these devices. Unlike for aircraft, the FADS for bluff bodies like ships and 

buildings must be placed completely around the structure and can routinely experience 
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separated and unsteady cross-flow. Also, to compete with conventional air data systems, 

the FADS must be able to estimate wind speeds (V_) over a range of 40 to 120 fps, ±3.4 

fps (i.e., ±2 knots), and wind directions (p) ranging from 0 to 360 degrees, ±2 degrees. 

Finally, the accuracy ofF ADS should degrade gracefully with progressive sensor failures 

and allow the user to determine the sensitivity of the output to sensor placement. 

Using the incompressible flow about a right circular cylinder as an example of a 

bluff body (Fig. 1.2), the problem of estimating relative wind speed and direction from 

the surface pressure at position 8 can be framed as either a forward or inverse mapping 

problem, i.e., 

p = F1(p_,v_,o,p)} the forward problem 

v_ = G1(P,p_,o,p)} 
_ ( ) the inverse problem p- G2 P,p_,v_,o 

Here pis static pressure and p_ is freestream air density. For simple geometries, closed-

form semi-empirical equations can be developed and used to solve the forward problem 

of estimating the static pressure coefficient, Cp, given the freestream wind speed and 

direction [7]. Panel methods [8] and other popular computational fluid dynamic (CFD) 

based approaches solve the forward problem on more complex geometries given the 

freestream wind speed and direction. However, this approach requires guessing the 

freestream velocity and solving for the pressure distribution until it matches the measured 

values. To solve the inverse problem, look-up tables from experimental fluid dynamics 

(EFD) can be constructed for the mapping function G. Unfortunately, look-up tables 

suffer from a number of drawbacks when their real-time use is considered including the 
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inability to handle high-dimensional inputs, noisy data, and nonlinear interpolation. It is 

proposed that machine learning methods, specifically Artificial Neural Networks (ANN), 

be explored to solve the inverse problem. In addition, this dissertation will demonstrate 

on how a particular form of ANN can also be used to determine the best locations for 

sensor placement, to maximize available FADS data by seamlessly combining CFD and 

EFD outputs, and to help guide physical experiments thereby minimizing the time needed 

in testing facilities. 

Figure 1.2 Two-dimensional flow about a right circular cylinder. 

1.2 Intersection of Machine Learning and Fluid Dynamics 

In general, mechanical and aerospace engineering systems present a number of 

challenging problems especially in the field of fluid dynamics. Understanding pressure and 

velocity distributions of the fluid flow is essential to the design and control of complex 

multi-component interacting systems. Experimental and computational methods in fluid 
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dynamics have long been successfully used to model such engineering systems. However, 

intensive research in both fields spanning over several decades have highlighted several 

shortcomings [9]. 

Over the last few decades, as complexity of engineering systems increased, it became 

a necessity rather than academic curiosity to adopt inter-disciplinary approaches to study a 

system. Intelligent data understanding tools like ANNs [10] and kernel methods from 

machine learning and statistics have enjoyed increased popularity in mechanical and 

aerospace engineering problems. 

The problem of developing surrogates falls under the category of regression 

problems in machine learning research. Popular regression methods include splines [11], 

projection pursuit regression [12], radial basis function networks [13] and back­

propagation networks [14]. These methods require the use of user-determined control 

parameters and/or kernel hyper-parameters. The user must find the optimum values of the 

control parameters for the entire data set either by cross-validation or grid search 

approach. In such approaches the data must be used to generate numerous randomly 

selected subsets for training and testing. The values of the control parameters must then 

be optimized on each of these testing subsets and the optimum control parameters 

averaged. 

1.2.1 Approximation of physical relations and simulation of flow fields 

ANN based learning approaches have shown promise in approximating inverse 

physical relations where EFD or CFD methods are useful in solving only the forward 
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problem. These ANN learning approaches have also been successful at simulating turbulent 

flow fields with far less computational effort than CFD methods. For example, Faller and 

Schreck used Recursive Neural Networks (RNN) to predict time dependent unsteady 

boundary layer development, separation, dynamic stall and dynamic reattachment [ 15]. 

Neither experimental, nor computational methods have been successful at characterizing 

three-dimensional unsteady flow fields at parameter ranges corresponding to practical 

aerodynamic applications. These neural network models also form the foundation of 

adaptive control systems. Whitmore and Rohloff demonstrated the use of ANNs to predict 

angle of attack, sideslip and dynamic pressure from static pressure measurements to 

calibrate Flush Air Data Systems (FADS) for aircraft [1]. Experimental and computational 

methods could only solve the forward problem of obtaining surface pressures given a 

velocity and geometry configuration. Giralt et al. used a fuzzy neural network pattern 

recognition technique that could learn the nonlinear dynamics of a turbulent velocity field 

and predict the presence of coherent motions in the turbulent wake given an initial velocity 

condition [16]. 

1.2.2 Flow optimization and control 

Artificial neural networks have also been used to develop low order models 

predicting near wall dynamics in turbulent flows [17]. Such low order models are helpful 

for drag reduction and turbulent flow control. Near-wall stream-wise vortices increase skin 

friction drag and wall actuation in the form of blowing and suction can significantly reduce 

drag. Traditional control methods require velocity field information from the entire domain 

and are computationally time consuming, thereby are impractical in real-time situations. 

Artificial neural networks, on the other hand, can approximate a second order model of 
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near-wall velocity using only surface pressures and shear stresses as inputs. Babcock et al. 

demonstrated that a neural controller performed similarly to an analytical controller in a 

fully turbulent simulation [7,8]. The authors also discussed the practical and fundamental 

issues of using a neural controller for drag reduction. 

1.2.3 Hybrid modeling with numerical simulations 

Large Eddy Simulation (LES) is an attractive numerical simulation technique because 

it has good accuracy and relatively lower computational expense than DNS techniques. 

However, the computational effort devoted to resolving the viscous sublayer is still 

considerable. Hybrid use of ANNs has been proposed with LES techniques to resolve 

boundary layers of wall bounded flows. Sarghini et al. used neural networks as subgrid 

scale models with LES [20]. The authors demonstrated that turbulent viscosity coefficients 

can be accurately mapped with neural networks saving significant computational time. 

Successful use of such a hybrid method opens up the possibility of generating approximate 

boundary conditions to pair LES in the free turbulence region and RANS models in the 

near wall regions. 

In a related work, Wollblad and Davidson [21] proposed to replace RANS with filtered 

DNS data to give resolved subgrid velocities and stresses. The authors formed orthonormal 

bases of the subgrid stresses using Proper Orthogonal Decomposition (POD) and computed 

the coefficients of the expansion using neural networks. They concluded that ANNs 

performed significantly better than a linear stochastic estimator, however, the integration of 

LES and RANS still needs significant ad-hoc adjustment. 
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1.2.4 Hybrid design with numerical simulations and optimization techniques 

Artificial neural networks have been widely used with CFD simulations and 

optimization techniques to conduct parametric design of aerodynamic structures. Such a 

design method can be seen as a variation of the traditional Response Surface Methodology 

(RSM), where the response surface is constructed by neural networks. Once a response 

surface has been obtained, an optimization procedure can be used to search a solution with 

optimal performance characteristics. ANNs provide enhanced flexibility than RSM due to 

their ability to handle multi-dimensional interpolation with unstructured data. Rai and 

Madhavan used neural networks with RANS and conjugate gradient optimization scheme 

to obtain an optimal design of a turbine airfoil with 15 design parameters. They also 

proposed a hybrid scheme, using neural networks and low-order polynomials that they 

believe can handle more parameters than a design scheme with ANNs alone [22]; 

1.3 Need for the Current Research in ANNs 

Although neural networks are enjoying increased popularity in the mechanical and 

aerospace engineering community a number of issues must be addressed. 

1.3.1 Formalization of the f"mal network 

A typical Radial Basis Function (RBF) ANN involves several parameters to be 

defined by the user including: a) number of neurons in the hidden layer, b) initial weight 

matrix, c) parameters of the basis functions, and d) values of the learning rates. Ad-hoc 

procedures exist for choosing each of these parameters. However, lack of a principled 

approach to network construction generally leads to an over parameterized network. To 
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optimize the structure of the network, exhaustive grid search and cross-validation 

approaches are often needed. To address this problem, this work focuses on greedy 

scattered data approximation approaches [23]. In these approaches the user needs to load 

only the training and test sets and the algorithm solves for the required parameters in a self­

adaptive and greedy fashion. In other words, greedy scattered data approximation 

approaches provide a formal way to construct networks in an optimized manner. 

1.3.2 Choice of training data 

It is often unclear how many training points are sufficient for acceptable 

generalization error and how these training data should be chosen. Traditionally, network 

training and testing is done only after all data is collected. This is called passive learning in 

the machine learning literature, where the learning algorithm does not take part in the data 

collection procedure. Collecting data without taking into account the input-output 

functional relationship like the traditional Latin Hypercube Design [24] methods can result 

in choice of data that add little to no information to training of the network and can even 

adversely affect the generalization ability of the training method. This is especially a 

problem when data collection is costly, like flight tests, or when the input domain is 

excessively large to sample. Active learning [25] methods are popular in the machine 

learning literature where the learning algorithm takes part in the data collection procedure 

and new input configurations are sampled such that they maximize an information gain 

criterion in a principled manner. These sampling procedures are essentially sequential in 

nature and not only help the engineer to accelerate through the test matrix, but also allow 

the learning algorithm to have better generalization capability. 
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1.3.3 Assimilating physical knowledge of the system 

ANN provide a powerful tool to interpolate experimental data. However, it is often a 

concern with any statistical learning technique that it does not incorporate the physics of 

the system in approximating physical quantities as a function of input design variables. 

Regularization approaches like the Generalized Tikhonov Regularization method provides 

us a framework where it is possible to include physical knowledge of the system, in the 

form of numerical simulations, as a priori information in the training of the netWork [26]. 

This type of data assimilation procedure can be seen as approximating noisy and scattered 

experimental data with physics based smoothness. It can also be interpreted as improving 

low fidelity numerical simulations with more accurate experimental data. This tool can 

result in acceptable flow field solutions by fusing sparse experimental data with low 

fidelity CFD data, thereby saving resources. 

It is believed that integration of machine learning methods with fluid dynamics 

research is the key to optimizing information extraction (Fig. 1.3). Furthermore, the 

issues mentioned in Sections 1.3.1 through 1.3.3 should be addressed from an 

engineering point of view. This thesis will demonstrate the effectiveness of the machine 

learning methods in the calibration and design of a Flush Air Data System (FADS). 
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Figure 1.3 Machine learning tools can provide a framework in which EFD and CFD can be 

integrated in a principled manner. 

1.4 Proposed Ideas and Objectives 

In this work, a learning tool has been developed that can solve the inverse problem 

under consideration, and is labeled Sequential Function Approximation (SF A). The first 

objective in this thesis is to develop a computational surrogate that can predict wind 

speed and yaw angle from static surface pressure measurements. The surrogate should 

not have wind speed prediction errors greater than ±3 .4 fps and yaw angle prediction 

errors greater than ±2 degrees. The second objective is to investigate how data model 

fusion can improve wind speed and direction prediction accuracies. The third objective is 

to develop a general intelligent sampling strategy with active learning and SF A on 

regression problems. 
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Chapter 2 presents an introduction to greedy function approximation and its merits. 

Section 2.1 discusses existing greedy sparse approximation methods related to SF A. 

Section 2.2 discusses the Sequential Function Approximation algorithm and its 

implementation issues. Section 2.3 presents comparison of SF A with competing state of 

the art sparse approximation methods and justifies the need and effectiveness of SF A. 

Section 2.4 presents the areas of the algorithm which need improvement and presents 

ways to enhance the performance of SF A. Section 2.5 presents results of comparisons 

between the two versions of SF A on artificial and real world classification and regression 

problems. 

Chapter 3 discusses estimation of air data parameters from static pressure 

measurements in more detail. Section 3.1 presents the wind tunnel pressure 

measurements for FADS calibration on two problems, namely a surface vessel problem 

and Runway Assisted Landing Site (RALS) control tower. Section 3.2 presents several 

freestream wind speed and direction estimation techniques with a thorough discussion of 

their advantages and drawbacks. Section 3.3 presents the prediction accuracies of the 

estimation techniques on both the surface vessel and the RALS tower problem, Section 

3.4 presents pressure sensor sensitivity analysis with respect to air data parameter 

prediction. The chapter ends with learning curves illustrating the graceful degradation of 

prediction accuracy with decreasing number of pressure sensors and increasing number 

of training points. 
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Chapter 4 begins by discussing the importance of fusing flow solutions of variable 

fidelity in order to enhance the understanding of the system and accelerate its design. The 

concept of data-model fusion is introduced and the techniques to do so are discussed in 

Section 4.1. Section 4.2 discusses the role of regularization techniques in accommodating 

the smoothness of physics-based flow solutions in the learning problem at hand. Section 

4.2.1 and 4.2.2 discuss the role and objectives of data-model fusion in the FADS problem 

and presents how it can handle noise, sparsity and incompleteness in the wind tunnel 

data. Finally, Section 4.3 presents improvements in the wind speed and direction 

prediction accuracies due to a better training set construction by data-model fusion. 

Chapter 5 begins by introducing the fields of active learning and optimum experiment 

design. Section 5.1 discusses optimum experiment design for regression problems and 

presents a fairly detailed literature review of the topic. Section 5.2 discusses a G-optimal 

design procedure with SF A and presents its implementation issues application on a 

simulated regression problem. Finally, Section 5.3 presents the application of this 

technique on the FADS problem. Chapter 6 presents conclusions and future avenues of 

research. Appendix A discusses an inverse approach to predict yaw angle for the RALS 

tower and the surface vessel. Appendix B discusses active learning for classification 

tasks. Section B.1 presents a brief literature search and Section B.2 discusses the use of 

uncertainty sampling with SF A for binary and multi-class classification problems. 

Finally, Section B.3 presents the application of this technique to develop a sequential 

wind tunnel experiment design strategy for a cavity flow problem. 
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Chapter 2 

Greedy Function Approximation 

In a general supervised machine learning problem of function approximation, given a d 

dimensional input data sample x e Rd and outputs y e Rm , where d and m are input and 

output dimensions, the task of the learner is to approximate the function mapping the 

input to the output. In the current problem of interest the input is the pressure data and the 

outputs are the freestream wind speed and wind direction. In general for a regression 

problem the mapping function is known to the learner only at a discrete set of points in 

the input space. Since no other a priori information is available the learner assumes that 

the mapping function is smooth and continuous [27]. Using this assumption the learner 

can now use a linear sum of n smooth basis functions from function approximation theory 

to approximate the mapping function, as shown in Eq. (2.1). 

n 

y:(x) = :Lc;(¢(x,p;)+b;) (2.1) 
i=l 

Here y: is the approximated output, c; , b; are the coefficients of linear expansion,¢ is the 

basis function, f<J; is the set of kernel parameters for the ith basis function and n is the 

number ofbasis functions. For classification problems the output is discrete. Either y = [-

1, + 1 ], as in a binary classification problem, or it can take multiple integer values as in a 

multi-class classification problem or all classes could also be handled simultaneously. In 

a classification problem the mapping function . is again assumed to be smooth and 

continuous and the output is manifested by the application of a proxy function A on the 

mapping function as shown in Eq. (2.2). 
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(2.2) 

For binary classification problems a popular proxy function is the sign function. A 

popular approach to attempt multi-class classification problems is by combining several 

binary classifiers using a one vs. all approach. Handling all classes simultaneously has 

also shown promise. 

Gaussian Radial Basis Functions (RBF) have been successfully used in numerous 

machine learning problems and their approximation properties have been rigorously 

studied in function approximation theory [13]. Gaussian radial basis functions have good 

generalization power and are free from the curse of dimensionality [ 13]. In this work 

Gaussian radial basis functions with uniform spread in all dimensions is used, however 

the proposed approach, can be applied to a number of basis functions like hyperbolic 

tangents, polynomials, B-splines, and trigonometric functions. Gaussian RBF's, given by 

Eq. (2.3) have two kernel parameters associated with each basis function, the basis 

center x· and the basis width a. 

( x- x; )-( x-x;)] 
a~ 

I 

(2.3) 

To construct an approximation as a linear sum of n Gaussian RBFs as shown in Eqs. (2.1) 

and (2.2) the values to a total of 3n+ 1 unknown parameters would have to be determined. 

Solving an optimization problem for all the 3n+ 1 parameters would naturally be 

excessive computational burden. Greedy function approximation techniques simplify the 

above problem by adding one basis function at a time to the approximation. This results 

in a series of smaller optimization problems involving only three unknowns. 
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2.1 Greedy Algorithms 

In this work a greedy approach has been used to construct approximations as a 

linear sum of Gaussian Radial Basis Functions. Having chosen an appropriate basis 

function it is imperative to optimally determine the coefficients and the kernel parameters 

so that the residual error decreases optimally with the addition of basis functions. In a 

greedy function approximation setting, the initial target or output vector is stored as the 

initial residual error. This residual error is used to pick the next basis function kernel 

parameters and the linear coefficients that reduce the error as much as possible. This 

makes the greedy algorithms a highly nonlinear constructive approximation technique. 

Typical, greedy function approximation algorithms solve for the coefficients c; from the 

principles of linear optimization by minimizing the discrete inner product norm of the 

residual error. 

Determination of the basis centers is the more challenging issue since they involve a 

d-dimensional optimization problem for each basis function. One way of simplifying this 

problem is to constrain the choice of the basis centers from one of the s available training 

points. This leaves us with the optimization of the basis width for each basis function. 

The popular sparse kernel modeling techniques, like Support Vector Machines (SVM) 

[28], and greedy function approximation algorithms, like the Matching Pursuit (MP) [29] 

and others, fix the width of the basis functions to a value estimated by a cross-validation 

or a similar parameter estimation technique. Keeping the width of the basis functions 

fixed will result in several limitations. First, to carry out a cross-validation procedure, or 

grid search, a chunk of training points have to be kept aside. A grid search would demand 
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repeated training and testing to be carried out consuming necessary computational time 

and expense. Using the same width for all basis functions increases the dependence on 

any initial choice of the width parameter. If locally optimal solutions are used for each 

basis then it decreases the dependence of the generalization power of the algorithm on the 

basis width. It also reduces user interaction and results in a self-adaptive network. Finally 

a larger portion of the residual error is dissipated if the basis function has its width 

optimized, as compared to a basis function with a fixed width. Section 2.1.1 · presents 

sparse kernel techniques that bear some similarities with the proposed approach. 

However, none of the techniques mentioned in this section study the dependence of the 

predictive power of the algorithm on the basis width. 

2.1.1 Matching pursuit 

Matching Pursuit [29] is a popular type of greedy algorithm in the signal processing 

community. The aim of Matching Pursuit is to approximate a target signal as a linear sum 

of elementary signals or atoms or basis. Usually a large, linearly dependent collection of 

signals, known as a dictionary, is available. If the dictionary is orthonormal, then it is 

possible to reconstruct the target signal by using only a few atoms. This can be done by 

choosing atoms that are most strongly correlated with the residual error. This procedure 

of approximating a high-dimensional signal into a sum of several low dimensional signals 

is popular in compression of images, audio and video signals. Developing sparse 

approximations to target signals can be justified on the basis of economy and simplicity. 

A simple representation of a signal provides redundancy and robustness against external 

noise. It is also justified by Occam's razor which states that "Causes must not be 
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multiplied beyond necessity." Vincent and Bengio [30] showed how Matching Pursuit 

could be used to build a kernel based solution to a machine learning problem and called it 

Kernel Matching Pursuit (KMP). It is a greedy algorithm for building an approximation 

of a discriminant function as a linear combination of basis functions chosen from a 

kernel-induced dictionary. 

Vincent and Bengio [30] compared the performance of KMP with SVM and RBF 

networks on several real world data sets. They concluded that KMP gave comparable 

results to SVMs with sparser approximations. However, Suykens et al. [31] showed that 

sparser solutions can be obtained by SVMs via a pruning strategy. SF A bears some 

similarities with the basic version of KMP but the primary differences are the following. 

In KMP the basis function at the nth stage is chosen such that it maximizes 

abs(r:··~·?J. Since a constant width is chosen and the basis functions are centered on 
f/Jn,f/Jn 

the training points, choosing a new basis function amounts to choosing a basis center 

from the available training data based on the above mentioned criterion. From a 

geometrical perspective such an approach will choose the basis function ¢n that is most 

aligned with the residual vector F,._1 in Rs . An improvement is possible if the width of the 

basis functions is not fixed. Allowing the width to vary would increase the size of the 

dictionary generated by the training points. A larger dictionary allows us to choose a 

better basis function that maximizes the above mentioned criterion. 
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In SF A the spread of each basis function is optimized and the basis center 

corresponding to the maximum absolute value of the residual at that stage is chosen. This 

can be interpreted as choosing basis functions from a larger dictionary that are aligned 

more parallel to F,_1 in Rs as shown in Fig. 2.1. Choosing a new basis function in this 

manner will reduce more of the residual error and result in sparser approximations, as 

compared to KMP. 

Figure 2.1 An optimum basis function is one that is the most aligned with F,_1 

A significant limitation of the basic version of KMP is that if the residual vector is 

orthogonal to all the available basis functions, then there will be no decay in the residual 

error and the algorithm will continue choosing the same basis center. The basic version of 

KMP did not perform to satisfaction in the experiments done by Vincent and Bengio 

[30]. To address those limitations the authors proposed a back-fitting and a pre-fitting 

version of KMP [30]. Properties of orthogonal projections were used in the back-fitting 

and the pre-fitting versions of KMP to update all previously chosen basis function and 

coefficients of linear sum. The aim of the back-fitting and pre-fitting versions of KMP 

was to select a basis function that is the most aligned to the residual vector and is the 
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most perpendicular to the previously chosen basis function. Keeping the basis centers 

fixed at the training points and the width of the RBF fixed does not always result in a 

good choice of basis function from the available dictionary. Because an additional degree 

of freedom is available, allowing the width of the basis function to vary will result in a 

better choice of the basis function. SF A was compared against the basic version of KMP 

and the pre-fitting version of KMP on artificial and real world classification problems 

[32]. The results showed that SF A obtained sparser classifiers with similar classification 

accuracies on almost all data sets. Moreover only one pass through the dictionary was 

required by SPA to choose the basis function as opposed to the pre-fitting version of 

KMP that required two passes. 

2.1.2 Sparse approximation methods 

Sparse approximation methods broadly fall in the following categories: a) 

sequential forward greedy algorithms, b) backward greedy algorithms and c) 

mathematical programming approaches [12]. KMP and SPA are examples of sequential 

forward greedy algorithms. Other popular examples are Natarajan's Order Recursive 

Matching Pursuit (ORMP) [33] and Orthogonal Least Squares RBF (OLS-RBF) [34]. 

Vincent and Bengio [30] described the pre-fitting version of KMP, with squared error 

loss and Gaussian kernel, to be identical to the OLS-RBF algorithm. They compared 

OLS-RBF against Gaussian Support Vector Machines (SVM) to conclude that OLS-RBF 

performed as well as Gaussian SVM with sparser approximations. In the reference [32] 

authors compared the performance of Least Square Support vector Machines (LS-SVM) 

[31] against KMP algorithms and SF A. The primary difference between ORMP and SF A 
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is that ORMP normalizes and reorients all unselected basis functions and avoids the 

recycling problem by choosing from previously unselected basis functions. SF A avoids 

the recycling problem by assigning a unique width to each basis function. Other greedy 

algorithms in the spirit ofNatarajan's algorithm have also been published [23]. However, 

in these works the question of dependence of classification accuracy on the width of the 

Gaussian radial basis functions has not been addressed. 

The backward greedy algorithms [35] start with a sxs Gram matrix, where s is the 

number of observations in the training set and iteratively eliminates columns. Even 

though this helps in achieving guaranteed convergence properties it is more 

computationally expensive than the forward algorithms. The mathematical programming 

approaches like Basis Pursuit [36] differ from the sequential forward greedy algorithms 

in the sense that they use regularization in the cost function to determine ·a sparse 

solution. Basis pursuit also employs quadratic programming like support vector machines 

to minimize the associated cost function. Girosi [37] proposed a modified version of 

Basis Pursuit De-noising [36] and showed that SVMs are equivalent to them as they solve 

the same quadratic programming problem. However sequential forward greedy 

algorithms like SF A and KMP enforce regularization via sparsity. 

2.1.3 Other related methods 

In the statistics community the most popular versions of greedy learning are 

Boosting [38] and Projection Pursuit [12]. KMP in its basic form can be seen to be 

similar to Boosting if the weak learners were interpreted as the kernel functions centered 
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on the training points. The Projection Pursuit method constructs the approximation of the 

target vector as a linear sum of ridge functions in a forward stagewise manner. The input 

training points are projected on a unit direction vector which is optimized at each stage. A 

ridge function which results in the maximum reduction of the residual error is selected. 

The addition of ridge functions continue until the residual error is smaller than a user­

defined threshold. This method bears clear similarities to the Matching Pursuit methods 

of the signal processing community. 

In the neural network community constructing the neural architecture in a sequential 

forward manner goes by the name of Cascade-correlation [39]. A new hidden unit is 

added if the previously added neurons do not reduce the residual error of the network 

below a specified threshold. The algorithm tries to maximize the magnitude of 

correlation between the new unit's output and the residual error signal. With these 

algorithms the users do not need to worry about the size and topology of the network. 

Other constructive algorithms include Dynamic node creation [ 40] and the Resource­

allocating network [ 41]. 

2.2 Sequential Function Approximation 

Approximation of the unknown target function y is constructed by noting that a 

continuous d-dimensional function can be arbitrarily well-approximated by a linear 

combination of radial basis functions¢. Sequential Function Approximation (SF A) was 

developed from mesh-free finite element research but shares similarities with the 
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Boosting [38] and Matching Pursuit [29] algorithms. Approximation of the target vector y 

is constructed by utilizing the Gaussian radial basis function¢ . 

n 

y; = :~::C;(f/J(x,.f.J;)+b;) with ¢(x,.f.J;)=exp[log[~](x-x)•(x-x;)] for 0<~ <1 (2.4) 
i=l 

Traditionally, Gaussian radial basis functions are written as: 

Radial basis function is written as Eq. (2.4) in order to setup the optimization problem for 

~as a bounded nonlinear line search instead of an unconstrained minimization problem 

for U; . The basic principles of our greedy algorithm are motivated by the similarities 

between the iterative optimization procedures of Jones [30,32] and Barron [ 44] and the 

Method of Weighted Residuals (MWR), specifically the Galerkin method [45]. The 

function residual vector r,. at the nth stage of approximation can be written as in Eq. (2.5): 

Using the Petrov-Galerkin approach, a coefficient en is selected that will force the 

function residual to be orthogonal to the basis function and bn using the discrete inner 

product ( , ) v given by Eq. (2.6) 

(2.6) 

which is equivalent to selecting a value of en that will minimize (r,.,r,.)v. Writing Eq. 

(2.5) as Eq. (2.7) where gn =en ·bn 
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r = r -eA. -g n n-J n'l'n n (2.7) 

Expanding (r,,r,)v and taking the derivative with en, we get Eq. (2.8) 

(2.8) 

Taking the derivative of (r,,r,)v withgn, relates en and gn in Eq. (2.9) 

gn = (Y,_l)D -en (¢nt 
(2.9) 

s 

Plugging Eq. (2.9) this into Eq. (2.8) and solving for en in Eq. (2.10) 

(2.10) 

Since bn = gn , Eq. (2.11) gives bn 
en 

(2.11) 

The discrete inner product(r,,r,)v, which is equivalent to the square of the discrete Lz 

norm, can be re-written, with the substitution ofEq. (2.10) and (2.11), as 
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s 

~ rn (xj )rn (xj) = jjr, II~.D = (7,, 7,) D 

/ r _ (r,._t)v ~ _ (it)v)2 

(r,;r.,) D =( i' ,) ~) D , r , .. )" :l D). J --;---;::-;-__ \:_,._7.1 ::\T"s_'_n __ s---!...!:!.D:..._____ (2.12) 

(;. _ (it)v ;. _ (it)v) (r- _ (~t)v - _ (r,._t)v) 
Y'n 'Y'n n-t • r n-1 s s s s 

D D 

Recalling the definition of the cosine given by Eq. (2.13), using arbitrary functions/and 

v and the discrete inner product, 

(/, v) 
cos(&)= v 

(f,f)vl/2 (v, v)vl/2 
(2.13) 

Eq. (2.12) can be written as 

where t?n is the angle between (Jn and7,_1 since (r,_t)v and (¢..tare scalars. With Eq. 
s s 

(2.14) one can see that II 7, l~.v < II 7,_1 l~.v as long as t?n *- 1t I 2 , which is a very robust 

condition for convergence. By inspection, the minimum of Eq. (2.14) is&, = 0, implying 

Eq. (2.15) 

(2.15) 

Therefore, to force II 7, l~.v~ 0 with as few stages n as possible, a low dimensional 

function approximation problem must be solved at each stage. This involves a bounded 
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nonlinear minimization of Eq. (2.12) to determine the two variables ~ (0<~ <1) and 

index /(x: =x1 e Rd) for the basis function center taken from the training set. The 

dimensionality of the nonlinear optimization problem is kept low since only one basis 

function needs to be solved at a time. 

2.3 Characteristics of SF A 

The concept of shift invariant subspaces is applied to the study of SF A 

approximation error using multi-dimensional bell shaped basis functions. The authors 

studied the convergence rate of the approximation error when a) bases are added altering 

their shape and keeping their spacing constant and b) adding bases altering their shape 

and decreasing their spacing in a coupled fashion. Reference [ 46] concluded that the first 

method of controlling network approximation error resulted in only a linear convergence 

rate while altering the shape and decreasing the spacing in a coupled fashion yielded 

exponential convergence rate. An adaptation of the results given by Meade and Zeldin is 

given in Eq. (2.16) 

(a-v) (f.l Jv [-C ] llu-u; llnv s Cl (Pn )-2 + C2 fl.: exp ll.n3 (2.16) 

where Pn is the basis shape changing parameter and is also a measure of the width of the 

basis functions (Pn = .J-ln(Jn)) and !:in is the average distance between their centers. 

The term on the left hand side of the inequality is a measure of approximation error after 

addition of n basis functions in Sobolev space. C3 is an arbitrary positive constant, 

u(x)eHa(Rd), a>v, and vis a positive constant. Since SFA constructs its 
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approximation sequentially, Eq. (2.16) is inspected at each iteration. Consequently, the 

degree of smoothness of the approximation a , the shape parameter f3 and the average 

distance between basis function centers d will change with each additional basis function 

and their corresponding values at each iteration are represented with subscripts of n. After 

the addition of nth basis function, and for the~ normllrniiH. = llrniiHo = llrnll2 , Eq. (2.16) can 

be rewritten as: 

(2.17) 

For a finite problem domain dn ~ 0 as n ~ oo and since -ln(A.n) is the only 

optimization parameter in Eq. (2.17), then to obtain optimal exponential convergence of a 

linear technique with infinitely smooth basis one must have(-ln(A,))~ ~ exp[ 1' J 
Therefore, Eq. (2.17) can be written as: 

(2.18) 

assuming a constant C4 exists such that the equality is valid. 

Reference [ 49] showed that for bell-shaped bases - 1- oc n, so assuming-1- = n since C3 is 
dn dn . 

an arbitrary positive constant, one can write 

(2.19) 

for positive constants Kj and K2 • Equation (2.19) shows that for optimal convergence, 

the logarithm of the inner product of the residual is a linear function of the number of 

bases (n). 
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Chapter 3 

Flush Air Data Sensing Systems 

Chapter 1 discussed the need for Flush Air Data Sensing (FADS) systems and the 

challenges associated with it. FADS systems present a challenging inverse problem 

which is to estimate freestream wind speed and direction from static pressure 

measurements. Sparsity, noise and incompleteness in the available pressure data make it 

an ill-posed inverse problem encouraging use of ANN and other machine learning 

techniques which have been proven to give useful estimates based on limited 

information. As also mentioned in Chapter 1, FADS systems have been successfully 

calibrated for subsonic, supersonic and hypersonic aircrafts. Aircraft FADS systems need 

to install pressure sensors only on the nose of the vehicle because of the lack of 

significant cross-flow. However, for general bluff bodies with arbitrary geometry and 

cross-flow pressure sensors have to be installed about the perimeter. For example, the 

FADS system for the surface vessel shown in Fig. 3.1 (a) requires sensors to be installed 

about the upper hull and similarly FADS system for the Runway Assisted Landing Site 

(RALS) control tower shown in Fig. 3.1 (b) requires at least one sensor on each face of 

the tower. In these problems, closed form solutions for pressure distribution do not exist 

as they did for the aircraft problem as was shown in Fig. 1.1. In this chapter, techniques 

using SFA are presented for wind speed and yaw angle estimation. Section 3.1 will 

present the available wind tunnel data for two problems: a) Surface vessel and b) RALS 

tower. Section 3.2 will present the training and testing approach for a general FADS 



30 

problem. Section 3.3 will present the results of the wind speed and direction estimation 

techniques on both the problems. 

(a) (b) 

Figure 3.1 Figure shows a) Surface vessel and b) RALS tower. Both geometries require pressure 

sensors to be installed all around the surface to account for cross-flow. 

3.1 Wind Tunnel Data 

Pressure data for flush air data systems were obtained for two problems a) surface 

vessel and b) RALS tower. Detailed wind tunnel tests on both geometries were conducted 

at the Fluid Mechanics Laboratory at NASA Ames Research Center. 
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3.1.1 Surface vessel 

Wind tunnel tests were conducted to test the feasibility of a flush air data 

measurement system on a 1/180 scale model of a naval surface vessel [ 4 7]. Fifty-seven 

pressure sensors were mounted flush with the deckhouse periphery as shown in Fig. 3 .2. 

The pressure sensors were aligned in three rings namely the bottom ring (taps 1-28, 57) 

and the middle ring (taps 29-50) and top ring (taps 51-56). The top ring sensors were 

excluded because of faulty measurements. A four-hole Cobra probe was used to measure 

the freestream wind speed and direction. The pressure sensor locations were chosen that 

were least disturbed by wake and model blockage effects. This network of pressure 

sensors was tested on a variety of wind speeds ranging from 40 fps to 1 7 5 fps and the 

wind direction varied from 0 to 360 degrees. The bow yaw angle f3 is measured with 

respect to the centerline of the vessel. For all port side winds f3 is negative and for all 

starboard side winds it is positive. Figure 3.3 shows the convention used for bow, port, 

starboard and stem side winds on the schematic of the surface vessel in this work. 

Variation of the wind attitude in three dimensions will be a part of the future work. 

Figure 3.2 Model Deckhouse Pressure Port Locations (Top View)[47]. 
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Figure 3.3 Direction of bow, port, stem and starboard side winds on the schematic top view of 

the surface vessel. 

In Fig. 3.4 sample experimental static pressure distributions are shown for taps 1, 9, 

40 and 22 placed on the bow, port, stem and the starboard sides, respectively. Figures 3.5 

(a) and (b) show the variation of the coefficient of pressure for four bottom ring and four 

middle ring pressure ports, respectively, with bow yaw angle at a wind speed of 165 fps. 

It can be seen from Fig. 3.5 that for both lower and middle ring pressure ports there is a 

substantial variation in the coefficient of pressure. A substantial variation in the 

coefficient of pressure encourages the use of an intelligent algorithm that can extract 

information from pressure measurements to predict air data parameters. 

Another important property that the pressure port plots show is that for any wind 

velocity configuration, the pressure ports lying on the downwind side show less variation 

in the pressure values than those lying in the upwind side. This a priori information can 

be used to accelerate the training and testing procedure which is explained in the next 

section. 
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Figure 3.4 Static pressure variation vs. the yaw angle for different wind speeds. 
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Figure 3.5 Coefficient of pressure variation for (a) bottom ring ports and (b) middle ring ports 

versus the yaw angle at 165 fps freestream wind speed. 
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3.1.2 RALS tower 

The Runway Arrested Landing Site (RALS) control tower is located at the Naval 

Air Warfare Center Lakehurst, New Jersey. Wind tunnel tests were conducted on a 1/72 

scale model of the RALS control tower [ 48]. One pressure sensor was mounted on each 

face of the control tower as shown in Fig. 3.6. A four-hole Cobra probe was used to 

measure the freestream wind speed and direction. The FADS system was tested on a 

variety of wind speeds ranging from 40 fps to 120 fps approaching the model from all 

360 degrees of yaw. Variation of the wind incidence in three dimensions will be a part of 

the future work. 

Figure 3.6 Wind tunnel model of the RALS tower [ 48] 
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Borrowing from flight mechanics literature and restricting our problem to two-

dimensions, f3 is defined as the yaw angle and is measured in the anticlockwise sense 

with respect to the centerline of the model. So winds approaching the south port have f3 = 

0 degrees, for the east port f3 = 90 degrees, for north port f3 = 180 degrees and for the 

west port f3 = 270 degrees. In Fig. 3. 7 shown below static pressure is plotted for each 

pressure port. The pressure port on the south face bears positive pressure values when 

wind is incident head on at the pressure port and bears negative values for winds hitting 

the north face. Similarly the pressure port on the west face bears positive pressure values 

when the yaw angle is positive and bears negative values for negative yaw values. Also 

evident from Fig. 3. 7 is that the pressure ports do not show much variation when they are 

on the leeward side. 
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Figure 3. 7 Static pressure variation vs. the yaw angle for different wind speeds. 
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Figure 3.8 shows the variation of coefficient of pressure for each pressure port. The 

pressure coefficient is calculated by normalizing the static differential pressure with the 

corresponding dynamic pressure. This normalization eliminates the effect of wind speed 

and results in a coefficient that is only a function of wind direction. Figure 3.8 shows all 

pressure coefficient graphs collapsed into one graph for each port. It also shows a 

substantial variation in the coefficient of pressure which encourages the use of an 

intelligent algorithm that can extract information from pressure measurements to predict 

air data parameters. 
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Figure 3.8 Pressure coefficient variation vs. the yaw angle for different wind speeds. 
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3.2 Forward and Inverse Problems 

Computational algorithms like neural networks that learn from data can be very 

effective in solving inverse problems and bear potential advantages in the construction of 

the FADS mapping function G (Section 1.1) compared to look-up tables. Examples of 

neural networks advantages include high-dimensional mapping, smoother nonlinear 

control, intelligent empirical learning and fewer memory requirements [49-52]. For speed 

of evaluation, reduced complexity, and the potential for graceful performance 

degradation with the failure of pressure sensors, the inverse problem is solved using only 

two sets of neural networks with pressures read from all surface sensors, 

3.2.1 Dynamic pressure 

Even though our problem involves turbulence and cross-flow about nontrivial 

geometries, the existence of a functional relationship between P and V"' and between Cp 

and f3 can be safely assumed. The wind speed was predicted using only the surface 

pressure data while the wind direction was predicted using the pressure coefficient data 

derived from measured pressure and predicted wind speed values. It is noted that this 

coupling of networks put the burden of high accuracy on the wind speed predictor. 

Freestream air density was kept constant in the current problem which makes prediction 

of freestream wind speed equivalent to dynamic pressure. Sequential function 

approximation was used to construct one RBF network to model G1 and the 

corresponding wind speed surrogate is represented by Eq. (3 .1) 
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n 

q pre = L ci exp ( ln[ Ai ] * (Ptest - pi* )•(Ptest - pi*)) + bi (3 .1) 
i=1 

where q pre is the predicted dynamic pressure. The hyper-surface for the current dynamic 

pressure prediction problem can be imagined as a hyper-cone with static pressure as input 

dimensions and dynamic pressure as output. Dynamic pressure increases linearly with 

static pressure given a yaw angle f3 for all pressure sensor positions, B. So each wind 

tunnel sweep at a constant speed would yield data points lying at the contours of the 

hyper-cone. Also, the slope of the hyper-cone corresponds to the coefficient of pressure 

at a given value of the yaw angle f3 . 
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Figure 3.9 Dynamic pressure hyper-cone represented as a function of a) two pressure sensors and 

b) one pressure sensor. 

Figure 3.9 (a) and b show the aforementioned hyper-cone in two and one dimensions 

respectively. Looking at Fig. 3.9 (b), it is evident that the span of the cone includes all 

pressure measurements of the sensor at B = 0 degrees at all wind speeds and yaw angles. 

The right edge of the cone corresponds to the case when the sensor faces directly into the 
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wind or f3 = (} . As one moves from the right to the left edge of the cone the separation at 

the pressure sensor increases. A RBF network constructed by SF A can suitably 

approximate this hyper-cone, however it is possible that a better approach might exist for 

this approximation. This will constitute a part of the future work. 

3.2.2 Wind direction 

Once the wind speed predictor was available, the test static pressure values were 

divided by the corresponding predicted dynamic pressure to obtain the test coefficient of 

pressure values. Several ways exist to predict the yaw angle f3 . One straightforward way 

is to construct one RBF network for G2 given by Eq. (3.2), where Ppre is the predicted 

yaw angle 

p pre = t C; exp (In[ A;]* (c p ,lesl - c;,i )•(c p ,tesl - -c;,i)) +hi (3.2) 
i= l 

However, unlike dynamic pressure, yaw angle prediction is a strongly non-unique 

problem. 
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Figure 3.10 Non-uniqueness of the yaw angle prediction problem at a) 120 fps and b) 40fps 

(RALS tower data). 

Figure 3.10 (a) and 3.10 (b) show the variation of the yaw angle with bow side coefficient 

of pressure at 120 and 40 fps respectively when random noise of magnitude 0.005 was 

added to the RALS tower pressure data. It is evident from Fig. 3.10 (a) that at least two 

solutions for fJ exist for most values of Cp, and except when the pressure sensor faces 

separated flow. This problem worsens when noise is present in the pressure 

measurements. Information from different pressure sensors helps in this non-uniqueness 

problem but only to a limited extent. This becomes a serious problem when the number 

of sensors are limited to four, one on each side of the RALS tower, or at lower speeds 

where the signal to noise ratio drops significantly due to lower pressure magnitudes (Fig. 

3.10 (b)). First an inverse approach was developed to predict the yaw angle, however, it 

did not perform up to expectations. After much experimentation, a simple forward 

problem approach was developed to estimate the yaw angle which is discussed next and 

the inverse problem approach is presented in Appendix A. 

In this approach, the forward problem of approximating Cp as a function of the yaw 

angle p is addressed. It is well known from fluid mechanics that in external flow Cp is a 

function of both p and the surface pressure sensor position,(}. Constructing a surrogate 

model of Cp as a function of both p and (} is equivalent to approximating Cp for each 

pressure sensor as a function of just the yaw angle p . Even though this increases the 

memory requirements, it yields faster and more accurate models for Cp. Once a network 
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has been constructed to represent each sensor, the objective function in Eq. (3.3) can be 

minimized to predict the yaw angle for a vector of test pressure coefficients: 

P~ = min~ ( Ptest (i) - c . (P)J2 
pre p L....J ~ p,1 

i=l qpre 

(3.3) 

Here NS is the number of pressure sensors, S,,; represents the approximated Cp for the lh 

pressure sensor, Ptest is the test vector of pressure values and ih,re is the predicted 

dynamic pressure for Ptest • A simple line search for P would suffice for the above 

minimization problem. However, searching for p over the entire range of [ -180, 180] 

degrees would be wasteful, so p could be searched over [x -z, x + z] where x is the 

pressure sensor position that bears the maximum static pressure value and z is a value of 

the yaw angle chosen by the user so that range for the line search is sufficiently large. 

Because L-2 norm is the most resilient to random noise it was chosen to express the 

differences between the test Cp and predicted Cp. Also, Eq. (3.3) allows the user to put 

weights on the contribution of each pressure sensor. Different weights could be helpful in 

situations where there is a combination of high and low fidelity sensors, or in the case of 

sensor damage or local flow field disturbance. Besides ease of learning, better 

redundancy to noise this wind direction estimation approach uses all the available sensors 

for prediction instead of just those in a quadrant. 



42 

3.3 Results 

In this section wind speed and direction estimation accuracies are presented. Results 

for both the surface vessel and RALS tower are presented using the estimation 

approaches discussed in Section 3.2. The SFA algorithm was implemented using the 

MATLAB programming environment on a Windows-configured PC with a Pentium 4 

2.66 GHz processor and 1.0GB of RAM. 

3.3.1 RALS tower 

Wind tunnel data for the RALS tower was available at speeds ranging from 40 fps 

to 120 fps as wind direction was varied from -180 to + 180 degrees at increments of 2 

degrees. All available data points were used in the test set, while a training set was 

created by taking data present at increments of 4 degrees at each wind speed. Once the 

training and test sets were constructed one network was constructed to predict dynamic 

pressure according to Eq. (3.1). The tolerance parameter was kept close to zero so as to 

minimize any errors in the approximation of Cp. For dynamic pressure prediction, the 

RALS tower problem is at a disadvantage compared to the surface vessel problem 

because it has only four pressure sensors. Figure 3.11 (a) shows the prediction errors if 

SF A was used to construct one RBF network for wind speed prediction as a function of 

static pressure. However, there are several errors larger than the tolerance of 3.4 fps at 

120 fps and on a closer look one realizes that most of the errors occur at yaw angles in 

the vicinity of 0, 90, 180 and -90 degrees. One possible explanation for the wind speed 

errors displaying a bias at the highest wind speed is shown in Fig. 3.11 (b). In this 

problem, a hyper-cone is approximated with Radial Basis Functions (RBF). RBFs model 
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the smooth slopes of the hyper-cone, however they do not approximate the flat top of the 

hyper-cone that exists due to the wind speeds of the highest magnitude. 
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Figure 3.11 a) Wind speed prediction on RALS tower data using just one network for wind speed 

given by Eq. (3.1) and b) Example surrogate of the wind speed hyper-cone in 2 dimensions. 

One simple solution to avoid this problem is to add fictitious points at higher speeds to 

the training set. One could calculate the coefficient of pressures given the available 

training data and use the coefficients to estimate the static pressures at higher speeds of 

130 and 140 fps. One could train on this augmented training set and test on the available 

RALS tower data and reduce prediction errors at the highest wind speed. 

There is another heuristic which could be used to reduce the errors shown in Fig. 

3.12 (a). As mentioned before most of the errors occur in the vicinity of the 0, 90, 180, -

90 degrees. For the following ranges of the yaw angle 

/P / ~ 25°, IP- 90°1 ~ 25°, /P/ ~ 155°, and IP + 90°1 ~ 25°, the corresponding pressure 
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sensors face a head-on freestream wind and bear a positive pressure value and the 

remaining sensors bear a negative pressure value. This a priori information can be used in 

conjunction with the dynamic pressure model to improve prediction in the following 

manner. Training points lying in the above mentioned range could be set aside before 

starting to construct Eq. (3 .1). During testing, if a test point is such that only one sensor 

bears positive pressure value, the dynamic pressure of that test point could be predicted 

using a simple nearest neighbor search from the training points that were set aside. 

Prediction of dynamic pressure is coupled with coefficient of pressure or the yaw angle. 

If f3 of a test point is known a priori, linear dependence of dynamic pressure with static 

pressure could be easily used to predict the dynamic pressure of a test point. With the 

help of this heuristic one can approximately deduce f3 and use linear dependence of 

dynamic and static pressure to predict dynamic pressure and thereby wind speed of a test 

point. 
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Figure 3.12 a) Logarithm of discrete inner product norm of residual error and b) Wind speed 

prediction errors on the RALS tower data when training was conducted on data at every 4 degree 

increments of yaw angle. 
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Figure 3.12 (a) and 3.12 (b) show convergence of residual error and wind speed 

prediction errors on the test set, respectively. Blue dots show errors below the acceptable 

error tolerance of 3.4 fps. The maximum error of 25 fps shown in Fig. 3.11 (a) was 

reduced to less than 2 fps with the help of the nearest neighbor heuristic. 

Once the wind speed predictor was in place, the predicted dynamic pressure values 

were used to obtain test coefficient of pressure values. The resulting test CP values were 

then input to the forward approach discussed in Section 3.2.2. To implement the forward 

problem approach first four models of pressure coefficient was constructed as a function 

of the yaw angle. Figures 3.13 (a) and 3.13 (b) show the residual error convergence and 

approximation of Cp for each pressure sensor respectively. Since sufficient noise-free 

training data was available, tolerance was kept low and so the Cp models interpolate the 

wind tunnel data accurately. 
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Figure 3.13 a) Residual error convergence and b) Cp prediction by a model of each pressure 

sensor. Blue dots represent wind tunnel data and the red line represents approximation by SF A as 

a function of the yaw angle. Clockwise from top plots show Cp model of pressure sensor at 0, 90, 

-90 and 180 degrees. 

Ability of SF A to handle noise and sparsity in training data will be covered in the 

next chapter. Once the Cp models have been constructed the objective function shown in 

Eq. (3.3) was minimized by a line search to predict the yaw angle for each test point. 

Figure 3.14 (a) shows an example of the logarithm of the objective function for a test 

point with a yaw angle of zero degrees. 
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Figure 3.14 a) Logarithm of objective function ofEq. (3.3) obtained after a line search conducted 

for a test point with a yaw angle of 0 degrees and b) Yaw angle prediction errors on the RALS 

tower data when training was conducted on data at every 4 degree increments of yaw angle using 

the forward approach. 

Figure 3.14 (b) shows yaw angle prediction errors on the RALS tower data using the 

forward problem approach. Improvement over the inverse problem approach (Fig A.3) is 

clearly demonstrated in the results of both approaches. The maximum yaw angle 

prediction error is reduced from 45 degrees to 11 degrees. 

3.3.2 Surface Vessel 

Wind tunnel data for the RALS tower was available at speeds ranging from 40 fps 

to 1 7 5 fps when wind direction was varied from -180 to + 180 degrees at increments of 2 

degrees. All available data points were used as test set, while a training set was created by 

taking data present at increments of 4 degrees at each wind speed. Once the training and 

test sets were constructed one network was constructed to predict dynamic pressure 
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according to Eq. (3 .1 ). The tolerance parameter was kept close to zero so as to minimize 

any errors in the approximation of Cp. 
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Figure 3.15 a) Logarithm of discrete inner product norm of residual error and b) Wind speed 

prediction errors on the surface vessel data when training was conducted on data at every 4 

degree increments of yaw angle. 

Figure 3.15 (a) shows the convergence of the residual error and 3.15b shows the 

prediction errors when one RBF network is constructed by SF A to learn freestream wind 

speeds. Even though fifty pressure sensors are evenly distributed around the geometry of 

the surface vessel, prediction errors still show a bias as wind speeds increase. Again most 

of the errors occur in the vicinity of 0, 90, 180 and -90 degrees. Both the heuristics, 

namely, augmentation of training set with fictitious points at higher speeds and a nearest 

neighbor search at select yaw angles, can be used in the current problem. However, 

developing a nearest neighbor heuristic for this problem would be overly complicated 

because of the large number of pressure sensors. Since there were only 4 sensors present 

in the RALS tower problem it was easier to inspect the pressure values to determine the 
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yaw angle and devise a nearest neighbor search. Such a heuristic is possible for this 

problem but would be harder to assemble than the nearest neighbor heuristic. The other 

solution of adding fictitious points to the training set provides a more logical way to 

handle the bias in prediction errors and simpler to implement. Figure 3.16 shows the 

improvement in prediction errors when fictitious data points at 190 and 200fps were 

added to the training set. The maximum errors of 15fps shown in Fig. 3.15 (b) are 

reduced to about 5.5 fps with the help of this heuristic. 
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Figure 3.16 Wind speed prediction on the surface vessel data using one network for wind speed 

given by Eq. (3 .1) with fictitious points at higher speeds added to the training set. 

Once the wind speed predictor was in place, the predicted dynamic pressure values were 

used to obtain test coefficient of pressure values. The resulting test Cp values were then 

input to the forward approach discussed in Sections 3.2.2. Figure 3.17 shows yaw angle 

prediction errors on the surface vessel data using the forward problem approach. 

Improvement over the inverse problem approach (Fig. A.4) is clearly demonstrated in the 
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results of both approaches. The maximum yaw angle prediction error is reduced from 55 

degrees to 4 degrees. The errors appear to be in increments of 1 degree because the line 

search for the yaw angle was done between -180 and + 180 degrees at an interval of a 

degree. The minimum difference between the predicted and true yaw angle would 

correspond to grid size of the line search. In fact, an error of 4 degrees using this 

approach would mean that the actual error is between 3 and 4 degrees. 
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Figure 3.17 Yaw angle prediction errors for the surface vessel problem using the forward 

approach. 

The wind speed and direction estimation techniques discussed above are general in nature 

and could be formulated with any learning technique other than SFA. However, 

motivation to use SF A is due to several reasons. First, the residual error convergence 

curves shown in Figs. 3.12 (a), 3.13 (a), 3.15 (a) demonstrate exponential convergence of 

residual error after the addition of the first few basis functions. The error decreases super-
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exponentially in most cases for the first few basis functions. Improvement is possible if 

the basis centers are also optimized instead of heuristically placing them over data points 

corresponding to the maximum absolute value of the residual. Second, SF A does not 

need any grid search or cross-validation studies to be performed for control or kernel 

hyper-parameters. This makes the approach easy to use, since the user needs to load only 

the training and test sets and self-adaptive which makes SF A independent of any user 

chosen values of parameters. Another advantage of SF A is that the resulting surrogate 

model can be used to determine input sensitivities, which is discussed in the next section. 

3.4 Pressure Sensor Sensitivity 

One element of the surface vessel problem was to determine which pressure sensor 

displayed low sensitivity. Reducing the number of necessary pressure sensors will lower 

the cost of integrating the pressure measurement system with the surface vessel. Besides 

lowering the cost it will allow the engineers to explore new locations to mount pressure 

taps, make the calibration of the pressure measurement system faster, and help the 

engineers accelerate through the test matrix. In the field of machine learning the problem 

of finding the most sensitive input variables is known as feature selection. In the current 

work, a partial derivative method was chosen since the authors view the problem of 

regression as a function approximation problem. Partial derivative of the approximating 

function, given by Eq. (2.1), was calculated with respect to each pressure sensor. Re­

writing Eq. (2.1) as: 

y;(x) = tc,(jl(x,p,)+b,) = t,c, ( exp[ ln(A,)t(x1 -x:.S ]+b, J 
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and taking the partial derivative with respect to kth measurement of the jth pressure 

sensor as shown in Eq. (3.4) 

aya n 

_n = ""2Jxk .-x*.Jc.(J,kln(A-.) ax £...i ,J I,J I I, I 

k,1 i=l 

(3.4) 

where rA,k=exp[In(A-;)±(xk,1 -x;~1 )2 ], i=l,2,3, .... ,n, j=1,2,3, .... ,d and k= 
j=l 

1,2,3, .. .. ,s. The input sensitivities ( 81 ) were determined by summing the squares of the 

derivatives over the number of training points as shown in Eq. (3.5). 

81 = _!_ t( ay; J2 
where j = 1,2,3, .... ,d (3.5) 

s k=l axk.1 

The parameter x in Eqs. (3.4) and (3.5) represent the static pressure used for both 

dynamic pressure and coefficient of pressure predictions. For computing input pressure 

sensitivity, the inverse problem approach (Appendix) was selected as it is a 

straightforward approach to computing input pressure sensitivity with respect to wind 

speed and direction prediction. Pressure sensor sensitivities were computed only for the 

surface vessel problem since the RALS tower had only 4 non-redundant sensors. The 

pressure sensor sensitivities were determined by summing the squares of the derivatives 

over the bases used to construct the approximating function. This was done once for each 

of the four networks and an average taken to find the final input sensitivities. The input 

sensitivity values obtained depend on the training and test set chosen. Consequently, this 

calculation was performed on 20 randomly chosen training data sets and an average was 
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computed. Figures 3.18 (a) and (b) display these values for wind speed and yaw angle, 

respectively. It can be seen from Fig. 3.18 that the average pressure sensor sensitivity for 

yaw angle prediction varies more compared to wind speed prediction. 

For yaw angle prediction the pressure sensors mounted on and close to the stem side have 

greater sensitivity for port, stem and starboard side winds and less sensitivity values for 

bow side winds. Consequently their average sensitivity values are greater than the sensors 

mounted on the bow side. 

10 1S 20 2S 30 3S 40 4S so 1 0 1 s 20 2S 30 3S 40 4S so 
Pressure Tap Nwnber Pressure Tap Nwnber 

(a) (b) 

Figure 3.18 Average input sensitivities in the prediction of (a) wind speed and (b) ship bow yaw 

angle. 
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3.4.1. Graceful degradation 

Figure 3.19 shows the degradation in wind speed and yaw angle percentage 

prediction accuracy as the least important pressure taps are removed. Yaw angle 

prediction accuracy decreases more rapidly than the wind speed prediction accuracy. In 

general, the wind speed prediction is insensitive to the location of pressure sensors on the 

surface vessel, while sensors mounted on and close to the stem side are more important 

for yaw angle prediction. Figure 3.20 shows the convergence rate of the wind speed and 

direction percentage prediction errors as the number of training points increase. This plot 

of the convergence rate demonstrates the ability of SF A to learn the functional 

relationship between the pressure measurements and air data parameters. With the 

exponential convergence rate displayed in Fig. 3 .20, SF A has the potential of predicting 

how many more data sets are required in an experiment to achieve a desired level of 

modeling error. 
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Figure 3.19 Logarithm of prediction error degradation with the number of pressure taps. The bars 

show the standard deviation of the errors. 

Number of training points 

Figure 3.20 Logarithm of prediction error degradation with the number of training points. The 

bars show the standard deviation of the prediction errors. 
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Chapter 4 

Data-Model Fusion 

In this chapter we explore the use of data-model fusion in improving the performance of 

the FADS system discussed in Chapter 3. As mentioned in Chapter 1 both EFD and CFD 

methods have shortcomings when tested on complex, multi -component mechanical and 

aerospace engineering systems. Despite a century for EFD and three decades of research 

in CFD, neither tool is yet self-sufficient in analyzing an engineering system. We are at a 

stage in fluid dynamics where integration of experimental and computational methods are 

not merely used for verification and validation, but necessary for analysis and design. 

The concept of EFD and CFD integration has been exclusively studied at the Japan 

Aerospace Exploration Agency (JAXA) in the name of the Hybrid Wind Tunnel (HWT) 

project [53]. 

Expanding the technology integrating experiment 
and l'l..lmerical simulation to other fields 

Figure 4.1 Concept of a hybrid wind tunnel [53]. 
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The Hybrid Wind Tunnel is the result of synergy between Analog Wind Tunnel (EFD) 

and Digital Wind Tunnel (CFD). Few functionalities of the HWT include a priori use of 

CFD to prepare the EFD test matrix, use of CFD to correct model and wall support 

interference effects, CFD data refinement based on EFD data and also data fusion 

between CFD and wind tunnel data. Key technical challenges in successful use of a HWT 

include availability of fast automatic grid generation and solvers and high speed data 

reduction of imaging techniques. EFD and CFD integration techniques include rapid 

qualitative and quantitative comparison resulting in the evaluation of the wind tunnel 

data. Integration of EFD and CFD has also been independently studied by a number of 

researchers in fluid dynamics. 

Nisugi et al. [54] have extensively worked towards developing a systematic approach 

for real time integration of experimental and numerical results in the hope of resulting in 

a more accurate solution that also facilitates the analysis of the flow. In emulating a real 

fluid flow problem, numerical simulations are conducted with boundary conditions that 

comprise of the feedback error between the actual and the simulation output and a feed­

forward signal is used to adjust the upstream velocity boundary condition. This concept 

of the hybrid wind tunnel was evaluated on a fundamental problem of Karman vortex 

sheet in the wake of a square cylinder. The proposed system could predict the flow 

oscillations exactly like the experiment whereas the ordinary numerical simulation is 

never as accurate as the wind tunnel experiments. Also, the hybrid wind tunnel system 

can give more detailed information about flow domain as compared to the wind tunnel 

experiments. 
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The authors in the reference [55] addressed the differences in the CFD and wind 

tunnel data due to Reynolds number effects, and optimized the sting blade support to 

minimize the effect of support corrections and the associated uncertainty. The authors 

used a CFD model of flow past the model sting to record the changes in the freestream 

Mach number and the incident angle of attack and used the results to obtain equivalent 

upstream conditions to model flow past model with sting. Rufolo et al. [56] and 

Pettersson [57] address the problem of integrating wind tunnel and CFD data to obtain 

free flight data. Wind tunnel data often have discrepancies from free flight conditions 

because of walVmodel support effects and differences due to lower Reynolds number in 

the wind tunnel. This discrepancy from the real flight data has been proposed to be filled 

by deriving analytical scaling laws based on CFD data. For example, the authors used a 

polynomial-log functional form to relate Reynolds number to its pressure correction 

effects. These analytical scaling laws were calibrated from CFD data and added to the 

base wind tunnel data to achieve real flight conditions. Pretest CFD planning is especially 

helpful in predicting the effects of nonlinear aerodynamics when a novel aircraft is being 

tested. Accurate prediction of boundary layer transition is very desirable and scaling wind 

tunnel data to free flight conditions can induce uncertainties in the flow characteristics 

during boundary layer transition. In such cases LES, DNS or hybrid semi-empirical 

methods can be used to reduce the uncertainties in boundary layer transition at Reynolds 

number higher than the wind tunnel can handle [58]. 

Planquart et al. [59] demonstrated three examples where an integrated EFD/CFD 

approach was used for design and analysis. The first project dealt with the design and 
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performance evaluation of a solar blade protection system to be installed on a building in 

presence of wind loads. Wind tunnel tests were conducted to choose the fluid structure 

interaction coupling and CFD analysis was conducted to optimize the design of the blade. 

The performance of the design of the blades under heavy wind loads and their vibration 

structure was studied experimentally. The second project dealt with the design of a new 

polar station. The conceptual design phase of the building was handled purely by wind 

tunnel experiments. The detailed design phase of the building included calculation of the 

aerodynamic loads on the building corresponding to different configurations in a CFD 

model. The final project dealt with the aerodynamic design of an ultra-streamlined land 

vehicle. CFD simulations were used to narrow down the final design candidates of the car 

and the design was finalized by conducting wind tunnel simulations. Once a design was 

finalized, parametric tests were conducted to create a data set of aerodynamic 

coefficients. 

Jouhaud et al. [60] addresses problems in verification and validation which include 

limited availability of high resolution/detailed reference data and uncertainty in the 

definition of validation cases. The authors propose to use the kriging approach to develop 

a response surface where the inputs are spanned by uncertainties in the numerical model, 

the turbulence model and parameters like the Mach number and the angle of attack. The 

surrogate model prepared by kriging requires CFD solutions only on a few input 

combinations. Once a response surface has been established, the optimal corrections for 

wind tunnel data are derived by searching the response surface for its global optimum. 
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The nonintrusive nature of the proposed approach and the ability of kriging to work with 

discontinuities in the response surface make it a strong approach. 

4.1 Fusion of variable fidelity models 

A primary technique for EFD/CFD integration is fusion of solutions of variable 

fidelity. High fidelity solutions may be costly to obtain and so might be discrete or fewer 

in number whereas low fidelity solutions, however inaccurate, might be continuous. Such 

aerodynamic data fusion has been made popular by Unger [61] where high fidelity 

solutions were used to provide absolute values while the low fidelity solutions were used 

to provide trends. The high and low fidelity solutions can be EFD and CFD simulations, 

CFD simulations of variable fidelity or experimental data from different sources. Even 

though surrogate models can be constructed without knowledge of the governing 

equations, the idea here is to study how a metamodel can be constructed using the domain 

specific knowledge in the hope of increasing the accuracy of the model. In engineering 

problems, there can be a number of situations where several solutions of variable fidelity 

are available. Some examples include, the high fidelity solution can be one with a finer 

mesh compared to a lower fidelity coarser solution. The high fidelity solution can be a 

result of better physical models, for example Navier-Stokes versus Euler equations. The 

high fidelity solution can be a fully convergent solution compared to a partially 

converged low fidelity solution. And the low fidelity solution could be a result of semi­

empirical approximation, as is common in concept design studies [62]. 
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Haftka [63] introduced zero and first order scaling approaches, called global local 

approximation strategy, where accurate local solutions were used to correct lesser 

accurate global solutions. Multiplicative and additive scaling factors were introduced 

which were used for constant correction in the zero order scaling, whereas, in the first 

order scaling approach the first order Taylor expansion of the scaling factor was used to 

correct the global solution. The accuracy of zero order scaling approach degrades 

significantly with distance. Even though the first order approach is more accurate than the 

zero order scaling approach, it can only be applied when the first order derivatives of the 

local and global solutions are available. Tang et al. [64] also address the problem of data­

fusion where data from different sources and variable fidelity are combined into a single 

package. This data fusion approach allows the user to choose the flow solvers of variable 

sophistication depending on the requirement of accuracy in the flow field. To fuse low 

and high fidelity solutions scaling laws have to be determined which computes either 

differences or ratios of high and low fidelity solutions. Response surface modeling 

techniques or algorithms similar to kriging can be used to construct a model of the 

discrepancy between the two solutions and correspondingly a fused solution could be 

achieved by fusing few high fidelity solutions with many low fidelity solutions. 

Eldred et al. [ 65] address the problem of convergence rates of model hierarchy 

surrogate based optimization where consistency between the surrogate models and the 

truth is enforced via corrections. The authors show that the first order additive and 

multiplicative scaling achieves consistency only about a single point and second order 

correction methods outperform the former. Again, even though the second order scaling 
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approach would be better than the first order approach, it could only be applied when the 

Hessian of the low and high fidelity solutions are available. The authors propose the use 

of quasi-Newton and Gauss Newton approximation of the derivatives that make use of 

the first order sensitivity information. The authors also proposed a weighted combination 

of additive and multiplicative scaling. 

The zeroth, first and second order scaling methods primarily improve the local 

accuracy of the low fidelity solution. An effective way to improve the global accuracy of 

low fidelity solutions is to use nonlinear regression techniques like kriging, neural 

networks, radial basis functions or sparse kernel methods to construct a hyper-surface of 

the scaling factor instead of the high fidelity solution. Naverrete et al. [66] investigated 

the usefulness of such global scaling using surrogate models in estimating airfoil 

characteristics using incomplete airfoil tables and low fidelity CFD solutions. Naverrete 

tested the validity of the proposed approach on two airfoils NACA 0012 and SC1095. 

The NACA 0012 airfoil is very popular and has one of the most complete airfoil tables. 

This problem was used to calibrate the parameters of the fusing approach namely the 

appropriate scaling of the multi-dimensional data, the appropriate training tolerance value 

and the optimization network parameter. For the SC1095 airfoil test case the coefficients 

of lift, drag and moment were approximated as a function of independent variables 

Reynolds number, Mach number and angle of attack. Figure 4.2 shows the effectiveness 

of the fusing approach where the high fidelity wind tunnel data is available only for a 

limited range of angle of attack while the CFD solution is continuous over the whole 

domain but of lower fidelity. 
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Naverrete also compares the ability of several approximation tools namely Radial Basis 

Function Networks (RBFN), Generalized Regression Neural Network (GRNN) and SFA 

to reproduce the airfoil coefficients of the NACA 0012 airfoil given sparse high fidelity 

data chosen from the C81 tables which are exhaustive coefficient tables for the airfoil. 

Figure 4.3 demonstrates the vulnerability of the approximation tools when approximating 

sparse high fidelity solution. As shown above, the approximation of sparse high fidelity 

solution can result in a model which is worse in some regions than the low fidelity 

solution. However, following trends of the low fidelity solution through the absolute 

values of the high fidelity solution gives a better result with reduced uncertainty. 

Kennedy and O'Hagan [67] investigate how several codes of variable fidelity can be 

combined to estimate the output of a complex and sophisticated code of high fidelity. The 

authors propose a Bayesian approach of combining several surrogate models and are also 

capable of conducting uncertainty analysis of the resulting model. The primary 

assumption the authors make is that the output of various codes are correlated. In 

emulating a high fidelity code, the training process is augmented with output from low 

fidelity codes. The authors used a Gaussian process model to conduct the training, the 

uncertainty analysis and showed on a reservoir simulation problem that surrogates of 

comparable accuracy could be achieved using just a quarter of high fidelity solutions. 

Keane [ 68] proposes how an empirical drag prediction tool, kriging response surface 

method and design of experiments and data fusion methods can be used in synergy with 

three dimensional CFD codes for wing design optimization. The author constructed a 
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response surface of the differences between an empirical drag prediction tool and a CFD 

tool. The primary advantage of using kriging to construct a hypersurface is its ability to 

predict the expected error of the model which could be used to decide where to add more 

points in the surrogate. The author concluded that the proposed fusion based approach is 

better than the direct search or a simple response surface optimization using only data 

from a three dimensional CFD code. Forrester et al. [69] show how global partially 

converged solutions could be combined with information about expected improvement 

updates could result in a faster construction of a more accurate surrogate. The author 

addresses the important question of at what input design point a fully convergent solution 

must be obtained that results in a better objective function. Criteria were suggested for 

determining the quality of an initial surrogate and the number of design of experiment 

based data points that should be used to make an appropriate decision where the next 

fully convergent simulation should be conducted. 

4.1.1 Relation to Data Assimilation 

The concept of fusion of high and low fidelity solution in aerodynamics is similar to 

the analysis part of data assimilation which is popular in weather forecasting. In the 

analysis section of the data assimilation procedure, the true state has to be estimated from 

observations. The output of this step feeds into as input to the next step, for example an 

estimate of the atmosphere could be used as initial condition to numerical weather 

forecast. If the number of observations is more than the number of unknown variables, it 

results in an over-determined system and can be solved by interpolation techniques. 

However, generally systems are under-determined and some background or prior 
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information is needed to estimate the true state. This background information is provided 

by data from physical models. So the problem at hand becomes fusion of observed data 

and data from physical models in order to estimate a better understanding of the true 

state. Cressman analysis [70] expresses the fused solution or the analysis as a weighted 

sum of the observed values and the background solution. The analysis is weighted such 

that it would coincide with the discrete observed values and the solution would decay to 

background as distance from the observed value increases. The weights given to each 

observation point depend on the radius of influence set by the user as shown in Eq. (4.1). 

n 

L w(i, j) {y(i)- xb (j)} 
xa(j) = xb (j) + ....c:i=::!...i --n -----

LW(i,j) 
i=i 

(4.1) 

Here xa, xb and y are the analysis, the background solution and observed data 

respectively. The weights w are a function of the radius of influence the radius of 

influence 0, and the distance of the lh observed value to the lh value of the background 

solutionh .. Cressman analysis and its variants are simple to apply, however, its 
1,} 

performance degrades if there is noise present in the observed data, there is no optimal 

way to determine the weights, the resulting analysis is not guaranteed to be smooth and 

the method does not take into account the distribution of the observed values relative to 

each other. 
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A more principled approach to estimate the analysis in the data assimilation literature 

is of statistical interpolation with least squares estimator [70]. The optimal least squares 

estimator or the best linear unbiased estimator can be determined by solving the 

following optimization problem in Eq. ( 4.2). 

xa =minJb(x)+J (x) 
X 0 

=(x-x6 )r B-1(x-x6 )+(y-I[x]fT-1(y-I[x]) (4.2) 

Here J 6 (x), Jo(x) is the discrepancy of the analysis with the background and 

observation, the matrices T and B represent the covariance matrices of observation and 

background errors respectively, and I is an observation operator that facilitates the 

computation of differences between the observed and the background values. The 

resulting linear optimum unbiased estimator is a weighted sum of the background and 

observed values as a function of the optimal gain written as a function of /, T and B 

shown in Eq. ( 4.3). 

(4.3) 

These concepts from data assimilation bear similarities with the current context of fusing 

solutions from different sources and variable fidelity. The approach of global scaling via 

surrogate modeling described in the previous section will be the approach adopted in the 

rest of this chapter. This approach is also directly related to the static data assimilation 

methods using Tikhonov regularization. 
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4.2 Tikhonov regularization and data-model fusion 

When discussing the problem of learning from data it is important to focus on the 

role of regularization techniques used to arrive at the final solution. The concept of 

regularization arises from the solution of ill-posed inverse problems [71]. An inverse 

problem is ill-posed if any one of the three conditions of existence, uniqueness and 

stability is violated. Regularization techniques are designed to formulate the inverse 

problem in such a way that with some compromise of accuracy the resulting solution is 

uniquely solvable and is stable to noise in the measured data. Classical methods include 

1) regularization by singular value truncation, 2) Tikhonov regularization and truncated 

iterative methods. The most popular and widely used method is the Tikhonov direct 

regularization method. For a linear system Ax= ji, the Tikhonov regularized solutionx; 

for the regularization parameterm is found by solving Eq. (4.4): 

(4.4) 

Ulbrich [72] investigated the extension of Tikhonov regularization for nonlinear ill-posed 

problems and called it Generalized Tikhonov Regularization. In the nonlinear case also, 

the objective function is composed of two parts, one which measures the interpolation 

error of the solution and the second which constrains some linear or nonlinear functional 

of the solution. Learning problems where the objective is to determine an estimator from 

a finite number of training samples is directly related to ill-posed inverse problems. 

Several authors including Poggio and Girosi [27] have formulated the learning problem 

as regularized least squares which arises from the study of generalized splines. The final 

approximation J; is determined by minimizing Eq. (4.5): 
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(4.5) 

where m and n are the regularization parameter and a constraining functional on f 

Poggio and Girosi [27] establish the connection between regularization approaches and 

network based approximation techniques like Generalized Radial Basis Function 

technique. Since nothing is known about the learning problem to begin with, a priori 

assumptions about smoothness have to be made. Tikhonov regularization techniques 

exploit the smoothness constraints by the formulating the objective function as a 

variational problem in Eq. (4.5). The regularization parameter A. controls the interpolation 

error of the approximators and its degree of smoothness. Starting the approximation as a 

linear sum of RBF's where the number of RBF units (n) and the associated number of 

parameters (3n+l) are much less than the number of training samples (s), the problem 

becomes over-determined and thereby needing regularization. From regularization 

theory, Poggio and Girosi [27] derive that the regularized solution could be written as a 

linear of basis functions of the radial type. 

Meade and Zeldin [26] investigate how Tikhonov regularization could be used to 

reformulate the learning problem where the smoothness constraints on the solution also 

include the smoothness of the low fidelity solutions. The authors provide a mathematical 

framework to fuse high fidelity experimental data with smooth, low fidelity CFD data. 

The fusion approach proposed by Meade and Zeldin can be interpreted as correcting low 

fidelity solutions with high fidelity data, or filling the gaps in the discrete experimental 

data with smooth physics based solutions. This idea of this approach is similar to the 

approaches discussed in Section 4.1. Reference [26] proposed to incorporate 
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mathematical models in the determination of the fused solution by using the quadratic 

energy form of the differential equations as the smoothing constraint in the regularized 

objective function. The regularization parameter was determined such that the 

approximation smoothed out the noise in the experimental data. Wang [73] extended this 

approach to fuse experimental data with inviscid-viscous solution of flow past the NACA 

0012 and RAE 2822 airfoils. Reference [73] proposed the following objective functional 

for the learning problem in Eq. (4.6). 

(j)[+ f. + ]=_!_"'(f. (-.)-+"(-.))2 _!_~(dr(fa(x)-fcFD(x)))2 dx Y Ja• exp>JCFD 2 {J) L.,. exp X, Ja X, + 2 jL.,. dxr 
r r=O 

(4.6) 

where X; = ( x1,;, x2,;o ••• , xd,;) and d denotes the dimensionality of the problem. From this 

equation, it can be seen that form ~ oo, fa ( x) ~ f exp ( x) , and the CFD data becomes less 

relevant than the experimental data. Form ~ 0 , the experimental data become less 

relevant to the solution. Considerable computation effort had to be invested in 

determining the optimal value of the regularization parameter. In order to avoid the 

computational expense, Navarrete and Meade [66] proposed a fusing approach where 

SF A was used to approximate the differences between the high and the low fidelity 

solution. 

4.2.1 Data-model fusion for FADS 

Estimating freestream wind speed and direction from static pressure measurements 

is an ill-posed problem. The ill-posedness is induced due to the non-uniqueness of the 

problem which is worsened in the presence of noise in the pressure data. The inverse 
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problem addressed in this dissertation is to reconstruct a complete pressure signal given 

sparse, noisy and incomplete experimental data. This work develops an alternate method 

of fusing experimental and computational data to approximate pressure signals to 

estimate freestream wind speed and direction. The approach uses a neural network 

method as the inverse modeling tool and applies a simplified Tikhonov-related 

regularization scheme to correct for the original data error. The purpose of this section is 

to introduce a fusing approach using the SF A neural network that maximizes the use of 

experimental data with the help of CFD data in approximating a smooth, continuous and 

accurate pressure distribution. The fusing approach first involves calculating the error 

function ofthe CFD and experimental data defined by the following Eq. (4.7) 

(4.7) 

fori= 1, ... , s, where sis the number of training data samples. The error vector, e, is then 

used to train the SF A network to a predetermined tolerance, r. The resulting error 

surface, e (X;) , will naturally involve some scatter directly related to the experimental 

data noise. Training the network to the given tolerance allows the SF A to regulate the 

noisy experimental data with a priori CFD information. Assuming the uCFD surface is 

known, then the error surface approximation, eSFA, can be subtracted from the ucFD (X;) 

data to give the approximation in Eq. (4.8), 

(4.8) 

The r value can be regarded as the regularization parameter and controls how well the 

approximations fit the experimental or CFD data. On the one hand, a very high tolerance 

value allows the training process to end prematurely with very few network units. As a 

result, the network "under-learns" the training data and the majority of the 
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approximations reach a value of zero. For data points with an error value of zero, Eq. 

(4.8) shows that the approximation value will reproduce the CFD data. On the other 

hand, a very small tolerance value will force the network to use too many network units 

to reach the smallest possible tolerance. In this case, the network "over-learns" the 

training data and will fit even the experimental noise in the error surface. As a result, the 

approximations will reproduce the experimental data. The user must carefully choose the 

tolerance value to best fit the experimental data using the CFD information. 

4.2.2 Handling noise, sparsity and incompleteness 

As mentioned before, one of the objectives ofthis work is to improve the quality of 

the training data set by fusing numerical solutions with experimental data. In this section 

smoothness based regularized solutions were compared versus the physics based 

regularized solutions in their ability to handle noise, sparsity and incompleteness of data. 

If only experimental data points were used to construct the wind speed and direction 

surrogates, it is called smoothness based regularized solutions because the RBF network 

uses just the mathematical smoothness of Gaussian radial basis functions to construct the 

hyper-surface. However, if numerical solutions were used as a priori information to 

construct the surrogates they are referred to as physics based regularized solutions. In the 

following graphs, the smoothness based solutions are indicated by 'SFA' and the physics 

based solutions as 'Fused'. The available experimental data for the RALS tower had 9 

sets of wind tunnel runs from 40 fps to 120 fps at increments of 10 fps. Each set of wind 

tunnel run had pressure measurements in the range -180. :s; p :s; 180. at increments of 2 

degrees. To simulate a noisy and sparse data set, a uniform random noise of magnitude 
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0.005 psi (approximately 4.5% of the maximum pressure magnitude) was added to each 

pressure measurement. From this noisy data set, pressure measurements at every 20 

degrees were selected to simulate sparsity in the training set. The ability of smoothness 

based and physics based techniques to recover the original pressure signal is tested on 

this new degraded subset of the data set. The numerical simulations were conducted using 

the commercially available Star-cern software. Steady state three-dimensional flow 

around RALS tower was solved using Reynolds-Averaged Navier Stokes equations. 
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Figure 4.4 Comparison of RALS tower bow side a) physics and b) smoothness based solutions to 

handle sparse and noisy pressure data at 120 fps. 

Figures 4.4 (a) and (b) compare the ability of smoothness and physics based 

regularization techniques to estimate a clean pressure signal or distribution at the bow 

side sensor. The regularized solutions shown by 'Fused' and 'SPA' are smooth and 

continuous compared to the sparse, noisy experimental data. However, in this problem 

both regularization techniques display similar results. Physics based regularization 

techniques will have significant advantages over smoothness based techniques in regions 
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where experimental data is not measured or is known to be inaccurate for example due 
' ' 

to the presence of inlet and exhaust valves. The current data-model fusion technique 

could be used to obtain fused solutions with different tolerances in different ranges of the 

yaw angle. For example, if the chosen numerical model cannot properly capture pressure 

distribution in regions with separated flow, it is possible to define which technique, 

experimental or computational, is more important in which regions of the yaw angle. This 

would yield a more accurate fused pressure distribution developed optimally from the 

available wind tunnel data and numerical solutions. 
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Fig. 4.5 Comparison of RALS tower bow side a) physics and b) smoothness based solutions to 

handle sparse and noisy pressure data at 40 fps. 

Figure 4.6 compares the pressure distributions at port, stem and starboard side sensors 

obtained using the two regularization techniques at 40 fps. Again, a random noise of 

magnitude 0.005 psi was added to the pressure measurements. Physics based 'Fused' 

solutions look better than the smoothness based 'SFA' solutions for the stem and the port 

side pressure sensors. Another quality that makes this data-model fusion generic is that it 
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could be used for fusion of information/data from any two sources, two CFD codes, wind 

tunnel data from different experiments to name a few. A machine learning or neural 

network technique can be used to learn the differences between the two solutions. 

Appropriate tolerance criterion can be user-defined depending on the relative accuracy 

and importance of the two solutions and by adding the predicted differential hyper-

function to the less accurate solution. 
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Figure 4.6 Comparison ofRALS tower a) starboard side physics, b) starboard side smoothness, c) 

stem side physics and d) stem side smoothness e) port side physics and f) port side smoothness 

based solutions to handle sparse and noisy pressure data at 40 fps. 

4.2.3 Fusion in the pressure sensor position () 

In external flow past bluff bodies, coefficient of pressure is a function of the yaw 

angle f3 and local pressure sensor position(). In the RALS tower problem wind tunnel 

data is available at only four values of()= [-90, 0, 90, 180] degrees shown in Fig. 4.7. A 

complete representation of Cp as a function of f3 and () is necessary because it can 

possibly inform the experimentalist what locations should be chosen for pressure sensor 

installation to improve wind direction prediction accuracy. 
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Figure 4. 7 Wind tunnel coefficient of pressure as a function of yaw angle and pressure sensor 

position. 

Numerical solutions, however, provide full coefficient of pressure distribution as a 

function of yaw angle and pressure sensor position. The data-model fusion technique 

discussed in Section 4.2.1 could similarly be applied to correct low fidelity Cp solutions 

even at values of (} where no wind tunnel data is available. This could be done simply by 

calculating the differences between the wind tunnel and CFD solutions at (} = [-90, 0, 90, 

180] degrees. Once the differences have been calculated, it can be treated as a function 

approximation problem by SF A with f3 and (} as inputs and Cp as output. Once a 

surrogate to the hyper-surface of differences has been created, it could be added to the 

CFD Cp surface shown in Fig. 4.8 to obtain a Cp distribution more complete than wind 
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tunnel Cp distribution and more accurate than CFD Cp distribution. The numerical 

solutions were extracted at 56 values of() for each yaw angle. 
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Figure 4.8 CFD coefficient of pressure as a function of yaw angle and pressure sensor position. 

The fused Cp distribution was obtained in the manner as mentioned above and is shown 

in Figs. 4.9 and 4.10 for individual values of () to clearly visualize the validity of the 

fused distributions. Figures 4.9 (a), (b), (c) and (d) show the Cp distribution for sensors 

located just next to the starboard, stem, port and bow side respectively. 
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Figure 4.9 CFD and fused coefficient of pressure as a function of yaw angle and pressure sensor 

position at a location next to a) Starboard b) Stem c) Port and d) Bow side sensor. At these 

locations wind tunnel measurements were not taken. 

4.3 Wind speed and direction prediction 

In this section the freestream wind speed and direction prediction accuracies are 

presented. Wind speed and direction estimation techniques discussed in Chapter 3 were 

used to compute these results and, as discussed before, they are susceptible to noise and 



80 

sparsity in the training data. Section 4.2 discussed the smoothness and physics based 

regularization techniques that can generate a smooth pressure signal given sparse and 

noisy wind tunnel data. As presented before, a noisy and sparse pressure data was 

simulated with a noise magnitude of 0.005 psi and a yaw angle resolution of 20 degrees. 

This degraded data set was input to the smoothness and physics based regularization 

techniques to result in cleaner and smoother pressure signals which were input to the 

wind speed and direction estimation routines to predict wind speed and direction. The 

airdata estimation techniques were tested against the original clean wind tunnel data set 

shown in Chapter 3. Figure 4.10 shows the performance of the airdata estimation 

techniques when noise-free data at a yaw angle resolution of 4 degrees was taken as 

input. The error tolerance was ± 3 .4 fps and ± 2 degrees for wind speed and direction 

respectively. 
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Figure 4. 10 Prediction accuracies of a) wind speed and b) yaw angle for noise-free data at a yaw 

angle resolution of 4 degrees. 
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It can be seen from Fig. 4.10 (a) that wind speed errors are well below the tolerance level 

of 3.4 fps, however, wind direction errors exceed the desired tolerance level. This is 

because there are only 4 pressure sensors installed, one on each face of the RALS tower. 

Since the sensors are installed in the middle of each face, they are unable to capture any 

significantly different pressure signal in the range of 

-25° ~ f3 ~ 2Y, 6Y ~ f3 ~ 11Y, IPI > 165°, and -11Y ~ f3 ~ -65° which is where all the 

errors shown in Fig. 4.10 (b) occur. In these ranges of yaw angle, three pressure sensors 

face separated flow and the predicted Cp values also do not vary significantly to give any 

useful information to the direction estimation technique. Figure 4.11 shows the wind 

speed and direction prediction performance when smoothness based regularization 

techniques were used to obtain pressure signals from data with a noise magnitude of 

0.005 psi and a yaw angle resolution of 20 de g. 
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Figure 4.11 Prediction accuracies of a) wind speed and b) yaw angle for a noise magnitude of 

0.005 psi at a yaw angle resolution of 4 degrees using smoothness based regularization technique 

to obtain training data. 
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Figure 4.12 shows the wind speed and direction prediction accuracies for the same set of 

data when physics based regularization techniques were used to obtain cleaner pressure 

signals for the bow, starboard, stem and port side pressure sensors. Since the pressure 

signals obtained by the physics based regularization looked only slightly better than the 

signals obtained by the smoothness based regularization techniques, the estimated speed 

and direction accuracies also look slightly better. It should be emphasized here that the 

physics based regularization would have yielded better results if more accurate numerical 

solutions were used. Also, the importance of physics based regularization would become 

evident if the wind tunnel pressure data were incomplete either in f3 or (}dimension. 
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Figure 4.12 Prediction accuracies of a) wind speed and b) yaw angle for a noise magnitude of 

0.005 psi at a yaw angle resolution of 4 degrees using physics based regularization technique to 

obtain training data. 

Figure 4.13 shows wind speed and direction prediction accuracies on the same set of data 

when fused pressure signals at all 56 pressure sensors used as training data. The training 

data generation procedure for this case was discussed in Section 4.2.3. 
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Figure 4.13 Prediction accuracies of a) wind speed and b) yaw angle for a noise magnitude of 

0.005 psi at a yaw angle resolution of 4 degrees using physics based regularization technique to 

obtain training data. All 56 fused pressure signals were used to construct the training set. 

It can be seen from Fig. 4.13 that both wind direction accuracies are significantly reduced 

as expected. In fact, the direction errors are less than when noise free data was used for 

training at a yaw angle resolution of 4 degrees as shown in Fig. 4.10 (b). However, wind 

speed prediction accuracies have not reduced significantly because estimation of wind 

speed does not depend strongly on the location of pressure sensors. As long as sufficient 

resolution is present in the dynamic pressure and yaw angle wind speed prediction will 

not change significantly. 
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Chapter 5 

Sequential Experiment Design 

In Chapters 2, 3 and 4, passive learning techniques were discussed for the FADS 

problem, where a learning algorithm like SF A, acts only after the training data set has 

been collected. The learning algorithm does not take part in the data collection procedure. 

Traditionally, popular space filling experiment design strategies like Latin Hypercube 

Sampling (LHS) are used to plan the data collection procedure. Use of LHS is popular 

with Monte Carlo techniques to estimate uncertainty in computer models. It has been 

proven that fewer samples are required with LHS compared to random sampling when 

estimating the output with a given variance [24]. Latin hypercube sampling is a simple 

and effective space filling sampling technique which does not need or assume the input­

output functional relationship. Even though LHS is better than random sampling, a 

significant improvement is possible if the functional form of the input-output relationship 

is assumed and data are sampled from those regions where the output variance of the 

assumed input-output function is maximum. It is thought that advances in experiment 

design strategies will not only benefit the training of FADS but the fields of EFD and 

CFD in general. 

Sub-optimal designs could be a serious problem if the input domain is excessively 

large or output determination is expensive. Careful selection of training points is also 

important to construct surrogates with low generalization error. Input sampling strategies 

where the learning algorithm actively takes part in the data collection procedure are 



85 

studied in the field of active learning or query learning as suggested by its name. In 

statistics they are studied in the field of Optimal Experiment Design (OED) [74]. 

For general nonlinear problems the input sampling strategies are sequential in 

nature. One starts with a few training points, construct a surrogate model using a learning 

algorithm, and then identify regions of the input domain where the surrogate model is 

most uncertain. Such a strategy is considered an exploitation based method where the 

expected mean squared error of the surrogate is minimized. Exploration based methods 

like adaptive sampling, on the other hand, try to improve input domain coverage by 

sampling from unchartered regions of the domain. Hybrid exploration-exploitation 

approaches are also popular [75], however, in this work only the exploitation based 

methods will be discussed. One shortcoming of an exploitation based sequential approach 

is that it requires the user to construct a new surrogate model each time a batch of input 

points are added to the training set. A learning algorithm with several control and kernel 

parameters that require grid search or cross-validation would require excessive user 

interaction and might be computationally prohibitive in an active learning scenario. Use 

of self-adaptive algorithms like SF A is favorable in such problems. Another significant 

limitation for nonlinear problems is that the designs are only as good as the surrogate 

models constructed by the learning algorithm. If the surrogate has significant biases then 

the resulting input designs could be far from optimal. 

Section 5.1 will introduce OED approaches for general regression problems. Section 

5.2 will present the development of a G-optimal design procedure with SF A and its 
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application to a simulated problem of approximating the peaks function in MATLAB. 

Finally, Section 5.3 will present the application of the G-optimal design procedure on the 

FADS problem. Active learning schemes were also developed for binary and multi-class 

classification tasks and they are discussed in Appendix B. Uncertainty Sampling [76] was 

developed with SF A and its application was shown on a simulated binary classification 

problem and a multi-class cavity flow classification problem. 

5.1 Active Learning for regression problems 

For continuous valued problems, significant research has been done in the field of 

statistics under the name of Optimal Experiment Design [74]. An acceptable active 

learning method for regression problems should be able to minimize mean squared error 

more than the passive learning methods using fewer training points. Concepts similar to 

Uncertainty Sampling cannot be used with regression problems because the magnitude of 

the output predicted by a learning algorithm now does not reveal any information 

regarding the uncertainty or significance of the particular sample point. Consider a 

general regression problem in Eq. (5.1): 

y(x) = f(x,7J )+e (5.1) 

with d dimensional inputs x e Rd, output y e R and random errors e which we assume to 

be independent and uncorrelated. Given a small, finite number of training samples s, the 

parameters of this regression problem can be estimated that minimize the mean squared 

error given by Eq. (5.2): 

(5.2) 
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where Q is the environmental probability. However, since the environment is generally 

realized by the user only via the s number of training points, the following estimated 

mean squared error in Eq. (5.3) is minimized to estimate the parameters77: 

1 s 2 

S ( 17) = mjn-L ( f (X;, if) - y (X;)) 
71 s i=l 

(5.3) 

Given a finite number of training samples and a learning algorithm to estimate the 

parameters if , an optimum active learning scheme would compute a sample point where 

the expected mean squared error over the whole input domain is maximum. Estimation of 

the future generalization error could be a very computationally demanding task for both 

pool based and population based active learning methods where information about the 

conditional probability distribution is either known or assumed. Paas and Kindermaann 

[77] use a Bayesian theoretic framework to develop an active learning method where they 

use Markov Chain Monte Carlo methods to approximate the expected loss. Roy et al. [78] 

estimate the expected error by adding all possible labels for each unlabeled samples to the 

training set. The proposed brute force approach is infeasible for regression problems and 

classification problems with many classes. The authors propose several ways to make this 

procedure efficient, for example, use of Naive Bayes and SVMs where addition of a new 

training point does not need re-training, or estimate EMSE only on the neighborhood of 

the candidate points which compromises the generality of the approach. 

Since estimation of expected future loss is infeasible, one can rely on the bias-

variance decomposition of EMSE to estimate a sample where the expected error would 

be maximum. For a given sample x, let y=f(x,1]),y=f(x,ij),andy=E[y]be the true 
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output, estimated output and the expected value of the estimated output respectively. The 

expected value can be computed by averaging over different permutations of randomly 

chosen training sets of sizes. The expected mean squared error can be decomposed into 

bias and variance as shown in Eq. (5.4): 

EMSE = E [ (.y- y )2 J 
= E[Y]+ y 2 -2Y.Y 

= E[.Y2]+ y2 -2Y.Y +2y2 -2y2 (5.4) 

=(y- .Y)2 +E[.Y2]+ y2 -2yE[y] 

=~+E[(.Y-.Y)2] 
s· '--v----' tas Variance 

where the first term represents bias and the second term represents variance of the model. 

To elaborate, bias of a model can be understood as, for example, a quadratic function is 

being estimated by a linear model. The errors of the model are independent of the 

accuracy of the estimated parameters. The variance on the other hand is the error due to 

the errors between the estimated and the true parameters. For a simple regression problem 

shown below in Eq. (5.5) 

1 2 1-1 
XI XI •••••••••••• XI 

1 2 1-1 x2 x2 ............ x2 

= (5.5) 

Ys 1 2 /-1 x. x •............ x. TIJ-1 

or y = Fl] 
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Simple linear least squares regression dictates the estimated solution to 

be ij = ( Fr F) -t Fry. The covariance matrix of the least squares estimator is given 

by var ( ij) = o-2 ( Fr F t . The I xI matrix Fr F is called the Fisher Information Matrix 

(FIM) ofq, the determinant of which is inversely proportional to the volume of the 

confidence ellipsoid of the parameters. The set of training points that maximize the 

determinant of FIM are called D-optimum. Given the variance of the parameter estimates, 

the standard variance of the predicted value of response at a given point x can also be 

calculated by Eq. (5.6): 

(5.6) 

where fr (x) is a row ofF evaluated at x. The standardized variance given in the above 

equation gives a way to calculate the estimated variance of a linear model whose 

parameters are computed given a finite training set. This means that for a model with 

insignificant bias, an optimum sample can be computed that maximizes Eq. (5.6). At this 

sample the expected mean squared error will be maximum making it an optimum choice 

for a training point. The set of training points that minimize the maximum standardized 

variance are called G-optimum. The previous analysis was derived for linear regression 

problems, an extension to non-linear problems is possible using Taylor's expansion. 

Consider a non-linear model with I parametersy(x)=f(x,i]) where iJ=[q1,q2 , ••• q1]. 

Taylor expansion of the model about 1]0 = [ n~, n~, .. . n~ J ignoring higher order derivatives 

would yield Eq. (5.7): 
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(5.7) 

linearized form ofEq. (5.8): 

I 

z(x)= Ir;g; (5.8) 
i=l 

The variance of this new linearized form can be computed in a similar manner as 

described above for a linear regression problem with l parameters. The standard variance 

ofz(x) would be the same asy(x) and can be computed using Eq. (5.6) where 

(5.9) 

5.2 Implementation issues and application 

There are several implementation issues that need to be carefully considered when 

developing a G-optimal design procedure using SF A with RBFs. In this section, those 

issues will be discussed in detail with examples from a 1-D simulated regression 

problem. Finally the steps of the design procedure will be laid down and its application 

will be presented on 2-D simulated regression problems. Let us consider a simple 1-D 

regression example where the target function is given by Eq. (5.10): 

u(x) = 2exp[ log(0.2)(x + 1)2 J + 1 -3~x~3 (5.10) 
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The objective here is to check whether the G-optimal design procedure with SF A is able 

to locate input samples that coincide or lie close to samples that bear the maximum 

squared error for the constructed surrogate. The initial training set was created by 

choosing data points according to Latin Hypercube Sampling method and SF A was used 

to fit a Gaussian RBF resulting in the following model and its parameter derivatives as 

shown in Eq. (5.11): 

n 

y(x)= :~::C;¢(x,lf/pX;*)+b where If/; =log(A;),O<A; <1, and n=l 
i=l 

aay =c;¢;(x-x;)2 

If/; 

a~ = 2c;¢;1f/; ix- x; I 
X; 

By =l 
Bb 

JT(x)=[By, By , ~,By,~,~, ......... , By ]ElR.3n+l 
Bc1 Blf/1 Bx1 Bc2 81f/2 Bx2 Bb 

The following are the important implementation issues: 

5.2.1 Singularity of Fisher Information Matrix 

(5.11) 

The singularity of Fisher Information Matrix (FIM) poses a significant problem in 

the implementation of a G-optimal design procedure especially with RBFs. The FIM can 

become singular due to several reasons. If JT (x) represents a row vector of the 

derivatives of the surrogate model with respect to its parameters evaluated at point x. As 



92 

shown in Eq. (5.12), FIM is constructed by computing l(x;)* IT (x;}which is a 

1 x 1 matrix and summing it over the available training points. It is important to realize 

that I (X;}* IT (X;} is a matrix of rank 1, and that FIM gains rank as it is summed over 

increasing number of training points. 

s 

FIM = Ll(x;)*IT (x;) (5.12) 
i=l 

This could serve as a guideline to select the minimum number of initial training points 

necessary to start the incremental G-optimal design procedure. The initial number of 

training points (s) should be greater than or equal to the number of parameters (I). For 

greedy algorithms like SF A, this could also decide the stopping criterion to add basis 

functions. 

5.2.2 Overparameterization 

Fukumizu [79] has shown that FIM can also become singular if any redundant 

basis functions are added to the approximation. FIM will become singular in the presence 

of singular basis functions even if it is constructed by summing over a large number of 

training points. This is also true for SF A in case a redundant basis function is added to the 

approximation when only noise is left in the residual error signal. A redundant RBF in a 

surrogate model constructed by SF A can easily be identified because its coefficient value 

will be very close to zero and the width of the RBF will also be very low, making the 

RBF appear as a spike. If this basis function is included in the surrogate model, the 

parameter derivatives and the FIM will bear this singularity resulting in spiking of the 
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standardized variance values at the redundant basis function center. In order to avoid this 

problem, if the coefficient or the width of a RBF is unusually low then it should be 

eliminated from the surrogate model and the addition of basis functions should be 

stopped in order to preserve the smoothness of the surrogate model and the standard 

variance. 
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Figure 5.1 a) An overparameterized 1-D regression problem and b) Singularity in the 

standardized variance of an overparameterized surrogate model. 

Figure 5.1 shows an example scenario where 2 Gaussian RBFs are chosen by SFA to 

model the problem given in Eq. (5.10) using ten training data points chosen by LHS. As 

seen in Fig. 5.1 (a) the predicted surrogate overlaps the true function. However, as 

previously discussed, the width parameter of the second basis function is of the order of 

1e-17 and it is centered at x = -1.969. This singularity is evident in the standardized 

variance shown in Fig. 5.1 (b). 
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5.2.3 Initial number of training points and stopping criteria 

The initial number of training points can be chosen at random as long as it is large 

enough to avoid construction of highly inaccurate surrogate models. As mentioned 

before, the number of training points (s) should be larger than the number of parameters 

(l). A simple heuristic such as s = 1.5/ can be used to set the stopping criterion given the 

number of training points. However, this stopping criterion will continue adding an 

increasing number of basis functions as more training points are added, which will lead to 

overparameterization. This calls for an additional check that will stop the addition of 

basis functions if the coefficient, or the width of, the latest RBF falls below a user 

specified tolerance. 

5.2.4 RBF center selection 

As discussed in Chapter 2, the heuristic of placing RBFs at locations that 

correspond to the maximum absolute value of the residual works well if sufficient 

number of training data are present. This heuristic is unfavorable in the current optimal 

experiment design scenario for two reasons. First, at the beginning of the design 

procedure when there are only a few training points present, the RBF center selection 

heuristic might choose a center that is far from optimal. This could lead to a very 

inaccurate surrogate model that might result in inferior standard variance predictions. The 

second reason is that the FIM is constructed as a linear sum of s rank 1 matrices as shown 

in Eq. (5.12). IfRBFs are placed at the available training points, then the contribution to 

the FIM due to each training point will be negligible because the derivatives of the 

surrogate model with respect to the RBF width and center will be zero. These two reasons 
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make it necessary to optimize the RBF centers minimizing the discrete inner product 

norm of the residual error. This does increase the computational burden, but is necessary 

for accurate prediction of the output variance. 
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Figure 5.2 a) Surrogate model by SFA using RBF center selection heuristic and b) Erroneous 

standardized variance of the model output. 

Figure 5.2 shows the surrogate model and its standardized variance when RBF centers are 

placed at locations corresponding to the maximum magnitude of the residual error. Figure 

5.2 (a) shows how the use of the heuristic can lead to misleading surrogate models with 

high prediction errors. And Fig. 5.2 (b) shows the standardized variance of the surrogate 

model which is far from the squared residual error and might lead to choice of suboptimal 

training points. 
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5.2.5 FIM parameter selection 

Another important implementation issue in the construction of the FIM is to decide 

whether to include derivatives of the surrogate model with respect to RBF center 

coordinates. A possible explanation for the inaccuracy in the prediction of standardized 

vanance when RBF center derivatives are included is that it makes the FIM more 

singular. Figure 5.3 (a) shows a scenano where 5 points were used to construct a 

surrogate model by SF A, where RBF centers were optimized. Figures 5.3 (b) shows the 

standardized variance of the output when the RBF center parameters were included in the 

FIM construction, while Fig. 5.3 (c) shows the same when the center parameters were not 

included in the FIM construction. Standardized variance is more accurate when the center 

parameters are not included in FIM construction because of reduced singularity at the 

RBF center and its vicinity. 
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Figure 5.3 a) Surrogate model by SFA when RBF centers were optimized, and Standardized 

variance of the output when RBF center parameters were b) included and c) not included in the 

construction of the FIM. 

5.2.6 The bias problem 

The strategy of maximizing the standardized variance will result in an optimal 

design sample only if the model bias is insignificant. Previous work done by 

Kanamori and Sugiyama [80-82] have focused on using weighted maximum log-

likelihood approaches to result in robust active learning schemes in case the 

interpolation model has been misspecified. Sugiyama [81] and Hering et al. [83] has 

also addressed the issue of using the conditional expectation of the generalization 

error instead of minimizing the expected loss in an asymptotic sense. However, these 

efforts are only possible for population based active learning methods where 

information about the probability distribution of the parameters is either available a 

priori or is assumed. In this dissertation, attention is focused only on pool based 
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active learning methods where no a priori information about the parameter probability 

distributions is available and sufficient initial data is not present to make good 

estimations about global parameter probability distribution functions. In this work, 

the strong approximation capabilities of universal approximators like Radial Basis 

Functions is relied on to attenuate the bias problem. A possible strategy is to start the 

active learning procedure with an over-parameterized model and remove any 

redundant basis functions before constructing the FIM. As number of training points 

increase the number of redundant basis functions should diminish. Another constraint 

on the number of basis functions is that the resulting number of parameters (2n+ 1) 

should be less than the number of training points to prevent the FIM to being singular. 

5.2. 7 Grid size of candidate sampling pool 

Once the FIM is constructed, the standard variance has to be maximized to 

determine the optimum sample point. However, it is computationally cheaper if a 

batch of optimum querries are generated at each iteration instead of just one. For this 

reason, a grid search for an optimum sample point will be suitable for low 

dimensional problems. However, even for low dimensional problems, one has to be 

careful in selecting the grid size for the search. This is because if a very fine grid size 

is selected then the chosen optimum points might lie next to each other compromising 

the diversity in the chosen batch of samples. A simple way to enforce diversity in the 

chosen batch of candidates is to enforce a minimum Euclidean distance between any 

two points in the chosen batch. 
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The final steps to implement the G-optimal design procedure with SFA are as follows: 

1. Use LHS method to pick a small number of input points and evaluate the output on 

them to construct the initial training set. 

2. Construct a surrogate model using SF A. The number of basis functions can be 

determined by using the heuristics == 1.5/ = 1.5 * (2n + 1) , where n is the number of basis 

functions. 

3. Evaluate derivatives with respect to width and coefficient parameters of each basis 

function and the bias parameter and construct the FIM. 

4. Do a line search to determine a sample input location that maximizes the 

standardized variance of the surrogate model output. 

5. Add the chosen points to the training set and repeat the steps. 

5.2.8 Examples 

In this section, application of the G-optimal design procedure with SF A will be 

tested against passive LHS techniques to learn the peaks function which is constructed by 

scaling and transforming Gaussian RBFs and so SF A will have some bias in constructing 

a surrogate. 

5.2.8.1 Peaks problem 

In this section the active G-optimal design procedure with SF A would be 

compared against the passive Latin Hypercube Sampling (LHS) approach. The peaks 

function from Matlab is given by Eq. (5.13): 
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f(x ,y) = 3(1- X )
2 exp[ -x2

- (y + 1n -10( ~- x3
- y 5 )exp[ -x2

- y 2
] -~exp[ -( x+ 1)2

- y 2 J 
-3~x, y~3 (5.13) 

Peaks 
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Figure 5.4 Peaks function 

A set of 2500 uniformly spaced points were chosen as the test set for both the active and 

the passive learning methods. Fifty initial points were chosen by LHS via the Matlab' s 

lhsdesign function for both active and passive learning methods. For passive learning 

lhsdesign was used to construct training sets in increments of 5 points upto a total of 200 

points. To avoid any bias due to the training points, training and testing was repeated 10 

times for both active and passive learning. The maximum number of basis functions was 

limited to 10 for both active and passive learning methods. Both the RBF center and 

width for each basis function was optimized according to the full objective function 

representing the discrete inner product norm of the residual error. The pattern search 

method from Matlab optimization toolbox was used to conduct this optimization because 
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of its simplicity and effectiveness. Addition of basis functions would also be stopped if 

the latest RBF coefficient magnitude exceeds 1 0 times the maximum absolute value of 

the current residual. This additional stopping criterion also prevented the addition of any 

redundant basis functions. The lower bound on the RBF width parameter was constrained 

to le-4. 

For active learning a pool of 400 uniformly spaced candidate points were initially 

chosen. Before selecting points from this candidate pool any points overlapping with the 

already chosen training points were removed. The FIM was constructed by taking 

derivatives of the surrogate model with respect to each RBF coefficient and width and the 

FIM was averaged over uniformly chosen points over the whole input domain. In each 

iteration, one point was chosen that corresponded to the maximum standardized variance. 

To put the performance of the active learning procedure in perspective, its performance 

was also compared to the scenario when it is assumed that the true model is known and 

five points are chosen in each iteration which correspond to the maximum squared error 

of the current surrogate model. Since the objective of the G-optimal design procedure is 

to sample points from locations that correspond to maximum variance, or lie in the 

vicinity of the maximum generalization error location, if little bias is present in the 

surrogate model. 
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Figure 5.5 Reduction of mean squared error with increasing number oftraining points for Eq. 

(5.13). Bars show standard error computed over 10 repetitions. The black curve corresponds to 

passive LHS, the red curve corresponds to the G-optimal design and the blue curve represents the 

best possible result if the true function is known a priori. The blue curve is plotted to put the 

performance of variance only active learning scheme in perspective. 

Figure 5.5 shows the superior performance of the G-optimal design procedure compared 

to the passive LHS technique on the peaks function which has some guaranteed bias 

when approximated by a linear sum of RBFs. Another way to evaluate the effectiveness 

of the G-optimal design procedure is to confirm that as new points are added to the 

training set the standardized variance of the model output decreases. Figure 5.6 justifies 

the validity of the design procedure. 
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Fig. 5.6 Reduction of the maximum standardized variance with increasing number of training 

points. Bars show standard error computed over 1 0 repetitions. 
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Fig. 5.7 a) Training points chosen by the G-optimal design procedure and b) two dimensional 

view of the peaks function. 



104 

Figure 5.7 (a) shows the positions of 150 training points chosen by the G-optimal design 

procedure with SF A based on 50 initial points chosen by LHS. This result shows the 

effectiveness of an input sampling scheme where the input-output functional relationship 

is used to sample data compared to a space filling experiment design approach. The 

improvement in design will be greater with an increase in number of input dimensions or 

a reduction in the problem domain. The experiment design technique was also tested on 

the peaks function when the input domain is expanded from [-3, 3] to [-10, 10]. There is 

no functional variation outside the [-3 , 3] domain and so this problem tests if the 

algorithms can find the regions of functional activity. Figure 5.8 (a) shows the drastic 

performance improvement in the active learning scheme compared to the LHS technique. 

Figure 5.8 (b) shows the training points chosen by the active learning scheme. 
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Fig. 5.8 a) Comparison of mean squared error, and b) Training points chosen by the G-optimal 

design procedure over the peaks problem with a larger domain. 
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5.3 Sequential Experiment Design for FADS 

In this section, the G-optimal design procedure developed with SF A is tested on the 

FADS problem for the RALS tower. Wind tunnel tests for the FADS problem, measure 

static pressure on the surface at fixed sensor locations (B). Test runs consist of sweeps 

where the Mach number or the freestream wind speed is fixed and the bluff body model 

is rotated resulting in pressure measurements at different incident yaw angles ( p ). The 

time and effort of wind tunnel testing includes changing pressure sensor locations ( (}) 

and freestream velocity (V"'). However, CFD simulations give pressure distribution for 

all (} for a given V"' and yaw angle f3 . Here the time consuming part is repeating the 

simulations for different f3. The time and effort required would increase drastically if 3-D 

flow is considered and static pressure is measured as a function of V"' , yaw angle P and 

pitchy. For 2-D flow, if p is measured at increments of 2 degrees, pressure 

measurements have to be made 180 times at each Voo . For 3-D flow, if f3 and r are 

measured at increments of 2 degrees, 180 x 180 pressure measurements have to be made 

at each Voo . An experiment design strategy for the hyper-surface C P = f ( (}, P) could be 

helpful in reducing the time and cost ofF ADS. Optimal training data would also be able 

to give faster surrogates for Cp and would accelerate the forward problem approach 

discussed in Section 3.2. For demonstration purposes, it is assumed that one can freely 

change (} and f3 to arbitrary continuous values within the interval [-180,180]. However, 

in reality wind tunnel tests can only freely change p while CFD runs can only change (} 

freely. 
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Figure 4.8 showed the hyper-surface of Cp as a functionB and p which will be used 

to create the test data set for the design procedure. The G-optimal design procedure will 

be compared against the traditional LHS design procedure. An initial sample of 100 

training points was chosen by LHS to start the design procedure. Surrogates were 

constructed by SF A using increasing number of LHS training points with increment of 5 

points till a training set size of 500 was reached. For each training set size the training­

testing procedure was repeated 10 times to eliminate any bias due to selection of training 

points and the mean and standard error of prediction accuracies were computed. The test 

set was constructed by the data-model fusion procedure. CFD solutions were constructed 

with a p increment of 1 degree and a B increment of approximately 6 degrees. The wind 

tunnel experiment used p increments of 4 degrees and four pressure sensors. The 

resulting test set had 20577 (= 361 x 57) points which captured the Cp variation in detail. 

To implement the G-optimal design procedure, the stopping criteria discussed in 

Section 5.2 was used. This ensured that the FIM would not be singular. Also as the 

number of training points is increased the number of basis functions will also increase 

and address the bias problem. The lower bound on the RBF width parameter was 

constrained to 1 e-64 and the center selection heuristic corresponding to the maximum 

absolute value of the residual was chosen. The basis centers were not optimized to save 

computational expense. One point was added to the training set at each iteration till 500 

training points were collected. Again, to put the performance of the active learning 

procedure in perspective, its performance was also compared to the scenario when it is 
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assumed that the true model is known and one point is chosen at each iteration. This 

corresponds to the maximum squared error of the current surrogate model. 

Figure 5.9 shows the reduction mean squared error in approximating Cp as training 

points are added. This seemed to indicate that the active learning procedure was not able 

to perform better than the LHS strategy. On closer inspection, it was determined that SF A 

could not properly construct surrogates of the coefficient of pressure. To remedy this 

problem, approximation of C~ was considered instead of Cp (Fig. 5.1 0). 
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Figure 5.9 Reduction of Cp mean squared error with increasing number of training points. Bars 

show standard error. 

It was also realized that additional information could also be incorporated in the training 

set for this problem. c~ bears peaks that correspond to those combinations of e and f3 

that result in maximum flow separation. Due to the geometry of the RALS tower bluff 
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body, sensors on each wall measure the lowest pressures when the free stream wind ts 

directed against the adjacent wall. 
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Figure 5.10 C~ shown as a function pressure sensor position and yaw angle. 
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This physical phenomena was used to enhance the information contained in the training 

set by adding points where f3 = [ -180, -90, 0, 90, 180] degrees. Result for this case, shown 

in Fig. 5.11 , display that active learning improves upon the LHS data collection method. 

Figure 5.12 shows the C~ training points chosen by the G-optimal design procedure. The 

regions of the input domain corresponding to significant functional variation are 

efficiently covered by the design algorithm corroborating the claims of optimal 

experiment design. 

4 

3 

2 

(/) 
c 
<13 
:0 
~ 
Q) 0 
0, 
c 
<13 

3: -1 <13 
>-

-2 

-3 

-------- -~- -~ - .?'-~~ - d--~~!f.?'_': - ~_i_x_ - ~ ---~ - ~-i-x_ - ~ - _': -'5 - i--- ~X -~ -- t--~~_?<--- ~ ,) -~ --------
X :x X X X 1X : X : X : X X X X X : 

:x X X X ~ X X : : : X X ~ X X : X 

>< : X X X~ : : : X X 1 X X : x 
------- -~ -::<--~ -- -~ - ~-:---- -------:-----------:--- ~------ -:------~ - X~-~~ - ~--~ -- ~~-~ --------

;~~ : : X~-X X X )( ~X~ ~ X X ~ :x; X X~~ 
: : : : ~ X ~ X X : X X X r X X X X: X 

------- - x-~---- ------:---------- ~-~ -x- -x- - --+ ->< - x- _x -~-~ - x-- _x_ -~-------- ~ ~~ --------
; : : X X : X X : X X X~ X X X X : : : X X : x: : 
X : : X X X X~ X X X X * X X k X X X X : X : X 

--------x-~------ - )C - -:-- -X M~"X - X~*>EX - ~ -~)( -:-x -~- ~ -~}(~- -~ ~ ~>E -- ~- --------- ~------- ---

X :x X X ~ X ~ X : X ~ X X : : X X X : X : : ; 

X :x X X : ~ X X ~X X X X X : X : : X X : X 

--------~-~X--- x- "X -- ~ -X - X- --~ - -:-x -X- X -X- 7 ---- ------:---------- ~--------- )<~-)( --------

~ :x X X X X X : X X X ~ X X : : : X ~X 
>C~X X )( XX X~ X X X X X : XX )( X ~X : : X : : ~~ 

________ ~ -~ __ ~- -~ -- -:_x_ - X -- _x_ - ~~-- - ~--- -~ - -:---------- ~---------- ~-- -x-x -- X., -x----- ---
x : X X X X : X X X ~ X X : : : X X X : X 

X :x X X X~ X X X ~X X X X X : X : X : X X X : X 

------- :-t-/-~ -·'-:-,;: .. ~--,·-!- ·-·---:-+--, '-/-:v:-.. :,'r .. ~ --:-j-:-- -----
i i i i i i i 4 L---~----_L----~----L---~----~----~--~. 

4 -3 -2 -1 0 1 2 3 4 
Pressure position angle, radians 

Figure 5.12 Training points chosen by the G-optimal design procedure. 



110 

Chapter 6 

Conclusions and Future Work 

This work was devoted to studying the compatibility of flush air data sensing systems 

with bluff bodies of arbitrary geometry. Non-trivial geometries and requirements for 

efficient real time usage resulted in a challenging inverse problem of determining air data 

parameters from surface pressure measurements that could be best solved by intelligent 

data driven algorithms. A data driven algorithm was developed based on the principles of 

scattered data approximation. It was proposed that mathematical models can be utilized 

as a surrogate that solves the inverse problem of determining wind speed and direction 

configuration from pressure values. This surrogate can be used in conjunction with an 

array of flush mounted pressure sensors to act as an air data measurement system. The 

proposed scattered data approximation algorithm, called Sequential Function 

Approximation (SF A), is a greedy self-adaptive function approximation tool that results 

in reliable and robust estimates without any user dependent control or kernel hyper­

parameter selection. In particular, a nonparametric and adaptive scattered data 

approximation tool accurately and efficiently mapped wind speed and yaw angle to 

pressure measurements taken from all four sides of the bluffbody. 

Another key contribution of this work was uncertainty reduction in FADS testing by 

fusing wind tunnel data with physical models. Wind speed and direction prediction is 

sensitive to noise, gaps and incompleteness in the wind tunnel data. It was shown that 

SF A could be used to fill the gaps and smooth out the noise in the wind tunnel data by 
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assimilating knowledge from low fidelity physical solutions. It was demonstrated that 

with data-model fusion wind speed and direction prediction accuracies improve in the 

presence of noise and gaps in the data. It could also be interpreted as improving low 

fidelity physical solutions with discrete wind tunnel data. Finally, it was shown that with 

data-model fusion a detailed representation of Cp could be obtained as a function of the 

yaw angle and flow incidence angle. 

The final objective of this work was to develop a sequential experiment design strategy 

to accelerate through the test matrices ofF ADS. A general G-optimal design strategy was 

developed with SF A that sequentially adds data points to the training set that correspond 

to the maximum expected output variance. The proposed strategy was compared to 

traditional space filling design strategy of Latin Hypercube Sampling (LHS) and on both 

simulated regression and real world FADS problems. It was demonstrated that 

sequentially adding points achieved lower generalization error with fewer number of 

training points than the competing LHS method. The effectiveness of the proposed 

sequential design strategy was also demonstrated by comparing it to another active 

learning strategy when it is assumed that the true surface is known. In both the simulated 

and the FADS problems, the sequential experiment design strategy was successful in 

avoiding sampling from those regions of the input domain where the output did not have 

significant variation. 

This work is also an example of how a function approximation tool like SF A can lie 

at the heart of statistical inference, uncertainty reduction and experiment design. The 



112 

developed mathematical techniques are general in nature and can very well be applied to 

complex mechanical and aerospace engineering systems. 

6.1. Future Work 

Future avenues of research include accelerating SF A by developing heuristics to 

select the RBF center and width. The heuristics should decouple the center and width by 

exploring convergence rate of approximation by RBFs and thereby accelerate the 

computation of the parameters of each basis function. This would be particularly useful in 

high-dimensional problems. Another assignment for the future would be to test the data­

model fusion algorithm in handling FADS when pitch is also introduced with yaw. Future 

work should also include the study of constrained optimum experiment design and its 

fidelity on the FADS problem. 
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Appendix A 

A.l Inverse approach to predict yaw angle 

The non-uniqueness problem motivated the use of an array of networks instead of 

just one to predict wind direction. Dividing the training pressure data into ranges of p 

would improve the learning ability of an individual network, however, assigning a test 

point to the correct network becomes more difficult with increasing number of networks. 

A logical compromise 1s to use an array of networks for the 

[0°, 90° ], [90°, 180° ], [0°, -90°] and [ -90°,180°] ranges of p as shown in Fig A.1. Again, the 

idea is to construct four separate training networks and devise a way to identify which 

quadrant a test point belongs to before predicting the actual value. In other words, the 

strategy is to first determine which quadrant the wind is approaching the body and then 

the corresponding set of training points is selected to predict the actual freestream wind 

direction. 
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Figure A. I Quadrants depicting different ranges of the yaw angle for (a) Surface vessel and (b) 

RALStower. 

This realization helped in formulating the following training and testing strategy for the 

surface vessel problem: 

1. Select training and test points and train using SF A to predict wind speed with a low 

tolerance. 

2. Calculate training and test pressure coefficient data. 

3. Divide the available training data into four sets according to Fig. A.1 and train four 

separate network pairs, 

n n 

v: = :Lcl;(q)(~, ... ,Pd)+bl;) and pa = :Lc2;(¢(CpJ>···•cpd)+b2;) 
i;J i;J 

4. For a test data point[~, ... ,Pd], calculate v: and the mean pressure coefficient 

( C p,mean ) for each quadrant, as per Table A.1, and pick the quadrant with the maximum 

mean pressure coefficient. Calculate the approximate wind direction pa for the quadrant. 
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5. Repeat this for other test sets. 

Quadrant Pressure tap number 

I 1, 22-29, 45-50 

II 15-22, 40-45 

III 10-15, 36-40 

IV 1-9, 29-35 

Table A.l Distribution of pressure taps for the surface vessel problem 

The above strategy requires a sufficient number of pressure sensors to be present in each 

quadrant. Because the RALS tower problem has only two sensors per quadrant the 

shortage of pressure sensors posed a limitation on the ability of the wind direction 

estimation technique to place the test point in the right quadrant. This would especially be 

a problem at yaw angles in the vicinity of 0, 90, 180 and -90 degrees. To elaborate, Fig. 

A.2 shows the variation of pressure coefficient with yaw angle about the RALS tower in 

those regions where identifying the correct training network of a test point is difficult. 

For example, all points in the range 20° <P< 70°, the south port and the west port bears 

positive pressure values while the other two bear negative values. However, for points in 

the range -20° < f3 < 20° only the south port bears positive values and in the range 70° 

< p < 110° only the west port bears positive pressure values. Therefore, the correct 

training network for the points in the range -20° < p < 20° cannot be decided just by 

looking at the sign of the pressure values of the west and the east port. However, looking 
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at the magnitudes of the pressure values can identify the correct region to which the test 

point belongs. One would assume that for points in the range 0° < f3 < 20° the west 

pressure port value would be greater than the east pressure port value as is true for points 

where f3 > 20°. But Fig. A.2 shows that for southward winds the west pressure port 

value is actually less than or equal to the east pressure port value for points in the range 
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Figure A.2 Pressure coefficient variation vs. the yaw angle for selected ranges of angle of attack. 

This transition takes place when both the west and the east pressure coefficient values are 

approximately equal to -0.055. On a closer look, one can notice that the same trend is true 

for all the four networks. For example, for the westward winds, when 70° < f3 < 90° the 

north port pressure values are greater than the south port and the transition occurs when 

the adjacent north and south pressure coefficient values are approximately equal to -
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0.055. This heuristic helped us finalize the following training and testing strategy for the 

RALS tower problem. 

1. Select training and test points and train using SF A to predict wind speed. 

2. Calculate training and test pressure coefficient data. 

3. Divide the available training data into 4 sets according to Fig. A.l (b) and train 4 

networks Tsw, TNw, TNE and TsE. 

4. For a test point xtest =[cps,CPw,CPN,cpE] pick Tsw ifcps >Oandcpw >0. Similarly 

pick TNw ifcpN > Oandcpw > 0 and so on. 

5. If cps> OandcpN,cpw,CPE < 0 

if max(cpw,CPE) > -0.055 

if cpw > cpE then pick Tsw. 

if cpw 5:. cpE then pick TNw. 

if max(cpw,CPE) 5:.-0.055 

if cpw > cp E then pick T NW. 

if cpw 5:. cpE then pick T sw. 

6. Repeat this for other test points with similar conditions for other networks. 

This strategy is also shown in a flowchart form in Fig. A.5. This realization would 

certainly help the estimation technique to locate the correct quadrant for each pressure 

sensor and thereby improve wind direction prediction accuracy. However, it would be 

adversely affected by the presence of noise in the pressure data. This yaw angle 
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estimation technique runs into problems when the test data has noise. Average pressure in 

each quadrant is a simple way to determine which quadrant the test point belongs. 

Random noise in the test static pressure and Cp distorts the average in each quadrant since 

only a finite number of sensors are present in each quadrant and yaw angle prediction 

accuracy decreases quickly with noise. 

Once the wind speed predictor was in place, the predicted dynamic pressure values 

were used to obtain test coefficient of pressure values. The resulting test Cp values were 

then input to the inverse quadrant approach. As discussed before, separate networks were 

constructed for each quadrant. The tolerance for each network was again kept low 

because sparsity is not a primary concern here. 
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Figure A.3 a) Logarithm of discrete inner product norm of residual error for each quadrant and b) 

Yaw angle prediction errors on the RALS tower data when training was conducted on data at 

every 4 degree increments of yaw angle. 



131 

Once the networks have been constructed, the previously discussed testing strategy for 

the RALS tower was used to predict wind direction. Figure A.3 (a) and A.3 (b) show 

residual error convergence and yaw angle prediction errors on the RALS tower test set. 

Even with the RALS tower testing heuristic, few errors still exist in the vicinity of 0, 90, 

180 and -180 degrees. Most of the errors with a magnitude greater than 10 degrees is due 

to an error in the quadrant selection. However, if the quadrant is well defined then the 

networks are able to predict yaw angle with errors less than 2 degrees. 

For the surface vessel problem, once the wind speed predictor was in place, the predicted 

dynamic pressure values were used to obtain test coefficient of pressure values. The 

resulting test Cp values were then input to the inverse quadrant approach. As discussed 

before four separate networks were constructed, one for each quadrant, with pressure 

sensors distributed according to Table A.l. The tolerance for each network was again 

kept low because sparsity is not a primary concern here. Once the networks were 

constructed the previously mentioned testing strategy for the surface vessel was used to 

predict wind direction. Figures A.4 (a) and A.4 (b) show residual error convergence and 

yaw angle prediction errors on the surface vessel test set. Yaw angle prediction errors 

show strong bias on the port and the starboard side while the errors on the bow and 

starboard side are relatively low. This is because the average pressure value of each 

quadrant is not sufficient to discriminate between quadrants I and II and III and IV at +90 

and -90 degrees respectively. A heuristic involving pressure sensors on both the port and 

starboard side could be developed, as shown in the Appendix, for the RALS tower 

problem. However, the forward approach to predict wind direction holds considerable 
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promise to show lower prediction errors as enough sensors are present around the 

geometry of the surface vessel. 
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Figure A.4 a) Logarithm of discrete inner product norm of residual error for each quadrant and b) 

Yaw angle prediction errors on the surface vessel data when training was conducted on data at 

every 4 degree increments of yaw angle. 
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Figure A.S Flowchart representation of the yaw angle prediction strategy for the RALS tower 

using the inverse approach. 
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Appendix B 

B.l Active Learning for Classification Problems 

In a classification problem, the task of a learning tool or a classifier is to map the a­

dimensional input vectors to their respective classes or labels. A multi-class classification 

problem is attempted by breaking it down to several binary classification problems where 

the outputs are either -1 or + 1. In the setting of a classification problem an informative 

training sample is one which cannot be classified with certainty. Addition of such a 

sample would have higher probability of changing the parameters of the surrogate model 

than any sample which could be predicted by more certainty. The task of an active 

learning tool would be to choose such an informative sample or query and ask the oracle 

to provide its output. Informative samples can either be chosen from a pool of unlabeled 

samples as is common in text classification problems, or they can be determined by 

solving an optimization problem maximizing some information gain criteria. 

Optimization approaches could also be used on a pool or random unlabeled samples 

generated according to the input distribution. However, line search approaches could be 

overwhelmed by the computational burden if the number of input dimensions is large. 

Also optimization approaches where a query is constructed might lead to odd training 

instances which the oracle cannot or has difficulty in labeling. In such cases, besides pool 

based active learning, stream based active learning or selective sampling methods are 

also popular where the learning algorithm goes through the unlabeled pool sequentially 

and decides whether or not to select them instead of ranking all unlabeled samples. 
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Say we are gtven a set of d-dimensional input data points ~ and 

outputs Y E [ 1, 2, .... , N] , where N is the number of classes. In binary classification tasks, 

the output can only take two possible values ( -1 or + 1 ). A straightforward way to 

compute the expected error from the addition of a point ~ to the training set is to 

calculate: 

(B.1) 

Equation (B.1) calculates the overall expected error on a test set when a data point ~ is 

added to the training set with output + 1 or -1. P(Y = 11 ~) and P(Y = -11 ~)are the 

posterior probabilities that the label of the training point ~ is + 1 and -1 respectively. 

Even though this approach is straightforward, it is computationally expensive [85]. In 

binary classification this computation can be avoided by selecting a data point that lies in 

the vicinity of the classification boundary. A point lying close to the class discrimination 

boundary is guaranteed to have an effect on the approximation of the discriminant 

function. Selecting unlabeled samples that lie in the vicinity of the discriminant boundary 

falls under the category of Uncertainty Sampling (US). Even though US does not 

optimize an information gain criterion, it has been proven to be effective in many 

practical applications [86-88]. The authors in the reference [85] have used US with 

Support Vector Machines (SVMs) for text classification problems. Since SVMs are 

discriminant classifiers computing the distance of data points from the class boundary is 

relatively straightforward. The authors tested this approach on two document 

classification problems. They concluded that only with a small number of actively chosen 

samples high classification accuracy could be obtained. These results were equivalent to 
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classification accuracy when all samples were used. And as the number of actively 

chosen samples was increased the classification accuracy would degrade and converge to 

random sample selection results. The authors in the reference [86] proposed a similar 

active learning method for SVMs. They proposed AL-SVM that would find an optimal 

solution by actively choosing samples from the input space according to US till no 

unlabeled samples lie within the margin of the support vectors. The authors tested the 

proposed algorithm on simulated problems and a mass spectroscopy problem of detecting 

hydrocarbons in the soil. They concluded that AL-SVM had good performance when the 

classes were well separated. Their performance suffered as the overlap between the 

classes increased. On the mass spectroscopy problem AL-SVM with only 14% of training 

points had performance similar to passive learning with the full training data set. 

Authors in reference [89] proposed an active learning strategy that uses 

bootstrapping to estimate the class probability estimate of unlabeled samples and chooses 

a sample whose class probability estimates are tied. The authors compared their proposed 

active learning procedure with bootstrapping against learning with randomly selected 

training points on 20 real world data sets. They obtained an accuracy improvement on 15 

out of 20 data sets when their proposed procedure was used instead of random sampling. 

The authors als<;> compared their proposed algorithm against Uncertainty Sampling [77] 

and concluded that their proposed algorithm had superior performance on most data sets. 

An alternate approach could be to search for new data points orthogonal to the 

space spanned by the current training set. This would be helpful when the problem has 
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high number of input dimensions. Other possible heuristics could be to choose places 

where there is no data, where there is poor performance, where the confidence is low, 

where one expects it to change our model or where data has resulted in learning [85]. 

B.l.l Optimization Approaches 

Active learning approaches that fall under this category generate a new sample or 

choose an informative sample from a pool of unlabeled samples according to some 

optimization criteria. A popular optimization criterion is to maximize the expected 

information gain associated with a candidate training sample. Two popular approaches to 

calculate the expected information gain are either: 

1. To compute the reduction in the expected output variance of the model 

n. To compute the expected reduction in the version space of the model. 

Use of tools from Optimal Experiment Design [90], [75] has been popular to formulate a 

principled approach to estimate the output variance of the model. These techniques can 

be applied to both classification and regression problems and will be discussed in Section 

5.1 where active learning for regression problems are discussed. A thorough literature 

survey is also available in the reference [25], [91]. As mentioned earlier a popular 

optimization criterion for active learning is to search for samples that reduce uncertainty 

of the model parameters. Query by Committee [92], [93] based methods are a popular 

approach that use a committee of models to estimate the expected information gain of an 

unlabeled sample. The concept of version space is often used to understand the meaning 

of information gain. Version space is a subset of all possible values of model parameters 
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or weight space that lead to zero training error [25]. So version space is the ideal set of 

model parameters that result in no training error on the problem and any unlabeled 

sample that eliminates uncertainty from the weight space would be an informative 

sample. These methods estimate the expected information gain of a sample as reduction 

in the version space of the problem. The reduction in the version space is measured by 

estimating the disagreement between the committee members on an unlabeled sample. 

The author in reference [25] have shown that the probability distribution of the model 

parameters and hence the associated information gain due to an unlabeled sample can be 

written in terms of the volume of the version space. For a binary classification problem 

an unlabeled sample divides the version space into two regions, each representing models 

that would classify the unlabeled point to each class. The expected information gain is 

maximized when the two volumes are equal. Therefore, an unlabeled point that bears the 

maximum disagreement among the committee members is the most informative sample. 

Primary advantages of these approaches are that they have their foundation in the 

principles of information theory and are conceptually simple to implement since they do 

not depend on the formulation of the learner [25]. Shortcomings of Query by Committee 

include unrealistic assumptions that data is noise-free, existence of a perfect deterministic 

classifier, and that it is possible to draw classifiers from the version space. Uncertainty 

sampling approaches could be seen as a single classifier version of reducing the size of 

the version space and is described in the next section [77]. 
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B.2 Uncertainty Sampling with SFA 

For algorithms like SFA that construct their approximations in the form ofEq. (2.1), 

points that lie in the vicinity of the classification boundary can be found by looking at the 

minimum absolute value of the argument of the proxy function. To implement 

uncertainty sampling with SF A the following steps need to be followed: 

1. Use a Design of Experiment method like LHS technique to pick a small number of 

initial training points to begin the active data collection procedure. 

2. Conduct training and evaluate the classifier on a pool of unlabeled samples. 

3. Using u;, determine the test point that bears the minimum absolute value of the 

argument of the proxy function. Multiple points can also be selected in a similar manner. 

4. Add the chosen unlabeled samples to the training set and remove them from the pool 

of the unlabeled samples. 

5. Repe·at steps 2 through 4 until the pool of labeled samples is exhausted. 

The application of this heuristic with SF A 1s demonstrated on the following 

simulated classification problem given in Eq. (B.2). 

u(x,y)=sign[y-x2 ] where O~x,y~1 (B.2) 

The classifier was trained on one half of the available points and tested on the remainder. 

Percentage accuracy was calculated by Eq. (B.3) shown below: 

ercentage accuracy = x 100% P ( Ntest - mtest) 
Ntest 

(B.3) 

where Ntest = number of points in the test set and mtest = number of misclassifications. 

Results shown in Fig. B.1 were obtained by using SF A in conjunction with uncertainty 
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sampling to select new samples for labeling. The red and the blue curves in Fig. B.1 (a) 

show the increasing percentage prediction accuracy on a fixed test set ( 1 00 points) as 

training points were incremented sequentially using active learning and random sampling 

respectively. Initial approximations for both sampling strategies were constructed using 

ten points chosen by LHS design and two points were chosen at a time for labeling from 

a pool of 400 regularly spaced grid points. This process was repeated 50 times to 

eliminate any bias due to the choice of the initial set of training points. Fig. B.1 (a) shows 

mean percentage prediction accuracy computed over 50 permutations. Error bars show 

the standard error. Figure B.1 (b) shows the location of the data points chosen by the 

active learning scheme in one of the permutations. The active learning scheme clearly 

performs better than random sampling. Since there is an unlimited supply of unlabeled 

data points, the learning curves for active and passive learning do not converge. 
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Figure B. I a) Mean percentage classification accuracy as number of training points increase, 

errorbars show standard error and b) Crosses represent the training points chosen by the active 

learning scheme and solid line is the class discrimination boundary y = x 2 
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As previously mentioned, multiclass classification problems are commonly 

attempted by combining several binary classifiers with a one vs. all or one vs. one 

approach. Selecting data points lying close to the classification boundaries in these 

problems would not be an optimal approach because one point could be informative for 

two classes but uninformative for the rest. A simple way to avoid this problem is to use 

the posterior probability estimates of the binary classifiers to pick a sample for labeling. 

According to uncertainty sampling an informative sample would be one that has the 

lowest classification uncertainty. Several authors have suggested picking a sample for 

labeling that bears the minimum difference between highest and the second highest 

posterior probability estimates [94], [87]. The authors in reference [87] proposed an 

active learning approach with SVMs for a multi-class image classification task of 

recognizing the types of plankton. The authors constructed several binary classifiers 

according to the one vs. one procedure and assigned probabilities to each classifier 

according to a parametric model. Informative images were chosen that had the smallest 

difference between the class probabilities. This approach was compared against the 

uncertainty sampling approach of reference [77] on plankton classification task. The 

authors concluded that the proposed approach had superior classification accuracy and 

often needed fewer images to do the job. In this work this method is used to select the 

next sample for labeling due to its simplicity and effectiveness. 

SF A is a deterministic classifier that attempts to directly estimate the discriminant 

function of a binary classifier. Like Support Vector Machines (SVMs), SFA does not 

output posterior probabilities of a test point belonging to a particular class. Platt [95] 
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introduced a method to directly train the parameters of a sigmoid function to map the 

deterministic SVM outputs into posterior probabilities. Several authors extended this 

notion to a softmax function for multiclass classification problems [96] given by Eq. 

(B.4). 

(B.4) 

Here u;k is the real valued output of the !Ch binary classifier at ~i, and ak, b0,k are 

parameters of the softmax function. The parameters of the softmax function are 

determined by maximizing the following log-likelihood function given in Eq. (B.S). 

(B.S) 

B.3 Wind tunnel experiment design for cavity flow classification 

Internal carriage of stores in aircraft has many aerodynamic advantages especially in 

military applications. These include enhanced maneuverability, reduced drag and 

increased stealth of the aircraft. However, flow over the cavities might generate steady 

and unsteady disturbances that can affect safe discharge of stores [97]. Fig. B.2 (a) shows 

the open bomb bay of the F-22 Raptor which can generate self-sustaining oscillations that 

might lead to cavity resonance risking the structural integrity of the vehicle [98]. Fig. B.2 

(b) shows the open missile bay of the F-35 Lightning II that can provide a large nose-up 

pitching moment to the stores on discharge [99]. These flow disturbances demand 



144 

extensive computational and experimental studies to be conducted at all operational 

speeds. 

::::=:.== ---..___~..__ --- -~----~ ..:::::- ......... ...__ 

(a) (b) 

Figure B.2 a) Open bomb bay of a F-22 Raptor [98] and b) open missile bay of a F-35 Lightning 

II [99]. 

It is widely acknowledged that wind tunnel testing is essential in characterizing flow 

across a cavity. A number of parameters can influence the flow including freestream 

Mach number, geometric dimensions of the cavity, ratio of the boundary layer height to 

cavity depth, and location of stores within the cavity [97]. The number of parameter 

combinations and requisite data reduction can render wind tunnel testing tedious, 

expensive and time consuming. Any innovative mathematical technique that can reduce 

the time and expense of wind tunnel experiments is welcome. 

In a related work, the authors demonstrated how machine learning tools could be 

used with Design of Experiments (DOE) to steer the experiment by investigating input 

parameter sensitivities to the classification of the cavity flow type [ 1 00] . The authors 

used SF A to predict the cavity flow type with or without acoustic resonance as a function 
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oflength-to-depth ratio (1/h), width-to-depth ratio (wlh), and the freestream Mach number 

(Moo). The authors treated this problem as a multi-class cl~sification problem and 

justified the selection of SF A by comparison against state of the art classification tools. 

However, the work presented in Reference [100] could only steer the cavity 

experiment by input parameter selection with respect to cavity flow type classification. It 

could not take part in the data collection procedure given a set of input parameters. This 

Section shows how Uncertainty Sampling with SFA could be used to construct a training 

set that leads to lower generalization errors compared to passive construction of training 

set by LHS methods. A total of 267 wind tunnel runs were conducted by Tracy and 

Plentovich [97] with the resulting data plotted in Fig. B.3. Percentage errors were 

computed in the same manner as that presented in the previous section. The 

misclassification error rate of SF A with training points chosen by US was compared 

against training points chosen by Latin Hypercube Sampling tested on all the available 

267 points. The purpose of this comparison was to demonstrate that the active machine 

learning algorithm achieves better generalization ability, i.e. better cavity flow type 

prediction accuracy with fewer training points. The current problem is treated as a 3-class 

classification problem and focus on generating optimal Moo and 1/h combinations for each 

wlh. Focus is not given on determining optimal w/h ratios because of its insufficient 

resolution in the available data. 
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Flow Type: 
Circle - Open 
Square -Transitional 
Diamond - Closed 

Resonance: 
Filled - Resonant 
Unfilled- Non-resonant 

Figure B.3 Occurrence of resonance superimposed with observed cavity flow conditions [97]. 

The active learning scheme applied to the cavity problem can be schematically 

represented by Fig. B.4. Once a final training set has been constructed, the final form of 

the discriminant function can be constructed to predict labels in real time. The active 

machine learning algorithm initially needs a few training points to construct a hyper-

surface to determine the most uncertain data points. There is no principled approach to 

determine the optimum number of initial points, so 20 initial points were used to start the 

active learning procedure. These points were chosen by the LHS method on two 

dimensions Moo and 1/h. To eliminate any biases due to the randomness in the LHS 

designs, the training and testing procedure was repeated 50 times. Two points were added 
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to the training set each time and the active data selection process continued until all of the 

available points were used. This approach allows the user to choose a single point or a 

batch of points per iteration. Two points were added per iteration to save computational 

time spent to complete 50 random permutations used to eliminate bias in the results. 

Uncertainty 
Sampling 

label cavity 

flow type 
...-----'------. 

Wind tutm.el :run. 
pressure recording 
and data reduction 

new input 

configuration 

Figure B.4. Schematic representation of Active Learning. 

Figure B.5 shows that active learning clearly outperforms the passive LHS technique 

at all three wlh ratios. Active learning accuracy increases sharply and then gradually 

converges with LHS classification accuracy as unlabeled samples are exhausted. With 40 

training data points at wlh = 1, active learning has a classification accuracy of 97 ± 0.2% 

while LHS has 93 ± 0.3%. This means that ifthe user decides to conduct 40 wind tunnel 

runs at wlh = 1, then actively sampling input configurations by the US technique would 

result in data that has more information than data sampled passively by the LHS 

technique. Training data sampled from critical regions of the input-output hyperspace 

give more generalization ability to SF A than the training data sampled just from the input 

space. 
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Figure B.S. Mean cavity flow type prediction accuracy of active and passive learning at a) w/h = 

1, b) w/h = 4 and c) w/h = 8. Error bars show the standard error. 

The only disadvantage US based active learning has compared to pass1ve LHS 

technique is its greater computational expense. However, the relatively high cost of wind 

tunnel testing more than justifies the increased computational cost. The active learning 

curve for w/h = 1 flattens out at about 35 training points because the US algorithm 

chooses almost all of the points lying close to the classification boundaries in the first 8 
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iterations. Table B.1 shows cavity flow type classification accuracy of SF A, using half of 

the data points for training, sampled by the US and LHS techniques. 

wlh Number of 

training points 

1 38 

4 46 

8 44 

LHS 

(%) 

94 ± 0.3 

88 ± 0.4 

90 ± 0.4 

us 

(%) 

97 ± 0.2 

95 ± 0.3 

95 ± 0.3 

Table B.l Comparison of classification accuracies 

The use of SF A with the Uncertainty Sampling technique was demonstrated on a multi­

class cavity flow type prediction problem. It is believed that active machine learning tools 

have the potential to help engineers to accelerate through wind tunnel testing by steering 

through the test matrix in an incremental and optimal manner. 


