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ABSTRACT 

MAP Detection with Soft Information in an Estimate and Forward Relay Network 

by 

Corina loana Serediuc 

One proven solution for improving the reliability of a wireless channel is to use re­

lays. We analyze the three-node relay network, focusing on the estimate-and-forward 

(EF) relay protocol, where the relay node estimates the source symbol and then 

forwards it to the destination. 

For an uncoded system in a path-loss model for the cooperative three-node wire­

less network, we show that EF with minimum mean square error (MMSE) estimate 

outperforms other common relay protocols such as amplify-and-forward (AF) and 

detect-and-forward (DF). Since the probability density function required by the op­

timal maximum a posteriori (MAP) detector at the destination does not have an 

analytical form, we provide a solution to bypass its numerical approximation. We 

show that EF with a piecewise linear approximation of the MMSE estimate provides 

an analytical form of the detector at the destination and its performance is similar 

to the case when a MMSE estimate is used. 



ACKNOWLEDGEMENTS 

I would like to first thank my advisor, Dr. Behnaam Aazhang, for 

accepting me as a graduate student. I came in with a computer science 

background and due to your patience and understanding I made it to the 

day when I defended my Master Thesis. Thank you for being such an 

inspiring mentor throughout this journey. 

I would also like to thank Dr. Jorma Lilleberg for offering me the 

opportunity to work on such an interesting problem. I will never forget 

the first day we met and started talking about the MMSE estimate. 

A big thank you to all my colleagues here at Rice, who also became 

my friends (Sam, Ryan, Kanes, Jason, Matt, Drew, Pedro, Evan, Achal, 

David and the list goes on). Thank you all for your support, help and 

encouragement. 

The warmest thanks goes to my family: my dad, Cezar, my mum, 

Mariana and my brother, Andrei. I am who I am because of you all. 

Thank you for your love and support throughout all these years. 

Last but not least, I would like to thank Cosmin, my husband-to-be. 

Thank you for believing in me no matter what. I am where I am now 

because of all your love and trust. You are the one who made me push 

my limits and overcome my fears. Thank you for being there for me. 

To my grandpa, Efrem Serediuc, who I wish was here to see me, I will 

never forget you. 



Abstract 

Acknowledgments 

List of Illustrations 

1 Introduction 

1.1 Relaying strategies 

Contents 

1.2 Main contribution of this thesis 

2 Related work 

3 Preliminaries 

3.1 System model . . . . . . 

3.2 Detector at destination . 

3.2.1 Proof of independence 

3.3 Decode-and-Forward . 

3.4 Amplify-and-Forward . 

4 Estimate-and-Forward 

4.1 Relay function . . . . . . . 

4.1.1 BSPK modulation 

4.1.2 M-QAM modulation 

4.2 Detector at the destination . 

4.2.1 Pdf of the MMSE estimate . 

4.3 Piecewise linear approximation .. 

11 

iii 

vi 

1 

3 

4 

6 

11 

11 

14 

16 

17 

19 

22 

23 

24 

26 

28 

29 

32 



5 Simulation results 

6 Conclusions 

Bibliography 

A Derivation of P(YRnlx) 

v 

37 

42 

43 

48 



Illustrations 

1.1 Wireless cooperative network setup. . . . . . . . . . . . . . . . 2 

1.2 Fundamental building block for wireless cooperative networks. 3 

2.1 Three-node cooperative wireless network . . . . . . . . . . . . . . . . 7 

3.1 Notations on the three-node cooperative wireless network. 11 

3.2 Pathloss model. Relay inline with source and destination. . 13 

3.3 Transmission protocol. First time slot - Broadcast phase; Second time 

slot- MAC phase- usually both the source and the relay transmit in 

this phase, but in our case, only the relay will be transmitting. . . . . 13 

3.4 Relay functions for AF and DF; YsR is the received signal at the relay 

and f(YsR) is the relay function. For this plot, we have considered 

BPSK modulation, S N RsR = 3dB and an average transmit power 

constraint at the relay PR = 1. 

4.1 Relay functions for AF, DF and EF; YsR is the received signal at the 

relay and f(YsR) is the relay function. For this plot, we have 

considered BPSK modulation, S N RsR = 3dB and an average 

20 

transmit power constraint at the relay PR = 1. . . . . . . . . 24 

4.2 The relay function feF(YsR) plotted for different values of SNRsR 

from -1dB to 20dB. . . . . . . . . . . . . . . . . . . . . . . . . . . 25 



4.3 Relay functions for AF, DF and EF; YsR is the received signal at the 

relay and f(YsR) is the relay function. For this plot we have 

considered 4PAM modulation. The path-loss model is considered 

Vll 

with d = 0.7 and o: = 4. . . . . . . . . . . . . . . . . . . . . . . . 28 

4.4 Probability density function of E[xiYsR] for x = 1, for different values 

of SNRsR·. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 

4.5 Relay functions for EF with MMSE estimate and EF with linear 

approximation; YsR is the received signal at the relay and f(YsR) is 

the relay function. For this plot, we have considered BPSK 

modulation, SN RsR = 3dB and an average transmit power 

constraint at the relay PR = 1. . . . . . . . . . . . . . . . . . 

4.6 Relay functions for AF, DF, EF- MMSE and EF- linear; YsR is the 

received signal at the relay and f(YsR) is the relay function. For this 

plot, we have considered BPSK modulation, SN RsR = 3dB and an 

33 

average transmit power constraint at the relay PR = 1. . . . . . . . 34 

5.1 Pdf P(YRD lx = 1) for the EF relay protocol with the MMSE estimate. 

The density is shown for different positions of the relay with respect 

to the source (different d). . . . . . . . . . . . . . . . . . . . . . 38 

5.2 BER for AF, DF and EF protocols for BPSK modulation for the 

pathloss model. On the x-axis, d represents the normalized distance 

between S and R. . . . . . . . . . . . . . . . . . . . . . . . . . . 39 

5.3 SER for AF, DF and EF protocols for 16QAM modulation for the 

pathloss model. On the x-axis, d represents the normalized distance 

between S and R. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 



1 

Chapter 1 

Introduction 

In recent years, wireless communications have evolved tremendously. One important 

difference from wired communications is that in the wireless environment the com­

munication medium is shared among users. Thus, other nodes in the neighborhood 

of the transmitting node are able to hear the transmission. Due to the availability 

of information at nodes in the vicinity of the source, the idea of using these nodes 

to help with communication emerged. This technique became known as cooperative 

communications. The information at the receiving node depends not only on the sig­

nal received from the source, but also on the signals received from neighboring nodes. 

This thesis analyzes the type of information the neighboring nodes should send to 

aid the communication and provides a strategy for the best use of the additional 

information at the destination node. 

The maximum amount of information that can be sent over the shared medium 

in a wireless network is constrained by the interference among nodes. For long dis­

tance communications, the transmitted signal suffers attenuation and also produces 

interference to more nodes in the system. In contrast, short distance communications 

produce interference to a smaller number of neighbors, allowing more communica­

tion channels to be active in the wireless network. This advantage of short distance 

wireless communications motivated the use of multihop networks. In such a network, 

nodes pass information to the next ones, until the data reaches its destination node. 

For example, in Figure 1.1 we named as relays the neighboring nodes of the source 
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Figure 1.1 : Wireless cooperative network setup. 
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which can hear the full transmission. When the source transmits, the relays can help 

communication in several ways. One possible multihop link can be formed with 

relays 2 and 3 by sending the signal from one to the another until it reaches the 

destination. Also, a one-hop link can be formed with relay 1, which retransmits 

the signal directly to the destination. Thus, if the direct communication between 

the source and the destination is weak, then the destination can combine the signal 

received from the source with the signals received from relays 1 and 3 to correctly 

decode the information. 

We focus on a source-destination wireless network with a single relay. This repre-

sents the fundamental building block for wireless cooperative networks, and is called 

the three-node channel, or more commonly the relay channel. In this setup, we have 

one node transmitting the information (the source node S), one neighboring node 

(the relay R), and one node for which the signal is intended (the destination D), as 

depicted in Figure 1.2. 

The data communication occurs as follows. First, the source broadcasts the signal, 
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Figure 1.2 : Fundamental building block for wireless cooperative networks. 

which is heard by both the relay and the destination. Secondly, the relay processes 

its received signal and forwards it to the destination. During this time, the source 

may be silent, such that only the relay transmits, or it may also broadcast new data. 

This forces the relay to perform in full duplex mode, receiving and transmitting 

at the same time. The importance of cooperative communications becomes clear 

when information is retrieved at the destination. In a point-to-point network (no 

relays), when the source-destination link is bad, the information may not be decoded 

accurately. However, in a cooperative setting, the destination can use additional 

information from the relays, resulting in an improved decoding. 

One major factor which influences the accuracy of the decoding performed at the 

destination is the type of information sent by the relay. Next, we present several well 

known relaying strategies which use different types of information forwarding by the 

relay. 

1.1 Relaying strategies 

A relay protocol is defined by the type of processing used for the received signal at 

the relay. There are three main classes of relaying protocols: 

• Decode-and-Forward (DF). The relay decodes andre-encodes the received 
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signal, then it forwards it to the destination. This processing of the signal at 

the relay is also know as making a hard decision, as the information sent by the 

relay does not include any additional information about the reliability of the 

source-relay link. 

• Amplify-and-Forward (AF). In this case, the relay just amplifies its received 

signal, maintaining a fixed average transmit power. 

• Estimate-and-Forward(EF). This protocol is also known as Compress-and­

Forward or Quantize-and-Forward. At the relay, a transformation is applied 

to the received signal, which provides an estimate of the source signal. This 

estimate is called soft information, and it is forwarded to the destination. 

AF is a straightforward scheme for both coded and uncoded systems. On the 

other hand, DF comes with the option of choosing a specific type of coding which can 

improve the overall performance. Both protocols have been extensively investigated 

using capacity, achievable rates and also different metrics such as outage probability, 

bit-error-rate (BER) or throughput. These two schemes present a complementary 

behavior which depends on the signal to noise ratio regimes. 

1.2 Main contribution of this thesis 

While AF and DF have well defined signal processing at the relay, the EF relay 

protocol includes a broad variety of estimates which can be sent to the destination 

to improve detection. Thus, since EF is not restricted to only one type of processing 

at the relay, it has raised a lot of interest on what should be the best estimate to 

use, or how should this estimate best be used at the destination. In this work, we 
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address these questions and show how EF can be used to improve the performance 

of the system over AF and DF. 

Previous work on EF has shown that there are optimal estimates which minimize 

specific performance criteria. Motivated by this, we represent the soft information at 

the relay by the minimum mean squared error(MMSE) estimate. We show that EF 

with the MMSE estimate provides superior performance to both AF and DF, with 

respect to bit-error-rate(BER). We propose using a piecewise linear approximation of 

the MMSE estimate to obtain a closed form detector at the destination. 
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Chapter 2 

Related work 

One effective solution for improving communication between a source (S) and a des­

tination (D) pair is to use a relay (R), as presented in Figure 2.1. This three-terminal 

communication channel, first introduced in [1], represents the fundamental scheme in 

cooperative communications. 

The performance of this scheme has been extensively analyzed from different per­

spectives by many authors. There exist several well crystallized approaches for investi­

gating the relay channel, including information theoretical analysis such as achievable 

rates and capacity bounds. The first to explore the capacity for the relay channel 

were Cover and Gamal in [2]. This seminal work was later followed by a more gene­

ralized analysis on the capacity of the relay channel, done by Kramer et. al in [3] and 

others in [4] and [5] . Furthermore, the user cooperation diversity was explored in [6] 

and [7]; while other performance metrics which recently attracted attention include 

outage probability [8], [9] and diversity-multiplexing tradeoff [10], [11]. 

The common conclusion of all these previous papers is that adding a relay improves 

performance significantly. However, we have noticed that the approach of analysing 

symbol error rates has received little attention in the past. In this work, we shall 

focus on analyzing the symbol error rate for the relay network. 

As previously stated, a relay protocol is defined by the processing method used 

for the received signal at the relay. We term the processing at the relay as the relay 
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Figure 2.1 : Three-node cooperative wireless network 

function f(YsR), where YsR denotes the received signal at the relay. 

Two basic relay protocols were first proposed by Cover and El Gamal in [2]. 

These protocols are decode-and-forward (DF) and compress-and-forward (CF) also 

known as estimate-and-forward (EF). Another important protocol, called amplify­

and-forward (AF) has been well investigated by Laneman in [9, 8, 12] and others 

[13, 14, 15]. Furthermore, other protocols can be derived from these basic ones, such 

as quantized-and-forward (QF) [16]. 

One of the main features of the AF and DF protocols is that the relay function is 

well defined. Thus, a lot of attention has been directed towards these protocols, see 

[3]-[15]. On the other hand, the analysis of the EF protocol can prove to be rather 

tedious, since the EF relay function is defined to be any type of estimate of the source 

signal which could aid the detection at the destination. As a result, among the three 

most prominent relaying protocols, EF has received the least attention in literature. 

When investigating the EF protocol, besides the metric used to showcase the re-

suits, there are several characteristics which make each analysis unique. They include 

the network topology, the relay function, and the criterion on which the EF relay func­

tion is chosen. Another important aspect of EF is the type of information each node 
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is required to have. In addition, most of the existing EF work completely ignores the 

direct link between the source and the destination, and little to no attention has been 

given to the detector at the destination side. 

For the two-hop transmission network topology, pioneering contributions in EF 

relaying were made by Abou-Faycal and Medard in [17], where they focused on obtain­

ing the relay function which minimizes the probability of error. A network topology 

similar to the one in Fig.2.1 was considered, but with no direct link from S to D. 

Channel state information was assumed to be known at each receiver ( CSIR at R and 

D) and in addition to the R to D channel, the S to R channel state was assumed to be 

known at the receiver D. With these assumptions, the optimal relay function which 

minimizes the probability of error was found to be the Lambert W, which is defined 

as the solution to W(x)ew(x) = x. The results were derived for uncoded antipodal 

source signaling in conjunction with an additive white Gaussian noise (AWGN) as­

sumption on each of the two channels. This function is non-analytical and requires 

analytical approximation or table look up. Therefore, the detector at the destination 

is not tractable. 

Using a similar setup, Gomadam and Jafar proved in [18] that forwarding the 

minimum mean squared error (MMSE) estimate maximizes the generalized signal to 

noise ratio (SNR) at the destination. The network topology was extended to ones 

involving multiple relays in a parallel and serial topology arrangements. These results 

were derived for the relaying network without exploiting the direct link between S 

and D. In addition, in [19], the same authors showed numerically that the MMSE 

estimate is capacity optimal for BPSK modulation in a two hop relay network. 

The work presented [17] was later extended by Cui et. al [20] for the two way 

relay channel. For binary antipodal signaling, in a network which included the direct 
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link, they showed that a Lambert W function minimizes the probability of error. 

The Lambert W function and the MMSE estimate are the only EF relay functions 

to optimize a criterion such as the probability of error or SNR. These functions are 

specific for the uncoded system for the relay network. For a coded relay network, 

the functions encountered in literature are approximations of the mean squared error 

(MSE) estimate as the log likelihood functions (LLRs) [21, 22] or approximations 

of the LLRs, [23]. However, our focus in this paper shall be solely on an uncoded 

system, which uses the MMSE estimate as the relay function. 

In previous work on EF, the relay function depends only on the received symbol 

and not on previous symbols. This methodology was recently denoted as instanta­

neous relaying by Khormuji in [24], where they performed analysis for the Gaussian 

relay channel with a direct link and a perfect S to R link. Khormuji and Skoglund 

numerically showed that a relay protocol with parametric piecewise linear mapping 

improves the performance of the relay network over the AF relay protocol. In this 

paper we propose a more generalized method which employs a piecewise linear ap­

proximation of the relay function. 

Once the relay function is defined for a relay protocol, the detector at the destina­

tion is critical for the practical implementation of the protocol. In the communications 

literature, sparse attention has been given to the detector techniques which could be 

used at the destination. Seminal work was done by Brennan in [33], where a compre­

hensive analysis is done on the practical maximum-ratio-combining (MRC) detector 

applied to both AF and DF. Later, Wang et. al [25] introduced cooperative-MRC 

(C-MRC) and showed that for a DF relay protocol maximum possible diversity is 

achieved. Most recently, a novel soft-symbol estimate-and-forward (SEF) with the 

MRC detector technique is proposed by Hu and Lilleberg in [26]. They show numer-
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ically that significant power gain is obtained when a posteriori probability is used to 

weight the soft information sent by the relay. 

We argue that in a wireless environment, the direct link may still provide reliable 

information and warrant processing at the destination. The MMSE estimate has 

been shown to be optimum in several scenarios of the three-node network without 

the direct link. Thus, in this work we analyze the performance of the EF protocol 

when a conditional expectation is the relay function in a three-node wireless network, 

and we take advantage of the existence of the direct link. We provide a generalized 

method consisting of using a piecewise linear approximation of the MMSE. We also 

address the important issue of the detection algorithm at the destination. To the 

best of our knowledge, we are among the first to provide a closed form solution of the 

optimal detector. 

It has also come to our attention that recently, similar work has been done in­

dependently and in parallel by Tian et al in [27]. They use a specific three-segment 

piecewise linear approximation in a system with BPSK modulation. 
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Chapter 3 

Preliminaries 

In this chapter, we define the system model and two of the most well know protocols, 

amplify-and-forward (AF) and decode-and-forward (DF). Their performance will later 

be compared with the performance of the proposed EF protocol. 

3.1 System model 

Considering the general setup (Figure 3.1 ) , data is to be transmitted from the source 

node (S) to the destination (D). A third node called the relay (R) will help the 

communication between the two nodes. The scope of the relay is to only assist in the 

communication to the destination, it does not have data of its own to be transmitted. 

In this setup, we assume that each node has only one antenna. 

ns YsRfJi:'/(YsR) 
~_:/\_J~RD 

hs¥(:9 ~ nnv 

/ G{~ (jJ hsv cv-'\EJ 
f YsD nsv 

Figure 3.1 : Notations on the three-node cooperative wireless network. 

We use x to denote the symbol transmitted by the source, while the relay function 
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is represented by f(YsR), where YsR denotes the received signal at the relay from the 

source. Similarly, we define YRD and Ysn as the received signals at the destination. 

According to the type of function used at the relay, we can classify the the signal 

transmitted by the relay as soft or hard information. Results presented throughout 

this thesis will be given for the general case with fading channels, and specific examples 

will be shown for different modulation schemes. The fading coefficient of S-R, R-D 

and S-D channels are denoted by hsR, hRn and hsn, respectively. Every channel in 

the network is degraded by independent AWGN as nsR rv N(O, 1), nsn rv N(O, 1) 

and nRD rv N(O, 1). It follows that the system model is described by the following 

equations: 

YsR = hsR · x + nsR 

Ysn = hsn · x + nsn 

(3.1) 

(3.2) 

(3.3) 

To showcase the performance of the relay protocol we propose, our simulation 

results are presented for a path-loss system model, that is, the relay is located on the 

direct line, between the source and the destination, as shown in Figure 3.2. The S to 

R distance normalized by the S to D one is denoted by d, and for the path-loss model 

the fading gain of the S to R channel is given by lhsRI 2 = d-a. Here, a represents 

the path-loss exponent, which usually is set to have values between 2 and 4. The 

fading gains for the R to D and S to D channels are defined in a similar manner 

by lhRnl 2 = (1- d)-a and lhsnl 2 = 1, respectively. This system model covers a 

wide range of possible locations of the relay, which will ease the interpretation of the 

results. 

The main results of this work are presented for a general setup, that is, inde-
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YSR®f(YsR) 
nsR, hsn R nRn, hRv 

• ··················--~~~~' ttsn YSD 

£l ~-----------------------1-d 

Figure 3.2 : Pathloss model. Relay inline with source and destination. 

pendent of the modulation order chosen for the source symbols. Examples are given 

for specific modulations like uncoded binary-phase-shift-keying (BPSK) and M-ary 

QAM (quadrature amplitude modulation), such as 16 QAM. We assume fixed trans­

mit power for the source (Ps) and the relay (PR)· Their sum is equal to the source 

transmit power in a S to D only model, that is, the single link model with no relays. 

There are several medium access protocols that can be used in such a network 

topology. A detailed description of these protocols can be found in [29]. 

Time slot I Time slot II 

Figure 3.3 : Transmission protocol. First time slot - Broadcast phase; Second time 
slot - MAC phase - usually both the source and the relay transmit in this phase, but 
in our case, only the relay will be transmitting. 

The setup of the medium access protocol used in this work is such that the relay 

works in half-duplex mode, that is, it will not receive and transmit at the same time. 

This assumption implies that, with help from the relay, it will take two time slots to 
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complete the transmission from 8 to D, as shown in Figure 3.3. In the first time slot, 

also know as the broadcast phase, 8 transmits, while R is silent and both R and D 

receive the signal. In the second time slot, 8 is silent and only R transmits to D. 

We also impose the C8IR assumption, that is, channel state information is known 

at the receiver. This a realistic assumption, since training pilots can be used to 

estimate the channel characteristics and frequency offset correction can be applied at 

the receiver to recover from constellation rotation. 

An important aspect of any relaying protocol is the detector at the destination. 

The decision at the destination is done based on all received signals, Ysv and YRD· 

In the next section we introduce the optimal detector to be used at the destination. 

3.2 Detector at destination 

Once the two signals Ysv, YRD are received at D, the optimal detector is used in the 

form of a maximum a posteriori probability (MAP) detector. The MAP detector is 

given by, 

(3.4) 

where xv denotes the symbol resulted from the decision made at the destination 

side. From now on we drop the subscripts, which are obvious by inspection of the 

arguments of the probability density function. The subscripts will be shown only in 

those cases when they are essential for clarity. 

Applying Bayes' Rule[30] we obtain. 

~ P(Ysv,YRvix)p(x) 
xv =max . 

x P(Ysv,YRv) 
(3.5) 

The decision at the destination is made for given values of Ysv and YRD, thus we can 

ignore P(Ysv, YRv) , as it is independent of x and it does not affect the end result of 
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the detector. We assume the symbols are equally likely, therefore p(x) has the same 

value for any given symbol and thus it does not influence the outcome of the detector. 

With these assumptions, the general form of the detector can be further simplified as 

XD =max P(YsD, YRDix) 
X 

=max P(YsDix)p(yRDix). 
X 

(3.6) 

(3.7) 

The detector given in (3.6) is the well known maximum likelihood (ML) detector. 

The MAP and ML detector are the same for this system, mainly because equally 

likely symbols are used for transmission. 

The transition from (3.6) to (3. 7) is possible because of the following system 

properties. The first is that the noise is i.i.d. on all channels, due to the nature of 

the wireless communication medium. Combining this property with the fact that the 

two probability density functions are conditioned on x, we get that the two random 

variables representing the received signals at the destination, YsD and YRD given x 

are independent. 

The proof for the conditional independence of the two variables is independent on 

the modulation order and it is given in the following subsection. Thus, the form of 

the detector given in (3.7) is specific to this model setup of the network and it will 

be used throughout the rest of this work and exemplified for specific modulations. 



16 

3.2.1 Proof of independence 

Applying Bayes' rule on the two variables Ysv and YRD from the detector given in 

(3.5) we obtain: 

xv =max P(Ysv, YRvlx) = 
X 

=max P(YRviYsv, x)p(ysvlx) 
X 

=max P(YRvlx)p(ysvlx), 
X 

where going from 3.9 to 3.10 is possible due to the following result: 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

In (3.12), we expand the received signals Ysv and YsR according to the system model 

given in (3.1)-(3.3). The noise on each channel is independent, thus nsv is inde­

pendent of nRD and nsR· Therefore in (3.13) conditioning on nsv gives the same 

probability value as not conditioning on it. In the last step (3.14), we return to the 

compact form of Ysv given in (3.2). 

For example, for BPSK modulation the detector given in (3.7) becomes a simple 

comparison between two probability values 

H1 
P(YRvlx= 1)P(Ysvlx = 1) z P(YRvlx = 1)P(Ysvlx= 1) (3.15) 

Ho 

where the hypotheses H0 and H1 are given by Ho = {x = -1} and H1 = {x = 1}. 

Given the system model in (3.2) and the channel and noise characteristics, we can 
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apply the natural logarithm in 3.15 and simplify to get 

1 H1 
-2hsDYSD ~ ln(p(YRDix = -1)) -ln(p(YRDix = 1)). 

Ho 
(3.16) 

As each relay protocol depends on the specificity of the relay function, this infiu-

ences the form of the probability density function (pdf) P(YRDix). The density of the 

received signal at the destination from the source YsD is not affected by the change 

in the relay function. Thus, the conditional probability density function of YRD plays 

an important role in defining the decision rule at the destination. 

For 16 QAM, the detector in (3.7) can be reduced to having several comparisons 

between the 16 possible symbols, similar in form to the ones for BPSK, (3.15). 

Now that the detector under study has been identified we will turn our attention 

to the relay function. Next, we introduce the most common relaying protocols by 

investigating the associated relay functions. The relay function is the defining element 

of a relay protocol and the system performance is directly affected by the "quality" 

of the signal received at the relay. Throughout this thesis we investigate three forms 

of relaying and we consider their symbol error performance. 

3.3 Decode-and-Forward 

In the DF protocol the relay decodes the received signal, re-encodes it and then 

forwards it to the destination. This type of signal processing is also known as making 

a hard decision at the relay 

(3.17) 

where x represents the decoded symbol at the relay. For the case when uncoded 

signals are considered, the protocol is known as detect-and-forward. 
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For BPSK modulation the DF relay function is 

(3.18) 

where sgn is the sign function. Notice that this relay function depends only on the 

received signal YsR, and does not incorporate any information about the quality of 

the S-R channel, or about how accurate the relay decoding is. 

After the relay transmits, the destination makes a decision based on the detector 

given in (3.15) with the two received signals from Rand D. The probability density 

function of YRD is that of a transmitted discrete symbol received in Gaussian noise 

at the destination, YRD "'N(hRvx, 1). Replacing the density P(YRvlx) in (3.16), the 

DF decision rule at the destination for BPSK modulation becomes: 

Hl ( vk exp { _ (YRD~hRD )2 
} ) 

hsvYsv ~ ln 
Ho J,r exp { _ (YRv-;hRv)2} 

(3.19) 

H1 
hsDYSD ~ ln ( e-2hRDYRD) 

Ho 
(3.20) 

H1 

hsvYsD + hRDYRD ~ 0 (3.21) 
Ho 

where, as stated before, the two hypotheses H0 and H 1 for the two possible models 

of the system are given by H0 = {x = -1} and H1 = {x = 1}. 

As seen from the decision rule, the destination needs to know channel information 

only for the R to D and S to D links. 

The quality of the decision made at the relay affects the overall performance of 

the system. However, for the DF protocol the quality of the decision at the relay is 

not taken into consideration on the destination side (no information about S to R is 

required at node D). This property can be harmful to the performance of the system. 

For example, for a bad S-R channel, a lot of wrong decisions will be made at the 
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relay. Even if the R-D channel is very good, the destination will not be able tell the 

accuracy of the signal sent by the relay, fvF(YsR)· On the other hand, suppose the 

S-R channel is good and assume that symbol 1 was sent. If a weak signal is received 

at the relay, for example YsR = 0.1, when it is forwarded to the destination it will be 

amplified to the symbol power PR · 1. This means a correct decision has been made 

and a strong signal has been sent for this decision. 

These are some of the most important advantages and disadvantages of DF. We 

will later see that EF with MMSE estimate incorporates most of the advantages of 

DF. 

3.4 Amplify-and-Forward 

The AF relay function is an amplification of the received signal, 

(3.22) 

with (3 the relay transmit average power constraint coefficient. The coefficient /3 

ensures that the average transmit power at the relay is constant and equal to PR, 

therefore (3 is derived in a similar way to the one obtained by Laneman in [9]: 

E[jf(YsR) 12] ::; PR 

E[lf3YsRI 2 ] ::; PR 

/32 E[ihsRX + nsRi 2 ] ::; PR 
r----------------

(3.23) 

(3.24) 

(3.25) 

(3.26) 

and for Gaussian noise with unit variance and Es, the energy of the symbol becomes 

(3.27) 
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Figure 3.4 : Relay functions for AF and DF; YsR is the received signal at the relay 
and f(YsR) is the relay function. For this plot, we have considered BPSK modulation, 
S N RsR = 3dB and an average transmit power constraint at the relay PR = 1. 

The form of the AF relay function given in (3.22) is independent of the modulation 

scheme of the source symbol. Since the transmitted signal at the relay is linear in YsR, 

as seen in Figure 3.4, for higher values of YsR the relay requires more instantaneous 

transmit power than the case when the DF relay function is used. 

The probability density function of YsD is the same as in the DF relaying protocol, 

while the signal YRD is 

(3.28) 

Therefore, given the independence of the noise and using the linear property of Gaus­

sian random variables, the conditional probability density function of YRD is 

(3.29) 

This probability density function together with the one for Ysn, are replaced in the 

detector given in (3.7) and a simplified formulation is obtained. Note, that until now, 

all the results shown for AF are independent on the modulation order. 
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For example, for BPSK modulation, replacing 3.29 in the detector form given in 

(3.16), we get that the detector at the destination is given by 

(3.30) 

(3.31) 

(3.32) 

In addition to the DF decision rule, for which the destination is required to know 

only S to D and R to D link characteristics, AF requires extra information about 

the S to R link. This implies that for the AF relay protocol the destination decision 

rule takes into consideration the quality of the channel between S and R. Therefore, 

one might assume that AF should perform better than the DF protocol. However, 

we show in the simulation results that this is not always true; the performance of 

different relay protocols is directly influenced by the quality of the channels, and 

more precisely by the position of the relay. One argument for this behavior is that, 

for the AF protocol, when the relay amplifies the received signal it also amplifies the 

noise. For very good channel conditions, the DF protocol makes the right decision, 

eliminating the noise, while the AF relay protocol, amplifies the noise. Thus, for high 

SNR on the S to R channel, a clean signal as the one provided by the D F protocol is 

preferred at the destination, rather than the noisy signal resulted from the AF relay 

function. 

In the next chapter we introduce the EF relay protocol and its characteristics for 

specific relay functions. 
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Chapter 4 

Estimate-and-Forward 

The class of estimate-and-forward relay protocols includes any "useful" side informa­

tion which the relay can provide to the destination in support of its detection and 

decoding of the information from the source. The EF relay function is often referred 

to as soft information. 

There are many other types of "side" information that the relay can forward to 

destination to help with decoding. For example, any type of signal estimate is a 

possible soft information. From the broad range of possible relay functions, only few 

improve the overall performance of EF. In [17], Abou-Faycal and Medard showed 

that the Lambert W function minimizes the probability of error in a system without 

the direct linlc Others, such as Gomadam and Jafar, proved that the MMSE max­

imizes the receiver SNR and numerically showed that it is capacity optimal, again 

for a system without the direct link, [18]. These two functions are very similar in 

form. Log-likelihood ratio (LLR) functions have also been used as soft information, 

as an approximation of the MMSE estimate, but proved to encounter difficulties at 

the detector located at destination, [21]. Hu and Lilleberg in [26] used a weighted 

type of soft information which mimics the behavior of the MMSE estimate. In this 

work, we use the MMSE estimate as the relay function because of the properties 

this transformation has, and because it efficiently incorporates information about the 

quality of the S toR channel. 

The next section introduces the MMSE estimate as a relay function and presents 
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the properties which give intuition on the expected behavior of the EF relay protocol. 

4.1 Relay function 

We assume the relay function for the EF protocol is the MMSE estimate, which is 

the conditional expectation of the source sent symbol x given the received signal at 

the relay YsR 

(4.1) 
X 

After applying Bayes' rule, we get 

( I ) ( ) l:xP(YsRix)p(x) 
""' p YSR X p X X 

!EF(YsR) = k L..t x ( ) = k E ( I ) ( ) , 
x P YsR P YsR x p x 

(4.2) 

X 

where k is the average transmit power constraint coefficient for the relay. Therefore, 

for an average transmit power at the relay PR we can obtain the value of k similarto 

the AF case: 

E[lk * E[xiYsR] 1
2) :::; PR (4.3) 

k::; PR 
(4.4) 

where I · I represents the absolute value. 

Next, we investigate its characteristics by applying it to different modulation 

schemes and by comparing it to the common relay functions presented so far. The 

conditional density function of YsR given the source symbol xis the same as for the DF 

and AF relay protocols, that is P(YsRix) = N(hsRX, 1). Introducing the conditional 

probability density function of YsR in (4.2), the EF relay function is further expanded 



as 

"£xN(hsRX, 1)p(x) 

fEF(YsR) = k i:N(hsRX, 1)p(x) 
X 

"£x vk exp {- (y-h~Rx)2} p(x) 
=k _x--------,-------~-----

~vk exp {- (y-h~Rx)2} p(x) 

4.1.1 BSPK modulation 
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(4.5) 

(4.6) 

When the source uses antipodal signals, x E { -1, 1}, also known as BPSK modula­

tion, the soft information of the EF protocol shown in ( 4.6) becomes 

-a: 
~ -

Relay function 
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(4.7) 

Figure 4.1: Relay functions for AF, DF and EF; YsR is the received signal at the relay 
and f(YsR) is the relay function. For this plot, we have considered BPSK modulation, 
S N RsR = 3dB and an average transmit power constraint at the relay PR = 1. 

The EF relay function specific for BPSK modulation is shown in Figure 4.1, where 

both the AF and DF relay functions are also plotted. The MMSE as the EF relay 
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function is denoted as EF - MMSE. One important observation made on this graph 

is that the EF relay function is in between the AF and D F ones. This attracted our 

attention on the specific form of the MMSE estimate. 

We noticed that the quality of the S to R link has great influence on the perfor­

mance of the EF protocol, as seen in Figure 4.2. We define SNR to represent signal 

to noise ratio at the receiver. For high values of the SN RsR, when the relay is closer 

to the source, the MMSE estimate becomes very steep and similar to the DF hard 

decision relay function. While, for low values of the S N RsR (the relay is closer to the 

1.5 

1 

0.5 

-a: 

.:r 0 
_w 

-0.5 

-1 

-1.5 
-2 -1.5 

S~SR =20d8 
--------:-----------~ 

- . 

-1 -0.5 0 
YsR 

0.5 1 1.5 2 

Figure 4.2 : The relay function fEF(YsR) plotted for different values of SN RsR from 
-ldB to 20dB. 

destination), the EF relay function is similar to the AF one. Thus, we expect that 

for high SNR on the S toR link, EF will perform as good as DF and for a degraded 

S to R channel, the performance of the system will be similar to AF. 

With this type of soft information, we expect the EF relay protocol to perform 

as the best of AF and DF. Furthermore, the MMSE estimate inherits one important 
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property from the DF protocol: the instantaneous transmit power at the relay is 

slightly higher than for DF, but it is much lower than the one the AF protocol 

requires. This can be observed in Figure 4.1; for YsR ;::: 1.3 the AF relay protocol 

requires more instantaneous transmit power than all other schemes. 

4.1.2 M-QAM modulation 

A variety of communications protocols implement quadrature amplitude modulation 

(QAM), for example current protocols such as 802.11b wireless Ethernet (Wi-Fi) and 

digital video broadcast (DVB) use 64-QAM modulation. Next, we present the general 

EF relay function from ( 4.2) for the case when QAM modulation is used for the source 

symbol x. Specific examples are given for rectangular QAM, such as 16-QAM. 

Rectangular QAM is considered when the amplitudes of the carriers are a set of 

discrete values. This is equivalent to having two orthonormal signals represented with 

pulse-amplitude modulation (PAM) for the real and imaginary parts of the source 

transmitted signal. Such representations imply that the real and imaginary parts can 

be considered as two independent signals. As a result, the relay function applies to 

each part individually and independently 

fEF(YsR) = kE[x!YsR] 

= k(E[Re(x)!Re(YsR)] + iE[Im(x)!Im(ysR)]) 

= k (JEF/RePAM(Re(YsR)) + ifEF/ImPAM(Im(ysR))) 

(4.8) 

(4.9) 

(4.10) 

where !EF/RePAM(Re(YsR)) and fEF/ImPAM(Im(ysR)) are the notations for the EF 

relay function applied to the real and imaginary part representation of the sent signal 

x given the real and imaginary part representation of the received signal at the relay, 

YSR· 
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We introduce the EF relay function for the real part, which means fEF is applied 

to PAM modulation. The imaginary part is treated in a similar way. The probability 

density function of the real part of the received signal at the relay is the same as in 

the AF and DF relay protocols, that is, N(hsRRe(x), 1). Applying it to the EF relay 

function given in (4.2), it becomes 

2:.: Re(x)p(Re(YsR)IRe(x))p(Re(x)) 
Re(x) 

fEF(Re(YsR)) = k 2:.: p(Re(YsR)IRe(x))p(Re(x)) 
Re(x) 

L".:xN(hsRX, 1)p(x) 
= k -::x=-:-:;-;-::------:--:--:-

L".:N(hsRX, 1)p(x) 
X 

L".:x vk exp {- (y-h~Rx)2} p(x) 
= k....:.x:....._ __ ---::-----~--

L.:vk exp {- (y-h~Rx)2} p(x) 
X 

(4.11) 

(4.12) 

(4.13) 

where in (4.12) and (4.13) we dropped the Re() notation for clarity, such that x 

denotes Re(x) and YsR denotes Re(YsR)· For 16QAM modulation, 4PAM modulation 

is used for each of the rectangular coordinates which are also known as the In-phase 

(I) and Quadrature ( Q) coordinates of the signal. Applying 4PAM modulation to each 

coordinate implies that Re(x) E { -3, -1, 1, 3}, and similarly for Im(x). Expanding 

the relay function given in (4.13) for the 4PAM modulation, we obtain the relay 

function specific for each coordinate that preserves the characteristics of the MMSE 

estimate obtained for BPSK modulation ( 4. 7) : 

(4.14) 

(4.15) 

where y represents either the imaginary or real part of YsR, and x the equivalent part 

for source sent symbol. 
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Figure 4.3: Relay functions for AF, DF and EF; YsR is the received signal at the relay 
and f(YsR) is the relay function. For this plot we have considered 4PAM modulation. 
The path-loss model is considered with d = 0.7 and a= 4. 

As it can be seen in Figure 4.3, the MMSE estimate for 4PAM modulation has the 

same characteristics as for BPSK modulation, in comparison with the relay functions 

for AF and DF. Therefore, we showed that using higher order modulation for the 

source symbol x maintains the MMSE estimate properties. 

Next, we turn our attention to the detector at the destination and its character-

is tics. 

4.2 Detector at the destination 

As stated previously, the detector is the same for all cases analyzed. Therefore, 

the general form of the MAP detector for the EF protocol is independent on the 

modulation of the source signal and it is given in (3. 7) , with its specific form for BPSK 

shown in (3.16). The detector at the destination requires the density P(YsDi x ), which 
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is the same for all three relaying protocols analyzed. The conditional probability 

density function of YRD is dependent on the specificity of the relay function and 

introduces differences in the destination detector. 

For the EF relaying protocol, as a result of (3.3), one way to obtain P(YRnlx) is 

through the convolution of the probability density function of the relay function and 

the Gaussian density of the noise, as shown bellow 

(4.16) 

Once the two densities are defined, a decision rule can be implemented at the desti-

nation following the form of the MAP detector given in (3.7). However, there is no 

analytical form for the conditional probability density function of YRD and therefore 

no analytical form for the detector at the destination. Next, we analyze the proba-

bility density function of the MMSE estimate to gain insight into its characteristics. 

4.2.1 Pdf of the MMSE estimate 

One can obtain the probability density function of the signal sent by the relay, 

p(JEF(YsR)Ix), using the formula for the density of a function of a random vari­

able shown in equation 4.18 (also see chapter x from [30]). Using this method, the 

conditional probability density function of the conditional expectation is derived. 

For example, for BPSK modulation with the notation 

we derive 

Pzlx(zix) = PYsRIX(J-1(z)ix) · (J-1)'(z) 

= PYsRIX (2h1sR In (~~:)I x) h~R 1 ~ z2 " 

(4.17) 

(4.18) 

(4.19) 
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Now, Pz!x(zlx) is defined in terms of the probability density function of YsR , which 

is know. Therefore, we obtain the following closed form for the conditional pdf of the 

MMSE estimate for BPSK modulation 

Pzix(zlx) = hsR(ll- z2) ~ exp {- ~ [ 2~sR In G ~:) -hsRX r} ( 4.20) 

where, as denoted in (4.17), z = E[xiYsR]· 

The probability density function given in ( 4.20) has finite support and is presented 

in Figure 4.4, where we have only shown the corresponding pdf for x = 1, as the pdf 

of E[x iYsR] for x = -1 is symmetric with respect to the y-axis. Notice that for lower 

SN R values of the S - R channel, the probability density function has a Gaussian 

form, but as S N RsR increases, the Gaussian similarities disappear. 
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Figure 4.4 : Probability density function of E[xiYsR] for x = 1, for different values of 
SNRsR· 

Using a similar approach, the probability density function of the MMSE estimate 

for higher order modulation can be obtained. 
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The similarities between p(JEF(YsR)Ix) and a Gaussian probability density func­

tion explain why when a Gaussian approximation has been used for this probabil­

ity density function, good performance was obtained withing a specific range of the 

SNRsR· The range of SNRsR on which a Gaussian approximation might perform 

well can be determined by analyzing the values of the 4th and 5th moment generating 

functions of the pdf. 

However, the conditional probability density function of YRD has to be computed 

numerically and thus for BPSK modulation the detector at the destination can not 

be reduced further than the general form given in (3.16), that is, 

1 H1 
-2hsnYsD ~ ln(p(yRDix = -1)) -ln(p(YRnlx = 1)). 

Ho 
(4.21) 

The same remarks hold for higher order modulation. Therefore, the convolution needs 

to be done numerically, which implies that a numerical approximation of the density 

is required at the destination side. 

Furthermore, to use such a detector, the destination will need to know information 

about the R to D and S to D links. It will also need to know extra information about 

the S to R link, similar to the AF protocol. From (4.16), the density P(YRDix) is 

the convolution of the relay function and the noise. The density of the EF relay 

function depends on the S to R channel characteristics. Thus, the quality of the S 

to R channel is embedded in the density of the received signal at the relay, YRD· 

Therefore the detector for EF requires channel state information about all links in 

the network. This overhead is more than it is required for the DF protocol but it is 

the same as for the AF relay protocol. 

The EF detector at the destination needs to have a numerically computed pdf 

P(YRnlx), which makes this approach less appealing for a practical implementation. 
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Therefore, in the following, we propose a solution to bypass the need of a numerical 

probability density function. 

4.3 Piecewise linear approximation 

The solution we propose for overcoming the need of a numerical density function 

is to use a piecewise linear approximation of the conditional expectation. The soft 

information sent by the relay is composed of multiple linear functions, defined as: 

a1YSR + b1, YsR E ( -oo, Y1) 

a2YSR + b2, YsR E (Y1, Y2) 

flin(YsR) = k · (4.22) 
aiYSR + bi, YsR E (Yi-1, Yi) 

where k is the transmit power constraint coefficient 

k-:;_ (4.23) 

For i E (2, n + 1), the coefficients ai and bi are dependent on Yi-1, Yi, !EF(Yi-1) 

(4.24) 
Yi - Yi-1 

bi = fEF(Yi-JYi - fEF(Yi)Yi-1. 

Yi- Yi-1 
(4.25) 

In (4.22), (4.24) and (4.25), the points Yi- 1 and Yi belong to the set of n points 

{y1 < y2 < · · · < Yn} on the real line, called knots (see [32], lecture 11). The knots 

are chosen to minimize the JL1 norm, which is equivalent to minimizing the area 
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Figure 4.5 : Relay functions for EF with MMSE estimate and EF with linear ap­
proximation; YsR is the received signal at the relay and f (YsR) is the relay function. 
For this plot , we have considered BPSK modulation, S N RsR = 3dB and an average 
transmit power constraint at the relay PR = 1. 

between the two relay functions: 

( 4.26) 

The accuracy of the approximation depends on the number of knots chosen. For 

example, for BPSK modulation, the relay function fzin(YsR) is shown in Figure 4.5 , 

for a four-knot (or five-segment) approximation. 

The same function can be compared with the corresponding functions for AF 

and DF, see Figure 4.6. Since it is a good approximation of the MMSE estimate, 

we expect the behavior of the system to be similar. Compared to the conditional 

expectation, this relay function requires less resources at the relay, as it is just a 

linear transformation of the received signal. 

Due to the linearity of the approximation, the relay function maintains the Gaus-
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Figure 4.6 : Relay functions for AF, DF, EF - MMSE and EF - linear; YsR is the 
received signal at the relay and f(YsR) is the relay function. For this plot, we have 
considered BPSK modulation, SN RsR = 3dB and an average transmit power con­
straint at the relay PR = 1. 

sian property of YsR· The received symbol at the destination becomes: 

YRD = ( 4.27) 

with i E (2 ... n). Since the system uses instantaneous relaying and the relay function 

ftin(YsR) is deterministic, the density P(YRD \x) is given by: 

( 4.28) 

The signal YRD has specific forms for different regions with respect to YsR , as seen in 

(4.27). This imposes a similar form for the density of YRD given that YsR is known. 
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When the noise is AWGN this density is: 

(4.29) 

where the means of the Gaussian densities mi are given by: 

(4.30) 

In (4.28), we substitute both the density p(yRDJYsR) given in (4.29) and the prob­

ability density function P(YsRJx) given by N(hsRX, 1). We can now compute the 

analytical form of the density p(YRvlx). After simplifying and rearranging the vari­

ables (intermediate steps are shown in Appendix A), the probability of the signal sent 

from the relay and received at the destination becomes* 

P(YRD I x) = 

where the means msr(i) and mrd(i) and variances a;r(i) and a;d(i) depend on the cor-

+oo 1 w2 
*We define the Q-function to be Q(a) = fc, v'21Te-Tdw. 



responding intervals through ai and bi as shown bellow: 

hRDkai(YRD - hRnkbi) + hsRX 
msr(i) = 1 h2 k2 2 + RD ai 

2 1 
O'sr(i) = 1 + h'Jwk2a; 

mrd(i) = hRDk(bi + hsRXai) 

2 1 h2 k2 2 O'rd(i) = + RD ai · 
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( 4.32) 

(4.33) 

( 4.34) 

( 4.35) 

In previous notations we used the subscript rd( i) to denote that the mean/variance 

which pertains to a Gaussian density function of the random variable indicated by the 

subscript, in this case that is YRD· Also, the subscript (i) denotes that the notation 

is dependent on the interval (Yi-1 , Yi)· Furthermore, the form of the conditional pdf 

given in ( 4.31) can be interpreted as a sum of the probability of YRD being received 

at the destination, given that the signal sent by the relay is in a specific region 

(YsR E (Yi-1, Yi)), scaled by the probability of being in that interval. The destination 

will need to be synchronized with the relay such that it will know exactly what knots 

are chosen for the approximation. 

The detector for the EF protocol shown in ( 4.21) has analytical form and can be 

implemented using the density of the piecewise linear approximation given in (4.31). 

A higher performance requirement implies the need for a better approximation, 

which can be obtained using a higher number of knots. However, a higher number 

of knots increases the complexity of the density and thus of the detector at the 

destination. Depending on the system requirements, there will always be a trade-off 

between the complexity of the detector and the accuracy of the approximation. 
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Chapter 5 

Simulation results 

In this chapter, we evaluate the proposed relay protocol for the three-node network 

with the pathloss system model described in Chapter 3. We use the Symbol-error-rate 

(SER) as the metric to evaluate the performance of each relaying protocol. 

Simulation results for the EF protocol with MMSE estimate were possible as the 

probability density function p(yRD lx) was evaluated numerically. Although this pdf 

does not have an analytical form, using Monte Carlo simulations we obtained a good 

numerical approximation of it. The numerical form of this density gave us further 

insight into the influence of the MMSE estimate on the performance of the EF relaying 

protocol. 

For example, for BPSK modulation, the conditional probability density function 

of YRD is presented in Figure 5.1. The shape of the density is directly influenced 

by the position of the relay relative to the source to destination distance. As the 

relay gets closer to the source, the shape of the density becomes closer in form to a 

Gaussian density, as seen for densities ford= {0.37, 0.46}. In addition, as the relay 

is farther away from the source, the pdf of YRD takes the form of a heavy tail density 

and it losses its Gaussian shape; notice the density plotted for d = 0. 75. As it can be 

seen in detail in Figure 5.1, apart from the heavy tail form, this density also seems to 

have a bump. This form of the density motivated the search for an approximation, 

which came from using the piecewise linear approximation. 

The same characteristics of the probability density function P(YRvlx) are observed 
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Figure 5.1 : Pdf P(YRnlx = 1) for the EF relay protocol with the MMSE estimate. 
The density is shown for different positions of the relay with respect to the source 
(different d) . 

for the case when the source modulation is increased to 16 QAM. 

When the source uses BPSK modulation the symbol-error-rate (SER) is the same 

as the bit-error-rate (BER), as BPSK modulation implies that one bit is used to 

represent one symbol. In Figure 5.2, the BER for the presented protocols has been 

plotted on a logarithmic scale versus d - the relative distance between source and 

relay. First, notice that compared with the results for the direct link, adding a relay 

to the communication improves the performance of the system. Secondly, the BER 

curve for EF with MMSE, denoted as EF- E[xiYsR] confirms the intuition suggested 

by the behavior of the EF relay function- !EF, seen in Figure 4.2. For a good channel 

S to R, which means the relay is closer to the source (d E (0, 0.6)) , EF performs as 

well as the D F protocol. When the S to R channel is not so good, meaning the relay 
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Figure 5.2: BER for AF, DF and EF protocols for BPSK modulation for the pathloss 
model. On the x-axis, d represents the normalized distance between S and R. 

is closer to the destination (d > 0.6), EF behaves like the AF protocol. Therefore, 

with only one scheme (EF), the system performs as well as the best of the two other 

schemes (AF and DF). 

In Figure 5.2, the curve EF linear denotes the EF relaying protocol with the 

relay function !EF, where the density used for the detector is the one obtained from 

the piecewise linear approximation. The density P(YRD lx) used for the BER curve 

for the EF linear was obtained for a piecewise linear approximation with four knots 

(or five segments). With our linear approximation, the performance of the system 

remains similar to the case of EF with MMSE using a numerical approximation of 

the probability density function of YRD· 
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Figure 5.3: SER for AF, DF and EF protocols for 16QAM modulation for the pathloss 
model. On the x-axis , d represents the normalized distance between S and R. 

There is a small loss in performance for the case when R is closer to D, when d > 

0.7. This is due to using an approximation of the density P(YRnlx). The performance 

of the system is strictly related to the accuracy of the piecewise linear approximation 

used to derive the density of YRD· 

In Figure 5.3, the SER is plotted for all analyzed relaying protocols. The line 

denoted as no Relay, represents the SER obtained for the direct link, when no coop-

eration is employed. For fairness of the comparison, we assumed the power used by 

the source is equal to the total power used in the cooperative case, that is , equal to 

source power(Ps) plus relay power(PR)· In the case of increasing the source modula-

tion order to 16 QAM, the same trends are observed for the EF- MMSE and EF-
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linear as when BPSK modulation is used. The piecewise linear approximation used 

for the 16 QAM SER results employed a 20-knot discretization. 

The properties of the MMSE estimate are preserved for higher order modulation as 

expected from the way the MMSE behaves, see Figure 4.3. Also, the linear piecewise 

approximation of the MMSE estimate preserves the properties of the MMSE, its 

overall performance follows the best of the AF and D F. 
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Chapter 6 

Conclusions 

In this work we have investigated the performance of the EF protocol with MMSE 

estimate as the relay function. In a pathloss model and for both BPSK and 16 QAM 

modulation, EF with this type of soft information performs as well as the best of AF 

and DF. When R is close to S, EF performs like DF, while when R is closer to D, it 

performs like AF. However, this performance comes at a price; the conditional prob­

ability density function of the received signal at the source from the relay, P(YRvlx) 

does not have an analytical form. Therefore, the detector at the destination can be 

implemented only by using a density obtained through numerical computation. We 

have shown that the need for this density can be avoided by employing a piecewise 

linear approximation of the MMSE estimate as the relay function. With this linear 

approximation, the density of the received symbol at the destination has an analytical 

form and thus, so does the detector. In conclusion, we do not only offer another type 

of soft information which can be used in the EF relay protocol, we also provide an 

analytical form of the optimal detector at the destination. Simulation results with 

SER as the performance metric confirmed the theoretical results. 
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Appendix A 

Derivation of P(YRD lx) 

In this Appendix, we focus on presenting in detail the steps for deriving the final 

form of the pdf P(YRvix). This density has slightly different forms depending on the 

region of integration. 

Using the conditional probability density function of YRD given YsR from equation 

(4.29) in (4.28) we obtain the density, 

(A.l) 

where mi is the mean given in (4.30). This density is split into three different cases, 

depending on the region of integration. Two cases are unique, the ones corresponding 

to the extremities, YsR E (- inf, y1 ) and YsR E (Yn, + inf), which are particular cases 

of the most general one given by YsR E (Yi- 1 , Yi)· We focus on the case when YsR is 

between two knots, that is YsR E (Yi-1 , Yi)· This case is the most general one, and 

all other regions represent particular cases of this one. We focus on the general case, 

which is equivalent to the following part of the density given in (A.l), where we used 

the mean mi given in (4.30) : 
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Next, we expand the Gaussian densities: 

P( YRDix ) = (A.3) 

1Yi 1 { (YRD- hRnk(aiYSR + bi)) 2 } 1 { (YsR- hsRX) 2 } 
Yi-1 y'2i exp - 2 y'2i exp - 2 dysR 

~ [~, ( ~) 2 
exp { -~ [yJ.,- 2yRDhRDk(a;YsR + b;) + hJ.,k2(a;YsR + b;) 2 

+ (Y~R - 2hsRXYsR + h~Rx2)]} dysR· (A.4) 

The next step is to group the terms with respect to the powers of YsR and use the 

following notation : 

A. = ~-1---=--
~ h'Jwk2ar + 1 

Bi(YRD, x) = hRDkai(YRD- hRnkbi) + hsRx 

With this notation, the probability density function for this region becomes: 

(A.5) 

(A.6) 

(A.7) 

P(YRnix) = (A.8) 

{, ( ~) 2 
exp { -~C;(YRD, x)} exp { -~ U, Y~R- 2B;(YRD, X)YsR)} dysR· 

Since the exponent of the first term does not depend on YsR, it can be taken outside 

the integral and we complete the square with respect to variable YsR: 

The second term of the exponential does not depend on YsR, so it will be taken 

outside the integral. We are left with a finite integral of a Gaussian density, thus we 
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can express it with respect to the Q-function*: 

Once we expand the notation introduced in (A.5) to (A.7) and rearrange terms ac­

cordingly, we obtain the analytical density of the probability density function 

(A.ll) 

where the means msr(i) and mrd(i) and variances a;r(i) and a;d(i) depend on the cor­

responding intervals through ai and bi, as shown bellow: 

hRDkai(YRD - hRnkbi) + hsRX 
msr(i) = 1 + h'Jwk2ar 

2 1 
0" sri = 1 + h'Jwk2ar 

mrd(i) = hRnk(bi + hsRXai) 

2 1 h2 k2 2 O"rd(i) = + RD ai · 

(A.12) 

(A.13) 

(A.14) 

(A.15) 

The cases for the end intervals are derived from the general case, by setting the 

corresponding upper or lower bound of the YsR interval to +oo or -oo. 

*We define the Q-function to be Q(a) = J:= vk:e_w22 dw. 
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