
RICE UNIVERSITY

Autonomous storage management for low-end
computing environments

by

Ansley Post

A THESIS SUBMITTED

IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE

Doctor of Philosophy

APPROVED, THESIS COMMITTEE:

Pet~ 1/t, ChaiT

T. S. Eug eNg
Assistant Professor of Computer Science

\2-Jq ~ ~
Rodrigo Rodrigues
Assistant Professor of Computer Science,
Max Planck Institute for Software

Syst~ ~

RolfRiedi G
Associate Professor of Statistics

Houston, Texas

October, 2010

Autonomous storage management for low-end
computing environments

Ansley Post

Abstract

To make storage management transparent to users, enterprises rely on expensive

storage infrastructure, such as high end storage appliances, tape robots, and offsite

storage facilities, maintained by full-time professional system administrators. From

the user's perspective access to data is seamless regardless of location, backup requires

no periodic, manual action by the user, and help is available to recover from storage

problems. The equipment and administrators protect users from the loss of data due

to failures, such as device crashes, user errors, or virii, as well as being inconvenienced

by the unavailability of critical files.

Home users and small businesses must manage increasing amounts of important

data distributed among an increasing number of storage devices. At the same time,

expert system administration and specialized backup hardware are rarely available

in these environments, due to their high cost. Users must make do with error-prone,

manual, and time-consuming ad hoc solutions, such as periodically copying data to

an external hard drive. Non-technical users are likely to make mistakes, which could

result in the loss of a critical piece of data, such as a tax return, customer database,

or an irreplaceable digital photograph.

In this thesis, we show how to provide transparent storage management for home

and small business users. We introduce two new systems: The first, PodBase, trans­

parently ensures availability and durability for mobile, personal devices that are

mostly disconnected. The second, SLStore, provides enterprise-level data safety (e.g.

protection from user error, software faults, or virus infection) without requiring ex­

pert administration or expensive hardware. Experimental results show that both

systems are feasible, perform well, require minimal user attention, and do not depend

on expert administration during disaster-free operation.

PodBase relieves home users of many of the burdens of managing data on their

personal devices. In the home environment, users typically have a large number of

personal devices, many of them mobile devices, each of which contain storage, and

which connect to each other intermittently. Each of these devices contain data that

must be made durable, and available on other storage devices. Ensuring durability

and availability is difficult and tiresome for non-expert users, as they must keep track

of what data is stored on which devices. PodBase transparently ensures the durability

of data despite the loss or failure of a subset of devices; at the same time, PodBase

aims to make data available on all the devices appropriate for a given data type. Pod­

Base takes advantage of storage resources and network bandwidth between devices

that typically goes unused. The system uses an adaptive replication algorithm, which

makes replication transparent to the user, even when complex replication strategies

are necessary. Results from a prototype deployment in a small community of users

show that PodBase can ensure the durability and availability of data stored on per­

sonal devices under a wide range of conditions with minimal user attention.

Our second system, SLStore, brings enterprise-level data protection to home office

and small business computing. It ensures that data can be recovered despite incidents

like accidental data deletion, data corruption resulting from software errors or security

breaches, or even catastrophic storage failure. However, unlike enterprise solutions,

SLStore does not require professional system administrators, expensive backup hard­

ware, or routine, manual actions on the part of the user. The system relies on storage

leases, which ensure that data cannot be overwritten for a pre-determined period,

and an adaptive storage management layer which automatically adapts the level of

backup to the storage available. We show that this system is both practical, reliable

and easy to manage, even in the presence of hardware and software faults.

Acknowledgments

I would like to thank all of those who contributed towards making this thesis possible.

First and foremost, I would like to thank my advisor, Peter Druschel, without whom

this would not have been possible. I would also like to thank the members of my

thesis committee for their valuable feedback. Finally, I would like to acknowledge

all of the people I have collaborated with in my graduate career. Specifically, in the

context of this thesis, I owe a debt to Petr Kuznetsov and Juan Navarro for their help

formalizing the problem of storage management.

On a personal level, I would like to thank my girlfriend, Alex Kimsey, for her

patience throughout the entire Ph.D. process, and my family for their support. I

would also like to thank all of the friends I made along the way, who made the whole

process more enjoyable. In particular, I would like to thank Marcus Perlman for

traveling to visit me every year, Alan Mislove for going through the whole process

with me, and Arjun V. Reddy for giving me a place to stay when visiting Houston

and submitting this thesis.

Abstract

Acknowledgments

List of Illustrations

List of Tables

Contents

1 Introduction

1.1 PodBase

1.2 SLStore

1.3 Contributions

1.4 Thesis Overview.

2 Related work

2.1 Storage Devices

2.1.1 Technology Overview .

2.1.2 Storage Device Deployments

2.2 File Systems

2.2.1 Local File Systems

2.2.2 Distributed File Systems

11

v

xii

XVll

1

2

5

7

8

9

9

10

13

14

14

16

2.2.3 Personal Device File Systems

2.3 Backup Systems

2.3.1 Individual Backup

2.3.2 Enterprise Backup

2.3.3 Archival Systems

2.4 Synchronization

2.5 Operations research techniques

2.6 Networking techniques 6 ••••

2.7 Extending storage device functionality

2.8 Contributions beyond related work

I PodBase

3 Feasibility

3.1 Trace Collection .

3.1.1 Limitations

3.2 Results: Feasibility

4 System Description

4.1 System Goals

4.1.1 Target environment .

4.1.2 Desired system behavior

..

vii

19

22

22

24

25

26

28

28

29

30

32

34

34

35

36

41

41

41

42

4.1.3 Definitions .

4.2 Design of PodBase

4.2.1 Overview .

4.2.2

4.2.3

4.2.4

User interaction .

Device interaction .

Plug-ins

4.2.5 Security

4.3 Replication . .

4.3.1 Greedy replication

4.3.2

4.3.3

Adaptive Replication

Adaptive Replication Formulation .

viii

44

47

47

49

50

54

56

56

57

59

63

5 Experimental evaluation 7 4

5.1 Implementation . 7 4

5.2 Controlled experiments

5.2.1 Computation and storage overhead

5.2.2

5.2.3

5.2.4

5.2.5

5.2.6

Pairwise transfer throughput .

Data restoration

Replication

Adaptivity .

Partial metadata reconciliation

5.3 User study methodology

75

75

77

78

78

79

79

80

IX

5.4 User study 1 81

5.4.1 Replication results 83

5.4.2 Availability 85

5.4.3 Replication latency and throughput . 85

5.4.4 File conflicts . 88

5.5 User Study 2 89

5.5.1 Replication results 91

5.5.2 Availability results 94

5.5.3 Replication latency and throughput . 95

5.5.4 File Workload . 97

5.6 Summary 99

II SLStore 100

6 System Description 102

6.1 System Overview 102

6.2 Storage leases . . 104

6.2.1 Motivation. 104

6.2.2 The storage lease abstraction 107

6.3 Implementing storage leases ... 114

6.3.1 Firmware implementation 114

6.3.2 Driver implementation .. 119

X

60303 Storage enclosure implementation 120

60304 Cloud storage implementation 120

60305 Applications of storage leases 121

604 Planner 123

6.401 Backup Policy 0 123

60402 Planning Process 124

605 Backup Agent 0 0 126

60501 Snapshots 126

60502 Determining which files have changed 0 127

60503 De-duplication 0 0 0 128

60504 Restoring a snapshot 128

60505 Snapshot verification and repair 129

7 Evaluation 132

701 Storage lease evaluation 132

701.1 SLStore evaluation 142

701.2 Implementation details 142

701.3 Methodology and traces 143

701.4 Backup evaluation 0 0 0 145

701.5 Simulated long-term results 150

702 Summary •••••• 0 0 • 0 •• 0 0 151

Xl

8 Conclusion 152

Bibliography 153

3.1

3.2

Illustrations

Number of devices connected by user. .

Amount of used and free space by user.

36

37

3.3 Amount of time before generated data can be replicated in trace. 39

4.1 Data flows through the system whenever connectivity occurs. (a)

·when the top two devices arc connected, they replicate files. (b)

Later, a new connection occurs, and data flows from the first node to

the third node through the second node. 48

4.2 A small device that periodicly connects to different devices has the

potential to act as "communications device" , transporting replicas

between devices that cannot directly connect or are connected via a

slow link.

4.3 Summary of system state and environment, which is used to generate

a linear programming problem. This is the input that is needed in

order to generate the initial planning step, which then generates a set

59

of linear programming problems. 70

4.4 Simplified snippet of LP program generated by example problem.

The objective function in this stage of the formulation is to minimize

the total cost, given that the durability and availability goals are

satisfied (the lines directly following Subject to). The next constraint

enforces that the data the files stored on a device in a step never

exceed the capacity of that device (the data being stored in each

storage set is capture by the variables starting with f. Each letter

following f is a device which the data is present on, and the following

number indicate what step, and what type (0 = durability, 1 =

availability)). Next, the variables which encode actions in the system

are shown, and they are related to the cost. Finally, the costs are

aggregated into the objective function. A variable above is always

indexed by first the devices that it is j could be stored on, then the

type of file (availability= I, durability= 0), and finally the step in the

output plan. Action variables (above copy) also include a target

device, in the case of the copy variables the step is omitted to shorten

Xlll

the variable names. 72

5.1 Replication over time for an example user 78

5.2 The number and type of devices present in the deployment, by

household 81

5.3 The amount of storage capacity and free space present on devices

before PodBase begins replication. Additional space corresponds to

the USB disks households 1 and 4 were given.

5.4 The initial (left bar) and final (right bar) replication status of

households 1,2,3,4,5

5.5 The initial (left bar) and final (right bar) replication status of

5.6

5.7

5.8

households 6,7,8,9,10

Peak daily throughput for each household

Replication latency for households 2,4,5,7,9 .

Replication latency for households 1,3,6,8,10

5.9 The number and type of devices present in the deployment, by

household

5.10 The amount of storage capacity and free space present on devices

before PodBase begins replication. Additional space corresponds to

the USB disks households 1, 4, and 5 were given.

5.11 The initial (left bar) and final (center bar) replication status of each

household. Final results for the greedy algorithm (right bar) are

shown for comparison.

5.12 Peak daily throughput for each household

5.13 Replication latency for households 1,2,4,7,9 .

5.14 Replication latency for households 3,5,6,8,10

XIV

82

83

83

86

86

87

89

90

91

95

96

97

6.1 A diagram showing 3 machines, each running one or more system

component, connected via a network. A disk with a clock indicates a

storage lease device, a disk without a clock indicates a conventional

disk. Also shown is a connection to a remote cloud storage provider

XV

that supports storage leases. 103

7.1 Normalized I/0 throughput (ops/sec) for synthetic workloads, with

different lease placements shown on the x axis. The cache

configuration is Unified (U), except for the inline (I) placement,

where lease values are cached inline (I). The results are normalized to

the throughput without leases. 137

7.2 Normalized I/0 throughput (opsjsec) for trace workloads, with

different lease placements shown on the x axis. The cache

configuration is Unified (U), except for the inline (I) placement,

where lease values are cached inline (I). The results are normalized to

the throughput without leases. 137

7.3 Normalized I/0 throughput (opsjsec) for synthetic workloads, with

different cache configurations shown on the x axis. The total cache

size is 16MB in all cases, and the lease value placement is 816. The

results are normalized to the throughput without leases. 139

7.4 Normalized I/0 throughput (opsjsec) for trace workloads, with

different cache configurations shown on the x axis. The total cache

size is 16MB in all cases, and the lease value placement is 816. The

results are normalized to the throughput without leases.

7.5 Average per-operation I/0 response time for the trace workloads.

The traces were replayed with the recorded operation inter-arrival

times (think times), and the per-operation response times measured.

The placement is 816 and the cache configuration is unified. The

results are normalized to the average per-operation response time

without leases.

7.6 Normalized throughput (I/0 ops/sec) for combined trace and mock

backup workload with lease, with different bateh sizes shown on the x

axis. Crypto processor with 325 MB/s hash throughput, R8A latency

8.4ms. Unified 16MB cache, placement 816.

7.7 Pereentage overhead in a variety of home offices

7.8 Absolute Overhead in a variety of home offices.

7.9 Effectiveness of de-duplication

XVl

139

140

142

148

148

149

7.10 Minimum settings required for initial capacity and rate, assuming no

deduplication. 151

Tables

5.1 Transfer throughput for different connection types 77

6.1 Storage lease device interface. Additionally, the device supports

normal read and write operations. However, write operations to a

block with an active lease fail.

6.2 Replication policies in order from strongest to weakest. The planner

chooses the strongest feasible policy from this table, and then chooses

6.3

7.1

7.2

7.3

the best feasible snapshot schedule from Table 6.3.

Snapshot schedules, ordered from weakest to strongest.

Workloads used in evaluation

Placements of lease values

Lease cache policies

130

131

131

134

135

135

1

Chapter 1

Introduction

To make storage management transparent to users, enterprises rely on expensive

storage infrastructure, such as high end storage appliances, tape robots, and offsite

storage facilities, maintained by full-time professional system administrators. From

the user's perspective access to data is seamless regardless of location, backup requires

no periodic, manual action by the user, and help is available to recover from storage

problems. The equipment and administrators protect users from the loss of data due

to failures, such as device crashes, user errors, or virii, as well as being inconvenienced

by the unavailability of critical files.

Home users and small businesses must manage increasing amounts of important

data distributed among an increasing number of storage devices. At the same time,

in these environments, due to cost constraints, expert system administration and

specialized backup hardware are rarely available to manage this data. Users must

make do with error-prone, manual, and time-consuming ad hoc solutions, such as

periodically copying data to an external hard drive. Non-technical users are likely to

make management mistakes, which could result in the loss of critical data, such as a

tax return, customer database, or an irreplaceable digital photograph.

In this thesis, we show how to provide transparent storage management for home

2

and small business users. We introduce two new systems: The first, PodBase, trans­

parently ensures availability and durability for mobile, personal devices that are

mostly disconnected. The second, SLStore, provides enterprise-level data safety (e.g.

protection from user error, software faults, or virus infection) without requiring ex­

pert administration or expensive hardware. Experimental results show that both

systems are feasible, perform well, require minimal user attention, and do not depend

on expert administration during disaster-free operation.

1.1 PodBase

Many households use multiple personal electronic devices, such as mobile phones,

digital cameras, MP3 players, and gaming devices, in addition to desktop and note­

book computers. As the number of devices in a single household increases, the task

of managing data stored on these devices becomes an increasing burden on the user.

We identify two aspects of home storage management that we believe are particularly

problematic and time consuming for users: ensuring durability of data, and ensuring

the availability of data.

Ensuring durability requires that the loss or failure of a device does not result in

the loss of any of the user's data. For even a single home computer, ensuring that

data is durable is an onerous task, and the situation is getting worse as the number

and diversity of devices increase. A user must keep track of all devices that need

to be backed up and perform the appropriate actions on a regular basis. Anecdotal

3

evidence suggests that many users fail to ensure the durability of their data [62, 76].

Thus, users face the risk of data loss, just as their dependence on digital information

is increasing.

Ensuring availability of data on all of the devices where it may be needed is

equally difficult. A user must regularly connect and synchronize devices to ensure,

for instance, that changes to her address book are propagated to all communication

devices, and that additions to her music library eventually are present on all devices

capable of playing music. Achieving this goal manually requires foresight on the part

of the user, as they must anticipate which files will be needed where, and replicate

files accordingly.

With enough time and effort, a user could perform manual actions that solve all of

the above problems. She could manually backup data to offline media and copy data

to where it should be available. However, any one of these tasks can be laborious to

accomplish, not to mention all of them. Performing these tasks correctly, regularly

and in a timely manner is difficult today, and it will become increasingly difficult as

users accumulate more data and devices.

Home users need tools to help manage the burden of storage management. Ideally,

these tools would transparently provide durability of a user's data without any explicit

action on the part of the user. As long as a user provides enough storage then their

data should be durable. Likewise, the free space on each device should be managed

so that data is available on the devices where it is likely to be used.

4

Existing storage management tools only partially address these problems, or are

only applicable to particular devices and operating systems. For example, many

portable devices come with vendor provided software that syncs specific file types with

that particular device. Others require that the user run a specific operating system

(e.g., Apple's Time Machine [110]) or require the user to install a non-standard file

system on their storage devices (e.g. Ensemblue [77]).

Existing solutions also require expertise and attention on the part of the user.

For example, a user might have to set up a dedicated server, and then configure his

devices to periodically execute a task that syncs or backs up their files. Setting up

such a system takes significant effort on the part of the user, even if they possess the

knowledge to do so.

As such, there is a gap between the services a user would like to have, and those

that current tools provide. In order to bridge this gap, we built PodBase. PodBase

automatically manages a user's data on existing personal devices in an automatic,

decentralized, transparent, device- and operating system-independent manner. The

system takes advantage of unused storage space and exploits incidental pairwise con­

nectivity that naturally occurs among the devices, e.g., via Wi-fi, Bluetooth, or USB.

PodBase uses a linear program driven planning engine, in order to replicate data

through multiple disconnected devices without user intervention.

5

1.2 SLStore

Enterprise data management policies are designed to protect data from a variety of

threats. Users may accidentally delete or overwrite critical data. Bugs in device

drivers, operating system or applications may cause data to be corrupted or deleted.

Hardware faults may leave storage devices unable to read part or the entirety of the

information they store. Computers may be infected with a virus or attacked by an

adversary, potentially resulting in the corruption or loss of data and programs stored

on a disk. Finally, a catastrophic event like a fire or an earthquake could wipe out an

entire site.

Enterprises guard again these threats by employing a dedicated, professional, ad­

ministrative staff who use a combination of redundant storage techniques. Daily

snapshots, incremental backups, periodic full backups, off-line and off-site backup

storage are typically used in an enterprise environment to protect data. Such a com­

prehensive data protection strategy requires expertise to plan, and significant human

resources and expensive equipment to execute.

Unfortunately, small businesses and home users often cannot afford the required

expertise, human resources or equipment. Instead, these classes of users must re­

sort to simpler solutions with serious shortcomings. These shortcomings may be a

vulnerability to software faults or users error. Or it may be the requirement that

the user diligently perform periodic manual actions (such as burning DVD's or ro­

tating tapes), outside of their normal job, which are likely to be forgotten. These

6

limitations hamper data protection, just as the dependence of individuals and small

businesses on digital information increases. It is essential to find automated solutions

to the problem of data protection for individuals and organizations that cannot af­

ford a professionally-managed solution, but that are nonetheless vulnerable to data

loss. Many home office users and small businesses depends on irreplaceable digital

information such as tax data or customer databases.

In order to address this problem, we built SLStore, a storage system for homes and

small business environments, which offers data protection comparable to an enterprise

IT infrastructure without requiring expert systems administration, significant human

resources or expensive equipment.

A key technical contribution that lies at the core of SLStore's design is the concept

of storage leases. While the concept of storage leases can be implemented by a variety

of storage services, we focus on a particular storage device based implementation. A

storage lease device is a storage device that protects data from accidental deletion and

corruption for a pre-determined period of time, similar to an off-line storage device

but without requiring mechanical action. Storage lease devices can be implemented

by extending today's disk firmware, and are backward compatible so that a portion

of the storage device can be used for normal data and another portion can be used

for backups.

Given a set of devices that provide storage leases, SLStore still needs to implement

a full data management solution in order to be useful. In particular, SLStore needs

7

to determine how to use the available storage resources to optimally safeguard data,

while adapting to changes in the available resources and workload patterns. SLStore

uses optimization techniques to determine and execute a data protection policy while

requiring no expert and minimal user attention. Our approach also incorporates the

use of cloud storage to protect data from catastrophic site failures. We show that

SLStore is practical, reliable and easy to manage, even in the presence of hardware

and software faults.

1.3 Contributions

In addition to building and evaluating the two systems, we made the following tech­

nical contributions.

• We formulate the problem of home storage management as a linear programming

problem, including formalizing the concepts of availability and durability such

that they can be directly optimized in for in the linear program. This allows

replication strategies to be automatically derived instead of hand coded.

• We introduce a partial metadata replication protocol that allows eventual con­

vergence of system metadata even in the presence of extremely space-constrained

devices, which can not hold the full system metadata.

• We propose a new storage abstraction known as storage leases, which allow data

to be protected for a specified period of time, even in the presence of operator

8

error, security compromises, and most software faults.

• We formulate the problem of determining a backup strategy as a linear pro­

gramming problem, and produce a long-term backup policy based on available

storage, and both current and predicted future storage requirements.

1.4 Thesis Overview

The rest of this thesis is structured as follows. Related work and background are

discussed in Chapter 2. The body of the thesis is split into two main parts, each

covering one of the two systems. In Part I, we present a feasibility study(Chapter 3),

the design and implementation(Chapter 4), as well as the evaluation(Chapter 5) of

PodBase. Similarly, In Part II, we present a design(Chapter 6), as well as an evalua­

tion(Chapter 7) for SLStore. Finally, Chapter 8 presents concluding remarks.

9

Chapter 2

Related work

In this section we provide the basic background and related work required to put

the research contained in this thesis in context. We begin by looking at the basic

building block of storage, storage devices. We then look at the basic way in which

data is managed, by storing it in a file system. Then, we discuss management tools

and techniques which are built at a higher level on top of the file system. Finally,

we enumerate the key contributions of the work of this thesis as compared to all

previously discussed related work.

2.1 Storage Devices

Storage devices started out as expensive permanent storage for mainframe computers.

Following the general trend in computing these expensive devices eventually became

commoditized, the technologies improved, and these devices have made it in to the

low end of the market. Now a flash chip that can hold many orders of magnitude more

data than the first storage devices can be purchased for less than 20 dollars, and can

be attached to a key ring. In this section, we will give a brief overview of how storage

devices have evolved over time, and where the state of the art is currently. This will

help motivate both the need for the work in this thesis, as well as set up trends and

10

ideas that will be used in the designs of the systems presented. The technologies

discussed in this section is not meant to be an exhaustive list, rather it is meant to

discuss the main storage technologies currently in use.

2.1.1 Technology Overview

Tape Storage

An early means of storing data was on magnetic tape [57, 58, 98]. Since then, tape

has fallen out of favor as a primary storage media and has been replaced by other

technologies which have better random access behavior. Tape still remains widely use

as archival media, as it is a high capacity, convenient media for offline storage [13].

Tapes are also portable, and are often shipped to an offsite location that can serve as

a backup in case of a catastrophic failure.

Hard disks

Rotational magnetic media was introduced [17] as a media that had better random

access performance. Since then rotation media has served as the dominant form of

secondary storage for many years. The price of disks has decreased and the capacities

have increased. Currently, these are the most commonly deployed storage device, in

both the home and the enterprise.

Commodity hard drives can be together to form an array of drives, known as

RAID [18, 38, 75] arrays, which can be optimized for either reliability or performance.

11

RAID is an approach that makes multiple disks appear as a single device. RAID

arrays can be configured in multiple ways that alter the cost/reliability /performance

tradeoffs. In the simplest case, data is written to two underlying disks (known as

mirroring), such that the failure of either disk does not result in the loss of data.

More complicated RAID configurations improve performance through striping [19],

allow the failure of more than one disk, or reduce the amount of data duplication

using data coding techniques.

Flash Storage

In recent years, disks have become small enough to put inside of portable devices such

as music players and portable hard drives. However, for some purposes the traditional

rotational magnetic drives have been replace by flash storage. Flash storage is smaller

than traditional disks, has no moving parts and is more power efficient than disk. For

these reasons, many common portable devices such as cell phones, cameras, and

portable video game systems use flash storage. Today, some laptops are beginning

to be equipped with flash storage, but these are more expensive than a comparable

standard disk based system. These laptops however, enjoy advantages in weight,

performance, and power consumption.

Write Once Storage

Write once storage is storage where once data has been written it is impossible to

delete or modify. The most prevalent write once storage is optical media, such as CD's

12

or DVD's. Optical media are burned once and then can never be modified. Optical

media is often cheap, and has high capacity for its size. It requires manual loading of

disks into the system, and thus is not often useful for data that exceeds the capacity

of a single disk. Currently commodity optical media lags well behind magnetic media

in terms of total storage capacity. Write once storage has good durability properties

in that it can not be overwritten or deleted. Thus, data is not vulnerable to security

breaches, virii, or software faults after is has been written.

Virtual write once storage implemented in software is offered by major storage

vendors [42]. This storage is used in applications where regulatory compliance requires

data to be stored in a verifiable tamper proof way. These solutions are proprietary

and are based upon rewritable magnetic storage. The implementation of write-once

is most likely done in software in the storage appliance sold by the company for this

purpose. As a consequence if there is a bug, or a security vulnerability in this code

base, the write once property can be compromised.

Storage Networks

A storage area network (SAN) [37, 108] is a collection of storage devices that have been

networked together. On top of this collection of storage, a normal file system is run,

and the storage looks exactly as a local storage device. SAN are generally deployed

in clusters or data centers, as it eases the management of storage. Individual storage

devices do not have to be moved around, each server requires only a connection to

13

the SAN. At this point it is all of the storage devices in the SAN are accessible with

a block level interface, file systems at the client can then write to blocks located on

any storage device. The mapping of clients to storage devices can be configured by

the administrators of the system, or be done dynamically in software.

Network attached storage allows a client computing device to interact with remote

storage devices. Normally it is clear to the client that it is remote device, and a

network file system such as NFS is run to interact with the storage. Network attached

storage generally provides both the storage and file system while a SAN is generally a

block level interface. Often storage appliances deployed in SANs (e.g. [44]) implement

advanced features such as snapshotting, and RAID.

2.1.2 Storage Device Deployments

The types of storage technology deployed today are dependent upon the user. En­

terprises often deploy a variety of different, and more expensive technologies in order

to get better performance, and reliability. Home users often have collections of com­

modity devices, which are cheap and less reliable. Small businesses fall in between,

but rely more strongly on commodity devices than do enterprises.

\Vhile in this section we focused on different broad technologies and use cases, in

the following sections we will discuss related work more closely and compare both of

our systems to previous work in the field of storage.

14

2.2 File Systems

A file system provides the user with a view of their data organized so that it can

be retrieved later. As such, we first discuss different file system designs, beginning

with vanilla local file system, and moving towards those that more directly deal with

the problem of management such as distributed file system, and file systems custom

designed for personal devices.

2.2.1 Local File Systems

File systems provide a metaphor by which a piece of data is stored in a file, and

groups of files are stored in directories. Directories, can also include other directories

allowing a user to impose a hierarchical structure on their data.

A local file system [15, 43, 63, 71, 125] provides a mapping of the logical units of

files and directories on to the basic block interface that storage devices export. The

main work in local file systems has gone in two directions, the first is optimizing the

data structures used in the file system to improve performance, and the second is

to augmenting the file system with additional features, such as copy-on-write snap­

shots, or extensible file metadata. The most common file systems deployed today are

HFS+ [43], NTFS [71], ext3 [15], and ZFS [125]. These are the default file systems

shipped with the most popular operating systems. ZFS has gone the furthest towards

adding manageability and reliability to the file system. It includes per block hashes,

and. allows mirroring and. snapshots at the file system level. Below we discuss a few

15

research file system which have added additional features for the purpose of improving

reliability or management.

Envy [5] is a system that protects users from file system bugs. It does this by

implementing three separate file systems in parallel on top of a general block store

interface. It uses majority voting when the results returned by each of the file !:iystcms

disagree. In order to he space efficient, it stores multiple copies of file system metadata

but not data blocks. Envy reduces the trust required of the file system by using

redundancy. Envy still resides inside of a normal, insecure system and is thus subject

to any attack that compromises the host operating system.

The Elephant File System [97] is a file system that keeps old versions of files

for possible retrieval by the user. This allows the user to recover from software

failures which might accidently delete data or from human error. In order to be

practical Elephant keeps only as many versions of data as is possible within the

storage constraints. In order to do this Elephant uses a user-defined retention policy.

Venti [81] is a centralized storage system that implements a write-once read only

interface. In Venti all data is written once to the underlying storage and from that

point can no longer be modified. Venti is intended to be run on top of a RAID group

in order to prevent the failure of a storage device resulting in the loss of data. Since

the data in Venti can not be overwritten and is resilient to the failure of physical

devices it is well suited for reliably backing up data. In its intended deployment,

Venti included support for daily snapshots of data written to it which could then be

16

offioaded to archival media such as CD /DVD or magnetic tape. Venti assumes that

the amount of storage provided is enough so that the underlying storage will never fill

completely. It is unclear whether Venti, would be cost effective for a home or small

business, given that storage can never be reclaimed.

Self Securing Storage (S4) [104] implements the abstraction of a storage device

that should be used by systems that want to detect and recover from network based

intrusions. S4 provides an NFS like interface that the keeps a complete record of writes

to blocks on the device for a specified period of time. While targeted towards network

intrusions, the interface provided by S4 is sufficient to build other applications.

2.2.2 Distributed File Systems

A distributed file system allows a centralized logical view of all data, which eases

management for the user. The data in the file system may be accessed by multiple

client devices, and distributed across one or more storage nodes. In this section we

discuss the proposals for general distributed file systems.

In a client-server distributed file system, the client is connected to a server and

issues a request to the server to perform operations on a particular file. An example

of such a traditional distributed file system is the Network File System [96] (NFS).

In NFS, all requests go to the server, and when the server is not available, then the

client does not have access to the files.

The Low Bandwidth File System (LBFS) [67] is designed for situations where

17

clients connect to the server over low bandwidth connections. It is based on the

traditional NFS protocol, but includes modifications for more aggressive caching. It

also leverages the redundancy of data that is shared between different files. If two files

share a common chunk of data, this chunk can be cached and used whenever either

file is read by the client. While LBFS uses aggressive caching, it is not designed for

disconnected operation.

The file system included in the Locus distributed operating system [116], allowed

files to be replicated on a per-file basis, and stored on any number of physical devices.

This capability was used to allow flexibility in the placement of files. Since some

physical devices may be offline when a file is updated, a version vector is used on a

per file basis to keep a hi:;tory of modifications.

The Andrew File System [45, 52] caches data locally at the client to minimize the

amount of communication necessary with the file server. In case of disconnection or

disk failure this provides additional availability of the users data. If the server fails,

the data in the cache may be recovered, preventing a disk failure from causing the

loss of all data.

Up to this point, the distributed file system have expected clients being able to

reach the server as the common case. However, some distributed file systems, e.g.,

[56, 79, 109] were specifically designed for disconnected operation as the common case.

For these systems to function correctly, data must be available on nodes that wish

to manipulate it offline, and there must exist mechanisms to prevent two users from

18

making conflicting disconnected edits, or to handle them when they do occur. We

will discuss these file systems next.

Bayou [109] is a file system that allows clients to read and write any data objects

that are locally cached. Bayou is not meant to be a general purpose file system, it is

meant to be used by applications that are aware of the weakly consistent semantics

that it provides, and which are capable of reconciling data that has been edited in a

conflicting manner.

Coda [56], is a distributed file system that allows clients to hoard data locally to

make files more available. This capability is used for both performance and to allow

disconnected access. Disconnected operations are logged, and this log is replayed

when a client is in contact with a server. When a conflict has occurred then the

replay is aborted, and it is left to the user to resolve the conflict. In [56], the authors

showed that conflicting edits were rare in a trace of users who were also developers

of Coda.

The Ficus [79, 83] file system uses replication of data across many devices to

improve the scalability, performance, and availability of data access for users. The

main problem it solves is propagating updates, possibly conflicting, to files, which

were made during periods of disconnection. Although data is replicated across many

machines, it is not explicitly used for durability, and the optimistic semantics of the

file system provide no guarantees about the consistency of replicas.

Farsite [3,10,11,26] attempted to build a large scale enterprise file system from the

19

unused resources available in workstations. In order to do this, they had to develop

techniques which allowed the use of untrusted and unreliable nodes in the system.

WinFS [122] is an unreleased file system for the Windows operating system.

WinFS allows concurrent writes to shared files on different (possibly offline) com­

puters and attempts to reconcile the resulting versions [70]. WinFS uses epidemic

techniques to propagate rnctadata about replicated files.

Up to this point, none of the file systems discussed were specifically designed for

personal electronic devices. Distributed file systems have been tailored to allow the

participation of constrained personal electronic devices [51, 77, 80, 95, 100, 101, 126],

and these are discussed in detail next.

2.2.3 Personal Device File Systems

Personal device file systems are meant to be run by a collection of devices, including

some of which are portable special purpose devices. These special purpose devices

include things like MP3 players, flash drives, and smart phones. These devices could

be used by either horne or business users. Some of the systems below are general,

while some are more targeted towards the horne environment.

Ensernblue [77] allows devices with limited capabilities to participate in a more

general distributed file system. It uses cache coherence techniques to notify clients

when a replica has changed. Ensernblue allows the specification of triggers, which can

cause a particular action to be executed when a file of certain type is added to the

20

system. For example, if a new music file is added to the file system, it can be copied

to an MP3 player automatically.

The Few File system [80] is a distributed file system designed to support offline

collaboration between a group of users. These users may make their edits on differ­

ent types of devices, and the connectivity of these devices may be limited. Files are

divided into containers, where a container represents a group of files pertaining to a

project. Whenever edits are made to a file, the update is propagated to all reachable

devices via a pro-active event propagation mechanism. Events that can not be prop­

agated via this mechanism, are spread epidemically whenever pair-wise connectivity

exists. In addition, to the mechanism by which edits are propagated, the authors a

new method of reconciliation based on operational transformation [8, 80]

Segank [101] is a file system that is designed for devices with heterogeneous con­

nectivity abilities. It optimizes the placement of data so that each node will have

access to fresh data, and so it is possible to consistently share data across users.

It does this by utilizing a multicast primitive for locating data, and a lazy peer-to­

peer mechanism for invalidation messages. The system can cope with completely

disconnected operation, but is targeted towards an environment where all nodes have

network connectivity so that users always have a consistent view of the file system.

PersonalRAID [100] is a system where the user carries a portable storage device

between all of the disconnected devices that they have. The portable device acts as

a conduit by which updates to the filesystem are propagated between disconnected

21

devices, and by which replicas may be transported. Using this mechanism provides

devices a view of the same filesystem, and allows recovery from a limited number of

failures. When using a machine that is running the PersonalRAID file system, the

portable storage device should be connected while using the system (the system has

mechanisms to cope when it is not, but this usage mode is considered exceptional).

Perspective [92~95] is a storage system that is designed for the home environment.

It departs from the standard file system concepts such as files and directories and is

instead based on a semantic store of a collection of objects. Each device specifies

a view over the semantic store, which determines what objects are stored at each

device. Whenever a new object is introduced, it is propagated to devices that have a

view that contains that object. In addition to proposing a new basis for organizing

data, the members of this project have performed several user surveys which capture

the home user's experience with their storage devices [91, 92]

The Roma system [107] provides a shared metadata service for user data. While

not a file system, Roma can be used to build higher-level services that provide syn­

chronization, consistency and increased availability. In theory, the metadata service

could be used as a building block for a more general personal device file system.

Roma relies on a centralized metadata server, which represents a possible single point

of failure.

22

2.3 Backup Systems

In this section, we look at systems that target the problem of ensuring the durability

of user data through backup. These systems are built on top of the file system layer,

and often run as user level applications.

2.3.1 Individual Backup

Commercial remote backup systems [16, 47, 48, 65, 102, 123] allow the user to upload

their data to a commercial server, or group of servers, where it is stored on their

behalf. These services provide client software that uploads files to the service, and

allows the restoration of data from failed devices. These services require the user

to pay a monthly subscription fee. Many of these services provide the user some

additional functionality, such as remote access to backed up data via the web, or the

ability to share photos that are stored on their servers. Cumulus [114] is a system

that uses general purpose cloud storage [88] as the data store for backup. Instead

of relying on existing cloud backup services it uses its own specialized backup data

structures, which are stored in the cloud. In this thesis, we will leverage cloud services,

to increase the safety of data.

Pastiche [21] removes the reliance on a commercial service by providing cooper­

ative backup to other user's machines over a wide area peer-to-peer network. Pas­

tiche automatically copies data to other machines in the network, and minimizes the

amount of data that must be copied by leveraging overlapping data present on the

23

participating devices. In Pastiche, the other nodes are not trusted to retain data,

so the system must periodically check to make sure backups are being stored. The

authors developed an additional system, [22] in order to enforce fair sharing of storage

resources.

Friendstore [111] allows users to form a backup network among a group of users

who are mutually trusting. They use this network to store two additional copies of

each piece of data. Friendstore does not protect the user from bugs or malicious

code deleting data. Friendstore does not vary the backup policy depending on the

amount of data to be stored, or the available capacity in the system. In contrast to

Friendstore, PodBase and SLStore do this automatically.

Time Machine [110] is an automatic backup utility included in Apple's OS X

10.5 operating system. It allows all Apple machines in a household to automatically

backup to a single disk over the network. Windows 7 includes a basic backup and

restore utility [119] that allows the user to backup their data to a secondary storage

device. Windows Home Server [120] includes more advanced functionality that allows

a single computer with potentially several hard drives to act as a home storage server.

All machines can be configured to back up to the server. Additionally, users can access

data that is explicitly shared via this server remotely. As part of the operating system,

these systems can be compromised by user mistakes, virii, or bugs in the operating

system.

Drobo [27] is a network attached storage server targeted to the home user. It is

24

meant to provide the user with a single device, which contains multiple disks, where

all of their data is stored in a fault tolerant way. It allows the flexible addition of

additional storage, and redundantly stores the users files across the different storage

devices contained within it.

2.3.2 Enterprise Backup

In an enterprise, data protection is a core IT task. To minimize chances of data loss

or implement legally mandated data retention policies, a combination of techniques

are employed. Often enterprises use a tiered storage model where data is stored on

backup servers, and then eventually moved to offiine tape after a certain period of

time. Servers often use some form of RAID configuration [75], and on-line snapshoting

(e.g., NetApp WAFL [44], Sun's ZFS [125], or Windows VSS [115]). Off-line copies

of the snapshot data are then created by copying the data onto tapes, and archived

manually or using a tape robot. Lastly, tapes or disks are transported periodically to a

safe location to create off-site copies. However, this professionally managed, expensive

tiered system of backups is not practical for home and small business users.

Most large storage companies sell desktop backup clients which are intended to

be used with that company's storage infrastructure. For example, storage compa­

nies such as EMC [30], NetApp [68], Sun [106], and HP [46] sell a variety of backup

products that are compatible with their storage appliances, as well as offering offsite

backup for corporate customers. These solutions attempt to minimize the adminis-

25

trative burden of keeping data backed up for a company with a large number of client

machines. These solutions are expensive and out of reach for most homes or small

businesses.

In addition to proprietary enterprise solutions there exist free open source alter­

natives that allow the setup of a backup server to which all clients back data up

to, e.g. [4, 41, 127]. These solutions often include features that rival the proprietary

solutions, but are less well supported and more complex to set up and administer. Sig­

nificant expertise is required for setting up, configuring, and adequately provisioning

such a system.

2.3.3 Archival Systems

While backup is concerned with the ability to recover from a failure, archival is

concerned with the long term integrity of data. These two concerns are related, but

some systems focus on the latter problem rather than the former.

NetApp's SnapVault [42] allows the creation of compliance volumes which allow

data to be retained for a specified time period for regulatory compliance. It comes in

two types, one which only allows deletion of entire volumes after a specified period

of time, or one that allows deletion of files after a specified period of time. These

features are implemented as part of NetApp's file server OS.

The LOCKSS [60, 61] project aims to preserve digital data stored in libraries by

creating and maintaining replicas across different sites. The goal of the LOCKSS

26

project is to prevent the corruption of replicas over a long period of time using active

maintenance and checking of replicas. LOCKSS, is targeted at a different environment

then either of the systems in this thesis.

2.4 Synchronization

Synchronization tools attempt to ensure availability of data, and reconcile data stored

on two or more devices. Synchronization systems can be divided into three different

types, the first is general synchronization, the second is device or data type specific,

and the final is replication frameworks on which synchronization can be implemented.

General synchronization tools, e.g. Unison [78, 113] or rsync [112], synchronize

directories stored on different storage devices. Unison attempts to reconcile replicas

that have diverged due to concurrent edits, which is orthogonal to the problem of

availability addressed in this work.

There are commercial services (e.g. [28, 105]) that provide synchronization of per­

sonal data at a remote server. Like the remote backup services already discussed, a

user's data is stored on a remote cluster of machines, and a small piece of software

running on clients synchronizes files in specially designated directories. Apple's Mo­

bileMe [64] provides a small amount of storage that appears as a network drive on all

of the user's machines running Apple's operating system. In addition, it allows the

storing and sharing of photos and movies, as well as automatic synchronization of a

user's contact and calendars. Microsoft operates a competing service [99], which gives

27

users access to a fixed amount of Internet accessible storage, as well as the ability to

share files that are in a special folder. Windows Live Sync [121] and Live Mesh [59]

allow users to sync folders across their machines.

There are many software packages [49, 72, 128] that manage and synchronize par­

ticular data types with specific devices. For example, iTunes [49] manages a users

music library and synchronizes connected devices, such as iPods, with that music

library. PDAs are bundled with software [72] that will synchronize particular content

such as calendar entries, and contacts with the users desktop machines. Groove [40]

provides a collaborative workspace for office documents that propagates file edits

automatically among a group of users.

Finally, there is a class of systems which allow custom replication strategies to

be specified. On top of this, synchronization can be implemented. Cimbiosys [82],

is a system that provides selective replication of data between a set of disconnected

devices. It allows each device in the system to define a filter, which specifies they data

that it would like to receive. Applications are then built on top of this system that

perform higher level functionality such as synchronization. Cimbiosys places con­

straints on connection patterns, ruling out the use of certain replication topologies.

PRACTI [7] provides a framework for partial replication in large scale distributed sys­

tems. On top of this framework different replication algorithms can be implemented.

Oasis [87] is an SQL-based data management system for pervasive computing appli­

cations, which can then be used as a building block for specifying replication policies.

28

The authors of [103] propose an approach called device transparency. Device

transparency means that a unified view of all personal data is presented to the user.

In order to achieve this they propagate metadata to all devices in they system. On

top of this base, they include a design for rules which control data propagation.

2.5 Operations research techniques

In both systems presented in this thesis, we use operations research techniques,

namely linear programming, to formulate storage management problems. This general

approach his been proposed in other contexts, but not to the application presented

in this thesis.

Keeton et al. [53] advocate the use of operations research techniques in the design

and implementation of systems. Both systems in this thesis take this approach and use

linear optimization to adapt to their environment. Other examples of this approach

include: Rhizoma [124] and Sophia [117], which use logic programming to optimize

cloud computing and network testbed environments, respectively. Conductor [118] is

a recently proposed system that use linear optimization to optimize cloud computing

based map-reduce computations in a competitive market.

2.6 Networking techniques

While the primary focus of this thesis is storage, the design of the systems, particularly

PodBase, required an implementing an underlying networking layer. In this section

29

we describe networking related work.

The Unmanaged Internet Architecture [33-35] (UIA) provides a naming and rout­

ing service for personal electronic devices. It requires no configuration and allows rich

sharing semantics between users. PodBase addresses the complementary problem of

data management for personal devices. UIA could be used by PodBase to provide

naming and connectivity among a household's devices regardless of their present lo-

cation.

In PodBase, replicas and metadata propagate through the network of devices in

an epidemic manner [24]. Unlike epidemic multicast algorithms (e.g. [9]), PodBase is

not trying to deliver the replicated data to a specific subset of the devices: since our

primary goal is durability, it is often sufficient to create replicas of each data item on

a specific number of devices.

Since PodBase shares data among a set of intermittently connected devices, it

implements a form of delay tolerant network (DTN) [25, 31, 50]. PodBase can be

viewed as a data management application on top of a specialized DTN.

2. 7 Extending storage device functionality

Storage leases are an enhancement to storage device functionality. There are other

projects that have looked into extending the functionality of disk drives. In particular,

self-encrypting hard disks [1] protect data from being accidentally leaked when a

device is lost or stolen by encrypting data before it is stored. Active disks [2, 84, 85]

30

and IDISKs [54] allow application-specific functionality to be executed on storage

devices. The goals and the type of functionality these projects are adding to storage

devices differ from those of storage leases.

2.8 Contributions beyond related work

We now discuss the contributions of the two systems presented in this thesis beyond

the existing related work.

PodBase differs from related work, in that it provides a comprehensive, transpar­

ent, and autonomous solution for home storage management. PodBase is built upon

a novel adaptive replication algorithm, which successfully replicates data in arbitrary

scenarios, even those it was not explicitly designed for. Unlike other proposals, such

as distributed file systems, backup, and synchronization, PodBase addresses both

availability and durability. Additionally, PodBase does not require changes to the

operating system or file system, and operates completely transparently to the user.

SLStore provides a comprehensive and autonomous backup system for small busi­

ness and home office users. It makes use of similar linear programming planning

techniques as PodBase in forder to select a backup strategy automatically based on

the current resources, storage configuration, and workload. It is based on a novel

abstraction known as storage leases, which allow data to be reliably stored even in

the presence of software faults or user error.

Storage leases are the building block that allows SLStore to provide enterprise

31

class storage management. Storage leases protect data from operator error, security

breaches and most software errors. Storage leases provide flexibility in reuse than

existing off-line or write once media, and are more general than previously proposed

systems, e.g., [104]. The design for storage leases includes facilities for securely em­

bedding storage lease devices in untrusted environments, and still having guarantees

about stored data.

32

Part I

PodBase

33

In this part, we describe and evaluate PodBase. We begin by presenting a fea­

sibility study that was conducted before PodBase was built, which motivates the

design of PodBase. We then present the design of the system. Finally, we present

the evaluation of the system.

34

Chapter 3

Feasibility

In this section, we explore whether the goal of automatic storage management is fea­

sible, given the set of devices, available storage, rate of data generation and frequency

of device connections that occur in a given household. We focus on whether there are

sufficient resources in terms of number of devices, connectivity and free storage space

for the users to achieve the most basic goal of a management system: durability of

data against the loss of any one device.

3.1 Trace Collection

In order to study the feasibility of building a system on top of a user's spare resources,

we need data about the intended deployment environment. Unfortunately, there is

little available data on the disk usage of personal devices such as desktops, notebooks

and PDAs. Moreover, in addition to disk usage, our analysis also requires information

about the frequency, duration, and bandwidth of connections between devices.

Since such data is not readily available, we gathered a trace by deploying a data

collection program on the devices of a small group of participating users for approx­

imately two months. During this time period, each machine reported all storage

devices that were attached either directly or via USB. For each device, we recorded

35

the used storage, free space and total capacity at one minute intervals. We also pe­

riodically crawled the file system of each storage device to discover which files were

stored and how often files were added, deleted, and modified in the file system. Addi­

tionally, we collected information about what type of network each computing device

was connected to. The measurements were taken between August 18, 2007 and Oc­

tober 18, 2007 and included 11 households with 23 computing devices and 48 storage

devices. There were 1,568,773 samples taken, and 971 disk crawls performed during

this period.

3.1.1 Limitations

Ideally, we would like to have collected a trace from a large and diverse user commu­

nity over a long period of time. However, logistical and privacy issues make this a

difficult undertaking. We instead relied on the generou<> support of a small commu­

nity of volunteers, namely the members of our research group and their friends and

family.

In our group, at least one member of each household was a computer science re­

searcher. Thus, there is a likely bias towards users who have an interest in technology

and tend to surround themselves with electronic devices. They may also be more

likely to accumulate a large amount of data. In the absence of better data, we be­

lieve that our trace data nevertheless gives a useful indication of the feasibility of our

approach.

36

3.2 Results: Feasibility

10
en
Cl)
(.) 8 ·s:
Cl)

Q 6
0 ... 4 Cl)
.a
E 2
::::::s

z
0

1 2 3 4 5 6 7 8 9 10 11

Household Number

Figure 3.1 : Number of devices connected by user.

In order to build a distributed storage system, a user must have at least two devices

capable of storing data. Figure 3.1 shows how many computing devices (desktop

or notebook computers) and how many storage devices (hard drives, MP3 players,

memory sticks) were present in each household during our trace collection. The

results show that there are many households with more than one computer. Also,

rnost households have additional storage devices beyond a single internal hard drive

per computer. This shows that many households could benefit from automatic storage

management.

Figure 3.2 shows the amount of free storage space in each household. Some house-

holds have significant amounts of free space, others have very little. In particular,

household 3 has over 70% of its storage space used. For eight of the eleven households

there is enough free space available to provide data durability (replicating all data on

m-
C) -Q)
u
"' c.
rn
Q)
CJ

"' ...
0 -rn

1200

1000

800

600

400

200

0
1 2 3 4 5 6 7 8 9 10 11

Household Number

Figure 3.2 : Arnount of used and free space by user.

37

2 devices); the remaining households would have to add storage in order to get the

full benefit from the system. These households could simply purchase an inexpen-

sive USB disk1 and plug it in; the system would automatically use this new space to

provide durability and availability.

Our result on the availability of free space is conservative, because it ignores data

redundancy that exists on a device and across multiple devices. For example, there

are nine MP3 players in our trace. An MP3 player typically contains a subset of the

files that are already stored on one of the users' computers. Also, it has been shown

that two machines running the same operating system have a significant overlap in

data [21].

Next, we wish to gauge if there is enough connectivity to ensure that new data can

be replicated in a timely manner. Adding more storage is relatively easy, since a user

1320GB is the amount of space required for the most constrained user in this study. At the time
of the study was conducted, 1 TB disks were widely available for under 200 US Dollars

38

can simply purchase an inexpensive disk. However, if a storage management system

required users to connect devices often, this would place a considerable burden on

users.

To address this concern, we use the free space, data growth rates, and connectivity

measured in the trace to perform a simulation. We begin with the system in stable

state, and then have each device generate new data at the average rate from the trace.

When two devices can connect to each other (either directly or via the network), they

transfer data at the nominal rate of their connections. When a device generates data,

it attempts to replicate the new data by transferring it to another device that has

free space. We wish to measure the amount of time it takes for generated data to be

replicated once created.

To do this, we replay2 the connectivity among the devices of a single household

from our trace. When data is generated it is put into a queue; the head of the queue

is transferred first when a connection is present. We measure the time (in hours) that

data waits in this queue before being replicated. If, at the end of the experiment,

data has not been transferred, it is included as having waited since its creation time.

We repeat this experiment for all households and aggregate the data.

The lower curve in Figure 3.3 shows the results. Approximately 30% of data can

be replicated within one hour. This case occurs when the creating device is connected

to another device with free space at the time when data is generated. Around 50%

2We begin the simulation at the time when all of the users' devices that generate data appear in
the trace.

1

0.8

u. 0.6
c
0 0.4

0.2

0
0

AIIUsers -­
Users with Multiple Active Devices -------

200 400 600 800 1000
Time to Replicate New Data (h)

1200

Figure 3.3 : Amount of time before generated data can be replicated in trace.

39

of data can be replicated in under 48 hours. Some data could not be replicated for

a much longer period of time; most of these cases are due to three of our households

who either only had one device, or had multiple devices but only activated them to

install our monitoring application and then did not use them again.

The second, higher, curve shows the results with these three users removed from

the trace. For the remaining nine households in our trace, it is possible to get quick

replication for newly created data.

In summary, our study indicated, for most of our user community, there are enough

devices, storage ~pace , and sufficiently 1nany connections to achieve durability in a

timely manner. The remaining households would be able to achieve durability if they

were to purchase and connect an additional storage device. In the following sections,

we design a system, PodBase, that is motivated by the results of this feasibility study.

In actual deployment, the simplifying assumptions made in this section do not hold,

but we will show that building an automated storage management system is indeed

40

feasible.

41

Chapter 4

System Description

4.1 System Goals

In this section, we describe the target environment for PodBase. We then infor­

mally describe the goals of PodBase. Finally, we present definitions for the goals of

durability and availability, and describe what it means to meet these goals.

4.1.1 Target environment

PodBase is intended for a household environment with one or more users and a

set of shared personal electronic devices. The users are not necessarily technically

sophisticated and would prefer not to be concerned with managing data and storage

on their devices. Based on the result of our feasibility study, we characterize the

environment as follows:

• Devices are periodically connected, such that any pair of devices can eventually

communicate via a series of sequential pairwise connections.

• A device may fail or be lost at any time. However, the failure or loss of many

devices during a short period of time is unlikely.

42

• Devices may be turned off when not in use; it cannot be assumed that any one

device is always online.

• The system must be able to handle a wide range of usage patterns and device

configurations, without attention from an expert system administrator.

An important aspect of the target environment is that most users don't have the

expertise, interest or time to manage data and storage on their devices. They expect

the system to do something reasonable automatically. Unlike a system designed for

expert users (like the authors and readers of this paper), PodBase must be able to

achieve its goals with little user expertise and attention.

4.1.2 Desired system behavior

PodBase aims to relieve users from having to worry about the durability and avail­

ability of their data. Durability requires that the failure or loss of a device not result

in the loss of user data. Availability requires that each device store the latest collec­

tion of data relevant to that device. For example, each communication device should

store the latest version of the address book and, subject to available storage space, a

shared music collection should be available on all devices capable of playing music.

As an example, Alice and Bob share a household. Alice has a notebook, an MP3

player and an external USB hard drive. Bob has a notebook and a desktop computer

at his office. Their home has a wireless network connected to the Internet via a

broadband connection. During the day Alice and Bob bring their notebooks to their

43

offices and perform their daily work, such as writing documents and using email.

At night both return home with their notebooks and use them to surf the web,

play games, or listen to music. Although they have important data stored on their

notebooks, they rarely back up their data.

PodBase can automatically perform the following tasks without any explicit action

by Alice or Bob:

• Every night, new or modified files are replicated, in cryptographically sealed

form, between Alice and Bob's notebooks via the wireless network. (This works

even when they are on vacation, e.g., when the pictures Alice uploads from her

camera are replicated on Bob's notebook.)

• When Bob purchases a new CD and rips it to his hard drive, a replica of the

mp3 file is later moved to Alice's notebook. When Alice connects her MP3

player to charge, it also receives the new music.

• Whenever Alice or Bob edit their personal address books, the changes are au­

tomatically propagated to their other communication devices.

• Whenever Alice's USB hard drive is connected to her laptop, additional replicas

of the files and replicas on her laptop arc made.

• Bob's office desktop is connected to his home via a broadband connection.

Rather than transfer data using the slow connection, the system uses Bob's

notebook disk to rapidly replicate data between home and work.

44

• When Bob's notebook is running low on disk space (after removing any replicas),

the system asks Bob if it should move not recently accessed movie files to Alice's

USB drive, which has plenty of space.

PodBase can recover from otherwise costly incidents. For example, imagine Alice's

laptop is stolen. With PodBase, she is able to restore the data on the lost device's

hard drive to her replacement notebook. When she connects over the wireless network

to Bob's notebook, some files from her stolen notebook are restored on the new device.

When she later connects her new notebook to the USB drive, the remaining files are

restored. Thanks to the replication between home and Bob's office, they could recover

all data even after a total loss of the home or office devices.

An important goal for PodBase is transparency: the system's background activity

should not affect users' experience during normal operation. By default, the system

does not remove user files, automatically propagate changes to user files or attempt to

reconcile conflicting versions of concurrently modified files. Instead, PodBase main­

tains all versions of a file along with their modification history. Optional plug-ins can

define file type-, device-, or application-specific consistency semantics.

4.1.3 Definitions

We now formally specify the properties of availability and durability that PodBase

attempts to maintain. The primary goal of PodBase is to ensure durability. We

want to guarantee that each file is replicated on as many devices as possible. As a

45

secondary goal, we want to maximize availability by placing copies of each file on

devices where they are potentially useful, subject to available space. This ordering

is not inherent to the system, rather, it is how we chose to prioritize them, based on

what we believe are a typical user's priorities.

Let II be the set of participating devices aml F be the set of files that arc managed

by the system. For each device i E II, let 8i denote the amount of space available at

i for storage of user files and replicas. For a set of files S ~ F, size(S) denotes the

amount of storage required to store S.

We assume that a map v: II ----+ 2F is given which assigns, to each device, the

set of user files stored in that device. The goal of a storage management system

is to maintain a file assignment function 1/J: II ----+ 2F that maps each device to the

set of both user and replica files that the device should store. At any time, the file

assignment must satisfy

• v(i) ~ 1/J(i), user files are never moved or deleted from devices;

• size('lj;(i)) ~ Si, the files stored on a device may not exceed the capacity of that

device.

Given such a file assignment 1/J, we define its replication factor as the maximum

value k such that, for every file f E F,

I { i E II : f E 1/J(i)} I ~ k ;

46

that is, 1/J places each file in at least k devices. We moreover say that the replication

factor of 1j; is optimal if there is no other file assignment 1/J' with a higher replication

factor.

We also assume an availability map r.p: ll -----> 2F that assigns to each device i E ll

a set of files that i should preferably store. The availability score of a file assignment

lj; is defined as

a= L lr.p(i) n 1/J(i)l ,
iEil

i.e. the number of file copies that match the preference expressed by r.p.

In a desired goal state, a data management service places at each device i E TI, a

set tj;(i) of file copies so that the following properties are satisfied:

Durability. The replication factor of lj; is optimal, i.e. files are maximally replicated

in participating devices of the system.

Availability. From all the file assignments with optimal replication factor, 1/J also

has a maximal availability score a; i.e. files are replicated in devices where they

are useful.

For the purposes of PodBase, we define default availability mappings between

well-known file types and devices that are capable of interacting with these file types.

For example, devices capable of playing MP3 files will be more likely to store such

kind of files. Advanced users can modify r.p to more finely control replica placement.

47

4.2 Design of PodBase

In this section, we present the design of PodBase. We start with an overview of

the system, then describe how users interact with PodBase and how it propagates

its metadata. Finally, we show how optional plug-ins can modify the behavior of

the system, and describe the security mechanisms used to protect user's data. In

Section 4.3, we describe how PodBase replicates data and formally define the desired

goal state of the system.

4.2.1 Overview

PodBase is implemented as a user level program. It keeps track of user data at

the granularity of files. PodBase is oblivious to file and device types. However,

PodBase supports a plug-in architecture, by which file type and device specific data

management policies can be added.

PodBase distinguishes between active devices and storage devices. Storage devices

include hard drives, media players and simple mobile phones. Active devices run the

PodBase software and provide a user interface. An active device contains at least one

storage device; additional storage devices can be connected internally or via Bluetooth

or USB. The set of devices in a household form a PodBase pool. In each pool, there

must be at least one active device, which runs the PodBase software.

Active devices communicate via the network and handle the exchange of data.

Whenever two active devices communicate, a storage device is attached to an active

48

device, or two storage devices are attached to the same active device, we say that

these devices are connected. Data propagates during these pair-wise connections.

~ User File * Metadata A Replica

(a)

(b)

Figure 4.1 : Data flows through the system whenever connectivity occurs. (a) When
the top two devices are connected, they replicate files. (b) Later, a new connection
occurs, and data flows from the first node to the third node through the second node.

There are three different types of data on each storage device: (1) regular user

data, (2) PodBase file replicas, and (3) PodBase metadata. Although logically sep-

aratc, all of these data arc stored in the drvirc 's existing file system. The PodBase

replicas and metadata are cryptographically sealed and stored under a single direc-

tory.

Metadata describes a device 's most recent view of the pool's state. Included in

the metadata is the set of known devices and their capacities, a logical clock for

each storage device and a list of all user files that PodBase manages, along with

their replication state. Capacity constrained devices may store only a subset of the

system's metadata, as described in Section 4.2.3.

Some of the space on a device not occupied by user data or metadata is used

49

to replicate files for durability and availability. User data has priority over replicas.

PodBase continuously monitors its storage use and seeks to keep a proportion !min

of the device's capacity free at all times.

When a file is modified by an application or the user, PodBase creates a new

version of the file and replicates both the old and new version independently. Plug­

ins (see Section 4.2.4) can be used to automatically apply consistent file updates

or reconcile conflicting versions in a file type-specific manner. Users can manually

retrieve copies of old versions or even deleted files.

4.2.2 User interaction

Next, we describe how users typically interact with PodBase. Though PodBase is

designed to minimize user involvement, some interaction is required. Moreover, in­

terested, tech-savvy users have the option to change its policies.

Device Registration. When a new device is connected for the first time, PodBase

asks the user if the device should be added to the storage pool.

Device Deregistration. A storage device may permanently disappear due to loss,

permanent failure or replacement. If a device has not been connected for an ex­

tended period (i.e., a month), PodBase prompts the user to connect the device or else

deregister it.

Data Recovery. When a storage device fails, PodBase can recover the files it stored.

The user informs PodBase that she wishes to recover the data from a particular lost

50

device onto a replacement device or onto an existing device. The PodBase software on

the recovery device then obtains copies of the appropriate files during each connection.

Externalization. By default, users and applications cannot directly access replicas

stored on a device. However, users with the appropriate credentials can externalize

replicas, that is decrypt and move the cleartext of a replica into the user file portion

of the device. Alternatively, externalization can be automated using a plug-in.

Warnings. PodBase warns the user when it is unable to replicate files because

there is insufficient storage space or connectivity, with specific instructions to buy an

additional disk or connect certain devices.

4.2.3 Device interaction

When two devices are connected, they reconcile their view of the system and exchange

data. First, the devices reconcile their metadata. Then, PodBase determines if any

of the replicas on either device should be moved, copied or deleted. Next, we detail

these steps.

Metadata contents

Metadata contains the following items:

1. Vector Clock: A vector clock [73], consisting of the most recent known logical

clock values for each device in the pool. A device's logical clock is incremented upon

each metadata change. When a device is removed from the system, its logical clock

is set to a special tombstone value. Also, the metadata includes the most recently

51

observed vector clock of each device in the storage pool.

2. Connection History: A list of the past 100 connections that have been ob­

served between each pair of devices, their time, duration, their average and maximum

throughput, as well as the network addresses used by the devices.

3. Policies: The current policy settings. Policies can be modified by sophisticated

users. Installed plug-ins (Section 4.2.4) can also modify the policies.

Items 1-3 are included in the metadata of all devices.

4. Set of user files: Keeps track of the user files stored on each device in the pool.

The content hash1 value, size and last modification time are recorded for each unique

file. In addition, the content hashes of the last ten versions of each file are included

(modification history).

5. Set of replicas: Keeps track of the replicas stored on each device in the pool.

For each replica, its size, content hash value, and replica id are recorded.

6. Reverse map of unique files in the pool: Maps a content hash value to the

set of files whose content matches the value. This mapping is used to determine the

current replication level for each unique data file, considering that different files may

have identical content. (PodBase de-duplicates files prior to replication.)

Each record in items 4-6 contains a version number, which corresponds to the device's

logical clock at the time when the record W&'> last modified. A small device may

include only a subset of the records in items 4-6.

1 A second preimage resistant hash function is used

52

Metadata reconciliation

MMetadata reconciliation is straightforward in the common case when two devices

that carry the full metadata are connected. They compare their vector clocks to

determine which has the more recent metadata for each device in the pool. For each

such device, the more recent metadata is then merged into the reconciled metadata.

PodBase also supports devices too small to hold the full metadata. (In practice,

devices smaller than about 100 MB are excluded. This is a mild limitation, since

smaller storage devices are increasingly rare.) Such devices hold the full metadata for

the files and replicas they store, plus some amount of partial metadata about other

devices.

PodBase ensures progress and eventual consistency of metadata, even if some

devices are only ever sequentially connected via small devices. To this end, PodBase

places metadata on a small device that are needed to update other devices. For this

purpose, it checks the last known vector clocks of all devices. PodBase selects partial

metadata subject to the available space on the small device, while ensuring that (i)

metadata needed by more devices are more likely to be chosen, and (ii) a roughly

equal number of metadata items are included for each device that the small device

may encounter.

When reconciling any device L with a small device S', PodBase checks if the

metadata on 8 can be used to update L. For a given device d whose partial metadata

appears in a small device, all metadata are included that have changed within some

53

range of versions i < j of d's metadata. This metadata can be used to update L if

L's current metadata version ford is at least i and less than j. If so, PodBase merges

the metadata about d from S into L's metadata.

Replication

Once the metadata is reconciled, PodBase determines the actions, if any, that should

be performed on the data. PodBase may copy a replica of a file, in which case the

file is stored on the target device with a new random replica id (used to distinguish

between replicas), while the original replica remains on the source device. A device

may also move a replica, in which case the replica is stored on the target device with

the same replica id and then deleted from the source device. Finally, a device may

delete a replica, to make room for another replica that it believes is more important.

During replication, data is transmitted in a cryptographically sealed form, and a

hash of each replica's content is attached to ensure data integrity. How PodBase

determines the actions that should be performed is described in Section 4.3.

Data recovery

After a device loss or failure, data can be recovered onto a replacement device at users'

request. During each connection to another device, the replacement device restores as

many files as possible, guided by the reconciled metadata. The most recent available

version of each file is restored. Users can speed up the recovery process by connecting

appropriate devices under the guidance of PodBase. The system notifies the user

54

when the restoration is complete.

Replica deletion

PodBase removes replicas when the free space on a device falls below !min, the minimal

proportion of a device's storage that PodBase keeps available at all times (by default,

!min = .15). When PodBase frees space, it considers the most replicated files first.

Among files with the same replication level, Porl.Dase first deletes replicas that have

the lowest (randomly assigned) replica id among the replicas of a file, then the second

lowest id, and so on. This policy ensures that different devices delete replicas of

the same file only when a shortage of space dictates it. (PodBase never deletes the

original or any externalized replica.)

When space is available, PodBase also stores partial replicas from aborted trans­

fers, so that they can be later resumed. When space runs low, these partial replicas

are cleared before any complete replicas are deleted.

4.2.4 Plug-ins

Plug-ins can be used to implement policies and mechanisms that are specific to par­

ticular file types, collections of files, device types or specific devices. Following are

some examples of plug-ins.

Consistency: Podlla:;e replicates each version of a file independently. A plug-in can

be used to automatically propagate changes or reconcile concurrent modifications

under a given consistency policy. There is a large body of work on consistency, and

55

powerful tools exist for reconciling specific file types, e.g. [32, 66, 90]. Such tools can

be integrated as plug-ins in PodBase.

Digital Rights Management (DRM): Media files stored on a user's devices may

be protected by copyright. Usually, copyright regulations allows users to maintain

copies on several of their personal devices. However, if restrictions apply, then the

policies appropriate for a given media type can be implemented as a plug-in.

Archiving: A plug-in can automatically watch for large, rarely accessed user files

(e.g. movies). If such files occupy space on a device that is nearing capacity, the

plug-in suggests moving the collection to a different device with sufficient space. If

the user approves, PodBase automatically moves the files.

Content-specific policy: A content-:specific plug-in can, for example, replicate and

automatically externalize mp3 files on devices capable of playing music. Moreover,

the plug-in can select a subset of the music collection for placement on small devices.

For instance, when replicating music on a device with limited space, a plug-in may

select the most recently added music, the most frequently played music, and a random

sample of other music.

As a proof of concept, we developed a plug-in that automatically externalizes

replicas of mp3 files and imports them into iTunes. The plugin required around 100

lines of Java code, and two simple OS specific AppleScript scripts to interact with

iTunes.

56

4.2.5 Security

PodBase uses authenticated and secure channels for all communication among devices

within a pool. When a device is introduced to a PodBase pool, it receives appropriate

key material to enable it to participate. Users have to present a password when they

wish to interact with PodBase. Metadata and replicas are stored in cryptographi­

cally sealed form when stored on devices, in order to minimize the risk of exposing

confidential data when a device is stolen. Moreover, PodDase respects the file access

permissions of user files- encrypted replicas can be externalized only by a user with

the appropriate permissions on the file.

The strength of PodBase's access control within a household is designed to be at

least as strong as the access control between different users on the same computer.

If stronger security isolation is required between devices or users, then they should

not join the same pool. For instance, if a user's office computer contains confidential

material that must not leave company premises, then it must not join the user's home

PodBase pool.

4.3 Replication

Whenever two devices are connected, PodBase needs to decide which files, if any,

should be deleted, copied, or moved between devices. The decision is based on the

latest reconciled metadata available to the PodBase agent.

57

4.3.1 Greedy replication

The first implementation of PodBase used a greedy replication algorithm. This algo­

rithm considers the current replication state and the available space on the connected

devices, and it only copies (i.e., never moves or deletes) replicas of files. A device

obtains a new copy of a file whenever the device finds that file on a connected device,

the file is under-replicated according to the current local view of the system state,

and the device has enough space to store a copy of the file. Files that should be

replicated for both durability and availability are replicated first, for durability alone

second, and for availability alone last.

This simple algorithm can be trivially shown to monotonically increase the number

of replicas and converge to a stable state. During a preliminary user study, the

algorithm performed well in most households, but tended to get stuck in sub-optimal

replication states in certain cases, for example:

• Once the algorithm has placed replicas for durability, it is unable to move the

replicas if the placement turns out to be suboptimal for availability.

• When users carry a storage device (e.g. a notebook) between office and horne,

the algorithm is unable to use the device in the most effective way, namely to

temporarily store replicas for transport between the two locations.

• When the space occupied by user files increases or a device fails, the algorithm

cannot re-distribute replicas. In general, a re-distribution may be necessary to

58

ensure an even replication level, and to prioritize durability over availability.

• Two devices that initially interact replicate each other's files. If a third device

is later connected, no room may be left for its files on the original devices.

Although there may be plenty of space on the third device, the algorithm cannot

replicate the device's files.

Since generalizing the greedy algorithm to cover these and other cases proved

difficult, we chose to redesign the system to use techniques from operations research.

We pose replication as an optimization problem and, using a linear programming

solver, compute a replication plan to achieve the optimal state.

This approach minimizes the assumptions we make about the environment (i.e.,

the range of configurations and usage patterns), and defers most decisions to runtime,

when the actual environment can be observed. The following subsections describe the

approach in more detail. However, we first examine a more detailed concrete example

of the shortcomings of the greedy algorithm.

Detailed Example

In order to further illustrate the shortcomings of the greedy algorithm, we give two

more detailed examples where the algorithm does not perform well. The first scenario,

is when two devices, A and B, are connected, B may be filled with availability replicas

(least priority) from device A. When A is later connected to another device C that

has unreplicated files (high priority), it cannot replicate these files. It has greedily

59

replicated low-priority files and cannot undo that decision.

Figure 4.2 : A srnall device that pcriodicly connects to different devices has the
potential to act as "communications device" , transporting replicas between devices
that cannot directly connect or are connected via a slow link.

Second, as another example, if A and C have much larger capacity than B but A

and Care never directly connected, as in Figure 4.2, then only a subset of files with a

combined size up to the capacity of B can ever be replicated between A, Band C, no

matter how often B is connected to A and C. A smarter replication algorithm could

move replicas from 13 to either J\ or C, allowing H to be used as a "communications

device" that carries replicas between A and C.

These examples are not exhaustive, and are meant to illustrate some of the cases

where the current replication algorithm breaks down, and to motivate the need for

more intelligence in the replication algorithm.

4.3.2 Adaptive Replication

In order to solve the problems of the greedy replication algorithm, we introduce a

new adaptive replication algorithm. It is not an algorithm in the traditional sense,

it specifics the current systcn1 state, and the goals, and then formulates a planning

problem. This planning problem is then fed to a linear solver, and the resulting

solution is used by the system.

60

In this section we describe the components of this approach by first describing the

planning process, and then how the plan is used by the system to replicate. In the

following section, we will explain the actual LP formulation of the problem in more

detail.

Planning Process

We model the system state, as well a.'> the effects of the actions, as a set of linear

arithmetic constraints. To reduce the complexity and the size of the formulation, we

group files into categories. All files that appear in the same set of devices (as user

files or as replicas) are in the same category.

The system state is then encoded (the formulation is discussed in more detail in

the following section) by specifying, for each category, the total amount of space oc­

cupied by all files in that category. This significantly reduces the number of variables

in the problem formulation, which is no longer dependent on the number of files but

only on the number of devices in the system.

To model the connectivity among devices, a graph is constructed with a link

between each pair of devices that can potentially be connected. The link weight

specifies the estimated cost of data transfer among the devices. This cost is calculated

based on the maximum connection speed and the probability that the devices will be

connected on a given day, based on the history of past connections. In this calculation,

more recent connections are weighted more heavily.

61

Finally, we model the actions (copy, move, delete) PodBase can perform, and

their effects on the system state. Because in general, devices only have pairwise and

intermittent connectivity, a sequence of connections may be required in order to affect

a certain state change (e.g., copy some files from A to B, and then from B to C). The

formulation then encodes how the possible sequences of actions modify the number

of bytes occupied by files in each category.

Encoding the problem this way enables us to symbolically describe all the possible

plans that PodBase could execute in order to manipulate the distribution of files.

Given this formalization, the goal is to find a plan that optimizes the desired goals.

Planning

The optimization involves multiple stages, narrowing the set of candidate replication

plans in each. First, the maximal replication factor k is computed based on the avail­

able space in the system. Then, we optimize for durability by computing replication

plans that can achieve a k-replication for all files. Next, we optimize for cost by nar­

rowing the set of plans to those that minimize the sum of the link weights. In the next

stage, we select among the remaining plans those that maximize availability. In the

final stage, we select a plan that minimizes the number of necessary replication steps.

PodBase then executes the first step of the resulting replication plan, by copying,

moving or deleting replicas on the currently connected devices.

This description is slightly simplified. In practice, we do not consider plans with

62

more than three replication steps for efficiency (few interesting plans with more steps

occur in practice).

The optimization favors cost over availability, because high cost plans are highly

undesirable: they may rely on links with low bandwidth or rare connectivity. Notably,

this choice still permits good availability, because the cost optimization generally

leaves many candidate plans from which the availability optimization can select. The

reason is that all plans involving the same set of connections have the same cost, and

there is a combinatorially large number of such plans, corresponding to the different

placements of replicas that can occur as a result of these connections.

The cost optimization does, however, eliminate plans that create more then k

replicas, even if availability calls for more. To enable additional replication for avail­

ability to occur, PodBase changes the order of optimizations once the durability goal

has been reached. In such situations, availability is optimized before cost.

Plan Execution

The output of the planner is a series of steps the system should take to reach the

durability and availability goals. The system executes only the first step in this plan,

afterwards it recomputes based on the changes that occurred in the system state. It

also recomputes the plan periodically when conditions change. We next show how

the entire process works, by stepping through an illustrative example.

63

4.3.3 Adaptive Replication Formulation

In this section we discuss the details of the adaptive replication formulation. We first

introduce a set of concepts, and the provide more details of the linear programming

(LP) formulation. Finally, we discuss how some implementation details impact the

formulation, and how costs and weights are derived for the running system.

In developing this formulation, we developed several variations which proved not

to meet our needs in terms of scaling to the problems sizes required by our user study.

In this section we present only the final formulation used in PodBase.

Preliminary definitions

We will use terminology to describe each component of the linear programming for­

mulation. For the sake of explaining the formulation as concisely as possible, these

may differ slightly from the definitions used in the rest of the thesis. The first is a

device, a device is simply a container for data. A device has a finite capacity which

can be consumed by storing files or replicas. A device can have connections to other

devices, these connections have a speed associated with them. A configuration is the

current set of devices and connections.

The next concept is a state. A state is the current configuration of data stored

on devices. A step describes the evolution of a state after a set of actions. An action

transforms the current state into a new state. The set of possible actions is restricted

by constraints on valid states. A plan is a set of actions to be taken over a series of

64

steps.

Constraints

A constraint describes the set of valid states that can exist. An example of a constraint

is that no device can store more data than it has capacity for. Through the use of

constraints the state space of possible plans is limited to those that are actually

fca."liblc. In this section we briefly describe that constraints that are used in the

PodBase LP formulation.

• The amount stored on device can not exceed its capacity.

• A non-replica file can not be deleted or moved.

• A copy or a move action can only occur between connected devices.

• The amount of data copied or moved, must not exceed the original amount of

data.

This simple set of constraints is enough to limit the actions of the system to those

that are feasible in practice.

Actions

While it would be possible to encode complex actions in an LP, we choose to use only

two actions (which can be combined to create a 3rd logical action). These actions are

simply to either make a copy of a piece of data to another device, or to remove a copy

65

of a currently stored piece of data. The results of the action is reflected in the current

state of the device after it has happened (when the plan is recalculated). From these

two basic actions, moving a piece of data between two devices can be done by first

copying to the destination and then removing it from the source.

More precisely, copy takes in a state, and then adds a device to the set of devices

that is storing the data. Similarly, remove takes in the state and removes a single

device from the list of devices storing the file. Associated with each action is a cost.

This cost describes roughly the amount of time it would take to execute this action.

The cost of a remove is free, as it can happen more or less instantaneously. The cost

of copying between two devices is the amount of time that it would take to move the

data around. This cost is based on a model, which will be described later in this

subsection.

Goals

Up to this point we have constructed the building blocks of the LP. We have defined

the valid system states, and actions which allow system states to change over time.

Now we must provide a goal which describes the eventual system state to work to­

wards. In developing PodBase we have developed several different goals, which can

be combined to compute replication plans that have a certain set of properties. These

goals are the following:

• Maximize durability: maximize the number of copies of all data (see Sec-

66

tion 4.1.3)

• Maximize availability: maximize the number of files which meet the availability

goals (see Section 4.1.3)

• Minimize cost (time): minimize the cost of the sum of all actions in the plan

• Simplicity (minimize the number of steps): maximize the number of actions

which occur in the first n steps of the plan. This is usually a re-optimization

once other goals are optimized for, it is used to ensure the actions in the plan

occur l'l..'> early as possible. This is done interactively to find the minimum n for

which the solution is feasible.

The goals can be combined using a multi-step optimization procedure. We will

discuss how these are combined in Section 4.3.3.

Storage sets

In theory it would be possible to use the LP formulation with all of the above concepts

on a per-file level, with one variable for each file. However, given the number of files in

a PodBase deployment, this is not feasible given the current state of linear optimizers.

Given this, we kept track of classes of files, rather than individual files. A class of files

the set of all files stored on the same set of devices in the same form. An example is

all files stored as user files on A and as replicas on B. This set is associated with a

number, which is the number of bytes in that set. An action can move data between

67

these classes by copying or deleting. This optimization limits the number of variables

to be included in the LP to the number of classes, which is much smaller than the

number of files in a PodBase deployment.

Deriving action costs

One key component of the above formulation is the cost of an action, particularly

a copy action. We assume then in all but the current step, a connection will exist

between all devices in the system, with a given cost. Assigning a cost of an action is

based on the previous throughput seen between two devices. It must also take into

account the the probability two devices will come in contact with each other. We

use the previous connection pattern between two devices to estimate the likelihood

that two device will connect in the future. We combine these two factors, and apply

a discount factor to make older samples worth less. From these factors we assign a

weight to a link.

The weight of a link in the formulation is derived in the following way. For each

source, destination IP pair, we first define a value throughputpeak which is the maxi­

mum observed throughput between that pair. Then for each day in which connections

were observed a daily connectivity is calculated in the following way:

ti rneconnected It i metotal (4.1)

This value is the percentage of the possible time these two devices were connected.

68

This percentage is then multiplied by thToughputpeak to measure the possible through­

put between those two devices. Now a discount function w(tltToughputpotentiat) is

applied which values samples based on how long ago they occurred in the past. For a

sample of age x (in days) the discount function w(x) is defined in the following way.

w(x) = lje-log(O.l)/30*age (4.2)

The function exponentially weights the more recent samples higher than older sam­

ples. If the sample is older then 30 days then it has a values of zero.

The final expected throughput for a pair of devices is the sum of all weights

divided by the maximum age. In the end the weights calculated result in the graph

connecting all nodes in the system. In this graph links with higher weight are cheaper

to use in that data can flow along the link in less time, and those with lower weight

cost are more expensive. From this weight, the cost can be defined as the amount of

time it would talk a quantity of data to flow across a link. For example, a link with

a weight of lOOKB/s, carrying 1MB, would have a cost copying of lOs. Through the

use of the costs, a total cost for a set of actions can be computed.

Optimization procedure

An individual LP formulation is a set of of actions, constraints, and a fixed goal.

However, in PodBase we often want to optimize multiple goals. To do this we iter­

atively solve multiple LP problems, and fix some components of the next problem

69

with values derived from the previous problem. While these building blocks can be

arranged in any order, in our actual PodBase deployment we fixed them as described

in the previous section. 4.3.2. We now look at an example that shows the whole

process through a concrete example.

As an example, we illustrate how the planner finds a series of steps that reach

the goal state. In this scenario, data must be transported by intermediate devices,

and the system must correctly prioritize durability replicas. In this case we have 3

devices, A, B and C. The initial distribution of files is the following: A has 100 units

of data, 50 of which is of a type that should be made available, B has 0 units of data,

and C has 5 units of data. A and C are capable of storing 500 units of data, and B

is capable of storing 50 units of data. A and C never directly connect to each other,

but B is connected to both A and C. At the beginning, no data is replicated on any

of the devices.

Formulating the problem

In this scenario, the goal state should be that C is storing a replica of all of A's data

and vice-versa. B should be storing the 50 units of data for availability. The greedy

algorithm will never arrive at this state. B would take 50 units of data from either A

or C { whichever it was attached to first), and then the system would ~ot be able to

make any further progress.

The input to the planner is a description of the scenario, and a number of steps

Initial File Distribution
A=50,50
B=O
C=50

Device Capacities
A 500
B 50
c 500

Connectivity
A - B 1
B - A 1
B - c 1
c - B 1

Maximum Steps
steps: 10

70

Figure 4.3 : Summary of system state and environment, which is used to generate a
linear programming problem. This is the input that is needed in order to generate
the initial planning step, which then generates a set of linear programming problems.

71

that are allowed in the final plan. An example the format used to describe the scenario

is shown below in Figure 4.3. The goal state is based on the definitions in 4.1, and

is to have all data maximally durable, the data that is useful for availability present

on all devices, and with minimum cost.

From this specification, a linear programming problem is generated and passed

to a solver. The result is used to determine the actions at each step, and must be

repeated once for each step.

Generated Plan

The result of the above described process is used to generate a series of steps that

PodBase must take in order to reach the goal state. We describe below the steps

returned by the solver for the example scenario. The actual solution is a the value

of certain variables in the solution of a linear program. We translate these results to

English for the sake of clarity.

• Step 1: Copy 50 units of data that are not needed for availability from A to B

• Step 2: Copy 50 units of data that are not needed for availability from B to C

• Step 3: Delete all data from B; Copy 50 units of data from C to B

• Step 4: Copy 50 Units from B to A

• Step 5: Delete 50 all data from B; Copy 50 units of data needed for availability

from A to B

72

Minimize
total cost
Subject to
durable! = 150.000000
available4 = 50.000000
durable3 100.000000
durable4 = 50.000000
durable5 = 50.000000
available! 50.000000
available3 = 50.000000
available2 = 50.000000
durable2 = 100.000000

fa01 + fa11 + + fabc11- capicitya = 0
cpya0b1 + 1 cpya1b1 + 1 cpyab0c1 + 1 cpyab1c1 + 1 cpyac0b1 + 1
cpyac1b1 + 1 cpyb0a1 + 1 cpyb0c1 + 2 cpyb0ac1 + 1 cpyb1a1 + 1 cpyb1c1
+ 2 cpyb1ac1 + 1 cpyba0c1 + 1
cpyba1c1 + 1 cpybc0a1 + 1 cpybc1a1 + 1 cpyab0c1 + 1 cpyab1c1 + 1
cpyc0b1 + 1 cpyc1b1 + 1 cpyca0b1 + 1 cpyca1b1 + 1 cpycb0a1 + 1
cpycb1a1 + 1 cpyac0b1 + 1 cpyac1b1 + 1
cpybc0a1 + 1 cpybc1a1 - cost! 0

cost! + cost2 + cost3 + cost4 + cost5 + cost6 + cost7 + cost8 + cost9
+ cost10 - totalcost = 0

Figure 4.4 : Simplified snippet of LP program generated by example problem. The
objective function in this stage of the formulation is to minimize the total cost, given
that the durability and availability goals are satisfied (the lines directly following
Subject to). The next constraint enforces that the data the files stored on a device in
a step never exceed the capacity of that device (the data being stored in each storage
set is capture by the variables starting with f. Each letter following f is a device which
the data is present on, and the following number indicate what step, and what type
(0 = durability, 1 = availability)). Next, the variables which encode actions in the
system are shown, and they are related to the cost. Finally, the costs are aggregated
into the objective function. A variable above is always indexed by first the devices
that it is / could be stored on, then the type of file (availability=!, durability = 0),
and finally the step in the output plan. Action variables (above copy) also include
a target device, in the case of the copy variables the step is omitted to shorten the
variable names.

73

• Step 6: Copy 50 units of data needed for availability from B to C.

The final result of following this plan is the optimal goal state. All data is durable,

and the data should be available is present on all devices. At the intermediate steps,

no replicas are made for availability before the durability goal has been reached. Note,

that while this example is simple, and the adaptive algorithm will work in much more

complex scenarios. The units of data and edge weights are set to simple values for

pedagogical reasons, and do not represent the values that one would expect while

running PodBase.

74

Chapter 5

Experimental evaluation

In this section, we present experimental results obtained with a prototype implemen­

tation of PodBase. In a first set of experiments, we verify that the system behaves as

expected. Then we present measured results from a deployment of PodBase in a small

user community. This data allows us to assess how PodBase performs in practice,

and provides experience with the types of devices users have, how often and in what

manner devices are connected, and how user data is created and accessed.

Given these results, we will show that PodBase is practical, useful, and lessens

the burden of storage management for ordinary users.

5.1 Implementation

PodBase is implemented as a user-level program written in Java. Most of the code

(48,512 lines) is platform-independent, with the exception of a small amount (about

1000 lines) of custom code for each supported platform (currently Windows 2000

and higher, Mac OS X). This platform-specific code deals with the way different

operating systems mount disks and name files. The current implementation requires

that storage devices export a file system interface, and that all computing devices are

able to run Java 1.5 bytecode.

75

Running PodBase on specialized platforms like cell phones or game consoles is

feasible, but requires additional engineering effort. Since we were able to cover the

majority of computing and storage devices owned by the users in the study, we felt

that limiting ourselves to these two platforms and to storage devices that exported

a file system interface was a reasonable trade off between engineering effort and our

research goals.

In our deployment, computing devices contact a server that calculates replication

plans. The server was provided to simplify the installation of PodBase and is not

fundamental to the system. With an additional step, PodBase can be configured

with a local solver.

5.2 Controlled experiments

5.2.1 Computation and storage overhead

PodBase crawls the file system of storage devices to determine which files exist and

change over time. Each time a new file is discovered or an existing file is modified,

the file must be hashed and added to the pool's metadata.

Reading from disk and hashing a large amount of data (e.g., when a device is

first added to PodBase), can be time consuming. We measured the amount of time

the first crawl took when a new drive was added to the system. The measurements

were taken on a 2.4 GHz Apple MacBook Pro, running OS X, one author's primary

computing device. The internal notebook disk contained 165,105 files with a total

76

size of 87.4GB. The initial crawl took approximately 5 hours to complete. Subsequent

crawls, which only re-compute hashes for files whose time stamps and/ or sizes have

changed, took on the order of 10 minutes. The exact time required depends on the

amount of new and modified data found on a device.

The size of the system's metadata grows proportionally with the number of files

and replicas managed by a PodBase pool. For the PodBase pools in our user study,

the uncompressed metadata size ranged from 270MB to 2.5GB. This amounts to only

a small fraction of the capacity of most modern storage devices. For the devices in

our user study, storing the full metadata was possible in all cases. Smaller storage

devices (e.g. older USB sticks or cameras) are supported in our design via the partial

metadata mechanism.

Computing a replication plan requires invoking a linear programming solver. We

currently use the CPLEX solver [23], a commercial solver, but CPLEX could easily

be replaced by a non-commercial solver (e.g. clp [20] or glpk [39]). To verify this

we ran a simple experiment and found that, for a typical household with 5 storage

devices, using the free LP solver package clp [20] on a 2.4 GHz Apple MacBook Pro,

it took between one and thirty seconds to calculate a plan, and the solver required

15MB of memory. These results show that it is feasible to locally compute a plan

every time a device is connected, using non-commercial tools.

77

5.2.2 Pairwise transfer throughput

Next, we measure the performance of PodBase when two devices are connected over

a variety of media. The goal of this evaluation is to understand how quickly data can

be replicated over several common types of connections. Table 5.2.2 shows the speed

at which PodBase is able to create new replicas for 87.4GB of files, when running on

a 2.4 GHz Apple MacBook Pro. The experiment for DSU was stopped early (after 5

days), and thus the transfer time is an estimate based on the measured throughput.

Connection Transfer Time {h) Speed (MB/s)
USB 9.50 2.00
Firewire 12.0 1.58
802.llg 23.5 0.81
Ethernet 10.5 1.95
DSL (up) 475 (est.) 0.049

Table 5.1 : Transfer throughput for different connection types

Most measured throughputs are lower than the nominal data transfer rates of the

connections. PodBase deliberately limits the transfer rate to avoid interfering with

other activities and to maintain responsiveness. Also, the PodBase agent performs

various computations, such as hashing files to verify integrity and encrypting replica

contents, which reduce the throughput.

Note that transferring data, as well as crawling disks and computing replication

plans are background activities, which were designed to interfere with the responsive-

ness of the system as little as possible.

1Uplink for this connection is lMb/s

78

5 .2 .3 Data restoration

Next, we test PodBase's ability to successfully restore the contents of a lost device. We

simulated the loss of a notebook after the replication phase in the previous experiment

was completed. PodBase successfully restored to a USB hard drive all 211206 files

(75GB) that were present at the time of the last crawl of the "lost" notebook. The

restoration took 5 hours 27 minutes to complete, which includes decrypting all of the

necessary replica contents.

5.2.4 Replication

Next we verify that, given sufficient connectivity and ~torage, PodBase replicates all

files a.'-l expected. In the experiment, a single user with fonr devices (a desktop, laptop,

iPod, and external hard drive) runs PodBase in the background while going about

his normal daily business.

u;
"C

350 c
ftl
U) 300 ::1
0 250 .s::::: .. -U) 200
..! 150 u:: 100 0 .. 50 Q)
.Q

E 0
::1 0 z 1

v noo~tcc1rea-..:..:.:.::=.=- ­
~-------------- Replicated -------

-------'

2 3 4 5 6

Time (days)

Figure 5.1 : Replication over time for an example user

7

Figure 5.1 shows the number of files that are unreplicated versus the number of

79

files that are replicated at least once, over the course of five days. At the beginning

of the experiment (before PodBase was started), slightly more than half of the files

were already replicated at least once on the devices. The reason is that two of the

devices were computers with the same operating system installed. As time goes by,

PodBasc creates more replicas, and most files become replicated. The plateaus in the

graphs correspond to times when no connectivity existed among any of the devices.

5.2.5 Adaptivity

In section 4.3.1 we described scenarios where the greedy replication algorithm per­

formed poorly. We tested the new replication algorithm and verified that it was able

to handle these cases gracefully. This result confirms that the new algorithm is able

to adapt and perform well in tricky situations.

5.2.6 Partial metadata reconciliation

Next, we experiment with small devices that carry partial metadata. In our example,

there are three devices: two full metadata devices, which never directly connect to

each other; and a small device, which is connected to each of the other devices once

per day. The small device is able to carry 100MB of metadata about other devices,

and the total metadata size is 2GB (1GB per device).

Initially, the two large devices are completely unaware of each other; no new

data is added after the experiment begins. It took ten days or 21 connections for

the metadata on the two large devices to converge, which is expected based on the

80

relative size of the metadata and the small device.

This example show that metadata converges even in extreme scenarios. In our

experience, small devices are rare and connectivity tends to be much richer in practice,

leading to much faster convergence.

5.3 User study methodology

PodBase's operation in a practical deployment is strongly dependent on the number

and usage of devices, as well as the type, amount and usage of data within a household.

To study how Podbase performs in actual usage, we conducted two user studies. The

first wa.-; with the greedy replication algorithm, the second used the improved adaptive

algorithm. In each, we asked ten members of our institute to deploy the system in

their households and collected trace data over a period of approximately three months.

We asked the users to, as much as possible, ignore the presence of PodBase and use

their devices the way they would normally use them. If necessary, several users were

given additional storage, these additional storage devices are indicated in each user

study.

For practical reasons, the number of households and users in our study is small

and covers a relatively short period of time. Moreover, at least one member of each

household was a computer science researcher. Therefore, there is a likely bias towards

users who have an interest in technology, like to surround themselves with electronic

devices, and tend to produce and consume large amounts of information. As a result,

81

we cannot claim that our results are representative of a larger and more diverse user

community, or a long-term deployment. However, we believe that our data gives a

valuable glimpse at PodBase's likely performance in practice.

In each user study, we collected anonymized data about file creation, modification

and deletion on each device, when and where replicas were created, and which devices

were connected at what times. We use these logs to generate the graphs used in the

rest of this section.

5.4 User study 1

In the first user study, we evaluate PodBase using the simple greedy algorithm.

To start, we provide a brief overview of the households used in our deployment

and the characteristics of the devices used in each.

10
U)
G)
u 8 ·:;:
G)

c 6
0 .. 4 G)
.c
E 2 :::s z

0
1 2 3 4

Storage Devices -
Computing Devices -

5 6 7 8 9 10

Household Number

Figure 5.2: The number and type of devices present in the deployment, by household.

Figure 5.2 shows the number of storage and computing devices in the PodBase

pool of each household. The number of computing devices used in the households

82

ranged from one to five. Some users had no additional storage devices, while others

had up to three. Households 1 and 4 received an additional one terabyte USB disk,

which is reflected in the data.

-m c
Q)
u
ca c.

(/)

Q)
C)
ca ...
0 -(/)

1.8
1.6
1.4
1.2

1
0.8
0.6
0.4
0.2

0

Additional Space -
FreeSpace ­

UsedSpace -

1 2 3 4 5 6 7 8 9 10

Household Number

Figure 5.3 : The amount of storage capacity and free space present on devices before
PodBase begins replication. Additional space corresponds to the USB disks house­
holds 1 and 4 were given.

Figure 5.3 depicts, for each household, the total size of the household's storage

pool, divided into used storage and available storage at the beginning of the deploy-

ment and before PodBase was activated. The additional storage given to households

1 and 4 is shown as "additional space" . After this addition, seven of the households

had at least half of their total storage capacity available. This does not imply that the

remaining three households cannot replicate their data; whether they can depends on

how 1nuch duplication there is among their existing nser files.

83

5.4.1 Replication results

In this section, we evaluate the performance of PodBase by looking at the state of

the deployment at the beginning and the end of the trace collection. During the

user study, the replication value of k = 2 was used for all users, and mp3 files were

preferentially replicated for availability.

1
en

0.8 .!:!

r ·~ ~
;I:

4x+
··-·············

- ji ' 3x - -
u: 2x
""' 0.6 0 - ; I 1x - -c
0 0.4 .. u
ca 0.2 ...

LL

0

-

.l
-

- -

- I I! ...
1 2 3 4 5

Household Number

Figure 5.4: The initial (left bar) and final (right bar) replication status of households
1,2,3,4,5

1
en

0.8 .!:!

!JI'
~

Villi

f-l " '~ ' ~x+ ·············.
~ :

~ 3x - -
u: \• 2x
""' 0.6 0

... . ., 1x - -
c
0 0.4 :;:: - -
u
ca 0.2 ...

LL
- -

0 - - -
6 7 8 9 10

Household Number

Figure 5.5 : The initial (left bar) and final (right bar) replication status of households
6,7,8,9,10

84

Let us look at the replication state of the system before the households ran Pod­

Base. As shown in Figure 5.4 and Figure 5.5, many households had files that existed

on only one device, leaving these files vulnerable to data loss if the device were to fail.

Also, many households had a significant number of files already replicated, either as

copies of the same file or different files with identical content.

At the end of the trace, seven households (1, 2, 4, 5, 6, 7, 9) had most (more

than 95.8%) of the their files replicated. The remaining, unreplicated files were re­

cently created or modified and had not yet been replicated at the end of the trace.

Households 3, 8 and 10, on the other hand, still had a significant number of their files

unreplicated, namely 14.2%, 67.6% and 84.5%, respectively.

These three households each had only two devices: a notebook that was used

at home intermittently and a desktop workstation in the office. The device pairs

were connected over a DSL connection, but the notebooks were not active sufficiently

long to allows full replication over the relatively slow broadband connection. Had

these users left their notebooks turned on when not in use, or had they brought their

notebooks to the office, their files would have been replicated. As a sanity check,

we provided the two least replicated users with an external USB hard drive and

asked them to connect it once to each of their machines for 24 hours (after the trace

collection ended). By doing this, each was able to replicate 95% of their files.

85

5.4.2 Availability

A secondary goal of PodBase's replication is to place replicas of files on devices where

they are likely to be useful. In our deployment, we specified that mp3 files should be

preferentially copied to devices that are capable of playing music.

In analyzing the trace, we found that relatively few mp3 files had been replicated.

This is surprising, because several households had extensive mp3 music collections.

Investigating further, we found that most of the households had already manually

replicated all of their music files on the relevant devices. Thus, PodBase did not have

the opportunity to improve availability.

Two users, however, originally had a significant number of mp3 files that were

on their laptops but not on their desktops. PodBase replicated these files onto the

desktops, and the mp3 plug-in described in section 4.2.4 had externalized the music

files. This happened during an earlier run of Pocll3ase (i.e., before our trace collection

started), therefore it did not show up in our trace. The users had gained access to 426

songs (2.82GB) and 2611 songs (17.2GB), respectively, on their desktop computers

that were previously stored only on their notebooks.

5.4.3 Replication latency and throughput

We next look at the maximal replication throughput in each of the households. Since

all householcls had many files to replicate at the beginning of the trace collection, the

rate at which data was replicated early in the trace is a lower bound for the total

86

replication throughput of a pool. This value provides a lower bound for the rate of

new or modified data that a household could generate, such that PodBase would still

be able keep up replicating the data.

->-m
=e, ca_
c-ea
:::J.C EC)
·- :::J ><o ca ...
~.c

1-

120

100

80

60

40

20

0
1 2 3 4 5 6 7 8 9 10

Household Number

Figure 5.6 : Peak daily throughput for each household

Figure 5.6 shows that the peak throughput varies among the households in our

deployment. The values range from 4 to 110 GB per day. This result shows that

PodBase can keep up with a high rate of data generation.

u.
c
0

1

0.8

0.6

0.4

0.2

0 ~~--~--~--~~--~--~~
0 50 1 00 150 200 250 300 350 400

Time to Replicate Files (h)

H.2
H. 4
H.5
H. 7
H.9

Figure 5. 7 : Replication latency for households 2,4,5, 7,9

87

We now examine the replication latency, the elapsed time until a new or modified

file becomes replicated. We first examine those households with relatively short laten-

cies. Figure 5.7 shows a CDF of how long it took to replicate a file. For households 2,

4 and 5, over 50% of files were replicated within approximately four days. Households

7 and 9 took longer because there were extended periods with no connectivity.

LL
c
0

1

0.8

0.6

0.4

0.2

0
0 500 1 000 1500 2000 2500

Time to Replicate Files (h)

H. 1
H. 3
H.6
H.8

H. 10

Figure 5.8 : Replication latency for households 1,3,6,8,10

Second, we examine the latency of the households who took significantly longer

to replicate their files in Figure 5.8. Household 1 replicated very quickly once con-

nectivity was established between a pair of devices. Households 3 and 6 replicated

more slowly but consistently, which is due to the fact that much of the replication

occurred over a DSL connection. As mentioned earlier, household 8 and 10 did not

complete replication because they had only slow and intermittent connectivity.

We note that our measured replication latencies are conservative, because in most

households, PodBase was busy replicating the user files found initially on the various

devices during a large part of the trace collection. In steady state, PodBase would

88

have to replicate only newly created or modified files, which would reduce the latencies

considerably. Nevertheless, PodBase was able to replicate data in a timely fashion in

those households that had sufficient storage and where users cared to connect devices

sufficiently often.

5.4.4 File conflicts

We previously argued that reconciling divergent replicas is an orthogonal problem

to the one PodBase is trying to solve, and that we expect divergent edits to be

rare in PodBase's target environment. For these reasons, PodBase does not provide

automatic means for reconciling conflicting copies of mutable files. However, plug-ins

can provide this capability for specific file types. In the following experiment, we

quantify how often file conflicts occurred in our deployment.

Nine of the ten households from our user study allowed us to log non-anonymized

file modifications for one month. Among these households, each had on average of

633135 files. On average, 15184, (2.3%) of files were modified over the course of

the trace. We saw a total of 449800 modifications across all of the nine households.

We analyzed these modifications and found 62 (.001% of all modifications) files (by

content) that had divergent concurrent updates.

Most of these concurrently modified files were text documents that were main­

tained by a revision control system, and users had checked them out on their note­

books or home computers. In this case, the revision control system provides a mech-

89

anism for reconciling the files. In the other cases, the files were email messages whose

status (e.g. read, answered, forwarded) had changed on different devices. The status

of these files is eventually synchronized through the n1ail server. Thus, a separate

mechanism in PodBase is not necessary to handle these files.

5.5 User Study 2

In the second user study, we deployed PodBase using the adaptive replication algo-

rithm. We present many of the same results as in the previous user study, as well as a

comparison of the adaptive algorithm with the greedy algorithm used in the previous

study.

First, we provide a brief overview of the households2 used in our deployment and

the characteristics of the devices used in each.

10
en Storage Devices -G)
u 8 Computing Devices -·:;:
G)

c 6
0 ... 4 Cl)

.Q

E 2
::::s z

0
1 2 3 4 5 6 7 8 9 10

Household Number

Figure 5.9: The number and type of devices present in the deployment, by household.

2Xote that the set of users in the first and second user study do not completely overlap, there is
no direct correspondence between the household numbers in this and in the previous user study.

90

2.5 m Additional Space 2 Free Space -Q) Used Space u ca 1.5
Q.
(I)
Q) 1
CJ
ca ... 0.5 0 ...
(I)

0
1 2 3 4 5 6 7 8 9 10

Household Number

Figure 5.10 : The amount of storage capacity and free space present on devices
before PodBase begins replication. Additional space corresponds to the USB disks
households 1, 4, and 5 were given.

Figure 5.9 shows the number of storage and computing devices in the PodBase

pool of each household. The number of computing devices used in the households

ranged from one to seven. Some users had no additional storage devices, while others

had up to three. Households 1, 4 and 5 received an additional one terabyte USB disk,

which is reflected in the data. Household 4 has a virtual device that is backed by a

cloud storage service to which that household subscribed. PodBase uses this device

like any other, taking into account its capacity and connection bandwidth.

Figure 5.10 depicts, for each household, the total size of the household's storage

pool, divided into used storage and available storage at the beginning of the deploy-

ment and before PodBase was activated. The additional storage given to households

1, 4 and 5 is shown as "additional space". After this addition, seven of the households

had at least half of their total storage capacity available. This does not irnply that the

remaining three households cannot replicate their data; whether they can depends on

91

how much duplication there is among their existing user files.

4x+
3x -

0.8 2x -
1x -.,

.!!
u:: 0.6
0

;
t

c:
:8 0.4 u ;
t!

LL.

0.2

0 II II I I
2 3 4 5 6 7 8 9 10

Household Number

Figure 5.11 : The initial (left bar) and final (center bar) replication status of each
household. Final results for the greedy algorithm (right bar) are shown for compari­
son.

5.5.1 Replication results

In this section, we evaluate the performance of PodBase by looking at the replication

state at the beginning and the end of the trace collection. During the user study, the

replication factor was dynamically chosen by the replication algorithm. An installed

plug-in caused nlp3 files to be replicated for availability on devices that can play mp3

files.

Let us look at the replication state of the system before the households ran Pod-

Base. As shown in Figure 5.11 (left bars), many households had files that exi~ted on

only one device, leaving these files vulnerable to data loss if the device were to fail.

Also, many households had a significant number of files already replicated, either as

copies of the same file or different files with identical content.

92

The middle bar in Figure 5.11 shows the replication state at the end of the trace

collection3 . Five households (1-3, 8-9) had most (more than 97%) of their files

replicated. With the exception of household 9, which had not quite finished replicating

its original files, the remaining household's unreplicated files were recently created or

modified and had not yet been replicated at the end of the trace. Households 4, 5,

and 7 were not able to replicate as much, as these households had only intermittent

connectivity between a pair of their devices. These households had two devices that

were well connected to each other, and one device that was either mostly offline or

connected via a slow DSL connection. In these cases, all of the data was replicated

between the well connected devices, but the data on the poorly connected device was

not replicated fully.

Households 6 and 10 replicated as much data as possible but did not have enough

space on one of their devices to fully replicate the remaining 19% and 10% of their

files, respectively. In order to improve upon these results, the users would have had to

add additional storage to the system. This could be accomplished easily by purchasing

inexpensive additional storage.

As a sanity check we had users from households 4 and 10 bring in their notebooks in

order to verify the limitations we describe above. Simply having household 4 bring its

notebook into the office, where there was good connectivity between devices, allowed

his data to be fully replicated. For household 10, we attached a one terabyte external

3The result for household 7 was obtained by re-playing the trace, because a bug was discovered
during the m;er study that had influenced the final state of this household

93

drive to their computing device that had data to be replicated. After doing this, less

than 0.5% percent of files remained to be replicated.

Several households (1-5, 7 and 9) were able to achieve a replication factor greater

than two for some of their files. This is due to the replication algorithm realizing that

the storage available was enough to increase the replication factor. In Household 2,

80% of the users files were replicated 4 times or more.

For comparison, the right bar in Figure 5.11 shows the replication state at the end

of the trace when the greedy replication algorithm is being used, with a replication

factor of two. (To make the results comparable we replayed the trace from the

later deployment against an implementation of Pod Base with the greedy algorithms.)

Household 1 chose not to provide their trace for privacy reasons, and thus we can not

include the results.

In households 6, 8 and 10, which have only two devices, the behavior of the two

algorithms is almost identical. In households 2-5 and 9, the adaptive replication

algorithm performed better, showing the advantages of dynamically calculating the

replication factor in the adaptive algorithms. Additionally, household 9 benefited

from a multi-step replication plan used by the adaptive algorithm, which was able to

make effective use of a device to transport data.

94

5.5.2 Availability results

A secondary goal of PodBase is to place replicas of files on devices where they are

likely to be useful. In our deployment, a plug-in specified that mp3 files should be

preferentially copied to devices that are capable of playing music.

In analyzing the trace, we found that three of the households had already manually

replicated all of their music files on the relevant devices. Thus, PodBase did not have

much opportunity to improve availability in these households. However, it did provide

a significant gain in availability for several of our households. Household 3 had its

entire music library of 415 music files made available on all three of its computing

devices. Household 7 had 851 music made available by PodBase and Household 8

had all 1318 music files made available. Household 9 had 1500 music files from a

music library that was otherwise loosely synchronized between their devices, made

available on two additional devices. An additional two households originally had a

significant number of mp3 files on their laptops but not on their desktops. PodBase

replicated these files onto the desktops, and the mp3 plug-in described in section 4.2.4

had externalized the music files. This happened during Used study 1 (i.e., before our

trace collection started), therefore it did not show up in our trace. The users gained

access to 426 songs and 2611 songs, respectively, on their desktop computers that

were previously stored only on their notebooks. There was no increase in availability

for one household that had no music files.

As described in Section 4.3.2, the replication algorithm first optimizes for dura-

95

bility, then cost (ti1ne to complete) , and finally availability. A concern might be that

by doing this, we are limiting the amount of availability the system can provide. We

looked at the impact of this optimization process on the one household (9) for which

the final replication plan did not result in full replication of files for availability. In

thi~ hou~chold the final replication piau rc~ults in 95% of the optimal availability.

The remaining 5% were not achieved because the replication had not yet finished at

the end of the trace collection, and not because of a limitation in the algorithm.

120

>.m 100 =o ca_
80 c_

E&. 60 ::::::s.c ea
40 ·- ::::::s ><o ca ...

::E.C
1- 20

0
1 2 3 4 5 6 7 8 9 10

Household Number

Figure 5.12 : Peak daily throughput for each household

5.5.3 Replication latency and throughput

We next look at the maximal replication throughput in each of the households. Since

all hou~eholds had many files to replicate at the beginning of the trace collection, the

rate at which data was replicated early in the trace is a lower bound for the total

replication throughput of a pool. This value in turn provides a lower bound for the

rate of new or modified data that a household could generate, such that PodBase

96

would still be able to keep up with replicating.

Figure 5.12 shows that the peak throughput varies among the households in our

deployment. The values range from 1.4 to 110 GB per day. This result shows that

PodBase can keep up with a high to very high rate of data generation, using only the

incidental connectivity that exists in our households.

u.
c
0

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

/" .•. ~~···························· · ····· · ········

.;'
,,. ~-..... ~ ...

0 ~----~--~~--~~--~~--~
0 100 200 300 400 500

Time to Replicate Files (h)

H. 1
H. 2
H.4
H. 7
H.9

Figure 5.13 : Replication latency for households 1,2,4,7,9

We now examine the replication latency, the elapsed time until a new or modified

file becomes replicated. If a file is not yet replicated, we include it in the CDF as

having an infinite latency. We first examine those households with relatively short

latencies. Figure 5.13 shows a CDF of how long it took to replicate a file. For

households 2 and 4, over 50% of files were replicated within approximately one day.

Households 1 and 7 took longer because there were extended periods with no connec-

tivity. Household 9 replicated gradually over the course of the trace, as connectivity

allowed.

Second, we show the latency of the households that took significantly longer to

LL c
0

1

0.8

0.6

0.4

0.2

0

!
I

. i
.~· - · - · - · - · -·- · - · - - ·-·j

0 1 00 200 300 400 500 600 700 BOO

Time to Replicate Files (h)

H.3
H. S
H.6
H. 8

H. 10

Figure 5.14 : Replication latency for households 3,5,6,8, 10

97

replicate their files in Figure 5.14. In these households, device connectivity is the

dominant factor in the replication latency. When there is connectivity, there are

sharps jurnps as files get replicated, followed by periods of disconnection, where no

replication happens.

As with the previous latency results, these are conservative, because in most

households, PodBase was busy replicating the user files found initially on the various

devices during a large part of the trace collection. In steady state, PodBase would

have to replicate only newly created or modified files, which would reduce the latencies

considerably. Nevertheless, PodBase was able to replicate data in a timely fashion ,

subject to available storage and device connectivity.

5.5.4 File Workload

In this section we make more general observations about the workload in the user

study.

98

Each of the households in the user study had on average 528,187 files taking up

332GB. After the initial crawl, on average of 21GB per day was generated by the

addition of new and modifications of existing files. These numbers are skewed by one

particular household that stored the disk image of an active virtual machine in the

file system; without this household, the value was 381MB per day.

Our normal households generate new or modified data at a minimal/ average/maximal

rate of 4.5/36.1/316 Kb/s, while the "heavy" household generates 2.3 Mb/s. At an

assumed upload bandwidth of 1 Mb/s, transferring the initial data while keeping up

with updates would require between 3.7 and 121.6 (median 31.82) days for the normal

households. (It would be infeasible for the heavy household, because the rate of new

data exceeds the network bandwidth).

These results show that for timely replication of data, PodBase's use of high

speed connections and storage devices within a household is important. For the

normal households, a broadband connection would suffice to replicate new data, but

the heavy household would require a faster Internet connection. Relying solely on a

broadband connection (e.g. to a cloud provider) for replication would require a long

period of full network utilization, and increase the latency for files to be replicated.

As in the previous study, we also looked at file modifications. (This data is based

on nine of our household, which allowed us to inspect their un-anonymized traces.)

In this case, on average, 14,94 7 (< 1%) of files were modified over the course of

the trace and there were 104,635 file modifications across all of the nine households.

99

We analyzed these modifications and found only 64 (0.0006%) of the modifications

concurrently updated the same file. Interestingly, as with the previous study, write

conflicts rarely occur among personal devices in our deployment.

5.6 Summary

In this evaluation, we have evaluated PodBase both through controlled experimen­

tation and through two user studies. We have shown that in the home environment

PodBase works as designed, and provides automatic availability and durability to

home users.

100

Part II

SLStore

101

In this part, we describe and evaluate SLStore. We first present the design of

the entire system, including the storage ease abstraction, an adaptive planning com­

ponent, and the sub-system that performs backup. We then present an evaluation,

which measures the performance, overhead, and cost of deploying SLStore.

102

Chapter 6

System Description

In this chapter we describe SLStore. We begin by giving a high level view of the

system components, and then describe each in detail.

6.1 System Overview

In this section, we give an overview of the major components of SLStore, their func­

tion, and how they interact with each other at a high level. A SLStore deployment

is composed of a network of nodes, each of which hosts a subset of the components

below. Figure 6.1 shows a sample deployment scenario.

Storage Leases: The low-level building block of SLStore is a novel storage abstrac­

tion called a Storage Lease (SL). Data stored under a storage lease cannot be deleted

or modified for a pre-determined period of time. The role of a storage lease in SL­

Store is similar to that of an off-line storage medium (e.g., tape storage) in enterprise

storage solutions. Data stored on an off-line medium cannot be deleted or modified

if the medium is not physically mounted. Because such media are only mounted

infrequently (e.g. as part of a tape rotation), an error, fault, or compromise would

have to go undetected for a long time in order for it to be able to corrupt all copies

of important data. Storage leases have the same property, but without requiring me-

Planner Planner

Backup Agent Backup Agent

r-
I

I

103

Figure 6.1 : A diagram showing 3 machines, each running one or more system com­
ponent, connected via a network. A disk with a clock indicates a storage lease device,
a disk without a clock indicates a conventional disk. Also shown is a connection to a
remote cloud storage provider that supports storage leases.

chanical action to mount or unmount the storage medium. In Section 6.2 we describe

the storage lease abstraction in detail, and show how it can be implemented.

Planner: The planner runs on each participating node. It takes as input the system-

wide history of data addition and deletion, as well as the information on the available

storage on the various storage devices (and possibly information about other services

such as cloud storage). The planner obtains this information from the storage alloca-

tors. Based on this information, it solves a linear optimization problem to compute

a backup plan that optimizes for maximal protection of data, given the available

resources. The planner is described in more detail in Section 6.4.

Backup agent The backup agent is the system component that actually performs

data backup. The backup agent takes two inputs. First, it takes information from the

planner about the backup plan currently in effect. The backup plans specifies how

often files should be backed up (incrementally or as part of a snapshot), on which

104

devices copies should be stored, and the period of the associated leases. Second, the

backup planner determines the list of files that should be backed up, for instance,

by scanning the filesystem for modified files. Based on this information, the backup

agent stores data (and any associated metadata) on the appropriate devices. A backup

agent runs on all participating nodes. The backup agent is described in more detail

in Section 6.5.

6.2 Storage leases

In this section we present a novel storage abstraction, called a Storage Lease (SL).

Storage leases can be used as a building block to protect data from operator error,

security breaches and most software errors. We rl.efine the abstraction, then explain

its requirements and properties. Finally, we show how to implement storage leases,

either within the firmware of a storage device or as part of a higher-level storage

service, such as cloud storage.

6.2.1 Motivation

In this section we provide background on current data protection techniques in both

enterprises and in the home anrl. small office environment. We motivate the introduc­

tion of storage leases by examining problems that are not currently addressed in the

small business and home environment.

105

Data protection techniques

Creating redundant copies of data is the key to making it durable, but different levels

of guarantees can be achieved depending on the way these copies are created and

maintained. We break these down into the following four levels. First, replicated file

and storage systems such as RAID [75] protect against storage device failure. Second,

on-line snapshots protect against user error and application software faults. Third,

creating off-line or write-once copies of data protects against storage system software

and hardware errors, as well as security compromises that can affect on-line data.

Lastly, creating additional off-site copies of the data protects against catastrophic

failures that wipe out an entire site. We analyze how these different measures are

usually applied in different environments.

Enterprise Environment

In an enterprise, data protection is a key IT responsibility. To minimize the chances

of data loss and to implement legally mandated data retention policies, a combination

of techniques are employed. Often enterprises use a tiered storage model where data

is stored on backup servers, and then eventually moved to offline tape after a certain

period of time. Servers often use some form of RAID configuration [75], and on-line

snapshoting (e.g., NetApp WAFL [44], Sun's ZFS [125], or Windows VSS [115]). Off­

line copies of the snapshot data are then created by copying the data onto tapes,

and archived manually or using a tape robot. Lastly, tapes or disks are transported

106

periodically to a safe location to create off-site copies.

Even though storage leases are not designed primarily for enterprise environments,

they may help improve enterprise backup practices by (i) write-protecting data until

it is has moved to offiine storage, and (ii) lowering the cost of the solutions that are in

place today by replacing expensive equipment like tape robots with the use of storage

lease-enabled disks.

Home and Small Business Environment

Homes and small businesses have many of the same problems as enterprise users in

that they have important financial or personal data that they wish to be retained.

However, they can not afford the same professionally managed infrastructure as in

the enterprise. Thus they are more vulnerable to viruses, security attacks, or even

user error which could result in data loss.

Currently, diligent users install backup software (e.g., Apple's TimeMachine [110]

or Microsoft's Backup and Restore [119]) but the fact that these backups are not

offiine implies that data is vulnerable to security compromises, like a virus or worm

infection that destroys on-line data, or even to software bugs that silently erase backup

data [36].

Some users may create off-line copies by periodically copying snapshots to write­

once storage (e.g., DVDs). But, because this process cannot be automated, it is

burdensome and often not performed on a regular basis (unless professional IT staff

107

is managing it, which is not practical).

Finally some users may use cloud backup as their means of data safety. However,

cloud providers give no guarantees about the persistence of data, and the users have

no knowledge about how the data is stored by the provider. If the provider make

an error, the data stored could be lost [55]. Furthermore, data stored on the cloud

can be overwritten, either by a malicious software or accidentally by the user. Also

a limited upload bandwidth to the cloud can lead to a high data transfer time and

therefore increase the window of vulnerability during which data is not backed up.

6.2.2 The storage lease abstraction

In this section, we present the Storage Lease (SL) abstraction. Storage leases can

be used as a building block to protect data from operator error, security breaches

and most software errors. We begin this section by defining the abstraction and its

properties.

The main goal of storage leases is to protect stored data, for a pre-determined

period of time, from accidental or malicious modification. Once written under a

storage lease, a unit of data cannot be modified or deleted until the lease expires.

During the lifetime of a SL, data stored under the SL is protected from modification or

deletion due to human error, worms, viruses or other security breaches, and software

bugs above the storage layer [36].

Storage leases provide the following guarantee. When a unit of data b is written

108

to an SL-enabled device D with an expiration time of t, the device ensures that:

At any time smaller than t, the device rejects write requests for data block b.

Furthermore, once a storage lease is written, the device can issue a certificate c

that attests to the storage commitment.

This guarantee holds despite arbitrary faults outside of the system component

that implements the storage lease. For instance, one of the solutions we will propose

is implementing storage leases in the firmware of a disk drive. In this case, this

guarantee holds despite any faults outside the device hardware or firmware (e.g.,

even if subsequently the host to which the device is attached becomes infected by

mal ware).

Note that writing a block with a storage lease of infinity has the same effect as

writing a block to write-once storage. Thus, write-once storage can be viewed as a

special case of a storage lease.

Benefits of a write protection spectrum

Storage committed under a storage lease cannot be reclaimed during the lease period,

but can be reclaimed anytime after the lease has expired. Thus, SL-enabled storage

covers a spectrum from conventional read-write storage (which can be reclaimed at

any time but does not protect data integrity) to write-once storage (which protects

data but can never be reclaimed).

This additional degree of freedom enables a continuous trade-off between data

109

protection and storage commitment, which is important in environments that lack

professional system administration: on the one hand, we need write protection, be­

cause taking storage off-line by manual or mechanical means is not practical. On the

other hand, we cannot backup all data in write-once storage, because many systems

produce large amounts of scratch data that would be expensive and unnecessary to

store permanently. Storage leases provide a degree of freedom that can be used to

resolve this tension.

Benefits of generating certificates

The certificate that is generated when writing a storage lease provides unforgeable

confirmation that the data was written with a certain lease period to a given SL­

enabled device.

Certificates arc useful when SL-cnablerl devices are attached to machines that

may be compromised. For example, consider the following scenario. A user has two

machines in a home or corporate network, m 1 and m2 , where m 2 is infected by a

virus but m 1 is not. When rn1 tries to use m2 's SL-enabled device to back up data,

the malicious software running on the machine might act is if it had stored the data

but in practice it discards it, leading m 1 to wrongfully believe the data had been

backed up. To prevent this attack, the backup agent can request a certificate from

the SL-enabled device. This certificate provides a signed confirmation of the write

operation.

110

Furthermore, as we will exemplify in Section 6.3.5, certificates can also enable

other uses of storage leases, namely to provide proof of storage commitment in en­

vironments where multiple parties from mutually distrusting administrative domains

need to interact, such as peer-to-peer storage systems or cloud storage.

Managing storage space-time

Storage leases prevent the corruption of stored data, even when a computer's oper­

ating system is compromised by an attacker. However, leases also introduce a new

attack vector: an adversary (e.g., a virus that has infected a machine) can commit

the resources of an attached SL-enabled device by storing large quantitates of useless

data with long-term leases. The effect of such an attack is less serious than data

corruption, as it is limited to preventing future use of the storage (denial-of-service).

Nevertheless, it is a threat that must be addressed.

To understand how we can mitigate this attack, we must precisely characterize the

resource that is being managed by an SL-enabled device. The resource commitment

associated with a storage lease is proportional to both the amount of data and the

period of the lease. This commitment is captured by the storage space-time Si = ni *ti,

where ni is the amount of data covered and ti is the period of lease i. The total space­

time 8 committed in a device is 8 = LiEL si, where L is the set of existing leases

(whether expired or not) in the device.

To mitigate space-time filling attacks, an SL-enabled device limits the rate at which

111

space-time can be consumed by new leases, i.e., dSjdt::::; R. The device enforces that

R can only be set once by the administrator installing the device; it should be chosen

to limit the space-time an attacker can consume within a given period. To illustrate

the usefulness of this rate limiting, assume that a virus infection or a security breach

is detected after no more than T detect' and that a device with capacity C has an

expected lifetime of f_,, i.e., after L units of time the clevice will be fillecl with storage

leases when used at its maximum rate. Then, we can ensure that an attacker can at

most consume 1% of the device's total space-time by setting R = 0.01T 0 *£ . Note
detect

that the attacker can choose to consume more data for a shorter time, or vice-versa,

but the damage is limited either way.

Chasing R involves a trade-off between limiting the damage an attacker can cause

ancl aclmitting legitimate leases at a sufficient rate to cover peak demand. In practice,

however, satisfying the latter concern is not as critical as it may seem. First, there is

often high demand for space-time during the installation of a new storage device, e.g.,

when an operating system or a database is installed. We can make sure this initial

demand is not subject to the rate limit by setting R after the initialization. Second,

legitimate users of leases (e.g., file systems or backup applications) can work around

the rate limit should they exceed it during peak demand; they can simply request a

lease with a shorter period than desired, and extend the lease prior to its expiration.

An attacker, on the other hand, only has limited time until detection, and can at

most commit R · Tdetect of space-time.

112

Nevertheless, if an attack is not detected for a long time, a large amount of space­

time may be wasted. To enable recovery from such an event, SL-enabled devices may

provide a hardware switch (DIP switch or jumper) on the circuit board of the device,

which can be used to reset all leases and the rate R. The switch can be operated by

an expert as part of the system recovery. Note that the guarantees of storage leases

are not affected by the presence of such a switch, because it cannot be activated by

any software action.

Storage lease interface

The storage lease interface is similar to that of a block device. Defining the storage

lease interface at the block level allows an implementation of storage leases in the

firmware of a storage device (e.g., a disk drive). Such an implementation depends

only on the integrity of the disk firmware and hardware, and is robust to bugs and

compromises of all higher-level software.

The interface, as shown in Table 6.1, contains three key elements that depart from

a traditional block device interface.

Lease period: The block write operation takes the expiration time t for the lease of

the newly written block as an argument. A write fails if the target block is currently

protected by a lease, or granting the lease would exceed the rate limit U. There is

also an update operation used to extend the lease of an existing block, and an attest

operation used to obtain the lease period of an existing block.

113

Certificates: The storage lease interface allows clients to obtain a signed lease cer­

tificate after data has been written with a given retention period. Note that the

certificate must cover the expiration time (and not the lease duration) to prevent

replay attacks.

Batching: To amortize the overhead of signature generation for certificates, a se­

quence of SL operations can be hatched together and a single certificate issued for

the batch. Reducing the number of signatures to one per batch instead of one per op­

eration greatly improves the performance of, for instance, large file writes consisting

of many block writes. Also, we must give upper layers control over how operations

are delimited within a batch, so that the certificate can identify objects such as files

or directories rather than blocks. Therefore, at any time within a batch, it is possible

to obtain a hash of a series of data blocks operated on as part of the batch. These

hash values are what is attested to when a certificate is subsequently generated.

Thereforefore, certificates have the following format:

[Hash(oi + 02 + .. +on), D]av where 01, ... ,On is a sequence of operations in a batch,

as delimited by the application, + indicates concatenation, and D the SL device.

Moreover, oi is the concatenation of the operation identifier, arguments and results

of the ith operation in the batch.

114

6.3 Implementing storage leases

Next we focus our attention on how to implement the storage lease abstraction. We

discuss three possible implementations: in the firmware of a disk device, in the OS

driver of a storage device, and as part of a cloud storage service.

6.3.1 Firmware implementation

One implementation of storage leases adds the required functionality to the firmware

of a disk storage device. Implementing storage leases at this level has a significant

advantage: the trusted computing base required to enforce the properties of storage

leases is limited to the firmware and the device hardware. Software faults and com­

promises affecting applications, file systems and operating systems do not affect the

storage lease guarantees.

Implementing storage leases requires four tasks:

• Maintaining lease information for each data block and enforcing write protec­

tion.

• Keeping track of real time to decide when a lease has expired.

• Controlling the rate of space-time committed to leases.

• Generating signed lease certificates on demand.

We consider each of these tasks in turn.

115

Keeping lease information and enforcing protection

The firmware sets aside a set of data blocks on the storage device, which contain

the lease expiration times for each of the primary data blocks (we call these lease

blocks). Given that a 16-bit timestamp is sufficient for a lease granularity of one day,

the overhead for storing an array of timestamps, one for each 4KB data block, is less

than 0.05%.

Before writing to any block on the device, the respective lease block must be

checked, and the write fails if there is an unexpired lease protecting that block. To

speed up this step, a cache of lease blocks is maintained in the on-disk DRAM cache.

Modified lease blocks are flushed to disk before the certificate for the respective batch

of writes is returned (only then can the application be sure that the storage lease was

successfully created).

The lease blocks are grouped on the physical disk into extents of at least the

same size as the cache line of the on-disk cache. Therefore, once the disk head is

positioned for a desired lease block, an entire extent can be read or written efficiently

to/from the cache, taking advantage of likely spatial locality. The lease block extents

are placed equidistantly on the disk, such that an extent contains leases for the data

blocks closest to the extent. This choice minimizes, subject to the choice of lease block

extent size, the seek distance between a data block and the lease block containing the

associated lease. For instance, if the block size is 4KB (containing 2048 lease values)

and a cache line has 64 blocks, then a lease block extent of 64 blocks follows every

116

extent of 64 * 2048 = 128K data blocks.

When lease blocks become corrupt, the disk can no longer validate whether a write

to the corresponding data block is allowed. This case can be handled in different way,

namely: (i) replicating lease blocks, which would double the overhead, (ii) optimisti­

cally allow the write, risking losing data, or (iii) upon detection, set all corresponding

leases to the lifetime of the disk. Because a data block corruption is a relatively rare

event, we decided for option (iii) because it is always safe.

Keeping real time

Keeping track of real time to determine when leases expire presents a design challenge.

We cannot depend on the real-time clock of the attached computer, because that

clock could be compromised by an attacker. Alternatively, adding a hardware real­

time clock with the required battery to the circuit board of a storage device would

add significant component and maintenance cost.

Fortunately, two observations come to the rescue. First, it is sufficient for the

device to maintain a time that is earlier or at most equal to the actual real time.

Having an earlier time means that leases are enforced longer than needed, which is

conservative. Second, the passage of time can be tracked at a coarse granularity,

because leases are for long periods, e.g. months. Thus, a coarse precision on the

order of one day is acceptable.

Given these observations, it is sufficient to have the operating system periodically

117

provide a signed time certificate generated by a trusted time server to the device.

A fault or compromise affecting the OS can at worst delay the flow of valid, up­

to-date time certificates, which would delay the expiration of leases. As mentioned,

delaying the expiration is conservative and causes no harm to data (though it delays

the reclamation of storage).

The requirements for the trusted time server are straightforward in terms of preci­

sion and query load. As mentioned, a precision as low as one day is sufficient. Serving

a cached certificate even to hundreds of millions of devices once every hour is straight­

forward with current server technology. However, a successful attack to significantly

advance the clock on the server could place vast amounts of data at risk. Therefore,

the signing keys must be kept off-line and certificates issued based on a manually

verified clock. Once a day, a new certificate can be generated at an off-line computer

and manually transferred to the on-line time server, using a portable storage device

like a USB stick. Such time servers could be operated, for instance, by the vendors

of SL-enabled storage devices.

We can further strengthen this scheme by requiring that k certificates are pre­

sented by independent trusted sources.

Rate-controlling space-time

As described in Section 6.2.2, the rate at which space-time is allocated to new leases

is limited to prevent a compromised system from filling the disk with long-term lease

118

commitments. The parameter R can be set once on a new disk (or after a manual

reset) using the Set Rate operation.

Whenever a new lease is requested or an existing lease extended, the firmware

checks the sum of space-time commitments due to new or extended leases during the

past 24 hours, and rejects the request if the rate exceeds R. Of course, the system

can retry a rejected request with a shorter lease period. Note that a request may be

denied because the firmware's notion of real-time is behind. In this case, providing

the disk firmware with a recent time certificate resolves the problem.

Generating lease certificates

The device firmware must generate signatures for certificates, and verify the signatures

of time certificates.

The crypto primitives must be strong enough to prevent attacks on the signing

keys. Because the keys need only be secure for the lifetime of a storage device (i.e.,

on the order of 5 years), we do not foresee the need for updates of the crypto libraries

or keys on a device. The necessary keys can be assigned, and their validity verified

once the devices are deployed, by the device manufacturer; crypto algorithms can be

upgraded with each new device generation.

Another possible concern is the performance penalty due to signing. However,

hatching reduces the frequency of signature generation to a point where it is not of

concern.

119

Finally, the state associated with a batch does not require more than a few hundred

bytes, and can be stored in the device controller's existing RAM.

Firmware updates

To prevent an attacker from bypassing the lease protection, firmware updates must

be protected. Therefore, the disk firmware must accept only updates that are signed

by the device vendor or another trusted authority. The crypto infrastructure already

in place for verifying time certificates can be reused for this purpose.

6.3.2 Driver implementation

An implementation of storage leases in the firmware of a storage device requires

support from the device vendor. We believe that such support is feasible, because

the cost for implementing leases is moderate and vendors have an incentive to include

value-added features. For instance, disk vendors have recently added support for data

encryption to disk drives [1].

If SL-enabled storage drives are not available, an alternative implementation is to

provide the functionality as part of the storage device driver. Such an implementation

is straightforward; however, a driver implementation increases the computing base

trusted to enforce storage leases to include the OS kernel. Thus, the leases would be

vulnerable to bugs and compromises of the OS kernel. This problem can be mitigated

by reducing the size of the TCB, either through the use of a micro-kernel or a virtual

machine monitor.

120

6.3.3 Storage enclosure implementation

Storage leases can also be implemented as part of a storage enclosure, for instance,

a RAID box. Low-end enclosures of this type are now inexpensive enough even

for home environments. Again, the implementation is straightforward. The storage

enclosure firmware becomes part of the computing base trusted to enforce storage

leases. However, unlike an operating system, this firmware is embedded, does not run

applications and has a narrow interface. Therefore, it is likely to be far less vulnerable

to compromise than an OS.

6.3.4 Cloud storage implementation

Storage leases can be implemented as part of a cloud storage service as well. In

this case, the cloud service implements and ensures the guarantees associated with

storage leases. Here, the trusted computing base for storage leases comprises the cloud

service implementation. While this computing base is substantial, it is professionally

managed and can be designed to have a narrow interface that minimizes the attack

surface. Moreover, the faults it may suffer are unlikely to be correlated with a fault or

compromise in the customer's computing base. Thus, a combination of client-side SL­

enabled storage devices and an SL-enabled cloud service provides strong protection

from operator error, software faults, security compromises, and even catastrophic site

failures.

121

6.3.5 Applications of storage leases

In this section, we sketch applications of storage leases beyond SLStore. A storage

lease enabled device appears to the operating system as a normal block device with

an augmented interface. As such, the device is fully backward compatible and an

unmodified operating system can use it as if it was a normal device. To make use

of storage leases, however, an operating system, file system or application has to be

modified to use the extended interface, and it has to be prepared to deal with the

semantics of blocks protected by a lease.

In the following, we sketch four applications. The first a lease-aware snapshotting

file system, is representative of integration with the existing operating system and file

system. The other two, peer-to-peer storage and cloud storage, highlight interesting

uses of lease certificates.

Lease-aware file system

A tight integration of lease-based storage requires a lease-aware file system. For in­

stance, a lease-aware snapshotting file system could use leases to protect the integrity

of in-place, copy-on-write snapshots, obviating the need to copy data to a dedicated

device as part of a backup.

Starting from a snapshotting file system like WAFL or ZFS, the required changes

arc relatively modest. First, the file system must be cxtcmled to request leases for all

data and metadata blocks associated with a given snapshot. Second, the file system

122

allocator must be made aware that leased blocks cannot be reclaimed until the lease

expires. Lastly, metadata stored under a lease must be append-only. The changes are

very similar to those required for SSD-aware file systems, where data blocks cannot

be modified and reclaimed freely and individually. The design of a lease-aware file

system is beyond the scope of this paper.

Peer-to-peer storage

Lease certificates can be used as proof of resource usage in volunteer-based systems

where users might not have the right incentives to contribute to the system. For

instance, in a cooperative peer-to-peer backup system [21], peers might pretend to

contribute their fair share of resources, while in reality they are using the system

without storing data on behalf of others. With storage leases, peers can demand

lease certificates to other peers that are supposed to store their data, and exclude

those that refuse to present lease certificates.

Cloud storage

Lease certificates can also be used by cloud providers to prove to their customers

that their data is being stored for a certain period, and also that certain replication

levels are being met. This would add value to a cloud storage service, since it would

increase transparency, and overcome one of the main concerns that deter potential

customers of cloud services, namely that a lack of proper data management from the

cloud provider might lead to data loss, as has happened in the past [55].

123

6.4 Planner

In this section we discuss the planner, which generates a backup plan which conforms

to a pre-defined backup policy. We begin with a description of backup policies.

6.4.1 Backup Policy

The backup policy defines how often a snapshot of the system's data should be created,

how long these snapshots should be retained, and how many copies of the snapshot

data should be stored on and off site. An example backup polky may specify that

daily snapshots are stored on site for one week, that weekly snapshots are stored with

one copy on site and another copy off site for one month, and that yearly snapshots

are stored indefinitely off site. Here, it is assumed that on site copies are stored on

SL-enabled devices and that off site copies are stored on an SL-enabled cloud storage

provider, each with a lease period equivalent to the retention period of a snapshot.

SafcStore defines a set of default policies, from which the planner automatically

selects the best feasible policy, given the available resources and the prevailing work­

load. If the resources are not sufficient to sustain the weakest default policy, or of

the current policy will lead to an exhaustion of storage within the foreseeable future,

the users are prompted to add more storage to the system. Sophisticated users can

also define their own policies, but given that SafeStore is designed for lay users, it it

discouraged.

The set of default backup policies are shown in Tables 6.2 and 6.3. The de-

124

faults are chosen to provide reasonable policies that maximize data protection with a

given amount of available resources. They are influenced by common best practices

in enterprise data management, and in commercial backup programs like Apple's

TimeMachine [110].

6.4.2 Planning Process

The planner is responsible for (i) choosing the best backup policy from the set of

default policies, and (ii) computing a backup plan that satisfies this policy. vVe

discuss each of these task in turn. The planner formulates each task as a linear

optimization problem and uses a state-of-the-art solver to compute a solution.

Choosing a policy

To choose a policy, the planner considers the currently available storage and space­

time resources on SL-enabled devices in the system, as well as the expected rate at

which data is likely to be generated or modified in the future. To estimate the latter,

the planner looks at the rate at which data has been backed up in the recent history.

Based on this information, the planner determines the best backup policy that is

either sustainable indefinitely, or leads to an expected storage exhaustion sufficiently

distant in the future. By default, we consider a predicted exhaustion of storage within

30 days as acceptable, because it leaves users sufficient time to purchase and install

additional storage, or to manually choose a weaker backup policy. (Because SafeStore

is designed for lay users, the latter is strongly discouraged.)

125

The planner repeats this optimization daily, in order to be able to adjust to changes

in the workload and storage availability. If the available resources drop below a level

where the minimal backup policy can be implemented, users receive a strong warning

that data can no longer be adequately protected.

Computing a backup plan

Given a policy choice, the planner next computes an assignment of snapshots to

SL-enabled devices. This assignment is guided by three concerns:

• A snapshot should reside in its entirety on one device whenever possible. This

policy maximizes the chance that a snapshot is available, considering that de­

vices may fail and partial snapshots are of limited use.

• Related snapshots of the same data should be placed on the same device to

maximize the benefits of de-duplication, while maintaining the same high avail­

ability of snapshots in the presence of device failures.

• The available storage space and storage space-time of all devices should be

utilized.

The resulting assignment is then communicated to the backup agents.

126

6.5 Backup Agent

Given a backup policy and backup plan provided by the planner, it is the task of

the backup agent to actually back up user's data. In this section, we describe the

operation of the backup agent. Note that a backup agent may run on any participating

node, including nodes that do not contain an SL-enabled storage device.

We describe the steps involved in backing up and restoring data in the following

subsections.

6.5.1 Snapshots

A snapshot is a collection of files that represent the state of a (part of a) file system

at a certain point in time. Because a snapshot is normally created concurrently with

other activity on a given machine, the snapshot may not be consistent with any

instant in the evolving state of the file system. This is a property of many backup

applications and not unique to our solution. The alternative is to take the system

offline while a checkpoint occurs (not practical) or to use a file system that explicitly

support copy-on-write and checkpoints (e.g., ZFS).

A snapshot is made in two steps. The first step is to push all new data to the

SL-enabled devices and gather lease certificates for the data. The second step is to

migrate pointers to any unchanged data to the new snapshot and to update the lease

period for that data. The decision about how to store new data is determined by the

planner, as discussed in the previous section.

127

In order to be able to recover from catastrophic failures, a root for the last known­

good snapshot must be locatable on the SL-enabled device. An initial block is pre­

allocated to serve as the root of a chain of snapshot pointers. When a new snapshot

is added, a pointer to that snapshot on disk is written into this block, and then a new

block for the next pointer is pre-allocated. This process repeats to form a chain. Each

block in this chain is written to the SL device with an infinite lease period. When a

the last known-good snapshot must be found, this chain is followed until the point

in time desired or the chain ends. If while the system was compromised, this data

structure was written to, the chain is still valid up until the point of compromise,

and the last known-good snapshot is the end of the chain. If an attacker tries to

compromise this chain, it will be detected the next time a good node attempts to

make a snapshot.

6.5.2 Determining which files have changed

It is assumed that between successive snapshots, the backup agent is notified of all

files that are being created or modified. This list is used to identify files that should

be included in the next checkpoint. The method by which it is determined which files

are changed is not important. Many operating systems provide an API by which an

application can be notified of files that have been changed in a particular tree of the

filesystem. When possible, the backup agent will leverage such API's. Otherwise, a

separate process can crawl the file system and look for changes since the last snapshot.

128

6.5.3 De-duplication

The backup agent performs de-duplication, so that files stored on the same machine

with identical content are backed up only once. For this purpose, the backup agents

cache the lease certificate of each file they have backed up. During a snapshot creation,

a backup agent broadcasts a query to determine if the file has already been backed up

by another agent. Other backup agents respond with the associated lease certificate

of each requested file they have backed up. In this case, the querying agent can store

the existing certificate in its checkpoint, instead of actually writing the file.

Queries and responses are hatched (1000 files per batch) for efficiency. Combined

with the limited number of nodes in home office and small business environments,

the simple broadcast approach has acceptable performance and overhead. Note that

due to the secure lease certificates, faulty or compromised backup agents can at worst

cause redundant data to be backed up.

6.5.4 Restoring a snapshot

When a storage device fails or a user wishes to roll back the system state, then a

restore from a checkpoint occurs. The first step is to recover the checkpoint data

structure. Then we gather all blocks in the checkpoint, and write them to the desti­

nation files that are recorded in the checkpoint data structure. Once the blocks are

recovered, the data contained can be verified by hashing the contents and matching

them to the hash and the signature of the hash stored in the receipts. Once all blocks

129

have been written and verified, the restore is considered successful.

6.5.5 Snapshot verification and repair

Periodically all currently live checkpoints are verified to ensure that the data stored

matches the recorded hashes. This process is done in the background. If an error

is discovered then the system attempts to repair the problem by making additional

copies of the data in question.

130

Function Description and Exceptions

Bid startBatch() starts a new batch and returns its id; fails if too
many open batches

void write(Bid id, Bnum b, writes data block #b from buffer buf with lease
expiration time t;

Expiration t,void *buf) fails if block #b is protected by a lease, or space-
time rate limit exceeded

void read(Bid id, Bnum b, void *buf) reads block # b and stores it in buffer buf
void update(Bid id, Bnum b, extends the lease of block #b to expiration time

t· ,
Expiration t) fails if t is earlier than the block's current lease

expiration, or space-time rate limit exceeded
Expiration attest(Bid id, Bnum b) returns the current lease expiration time for block

#b, or zero if block is not covered by an active
lease

Hash hash(Bid id) returns the accumulated data hash in the batch,
then reinitializes the hash accumulator; read,
write and attest operations update the hash ac-
cumulator with the hash of the block they act on

Certificate getCertificate(Bid id) returns a certificate confirming the set of opera-
tious in the hatch; the certificate is a signed hash
of the set of successful operations in the batch,
including their arguments and results

void endBatch(Bid id) terminates a batch; subsequent invocations of any
operation with this batch id fail

void setTime(TimeCerticate T) Advances the device's clock to the time provided
in the certificate T; fails if T's signature can't be
verified; ignored if T's time is less than or equal
to the device's current time

void setRate(long rate) Sets the rate at which the device admits new
leases by specifying the maximal rate of storage
space-time committed per day; only the first in-
vocation succeeds

Table 6.1 : Storage lease device interface. Additionally, the device supports normal
read and write operations. However, write operations to a block with an active lease
fail.

131

Policy Guarantees Notes

1 copy of snapshot + 1 offsite Data that was stored when
a snapshot St was created
is resilient to site, hard­
ware and software failure for
R(St)

Requires additional site or
budget for cloud storage

2 copies of snapshot

1 copy of snapshot

Data that was stored when
a snapshot St was created
is resilient to hardware, soft­
ware failure for R(St)
Data that was stored when
a snapshot St was created is
to software failure for R(St)

Tolerant of the failure of any
SL device storing checkpoint
data in a short period of
time
Tolerant only to failure of
node storing original data

Table 6.2 : Replication policies in order from strongest to weakest. The planner
chooses the strongest feasible policy from this table, and then chooses the best feasible
snapshot schedule from Table 6.3.

Snapshot Type (St) Retention Time (R(St)) Notes
Yearly Indefinitely Minimum snapshot schedule
Monthly 1 Year Ability to do monthly snap-

shot implies yearly snap-
shots

Weekly 1 Month Ability to do weekly snap-
shot implies monthly snap-
shots

Daily 1 Week Ability to do daily snapshot
implies weekly snapshots

Hourly 1 Day Ability to do hourly snap-
shot implies daily snapshots

Table 6.3: Snapshot schedules, ordered from weakest to strongest.

132

Chapter 7

Evaluation

In this chapter we evaluate the performance of SLStore. We first evaluate the per-

formance of a storage lease device, which SLStore is built upon. We then describe

the implementation of our prototype system. We then conduct a series of controlled

experiments where we verify the system functions as designed. We follow this by run-

ning a set of trace-based experiments, whose goal is to measure the cost and overhead

of running SafeStore in its target deployment scenario.

7.1 Storage lease evaluation

In this section, we evaluate the costs of storage leases. There are two main sources of

overhead: the storage costs for the lease values, and the performance costs of checking

leases, updating leases, and producing lease certificates.

As mentioned in Section 6.3, the storage overhead of a 16-bit lease value for each

4KB block is less than 0.05%1. Lease values must be checked during each block write,

leases values must be updated after a batch of block writes with storage leases, and

a lease certificate may need to be generated when a batch terminates. The cost for

1This value is conservative, because it may be possible to include a lease value within the existing
low-level framing information stored with each block when a disk is formatted.

133

these operations depends on the placement of lease values on the disk, the policy for

caching lease values in the disk controller's DRAM cache, and in the case of lease

update and certificate generation, the batch size. Our evaluation seeks to quantify

these overheads, explore the tradeoffs among different lease value placements, caching

policies and batch sizes, as well as the performance impact on real applications.

We use an implementation of storage lease in the DiskSim [14] disk simulator to

explore different lease value placements and caching policies under different workloads.

DiskSim evaluation

In this section, we present results from an implementation of storage leases in DiskSim.

Experimental setup

To implement storage leases in DiskSim, we made modifications to support a subset of

the storage lease API (i.e., startBatch, write, read, endBatch), reserve a region of the

disk for lease blocks, support caching of lease blocks, and implement lease certificates

as described in Section 6.3.

We use a validated disk model included in the DiskSim distribution. This disk is a

15K RPM Seagate 15K.5 drive, with a capacity of 146GB and an on-disk cache size of

16MB. We did not have access to the exact details of the internal cache organization,

so we configured both disk models to use segmented LRU cache replacement and a

write-through cache policy for writes. We used this particular disk model (A SCSI

disk manufactured in 2007), as it was distributed and validated by the providers of

Workload Type Description Amount of 1/0 Think Time Identifier
Sequential All data read/written to sequential blocks 400MB 0 SR/SW
Local All data read/written to blocks with N blocks 400MB 0 LR/LW
Random Random blocks read/written disk 400MB 0 RR/RW
Bittorrent Download of movie file 3087MB 4231.91 BT
Game Playing a strategy game 659MB 3517.8 G
Install Downloading and installing Firefox 647MB 221.123 IN
Movie Viewing a movie 1000MB 7391.63 M
Web \Vchsurfing and n1ail t·ca.ding 591MB 3770.6 w
Bulk Sequential write Bulk background write using storage leases 1000MB 0 B

Table 7.1 : Workloads used in evaluation

135

ID Placement
B The lease values are stored in a single extent of 4KB blocks at the beginning of the disk.
Sx The lease values are stored in equidistant extents of x 4KB blocks,

followed by an extent of x * 2048 associated data blocks.
I The lease value is stored together with the associated block.

Table 7.2 : Placements of lease values

ID Lease cache configuration
u Lease blocks are cached alongside normal data blocks in a unified cache.
Cx x% of the cache is dedicated to storing lease blocks.
I The lease value is cached along with a cached data block.

Table 7.3 : Lease cache policies

DiskSim.

Table 7.1 list the workloads used in the evaluation. We use the DiskSim synthgen

module to generate three different synthetic workloads. The random workload gener-

ates a sequence of single-block writes to random blocks on the entire disk. The local

workload generates single-block writes to random block numbers within a range of

4000 consecutive blocks from the current position. The sequential workload generates

single-block writes to consecutive block numbers. In each workload, a total of 400MB

of data is being written.

In addition, we gathered several I/0 traces from an author's MacBook Pro note-

book with 135GB of storage and the HFS+ file system. The traces were gathered

using the iosnoop script, which is a wrapper around the DTrace [29] utility, and post-

processed into a format usable by DiskSim. During each of the trace collections, the

described activity was performed, while normal system and user background tasks

136

were running (e.g. updating the mail database, or reading configuration files for

Skype). The I/0 from these tasks were recorded in the trace as well. Unless oth­

erwise stated, we ignored the think times between consecutive disk requests when

re-playing the traces, which amplifies the load imposed by the trace on the storage

lease device and yields conservative results.

Lease lookup overhead

Prior to a write operation, the associated lease value must be checked to decide if the

write can proceed. The cost of this check depends on several factors: the placement of

lease values relative to the associated blocks on disk; the policy and size of the cache

for lease values; and the workload. We begin by measuring the impact of the lease

lookup for different workloads, and for different lease value placements and caching

policies.

We experimented with the lease value placements shown in Table 7.2 and the

lease cache configurations shown in Table 7.3. The "I" cache configuration makes

sense only with the "I" placement; in this configuration, we generously assume that

the 16-bit lease values can be stored on disk and in the cache without reducing the

effective size of disk or cache. Kate that the line size of the cache is 16 blocks (4KB

each). The lease blocks are aligned such that a cache line is used in its entirety either

for lease blocks or for data blocks. For placements with less than 16 blocks per lease

extent, we reduce the cache line size accordingly to avoid the obvious loss of cache

prefetching efficiency.

~
Q.
.c
m = o.a 2
.c 0.6
~

Cl» 0.4 .~
ii 0.2 e
0 0 z

S4 sa S16 S32 S64 S12a S256 S512 B

Layout

SR ­
sw ­
LR ­
LW ­
RR ­
RW -

137

Figure 7.1 : Normalized I/0 throughput (ops/sec) for synthetic workloads, with
different lease placements shown on the x axis. The cache configuration is Unified
(U), except for the inline (I) placement, where lease values are cached inline (I). The
results are normalized to the throughput without leases.

~
Q.
.c BT -
m = o.a 0

c -
IN -.c 0.6

~

M -
w -

Cl» 0.4 ~
ii 0.2 E
0 0 z

S4 Sa S16 S32 S64 S12a S256 S512 B

Layout

Figure 7.2 : Normalized I/0 throughput (ops/sec) for trace workloads, with different
lease placements shown on the x a.."Xis. The cache configuration is Unified (U), except
for the inline (I) placement, where lease values are cached inline (I). The results are
normalized to the throughput without leases.

Figures 7.1 and 7.2 show the normalized throughputs for the synthetic and trace-

based workloads, respectively, with a unified cache (except as noted in the caption)

and different lease value placeulCnt~. VVe nu:tke the following observations:

• 816 appears to be the best overall placement, because it has good performance

on the synthetic workloads (including the important sequential reads) and the

trace-based workloads.

138

• Random writes (RW) are the worst-case workload for storage leases. The

throughput of random writes is slightly less than half of that without leases,

because caching is not effective in absorbing the disk access to read the lease

value, which is required to validate the write. In practice, systems tend to avoid

random writes to disks because of their inherently poor performance; therefore,

we believe that the additional overhead should have limited impact on most

systems:

• Ignoring the 84, 88 and I placements for the moment, the workloads are not

strongly affected by the placement. In particular, the trace-based workloads

all achieve between 8x and 100% of the normalized throughput. Note that

the traces are replayed without think times; in a replay with think times, the

increase in completion time resulting from storage leases would be negligible.

• The in-line placement (I) has very poor throughput for writes, because every

block write requires an additional disk rotation between reading the lease value

and writing the block. Caching is not effective, because the placement allows

no pre-fetching of lease values. Inline placement also has the highest overhead

on the trace-based workloads.

• The 84 and 88 placements achieves superior throughput for 8W, LR and RR

at the expense of a significant drop in sequential read (8R) performance. The

reason is that the shorter cache line size benefits these workloads, while 8R

139

benefits significantly from the increased pre-fetching that comes with a larger

cache line size.

~
Q.

.s::.
Ct = 0.8 e

.s::. 0.6
~
G>

.!:i 0.4
ii 0.2 e
0 0 z

Unified Co.39 Co.76 C1 .55 C3.1 C6.25 C12.s C2s Cso

Cache Configuration

SR ­
sw ­
LR ­
LW ­
RR ­
RW -

Figure 7.3 : Normalized I/0 throughput (opsfsec) for synthetic workloads, with
different cache configurations shown on the x axis. The total cache size is 16MB in
all cases, and the lease value placement is 816. The results are normalized to the
throughput without leases.

~
Q.

.s::.
I

BT -
Ct = 0.8 e

.s::. 0.6
~

c -
IN -
M -
w -

G> 0.4 !:t
ii 0.2 e
0 0 z

Unified Co.39 Co.76 C1 .ss C3.1 C6.25 C12.s C2s Cso

Cache Configuration

Figure 7.4 : Normalized I/0 throughput (opsjsec) for trace workloads, with different
cache configurations shown on the x axis. The total cache size is 16MB in all cases,
and the lease value placement is 816. The results are normalized to the throughput
without leases.

Next, we explore how different cache configurations affect the overhead of stor-

age leases. Figures 7.3 and 7.4 show the normalized throughputs for the synthetic

and trace-based workloads, respectively, with the 816 placement and different cache

configurations.

140

The unified cache configuration achieves the best throughput across all synthetic

workloads. While C12.5 , C25 and C50 achieve better throughput on some of the trace

workloads (C and IN), they have slightly worse throughput on sequential writes,

which is an important workload. We conclude the unified cache configuration is the

best overall. This result is intuitive, as it provides the greatest flexibility iu using the

cache resources in the way most appropriate for a given workload .

We have performed additional experiments to explore many combinations of lease

value placement and cache configuration. They confirm that Sl6 and a unified cache

is a good overall configuration across the workloads we have studied.

Cl)

E 1.1 i= 1.09 Disk 1 Cl)
en 1.08 c 1.07 0
c. 1.06 en
Cl) 1.05 0:: 1.04
0 1.03
Cl) 1.02 C)
ns 1.01 ...
Cl) 1 >
c(BT c M w

Workload

Figure 7.5 : Average per-operation I/0 response time for the trace workloads. The
traces were replayed with the recorded operation inter-arrival times (think times),
and the per-operation response times measured. The placement is S16 and the cache
configuration is unified. The results are normalized to the average per-operation
response time without leases.

Figure 7.5 shows the average per-operation response time in our trace-based work-

load, with the S16 placement and a unified cache. Here, we played the operations in

the traces while observing the recorded inter-arrival times, and measure the response

141

time for each operation. The increase in response time due to storage leases on the

trace based workloads is between 3 and 23%.

Lease write overhead

Next we focus on workloads where data is written with a storage lease. In this case,

there are additional overheads for writing lease values and for generating a lease

certificate at the end of a batch of writes with storage leases.

In the experiment, we run the different trace workloads (replayed without think

time) concurrently with a mock backup workload, which writes 1GB of data sequen­

tially in batches of increasing size. A lease certificate is requested for each batch. We

assume that the disk controller has a crypto co-processor, which efficiently computes

cryptographic data hashes and RSA signatures. Such crypto chips are inexpensive

and widely available in devices like broadband wireless routers. In our simulation,

we assume an inexpensive, low end coprocessor like the SafeNet SafeXcel-1741 [89]

which can hash data at 325MB/s, and generate an RSA signature in 8.4ms. We added

support to DiskSim to keep track of the crypto co-processor utilization and block if

a new request is posted while it is still busy with a previous request.

In addition to the cryptographic overhead, the updated lease blocks must be

written to disk when the end of a batch is requested. This requires flushing all

modified data and lease blocks associated with that batch from the cache.

Figure 7.6 shows the throughput of the combined trace and mock backup workload

142

for different batch sizes, normalized to the throughput of the same workload on a disk

without lease support. Decreasing the batch size increases the frequency at which the

signing occurs and dirty lease blocks must be flushed to disk. The results show that

decreasing the batch size below lOl\tiB has a significant impact on performance. In

order to get good performance for storage lease writes, the sizes of the batches should

be maximized. In backup applications, this is easy to achieve. It should be noted

that our results are conservative, because (i) we assume a low-end crypto chip (more

powerful co-processors can generate an RSA signature in tens of microseconds), and

(ii) we replayed the trace workloads without think times.

~
~

.s:::
Ct
::I 0.8 0
..c 0.6 ...
-a
.§ 0.4
ii 0.2 e
0 0 z

256K 512K 1M 10M 20M 50M

Signing time

100M

-c -
IN ­
M ­
w -

Figure 7.6 : Normalized throughput (I/0 ops/sec) for combined trace and mock
backup workload with lease, with different batch sizes shown on the x axis. Crypto
processor with 325 MB/s hash throughput, RSA latency 8.4ms. Unified 16MB cache,
placement S 16.

7.1.1 SLStore evaluation

7.1.2 Implementation details

We have developed a prototype of SafeStore, which includes an implementation of a

SL-enabled device. The storage lease device was implemented as a user level Java

143

wrapper for an ordinary disk device, because we did not have access to the firmware

of a real disk. In the implementation, all blocks within a batch are written to a

single file, using standard read and write system calls. For signing receipts we use

RSA [86], and for computing hashes we use SHA1 [69]. All encryption and hashing

implementations are from the BouncyCastle [12] Java library.

The rest of SafeStore is also implemented as a user level Java program. Our proto­

type implements all of the functionality described in the previous sections. SafeStore

utilizes BerkeleyDB [6] as the storage back end for storing the checkpoint data struc­

ture, which includes a list of files, and the receipts that correspond to those files. In

order to perform de-duplication, we query the other nodes in the system using appli­

cation level multicast, which is implemented using the Free Pastry library [7 4]. The

SafeS tore code base currently consists of 20,738 lines of code, not including libraries.

The planning module in SafeStore makes a series of a calls to an outside linear

programming solver when computing a backup strategy. In the current implemen­

tation we use the CPLEX solver, but this choice is not fundamental, and the solver

could be replaced by an alternative solver.

7.1.3 Methodology and traces

In this section, we discuss the methodology and traces we use in this evaluation.

144

Methodology

In evaluating SafeStore, we have several goals, all of which require differing method­

ologies. First we wish to quantify the performance overhead of using a storage lease

device. We do this in a controlled manner by using synthetically generated file work­

loads, and measure the time relative to simply copying the data. We next wish to

verify the backup system functions correctly and measure its overhead with a realistic

workload. In order to do this, we use our full evaluation to perform both backup and

restore, on a running machine, and verify the correctness. In order to measure over­

head in a wider variety of scenarios than just a single machine we use a trace driven

evaluation. Finally, to get a longer term picture of the cost of running SafeStore,

both in terms of storage and financial cost, we use a simulation and modeling based

approach, based on the above mentioned traces. We next discuss the traces we will

use in our evaluation.

Traces

As there are, to the best of our knowledge, no traces available for home office and

small business storage workloads, we utilize two sets of traces that we gathered.

The first was gathered from a previous project, and is from home users. This trace

includes the storage workload from the households of 8 computer science researchers2

over the course of approximately one month. It includes detailed information at

2 In the final evaluation there will be one additional household included

145

file granularity, including name, size, modified time and content hash. The storage

workload included in this trace includes both personal and work data. Given this mix,

we feel that this trace is a reasonable first approximation of a home office environment.

These traces cover approximately 30 days worth of use. The households in this trace

had between 2 and 10 storage devices which contain data to be backed up.

The second trace is from the main backup up server at a computer science research

institute. This trace includes more nodes (25 laptop nodes), but it includes much

less detailed trace information. In this trace, it simply includes a backup id, size

and amount of new files generated since the previous backup, as well as the size and

amount of existing data stored. The data in this trace has does not provide individual

file information so we can not test the effectiveness of de-duplication with this data.

While this is just a single data point, we feel that this trace is somewhat representative

of a small business setting. For each node, the trace includes 30 backups. For a user

who is often connected this means it covers 30 days. For users who are intermittently

connected, it may cover a much longer period of time.

In the rest of the evaluation we will refer to the first trace as the home office trace

and the second as the small business trace.

7.1.4 Backup evaluation

In this section our goal is to show that the backup functionality in SafeStore works

as it should. We first verify that it both successfully can backup and restore data, as

146

well as adapt to changing conditions. We then measure the overhead of the system by

running the system for 30 days with both the small business and home office traces.

Verifying functionality

In order to verify the system functionality, we had the system make a backup of a

users laptop. We then used the restore functionality to verify that both the backup

functionality worked correctly and that we could successfully execute a restore.

Adaption to increased or decreased resources

We verified that the planner does indeed adjusts its strategy as expected when re­

sources are added or removed. It correctly adjusts as the rate at which files are added

changes over time. If the rate increases past what the system can handle it will raise

an alert.

Trace driven overhead evaluation

In order to show the SafeStore works in a more challenging environment than simple

benchmarks, we drove the implementation using the previously described traces in

order to measure the overhead, both storage and networking, of the system. Since

our traces contain events for several devices, sometimes over different time periods

we shift the first event for each device to be at the same time (and adjust all of the

subsequent events for that device accordingly), and then replay the trace.

In order to simplify the experiment, we included only one resource node with

147

unlimited capacity (data is deleted from the disk if it is close to full). Since the

traces last for 30 days, and we wish to test the system in a time efficient manner, we

limited the system to take no hourly checkpoints, and we included a mechanism for

fast forwarding idle periods when no trace events were occurring, and no backup was

in progress. In all of the following graphs, results prefixed with H are the results from

the home office trace, the results prefixed with S are from the small business trace.

Figures 7.7 and 7.8 shows the results for this experiment. In all cases the system

ran successfully, and finished with all data backed up, and the correct number of snap­

shots. The figures show absolute and relative overhead respectively. The overhead is

all data sent or stored that is not contained in the original files in the trace. Figure 7. 7

shows that the network overhead varies from less-than 10% to 22%. This overhead is

predominately from sending checkpoint metadata to the backup nodes to be stored.

The storage overhead is less, as it is required to only store non-expired checkpoint

metadata. The overhead for the small business trace is the highest, as it contained

the most files, and these were of small average size. Thus, the resulting checkpoint

metadata is larger than for the home office cases. This overhead could be reduced by

the use of incremental checkpoints, but at the cost of increased complexity.

In Figure 7.8, we examine the absolute overhead. The upper bar shows the amount

of actual non-file data that was sent over the course of the experiment. The lower

bar is all non-data that is stored on the storage lease device at the end of the trace.

In the worst case household, the network overhead is 20GB during the month long

148

experiment period. During the same time the disk overhead is 8GB. For the small

office trace, the network overhead for the month is slightly less than 100GB, and the

storage overhead is approximately 40GB.

,
ca
cu
.c ...
cu
>
0
c
0
;
u
ca ...

u..

0.25

0.2

0.15

0.1

0.05

0
H1 H2 H3 H4 H5 H6 H7 HB SB1

Household Number

Figure 7.7 : Percentage overhead in a variety of home offices

en
cu ->.

..Q
ca
-~
(!)
'to-
0 ...
cu

..Q
E
::::J z

120

100

80

60

40

20

0
H1 H2 H3 H4 H5 H6 H7 HB SB1

Trace Number

Figure 7.8 : Absolute Overhead in a variety of hmne offices.

One task the system performs is that of de-duplication. In order to quantify

the effectiveness of the de-duplication in SafeStore we measured the amount of data

transferred relative to the amount of data in the trace. In Figure 7.9, the result of

149

this experiment is shown. The different user groups reduced the amount of data sent

by between 5% and almost 50%. Due to limitations of the small business trace, we

were unable to quantify the effectiveness of de-duplication, and so just show the data

sent. This result shows that de-duplication is effective. Note, that these households

were relatively heterogeneous, incorporating a mixture of USB hard drives, media

players, ancl computers with different opC'rating system~. In a more homogeneous

environment with only computing nodes, we would expect that the effectiveness of

de-duplication will increase.

500
(I) 450
G) 400 >-.c 350 ns
tn 300
G)

250 :i
.5 200
ns 150 - 100 ns c 50

0
H1 H2 H3 H4 HS H6 H7 H8 SB1

Household Number

Figure 7.9 : Effectiveness of de-duplication

Another way to look at these results is to examine the amount of bandwidth

required to support the entire backup application. For the most intense household,

it would require 470GB of data (the amount of de-duplicated data plus overhead)

to be transferred in one month. For the small business trace the total amount of

data transferred is slightly less than 600GB of data. The bandwidth required to

support this would be 0.19MB/s and 0.23MB/S respectively. This is, however, the

150

worst case scenario for the system, all machines are turned on simultaneously, and all

begin backing up at the same time. If backup clients are added to the system more

gradually, this bandwidth requirement would be spread over a longer period of time.

All values above would double when backing up to 2 storage lease devices instead of

one.

7.1.5 Simulated long-term results

In this section, we seek to look at the longer term costs of running SafeStore. Since

none of our traces contain a full years worth of data, we take the traces we have and

extrapolate them to a year by taking the average amount of data added, modified,

and removed for the time period after the trace ends. We exclude the data that is

already stored before the beginning of the trace. Instead of running full fidelity ex­

periments for one year, which would have been prohibitively time consuming, we use

the planning functionality built into SafeStore, to compute the amount or resource

running the system would consume. Once we have computed the resource require­

ments, we can convert these into monetary terms by analyzing how much providing

those resources would cost.

Please note that these results omit many details of the full simulation in order to

compute costs. We currently do not take into account de-duplication, overhead, or

the removal of data into account in these calculations. Refining the model is a topic

of ongoing work.

151

Resource requirements.

In Figure 7.10 we show the resource requirements for each of the households we

analyzed. The bar on the left is the amount of storage required to be free for the

initial backup of all of the users data. The bar on the left, is the amount of new

data that must be allocated by the storage lease device for each user. The initial

requirements for all are on the order of a 100GB, and the rates required vary between

lOMB and 100MB a day. For all of these users, their yearly storage requirements

could be filled by a 1 TB disk, which currently sells for around $100. The policy

followed in the experiment is to have daily, weekly, monthly and yearly checkpoints.

1e+06
!It
Ql

>. 100000
.a
Ill
Cll 10000 Ql

:1
5 1000
Ql
:::s 100
ii
> 10

H1 H2 H3 H4 H5 H6 H7

Household Number

H8 SB1

Initial Capacity -
DailyRate -

Figure 7.10 : Minimum settings required for initial capacity and rate, assuming no
ded u plication.

7.2 Summary

In this evaluation, we have used a variety of techniques to show that SafeStore works

as described in the design. We have shown that it functions correctly, performs well,

and is reasonably cost-effective.

152

Chapter 8

Conclusion

In this thesis, we have shown how to provide transparent storage management in

environments where expert system administrators and dedicated hardware are not

available. We described two new systems: The first, PodBase, transparently ensures

availability and durability in the home, for mobile, personal devices that are mostly

disconnected. The second, SLStore, provides enterprise-level data safety (e.g. pro­

tection from user error, software faults, or virus infection) while requiring minimal

management.

We have built prototypes of both systems, and evaluated them. In the course of

building and designing the system, we were required to develop several novel tech­

niques, problem formulations, and abstractions. Experimental results show that both

systems are feasible, perform well, require minimal user attention, and do not depend

on expert administration during disaster-free operation.

153

Bibliography

[1] Self-encrypting hard disk drives in the data center. Technical Report TP583,

Seagate, Inc, November 2007.

[2] Anurag Acharya, Mustafa Uysal, and Joel Saltz. Active disks: programming

model, algorithms and evaluation. SIGPLAN Notices, 33(11):81-91, 1998.

[3] Atul Adya, William J. Bolosky, Miguel Castro, Gerald Cermak, Ronnie

Chaiken, John R. Douceur, Jon Howell, Jacob R. Lorch, Marvin Theimer, and

Roger P. Wattenhofer. Farsite: federated, available, and reliable storage for an

incompletely trusted environment. SIGOPS Operating System Reiew, 36(SI):1-

14, 2002.

[4] BackupPC: Open Source Backup to disk. http: I /backuppc. sourceforge.

net/.

[5] Lakshmi N. Bairavasundaram, Swaminathan Sundararaman, Andrea C. Arpaci­

Dusseau, and Remzi H. Arpaci-Dusseau. Tolerating File-System Mistakes with

EnvyFS. In Usenix Annual Technical Conference, 2009.

[6] Oracle Berkeley DB Java Edition.

berkeley-db/je/index.html.

http://www.oracle.com/database/

154

[7] Nalini Belaramani, Mike Dahlin, Lei Gao, Amol Nayate, Arun Venkataramani,

Praveen Yalagandula, and Jiandan Zheng. PRACTI replication. In In Proceed­

ings of NSD/'06, 2006.

[8] Marcos Bento and Nuno Preguia. Operational transformation based recon­

ciliation in the FEW File System. In Proceedings of the Eight International

Workshop on Collaborative Editing Systems, November 2006.

[9] Kenneth P. Birman, Mark Hayden, Oznur Ozkasap, Zhen Xiao, Mihai Budiu,

and Yaron Minsky. Bimodal multicast. ACM Trans. Comput. Syst., 17(2):41-

88, 1999.

[10] William J. Bolosky, John R. Douceur, David Ely, and Marvin Theimer. Feasibil­

ity of a serverless distributed file system deployed on an existing set of desktop

pes. In Proceedings of the 2000 ACM SIGMETRICS international conference

on Measurement and modeling of computer systems, pages 34-43, New York,

NY, USA, 2000. ACM.

[11] William J. Bolosky, John R. Douceur, and Jon Howell. The farsite project: a

retrospective. SIGOPS Operating System Review, 41(2):17-26, 2007.

[12] Bouncy Castle. http: I /www. bouncycastle. org/.

[13] R. Bradshaw and C. Schroeder. Fifty years of ibm innovation with informa­

tion storage on magnetic tape. IBM Journal of Research and Development,

47(4):373-383, 2003.

155

[14] John S. Bucy, Jiri Schindler, Steven W. Schlosser, Gregory R. Ganger, and

Contributors. The disksim simulation environment version 4.0 reference manual.

Technical Report CMU-PDL-08-101, Carnegie Mellon University Parallel Data

Lab, May 2008.

[15] M. Cao, T. Y. Ts'o, B. Pulvarty, S. Bhattacharya, A. Dilger, and A. Tomas.

State of the art: Where we arc with the cxt3 filcsystem. In Proceedings of the

2005 Ottawa Linux Symposium, 2005.

[16] Carbonite. http: I /wwv. carboni te. com/.

[17] J.D. Carothers, R. K. Brunner, J. L. Dawson, M. 0. Halfhill, and R. E. Kubec.

A new high density recording system: the IBM 1311 disk storage drive with

interchangeable disk packs. In AFIPS '63 (Fall): Proceedings of the November

12-14, 1963, fall joint computer conference, pages 327-340, New York, NY,

USA, 1963. ACM.

[18] Peter M. Chen, Edward K. Lee, Garth A. Gibson, Randy H. Katz, and David A.

Patterson. RAID: high-performance, reliable secondary storage. ACM Com­

puting Surveys, 26(2):145-185, 1994.

[19] Peter M. Chen and David A. Patterson. Maximizing performance in a striped

disk array. SIGARCH Computing. Architecture News, 18(3a):322-331, 1990.

[20] COIN-OR Linear Programming Solver. http: I /projects. coin-or. org/Clp.

156

[21] Landon P. Cox, Christopher D. Murray, and Brian D. Noble. Pastiche: Making

backup cheap and easy. SIGOPS Operating Systems Review, 36(SI):285-298,

2002.

[22] Landon P. Cox and Brian D. Noble. Samsara: honor among thieves in peer-to­

peer storage. In Proceedings of the nineteenth ACM symposium on Operating

systems principles, pages 120-132, New York, NY, USA, 2003. ACM.

[23] High-performance mathematical programming engine- IBM ILOG CPLEX­

Software. http://www-01.ibm.com/software/integration/optimization/

cplex/.

[24] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker,

Howard Sturgis, Dan Swinehart, and Doug Terry. Epidemic algorithms for

replicated database maintenance. In PODC '87, pages 1-12, New York, NY,

USA, 1987. ACM.

[25] M. Demmer, E. Brewer, K. Fall, S. Jain, M. Ho, and R. Patra. Implementing

Delay Tolerant Networking. Technical Report IRB-TR-04-020, Intel Research,

2004.

[26] John R. Douceur and Jon Howell. Distributed directory service in the Farsite

file system. In Proceedings of the 7th symposium on Operating systems design

and implementation, pages 321-334, Berkeley, CA, USA, 2006. USENIX Asso-

ciation.

157

[27] Drobo Product Description. http: I /www. drobo. com/Products/drobo. html.

[28] Drop box. https: I /www. drop box. com/.

[29] dtrace. http: I /www. sun. com/bigadmin/ content/ dtrace/.

[30] Data Backup and Recovery Products. http: I /www. emc. com/products/

category/backup-recovery.htm.

[31] Kevin Fall. A delay-tolerant network architecture for challenged internets. In

Proc. SIGCOMM '03, Aug 2003.

[32] Alan D. Fekete and Krithi Ramamritham. Replication. volume 5959 of Lecture

Notes in Computer Science, chapter Consistency Models for Replicated Data,

pages 1-17. Springer Berlin / Heidelberg, 2010.

[33] Brian Ford. UIA: A Global Connectivity Architecture for Mobile Personal De­

vices. PhD thesis, Department of Electrical Engineering and Computer Science,

Sep 2008.

[34] Bryan Ford, Jacob Strauss, Chris Lesniewski-Laas, Sean Rhea, Frans Kaashoek,

and Robert Morris. Persistent personal names for globally connected mobile

devices. In Proc. OSDI '06, Nov 2006.

[35] Bryan Ford, Jacob Strauss, Chris Lesniewski-Laas, Sean Rhea, Frans Kaashoek,

and Robert Morris. User-relative names for globally connected personal de-

158

vices. In Proceedings of the 5th International Workshop on Peer-to-Peer Sys­

tems (IPTPS'06), Feb 2006.

[36] Ron Garret. A Time Machine time bomb. http: I /rondam. blogspot. com/

2009/09/time-machine-time-bomb.html.

[37] Garth A. Gibson and Rodney Van Meter. Network attached storage architec­

ture. Communications of the ACM, 43(11):37-45, 2000.

[38] Garth Alan Gibson. Redundant Disk Arrays: Reliable, Parallel Secondary Sto'r­

age. PhD thesis, U. C. Berkeley, April 1991.

[39] GNU Linear Programming Kit. http://www.gnu.org/softoware/glpk/.

[40] Groove. http: I I office. microsoft. com/ groove.

[41] Olafur Guthmundsson, James DaSilva, James DaSilva, and Olafur Guomunds­

son. The amanda network backup manager. In In Proceedings of USENIX

Systems Administration (LISA VII) Conference, pages 171-182, 1993.

[42] Mark Hayakawa. WORM Storage on Magnetic Disks Using SnapLock Compli­

ance and SnapLock Enterprise. Technical Report TR-3263, Network Appliance,

2007.

[43] Technical Note TN1150: HFS Plus Volume Format. http: I /developer.

apple.com/mac/library/technotes/tn/tn1150.html.

159

[44] Dave Ritz, James Lau, and Michael Malcolm. File system design for an NFS

file server appliance. In Proceedings of the USENIX Winter 1994 Technical

Conference, pages 19-19, Berkeley, CA, USA, 1994. USENIX Association.

[45] John H. Howard. An Overview of the Andrew File System. Technical Report

CMU-ITC-88-062, Information Technology Center, Carnegie Mellon University,

1988.

[46] Data and Network Storage Products from HP Storage Works. http: I /h18006.

www1.hp.com/storage/index.html.

[47] HP Upline. http://www.upline.com.

[48] iDrive. http: I /www. idri ve. com.

[49] iTunes. http: I /www. apple. com/i tunes/.

[50] Sushant Jain, Kevin Fall, and Rabin Patra. Routing in a delay tolerant network.

In Proceedings of SIGCOMM '04, pages 145-158, New York, NY, USA, 2004.

ACM.

[51] Alexandros Karypidis and Spyros Lalis. Omnistore: A system for ubiquitous

personal storage management. In Fourth Annual IEEE International Confer­

ence on Pervasive Computing and Communications, 2006.

[52] Micheal Leon Kazar. Synchronization and Caching Issues in the Andrew File

System. Technical Report CMU-ITC-88-063, Information Technology Center,

160

Carnegie Mellon University, 1988.

[53] Kimberly Keeton, Terence Kelly, Arif Merchant, Cipriano Santos, Janet Wiener,

Xiaoyun Zhu, and Dirk Beyer. Don't settle for less than the best: Use opti­

mization to make decisions. In Proc. HotOS '07, May 2007.

[54] Kimberly Keeton, David A. Patterson, and Joseph M. Hellerstein. A case for

intelligent disks (IDISKs). Proceedings of the ACM SIGMOD International

Conference on Management of Data, 27(3):42-52, 1998.

[55] Jason Kincaid. T-mobile sidekick disaster: Danger's servers crashed, and they

don't have a backup. http: I /techcrunch. com/2009/10/10/.

[56] James J. Kistler and M. Satyanarayanan. Disconnected operation in the Coda

File System. ACM Trans. Comput. Syst., 10(1):3-25, 1992.

[57] R. B. Lawrance, R. E. Wilkins, and R. A. Pendleton. Apparatus for magnetic

storage on three-inch wide tapes. In AlEE-IRE '56 (Eastern): Papers and

discussions presented at the December 10-12, 1956, eastern joint computer con­

ference: New developments in computers, pages 84-90, New York, NY, USA,

1957. ACM.

[58] Richard B. Lawrance. An advanced magnetic tape system for data processing.

In IRE-AIEE-ACM '59 (Eastern): Papers presented at the December 1-3, 1959,

eastern joint IRE-AIEE-ACM computer conference, pages 181-189, New York,

NY, USA, 1959. ACM.

161

[59] Live mesh. http: I /'WWW. mesh. com.

[60] Petros Maniatis, Merna Roussopoulos, T. J. Giuli, DavidS. H. Rosenthal, and

Mary Baker. The lockss peer-to-peer digital preservation system. ACM Trans­

action on Computer Systems, 23(1):2-50, 2005.

[61] Petros Maniatis, Merna Roussopoulos, TJ Giuli, David S. H. Rosenthal, Mary

Baker, and Yanto Muliadi. Preserving Peer Replicas By Rate-Limited Sam­

pled Voting. In Proceedings of 19th A CM Symposium on Operating Systems

Principles (SOSP }, October 2003.

[62] Many PC Users don't backup valuable data. http: I /money. cnn. com/2006/

06/07/technology/data_loss/index.htm.

[63] Marshall K. McKusick, William N. Joy, Samuel J. Leffler, and Robert S.

Fabry. A fast file system for unix. ACM Transactions.on Computer. Systems.,

2(3):181-197, 1984.

[64] MobileMe. http: I /'WWW. apple. com/mobileme/.

[65] Mazy. http: I /'WWW .mozy. com/.

[66] Jonathan P. Munson and Prasun Dewan. A flexible object merging framework.

In CSCW '94: Proceedings of the 1994 ACM conference on Computer supported

cooperative work, pages 231-242, New York, NY, USA, 1994. ACM.

162

[67] Athicha Muthitacharoen, Benjie Chen, and David Mazieres. A low-bandwidth

network file system. In SOSP '01: Proceedings of the eighteenth ACM sympo­

sium on Operating systems principles, 2001.

[68] NetApp Backup and Recovery Solutions. http://www.netapp.com/us/

solutions/infrastructure/backup-recovery/.

[69] NIST. Secure hash standard. May 1993.

[70] Lev Novik, Irena Hudis, Douglas B. Terry, Sanjay Anand, Vivek Jhaveri, Ashish

Shah, and Yunxin Wu. Peer-to-Peer Replication in WinFS. Technical Report

MSR-TR-2006-78, Microsoft Research, 2006.

[71] Overview of FAT, HPFS, and NTFS File Systems.

microsoft.com/kb/100108.

[72] Outlook. http: I /www. microsoft . com/ outlook/.

http://support.

[73] D. S. Parker, G. J. Popek, G. Rudisin, A. Stoughton, B. J. Walker, E. Walton,

J. M. Chow, D. Edwards, S. Kiser, and C. Kline. Detection of mutual incon­

sistency in distributed systems. IEEE Transactions on Software Engineering,

9(3):240-247, 1983.

[7 4] Pastry - A scalable, decentralized, self-organizing and fault tolerant substrate

for peer-to-peer applications. http: I /www. freepastry. org/.

163

[75] David A. Patterson, Garth Gibson, and Randy H. Katz. A case for redundant

arrays of inexpensive disks (RAID). In SIGMOD '88: Proceedings of the 1988

ACM SIGMOD international conference on Management of data, pages 109-

116, New York, NY, USA, 1988. ACM.

[76] PC Pitstop Research. http: I /pcpi tstop. com/research/ storage survey.

asp.

[77] Daniel Peek and Jason Flinn. EnsemBlue: Integrating distributed storage and

consumer electronics. In Proc. OSDI '06, November 2006.

[78] B. C. Pierce and J. Vouillon. What's in Unison? A formal specification and

reference implementation of a file synchronizer. Technical Report MS-CIS-03-

36, Dept. of Computer and Information Science, University of Pennsylvania,

2004.

[79] Gerald J. Popek, Richard G. Guy, Thomas W. Page, Jr., and John S. Heide­

mann. Replication in Ficus Distributed File Systems. In Proc. WMRD, pages

20-25, November 1990.

[80] Nuno Preguia, Carlos Baquero, J. Legatheaux Martins, Marc Shapiro, Paulo,

Srgio Almeida, Henrique Domingos, Victor Fonte, and Srgio Duarte. Few:

File management for portable devices. In Proceedings of The International

Workshop on Software Support for Portable Storage, March 2005.

164

[81] Sean Quinlan and Sean Dorward. Venti: A New Approach to Archival Data

Storage. In FAST '02: Proceedings of the 1st USENIX Conference on File and

Storage Technologies, 2002.

[82] Venugopalan Ramasubramanian, Thomas L. Rodeheffer, Douglas B. Terry, Meg

Walraed-Sullivan, Ted Wobber, Catherine C. Marshall, and Amin Vahdat. Cim­

biosys: a platform for content-based partial replication. In NSD/'09: Proceed­

ings of the 6th USENIX symposium on Networked systems design and imple­

mentation, pages 261-276, Berkeley, CA, USA, 2009. USENIX Association.

[83] Peter Reiher, John S. Heidemann, David Ratner, Gregory Skinner, and Ger­

ald J. Popek. Resolving File Conflicts in the Ficus File System. In USENIX

Conference Proceedings, pages 183-195. USENIX, June 1994.

[84] E. Riedel, C. Faloutsos, G.A. Gibson, and D. Nagle. Active disks for large-scale

data processing. Computer, 34(6):68 -74, jun. 2001.

[85] Erik Riedel, Garth A. Gibson, and Christos Faloutsos. Active Storage for Large­

Scale Data Mining and Multimedia. In VLDB '98: Proceedings of the 24rd In­

ternational Conference on Very Large Data Bases, pages 62-73, San Francisco,

CA, USA, 1998. Morgan Kaufmann Publishers Inc.

[86] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital

signatures and public-key cryptosystems. Commun. ACM, 21(2):120-126, 1978.

165

[87] Maya Rodrig and Anthony LaMarca. Oasis: an architecture for simplified data

management and disconnected operation. Personal and Ubiquitous Computing,

9(2):108-121, 2005.

[88] Simple Storage Service (S3). http: I I aws. amazon. com/ s3.

[89] SafeXcel-1741 Security Co-processor.

1741processor.cfm.

http://www.authentec.com/

[90] Yasushi Saito and Marc Shapiro. Optimistic replication. Computing Surveys,

37(1):42-81, March 2005.

[91] Brandon Salmon, Frank Hady, and .Jay Mclican. Towards Efficient Semantic

Object Storage for the Home. Technical Report CMU-PDL-07-107, Parallel

Data Laboratory, Carnegie Mellon University, 2007.

[92] Brandon Salmon, Steven W. Schlosser, Lorrie Faith Cranor, and Gregory R.

Ganger. Perspective: Semantic Data Management for the Home. Technical Re­

port CMU-PDL-08-105, Parallel Data Laboratory, Carnegie Mellon University,

2008.

[93] Brandon Salmon, Steven W. Schlosser, Lorrie Faith Cranor, and Gregory R.

Ganger. Perspective: semantic data management for the home. In FAST '09:

Proceedings of the 7th conference on File and storage technologies, pages 167-

182, Berkeley, CA, USA, 2009. USENIX Association.

166

[94] Brandon Salmon, Steven W. Schlosser, and Gregory R. Ganger. Towards Effi­

cient Semantic Object Storage for the Home. Technical Report CMU-PDL-06-

103, Parallel Data Laboratory, Carnegie Mellon University, 2006.

[95] Brandon Salmon, Steven W. Schlosser, Lily B. Mummert, and Gregory R.

Ganger. Putting home storage management into Perspective. Technical Re­

port CMU-PDL-06-110, Parallel Data Laboratory, Carnegie Mellon University,

2006.

[96] Russel Sandberg. The Sun Network File System: Design, Implementation and

Experience. In Proceedings of the Summer 1986 US EN IX Technical Conference

and Exhibition, 1986.

[97] DouglasS. Santry, Michael J. Feeley, Norman C. Hutchinson, Alistair C. Veitch,

Ross W. Carton, and Jacob Ofir. Deciding when to forget in the elephant file

system. In SOSP '99: Proceedings of the seventeenth ACM symposium on

Opemting systems principles, 1999.

[98] R. A. Skov. Pulse Time Displacement in High-Density Magnetic Tape. IBM

Journal, April 1958.

[99] Windows Live Sky Drive. http: I /skydrive .live. com/.

[100] Sumeet Sobti, Nitin Garg, Chi Zhang, Xiang Yu, Arvind Krishnamurthy, and

Randolph Y. Wang. PersonalRAID: Mobile Storage for Distributed and Dis­

connected Computers. In FAST '02: Proceedings of the Conference on File

167

and Storage Technologies, pages 159-17 4, Berkeley, CA, USA, 2002. USE NIX

Association.

[101] Sumeet Sobti, Nitin Garg, Fengzhou Zheng, Junwen Lai, Yilei Shao, Chi Zhang,

Elisha Ziskind, Arvind Krishnamurthy, and Randolph Y. Wang. Segank: a

distributed mobile storage system. In Proc. FAST '04, March 2004.

[102] SOS Online Backup. http: I /WWV~. sosonlinebackup. com.

[103] Jacob Strauss, Chris Lesniewski-Laas, Justin Mazzola Paluska, Bryan Ford,

Robert Morris, and Frans Kaashoek. Device transparency: a new model for

mobile storage. SIGOPS Oper. Syst. Rev., 44(1):5-9, 2010.

[104] John D. Strunk, Garth R. Goodson, Michael L. Scheinholtz, Craig A. N. Soules,

and Gregory R. Ganger. Self-Securing Storage: Protecting Data in Compro­

mised Systems. In OSDI, pages 165-180, 2000.

[105] SugarSync. http: I /WWV~. sugarsync. com/.

[106] StorageTek Enterprise Backup Software. http://www.oracle.com/us/

products/servers-storage/storage/storage-software/031597.htm.

[107] Edward Swierk, Emre Kernan, Nathan C. Williams, Takashi Fukushima, Hideki

Yoshida, Vince Laviano, and Mary Baker. The Roma Personal Metadata Ser­

vice. In Proc. WMCSA 2000.

168

[108] Jon Tate, Fabiano Lucchese, and Richard Moore. Introduction to Storage Area

Networks. IBM Redbooks, 2006.

[109] Douglas B. Terry, Marvin M. Theimer, Karin Petersen, Alan J. Demers, Mike J.

Spreitzer, and Carl H. Hauser. Managing update conflicts in Bayou, a weakly

connected replicated storage system. In Proc. SOSP'95, December 1995.

[110] Time Machine.

html.

http://www.apple.com/macosx/features/timemachine.

[111] Dinh Nguyen Tran, Frank Chiang, and Jinyang Li. Friendstore: Coopera­

tive Online Backup Using Trusted Nodes. In SocialNet'08: First International

Workshop on Social Network Systems, Glasgow, Scotland, 2008.

[112] A. Tridgell and P. Mackerras. The rsync algorithm. Technical Report TR-CS-

96-05, Department of Computer Science, The Australian National University,

1996.

[113] Unison File Synchronization.

unison/.

http://www.cis.upenn.edu/~bcpierce/

[114] Michael Vrable, Stefan Savage, and Geoffrey M. Voelker. Cumulus: filcsystcm

backup to the cloud. In FAST '09: Proceedings of the 7th conference on File

and storage technologies, pages 225-238, Berkeley, CA, USA, 2009. USENIX

Association.

169

[115] What Is Volume Shadow Copy Service. http: I /technet. microsoft. com/

en-us/library/cc757854(WS.10).aspx.

[116] Bruce Walker, Gerald Popek, Robert English, Charles Kline, and Greg Thiel.

The LOCUS distributed operating system. In SOSP '83: Proceedings of the

ninth ACM symposium on Operating systems principles, 1983.

[117] Mike Wawrzoniak, Larry Peterson, and Timothy Roscoe. Sophia: an informa­

tion plane for networked systems. In Proc. HotNets-11, 2003.

[118] Alexander Wieder, Pramod Bhatotia, Ansley Post, and Rodrigo Rodrigues.

Conductor: orchestrating the clouds. In Proceedings of the 4th International

Workshop on Large Scale Distributed Systems and Middleware, pages 44-48,

New York, NY, USA, 2010. ACM.

[119] Windows Backup and Restore. http://www.microsoft.com/windows/

windows-7/features/backup-and-restore.aspx.

[120] Windows Home Server. http: I /www. microsoft. com/windows/products/

winfamily/windowshomeserver/default.mspx.

[121] Windows live sync. http:/ /sync .live. com/.

[122] WinFS Team Blog. http://blogs.msdn.com/winfs/.

[123] Xdrive. http: I /www. xdri ve. com.

170

[124] Qin Yin, Justin Cappos, Andrew Baumann, and Timothy Roscoe. Dependable

self-hosting distributed systems using constraints. In Proc. HotDep '08, Dec

2008.

[125] Solaris zfs. http: I /wvw. sun. com/software/solaris/zfs .jsp.

[126] Jinsuo Zhang, Abdelsalam (Sumi) Helal, and Joachim Hammer. UbiData: ubiq­

uitous mobile file service. In SAC '03: Proceedings of the 2003 ACM symposium

on Applied computing, 2003.

[127] Zmanda. http://wvw.zmanda.com/.

[128] Zune Software.

default . htm.

http://www.zune.net/en-us/software/collection/

