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Abstract 

A Sequence-Based, Population Genetic Model of Regulatory Pathway Evolution 

by 

Troy Ruths 

Complex phenotypes with genetic cause are understood through many processes, 

including regulatory pathways, but our evolutionary understanding of these critical 

structures is undermined by poor models which fail to preserve the underlying 

sequence structure and to incorporate population genetics. In response, this thesis 

builds a pathway model of evolution from its underlying sequence structure and 

validates it against a pertinent problem in genome evolution which uniquely 

leverage the developed model. Specically, my model preserves sequence 

characteristics through a novel data structure and pathway-level mutation and 

recombination rates which are functions of sequence properties. The utility of the 

model is validated with a study quantifying the advantages and disadvantages of 

expansive non-coding DNA regions on the establishment of optimal pathways. 

Because the model presented in this thesis rectifies many fundamental problems in 

previous models, it may serve as a critical tool for future work in pathway evolution. 
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Chapter 1 

Introduction 

The path from genotypes to complex phenotypes with genetic cause is mediated 

by many processes, including regulatory pathways, but our evolutionary understand­

ing of these critical structures falls short. Current models of pathway evolution fail to 

preserve sequence structure and include population dynamics, two critical issues that 

have preliminarily been shown to determine several unexplained trends in empirical 

pathways [2]. Despite being the substrate for regulatory gene interactions, the effect 

of non-coding regions on the evolution of pathways has been overlooked. Further­

more, evolutionary dynamics, as determined by mutation, recombination, drift, and 

selection, can only be determined within a finite population, but population-genetic 

studies are effectively non-existent in the field of pathway evolution with the excep­

tion of a few recent works [2, 3]. This thesis presents a solution to both these issues 

by way of a sequence-based, population-genetic model of pathway evolution. 
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1.1 Pathways: sequence to function 

Over a decade into the sequencing era, science is still at a loss for explaining 

how differences in the genome manifest as the entire gamut of observable charac­

teristics that distinguish individuals and organisms [4]. These observable traits, or 

phenotypes, were once thought to be predominantly functions of protein structure, 

and, consequently, changes between organisms or individuals were largely caused by 

structural modifications to genes and the proteins they produced [4]. However, with 

advancements in sequencing and gene expression analysis, a growing body of work 

has identified the strong effect of mutations in the non-coding regions of the genome. 

A major class of these studies, and the center-point of the investigation in this 

thesis, is the evolution of genetic regulatory pathways, which describe the transcrip­

tional and translational control of cooperating genes. Regulatory pathways are useful 

in describing complex relationships and therefore elucidate the effect of mutations in 

non-coding regions on phenotype [4, 5, 6, 7, 8, 9, 10]. Pathways, then, are useful 

for explaining how mutations in non-coding regions can cause phenotypic diversity 

within organisms and between individuals. For example, recent work in the compar­

ative analysis of dog genomes indicated that much of the animal's great phenotypic 

diversity arises in regulatory regions [8]. 

These regulatory regions harbor important sequences called transcription factor 

binding sites that serve as amenable locations for regulatory proteins, called tran­

scription factors, to bind and, by a variety of mechanisms, either increase or decrease 

the transcription of neighboring genes. The gain and loss of these regulatory connec-
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tions turn on, off, or modulate gene expression. Hence, holding the coding sequence 

constant, the rewiring of genetic regulatory pathways corresponds to the spontaneous 

gain, loss and modification of binding sites [11, 12, 13]. Consequently, a compara­

tive understanding of regulatory relationships amounts to an evolutionary model of 

binding site gain, loss, and modification. 

However, much of the evolutionary analysis of regulatory pathways revolve around 

the calculation of their structural and dynamic properties, which although is integral 

to invoke adaptation, elides the powerful non-adaptive forces of evolution [14, 15, 16, 

17, 18, 19, 20, 21, 22]. Concomitant with phenotypic calculation is the estimation 

of mutational robustness and innovation. Robustness is defined as the proportion of 

mutations on the pathway level that are neutral with respect to the phenotype, while 

innovation is defined as the proportion of n-step mutations that yield novel phenotypes 

(see Figure 1.1) [22]. Taken together, these measures comprise the "evolvability" of 

a pathway by quantifying the effect of binding site mutations on the phenotype level. 

Ciliberti and Wagner calculated the inverse correlation between these two measures 

for the regulatory pathway genotype [22]. The inherent trade-off between robustness 

and innovation transcends the pathway genotype, a debate which has stimulated 

much discussion and analysis (see [23] for a good review). But the reconciliation 

to the debate over robustness and innovation is also, in fact, the same omission by 

the adaptation-focused models of pathway evolution: populations, not individuals, 

evolve. 

This simple fact is also a complicating factor. Mutation, robustness, and ge­

netic drift complicate both theoretical and simulation studies, but also serve as an 
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' 
Figure 1.1: The genotype-phenotype space is a useful abstraction for understanding the 
phenotypic effects of mutations. In this diagram, circles are distinct genotypes connected by 
edges with denote mutation from one genotype to the next. Colors represent the phenotype. 
Robustness is the proportion of neighbors that share the same phenotype, and innovation 
is the proportion of m-step mutations that yield different phenotypes. 

important null model of evolution. For instance, Draghi et al. quantified the non­

monotonic relationship of robustness and innovation in finite populations [24]. By 

invoking only mutation and genetic drift, their results explained that high robustness 

supplies substrate for subsequent adaptive mutations and thereby reduces mean time 

to find a beneficial allele. In other words, a population may be both robust and evolv-

able through the robustness and innovation of each individual. As for the pathway 

genotype, Martin et al. quantified the effect of recombination within a population 

on robustness and also measured population-genetic properties like genetic load and 

diversity [3]. However, the evolutionary model used by Martin et al. allowed for 
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only one mutation rate to govern the gain, loss, and modification of binding sites 

and one recombination rate for crossover events outside of genes and their regulatory 

regions. As shown by Lynch, a single mutation rate and recombination rate are not 

appropriate to evolutionary modeling of regulatory pathways [2]. Consequently, it is 

difficult to reflect pathway-level insights to the sequence. In fact, only recently did 

Lynch propose a model of pathway evolution that incorporated features of non-coding 

DNA, the critical substrate of transcriptional regulation [2]. 

1.2 The effects of non-coding DNA and population 

size on pathway evolution 

The increased number of completed genomic sequences has revealed many highly 

significant and interesting patterns across the tree of life [25, 26, 27, 1, 28, 29, 30). 

One such pattern, even labeled a paradox by some [26, 27], involves the positive cor­

relation between the expansion of non-coding DNA and total genome size. Given 

that the number of genes and amount of coding sequence remain relatively constant 

in comparison [27], this expansion of non-coding nucleotides is valid on a per-gene 

basis. In addition, along with an increase in genome size is a decrease in the popula­

tion mutation rate (2Neu) [29]. Since the per base pair mutation rate (u) is actually 

increasing with genome size in eukaryotes [25], this results in a significant decrease 

in the effective population size (Ne) to accommodate for the overall decrease in pop­

ulation mutation rate. Combined together, these results suggest a strong negative 

correlation between the amount of non-coding sequence per gene in a genome and the 
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effective population size (see Figure 1.2). This correlation is strongly log-linear, with 

a Pearson correlation coefficient of -0.984. 

Lynch and Conery hypothesized that expanding, maladaptive non-coding regions 

resulted from the weakening of selective pressures by significant decreases in effective 

population size [29]. Recently, however, this has been challenged on two fronts: first, 

the phylogenetic implausibility that genetic drift alone caused the accumulation of 

genome complexity [31], and second, the surprising non-correlation of population 

size and genome size in seed plants [30]. In either case, both studies argued that 

population size and genetic drift are not sufficient to explain the expansion of non­

coding DNA and proposed other factors like different mating systems. Understanding 

these regions on a more functional level is clearly needed. While these large intergenic 

regions are recognized as the hallmark of multicellularity and complexity, explanations 

for the development of specific functionality in intergenic sequences, and consequently 

their effect on the evolution of an organism, have thus far been established on a case­

by-case basis [32, 12, 33, 1, 34]. 

In this thesis, I confine my investigation to the aforementioned transcriptional 

regulatory elements of transcription factors and transcription factor binding sites 

(TFBS) known to exist between coding DNA. Lynch parameterized the ratio of reg­

ulatory interaction loss versus gain using an estimate of the number of base pairs per 

gene that may harbor TFB sites, or promoter and enhancer regions [2]. Since this 

ratio is representative of the relative amount of coding and non-coding base pairs in a 

genome, I will refer to it in this thesis as the genomic architecture parameter. Because 

the genomic architecture parameter scales with the size of intergenic regions per gene 
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Figure 1.2: The strong correlation between non-coding sequence (ncDNA) per gene and 
the effective population size. Pearson correlation coefficient is -0.984. Estimates of popu­
lation size for bacteria, unicellular eukaryotes, invertebrates, vertebrates , and land plants 
come from Lynch [1]. Uncertainty in both t he estimates in population size and ncDNA are 
depicted by the gray band. 

and ascribes functionality to the amount of non-coding DNA surrounding each gene , 

it is useful in determining the effect of promoter region size on the evolution of reg-

ulatory pathways. For example, Lynch applied this parameter to show the possible 

neutral origins of regulatory pathway complexity in eukaryotes [2]. 
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1.3 Contributions of the thesis 

In this thesis, I propose a novel representation of the pathway genotype which 

captures the sequential underpinnings of the regulatory pathway so as to better rep­

resent the effect of mutation and recombination within critical binding regions. Pre­

vious work on the effects of mutation and recombination represented a regulatory 

pathway with an adjacency matrix [22, 3, 2]. An adjacency matrix is a square matrix 

where each element (i, j) indicates the pairwise interaction strength between gene-i 

and gene-j in the pathway. This formulation hides important effects of mutation: 

by random chance, binding sites may co-occur within promoter sequences, especially 

when those regions are around 100 kilobases in length. Allowing for duplicate binding 

sites might have a major impact on robustness and plasticity of regulatory pathways, 

but this has not been investigated. Furthermore, it is impossible to model the effect of 

recombination (crossover event) within regulatory sequences using an adjacency ma­

trix because crossovers occur on the sequence, but there is no sequential information 

in an adjacency formulation. Consequently, Lynch's implementation on the effect of 

recombination within regulatory regions on a three gene pathway are inaccurate (see 

Appendix for a detailed explanation). 

My work leverages the genomic architecture parameter introduced by Lynch [2] in 

order to understand the effect of promoter and enhancer region size on the evolution 

of regulatory pathways in a finite population. By further refining a sequence-based 

model of pathway evolution, results from understanding the evolution on the pathway 

level will apply back to the sequence. Hence the model of this study uses pathways to 
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understand the functional importance of the variable length of non-coding sequences 

within the genome and thereby provide quantitative measures for the advantages, 

disadvantages, and trends created by non-coding DNA on the evolution of novel 

pathways. 

This thesis, then, bridges several research areas under a pathway evolution per­

spective: first, understanding the evolutionary advantages and disadvantages of non­

coding DNA on regulatory pathways; second, the determination and examination of 

neutral forces on the evolutionary trajectory of pathways; and finally, a sequence­

realistic refinement of the regulatory pathway model. 
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Chapter 2 

Model 

In this chapter, I describe a novel sequence-based regulatory pathway model which 

evolves within a finite population. The description of the model is decomposed into 

four sections: the population life cycle, the refinement of the genotype and phenotype 

of the pathway allele, the modeling of non-adaptive evolutionary forces, and finally, 

the modeling of adaptation. Throughout this chapter special itemizations keep track 

of important parameters and assumptions made in constructing the model. 

2.1 Population life cycle 

The model I employ follows a Wright-Fisher life cycle wherein mutation, recom­

bination, drift, and selection take place in non-overlapping generations, as shown in 

Figure 2.1. 

The cycle begins with a population of zygotes (with size 2N) that produce an 
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Figure 2.1: Life cycle model of the population simulator. The evolutionary processes are 
annotated for their order in each generation. 

infinite number of gametes. Individuals are considered to be haploids, but diploids 

can be constructed by pairing the population. Mating is assumed to be random 

throughout; however, intricacies of mating systems, especially with regard to plant 

and animal distinctions, can be considered in future studies. During the creation 

of the gametes (or, depending on the organism, throughout the life of a zygote), 

mutations occur in the germ line, and recombination occurs between chromatids in a 

diploid organism or through some other recombination mechanism (transformation, 

conjugation, or transduction). The proportion of gametes in this population will be 

skewed from random mating by soft selection since fitter individuals will contribute 

more gametes, or genetic material, in comparison to individuals with lower fitness. 

Lastly, random genetic drift occurs in the finite sampling of haploid individuals from 

the infinite gamete pool to determine the allelic frequency for the next generation. 

Parameter 1 (Ne) The effective population size. 

Parameter 2 (G) The number of generations for which to model evolution. 
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2 .2 The pathway genotype 

Now that the assumed life cycle is given, the effect of mutation and recombination 

on the pathway genotype and selection on the phenotype must be determined. A 

requisite for either of these attributions is the definition of the pathway genotype and 

phenotype. 

2 .2 .1 Genotype 

0 -2 
1 0 

Figure 2 .2 : A cartoon that illustrates a matrix for a genetic pathway comprising of genes, 
transcription factors, and binding sites. The matrix representation denotes the binding sites 
and their affinity. This discretization of binding sites represents where a binding site may 
arise. 

Regulatory pathways consist of genes that encode transcription factors that either 
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activate or inhibit the transcription of their own or other genes. The binding sites 

that mediate this regulation exist along the sequence, both upstream, within, and 

downstream of the gene. To preserve the sequential ordering of binding sites, the 

promoter and enhancer region for a gene is discretized into g regions, where only one 

binding site may occur in each of these g regions. 

Assumption 1· Only one binding site may occur in each of the g regions. For a 

given promoter, at most g binding sites may exist. 1 

The pathway genotype is econded as a k x g matrix, where k is the number of 

genes in the pathway, as shown in Figure 2.2. An allele is an instantiation of the k x g 

matrix: 

M= (b· ·), t,J 

where bi,j encodes the status of the ;th binding region for the ith gene. The regulatory 

region for gene i is encoded as row i in the matrix, and the columns preserve the 

ordering of binding sites along the sequence. The binding site status, or bi,j, is either 

0, for no binding site present, or a value [1, k] for activation and [-1, -k] for inhibition, 

representing the index of the transcription factor I bi,j I that binds to the given site. 

Formally, 

bi,j E { -k, ... , k} 

1The quality of this assumption increases with g. Obviously, g :::; Ljn. 
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d > 0 i activated by d 

no regulation on i · 

d < 0 i inhibited by d 

Parameter 3 ( k) The number of genes under investigation. 

Parameter 4 (g) The number of discretized regions of a promoter sequence, where 

each of the g regions may only contain one binding site. 

It is important to stress that this data structure is not an adjacency matrix. 

Previous approaches used adjacency matrices to encode genetic networks, but this 

leads to a departure from the sequential underpinnings of regulatory pathways [2, 22, 

3]. An adjacency matrix is a square matrix Ai,j (k x k) that encodes the weight, or 

presence, of an edge between two vertices i and j. For a given pathway topology (or 

adjacency matrix) there are several configurations of binding sites along the genomic 

sequence. Hence, mutations and recombinations that could greatly change the binding 

site data structure may appear neutral on the pathway topology. 

To calculate the adjacency matrix from a regulatory pathway allele: 

Ai,j = L o(lbj,hl - i)sign(bj,h), (2.1) 
0<h5,g 

where 

5(x) = {: 
x=O 

otherwise 
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sign(x) = { 1 

-1 

x2::0 

x<O 

Here, the edge weight is positive for activation and negative for inhibition. If there 

is an activating and inhibiting binding site for the same gene in a given promoter, 

the adjacency matrix will report a value of 1 + -1 = 0, which hides the regulatory 

effect of the binding sites. More complicated methods for determining the regulatory 

influence of competing binding affinities can be investigated in future work. 

Assumption 2 A promoter region can harbor regulatory relationships of different 

types for the same transcription factor. 

2.3 Phenotype 

Previous work on mapping regulatory pathways to phenotypes used a variety of 

techniques, and in this thesis work I employ three of them: 

1. the use of ODEs as a model of equilibrium gene product concentrations (con-

tinuous) [35], 

2. the iterative up and down regulation using a regulatory matrix (discrete) [22, 3], 

and, 

3. a simple viability constraint requiring that all genes are regulated (discrete-

viable, continuous-viable) [2]. 
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Additional phenotype functions may easily be added in future extensions, since it is 

only a matter of implementation. 

2.3.1 Continuous 

The continuous approach approximates regulatory pathway dynamics using ODEs, 

a common technique in assessing the function of a pathway [14, 35, 15, 19]. Given a 

pathway allele matrix M, it is relatively straightforward to calculate the differential 

equations of the gene products. The dynamics associated with each gene amount to 

transcription, translation, and degradation. Transcription is modeled using the Hill 

formula for activation. For multiple possible TF bindings, for instance if a given gene 

is regulated by more than one TF, it is necessary to sum the transcription rates for 

each combination of TFs. Translation and degradation are modeled as linear fluxes. 

This process is automated by RENCO, which takes as input genes, gene products, 

and regulatory interactions to produce a set of ODEs (for an example output see 

Figure 2.3) [35]. For simplicity, uniform rates for activation, repression, translation, 

and degradation are used in this thesis, but the opportunity exists for incorporating 

specific dynamics using user-supplied rates. 

Assumption 3 (Uniform rates) The rate parameters for calculating the ODE reg­

ulatory pathway dynamics are assumed to be uniform across all genes. The absolute 

value of these rates are not as important as their relative relationships. For instance, 

the ratio of mRNA synthesis over degradation explains the average number of proteins 

synthesized per molecule of mRNA. 
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Figure 2.3: The protein trajectories as computed using the ODE equations generated by 
RENCO. The continuous phenotype is taken as the last time point once the trajectories 
have converged. 

2.3.2 l)iscrete 

Like the ODE approach, the work by Wagner determines an expression pattern 

of k genes as a time series S(t) = [S1 (t), S2 (t) , ... , Sk(t)], but calculates Si(t + T) = 

O"[I:~=l wijSj(t)], where Tis some constant time step, O" is the sign function , and wi ,j 

is the regulatory influence between gene-i and gene-j [22, 3]. A product state at any 

time is either -1 for down regulation, 0 for no regulation, or 1 for up-regulation. In 

the update equation Si ( t + T) , influence outside of these values are scaled using the 

sign function (O"). The influence between genes can either be activating (wi, j > 0) , 

in hi biting ( wi ,j < 0) or absent ( wi,j = 0). The matrix w = ( wi,j) is the adjacency 

matrix of the regulatory pathway. 
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The equilibrium regulatory influence on each gene is given by Soc, which evolves 

from a starting state S(O). This equilibrium state is viable if S(t) is either convergent 

or cyclic within k2 timesteps, at which point the equilibrium concentrations are given 

by f(S(k2)) if S(t) converges, or f(avg(S(p : k2))), where p is the period of the 

cycle and f maps regulatory influence to gene-product concentration. The simplest 

mapping corresponds to f(S) = 1 + S so that down-regulation corresponds to a 

concentration of 0, no regulation corresponds to basal transcription of 1, and up­

regulation corresponds to 2. The scalar quantities for each case can be parameterized 

within the f mapping. 

To determine the discrete phenotype given a an allele M, first the adjacency 

matrix w using Equation 2.1 is computed. Then, Si is computed for k2 time steps 

from the start state S(O) = [1, -1, -1, ... , -1] (see Figure 2.4). If S converges or 

is cyclic within k 2 steps, then 800 is the equilibrium regulatory influences and the 

equilibrium protein concentrations are calculated as 1 + 800 • 

2.3.3 Viability 

Lynch employed a simple viability constraint in his evolutionary analysis of path­

ways that required all genes to be regulated [2]. Intermediate transcription factors 

could be initiator signals for other pathways downstream, and so the loss of regulation 

of an intermediate gene which encodes a transcription factor would lead to the loss 

of the downstream pathway as well. Such a scenario would be considered fatal to the 

cell. 

This viability criterion is imposed on the aforementioned discrete and continuous 
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Figure 2 .4: The time evolution of the example pathway using the discrete method. White 
signifies up-regulation, black down-regulation, and gray no regulation. The equilibrium 
concentrations for the gene-products can be found by averaging the cyclic behavior, which 
yields no regulation (the zero vector on top of the figure) . 

phenotype functions. The calculation of viability is simple: the pathway is nonviable 

if any row in the pathway genotype is all zeros (no binding sites exist for the gene), 

and viable otherwise. If a pathway is not viable, then it is considered invalid. 
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2.4 Non-adaptive processes 

With genotype defined as a matrix of binding sites, it is now possible to understand 

how mutations to the DNA sequence and crossover events between two sequences 

manifest on the pathway level. This section explains the effect and modeling of 

mutation and recombination on the pathway allele. 

2.4.1 Mutation 

Since my model deals only with the non-coding mutations that effect pathway 

structure, pertinent mutations occur in the regulatory regions of the gene. Base pair 

mutations within regulatory regions either have no effect, remove a binding site, or 

result in the gain of a binding site. Lynch proposed formulas for the loss and gain 

rates of binding sites (p,1 and p,9 respectively) [2]. The loss rate is the per base pair 

mutation rate u times the length of a binding site n. The gain rate is given by Lnu/4n, 

where Lis the length of DNA that may harbor binding sites. The ratio of these rates 

a = p,zf p,9 , or genomic architecture parameter, scales with the size of regulatory 

regions. Lynch showed that the genomic architecture parameter is a function of the 

length of a binding site n and length of regulatory sequence L: a = 4n / L. 

Parameter 5 (n) The avemge length of a binding site. 

Parameter 6 ( L) The length of the critical regulatory sequence where binding sites 

may arise for a particular gene. 

Parameter 7 (p,1) The loss rote of a tmnscription factor binding site in a promoter 
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region of length Lfg. I-ll = nu, where u is the per site mutation rate and n is the 

length of a binding site. 

Parameter 8 (~-t9 ) The gain rate of a transcription factor binding site for a specific 

TF in a promoter region of length L. /-lg = Lnu/4n, where u is the per site mutation 

rate. Therefore, the rate of gain of a binding site for any TF in the pathway is k~-t9 . 

While previous models allowed mutations to also change the interaction strength 

of a regulatory relationship, estimating such strength is not entirely clear [3, 22]. 

Therefore, this model only supports the presence and absence of binding sites without 

any affiliated weight. 

Lynch recently calculated estimates of the per base pair mutation rate for or­

ganisms across all major phlya [25]. Most mutation rates range between w-s and 

10-10 , although viruses have extremely accelerated rates around w-4 . Therefore, if 

the binding site length is 10 bp, the loss rate of binding sites ranges from w-7 to 

w-9 . The genomic architecture parameter ranges from 10-3 in mammals to 104 in 

bacteria, and so the gain rate has a wide spread of w-4 to w-13 . 

Modeling a mutation is straightforward. For a pathway allele M, the number 

of potential gain sites, gain(M), is the count of zero values in the matrix M and 

the number of loss sites, loss(M), is the count of the number of non-zero entries. 

The total number of random loss mutations for the allele can be calculated using the 

binomial distribution, where freq(M) is the frequency of allele Min the population: 

#tosses = binomial(N freq(M), loss(M)~-tt) 
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And similarly the number of gain mutations: 

#gains= binomial(N freq(M), gain(M)J-lg) 

Once the number of losses has been determined for a given network allele, #zosses 

mutant variants of M are constructed by randomly (uniformly) selecting a binding 

site and removing it (setting bi,j to 0). This process may introduce new alleles into 

the population; however, not all mutant variants may be unique. 

Similarly, once the number of gains has been determined, #gains mutant variants 

of M are constructed by randomly selecting an empty binding site and setting it equal 

to a random gene index in the pathway. The determination of an inhibition versus 

activation is determined by p, the probability of creating an activation regulatory 

effect. In this thesis, I use p = 1/2. 

Parameter 9 (p) The probability of creating an activation binding site. ( 1 - p) zs 

the probability of creating an inhibitory site. 

To update the affinity of a gain mutation at binding site bi,j: 

bi,j = sp(uniform(O, 1)) x uniformint(1, k) 

sp(x) = { 1 

-1 
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2.4.2 Recombination 

Recombination is the breaking and joining of DNA. There are various ways for 

recombination to occur, but the fundamental result is the same: genetic sequence from 

one allele is recombined with the genetic sequence from a different allele via a crossover 

event. Other more complicated forms of recombination exist can be investigated as 

extensions to the model. In this model, the interesting recombination events occur in 

the g discretized regulatory regions of each gene since these regions harbor binding 

sites. Shuffling binding sites through recombination can drastically alter the topology 

of the pathway, leading to a unique expression pattern or even loss of viability [2]. 

The rate of recombination events in the discretized regulatory regions, rb, can be 

calculated knowing the per site recombination rate and the length of the sequence in 

each discretized regulatory region ( L /g). 

Parameter 10 (rb) The rate of recombination events in the discretized regulatory 

region. Since recombination rate over a distance d on the genome is calculated by 

r(d, c) = 0.5(1- e2dc) and r(d, c) ~de when d is small, then rb = r(L/ g, c), where c 

is the per site recombination rate. 

Recombination events that occur between gene promoter regions, either in the 

gene itself or in the non-critical intergenic material, occurs at a different rate than 

in the binding site regions. This is the recombination that has most recently been 

studied in [3]. Since no assumptions are made about the base pair distance between 

genes in the pathway, this recombination rate can range anywhere from 0 for genes 

in high linkage disequilibrium to 1/2 for genes on different chromosomes. A crossover 

23 



1/) 

'E 
IV c :c 
E 
0 

~ a: 

Gene2 

Gene2 

Gene2 

Figure 2.5: A recombination event occurs in the 2nd critical binding region. The result of 
recombination in this binding region is detailed in Figure 2.6. Gene 2 is considered to be 
downstream and so is effected by the event. The arrows in the recombinants box denotes 
the crossover that occurred. 

event between genes is simply a switching of the rows in the allele matrix M. Not 

surprisingly, according to Martin and Wagner , point mutations are more costly than 

crossover events between genes in genetic networks [3]. However, if the crossover event 

occurs in the non-coding regions that harbor binding sites for genes in the pathway, 

recombination would shuffle the binding patterns between alleles. The effects of such 

an event could be drastic on the pathway topology (see Figure 2.6). 

P arameter 11 (r9 ) The rate of recombination events that occur between promoter 

regions of different genes. For completely unlinked genes (genes on different chromo­

somes or significantly distant on the same chromosome), r9 would be 0.5. 

The order of the genes on the genome become relevant when recombination occurs. 

This is also the case with the order of the binding sites. Figure 2.5 illustrates this 
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point. 
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Figure 2 .6: All possible results of a recombination event in a critical binding region (one 
of g in each promoter). By Assumption 1, at most one TFBS may be in each one of these 
regions. Note that one of the recombinants in scenario C violates Assumption 1. 

When recombination occurs in a specific discretized section of the regulatory re-

gion, there may be at most one binding site for each parent (by Assumption 1). There 
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are many outcomes for such a recombination. For the case where both parents have 

a binding site, see these outcomes in Figure 2.6. 

First, consider what happens if only one parent has a binding site. Based on where 

the crossover occurs relative to the binding site, the site may be unchanged if it is 

upstream, moved if it is downstream, or lost if it is coincident. The probability of each 

of these events based on the size oft his binding site region L I g is shown in Figure 2. 7. 

The probability that recombination destroys a binding site decreases exponentially 

with respect to the size of the binding region. As one would expect, it is equally 

probable for the binding site to be upstream or downstream of the recombination 

event. 

In the case where both parents have a binding site in a certain region, there 

are several more scenarios to consider. These scenarios are illustrated in Figure 2.6. 

For scenarios C and D there are symmetric cases where the recombinant TFBS are 

mirrored. For example, A and B show the symmetric case for binding sites co­

occuring upstream or downstream of the crossover. Of interest are the scenarios that 

cause redundancy (C), loss of one binding site (D), and loss of both binding sites 

(E, C). Figure 2. 7 shows the impact of each scenario with respect to the length of a 

binding region L I g. When L I g = n, the crossover is guaranteed to eliminate both 

TFBS. However, this probability drops rapidly. When Llg = 2n, the probability of 

losing both decreases by more than half its value, and it is equal to the probability of 

losing only one (D). When L I g = 4n, the most likely scenario is to keep both TFBS. 

Losing both binding sites only becomes a factor with the likelihood of scenario C, but 

this is still less likely than both binding sites being either upstream or downstream 
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Figure 2. 7: The probability of each possible recombinant scenario if only one parent has 
a binding site (left) or both parents have a binding site (right). The binding site length n is 
equal to 10, so the leftmost x-value is L/g = n. The letters in the figure on the right refer 
to the scenarios mentioned in Figure 2.6. 

of the crossover event. If g < £1102 , then Assumption 1 is a reasonable one, since 

scenario C is relatively small (the failure of the assumption occurs 50% of the time in 

the case of C). The probability of each scenario is a function of the binding region size 

and length of a binding site ( L I g). Interestingly, for bacteria, L I g could be less than 

100 bp, and so there is a significant probability that recombination would eliminate 

one or both binding sites. However, for eukaryotes, L I g is much larger, and a greater 

chance exists of swapping binding sites or causing redundancy (A ,B and C). 

To perform a crossover on the pathway genotype, let M1 and M2 be parent alleles 

with a crossover event occurring in the bi,j region. Let m be the k x g pathway matrix 
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unraveled into a kg length vector such that Mi,j = mig+j. A recombinant is given as 

m = ml[1 : ig + j - 1] + m 2 [ig + j : kg], with m[ig + j] sampled from the relevant 

distributions in Figure 2.7. For the scenario that violates Assumption 1, the upstream 

binding site is chosen. Disregarding redundancy in the discretized region does not 

preclude redundantly regulated recombinants to form, it only precludes redundancy 

within a position on the allele matrix. To avoid this issue altogether, it is possible to 

minimize L / g by more finely discretizing the regulatory region (increasing g). 

To perform a crossover between gene i and gene i + 1, steps are taken as before 

to construct the parental kg length vectors. Then, a recombinant is given by m = 

ml[1 : ig + g- 1] + m2 [(i + 1)g: kg]. 

2.5 Adaptive processes 

Selection refers to the process by which heritable traits confer a reproductive 

advantage to an individual. The nature of a fitness function which maps phenotype to 

selective advantage is highly dependent on the study at hand. Consequently, it is easy 

to over-constrain a general model, like the one presented in this thesis, with a specific 

fitness function. However, it is still important to design a realistic fitness function 

so as to better understand realistic fitness landscapes for the pathway genotype. As 

a reconciliation, this model employs both a fitness function framework that reflects 

the benefits and costs of a pathway and a random, parameterized fitness function 

that provides an important null model. Unlike other studies which use only one or 

the other, studies on this model can assess the similarity and differences between 
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parameterized fitness functions and ones motivated by biological principles. 

2.5.1 Designing a fitness function 

A fitness function calculates the 'goodness' of a pathway in context with the envi­

ronmental conditions and other pathway alleles in a population. For the time being, 

fitness is considered independently of allelic frequencies, but frequency dependent 

fitness is an interesting extension of the model which allows for more sophisticated 

community evolution. Two classifications of fitness functions exist: soft, where the 

function assigns marginal fitness gains, and hard, where the function designates the 

allele as fit or unfit. 

Most work on pathway evolution deals with hard, or binary, fitness functions. 

Lynch imposed only viability [2), which is a binary fitness function that is true only 

if each gene in the pathway is regulated. Other work in regulatory pathway evolution 

classified pathways by their phenotype [22, 3). If a pathway produced different gene 

expression levels at equilibrium, then it would belong to a distinct phenotype group. 

However, such a distinction cannot explain relative fitness and reproductive success 

of the individuals in different phenotype groups, so it is only useful as a calculation 

of hard fitness. 

However, the implications of marginal fitness are well studied in population ge­

netics, and have dramatic effect on adaptation, fixation, and establishment time of a 

population [36, 37). Furthermore, empirical studies reported that pathways fine tune 

to specific environmental conditions, which is a strong argument for the importance 

of marginal fitness in evolutionary simulations [19, 14). Consequently, my model em-
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ploys a soft fitness function, however, a hard fitness function can easily be designed 

and supplied to the model. 

According to Dekel et al. , fitness can be decomposed into the benefits over the 

costs of the pathway [19]: 

f . benefit 
ztness = . 

cost 

This equation states that cost must be greater than zero and the benefit must be pos­

itive. Intuitively, a negative fitness is not biologically plausible (a negative difference 

in fitness is allowed). Rather, fitness must be a positive value where any value less 

than 1 means the costs outweigh the benefits, and any value greater than 1 means 

the benefits outweigh the costs. 

For example, for the lac Operon pathway, the growth benefit is proportional to the 

amount of LacZ bound to lactose [19]. However other forms of benefit may include 

time delay, oscillation frequency, or depression of a signal. My model of pathway 

evolution borrows from the lac Operon pathway. Let Gk be a target gene in the 

pathway that performs some important function in the cell, like LacZ. Therefore the 

benefit function of a pathway M is proportional to the expression of Gk: 

(2.2) 

This equation elides any function of the environment, since, for the time being, a 

constant environment is assumed where the production of Gk is beneficial. 

Assumption 4 (Fitness benefit) The benefit of a regulatory network is propor-

30 



tional to the expression of the target gene Gk that performs some important function 

in the cell. 

Parameter 12 ( o-) The per molecule growth rate benefit conveyed by the target gene. 

Now that a benefit function is defined, where do costs come from? Stoebel et al. 

summarizes [16]: 

• Thanscription could be costly because it uses nucleotides that could be incorpo­

rated into other RNAs. 

• Thanscription occupies RNA polymerases [20] that might be better used to 

transcribe genes whose products increase fitness. 

• Thanslation wastes charged tRN As and occupies free ribosomes. 

• The proteins produced by translation tie up amino acids that might be better 

incorporated into other beneficial proteins. 

• Costly activities of the proteins, e.g., insertion of the permease in the membrane, 

might allow protons to leak into the cytoplasm, thereby partially dissipating 

the proton motive force. In addition, insertion might affect membrane fluidity 

and/or occupy space needed for other membrane proteins. 

Stoebel et al. created a general fitness model for the lac Operon circuit (composed of 

three proteins) that computes relative fitness between two strains [16]. 

Fitness difference between two strains = /31 (difference in LacZ amount) + 

/32 (difference in LacY amount) + /33 (difference in LacA amount). 
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In addition, Stoebel et al. showed that the major cost of regulatory pathways (in 

particular the lac circuit) is dominated by the process of transcription and transla­

tion. The costs of excess proteins or costly activities of the proteins are minor in 

comparison. So, the proposed fitness model incorporates only the costs of creating 

the protein product. Therefore, for a general pathway M with k genes, where [Gi] 

is the concentration of the ith gene at equilibrium and f3i is proportional to the gene 

product size, the cost is: 
k 

ry(M) = Lf3i[Gi]· (2.3) 
i=l 

For any pathway M, ry(M) > 0, so it will serve as a valid denominator in the calcu­

lation of fitness. 

Assumption 5 (Fitness cost) The major cost of a regulatory network is in the 

process of creating the protein products. 

Futhermore, Equation 2.3 follows the model from [16] in that a difference between 

the equilibrium concentrations of two pathways is equivalent to the cost of their 

differences: 

k k 

ry(M)- ry(M') - L {3i[Gi]- L f3i[Gi]' 
i=l i=l 

k 

- L f3i([Gi]- [Gi]') 
i=l 

It is also possible to determine the optimal fitness in the case where only the target 

gene is produced and all other genes are not present in equilibrium. For an optimal 
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genotype M*, 

Therefore if /3i = 1/k and a = 1, the optimal fitness is equal to k. A normalized 

fitness, with optimality at 1 and minimality at 0, is: 

f .t (M) i3khtness(M) 
'l nessnorm = . 

(J' 

Then, in the normalized case, a is not needed. 

As presented, fitness is a function of the pathway genotype, although all calcu­

lations are done using the phenotype, or equilibrium concentrations. Therefore an 

implementation of fitness must first convert the genotype to equilibrium protein con­

centrations (using the continuous, discrete, or other methods) and then impose the 

benefit and cost functions. Alternatively, fitness could operate on other properties 

and phenotypes. In this case, depending on the study, the fitness function could use 

the benefit and cost ratio as guidelines for the development of a relevant soft fitness 

function. For situations where the benefits and costs are not known or results cannot 

be constrained by a particular fitness function, it is possible to supply parameterized 

random fitness functions that describe marginal selective advantage. 

2.5.2 Random fitness 

Random fitness landscapes are useful parameterizations of empirically unknown 

distributions by providing the effect of mutation on a genotype's fitness [38]. I im-

plemented a discretized "stairway to heaven" landscape where the distribution of 
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selection coefficients is the same for all genotypes. As further work, more fitness 

landscapes can be tested. 

The implemented random fitness landscape is defined as random-Q, with 

Therefore, the distribution is independent and identical for every allele. The Q pa­

rameter is meaningful both before and after the population has discovered an optimal 

genotype. Prior to its discovery, Q-1 is the probability that an optimal pathway is 

found in the next mutation and so can be considered as the innovation parameter. 

Once an optimal genotype has been found, and the population is in the process of fix­

ing on a single or a set of optimal genotypes, Q-1 is the probability that a subsequent 

mutation is also optimal, and so represents robustness. 

For example, for a pathway allele M under random-10, the fitness is calculated 

by uniformly selecting an integer z from 0 to 10 and returning 1/ z. Since the same 

procedure is done for any arbitrary allele, the distributions are independent and 

identical. 

2.6 Summary 

The developed model provides a sequence-based realization of the pathway geno­

type within a population genetic framework. The fundamental data structure for 

a pathway preserves sequential order of the binding sites and genes by the order 
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of columns and rows of the pathway matrix. This novel data structure allows for 

more accurate representations of how mutation and recombination effect pathways. 

Furthermore, realistic rates for mutation and recombination on the pathway can be 

calculated using their well-known respective base pair rates and other estimable quan­

tities (length of regulatory regions, binding site length, and pathway size). Finally, 

populations of genotypes evolve on both biologically motivated and random fitness 

landscapes. 

This model is implemented in Python/C with the core routines and data structures 

written in C with Python wrappers. 
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Chapter 3 

Case study: The establishment of a 

novel regulatory pathway 

In this chapter I investigate the effect of non-coding DNA on the time to es­

tablishment of novel regulatory pathways within a finite population. Applying the 

developed sequence-based model of pathway evolution, I find that the length of reg­

ulatory promoter and enhancer regions is a major driving force of the establishment 

time of a novel pathway. The minimal establishment time for large genomes occurs 

in small populations and for small genomes it occurs in large populations, a pat­

tern that closely matches the empirical scaling between population size and amount 

of intergenic DNA in nature. Furthermore, I ran simulations under the various fit­

ness landscapes described in Chapter 2 and discovered that all landscapes, including 

random, yielded the same observations with regard to establishment times. These re­

sults provide new insight and theory on the functional role of non-coding DNA from 
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a pathway evolution perspective. 

Establishment time of an allele measures the mutational origin plus fixation (36]. 

Since I am interested in optimal pathways, the time to mutational origin is the adap­

tation time, or time until an adaptive allele is first discovered in the population. Since 

the non-adaptive processes of evolution can have a significant and opposing influence 

on adaptation and fixation time, establishment time can capture evolutionary pitfalls 

that are missed when examined by only adaptation or only fixation. Therefore this 

analysis calculates establishment time as the sum of adaptation time and fixation 

time of optimal pathways. Since the developed model is sequence-based, results from 

understanding the evolution on the pathway level apply back to the sequence. Hence 

this analysis uses pathways to understand the functional importance of the variable 

length of non-coding sequences within the genome and thereby provide quantitative 

measures for the advantage and disadvantage imposed by non-coding DNA on the 

creation of novel pathways. 

While theoretical work on the establishment time for abstract complex adapta­

tions provides important insights that may be applied to regulatory pathways, path­

way evolution is governed by several parameters and processes, such as the genomic 

architecture parameter, and thus analytical results may be overly simplistic (36, 37]. 

For example, prior calculations of establishment time solve for specific evolutionary 

scenarios like neutral intermediates, deleterious intermediates and diploidy [36]. For 

this reason, actual simulations, which take into account the full range of complexities, 

are needed to elucidate information about the establishment time. 
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3.1 Method 

I designed an experiment to measure the establishment time of an optimal path­

way from an initial population of pathways of solely self-regulating genes. The exper­

iment begins with a monomorphic population of self-regulating genes and simulates 

the spontaneous gain and loss of enhancer and silencer transcription factor binding 

sites in the pathway. The time until the occurrence of the first optimal genotype is 

the population's adaptation time. There are potentially several genotypes that have 

optimal fitness, which is a reasonable occurrence in nature [14, 13]. Establishment 

time has been defined as the time elapsed until all pathways in a population have 

optimal fitness [36]. 

3.1.1 Genomic Architecture Parameter 

Depending on the size of the regulatory substrate surrounding a gene, it may be 

more likely for a binding site to lose its affinity by a one-off mutation or for the 

promoter to spontaneously gain a new binding site. The ratio of the loss and gain 

rate of binding sites (J1z/ 119 ), or genomic architecture parameter (a), has been shown 

to be 4n / L, where n is the length of a binding site and Lis the size of promoter and 

enhancer regions for the gene [2]. When the binding site length is held constant, low 

values (a < < 1) correspond to large regulatory regions whereas high values (a > > 1) 

correspond to small regulatory regions. A realistic range for known organisms is from 

10-3 for mammals to 103 for prokaryotes. 

For prokaryotic gene structures, Lis determined by the average length of intergenic 
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regions upstream of genes and can therefore be approximated per gene by the number 

of non-coding bases divided by the number of genes in the genome. These numbers 

are readily available at NCBI-Entrez. For eukaryotic gene structures, promoters and 

enhancers exist upstream, within introns, and downstream of the gene; however, not 

all base pairs of this surrounding non-coding DNA provide adequate substrate for 

novel binding interactions. Recent work estimated the fraction of the human genome 

under selection somewhere between 2.4-11.8% [39]. Since the coding portion of the 

human genome comprises 1.2%, roughly 1-10% of non-coding DNA is under selection. 

For humans, then, the amount of regulatory substrate is an order of magnitude less 

(10%) than the total number of non-coding base pairs. Consequently, to calculate the 

number of nucleotides that may harbor a binding site in eukaryotes, the total length 

of non-coding DNA per gene was multiplied by 10%. Furthermore, while the length 

of a binding site varies greatly, this analysis will focus on the typical range of around 

10 base pairs in length and hold the length of the binding site (b) constant for the 

calculation of the genomic architecture parameter. Therefore, changes in the genomic 

architecture parameter (a) arise from changes in the gain rate (J-L9 ), not the loss rate 

(J-Lt), which is held constant with the length of a typical binding site. 

3.1.2 Simulations 

I simulated evolution under the given scenario for twenty populations ranging 

in size from 102 to 109 and twenty genomic architecture parameter values ranging 

from w-3 to 104 , with an average of 100 samples for each combination of population 

size and a. Results for each phenotype/fitness function yielded a distribution of 
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Table 3.1: For each phenotype/fitness function, a log-linear fit was calculated for the 
minimal median establishment times with respect to a. The log-linear fit follows Aa1 , 

where A is the amplitude and I is the index. The log of the amplitude and the index 
are given in the table, along with the Pearson correlation its corresponding p-value. The 
same log-linear fit for the known organisms is shown in the first row labeled 'organisms,' 
calculated using the estimates for genomic architecture parameter and population size. 

Fitness Function I index I log-amplitude I Pearson-r I p-value 
organisms 0.87 6.4 0.98 0 

discrete 0.70 7.5 0.88 3.8e-04 
discrete-viable 0.79 7.5 0.94 1.2e-05 

ode 0.73 7.7 0.82 2.0e-03 
ode-viable 0.56 7.1 0.96 3.3e-06 
random10 1.00 7.0 0.98 9.7e-08 
random20 0.94 6.9 0.95 l.Oe-05 
random50 0.72 6.9 0.90 1.5e-04 
random100 0.83 7.3 0.98 1.5e-07 

establishment times FNe,a for each population size (Ne) and genomic architecture 

parameter (a). Due to the exponential spread of establishment times, averages are 

severely right-skewed. Because of this, I examine the median of establishment times 

(for a further discussion on this decision see Section 3.3.1). To quantify the optimal 

population size for a given genomic architecture parameter, I will use the minimal 

median establishment time with respect to a, which is calculated by: 

minimal-median(a) = argminmedian(FNe,a)· 
Ne 
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Figure 3.1: Contour plots of the median establishment time (yellow is faster) for each 
population and genomic architecture parameter are shown for four of the nine examined 
phenotype/fitness functions. Each contour plot was generated using natural neighbor in­
terpolation of the simulation results. On all plots, a noticeable diagonal band indicates the 
fastest establishment times (least squares fit with dashed line), which parallel the scaling 
of population and genomic architecture parameter found in nature (scatter points fit with 
solid black line). The comparison of the fit of the dashed line (fastest establishment times) 
and the scaling found in nature is shown in Table 3.1. 
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3.2 Results 

3.2.1 Minimal median establishment time coincides with nat­

ural scaling of population and non-coding DNA 

Establishment of a novel pathway involves two steps: first the discovery of the 

optimal pathway, and second, the movement of the unfit portion of the population to 

optimal alleles. This study is ultimately interested in the time it takes to complete 

both steps as neither are trivial depending on the population size and genomic archi­

tecture parameter. Figure 3.1 depicts the results for each fitness function as a contour 

plot of the median establishment time for each population and genomic architecture 

parameter. The optimal population size for minimizing the median establishment 

time can be quantified as a log-linear function of the genomic architecture parameter 

(see Table 3.1). The close fit of fast median establishment times with the scaling of 

population and non-coding DNA can be visually understood by the strong diagonal 

band evident in all phenotype/fitness functions (see Figure 3.1). Indeed, the optimal­

ity of establishment time for novel regulatory pathways coincides with the scaling of 

population size and genomic architectures of the natural system. 

Two major properties of this diagonal pattern are interesting: first, small popula­

tions with large regulatory regions are at a significant advantage to larger populations 

in terms of establishment time; and second, this pattern persists across all tested fit­

ness functions. In order to understand the emergence of this pattern, adaptation and 

fixation, the two components of establishment, must be examined. 

Establishment time decomposes into the summation of time to adaptation, the 
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discovery of an optimal pathway, and time to fixation, where we relax fixation to mean 

that every individual in the population has an optimal pathway, but not necessarily 

all of them have the same optimal pathway allele. Once a population has adapted, 

it is in the process of fixation until it completes establishment. An allele (in our case 

an optimal pathway) is fixed once every individual shares that same allele or an allele 

with equivalent fitness. We can therefore examine the causes of long establishment 

times as a function of adaptation and fixation. 

3.2.2 Median adaptation time scales with genomic architec­

ture parameter 

In order to understand adaptation time on the pathway genotype, let d be the 

number of mutations (either loss or gain) required to find an optimal pathway. Be­

cause the number of mutations required to find an optimal allele changes depending 

on the evolutionary trajectory of the population, d can take on a variety of values 

based on the population size and other factors. Define a random variable D as the 

number of mutations required for the population to adapt, and let JE(D) = d. Dis­

tribution statistics for D, given in Table 3.2, identify d to be on average around 

3-4 mutations, which is in the range studied by other works on complex adaptations 

[36, 37]. However, in very few cases, D can reach to around 60 mutations, which 

undoubtedly would have a strong effect on the adaptation time, but not the overall 

median adaptation time. 

For simplicity, let the d intermediate pathways be neutral until a final optimal 
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pathway is discovered. Lynch provided intuition for the adaptation time in this 

scenario: a population's ability to adapt is proportional to the arrival rate of mutants 

[36]. Because d varies negligibly with phenotype/fitness function, population size, 

and genomic architecture parameter (see Table 3.2), its variation must not be a 

major factor in the determination of adaptation time for these simulations. Rather, 

we expect the arrival rate of these d mutations, which is governed by the population 

size and genomic architecture parameter, to have a significant effect on adaptation 

time. 

This study uses two mutation rates, one for gain and one for loss, and so the 

population mutation rate is 2N (J-tl + /-lg). Rearranging terms to tease out the genomic 

architecture parameter, the population mutation rate is 2N J-ll ( 1 +o:-1). Since J-ll = nu, 

where b is the length of the binding site and u is the mutation rate, is constant in this 

experiment, we can understand the effect of population mutation rate on adaptation 

time solely as a function of the population size and genomic architecture parameter. 

As shown in Figure 3.2, adaptation time scales positively with (1 + o:-1 ) and 

negatively with the population size. This relationship is strongly log-linear with 

respect to N(1 + o:-1) (Pearson R is -0.97, p-value is 10-24). The calculation of 

this relationship is truncated when the population mutation rate exceeds 10, wherein 

the population mutation rate has limited effect on the adaptation time. When the 

population is producing on average 10 mutants per generation, the properties of the 

phenotype space constrain the discovery of beneficial alleles, through fitness valleys, 

plains, or inclines. At this high rate of mutants, the entire neighborhood of one­

off mutations is explored, and so a fitness valley, wherein no genotypes are optimal, 
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Figure 3.2: Median adaptation time (ta) as a function of 2~-tiN(l + a-1) for all pheno­
type/fitness functions. Triangles denote results from random fitness functions. The Pearson 
correlation of the fit is -.98 and is highly significant. The vertical dotted line denotes the 
point at which median establishment time has "bottomed out" relative to population mu­
tation rate. Median adaptation time can be reduced either by increasing N or increasing 
the amount of non-coding DNA (decreasing a). 

limits the discovery of optimal alleles. However, in this interval where the population 

mutation rate is greater than 10, median adaptation times are minimal ( < 10) in 

comparison. 

When a > 1, the population size largely determines the population mutation 

rate (holding J.Ll constant), and so the effect of promoter region length on adaptation 

time occurs when promoters are large, or a < 1. While other variables factor into 

the variation of median adaptation time, such as properties of the phenotype/fitness 
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Table 3.2: Distribution statistics of D, the number of mutations required for a population 
to adapt. Average, standard deviation, minimum and maximum values were calculated for 
each DNe,oo and then averaged to report a single value for each phenotype/fitness function. 

Fitness Function I avg(D) ± std(D) I min(D) I max(D) 
discrete 3.12 ± 1.83 2 58 

discrete-viable 2.91 ± 2.36 2 58 
ode 3.01 ± 1.45 2 44 

ode-viable 3.98 ± 1.18 3 29 
random10 2.48 ± 1.03 1 10 
random20 2.91 ± 1.16 1 10 
random50 3.40 ± 1.34 1 10 
random100 3.68 ± 1.46 1 14 

function, they are relatively small in comparison to the joint effect of population size 

and genomic architecture parameter. 

While this follows the intuition in (36], it is surprising when compared to the results 

investigating the effect of robustness and innovation on adaptation time by Draghi et 

al. [24]. Draghi et al. reported the strong effect of robustness on the mean time to the 

first beneficial allele; however, in our study there is little effect that phenotype/fitness 

function properties, such as robustness, have on median adaptation time in compari-

son to the effect of population size or amount of regulatory substrate. Other factors 

not considered in [24], like a soft fitness landscape during adaptation, could account 

for these differences. With that said, properties like robustness affect the adaptation 

time within an order of magnitude, which may be quite large, especially when the 

range is 107 - 108 . Unlike population size or amount of non-coding DNA, robustness 

is a static property of an allele and its associated genotype/phenotype space. Across 
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a generation, the population size and amount of non-coding DNA may change, but 

the genotype/phenotype space does not. Therefore, evolution more likely operates 

within expanding and shrinking of population and promoter size. 

The stronger effect of population size and non-coding DNA over phenotype/fitness 

properties has interesting biological implications: regardless of the pathway function, 

holding the amount of non-coding DNA constant, adaptation time decreases with an 

increase in population size. On the other hand, holding the population size constant, 

expansion of non-coding DNA regions that serve as substrate for novel regulatory 

interactions decreases adaptation time. Based solely on these two observations, the 

optimal population for median adaptation time would be both large in population and 

genome size. However, adaptation time does not consider the further accumulation 

of mutations following the discovery of an optimal allele, which would be rampant in 

such a population. Intuitively, the forces that drive rapid adaptation also undermine 

fixation. Hence, to understand this tradeoff we must examine fixation time. 

3.2.3 Fixation time increases with promoter and population 

. 
SIZe 

A population is established when all pathways in the population are optimal, 

and so prolonged fixation time occurs when there are deleterious pathways in the 

population. In a given generation prior to fixation, these deleterious pathways either 

already existed from the previous generation or resulted from mutation because the 

arrival of mutants is faster than the population can purge them through selection or 
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drift. To examine this phenomenon, I constructed a simple model of the fixation of 

an allele (depicted in Figure 3.3): 

• representing optimal pathways with frequency p, 

• mutation rate u, 

• N as population size, 

• q as the probability of producing an optimal mutant (or the robustness of the 

optimal alleles), and 

• 8 as the selective advantage of the optimal pathway 

fitness(optimal) = fitness(8ub.optimal) + 8. 

Mutation between optimal and suboptimal alleles occur with rate (1- q)u. 

Results from computational simulations of this model are shown in Figure 3.4. 

This model is useful because it explains the effect of N,u,q,and 8 on fixation time. 

First, as Nu increases, on average more mutations occur each generation which have 

a deleterious effect on fixation time, especially when N(1 - q)u > 1. Second, as q 

decreases (or 1 - q increases), the increased arrival rate of deleterious mutations also 

increases fixation time. Finally, as 8 increases, selection becomes a stronger force and 

decreases fixation time. In terms of phenotype/fitness function properties, fixation 

time decreases as either the robustness increases or the difference in reproductive ad­

vantage widens between the optimal and sub-optimal alleles. For any given robustness 
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fitness( Optimal)= fitness(Sub-Optimal) + s 

Figure 3.3: The fixation model which incorporates drift, mutation, and selection. Mu­
tations occur at a rate u, with a probability q of producing an optimal allele. The fitness 
difference between optimal and sub-optimal alleles is given by s. 

and phenotype function, fixation time monotonically increases with the population 

mutation rate, and there is a significant increase in fixation time around N u > 1. 

We can compare this model to the patterns of fixation time discovered by the 

populations of this study (see Figure 3.4). Fixation time of the simulated populations 

follows the insights of the model. As before, the population mutation rate under 

the genomic architecture parameter is NJ-£1(1 + a-1), which is a function of Nand a 

because f-tl is constant. Take, for example, the median fixation times of ode-viable and 

discrete-viable. The robustness values as measured by Q during fixation for the various 

landscapes are shown in Table 3.3. The robustness during fixation over all simulations 

for discrete-viable was found to be 0.48 and ode-viable to be 0.37. According to this 

model, all else equal, the minor difference in robustness will have a dramatic effect 

on fixation time when Nu > 1. Indeed, when Nu ~ 10, the difference between the 

two phenotype functions becomes around 104 , where previously their separation was 
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Figure 3.4: The results of the fixation model are shown on top. This plot explains 
the joint effect of Nu and the robustness of the optimal-neutral space, q, on the median 
fixation time. At Nu ~ 1, there is a significant increase in the time to fixation. This 
threshold can be shifted right by increases in s, the selection coefficient, or q. Solid, bold 
curves depict median fixation time for different phenotype/fitness functions. In this case, 
2Nu = 2N(p.9 +~-tl) = 2Np.l(l+a-1). It is evident that results for these phenotype functions 
follow the pattern explained by the fixation model. Simulations for the fixation model are 
truncated at 108. 

roughly 102 . In addition, according to the model, subsequent mutations in the ode­

viable landscape on average have a minor change to the section coefficient (s = 0.1), 

whereas mutations in the discrete-viable landscape on average are more consequential 

(s = 0.5). Because of this, selection is a stronger force in the fixation of populations 

under the discrete-viable function, and so fixation time is diminished. 
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Table 3.3: The robustness, or probability that subsequent mutations are also optimal, 
during the fixation phase of establishment time for the different phenotype/fitness functions. 
For each fitness function, Q is the distribution of robustness across all simulated population 
sizes and genomic architecture parameter values. 

Fitness Function I avg(Q) ± std(Q) 
discrete 0.48 ± 0. 09 

discrete-viable 0.43 ± 0.08 
ode 0.41 ± 0.07 

ode-viable 0.37 ± 0.1 
randomlO 0.10 ± 0.05 
random20 0.05 ± 0.03 
random50 0.02 ± 0.03 

randomlOO 0.01 ± 0.02 

One major difference between the fixation model and the simulation results is 

the plateauing of fixation time in high mutation environments. Where the model 

predicts further increases in fixation time, the simulated results plateau depending 

on the phenotype landscape. This is an interesting contrast to adaptation time, 

where the phenotype function played little role in the variation of median adaptation 

times. We can attribute this plateau to the saturation of the pathway genotype. High 

mutation environments ( N u > > 1) correspond with a high binding site gain rate. As 

the number of mutations accumulate over time, the pathway ultimately saturates 

with binding sites. In this study, discretizing the pathway genotype imposes this 

limit, but other studies have imposed this same saturation criteria using hard limits 

on the number of occupied binding sites [22, 23). 

While there exists clear variation between the fixation model used here and the 

simulation results, the overarching trends in median fixation time can be explained 

51 



by the population size, genomic architecture parameter, robustness, and selection 

coefficient. 

3.3 Discussion 

When the results for adaptation and fixation time are superimposed (see Fig­

ure 3.5), the scaling of minimal median establishment times rests around a population 

mutation rate of 1 to 100. Because the pathway is a unique genotype that is affected 

by non-coding DNA in a predictable manner, it is possible to understand this scaling 

as a function of intergenic DNA using the genomic architecture parameter. When 

this trough is expanded across valid combinations of N and a, the diagonal scaling 

emerges. 

By decomposing the contribution of adaptation and fixation to the overall es­

tablishment time, I elucidated the components under study that gave rise to vari­

ations on the overall diagonal-band pattern. First, adaptation time is largely gov­

erned by the population mutation rate, which can be expressed as a function of 

population size and the genomic architecture parameter (2Nu where u = f.-tl + 119 = 

f.-tl ( 1 +a -l)). Differences between phenotype spaces accounted for very little variation 

between median adaptation times. However, this is a surprising result provided the 

amount of attention that innovation and robustness are given in the adaptive process 

[24, 22, 23, 40, 41, 42, 43, 44]. Our results indicate that commensurate changes to 

population size or mutation rate would have a more powerful effect than changes to 

robustness or innovation. The pathway, as an allele, is unique because it is possible 
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Figure 3.5: The trough formed by median adaptation and fixation times across values of 
the population mutation rate (2NJ.£1(1 + a-1]). Minimal establishment time occurs at the 
intersection of these curves, which turns into a diagonal band when examined across values 
for N and a. The thick line denotes the median establishment time for discrete-viable. The 
several lines for fixation illustrate the strong effect of phenotype space properties on median 
fixation time, in comparison to the weak effect these properties have on adaptation. 

to increase or decrease the mutation rate of the pathway by increasing or decreasing 

the amount of regulatory substrate. Therefore, as an evolutionary strategy, it may be 

easier for a population to grow or shrink intergenic regions to accommodate for low or 

high mutational robustness. Furthermore, in this study, the effect of robustness man­

ifests in fixation time, not in adaptation. Though this observation is specific to the 

pathway genotype model presented in this thesis, further studies should investigate 

the effect of robustness and innovation on fixation for other allele-types or pathway 
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models, and moreover for the entire establishment process. 

A distinguishing feature of this study, in comparison to others that investigate 

establishment, is that mutations could continue to accumulate after a target allele 

was discovered by the population [36, 37]. The results in [36, 37] do not allow for 

continued mutation during the time to fixation; rather, the authors assume that the 

population reaches a fitness peak or evolutionary "dead end." Our results indicate 

that this is not the case, and mutation will continue to drive the population to a 

mutation-selection-drift balance, which is the determining factor in fixation. 

Since we implemented two pathway phenotype models reported in the literature, 

it is worth comparing them under the perspective of establishment time. First, the 

viability constraint decreases robustness of both discrete and continuous by 10% each. 

Because viability reduces the number of possible optimal pathways, this decrease is 

expected. However, the reduced number of optimal pathways imposed by viability 

weakly affected the average number of mutations required to find an optimal allele. 

Viability, then, is a weak constraint that has a minor effect on establishment time. 

The differences between discrete and continuous, however, were much stronger. 

In terms of adaptation time, the closest optimal allele for the continuous function 

required three subsequent mutations from the genotype of the initial population, 

whereas the closest discrete allele only required two. As for fixation, the continuous 

function had lower robustness and the unfit neighbors had a minimal difference in fit­

ness, reducing the effect of selection and increasing the fixation time. For the discrete 

function, higher robustness and higher differences in fitness between the optimal and 

unfit alleles resulted in decreased fixation time. 
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While intuitively a realistic pathway model, like discrete or continuous, should fit 

better to the empirical data of population size and non-coding DNA per gene, the best 

fit resulted from the random-100 function (see Table 3.1). Because the empirical data 

averages the amount of non-coding DNA across the entire genome, it is an aggregate 

statistic across all the pathways present in an individual. All these pathways do not 

operate under the optimality criteria of maximizing the target gene production, and, 

as such, should not necessarily fall into the optimal establishment times explained 

by such a criterion. Instead, as we found in the simulations, an aggregate statistic 

would most likely behave independent of the pathway function but dependent on 

the pathway structure and genotype. Hence, random-100 provides a best fit to the 

empirical data. 

3.3.1 Median vs. mean 

Central to the findings of this study is the use of the median statistic. Almost 

all other works estimate establishment time, adaptation time and fixation time using 

their mean [36, 37, 24]. This is not because the median has "lesser" biological mean­

ing, rather because the median is difficult to determine theoretically since it requires 

a complete understanding of the cumulative distribution function. However, simula­

tions approximate the cumulative distribution function, and, in doing so, allows for 

the estimation of non-moment based statistics like the median. 

Furthermore, the same analysis performed with the mean, rather than the me­

dian, yields highly divergent results. In fact, the mean shows no scaling with the 

empirical population size and genomic architecture. Instead, the mean establishment 
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time decreases, more or less, with the population mutation rate. However, the same 

analysis performed with the third quartile (75th percentile) still displays the scaling 

with empirical data. Therefore, in this study, averages represent the slowest 25% of 

population ensembles. 

3.4 Conclusions 

As shown in many previous studies, organism complexity scales not with number 

of genes or genome size but rather with the amount of non-coding DNA [1]. This phe­

nomenon revolves around the eukaryotic gene structure, which allows coding regions 

to be couched within even larger amounts of non-coding nucleotides by way of introns 

and long 5' UTRs. In [1], Lynch proposed a null theory for the origin of eukaryotic 

gene structure that targets the emergence of this non-coding padding to the shrinking 

effective population sizes of complex organisms, resulting in evolution dominated by 

random drift rather than selection. Since smaller populations provide an amenable 

environment to the fixation of deleterious mutations, these smaller populations were 

unable to purge nearly neutral expansions of non-coding regions and the eukaryotic 

gene as we know it today took shape. 

It is not clear whether this drift-based solution to complexity is sufficient to explain 

the success of the eukaryotic genome [31]. To understand the benefits and costs of non­

coding DNA to a population, one must assign function to mutations and variation 

within the expanding non-coding regions of genomes. In order to understand the 

effects of mutations in these enigmatic regions, I approached the problem with a 
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pathway-based perspective. By attributing the ratio of loss and gain of transcription 

factor binding sites to the length of potential regulatory-harboring sequence per gene, 

I quantified the relative effects of drift, mutation, and selection in forming novel 

pathways. In addition, by using parameterized random fitness landscapes, results 

can be generalized beyond the specific optimality criteria enforced by the discrete 

and continuous phenotype functions. In the end, we are left with a model that 

predicts the correlation of population size and length of non-coding promoter regions 

as defined by minimal establishment times of novel pathways. These results explain 

that as the effective population size shrinks, there is an indirect selection on larger 

promoter regions for the development of novel pathways. 

This evolutionary pathway perspective provides a reasonable quantification for the 

known covariation of population size and expansion of non-coding genomic regions. 

In doing so, I have quantified the evolutionary advantages and disadvantages of non­

coding DNA on pathways using establishment time, determined and examined the 

important parameters of establishment time of pathways, and verified a sequence­

based regulatory pathway model. 
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Chapter 4 

Discussion and conclusions 

The sequence-based pathway model developed in this thesis fills an important 

gap in current pathway models, and, in doing so, provides insight to open problems 

and also the ability to reexamine problems from a population-genetic, pathway-based 

perspective. I verified the usefulness of this model by revisiting the issue of strong 

correlation between non-coding DNA and population size. By attributing significance 

to non-coding DNA using minimal median establishment time, I showed that opti­

mal population sizes and lengths of non-coding DNA for establishing novel pathways 

coincided with the known population sizes and non-coding expansions for organisms 

across the tree of life. These results underline three critical and distinguishing features 

of my pathway model: first, the preservation of sequence information in the pathway 

genotype; second, the modeling of evolution within a population; and finally, the use 

of simulation rather than analytical formulations. 

Preserving sequence within the pathway model is reflected in the choice of data 
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structure, the use of two, yet related, mutation rates that are a function of sequence 

mutation rates, and two recombination rates that, too, are a function of sequence 

recombination rates. The data structure forms the basis for the genotype and defines 

how mutation and recombination operate. A poor choice of data structure may encode 

too little information to reliably model mutation and recombination. For instance, 

previous models of pathway data structures used the adjacency matrix of the pathway, 

but this choice divorces the pathway from its sequential underpinnings [2, 3, 22, 14]. 

Mutation on the adjacency matrix amounts to the gain and loss of gene interactions 

- not binding sites. If each gene interaction maps to a distinct binding site, gene 

interactions and binding sites are synonymous; otherwise, they are not. However, 

repeated binding motifs and pleiotropy of binding factors are observed in nature, and 

therefore are missing in current pathway models (45]. Furthermore, the strong results 

in Chapter 3 center around mutation rates that can be calculated from empirical data. 

Without empirical rates, comparing to observed data would be unfruitful, and in fact 

many evolutionary studies cannot make informative comparisons to empirical data 

[3, 24, 22, 36, 37]. By carefully developing a sequenced-based pathway model such 

that pathway level mutations are a function of sequence characteristics, simulation 

results can be compared back to these observable quantities. 

As for recombination, it is impossible to properly model recombination between 

binding sites using an adjacency matrix. However, in studying recombination on the 

robustness of a pathway, Martin et al. argued that a recombination event is unlikely to 

occur between binding sites because they are closely linked, so only free recombination 

between unlinked genes was included in their model [3]. Martin et al. did not justify 
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this assumption. In fact, according to results from the HapMap project, transcription 

factor binding sites show decreased levels of linkage disequilibrium in comparison to 

coding sequences [46]. In addition, given that the per base pair recombination rate 

c ranges from 10-6 to 10-Io and the amount of regulatory substrate surrounding 

eukaryotic genes ranges from several to hundreds of kilobases, the rate of recombi­

nation within regulatory regions is between 10-3 and 105 (using r = 0.5[1 - e2dc] ). 

From this, in each generation there may be multiple recombination events between 

binding sites within the population. Consequently, the analysis of recombination on 

robustness done by Martin et al. is missing a major piece of the puzzle. In order to 

correctly incorporate recombination within binding regions, though, the fundamental 

data structure must change from the adjacency matrix to one that preserves sequence 

order. Unfortunately, in [2], Lynch recognized the importance of recombination be­

tween between binding sites but still used the same adjacency matrix formulation of 

a pathway, resulting in an incorrect implementation of recombination within regula­

tory regions. Since the study was simulation based, the effect of recombination on 

evolving redundancy for a three gene pathway is undoubtedly incorrect as well. Ulti­

mately, despite the usefulness of the graph abstraction, evolution operates on DNA, 

and so any model of pathway evolution must be based on genome sequence evolution. 

Therefore, the representation of the pathway should reflect the underlying genomic 

sequence. 

A population genetics approach to evolution can reveal surprising insights. For 

example, previous to the results of [24], the intrinsic dichotomy between robustness 

and innovation created an unmanageable tradeoff: how could evolution operate on a 
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genotype that is robust, and how could an innovative genotype protect against the 

vagaries of evolution? Draghi et al. reconciled this issue using population genetics to 

show that populations can be both robust and evolvable at the same time [24]. When 

it comes to pathways, the literature is ripe with adaptive arguments for patterns of 

redundancy, robustness, motifs, and modularity [14, 19, 16, 17, 18, 19, 20, 21, 22]. 

However, only a few models of pathway evolution incorporate neutral forces, and none 

incorporates them completely correctly [3, 2]. Consequently, the majority of insights 

on the formation of pathway structure are devoid of non-adaptive influence [2]. The 

success of applying population genetics and pathways can be seen in the results of the 

establishment time study. This study leveraged both adaptive and non-adaptive forces 

in the calculation of establishment time for novel pathways. Because the pathway 

model developed in this thesis supports mutation, selection, and drift, it is possible 

to determine the balance of these three forces combined within a population. 

This thesis provides a pathway model built from the sequence up and designed 

for simulation studies. While much work in population genetics uses simulation as 

a validation tool, the major contributions are presented as an analytical solution 

[36, 37, 24, 38]. However, due to the randomness introduced by drift, recombination, 

and mutation, a deterministic solution must be a statistic of the underlying proba­

bility distribution. For ease of developing analytical solutions, these analyses almost 

always measure means or other moments. Other useful statistics, like the median 

used in the establishment study, are avoided because estimating quantiles requires 

knowledge of the cumulative distribution function, or the complete description of 

the probability distribution. Thus much of population theory revolves around the 
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mean, which despite being a very informative measure, poorly represents skewed dis­

tributions. On the contrary, simulations approximate the entire distribution, thereby 

allowing for any meaningful statistical analysis. The establishment study in this thesis 

exemplifies the benefits of a good simulated model. As determined by the simula­

tions, establishment time is a highly skewed distribution. Consequently, the mean lies 

above the 90th percentile and so poorly represents a biologically meaningful quantity. 

Reasonable quantiles (from 10% to 75%), however, are corroborated by the empirical 

evidence of non-coding DNA and population size and represent more reasonable bio­

logical quantities. Furthermore, complex alleles like pathways introduce configuration 

spaces that are intractable from an analytical perspective [2]. Solving various popu­

lation genetic measures for each configuration, or possible pathway topology, is not 

a viable approach to understanding pathways. Simulation studies are not hindered 

by large configuration spaces, and so future work in the field of pathway evolution 

will rest on good digital models. In addition, since the model presented in this thesis 

rectifies many fundamental problems in previous approaches, it will serve as a critical 

base for future work in pathway evolution. 

In conclusion, this thesis presents a model of pathway evolution that preserves 

sequence structure, incorporates population-genetics, and can handle the complexi­

ties introduced by the pathway allele and population genetics using simulations. In 

combination, these three features distinguish the model from previous work and fill a 

critical need which is evidenced by the ill designed models of pathway evolution in the 

literature. As a validation step, I successfully leveraged this model in the investigation 

of non-coding DNA and its effect on the establishment of optimal pathways, which 
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resulted in strong agreement with known amounts of non-coding DNA and population 

sizes. Hence, the developed model was central in quantifying an important advantage 

provided by non-coding DNA. Therefore, this thesis builds a pathway model of evolu­

tion from its underlying genomic context and validates the model against a pertinent 

and open problem in genome evolution. 
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Appendix 

Error in binding site recombination on an adjacency 

matrix 

In [2], Lynch investigates the effect of crossover events in the promoter region of a 

gene. In his implementation, he uses an array to store the frequencies of the different 

genotypes. 

Allele designations: 

Set [1. .. 6] [1. .. 6] [0 ... 1] 

First two numbers denotes the status of A and B: 

s implies self-regulating; 

A implies it drives C; 

> implies it drives the other transcription factor: 

1. X 

2. sX 

3. sX> 

4. X> 

5. Ax 

6. AsX 
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7. ·sx> 
a. ·x> 

Third number denotes whether Cis self-regulated (1) or not (0). 

If we define a matrix wi,j as the regulatory relationship gene i regulates gene j, let's 

construct the row for gene B = 1 ( C = 0 and A = 2) based on the above enumeration. 

1. (o o o) 
2. (o 1 o) 
3. (o 1 1) 
4. (o o 1) 
5. (1 o o) 
6. (1 1 o) 
7. (1 1 1) 
8. (1 0 1) 

We can see that the implementation encodes the row type with a number and therefore 

the array called 'Set' keeps track of the frequency for each possible combination of 

rows. It is also important to note that the row does not represent a physical promoter 

region; rather, the column represents the physical promoter region in front of a gene, 

since the relationship 'A regulates B' implies a binding site in front of gene B for gene 

A. This means that each element in this row represents a binding site in a different 

promoter region. 

In the code for recombination, each genotype pair will create recombinants at 

rates r0 , r1 , and r2 , for 0, 1, and 2 crossover events, respectively. In this code below 

pgen2c array is the previously mentioned 'Set'. 
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I• impose recombination •I 

for (ig•l; ig<•S; ++ig) { 

for (jg•l; jg<=S; ++jg) { 

for (kg=O; kg<•l; ++kg) { 

pgen2c [ig] [jg] [kg] - 0.0; 

}}} 

for (ig=l; ig<•S; ++ig) { 

for (jg•l; jg<=S; ++jg) { 

for (kg•O; kg<•l; ++kg) { 

for (igl=l; ig1<•8; ++igl) { 

for (jg1=1; jg1<=8; ++jgl) { 

for (kgl•O; kg1<=1; ++kgl) { 

pgen2c [ig] [jg] [kg] += ( (pgen2b [ig] [jg] [kg] • pgen2b [igl] [jgl] [kgl]) • recO); 

pgen2c [igl] [jgl] [kgl] +• ( (pgen2b [ig] [jg] [kg] • pgen2b [igl] [jgl] [kgl]) • recO); 

pgen2c [ig] [jg] [kgl] += ( (pgen2b [ig] [jg] [kg] • pgen2b [igl] [jgl] [kgl]) • reel); 

pgen2c [igl] [jgl] [kg] += ( (pgen2b [ig] [jg] [kg] • pgen2b [igl] [jgl] [kgl]) • reel); 

pgen2c [ig] [jgl] [kgl] +• ( (pgen2b [ig] [jg] [kg] • pgen2b [igl] [jgl] [kgl]) • reel); 

pgen2c [igl] [jg] [kg] += ( (pgen2b [ig] [jg] [kg] • pgen2b [igl] [jgl] [kgl]) • reel); 

pgen2c [ig] [jgl] [kg] +• ( (pgen2b [ig] [jg] [kg] • pgen2b [igl] [jgl] [kgl]) • rec2); 

pgen2c [igl] [jg] [kgl] +• ( (pgen2b [ig] [jg] [kg] • pgen2b [igl] [jg1] [kgl]) • rec2); 

}}}}}} 

Basically, recombinations are implemented as switching of rows of the wi,j matrix. 

For example, in the calculation for r 2 , the nested indexing variables ig,jg,kg and 

igl,jgl,kgl show the switching of rows twice (ig,jgl,kg and igl,jg,kgl). 

pgen2c[ig] [jg1] [kg] += ((pgen2b[ig] [jg] [kg] * pgen2b[ig1] [jg1] [kg1]) * rec2); 
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pgen2c[ig1] [jg] [kg1] += ((pgen2b[ig] [jg] [kg] * pgen2b[ig1] [jg1] [kg1]) * rec2); 

From a physical perspective, this does not make sense. Since rows are being switched, 

physical contiguity is thrown out the window as promoter regions are arbitrarily 

broken. Thus, this implementation is incorrect for any network incorporating 3 or 

more genes. It is necessary to keep track of the sequence of each binding site in the 

promoter, as explained in Section 2.2.1. 
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