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Abstract 

To make storage management transparent to users, enterprises rely on expensive 

storage infrastructure, such as high end storage appliances, tape robots, and offsite 

storage facilities, maintained by full-time professional system administrators. From 

the user's perspective access to data is seamless regardless of location, backup requires 

no periodic, manual action by the user, and help is available to recover from storage 

problems. The equipment and administrators protect users from the loss of data due 

to failures, such as device crashes, user errors, or virii, as well as being inconvenienced 

by the unavailability of critical files. 

Home users and small businesses must manage increasing amounts of important 

data distributed among an increasing number of storage devices. At the same time, 

expert system administration and specialized backup hardware are rarely available 

in these environments, due to their high cost. Users must make do with error-prone, 

manual, and time-consuming ad hoc solutions, such as periodically copying data to 

an external hard drive. Non-technical users are likely to make mistakes, which could 



result in the loss of a critical piece of data, such as a tax return, customer database, 

or an irreplaceable digital photograph. 

In this thesis, we show how to provide transparent storage management for home 

and small business users. We introduce two new systems: The first, PodBase, trans­

parently ensures availability and durability for mobile, personal devices that are 

mostly disconnected. The second, SLStore, provides enterprise-level data safety (e.g. 

protection from user error, software faults, or virus infection) without requiring ex­

pert administration or expensive hardware. Experimental results show that both 

systems are feasible, perform well, require minimal user attention, and do not depend 

on expert administration during disaster-free operation. 

PodBase relieves home users of many of the burdens of managing data on their 

personal devices. In the home environment, users typically have a large number of 

personal devices, many of them mobile devices, each of which contain storage, and 

which connect to each other intermittently. Each of these devices contain data that 

must be made durable, and available on other storage devices. Ensuring durability 

and availability is difficult and tiresome for non-expert users, as they must keep track 

of what data is stored on which devices. PodBase transparently ensures the durability 

of data despite the loss or failure of a subset of devices; at the same time, PodBase 

aims to make data available on all the devices appropriate for a given data type. Pod­

Base takes advantage of storage resources and network bandwidth between devices 

that typically goes unused. The system uses an adaptive replication algorithm, which 



makes replication transparent to the user, even when complex replication strategies 

are necessary. Results from a prototype deployment in a small community of users 

show that PodBase can ensure the durability and availability of data stored on per­

sonal devices under a wide range of conditions with minimal user attention. 

Our second system, SLStore, brings enterprise-level data protection to home office 

and small business computing. It ensures that data can be recovered despite incidents 

like accidental data deletion, data corruption resulting from software errors or security 

breaches, or even catastrophic storage failure. However, unlike enterprise solutions, 

SLStore does not require professional system administrators, expensive backup hard­

ware, or routine, manual actions on the part of the user. The system relies on storage 

leases, which ensure that data cannot be overwritten for a pre-determined period, 

and an adaptive storage management layer which automatically adapts the level of 

backup to the storage available. We show that this system is both practical, reliable 

and easy to manage, even in the presence of hardware and software faults. 
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Chapter 1 

Introduction 

To make storage management transparent to users, enterprises rely on expensive 

storage infrastructure, such as high end storage appliances, tape robots, and offsite 

storage facilities, maintained by full-time professional system administrators. From 

the user's perspective access to data is seamless regardless of location, backup requires 

no periodic, manual action by the user, and help is available to recover from storage 

problems. The equipment and administrators protect users from the loss of data due 

to failures, such as device crashes, user errors, or virii, as well as being inconvenienced 

by the unavailability of critical files. 

Home users and small businesses must manage increasing amounts of important 

data distributed among an increasing number of storage devices. At the same time, 

in these environments, due to cost constraints, expert system administration and 

specialized backup hardware are rarely available to manage this data. Users must 

make do with error-prone, manual, and time-consuming ad hoc solutions, such as 

periodically copying data to an external hard drive. Non-technical users are likely to 

make management mistakes, which could result in the loss of critical data, such as a 

tax return, customer database, or an irreplaceable digital photograph. 

In this thesis, we show how to provide transparent storage management for home 
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and small business users. We introduce two new systems: The first, PodBase, trans­

parently ensures availability and durability for mobile, personal devices that are 

mostly disconnected. The second, SLStore, provides enterprise-level data safety (e.g. 

protection from user error, software faults, or virus infection) without requiring ex­

pert administration or expensive hardware. Experimental results show that both 

systems are feasible, perform well, require minimal user attention, and do not depend 

on expert administration during disaster-free operation. 

1.1 PodBase 

Many households use multiple personal electronic devices, such as mobile phones, 

digital cameras, MP3 players, and gaming devices, in addition to desktop and note­

book computers. As the number of devices in a single household increases, the task 

of managing data stored on these devices becomes an increasing burden on the user. 

We identify two aspects of home storage management that we believe are particularly 

problematic and time consuming for users: ensuring durability of data, and ensuring 

the availability of data. 

Ensuring durability requires that the loss or failure of a device does not result in 

the loss of any of the user's data. For even a single home computer, ensuring that 

data is durable is an onerous task, and the situation is getting worse as the number 

and diversity of devices increase. A user must keep track of all devices that need 

to be backed up and perform the appropriate actions on a regular basis. Anecdotal 
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evidence suggests that many users fail to ensure the durability of their data [62, 76]. 

Thus, users face the risk of data loss, just as their dependence on digital information 

is increasing. 

Ensuring availability of data on all of the devices where it may be needed is 

equally difficult. A user must regularly connect and synchronize devices to ensure, 

for instance, that changes to her address book are propagated to all communication 

devices, and that additions to her music library eventually are present on all devices 

capable of playing music. Achieving this goal manually requires foresight on the part 

of the user, as they must anticipate which files will be needed where, and replicate 

files accordingly. 

With enough time and effort, a user could perform manual actions that solve all of 

the above problems. She could manually backup data to offline media and copy data 

to where it should be available. However, any one of these tasks can be laborious to 

accomplish, not to mention all of them. Performing these tasks correctly, regularly 

and in a timely manner is difficult today, and it will become increasingly difficult as 

users accumulate more data and devices. 

Home users need tools to help manage the burden of storage management. Ideally, 

these tools would transparently provide durability of a user's data without any explicit 

action on the part of the user. As long as a user provides enough storage then their 

data should be durable. Likewise, the free space on each device should be managed 

so that data is available on the devices where it is likely to be used. 
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Existing storage management tools only partially address these problems, or are 

only applicable to particular devices and operating systems. For example, many 

portable devices come with vendor provided software that syncs specific file types with 

that particular device. Others require that the user run a specific operating system 

(e.g., Apple's Time Machine [110]) or require the user to install a non-standard file 

system on their storage devices (e.g. Ensemblue [77]). 

Existing solutions also require expertise and attention on the part of the user. 

For example, a user might have to set up a dedicated server, and then configure his 

devices to periodically execute a task that syncs or backs up their files. Setting up 

such a system takes significant effort on the part of the user, even if they possess the 

knowledge to do so. 

As such, there is a gap between the services a user would like to have, and those 

that current tools provide. In order to bridge this gap, we built PodBase. PodBase 

automatically manages a user's data on existing personal devices in an automatic, 

decentralized, transparent, device- and operating system-independent manner. The 

system takes advantage of unused storage space and exploits incidental pairwise con­

nectivity that naturally occurs among the devices, e.g., via Wi-fi, Bluetooth, or USB. 

PodBase uses a linear program driven planning engine, in order to replicate data 

through multiple disconnected devices without user intervention. 
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1.2 SLStore 

Enterprise data management policies are designed to protect data from a variety of 

threats. Users may accidentally delete or overwrite critical data. Bugs in device 

drivers, operating system or applications may cause data to be corrupted or deleted. 

Hardware faults may leave storage devices unable to read part or the entirety of the 

information they store. Computers may be infected with a virus or attacked by an 

adversary, potentially resulting in the corruption or loss of data and programs stored 

on a disk. Finally, a catastrophic event like a fire or an earthquake could wipe out an 

entire site. 

Enterprises guard again these threats by employing a dedicated, professional, ad­

ministrative staff who use a combination of redundant storage techniques. Daily 

snapshots, incremental backups, periodic full backups, off-line and off-site backup 

storage are typically used in an enterprise environment to protect data. Such a com­

prehensive data protection strategy requires expertise to plan, and significant human 

resources and expensive equipment to execute. 

Unfortunately, small businesses and home users often cannot afford the required 

expertise, human resources or equipment. Instead, these classes of users must re­

sort to simpler solutions with serious shortcomings. These shortcomings may be a 

vulnerability to software faults or users error. Or it may be the requirement that 

the user diligently perform periodic manual actions (such as burning DVD's or ro­

tating tapes), outside of their normal job, which are likely to be forgotten. These 
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limitations hamper data protection, just as the dependence of individuals and small 

businesses on digital information increases. It is essential to find automated solutions 

to the problem of data protection for individuals and organizations that cannot af­

ford a professionally-managed solution, but that are nonetheless vulnerable to data 

loss. Many home office users and small businesses depends on irreplaceable digital 

information such as tax data or customer databases. 

In order to address this problem, we built SLStore, a storage system for homes and 

small business environments, which offers data protection comparable to an enterprise 

IT infrastructure without requiring expert systems administration, significant human 

resources or expensive equipment. 

A key technical contribution that lies at the core of SLStore's design is the concept 

of storage leases. While the concept of storage leases can be implemented by a variety 

of storage services, we focus on a particular storage device based implementation. A 

storage lease device is a storage device that protects data from accidental deletion and 

corruption for a pre-determined period of time, similar to an off-line storage device 

but without requiring mechanical action. Storage lease devices can be implemented 

by extending today's disk firmware, and are backward compatible so that a portion 

of the storage device can be used for normal data and another portion can be used 

for backups. 

Given a set of devices that provide storage leases, SLStore still needs to implement 

a full data management solution in order to be useful. In particular, SLStore needs 
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to determine how to use the available storage resources to optimally safeguard data, 

while adapting to changes in the available resources and workload patterns. SLStore 

uses optimization techniques to determine and execute a data protection policy while 

requiring no expert and minimal user attention. Our approach also incorporates the 

use of cloud storage to protect data from catastrophic site failures. We show that 

SLStore is practical, reliable and easy to manage, even in the presence of hardware 

and software faults. 

1.3 Contributions 

In addition to building and evaluating the two systems, we made the following tech­

nical contributions. 

• We formulate the problem of home storage management as a linear programming 

problem, including formalizing the concepts of availability and durability such 

that they can be directly optimized in for in the linear program. This allows 

replication strategies to be automatically derived instead of hand coded. 

• We introduce a partial metadata replication protocol that allows eventual con­

vergence of system metadata even in the presence of extremely space-constrained 

devices, which can not hold the full system metadata. 

• We propose a new storage abstraction known as storage leases, which allow data 

to be protected for a specified period of time, even in the presence of operator 
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error, security compromises, and most software faults. 

• We formulate the problem of determining a backup strategy as a linear pro­

gramming problem, and produce a long-term backup policy based on available 

storage, and both current and predicted future storage requirements. 

1.4 Thesis Overview 

The rest of this thesis is structured as follows. Related work and background are 

discussed in Chapter 2. The body of the thesis is split into two main parts, each 

covering one of the two systems. In Part I, we present a feasibility study( Chapter 3), 

the design and implementation(Chapter 4), as well as the evaluation(Chapter 5) of 

PodBase. Similarly, In Part II, we present a design(Chapter 6), as well as an evalua­

tion(Chapter 7) for SLStore. Finally, Chapter 8 presents concluding remarks. 
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Chapter 2 

Related work 

In this section we provide the basic background and related work required to put 

the research contained in this thesis in context. We begin by looking at the basic 

building block of storage, storage devices. We then look at the basic way in which 

data is managed, by storing it in a file system. Then, we discuss management tools 

and techniques which are built at a higher level on top of the file system. Finally, 

we enumerate the key contributions of the work of this thesis as compared to all 

previously discussed related work. 

2.1 Storage Devices 

Storage devices started out as expensive permanent storage for mainframe computers. 

Following the general trend in computing these expensive devices eventually became 

commoditized, the technologies improved, and these devices have made it in to the 

low end of the market. Now a flash chip that can hold many orders of magnitude more 

data than the first storage devices can be purchased for less than 20 dollars, and can 

be attached to a key ring. In this section, we will give a brief overview of how storage 

devices have evolved over time, and where the state of the art is currently. This will 

help motivate both the need for the work in this thesis, as well as set up trends and 
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ideas that will be used in the designs of the systems presented. The technologies 

discussed in this section is not meant to be an exhaustive list, rather it is meant to 

discuss the main storage technologies currently in use. 

2.1.1 Technology Overview 

Tape Storage 

An early means of storing data was on magnetic tape [57, 58, 98]. Since then, tape 

has fallen out of favor as a primary storage media and has been replaced by other 

technologies which have better random access behavior. Tape still remains widely use 

as archival media, as it is a high capacity, convenient media for offline storage [13]. 

Tapes are also portable, and are often shipped to an offsite location that can serve as 

a backup in case of a catastrophic failure. 

Hard disks 

Rotational magnetic media was introduced [17] as a media that had better random 

access performance. Since then rotation media has served as the dominant form of 

secondary storage for many years. The price of disks has decreased and the capacities 

have increased. Currently, these are the most commonly deployed storage device, in 

both the home and the enterprise. 

Commodity hard drives can be together to form an array of drives, known as 

RAID [18, 38, 75] arrays, which can be optimized for either reliability or performance. 
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RAID is an approach that makes multiple disks appear as a single device. RAID 

arrays can be configured in multiple ways that alter the cost/reliability /performance 

tradeoffs. In the simplest case, data is written to two underlying disks (known as 

mirroring), such that the failure of either disk does not result in the loss of data. 

More complicated RAID configurations improve performance through striping [19], 

allow the failure of more than one disk, or reduce the amount of data duplication 

using data coding techniques. 

Flash Storage 

In recent years, disks have become small enough to put inside of portable devices such 

as music players and portable hard drives. However, for some purposes the traditional 

rotational magnetic drives have been replace by flash storage. Flash storage is smaller 

than traditional disks, has no moving parts and is more power efficient than disk. For 

these reasons, many common portable devices such as cell phones, cameras, and 

portable video game systems use flash storage. Today, some laptops are beginning 

to be equipped with flash storage, but these are more expensive than a comparable 

standard disk based system. These laptops however, enjoy advantages in weight, 

performance, and power consumption. 

Write Once Storage 

Write once storage is storage where once data has been written it is impossible to 

delete or modify. The most prevalent write once storage is optical media, such as CD's 
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or DVD's. Optical media are burned once and then can never be modified. Optical 

media is often cheap, and has high capacity for its size. It requires manual loading of 

disks into the system, and thus is not often useful for data that exceeds the capacity 

of a single disk. Currently commodity optical media lags well behind magnetic media 

in terms of total storage capacity. Write once storage has good durability properties 

in that it can not be overwritten or deleted. Thus, data is not vulnerable to security 

breaches, virii, or software faults after is has been written. 

Virtual write once storage implemented in software is offered by major storage 

vendors [42]. This storage is used in applications where regulatory compliance requires 

data to be stored in a verifiable tamper proof way. These solutions are proprietary 

and are based upon rewritable magnetic storage. The implementation of write-once 

is most likely done in software in the storage appliance sold by the company for this 

purpose. As a consequence if there is a bug, or a security vulnerability in this code 

base, the write once property can be compromised. 

Storage Networks 

A storage area network (SAN) [37, 108] is a collection of storage devices that have been 

networked together. On top of this collection of storage, a normal file system is run, 

and the storage looks exactly as a local storage device. SAN are generally deployed 

in clusters or data centers, as it eases the management of storage. Individual storage 

devices do not have to be moved around, each server requires only a connection to 
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the SAN. At this point it is all of the storage devices in the SAN are accessible with 

a block level interface, file systems at the client can then write to blocks located on 

any storage device. The mapping of clients to storage devices can be configured by 

the administrators of the system, or be done dynamically in software. 

Network attached storage allows a client computing device to interact with remote 

storage devices. Normally it is clear to the client that it is remote device, and a 

network file system such as NFS is run to interact with the storage. Network attached 

storage generally provides both the storage and file system while a SAN is generally a 

block level interface. Often storage appliances deployed in SANs (e.g. [44]) implement 

advanced features such as snapshotting, and RAID. 

2.1.2 Storage Device Deployments 

The types of storage technology deployed today are dependent upon the user. En­

terprises often deploy a variety of different, and more expensive technologies in order 

to get better performance, and reliability. Home users often have collections of com­

modity devices, which are cheap and less reliable. Small businesses fall in between, 

but rely more strongly on commodity devices than do enterprises. 

\Vhile in this section we focused on different broad technologies and use cases, in 

the following sections we will discuss related work more closely and compare both of 

our systems to previous work in the field of storage. 
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2.2 File Systems 

A file system provides the user with a view of their data organized so that it can 

be retrieved later. As such, we first discuss different file system designs, beginning 

with vanilla local file system, and moving towards those that more directly deal with 

the problem of management such as distributed file system, and file systems custom 

designed for personal devices. 

2.2.1 Local File Systems 

File systems provide a metaphor by which a piece of data is stored in a file, and 

groups of files are stored in directories. Directories, can also include other directories 

allowing a user to impose a hierarchical structure on their data. 

A local file system [15, 43, 63, 71, 125] provides a mapping of the logical units of 

files and directories on to the basic block interface that storage devices export. The 

main work in local file systems has gone in two directions, the first is optimizing the 

data structures used in the file system to improve performance, and the second is 

to augmenting the file system with additional features, such as copy-on-write snap­

shots, or extensible file metadata. The most common file systems deployed today are 

HFS+ [43], NTFS [71], ext3 [15], and ZFS [125]. These are the default file systems 

shipped with the most popular operating systems. ZFS has gone the furthest towards 

adding manageability and reliability to the file system. It includes per block hashes, 

and. allows mirroring and. snapshots at the file system level. Below we discuss a few 
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research file system which have added additional features for the purpose of improving 

reliability or management. 

Envy [5] is a system that protects users from file system bugs. It does this by 

implementing three separate file systems in parallel on top of a general block store 

interface. It uses majority voting when the results returned by each of the file !:iystcms 

disagree. In order to he space efficient, it stores multiple copies of file system metadata 

but not data blocks. Envy reduces the trust required of the file system by using 

redundancy. Envy still resides inside of a normal, insecure system and is thus subject 

to any attack that compromises the host operating system. 

The Elephant File System [97] is a file system that keeps old versions of files 

for possible retrieval by the user. This allows the user to recover from software 

failures which might accidently delete data or from human error. In order to be 

practical Elephant keeps only as many versions of data as is possible within the 

storage constraints. In order to do this Elephant uses a user-defined retention policy. 

Venti [81] is a centralized storage system that implements a write-once read only 

interface. In Venti all data is written once to the underlying storage and from that 

point can no longer be modified. Venti is intended to be run on top of a RAID group 

in order to prevent the failure of a storage device resulting in the loss of data. Since 

the data in Venti can not be overwritten and is resilient to the failure of physical 

devices it is well suited for reliably backing up data. In its intended deployment, 

Venti included support for daily snapshots of data written to it which could then be 
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offioaded to archival media such as CD /DVD or magnetic tape. Venti assumes that 

the amount of storage provided is enough so that the underlying storage will never fill 

completely. It is unclear whether Venti, would be cost effective for a home or small 

business, given that storage can never be reclaimed. 

Self Securing Storage (S4) [104] implements the abstraction of a storage device 

that should be used by systems that want to detect and recover from network based 

intrusions. S4 provides an NFS like interface that the keeps a complete record of writes 

to blocks on the device for a specified period of time. While targeted towards network 

intrusions, the interface provided by S4 is sufficient to build other applications. 

2.2.2 Distributed File Systems 

A distributed file system allows a centralized logical view of all data, which eases 

management for the user. The data in the file system may be accessed by multiple 

client devices, and distributed across one or more storage nodes. In this section we 

discuss the proposals for general distributed file systems. 

In a client-server distributed file system, the client is connected to a server and 

issues a request to the server to perform operations on a particular file. An example 

of such a traditional distributed file system is the Network File System [96] (NFS). 

In NFS, all requests go to the server, and when the server is not available, then the 

client does not have access to the files. 

The Low Bandwidth File System (LBFS) [67] is designed for situations where 
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clients connect to the server over low bandwidth connections. It is based on the 

traditional NFS protocol, but includes modifications for more aggressive caching. It 

also leverages the redundancy of data that is shared between different files. If two files 

share a common chunk of data, this chunk can be cached and used whenever either 

file is read by the client. While LBFS uses aggressive caching, it is not designed for 

disconnected operation. 

The file system included in the Locus distributed operating system [116], allowed 

files to be replicated on a per-file basis, and stored on any number of physical devices. 

This capability was used to allow flexibility in the placement of files. Since some 

physical devices may be offline when a file is updated, a version vector is used on a 

per file basis to keep a hi:;tory of modifications. 

The Andrew File System [45, 52] caches data locally at the client to minimize the 

amount of communication necessary with the file server. In case of disconnection or 

disk failure this provides additional availability of the users data. If the server fails, 

the data in the cache may be recovered, preventing a disk failure from causing the 

loss of all data. 

Up to this point, the distributed file system have expected clients being able to 

reach the server as the common case. However, some distributed file systems, e.g., 

[56, 79, 109] were specifically designed for disconnected operation as the common case. 

For these systems to function correctly, data must be available on nodes that wish 

to manipulate it offline, and there must exist mechanisms to prevent two users from 



18 

making conflicting disconnected edits, or to handle them when they do occur. We 

will discuss these file systems next. 

Bayou [109] is a file system that allows clients to read and write any data objects 

that are locally cached. Bayou is not meant to be a general purpose file system, it is 

meant to be used by applications that are aware of the weakly consistent semantics 

that it provides, and which are capable of reconciling data that has been edited in a 

conflicting manner. 

Coda [56], is a distributed file system that allows clients to hoard data locally to 

make files more available. This capability is used for both performance and to allow 

disconnected access. Disconnected operations are logged, and this log is replayed 

when a client is in contact with a server. When a conflict has occurred then the 

replay is aborted, and it is left to the user to resolve the conflict. In [56], the authors 

showed that conflicting edits were rare in a trace of users who were also developers 

of Coda. 

The Ficus [79, 83] file system uses replication of data across many devices to 

improve the scalability, performance, and availability of data access for users. The 

main problem it solves is propagating updates, possibly conflicting, to files, which 

were made during periods of disconnection. Although data is replicated across many 

machines, it is not explicitly used for durability, and the optimistic semantics of the 

file system provide no guarantees about the consistency of replicas. 

Farsite [3,10,11,26] attempted to build a large scale enterprise file system from the 
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unused resources available in workstations. In order to do this, they had to develop 

techniques which allowed the use of untrusted and unreliable nodes in the system. 

WinFS [122] is an unreleased file system for the Windows operating system. 

WinFS allows concurrent writes to shared files on different (possibly offline) com­

puters and attempts to reconcile the resulting versions [70]. WinFS uses epidemic 

techniques to propagate rnctadata about replicated files. 

Up to this point, none of the file systems discussed were specifically designed for 

personal electronic devices. Distributed file systems have been tailored to allow the 

participation of constrained personal electronic devices [51, 77, 80, 95, 100, 101, 126], 

and these are discussed in detail next. 

2.2.3 Personal Device File Systems 

Personal device file systems are meant to be run by a collection of devices, including 

some of which are portable special purpose devices. These special purpose devices 

include things like MP3 players, flash drives, and smart phones. These devices could 

be used by either horne or business users. Some of the systems below are general, 

while some are more targeted towards the horne environment. 

Ensernblue [77] allows devices with limited capabilities to participate in a more 

general distributed file system. It uses cache coherence techniques to notify clients 

when a replica has changed. Ensernblue allows the specification of triggers, which can 

cause a particular action to be executed when a file of certain type is added to the 
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system. For example, if a new music file is added to the file system, it can be copied 

to an MP3 player automatically. 

The Few File system [80] is a distributed file system designed to support offline 

collaboration between a group of users. These users may make their edits on differ­

ent types of devices, and the connectivity of these devices may be limited. Files are 

divided into containers, where a container represents a group of files pertaining to a 

project. Whenever edits are made to a file, the update is propagated to all reachable 

devices via a pro-active event propagation mechanism. Events that can not be prop­

agated via this mechanism, are spread epidemically whenever pair-wise connectivity 

exists. In addition, to the mechanism by which edits are propagated, the authors a 

new method of reconciliation based on operational transformation [8, 80] 

Segank [101] is a file system that is designed for devices with heterogeneous con­

nectivity abilities. It optimizes the placement of data so that each node will have 

access to fresh data, and so it is possible to consistently share data across users. 

It does this by utilizing a multicast primitive for locating data, and a lazy peer-to­

peer mechanism for invalidation messages. The system can cope with completely 

disconnected operation, but is targeted towards an environment where all nodes have 

network connectivity so that users always have a consistent view of the file system. 

PersonalRAID [100] is a system where the user carries a portable storage device 

between all of the disconnected devices that they have. The portable device acts as 

a conduit by which updates to the filesystem are propagated between disconnected 
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devices, and by which replicas may be transported. Using this mechanism provides 

devices a view of the same filesystem, and allows recovery from a limited number of 

failures. When using a machine that is running the PersonalRAID file system, the 

portable storage device should be connected while using the system (the system has 

mechanisms to cope when it is not, but this usage mode is considered exceptional). 

Perspective [92~95] is a storage system that is designed for the home environment. 

It departs from the standard file system concepts such as files and directories and is 

instead based on a semantic store of a collection of objects. Each device specifies 

a view over the semantic store, which determines what objects are stored at each 

device. Whenever a new object is introduced, it is propagated to devices that have a 

view that contains that object. In addition to proposing a new basis for organizing 

data, the members of this project have performed several user surveys which capture 

the home user's experience with their storage devices [91, 92] 

The Roma system [107] provides a shared metadata service for user data. While 

not a file system, Roma can be used to build higher-level services that provide syn­

chronization, consistency and increased availability. In theory, the metadata service 

could be used as a building block for a more general personal device file system. 

Roma relies on a centralized metadata server, which represents a possible single point 

of failure. 
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2.3 Backup Systems 

In this section, we look at systems that target the problem of ensuring the durability 

of user data through backup. These systems are built on top of the file system layer, 

and often run as user level applications. 

2.3.1 Individual Backup 

Commercial remote backup systems [16, 47, 48, 65, 102, 123] allow the user to upload 

their data to a commercial server, or group of servers, where it is stored on their 

behalf. These services provide client software that uploads files to the service, and 

allows the restoration of data from failed devices. These services require the user 

to pay a monthly subscription fee. Many of these services provide the user some 

additional functionality, such as remote access to backed up data via the web, or the 

ability to share photos that are stored on their servers. Cumulus [114] is a system 

that uses general purpose cloud storage [88] as the data store for backup. Instead 

of relying on existing cloud backup services it uses its own specialized backup data 

structures, which are stored in the cloud. In this thesis, we will leverage cloud services, 

to increase the safety of data. 

Pastiche [21] removes the reliance on a commercial service by providing cooper­

ative backup to other user's machines over a wide area peer-to-peer network. Pas­

tiche automatically copies data to other machines in the network, and minimizes the 

amount of data that must be copied by leveraging overlapping data present on the 
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participating devices. In Pastiche, the other nodes are not trusted to retain data, 

so the system must periodically check to make sure backups are being stored. The 

authors developed an additional system, [22] in order to enforce fair sharing of storage 

resources. 

Friendstore [111] allows users to form a backup network among a group of users 

who are mutually trusting. They use this network to store two additional copies of 

each piece of data. Friendstore does not protect the user from bugs or malicious 

code deleting data. Friendstore does not vary the backup policy depending on the 

amount of data to be stored, or the available capacity in the system. In contrast to 

Friendstore, PodBase and SLStore do this automatically. 

Time Machine [110] is an automatic backup utility included in Apple's OS X 

10.5 operating system. It allows all Apple machines in a household to automatically 

backup to a single disk over the network. Windows 7 includes a basic backup and 

restore utility [119] that allows the user to backup their data to a secondary storage 

device. Windows Home Server [120] includes more advanced functionality that allows 

a single computer with potentially several hard drives to act as a home storage server. 

All machines can be configured to back up to the server. Additionally, users can access 

data that is explicitly shared via this server remotely. As part of the operating system, 

these systems can be compromised by user mistakes, virii, or bugs in the operating 

system. 

Drobo [27] is a network attached storage server targeted to the home user. It is 
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meant to provide the user with a single device, which contains multiple disks, where 

all of their data is stored in a fault tolerant way. It allows the flexible addition of 

additional storage, and redundantly stores the users files across the different storage 

devices contained within it. 

2.3.2 Enterprise Backup 

In an enterprise, data protection is a core IT task. To minimize chances of data loss 

or implement legally mandated data retention policies, a combination of techniques 

are employed. Often enterprises use a tiered storage model where data is stored on 

backup servers, and then eventually moved to offiine tape after a certain period of 

time. Servers often use some form of RAID configuration [75], and on-line snapshoting 

(e.g., NetApp WAFL [44], Sun's ZFS [125], or Windows VSS [115]). Off-line copies 

of the snapshot data are then created by copying the data onto tapes, and archived 

manually or using a tape robot. Lastly, tapes or disks are transported periodically to a 

safe location to create off-site copies. However, this professionally managed, expensive 

tiered system of backups is not practical for home and small business users. 

Most large storage companies sell desktop backup clients which are intended to 

be used with that company's storage infrastructure. For example, storage compa­

nies such as EMC [30], NetApp [68], Sun [106], and HP [46] sell a variety of backup 

products that are compatible with their storage appliances, as well as offering offsite 

backup for corporate customers. These solutions attempt to minimize the adminis-



25 

trative burden of keeping data backed up for a company with a large number of client 

machines. These solutions are expensive and out of reach for most homes or small 

businesses. 

In addition to proprietary enterprise solutions there exist free open source alter­

natives that allow the setup of a backup server to which all clients back data up 

to, e.g. [4, 41, 127]. These solutions often include features that rival the proprietary 

solutions, but are less well supported and more complex to set up and administer. Sig­

nificant expertise is required for setting up, configuring, and adequately provisioning 

such a system. 

2.3.3 Archival Systems 

While backup is concerned with the ability to recover from a failure, archival is 

concerned with the long term integrity of data. These two concerns are related, but 

some systems focus on the latter problem rather than the former. 

NetApp's SnapVault [42] allows the creation of compliance volumes which allow 

data to be retained for a specified time period for regulatory compliance. It comes in 

two types, one which only allows deletion of entire volumes after a specified period 

of time, or one that allows deletion of files after a specified period of time. These 

features are implemented as part of NetApp's file server OS. 

The LOCKSS [60, 61] project aims to preserve digital data stored in libraries by 

creating and maintaining replicas across different sites. The goal of the LOCKSS 
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project is to prevent the corruption of replicas over a long period of time using active 

maintenance and checking of replicas. LOCKSS, is targeted at a different environment 

then either of the systems in this thesis. 

2.4 Synchronization 

Synchronization tools attempt to ensure availability of data, and reconcile data stored 

on two or more devices. Synchronization systems can be divided into three different 

types, the first is general synchronization, the second is device or data type specific, 

and the final is replication frameworks on which synchronization can be implemented. 

General synchronization tools, e.g. Unison [78, 113] or rsync [112], synchronize 

directories stored on different storage devices. Unison attempts to reconcile replicas 

that have diverged due to concurrent edits, which is orthogonal to the problem of 

availability addressed in this work. 

There are commercial services (e.g. [28, 105]) that provide synchronization of per­

sonal data at a remote server. Like the remote backup services already discussed, a 

user's data is stored on a remote cluster of machines, and a small piece of software 

running on clients synchronizes files in specially designated directories. Apple's Mo­

bileMe [64] provides a small amount of storage that appears as a network drive on all 

of the user's machines running Apple's operating system. In addition, it allows the 

storing and sharing of photos and movies, as well as automatic synchronization of a 

user's contact and calendars. Microsoft operates a competing service [99], which gives 
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users access to a fixed amount of Internet accessible storage, as well as the ability to 

share files that are in a special folder. Windows Live Sync [121] and Live Mesh [59] 

allow users to sync folders across their machines. 

There are many software packages [49, 72, 128] that manage and synchronize par­

ticular data types with specific devices. For example, iTunes [49] manages a users 

music library and synchronizes connected devices, such as iPods, with that music 

library. PDAs are bundled with software [72] that will synchronize particular content 

such as calendar entries, and contacts with the users desktop machines. Groove [40] 

provides a collaborative workspace for office documents that propagates file edits 

automatically among a group of users. 

Finally, there is a class of systems which allow custom replication strategies to 

be specified. On top of this, synchronization can be implemented. Cimbiosys [82], 

is a system that provides selective replication of data between a set of disconnected 

devices. It allows each device in the system to define a filter, which specifies they data 

that it would like to receive. Applications are then built on top of this system that 

perform higher level functionality such as synchronization. Cimbiosys places con­

straints on connection patterns, ruling out the use of certain replication topologies. 

PRACTI [7] provides a framework for partial replication in large scale distributed sys­

tems. On top of this framework different replication algorithms can be implemented. 

Oasis [87] is an SQL-based data management system for pervasive computing appli­

cations, which can then be used as a building block for specifying replication policies. 
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The authors of [103] propose an approach called device transparency. Device 

transparency means that a unified view of all personal data is presented to the user. 

In order to achieve this they propagate metadata to all devices in they system. On 

top of this base, they include a design for rules which control data propagation. 

2.5 Operations research techniques 

In both systems presented in this thesis, we use operations research techniques, 

namely linear programming, to formulate storage management problems. This general 

approach his been proposed in other contexts, but not to the application presented 

in this thesis. 

Keeton et al. [53] advocate the use of operations research techniques in the design 

and implementation of systems. Both systems in this thesis take this approach and use 

linear optimization to adapt to their environment. Other examples of this approach 

include: Rhizoma [124] and Sophia [117], which use logic programming to optimize 

cloud computing and network testbed environments, respectively. Conductor [118] is 

a recently proposed system that use linear optimization to optimize cloud computing 

based map-reduce computations in a competitive market. 

2.6 Networking techniques 

While the primary focus of this thesis is storage, the design of the systems, particularly 

PodBase, required an implementing an underlying networking layer. In this section 
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we describe networking related work. 

The Unmanaged Internet Architecture [33-35] (UIA) provides a naming and rout­

ing service for personal electronic devices. It requires no configuration and allows rich 

sharing semantics between users. PodBase addresses the complementary problem of 

data management for personal devices. UIA could be used by PodBase to provide 

naming and connectivity among a household's devices regardless of their present lo-

cation. 

In PodBase, replicas and metadata propagate through the network of devices in 

an epidemic manner [24]. Unlike epidemic multicast algorithms (e.g. [9]), PodBase is 

not trying to deliver the replicated data to a specific subset of the devices: since our 

primary goal is durability, it is often sufficient to create replicas of each data item on 

a specific number of devices. 

Since PodBase shares data among a set of intermittently connected devices, it 

implements a form of delay tolerant network (DTN) [25, 31, 50]. PodBase can be 

viewed as a data management application on top of a specialized DTN. 

2. 7 Extending storage device functionality 

Storage leases are an enhancement to storage device functionality. There are other 

projects that have looked into extending the functionality of disk drives. In particular, 

self-encrypting hard disks [1] protect data from being accidentally leaked when a 

device is lost or stolen by encrypting data before it is stored. Active disks [2, 84, 85] 
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and IDISKs [54] allow application-specific functionality to be executed on storage 

devices. The goals and the type of functionality these projects are adding to storage 

devices differ from those of storage leases. 

2.8 Contributions beyond related work 

We now discuss the contributions of the two systems presented in this thesis beyond 

the existing related work. 

PodBase differs from related work, in that it provides a comprehensive, transpar­

ent, and autonomous solution for home storage management. PodBase is built upon 

a novel adaptive replication algorithm, which successfully replicates data in arbitrary 

scenarios, even those it was not explicitly designed for. Unlike other proposals, such 

as distributed file systems, backup, and synchronization, PodBase addresses both 

availability and durability. Additionally, PodBase does not require changes to the 

operating system or file system, and operates completely transparently to the user. 

SLStore provides a comprehensive and autonomous backup system for small busi­

ness and home office users. It makes use of similar linear programming planning 

techniques as PodBase in forder to select a backup strategy automatically based on 

the current resources, storage configuration, and workload. It is based on a novel 

abstraction known as storage leases, which allow data to be reliably stored even in 

the presence of software faults or user error. 

Storage leases are the building block that allows SLStore to provide enterprise 
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class storage management. Storage leases protect data from operator error, security 

breaches and most software errors. Storage leases provide flexibility in reuse than 

existing off-line or write once media, and are more general than previously proposed 

systems, e.g., [104]. The design for storage leases includes facilities for securely em­

bedding storage lease devices in untrusted environments, and still having guarantees 

about stored data. 
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Part I 

PodBase 



33 

In this part, we describe and evaluate PodBase. We begin by presenting a fea­

sibility study that was conducted before PodBase was built, which motivates the 

design of PodBase. We then present the design of the system. Finally, we present 

the evaluation of the system. 
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Chapter 3 

Feasibility 

In this section, we explore whether the goal of automatic storage management is fea­

sible, given the set of devices, available storage, rate of data generation and frequency 

of device connections that occur in a given household. We focus on whether there are 

sufficient resources in terms of number of devices, connectivity and free storage space 

for the users to achieve the most basic goal of a management system: durability of 

data against the loss of any one device. 

3.1 Trace Collection 

In order to study the feasibility of building a system on top of a user's spare resources, 

we need data about the intended deployment environment. Unfortunately, there is 

little available data on the disk usage of personal devices such as desktops, notebooks 

and PDAs. Moreover, in addition to disk usage, our analysis also requires information 

about the frequency, duration, and bandwidth of connections between devices. 

Since such data is not readily available, we gathered a trace by deploying a data 

collection program on the devices of a small group of participating users for approx­

imately two months. During this time period, each machine reported all storage 

devices that were attached either directly or via USB. For each device, we recorded 
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the used storage, free space and total capacity at one minute intervals. We also pe­

riodically crawled the file system of each storage device to discover which files were 

stored and how often files were added, deleted, and modified in the file system. Addi­

tionally, we collected information about what type of network each computing device 

was connected to. The measurements were taken between August 18, 2007 and Oc­

tober 18, 2007 and included 11 households with 23 computing devices and 48 storage 

devices. There were 1,568,773 samples taken, and 971 disk crawls performed during 

this period. 

3.1.1 Limitations 

Ideally, we would like to have collected a trace from a large and diverse user commu­

nity over a long period of time. However, logistical and privacy issues make this a 

difficult undertaking. We instead relied on the generou<> support of a small commu­

nity of volunteers, namely the members of our research group and their friends and 

family. 

In our group, at least one member of each household was a computer science re­

searcher. Thus, there is a likely bias towards users who have an interest in technology 

and tend to surround themselves with electronic devices. They may also be more 

likely to accumulate a large amount of data. In the absence of better data, we be­

lieve that our trace data nevertheless gives a useful indication of the feasibility of our 

approach. 
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3.2 Results: Feasibility 
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Figure 3.1 : Number of devices connected by user. 

In order to build a distributed storage system, a user must have at least two devices 

capable of storing data. Figure 3.1 shows how many computing devices (desktop 

or notebook computers) and how many storage devices (hard drives, MP3 players, 

memory sticks) were present in each household during our trace collection. The 

results show that there are many households with more than one computer. Also, 

rnost households have additional storage devices beyond a single internal hard drive 

per computer. This shows that many households could benefit from automatic storage 

management. 

Figure 3.2 shows the amount of free storage space in each household. Some house-

holds have significant amounts of free space, others have very little. In particular, 

household 3 has over 70% of its storage space used. For eight of the eleven households 

there is enough free space available to provide data durability (replicating all data on 
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Figure 3.2 : Arnount of used and free space by user. 
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2 devices); the remaining households would have to add storage in order to get the 

full benefit from the system. These households could simply purchase an inexpen-

sive USB disk1 and plug it in; the system would automatically use this new space to 

provide durability and availability. 

Our result on the availability of free space is conservative, because it ignores data 

redundancy that exists on a device and across multiple devices. For example, there 

are nine MP3 players in our trace. An MP3 player typically contains a subset of the 

files that are already stored on one of the users' computers. Also, it has been shown 

that two machines running the same operating system have a significant overlap in 

data [21]. 

Next, we wish to gauge if there is enough connectivity to ensure that new data can 

be replicated in a timely manner. Adding more storage is relatively easy, since a user 

1320GB is the amount of space required for the most constrained user in this study. At the time 
of the study was conducted, 1 TB disks were widely available for under 200 US Dollars 
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can simply purchase an inexpensive disk. However, if a storage management system 

required users to connect devices often, this would place a considerable burden on 

users. 

To address this concern, we use the free space, data growth rates, and connectivity 

measured in the trace to perform a simulation. We begin with the system in stable 

state, and then have each device generate new data at the average rate from the trace. 

When two devices can connect to each other (either directly or via the network), they 

transfer data at the nominal rate of their connections. When a device generates data, 

it attempts to replicate the new data by transferring it to another device that has 

free space. We wish to measure the amount of time it takes for generated data to be 

replicated once created. 

To do this, we replay2 the connectivity among the devices of a single household 

from our trace. When data is generated it is put into a queue; the head of the queue 

is transferred first when a connection is present. We measure the time (in hours) that 

data waits in this queue before being replicated. If, at the end of the experiment, 

data has not been transferred, it is included as having waited since its creation time. 

We repeat this experiment for all households and aggregate the data. 

The lower curve in Figure 3.3 shows the results. Approximately 30% of data can 

be replicated within one hour. This case occurs when the creating device is connected 

to another device with free space at the time when data is generated. Around 50% 

2We begin the simulation at the time when all of the users' devices that generate data appear in 
the trace. 
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of data can be replicated in under 48 hours. Some data could not be replicated for 

a much longer period of time; most of these cases are due to three of our households 

who either only had one device, or had multiple devices but only activated them to 

install our monitoring application and then did not use them again. 

The second, higher, curve shows the results with these three users removed from 

the trace. For the remaining nine households in our trace, it is possible to get quick 

replication for newly created data. 

In summary, our study indicated, for most of our user community, there are enough 

devices, storage ~pace , and sufficiently 1nany connections to achieve durability in a 

timely manner. The remaining households would be able to achieve durability if they 

were to purchase and connect an additional storage device. In the following sections, 

we design a system, PodBase, that is motivated by the results of this feasibility study. 

In actual deployment, the simplifying assumptions made in this section do not hold, 

but we will show that building an automated storage management system is indeed 
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feasible. 
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Chapter 4 

System Description 

4.1 System Goals 

In this section, we describe the target environment for PodBase. We then infor­

mally describe the goals of PodBase. Finally, we present definitions for the goals of 

durability and availability, and describe what it means to meet these goals. 

4.1.1 Target environment 

PodBase is intended for a household environment with one or more users and a 

set of shared personal electronic devices. The users are not necessarily technically 

sophisticated and would prefer not to be concerned with managing data and storage 

on their devices. Based on the result of our feasibility study, we characterize the 

environment as follows: 

• Devices are periodically connected, such that any pair of devices can eventually 

communicate via a series of sequential pairwise connections. 

• A device may fail or be lost at any time. However, the failure or loss of many 

devices during a short period of time is unlikely. 
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• Devices may be turned off when not in use; it cannot be assumed that any one 

device is always online. 

• The system must be able to handle a wide range of usage patterns and device 

configurations, without attention from an expert system administrator. 

An important aspect of the target environment is that most users don't have the 

expertise, interest or time to manage data and storage on their devices. They expect 

the system to do something reasonable automatically. Unlike a system designed for 

expert users (like the authors and readers of this paper), PodBase must be able to 

achieve its goals with little user expertise and attention. 

4.1.2 Desired system behavior 

PodBase aims to relieve users from having to worry about the durability and avail­

ability of their data. Durability requires that the failure or loss of a device not result 

in the loss of user data. Availability requires that each device store the latest collec­

tion of data relevant to that device. For example, each communication device should 

store the latest version of the address book and, subject to available storage space, a 

shared music collection should be available on all devices capable of playing music. 

As an example, Alice and Bob share a household. Alice has a notebook, an MP3 

player and an external USB hard drive. Bob has a notebook and a desktop computer 

at his office. Their home has a wireless network connected to the Internet via a 

broadband connection. During the day Alice and Bob bring their notebooks to their 
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offices and perform their daily work, such as writing documents and using email. 

At night both return home with their notebooks and use them to surf the web, 

play games, or listen to music. Although they have important data stored on their 

notebooks, they rarely back up their data. 

PodBase can automatically perform the following tasks without any explicit action 

by Alice or Bob: 

• Every night, new or modified files are replicated, in cryptographically sealed 

form, between Alice and Bob's notebooks via the wireless network. (This works 

even when they are on vacation, e.g., when the pictures Alice uploads from her 

camera are replicated on Bob's notebook.) 

• When Bob purchases a new CD and rips it to his hard drive, a replica of the 

mp3 file is later moved to Alice's notebook. When Alice connects her MP3 

player to charge, it also receives the new music. 

• Whenever Alice or Bob edit their personal address books, the changes are au­

tomatically propagated to their other communication devices. 

• Whenever Alice's USB hard drive is connected to her laptop, additional replicas 

of the files and replicas on her laptop arc made. 

• Bob's office desktop is connected to his home via a broadband connection. 

Rather than transfer data using the slow connection, the system uses Bob's 

notebook disk to rapidly replicate data between home and work. 
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• When Bob's notebook is running low on disk space (after removing any replicas), 

the system asks Bob if it should move not recently accessed movie files to Alice's 

USB drive, which has plenty of space. 

PodBase can recover from otherwise costly incidents. For example, imagine Alice's 

laptop is stolen. With PodBase, she is able to restore the data on the lost device's 

hard drive to her replacement notebook. When she connects over the wireless network 

to Bob's notebook, some files from her stolen notebook are restored on the new device. 

When she later connects her new notebook to the USB drive, the remaining files are 

restored. Thanks to the replication between home and Bob's office, they could recover 

all data even after a total loss of the home or office devices. 

An important goal for PodBase is transparency: the system's background activity 

should not affect users' experience during normal operation. By default, the system 

does not remove user files, automatically propagate changes to user files or attempt to 

reconcile conflicting versions of concurrently modified files. Instead, PodBase main­

tains all versions of a file along with their modification history. Optional plug-ins can 

define file type-, device-, or application-specific consistency semantics. 

4.1.3 Definitions 

We now formally specify the properties of availability and durability that PodBase 

attempts to maintain. The primary goal of PodBase is to ensure durability. We 

want to guarantee that each file is replicated on as many devices as possible. As a 
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secondary goal, we want to maximize availability by placing copies of each file on 

devices where they are potentially useful, subject to available space. This ordering 

is not inherent to the system, rather, it is how we chose to prioritize them, based on 

what we believe are a typical user's priorities. 

Let II be the set of participating devices aml F be the set of files that arc managed 

by the system. For each device i E II, let 8i denote the amount of space available at 

i for storage of user files and replicas. For a set of files S ~ F, size(S) denotes the 

amount of storage required to store S. 

We assume that a map v: II ----+ 2F is given which assigns, to each device, the 

set of user files stored in that device. The goal of a storage management system 

is to maintain a file assignment function 1/J: II ----+ 2F that maps each device to the 

set of both user and replica files that the device should store. At any time, the file 

assignment must satisfy 

• v( i) ~ 1/J( i), user files are never moved or deleted from devices; 

• size('lj;(i)) ~ Si, the files stored on a device may not exceed the capacity of that 

device. 

Given such a file assignment 1/J, we define its replication factor as the maximum 

value k such that, for every file f E F, 

I { i E II : f E 1/J( i)} I ~ k ; 
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that is, 1/J places each file in at least k devices. We moreover say that the replication 

factor of 1j; is optimal if there is no other file assignment 1/J' with a higher replication 

factor. 

We also assume an availability map r.p: ll -----> 2F that assigns to each device i E ll 

a set of files that i should preferably store. The availability score of a file assignment 

lj; is defined as 

a= L lr.p(i) n 1/J(i)l , 
iEil 

i.e. the number of file copies that match the preference expressed by r.p. 

In a desired goal state, a data management service places at each device i E TI, a 

set tj;( i) of file copies so that the following properties are satisfied: 

Durability. The replication factor of lj; is optimal, i.e. files are maximally replicated 

in participating devices of the system. 

Availability. From all the file assignments with optimal replication factor, 1/J also 

has a maximal availability score a; i.e. files are replicated in devices where they 

are useful. 

For the purposes of PodBase, we define default availability mappings between 

well-known file types and devices that are capable of interacting with these file types. 

For example, devices capable of playing MP3 files will be more likely to store such 

kind of files. Advanced users can modify r.p to more finely control replica placement. 
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4.2 Design of PodBase 

In this section, we present the design of PodBase. We start with an overview of 

the system, then describe how users interact with PodBase and how it propagates 

its metadata. Finally, we show how optional plug-ins can modify the behavior of 

the system, and describe the security mechanisms used to protect user's data. In 

Section 4.3, we describe how PodBase replicates data and formally define the desired 

goal state of the system. 

4.2.1 Overview 

PodBase is implemented as a user level program. It keeps track of user data at 

the granularity of files. PodBase is oblivious to file and device types. However, 

PodBase supports a plug-in architecture, by which file type and device specific data 

management policies can be added. 

PodBase distinguishes between active devices and storage devices. Storage devices 

include hard drives, media players and simple mobile phones. Active devices run the 

PodBase software and provide a user interface. An active device contains at least one 

storage device; additional storage devices can be connected internally or via Bluetooth 

or USB. The set of devices in a household form a PodBase pool. In each pool, there 

must be at least one active device, which runs the PodBase software. 

Active devices communicate via the network and handle the exchange of data. 

Whenever two active devices communicate, a storage device is attached to an active 
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device, or two storage devices are attached to the same active device, we say that 

these devices are connected. Data propagates during these pair-wise connections. 

~ User File * Metadata A Replica 

(a) 

(b) 

Figure 4.1 : Data flows through the system whenever connectivity occurs. (a) When 
the top two devices are connected, they replicate files. (b) Later, a new connection 
occurs, and data flows from the first node to the third node through the second node. 

There are three different types of data on each storage device: ( 1) regular user 

data, (2) PodBase file replicas, and (3) PodBase metadata. Although logically sep-

aratc, all of these data arc stored in the drvirc 's existing file system. The PodBase 

replicas and metadata are cryptographically sealed and stored under a single direc-

tory. 

Metadata describes a device 's most recent view of the pool's state. Included in 

the metadata is the set of known devices and their capacities, a logical clock for 

each storage device and a list of all user files that PodBase manages, along with 

their replication state. Capacity constrained devices may store only a subset of the 

system's metadata, as described in Section 4.2.3. 

Some of the space on a device not occupied by user data or metadata is used 
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to replicate files for durability and availability. User data has priority over replicas. 

PodBase continuously monitors its storage use and seeks to keep a proportion !min 

of the device's capacity free at all times. 

When a file is modified by an application or the user, PodBase creates a new 

version of the file and replicates both the old and new version independently. Plug­

ins (see Section 4.2.4) can be used to automatically apply consistent file updates 

or reconcile conflicting versions in a file type-specific manner. Users can manually 

retrieve copies of old versions or even deleted files. 

4.2.2 User interaction 

Next, we describe how users typically interact with PodBase. Though PodBase is 

designed to minimize user involvement, some interaction is required. Moreover, in­

terested, tech-savvy users have the option to change its policies. 

Device Registration. When a new device is connected for the first time, PodBase 

asks the user if the device should be added to the storage pool. 

Device Deregistration. A storage device may permanently disappear due to loss, 

permanent failure or replacement. If a device has not been connected for an ex­

tended period (i.e., a month), PodBase prompts the user to connect the device or else 

deregister it. 

Data Recovery. When a storage device fails, PodBase can recover the files it stored. 

The user informs PodBase that she wishes to recover the data from a particular lost 
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device onto a replacement device or onto an existing device. The PodBase software on 

the recovery device then obtains copies of the appropriate files during each connection. 

Externalization. By default, users and applications cannot directly access replicas 

stored on a device. However, users with the appropriate credentials can externalize 

replicas, that is decrypt and move the cleartext of a replica into the user file portion 

of the device. Alternatively, externalization can be automated using a plug-in. 

Warnings. PodBase warns the user when it is unable to replicate files because 

there is insufficient storage space or connectivity, with specific instructions to buy an 

additional disk or connect certain devices. 

4.2.3 Device interaction 

When two devices are connected, they reconcile their view of the system and exchange 

data. First, the devices reconcile their metadata. Then, PodBase determines if any 

of the replicas on either device should be moved, copied or deleted. Next, we detail 

these steps. 

Metadata contents 

Metadata contains the following items: 

1. Vector Clock: A vector clock [73], consisting of the most recent known logical 

clock values for each device in the pool. A device's logical clock is incremented upon 

each metadata change. When a device is removed from the system, its logical clock 

is set to a special tombstone value. Also, the metadata includes the most recently 
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observed vector clock of each device in the storage pool. 

2. Connection History: A list of the past 100 connections that have been ob­

served between each pair of devices, their time, duration, their average and maximum 

throughput, as well as the network addresses used by the devices. 

3. Policies: The current policy settings. Policies can be modified by sophisticated 

users. Installed plug-ins (Section 4.2.4) can also modify the policies. 

Items 1-3 are included in the metadata of all devices. 

4. Set of user files: Keeps track of the user files stored on each device in the pool. 

The content hash1 value, size and last modification time are recorded for each unique 

file. In addition, the content hashes of the last ten versions of each file are included 

(modification history). 

5. Set of replicas: Keeps track of the replicas stored on each device in the pool. 

For each replica, its size, content hash value, and replica id are recorded. 

6. Reverse map of unique files in the pool: Maps a content hash value to the 

set of files whose content matches the value. This mapping is used to determine the 

current replication level for each unique data file, considering that different files may 

have identical content. (PodBase de-duplicates files prior to replication.) 

Each record in items 4-6 contains a version number, which corresponds to the device's 

logical clock at the time when the record W&'> last modified. A small device may 

include only a subset of the records in items 4-6. 

1 A second preimage resistant hash function is used 
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Metadata reconciliation 

MMetadata reconciliation is straightforward in the common case when two devices 

that carry the full metadata are connected. They compare their vector clocks to 

determine which has the more recent metadata for each device in the pool. For each 

such device, the more recent metadata is then merged into the reconciled metadata. 

PodBase also supports devices too small to hold the full metadata. (In practice, 

devices smaller than about 100 MB are excluded. This is a mild limitation, since 

smaller storage devices are increasingly rare.) Such devices hold the full metadata for 

the files and replicas they store, plus some amount of partial metadata about other 

devices. 

PodBase ensures progress and eventual consistency of metadata, even if some 

devices are only ever sequentially connected via small devices. To this end, PodBase 

places metadata on a small device that are needed to update other devices. For this 

purpose, it checks the last known vector clocks of all devices. PodBase selects partial 

metadata subject to the available space on the small device, while ensuring that (i) 

metadata needed by more devices are more likely to be chosen, and (ii) a roughly 

equal number of metadata items are included for each device that the small device 

may encounter. 

When reconciling any device L with a small device S', PodBase checks if the 

metadata on 8 can be used to update L. For a given device d whose partial metadata 

appears in a small device, all metadata are included that have changed within some 
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range of versions i < j of d's metadata. This metadata can be used to update L if 

L's current metadata version ford is at least i and less than j. If so, PodBase merges 

the metadata about d from S into L's metadata. 

Replication 

Once the metadata is reconciled, PodBase determines the actions, if any, that should 

be performed on the data. PodBase may copy a replica of a file, in which case the 

file is stored on the target device with a new random replica id (used to distinguish 

between replicas), while the original replica remains on the source device. A device 

may also move a replica, in which case the replica is stored on the target device with 

the same replica id and then deleted from the source device. Finally, a device may 

delete a replica, to make room for another replica that it believes is more important. 

During replication, data is transmitted in a cryptographically sealed form, and a 

hash of each replica's content is attached to ensure data integrity. How PodBase 

determines the actions that should be performed is described in Section 4.3. 

Data recovery 

After a device loss or failure, data can be recovered onto a replacement device at users' 

request. During each connection to another device, the replacement device restores as 

many files as possible, guided by the reconciled metadata. The most recent available 

version of each file is restored. Users can speed up the recovery process by connecting 

appropriate devices under the guidance of PodBase. The system notifies the user 
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when the restoration is complete. 

Replica deletion 

PodBase removes replicas when the free space on a device falls below !min, the minimal 

proportion of a device's storage that PodBase keeps available at all times (by default, 

!min = .15). When PodBase frees space, it considers the most replicated files first. 

Among files with the same replication level, Porl.Dase first deletes replicas that have 

the lowest (randomly assigned) replica id among the replicas of a file, then the second 

lowest id, and so on. This policy ensures that different devices delete replicas of 

the same file only when a shortage of space dictates it. (PodBase never deletes the 

original or any externalized replica.) 

When space is available, PodBase also stores partial replicas from aborted trans­

fers, so that they can be later resumed. When space runs low, these partial replicas 

are cleared before any complete replicas are deleted. 

4.2.4 Plug-ins 

Plug-ins can be used to implement policies and mechanisms that are specific to par­

ticular file types, collections of files, device types or specific devices. Following are 

some examples of plug-ins. 

Consistency: Podlla:;e replicates each version of a file independently. A plug-in can 

be used to automatically propagate changes or reconcile concurrent modifications 

under a given consistency policy. There is a large body of work on consistency, and 
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powerful tools exist for reconciling specific file types, e.g. [32, 66, 90]. Such tools can 

be integrated as plug-ins in PodBase. 

Digital Rights Management (DRM): Media files stored on a user's devices may 

be protected by copyright. Usually, copyright regulations allows users to maintain 

copies on several of their personal devices. However, if restrictions apply, then the 

policies appropriate for a given media type can be implemented as a plug-in. 

Archiving: A plug-in can automatically watch for large, rarely accessed user files 

(e.g. movies). If such files occupy space on a device that is nearing capacity, the 

plug-in suggests moving the collection to a different device with sufficient space. If 

the user approves, PodBase automatically moves the files. 

Content-specific policy: A content-:specific plug-in can, for example, replicate and 

automatically externalize mp3 files on devices capable of playing music. Moreover, 

the plug-in can select a subset of the music collection for placement on small devices. 

For instance, when replicating music on a device with limited space, a plug-in may 

select the most recently added music, the most frequently played music, and a random 

sample of other music. 

As a proof of concept, we developed a plug-in that automatically externalizes 

replicas of mp3 files and imports them into iTunes. The plugin required around 100 

lines of Java code, and two simple OS specific AppleScript scripts to interact with 

iTunes. 
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4.2.5 Security 

PodBase uses authenticated and secure channels for all communication among devices 

within a pool. When a device is introduced to a PodBase pool, it receives appropriate 

key material to enable it to participate. Users have to present a password when they 

wish to interact with PodBase. Metadata and replicas are stored in cryptographi­

cally sealed form when stored on devices, in order to minimize the risk of exposing 

confidential data when a device is stolen. Moreover, PodDase respects the file access 

permissions of user files- encrypted replicas can be externalized only by a user with 

the appropriate permissions on the file. 

The strength of PodBase's access control within a household is designed to be at 

least as strong as the access control between different users on the same computer. 

If stronger security isolation is required between devices or users, then they should 

not join the same pool. For instance, if a user's office computer contains confidential 

material that must not leave company premises, then it must not join the user's home 

PodBase pool. 

4.3 Replication 

Whenever two devices are connected, PodBase needs to decide which files, if any, 

should be deleted, copied, or moved between devices. The decision is based on the 

latest reconciled metadata available to the PodBase agent. 



57 

4.3.1 Greedy replication 

The first implementation of PodBase used a greedy replication algorithm. This algo­

rithm considers the current replication state and the available space on the connected 

devices, and it only copies (i.e., never moves or deletes) replicas of files. A device 

obtains a new copy of a file whenever the device finds that file on a connected device, 

the file is under-replicated according to the current local view of the system state, 

and the device has enough space to store a copy of the file. Files that should be 

replicated for both durability and availability are replicated first, for durability alone 

second, and for availability alone last. 

This simple algorithm can be trivially shown to monotonically increase the number 

of replicas and converge to a stable state. During a preliminary user study, the 

algorithm performed well in most households, but tended to get stuck in sub-optimal 

replication states in certain cases, for example: 

• Once the algorithm has placed replicas for durability, it is unable to move the 

replicas if the placement turns out to be suboptimal for availability. 

• When users carry a storage device (e.g. a notebook) between office and horne, 

the algorithm is unable to use the device in the most effective way, namely to 

temporarily store replicas for transport between the two locations. 

• When the space occupied by user files increases or a device fails, the algorithm 

cannot re-distribute replicas. In general, a re-distribution may be necessary to 
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ensure an even replication level, and to prioritize durability over availability. 

• Two devices that initially interact replicate each other's files. If a third device 

is later connected, no room may be left for its files on the original devices. 

Although there may be plenty of space on the third device, the algorithm cannot 

replicate the device's files. 

Since generalizing the greedy algorithm to cover these and other cases proved 

difficult, we chose to redesign the system to use techniques from operations research. 

We pose replication as an optimization problem and, using a linear programming 

solver, compute a replication plan to achieve the optimal state. 

This approach minimizes the assumptions we make about the environment (i.e., 

the range of configurations and usage patterns), and defers most decisions to runtime, 

when the actual environment can be observed. The following subsections describe the 

approach in more detail. However, we first examine a more detailed concrete example 

of the shortcomings of the greedy algorithm. 

Detailed Example 

In order to further illustrate the shortcomings of the greedy algorithm, we give two 

more detailed examples where the algorithm does not perform well. The first scenario, 

is when two devices, A and B, are connected, B may be filled with availability replicas 

(least priority) from device A. When A is later connected to another device C that 

has unreplicated files (high priority), it cannot replicate these files. It has greedily 
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replicated low-priority files and cannot undo that decision. 

Figure 4.2 : A srnall device that pcriodicly connects to different devices has the 
potential to act as "communications device" , transporting replicas between devices 
that cannot directly connect or are connected via a slow link. 

Second, as another example, if A and C have much larger capacity than B but A 

and Care never directly connected, as in Figure 4.2, then only a subset of files with a 

combined size up to the capacity of B can ever be replicated between A, Band C, no 

matter how often B is connected to A and C. A smarter replication algorithm could 

move replicas from 13 to either J\ or C, allowing H to be used as a "communications 

device" that carries replicas between A and C. 

These examples are not exhaustive, and are meant to illustrate some of the cases 

where the current replication algorithm breaks down, and to motivate the need for 

more intelligence in the replication algorithm. 

4.3.2 Adaptive Replication 

In order to solve the problems of the greedy replication algorithm, we introduce a 

new adaptive replication algorithm. It is not an algorithm in the traditional sense, 

it specifics the current systcn1 state, and the goals, and then formulates a planning 

problem. This planning problem is then fed to a linear solver, and the resulting 

solution is used by the system. 
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In this section we describe the components of this approach by first describing the 

planning process, and then how the plan is used by the system to replicate. In the 

following section, we will explain the actual LP formulation of the problem in more 

detail. 

Planning Process 

We model the system state, as well a.'> the effects of the actions, as a set of linear 

arithmetic constraints. To reduce the complexity and the size of the formulation, we 

group files into categories. All files that appear in the same set of devices (as user 

files or as replicas) are in the same category. 

The system state is then encoded ( the formulation is discussed in more detail in 

the following section) by specifying, for each category, the total amount of space oc­

cupied by all files in that category. This significantly reduces the number of variables 

in the problem formulation, which is no longer dependent on the number of files but 

only on the number of devices in the system. 

To model the connectivity among devices, a graph is constructed with a link 

between each pair of devices that can potentially be connected. The link weight 

specifies the estimated cost of data transfer among the devices. This cost is calculated 

based on the maximum connection speed and the probability that the devices will be 

connected on a given day, based on the history of past connections. In this calculation, 

more recent connections are weighted more heavily. 
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Finally, we model the actions (copy, move, delete) PodBase can perform, and 

their effects on the system state. Because in general, devices only have pairwise and 

intermittent connectivity, a sequence of connections may be required in order to affect 

a certain state change (e.g., copy some files from A to B, and then from B to C). The 

formulation then encodes how the possible sequences of actions modify the number 

of bytes occupied by files in each category. 

Encoding the problem this way enables us to symbolically describe all the possible 

plans that PodBase could execute in order to manipulate the distribution of files. 

Given this formalization, the goal is to find a plan that optimizes the desired goals. 

Planning 

The optimization involves multiple stages, narrowing the set of candidate replication 

plans in each. First, the maximal replication factor k is computed based on the avail­

able space in the system. Then, we optimize for durability by computing replication 

plans that can achieve a k-replication for all files. Next, we optimize for cost by nar­

rowing the set of plans to those that minimize the sum of the link weights. In the next 

stage, we select among the remaining plans those that maximize availability. In the 

final stage, we select a plan that minimizes the number of necessary replication steps. 

PodBase then executes the first step of the resulting replication plan, by copying, 

moving or deleting replicas on the currently connected devices. 

This description is slightly simplified. In practice, we do not consider plans with 
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more than three replication steps for efficiency (few interesting plans with more steps 

occur in practice). 

The optimization favors cost over availability, because high cost plans are highly 

undesirable: they may rely on links with low bandwidth or rare connectivity. Notably, 

this choice still permits good availability, because the cost optimization generally 

leaves many candidate plans from which the availability optimization can select. The 

reason is that all plans involving the same set of connections have the same cost, and 

there is a combinatorially large number of such plans, corresponding to the different 

placements of replicas that can occur as a result of these connections. 

The cost optimization does, however, eliminate plans that create more then k 

replicas, even if availability calls for more. To enable additional replication for avail­

ability to occur, PodBase changes the order of optimizations once the durability goal 

has been reached. In such situations, availability is optimized before cost. 

Plan Execution 

The output of the planner is a series of steps the system should take to reach the 

durability and availability goals. The system executes only the first step in this plan, 

afterwards it recomputes based on the changes that occurred in the system state. It 

also recomputes the plan periodically when conditions change. We next show how 

the entire process works, by stepping through an illustrative example. 
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4.3.3 Adaptive Replication Formulation 

In this section we discuss the details of the adaptive replication formulation. We first 

introduce a set of concepts, and the provide more details of the linear programming 

(LP) formulation. Finally, we discuss how some implementation details impact the 

formulation, and how costs and weights are derived for the running system. 

In developing this formulation, we developed several variations which proved not 

to meet our needs in terms of scaling to the problems sizes required by our user study. 

In this section we present only the final formulation used in PodBase. 

Preliminary definitions 

We will use terminology to describe each component of the linear programming for­

mulation. For the sake of explaining the formulation as concisely as possible, these 

may differ slightly from the definitions used in the rest of the thesis. The first is a 

device, a device is simply a container for data. A device has a finite capacity which 

can be consumed by storing files or replicas. A device can have connections to other 

devices, these connections have a speed associated with them. A configuration is the 

current set of devices and connections. 

The next concept is a state. A state is the current configuration of data stored 

on devices. A step describes the evolution of a state after a set of actions. An action 

transforms the current state into a new state. The set of possible actions is restricted 

by constraints on valid states. A plan is a set of actions to be taken over a series of 
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steps. 

Constraints 

A constraint describes the set of valid states that can exist. An example of a constraint 

is that no device can store more data than it has capacity for. Through the use of 

constraints the state space of possible plans is limited to those that are actually 

fca."liblc. In this section we briefly describe that constraints that are used in the 

PodBase LP formulation. 

• The amount stored on device can not exceed its capacity. 

• A non-replica file can not be deleted or moved. 

• A copy or a move action can only occur between connected devices. 

• The amount of data copied or moved, must not exceed the original amount of 

data. 

This simple set of constraints is enough to limit the actions of the system to those 

that are feasible in practice. 

Actions 

While it would be possible to encode complex actions in an LP, we choose to use only 

two actions (which can be combined to create a 3rd logical action). These actions are 

simply to either make a copy of a piece of data to another device, or to remove a copy 
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of a currently stored piece of data. The results of the action is reflected in the current 

state of the device after it has happened (when the plan is recalculated). From these 

two basic actions, moving a piece of data between two devices can be done by first 

copying to the destination and then removing it from the source. 

More precisely, copy takes in a state, and then adds a device to the set of devices 

that is storing the data. Similarly, remove takes in the state and removes a single 

device from the list of devices storing the file. Associated with each action is a cost. 

This cost describes roughly the amount of time it would take to execute this action. 

The cost of a remove is free, as it can happen more or less instantaneously. The cost 

of copying between two devices is the amount of time that it would take to move the 

data around. This cost is based on a model, which will be described later in this 

subsection. 

Goals 

Up to this point we have constructed the building blocks of the LP. We have defined 

the valid system states, and actions which allow system states to change over time. 

Now we must provide a goal which describes the eventual system state to work to­

wards. In developing PodBase we have developed several different goals, which can 

be combined to compute replication plans that have a certain set of properties. These 

goals are the following: 

• Maximize durability: maximize the number of copies of all data (see Sec-
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tion 4.1.3) 

• Maximize availability: maximize the number of files which meet the availability 

goals (see Section 4.1.3) 

• Minimize cost (time): minimize the cost of the sum of all actions in the plan 

• Simplicity (minimize the number of steps): maximize the number of actions 

which occur in the first n steps of the plan. This is usually a re-optimization 

once other goals are optimized for, it is used to ensure the actions in the plan 

occur l'l..'> early as possible. This is done interactively to find the minimum n for 

which the solution is feasible. 

The goals can be combined using a multi-step optimization procedure. We will 

discuss how these are combined in Section 4.3.3. 

Storage sets 

In theory it would be possible to use the LP formulation with all of the above concepts 

on a per-file level, with one variable for each file. However, given the number of files in 

a PodBase deployment, this is not feasible given the current state of linear optimizers. 

Given this, we kept track of classes of files, rather than individual files. A class of files 

the set of all files stored on the same set of devices in the same form. An example is 

all files stored as user files on A and as replicas on B. This set is associated with a 

number, which is the number of bytes in that set. An action can move data between 
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these classes by copying or deleting. This optimization limits the number of variables 

to be included in the LP to the number of classes, which is much smaller than the 

number of files in a PodBase deployment. 

Deriving action costs 

One key component of the above formulation is the cost of an action, particularly 

a copy action. We assume then in all but the current step, a connection will exist 

between all devices in the system, with a given cost. Assigning a cost of an action is 

based on the previous throughput seen between two devices. It must also take into 

account the the probability two devices will come in contact with each other. We 

use the previous connection pattern between two devices to estimate the likelihood 

that two device will connect in the future. We combine these two factors, and apply 

a discount factor to make older samples worth less. From these factors we assign a 

weight to a link. 

The weight of a link in the formulation is derived in the following way. For each 

source, destination IP pair, we first define a value throughputpeak which is the maxi­

mum observed throughput between that pair. Then for each day in which connections 

were observed a daily connectivity is calculated in the following way: 

ti rneconnected It i metotal (4.1) 

This value is the percentage of the possible time these two devices were connected. 
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This percentage is then multiplied by thToughputpeak to measure the possible through­

put between those two devices. Now a discount function w(tltToughputpotentiat) is 

applied which values samples based on how long ago they occurred in the past. For a 

sample of age x (in days) the discount function w(x) is defined in the following way. 

w(x) = lje-log(O.l)/30*age (4.2) 

The function exponentially weights the more recent samples higher than older sam­

ples. If the sample is older then 30 days then it has a values of zero. 

The final expected throughput for a pair of devices is the sum of all weights 

divided by the maximum age. In the end the weights calculated result in the graph 

connecting all nodes in the system. In this graph links with higher weight are cheaper 

to use in that data can flow along the link in less time, and those with lower weight 

cost are more expensive. From this weight, the cost can be defined as the amount of 

time it would talk a quantity of data to flow across a link. For example, a link with 

a weight of lOOKB/s, carrying 1MB, would have a cost copying of lOs. Through the 

use of the costs, a total cost for a set of actions can be computed. 

Optimization procedure 

An individual LP formulation is a set of of actions, constraints, and a fixed goal. 

However, in PodBase we often want to optimize multiple goals. To do this we iter­

atively solve multiple LP problems, and fix some components of the next problem 
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with values derived from the previous problem. While these building blocks can be 

arranged in any order, in our actual PodBase deployment we fixed them as described 

in the previous section. 4.3.2. We now look at an example that shows the whole 

process through a concrete example. 

As an example, we illustrate how the planner finds a series of steps that reach 

the goal state. In this scenario, data must be transported by intermediate devices, 

and the system must correctly prioritize durability replicas. In this case we have 3 

devices, A, B and C. The initial distribution of files is the following: A has 100 units 

of data, 50 of which is of a type that should be made available, B has 0 units of data, 

and C has 5 units of data. A and C are capable of storing 500 units of data, and B 

is capable of storing 50 units of data. A and C never directly connect to each other, 

but B is connected to both A and C. At the beginning, no data is replicated on any 

of the devices. 

Formulating the problem 

In this scenario, the goal state should be that C is storing a replica of all of A's data 

and vice-versa. B should be storing the 50 units of data for availability. The greedy 

algorithm will never arrive at this state. B would take 50 units of data from either A 

or C { whichever it was attached to first), and then the system would ~ot be able to 

make any further progress. 

The input to the planner is a description of the scenario, and a number of steps 



Initial File Distribution 
A=50,50 
B=O 
C=50 

Device Capacities 
A 500 
B 50 
c 500 

Connectivity 
A - B 1 
B - A 1 
B - c 1 
c - B 1 

Maximum Steps 
steps: 10 
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Figure 4.3 : Summary of system state and environment, which is used to generate a 
linear programming problem. This is the input that is needed in order to generate 
the initial planning step, which then generates a set of linear programming problems. 
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that are allowed in the final plan. An example the format used to describe the scenario 

is shown below in Figure 4.3. The goal state is based on the definitions in 4.1, and 

is to have all data maximally durable, the data that is useful for availability present 

on all devices, and with minimum cost. 

From this specification, a linear programming problem is generated and passed 

to a solver. The result is used to determine the actions at each step, and must be 

repeated once for each step. 

Generated Plan 

The result of the above described process is used to generate a series of steps that 

PodBase must take in order to reach the goal state. We describe below the steps 

returned by the solver for the example scenario. The actual solution is a the value 

of certain variables in the solution of a linear program. We translate these results to 

English for the sake of clarity. 

• Step 1: Copy 50 units of data that are not needed for availability from A to B 

• Step 2: Copy 50 units of data that are not needed for availability from B to C 

• Step 3: Delete all data from B; Copy 50 units of data from C to B 

• Step 4: Copy 50 Units from B to A 

• Step 5: Delete 50 all data from B; Copy 50 units of data needed for availability 

from A to B 
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Minimize 
total cost 
Subject to 
durable! = 150.000000 
available4 = 50.000000 
durable3 100.000000 
durable4 = 50.000000 
durable5 = 50.000000 
available! 50.000000 
available3 = 50.000000 
available2 = 50.000000 
durable2 = 100.000000 

fa01 + fa11 + ..... + fabc11- capicitya = 0 ..... . 
cpya0b1 + 1 cpya1b1 + 1 cpyab0c1 + 1 cpyab1c1 + 1 cpyac0b1 + 1 
cpyac1b1 + 1 cpyb0a1 + 1 cpyb0c1 + 2 cpyb0ac1 + 1 cpyb1a1 + 1 cpyb1c1 
+ 2 cpyb1ac1 + 1 cpyba0c1 + 1 
cpyba1c1 + 1 cpybc0a1 + 1 cpybc1a1 + 1 cpyab0c1 + 1 cpyab1c1 + 1 
cpyc0b1 + 1 cpyc1b1 + 1 cpyca0b1 + 1 cpyca1b1 + 1 cpycb0a1 + 1 
cpycb1a1 + 1 cpyac0b1 + 1 cpyac1b1 + 1 
cpybc0a1 + 1 cpybc1a1 - cost! 0 

cost! + cost2 + cost3 + cost4 + cost5 + cost6 + cost7 + cost8 + cost9 
+ cost10 - totalcost = 0 

Figure 4.4 : Simplified snippet of LP program generated by example problem. The 
objective function in this stage of the formulation is to minimize the total cost, given 
that the durability and availability goals are satisfied (the lines directly following 
Subject to). The next constraint enforces that the data the files stored on a device in 
a step never exceed the capacity of that device (the data being stored in each storage 
set is capture by the variables starting with f. Each letter following f is a device which 
the data is present on, and the following number indicate what step, and what type 
(0 = durability, 1 = availability)). Next, the variables which encode actions in the 
system are shown, and they are related to the cost. Finally, the costs are aggregated 
into the objective function. A variable above is always indexed by first the devices 
that it is / could be stored on, then the type of file (availability=!, durability = 0), 
and finally the step in the output plan. Action variables (above copy) also include 
a target device, in the case of the copy variables the step is omitted to shorten the 
variable names. 
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• Step 6: Copy 50 units of data needed for availability from B to C. 

The final result of following this plan is the optimal goal state. All data is durable, 

and the data should be available is present on all devices. At the intermediate steps, 

no replicas are made for availability before the durability goal has been reached. Note, 

that while this example is simple, and the adaptive algorithm will work in much more 

complex scenarios. The units of data and edge weights are set to simple values for 

pedagogical reasons, and do not represent the values that one would expect while 

running PodBase. 
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Chapter 5 

Experimental evaluation 

In this section, we present experimental results obtained with a prototype implemen­

tation of PodBase. In a first set of experiments, we verify that the system behaves as 

expected. Then we present measured results from a deployment of PodBase in a small 

user community. This data allows us to assess how PodBase performs in practice, 

and provides experience with the types of devices users have, how often and in what 

manner devices are connected, and how user data is created and accessed. 

Given these results, we will show that PodBase is practical, useful, and lessens 

the burden of storage management for ordinary users. 

5.1 Implementation 

PodBase is implemented as a user-level program written in Java. Most of the code 

( 48,512 lines) is platform-independent, with the exception of a small amount (about 

1000 lines) of custom code for each supported platform (currently Windows 2000 

and higher, Mac OS X). This platform-specific code deals with the way different 

operating systems mount disks and name files. The current implementation requires 

that storage devices export a file system interface, and that all computing devices are 

able to run Java 1.5 bytecode. 
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Running PodBase on specialized platforms like cell phones or game consoles is 

feasible, but requires additional engineering effort. Since we were able to cover the 

majority of computing and storage devices owned by the users in the study, we felt 

that limiting ourselves to these two platforms and to storage devices that exported 

a file system interface was a reasonable trade off between engineering effort and our 

research goals. 

In our deployment, computing devices contact a server that calculates replication 

plans. The server was provided to simplify the installation of PodBase and is not 

fundamental to the system. With an additional step, PodBase can be configured 

with a local solver. 

5.2 Controlled experiments 

5.2.1 Computation and storage overhead 

PodBase crawls the file system of storage devices to determine which files exist and 

change over time. Each time a new file is discovered or an existing file is modified, 

the file must be hashed and added to the pool's metadata. 

Reading from disk and hashing a large amount of data (e.g., when a device is 

first added to PodBase), can be time consuming. We measured the amount of time 

the first crawl took when a new drive was added to the system. The measurements 

were taken on a 2.4 GHz Apple MacBook Pro, running OS X, one author's primary 

computing device. The internal notebook disk contained 165,105 files with a total 
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size of 87.4GB. The initial crawl took approximately 5 hours to complete. Subsequent 

crawls, which only re-compute hashes for files whose time stamps and/ or sizes have 

changed, took on the order of 10 minutes. The exact time required depends on the 

amount of new and modified data found on a device. 

The size of the system's metadata grows proportionally with the number of files 

and replicas managed by a PodBase pool. For the PodBase pools in our user study, 

the uncompressed metadata size ranged from 270MB to 2.5GB. This amounts to only 

a small fraction of the capacity of most modern storage devices. For the devices in 

our user study, storing the full metadata was possible in all cases. Smaller storage 

devices (e.g. older USB sticks or cameras) are supported in our design via the partial 

metadata mechanism. 

Computing a replication plan requires invoking a linear programming solver. We 

currently use the CPLEX solver [23], a commercial solver, but CPLEX could easily 

be replaced by a non-commercial solver (e.g. clp [20] or glpk [39]). To verify this 

we ran a simple experiment and found that, for a typical household with 5 storage 

devices, using the free LP solver package clp [20] on a 2.4 GHz Apple MacBook Pro, 

it took between one and thirty seconds to calculate a plan, and the solver required 

15MB of memory. These results show that it is feasible to locally compute a plan 

every time a device is connected, using non-commercial tools. 
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5.2.2 Pairwise transfer throughput 

Next, we measure the performance of PodBase when two devices are connected over 

a variety of media. The goal of this evaluation is to understand how quickly data can 

be replicated over several common types of connections. Table 5.2.2 shows the speed 

at which PodBase is able to create new replicas for 87.4GB of files, when running on 

a 2.4 GHz Apple MacBook Pro. The experiment for DSU was stopped early (after 5 

days), and thus the transfer time is an estimate based on the measured throughput. 

Connection Transfer Time {h) Speed (MB/s) 
USB 9.50 2.00 
Firewire 12.0 1.58 
802.llg 23.5 0.81 
Ethernet 10.5 1.95 
DSL (up) 475 (est.) 0.049 

Table 5.1 : Transfer throughput for different connection types 

Most measured throughputs are lower than the nominal data transfer rates of the 

connections. PodBase deliberately limits the transfer rate to avoid interfering with 

other activities and to maintain responsiveness. Also, the PodBase agent performs 

various computations, such as hashing files to verify integrity and encrypting replica 

contents, which reduce the throughput. 

Note that transferring data, as well as crawling disks and computing replication 

plans are background activities, which were designed to interfere with the responsive-

ness of the system as little as possible. 

1Uplink for this connection is lMb/s 
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5 .2 .3 Data restoration 

Next, we test PodBase's ability to successfully restore the contents of a lost device. We 

simulated the loss of a notebook after the replication phase in the previous experiment 

was completed. PodBase successfully restored to a USB hard drive all 211206 files 

(75GB) that were present at the time of the last crawl of the "lost" notebook. The 

restoration took 5 hours 27 minutes to complete, which includes decrypting all of the 

necessary replica contents. 

5.2.4 Replication 

Next we verify that, given sufficient connectivity and ~torage, PodBase replicates all 

files a.'-l expected. In the experiment, a single user with fonr devices (a desktop, laptop, 

iPod, and external hard drive) runs PodBase in the background while going about 

his normal daily business. 
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Figure 5.1 : Replication over time for an example user 

7 

Figure 5.1 shows the number of files that are unreplicated versus the number of 
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files that are replicated at least once, over the course of five days. At the beginning 

of the experiment (before PodBase was started), slightly more than half of the files 

were already replicated at least once on the devices. The reason is that two of the 

devices were computers with the same operating system installed. As time goes by, 

PodBasc creates more replicas, and most files become replicated. The plateaus in the 

graphs correspond to times when no connectivity existed among any of the devices. 

5.2.5 Adaptivity 

In section 4.3.1 we described scenarios where the greedy replication algorithm per­

formed poorly. We tested the new replication algorithm and verified that it was able 

to handle these cases gracefully. This result confirms that the new algorithm is able 

to adapt and perform well in tricky situations. 

5.2.6 Partial metadata reconciliation 

Next, we experiment with small devices that carry partial metadata. In our example, 

there are three devices: two full metadata devices, which never directly connect to 

each other; and a small device, which is connected to each of the other devices once 

per day. The small device is able to carry 100MB of metadata about other devices, 

and the total metadata size is 2GB (1GB per device). 

Initially, the two large devices are completely unaware of each other; no new 

data is added after the experiment begins. It took ten days or 21 connections for 

the metadata on the two large devices to converge, which is expected based on the 
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relative size of the metadata and the small device. 

This example show that metadata converges even in extreme scenarios. In our 

experience, small devices are rare and connectivity tends to be much richer in practice, 

leading to much faster convergence. 

5.3 User study methodology 

PodBase's operation in a practical deployment is strongly dependent on the number 

and usage of devices, as well as the type, amount and usage of data within a household. 

To study how Podbase performs in actual usage, we conducted two user studies. The 

first wa.-; with the greedy replication algorithm, the second used the improved adaptive 

algorithm. In each, we asked ten members of our institute to deploy the system in 

their households and collected trace data over a period of approximately three months. 

We asked the users to, as much as possible, ignore the presence of PodBase and use 

their devices the way they would normally use them. If necessary, several users were 

given additional storage, these additional storage devices are indicated in each user 

study. 

For practical reasons, the number of households and users in our study is small 

and covers a relatively short period of time. Moreover, at least one member of each 

household was a computer science researcher. Therefore, there is a likely bias towards 

users who have an interest in technology, like to surround themselves with electronic 

devices, and tend to produce and consume large amounts of information. As a result, 
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we cannot claim that our results are representative of a larger and more diverse user 

community, or a long-term deployment. However, we believe that our data gives a 

valuable glimpse at PodBase's likely performance in practice. 

In each user study, we collected anonymized data about file creation, modification 

and deletion on each device, when and where replicas were created, and which devices 

were connected at what times. We use these logs to generate the graphs used in the 

rest of this section. 

5.4 User study 1 

In the first user study, we evaluate PodBase using the simple greedy algorithm. 

To start, we provide a brief overview of the households used in our deployment 

and the characteristics of the devices used in each. 
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Figure 5.2: The number and type of devices present in the deployment, by household. 

Figure 5.2 shows the number of storage and computing devices in the PodBase 

pool of each household. The number of computing devices used in the households 
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ranged from one to five. Some users had no additional storage devices, while others 

had up to three. Households 1 and 4 received an additional one terabyte USB disk, 

which is reflected in the data. 
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Figure 5.3 : The amount of storage capacity and free space present on devices before 
PodBase begins replication. Additional space corresponds to the USB disks house­
holds 1 and 4 were given. 

Figure 5.3 depicts, for each household, the total size of the household's storage 

pool, divided into used storage and available storage at the beginning of the deploy-

ment and before PodBase was activated. The additional storage given to households 

1 and 4 is shown as "additional space" . After this addition, seven of the households 

had at least half of their total storage capacity available. This does not imply that the 

remaining three households cannot replicate their data; whether they can depends on 

how 1nuch duplication there is among their existing nser files. 
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5.4.1 Replication results 

In this section, we evaluate the performance of PodBase by looking at the state of 

the deployment at the beginning and the end of the trace collection. During the 

user study, the replication value of k = 2 was used for all users, and mp3 files were 

preferentially replicated for availability. 
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Figure 5.4: The initial (left bar) and final (right bar) replication status of households 
1,2,3,4,5 

1 
en 

0.8 .!:! 

!JI' 
~ 

Villi 

f-l " '~ ' ~x+ ·············. 
~ ................ : 

~ 3x - -
u: \• 2x 
""' 0.6 0 

... . ., 1x - -
c 
0 0.4 :;:: - -
u 
ca 0.2 ... 

LL 
- -

0 - - -
6 7 8 9 10 

Household Number 

Figure 5.5 : The initial (left bar) and final (right bar) replication status of households 
6,7,8,9,10 



84 

Let us look at the replication state of the system before the households ran Pod­

Base. As shown in Figure 5.4 and Figure 5.5, many households had files that existed 

on only one device, leaving these files vulnerable to data loss if the device were to fail. 

Also, many households had a significant number of files already replicated, either as 

copies of the same file or different files with identical content. 

At the end of the trace, seven households (1, 2, 4, 5, 6, 7, 9) had most (more 

than 95.8%) of the their files replicated. The remaining, unreplicated files were re­

cently created or modified and had not yet been replicated at the end of the trace. 

Households 3, 8 and 10, on the other hand, still had a significant number of their files 

unreplicated, namely 14.2%, 67.6% and 84.5%, respectively. 

These three households each had only two devices: a notebook that was used 

at home intermittently and a desktop workstation in the office. The device pairs 

were connected over a DSL connection, but the notebooks were not active sufficiently 

long to allows full replication over the relatively slow broadband connection. Had 

these users left their notebooks turned on when not in use, or had they brought their 

notebooks to the office, their files would have been replicated. As a sanity check, 

we provided the two least replicated users with an external USB hard drive and 

asked them to connect it once to each of their machines for 24 hours (after the trace 

collection ended). By doing this, each was able to replicate 95% of their files. 
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5.4.2 Availability 

A secondary goal of PodBase's replication is to place replicas of files on devices where 

they are likely to be useful. In our deployment, we specified that mp3 files should be 

preferentially copied to devices that are capable of playing music. 

In analyzing the trace, we found that relatively few mp3 files had been replicated. 

This is surprising, because several households had extensive mp3 music collections. 

Investigating further, we found that most of the households had already manually 

replicated all of their music files on the relevant devices. Thus, PodBase did not have 

the opportunity to improve availability. 

Two users, however, originally had a significant number of mp3 files that were 

on their laptops but not on their desktops. PodBase replicated these files onto the 

desktops, and the mp3 plug-in described in section 4.2.4 had externalized the music 

files. This happened during an earlier run of Pocll3ase (i.e., before our trace collection 

started), therefore it did not show up in our trace. The users had gained access to 426 

songs (2.82GB) and 2611 songs (17.2GB), respectively, on their desktop computers 

that were previously stored only on their notebooks. 

5.4.3 Replication latency and throughput 

We next look at the maximal replication throughput in each of the households. Since 

all householcls had many files to replicate at the beginning of the trace collection, the 

rate at which data was replicated early in the trace is a lower bound for the total 
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replication throughput of a pool. This value provides a lower bound for the rate of 

new or modified data that a household could generate, such that PodBase would still 

be able keep up replicating the data. 
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Figure 5.6 : Peak daily throughput for each household 

Figure 5.6 shows that the peak throughput varies among the households in our 

deployment. The values range from 4 to 110 GB per day. This result shows that 

PodBase can keep up with a high rate of data generation. 
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Figure 5. 7 : Replication latency for households 2,4,5, 7,9 
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We now examine the replication latency, the elapsed time until a new or modified 

file becomes replicated. We first examine those households with relatively short laten-

cies. Figure 5.7 shows a CDF of how long it took to replicate a file. For households 2, 

4 and 5, over 50% of files were replicated within approximately four days. Households 

7 and 9 took longer because there were extended periods with no connectivity. 
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Figure 5.8 : Replication latency for households 1,3,6,8,10 

Second, we examine the latency of the households who took significantly longer 

to replicate their files in Figure 5.8. Household 1 replicated very quickly once con-

nectivity was established between a pair of devices. Households 3 and 6 replicated 

more slowly but consistently, which is due to the fact that much of the replication 

occurred over a DSL connection. As mentioned earlier, household 8 and 10 did not 

complete replication because they had only slow and intermittent connectivity. 

We note that our measured replication latencies are conservative, because in most 

households, PodBase was busy replicating the user files found initially on the various 

devices during a large part of the trace collection. In steady state, PodBase would 
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have to replicate only newly created or modified files, which would reduce the latencies 

considerably. Nevertheless, PodBase was able to replicate data in a timely fashion in 

those households that had sufficient storage and where users cared to connect devices 

sufficiently often. 

5.4.4 File conflicts 

We previously argued that reconciling divergent replicas is an orthogonal problem 

to the one PodBase is trying to solve, and that we expect divergent edits to be 

rare in PodBase's target environment. For these reasons, PodBase does not provide 

automatic means for reconciling conflicting copies of mutable files. However, plug-ins 

can provide this capability for specific file types. In the following experiment, we 

quantify how often file conflicts occurred in our deployment. 

Nine of the ten households from our user study allowed us to log non-anonymized 

file modifications for one month. Among these households, each had on average of 

633135 files. On average, 15184, (2.3%) of files were modified over the course of 

the trace. We saw a total of 449800 modifications across all of the nine households. 

We analyzed these modifications and found 62 (.001% of all modifications) files (by 

content) that had divergent concurrent updates. 

Most of these concurrently modified files were text documents that were main­

tained by a revision control system, and users had checked them out on their note­

books or home computers. In this case, the revision control system provides a mech-
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anism for reconciling the files. In the other cases, the files were email messages whose 

status (e.g. read, answered, forwarded) had changed on different devices. The status 

of these files is eventually synchronized through the n1ail server. Thus, a separate 

mechanism in PodBase is not necessary to handle these files. 

5.5 User Study 2 

In the second user study, we deployed PodBase using the adaptive replication algo-

rithm. We present many of the same results as in the previous user study, as well as a 

comparison of the adaptive algorithm with the greedy algorithm used in the previous 

study. 

First, we provide a brief overview of the households2 used in our deployment and 

the characteristics of the devices used in each. 
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Figure 5.9: The number and type of devices present in the deployment, by household. 

2Xote that the set of users in the first and second user study do not completely overlap, there is 
no direct correspondence between the household numbers in this and in the previous user study. 
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Figure 5.10 : The amount of storage capacity and free space present on devices 
before PodBase begins replication. Additional space corresponds to the USB disks 
households 1, 4, and 5 were given. 

Figure 5.9 shows the number of storage and computing devices in the PodBase 

pool of each household. The number of computing devices used in the households 

ranged from one to seven. Some users had no additional storage devices, while others 

had up to three. Households 1, 4 and 5 received an additional one terabyte USB disk, 

which is reflected in the data. Household 4 has a virtual device that is backed by a 

cloud storage service to which that household subscribed. PodBase uses this device 

like any other, taking into account its capacity and connection bandwidth. 

Figure 5.10 depicts, for each household, the total size of the household's storage 

pool, divided into used storage and available storage at the beginning of the deploy-

ment and before PodBase was activated. The additional storage given to households 

1, 4 and 5 is shown as "additional space". After this addition, seven of the households 

had at least half of their total storage capacity available. This does not irnply that the 

remaining three households cannot replicate their data; whether they can depends on 
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how much duplication there is among their existing user files. 
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Figure 5.11 : The initial (left bar) and final (center bar) replication status of each 
household. Final results for the greedy algorithm (right bar) are shown for compari­
son. 

5.5.1 Replication results 

In this section, we evaluate the performance of PodBase by looking at the replication 

state at the beginning and the end of the trace collection. During the user study, the 

replication factor was dynamically chosen by the replication algorithm. An installed 

plug-in caused nlp3 files to be replicated for availability on devices that can play mp3 

files. 

Let us look at the replication state of the system before the households ran Pod-

Base. As shown in Figure 5.11 (left bars), many households had files that exi~ted on 

only one device, leaving these files vulnerable to data loss if the device were to fail. 

Also, many households had a significant number of files already replicated, either as 

copies of the same file or different files with identical content. 
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The middle bar in Figure 5.11 shows the replication state at the end of the trace 

collection3 . Five households (1-3, 8-9) had most (more than 97%) of their files 

replicated. With the exception of household 9, which had not quite finished replicating 

its original files, the remaining household's unreplicated files were recently created or 

modified and had not yet been replicated at the end of the trace. Households 4, 5, 

and 7 were not able to replicate as much, as these households had only intermittent 

connectivity between a pair of their devices. These households had two devices that 

were well connected to each other, and one device that was either mostly offline or 

connected via a slow DSL connection. In these cases, all of the data was replicated 

between the well connected devices, but the data on the poorly connected device was 

not replicated fully. 

Households 6 and 10 replicated as much data as possible but did not have enough 

space on one of their devices to fully replicate the remaining 19% and 10% of their 

files, respectively. In order to improve upon these results, the users would have had to 

add additional storage to the system. This could be accomplished easily by purchasing 

inexpensive additional storage. 

As a sanity check we had users from households 4 and 10 bring in their notebooks in 

order to verify the limitations we describe above. Simply having household 4 bring its 

notebook into the office, where there was good connectivity between devices, allowed 

his data to be fully replicated. For household 10, we attached a one terabyte external 

3The result for household 7 was obtained by re-playing the trace, because a bug was discovered 
during the m;er study that had influenced the final state of this household 
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drive to their computing device that had data to be replicated. After doing this, less 

than 0.5% percent of files remained to be replicated. 

Several households (1-5, 7 and 9) were able to achieve a replication factor greater 

than two for some of their files. This is due to the replication algorithm realizing that 

the storage available was enough to increase the replication factor. In Household 2, 

80% of the users files were replicated 4 times or more. 

For comparison, the right bar in Figure 5.11 shows the replication state at the end 

of the trace when the greedy replication algorithm is being used, with a replication 

factor of two. (To make the results comparable we replayed the trace from the 

later deployment against an implementation of Pod Base with the greedy algorithms.) 

Household 1 chose not to provide their trace for privacy reasons, and thus we can not 

include the results. 

In households 6, 8 and 10, which have only two devices, the behavior of the two 

algorithms is almost identical. In households 2-5 and 9, the adaptive replication 

algorithm performed better, showing the advantages of dynamically calculating the 

replication factor in the adaptive algorithms. Additionally, household 9 benefited 

from a multi-step replication plan used by the adaptive algorithm, which was able to 

make effective use of a device to transport data. 
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5.5.2 Availability results 

A secondary goal of PodBase is to place replicas of files on devices where they are 

likely to be useful. In our deployment, a plug-in specified that mp3 files should be 

preferentially copied to devices that are capable of playing music. 

In analyzing the trace, we found that three of the households had already manually 

replicated all of their music files on the relevant devices. Thus, PodBase did not have 

much opportunity to improve availability in these households. However, it did provide 

a significant gain in availability for several of our households. Household 3 had its 

entire music library of 415 music files made available on all three of its computing 

devices. Household 7 had 851 music made available by PodBase and Household 8 

had all 1318 music files made available. Household 9 had 1500 music files from a 

music library that was otherwise loosely synchronized between their devices, made 

available on two additional devices. An additional two households originally had a 

significant number of mp3 files on their laptops but not on their desktops. PodBase 

replicated these files onto the desktops, and the mp3 plug-in described in section 4.2.4 

had externalized the music files. This happened during Used study 1 (i.e., before our 

trace collection started), therefore it did not show up in our trace. The users gained 

access to 426 songs and 2611 songs, respectively, on their desktop computers that 

were previously stored only on their notebooks. There was no increase in availability 

for one household that had no music files. 

As described in Section 4.3.2, the replication algorithm first optimizes for dura-
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bility, then cost (ti1ne to complete) , and finally availability. A concern might be that 

by doing this, we are limiting the amount of availability the system can provide. We 

looked at the impact of this optimization process on the one household (9) for which 

the final replication plan did not result in full replication of files for availability. In 

thi~ hou~chold the final replication piau rc~ults in 95% of the optimal availability. 

The remaining 5% were not achieved because the replication had not yet finished at 

the end of the trace collection, and not because of a limitation in the algorithm. 
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Figure 5.12 : Peak daily throughput for each household 

5.5.3 Replication latency and throughput 

We next look at the maximal replication throughput in each of the households. Since 

all hou~eholds had many files to replicate at the beginning of the trace collection, the 

rate at which data was replicated early in the trace is a lower bound for the total 

replication throughput of a pool. This value in turn provides a lower bound for the 

rate of new or modified data that a household could generate, such that PodBase 
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would still be able to keep up with replicating. 

Figure 5.12 shows that the peak throughput varies among the households in our 

deployment. The values range from 1.4 to 110 GB per day. This result shows that 

PodBase can keep up with a high to very high rate of data generation, using only the 

incidental connectivity that exists in our households. 
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Figure 5.13 : Replication latency for households 1,2,4,7,9 

We now examine the replication latency, the elapsed time until a new or modified 

file becomes replicated. If a file is not yet replicated, we include it in the CDF as 

having an infinite latency. We first examine those households with relatively short 

latencies. Figure 5.13 shows a CDF of how long it took to replicate a file. For 

households 2 and 4, over 50% of files were replicated within approximately one day. 

Households 1 and 7 took longer because there were extended periods with no connec-

tivity. Household 9 replicated gradually over the course of the trace, as connectivity 

allowed. 

Second, we show the latency of the households that took significantly longer to 
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replicate their files in Figure 5.14. In these households, device connectivity is the 

dominant factor in the replication latency. When there is connectivity, there are 

sharps jurnps as files get replicated, followed by periods of disconnection, where no 

replication happens. 

As with the previous latency results, these are conservative, because in most 

households, PodBase was busy replicating the user files found initially on the various 

devices during a large part of the trace collection. In steady state, PodBase would 

have to replicate only newly created or modified files, which would reduce the latencies 

considerably. Nevertheless, PodBase was able to replicate data in a timely fashion , 

subject to available storage and device connectivity. 

5.5.4 File Workload 

In this section we make more general observations about the workload in the user 

study. 



98 

Each of the households in the user study had on average 528,187 files taking up 

332GB. After the initial crawl, on average of 21GB per day was generated by the 

addition of new and modifications of existing files. These numbers are skewed by one 

particular household that stored the disk image of an active virtual machine in the 

file system; without this household, the value was 381MB per day. 

Our normal households generate new or modified data at a minimal/ average/maximal 

rate of 4.5/36.1/316 Kb/s, while the "heavy" household generates 2.3 Mb/s. At an 

assumed upload bandwidth of 1 Mb/s, transferring the initial data while keeping up 

with updates would require between 3.7 and 121.6 (median 31.82) days for the normal 

households. (It would be infeasible for the heavy household, because the rate of new 

data exceeds the network bandwidth). 

These results show that for timely replication of data, PodBase's use of high 

speed connections and storage devices within a household is important. For the 

normal households, a broadband connection would suffice to replicate new data, but 

the heavy household would require a faster Internet connection. Relying solely on a 

broadband connection (e.g. to a cloud provider) for replication would require a long 

period of full network utilization, and increase the latency for files to be replicated. 

As in the previous study, we also looked at file modifications. (This data is based 

on nine of our household, which allowed us to inspect their un-anonymized traces.) 

In this case, on average, 14,94 7 ( < 1%) of files were modified over the course of 

the trace and there were 104,635 file modifications across all of the nine households. 
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We analyzed these modifications and found only 64 (0.0006%) of the modifications 

concurrently updated the same file. Interestingly, as with the previous study, write 

conflicts rarely occur among personal devices in our deployment. 

5.6 Summary 

In this evaluation, we have evaluated PodBase both through controlled experimen­

tation and through two user studies. We have shown that in the home environment 

PodBase works as designed, and provides automatic availability and durability to 

home users. 



100 

Part II 

SLStore 
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In this part, we describe and evaluate SLStore. We first present the design of 

the entire system, including the storage ease abstraction, an adaptive planning com­

ponent, and the sub-system that performs backup. We then present an evaluation, 

which measures the performance, overhead, and cost of deploying SLStore. 
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Chapter 6 

System Description 

In this chapter we describe SLStore. We begin by giving a high level view of the 

system components, and then describe each in detail. 

6.1 System Overview 

In this section, we give an overview of the major components of SLStore, their func­

tion, and how they interact with each other at a high level. A SLStore deployment 

is composed of a network of nodes, each of which hosts a subset of the components 

below. Figure 6.1 shows a sample deployment scenario. 

Storage Leases: The low-level building block of SLStore is a novel storage abstrac­

tion called a Storage Lease (SL). Data stored under a storage lease cannot be deleted 

or modified for a pre-determined period of time. The role of a storage lease in SL­

Store is similar to that of an off-line storage medium (e.g., tape storage) in enterprise 

storage solutions. Data stored on an off-line medium cannot be deleted or modified 

if the medium is not physically mounted. Because such media are only mounted 

infrequently (e.g. as part of a tape rotation), an error, fault, or compromise would 

have to go undetected for a long time in order for it to be able to corrupt all copies 

of important data. Storage leases have the same property, but without requiring me-
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Figure 6.1 : A diagram showing 3 machines, each running one or more system com­
ponent, connected via a network. A disk with a clock indicates a storage lease device, 
a disk without a clock indicates a conventional disk. Also shown is a connection to a 
remote cloud storage provider that supports storage leases. 

chanical action to mount or unmount the storage medium. In Section 6.2 we describe 

the storage lease abstraction in detail, and show how it can be implemented. 

Planner: The planner runs on each participating node. It takes as input the system-

wide history of data addition and deletion, as well as the information on the available 

storage on the various storage devices (and possibly information about other services 

such as cloud storage). The planner obtains this information from the storage alloca-

tors. Based on this information, it solves a linear optimization problem to compute 

a backup plan that optimizes for maximal protection of data, given the available 

resources. The planner is described in more detail in Section 6.4. 

Backup agent The backup agent is the system component that actually performs 

data backup. The backup agent takes two inputs. First, it takes information from the 

planner about the backup plan currently in effect. The backup plans specifies how 

often files should be backed up (incrementally or as part of a snapshot), on which 
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devices copies should be stored, and the period of the associated leases. Second, the 

backup planner determines the list of files that should be backed up, for instance, 

by scanning the filesystem for modified files. Based on this information, the backup 

agent stores data (and any associated metadata) on the appropriate devices. A backup 

agent runs on all participating nodes. The backup agent is described in more detail 

in Section 6.5. 

6.2 Storage leases 

In this section we present a novel storage abstraction, called a Storage Lease (SL). 

Storage leases can be used as a building block to protect data from operator error, 

security breaches and most software errors. We rl.efine the abstraction, then explain 

its requirements and properties. Finally, we show how to implement storage leases, 

either within the firmware of a storage device or as part of a higher-level storage 

service, such as cloud storage. 

6.2.1 Motivation 

In this section we provide background on current data protection techniques in both 

enterprises and in the home anrl. small office environment. We motivate the introduc­

tion of storage leases by examining problems that are not currently addressed in the 

small business and home environment. 
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Data protection techniques 

Creating redundant copies of data is the key to making it durable, but different levels 

of guarantees can be achieved depending on the way these copies are created and 

maintained. We break these down into the following four levels. First, replicated file 

and storage systems such as RAID [75] protect against storage device failure. Second, 

on-line snapshots protect against user error and application software faults. Third, 

creating off-line or write-once copies of data protects against storage system software 

and hardware errors, as well as security compromises that can affect on-line data. 

Lastly, creating additional off-site copies of the data protects against catastrophic 

failures that wipe out an entire site. We analyze how these different measures are 

usually applied in different environments. 

Enterprise Environment 

In an enterprise, data protection is a key IT responsibility. To minimize the chances 

of data loss and to implement legally mandated data retention policies, a combination 

of techniques are employed. Often enterprises use a tiered storage model where data 

is stored on backup servers, and then eventually moved to offline tape after a certain 

period of time. Servers often use some form of RAID configuration [75], and on-line 

snapshoting (e.g., NetApp WAFL [44], Sun's ZFS [125], or Windows VSS [115]). Off­

line copies of the snapshot data are then created by copying the data onto tapes, 

and archived manually or using a tape robot. Lastly, tapes or disks are transported 
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periodically to a safe location to create off-site copies. 

Even though storage leases are not designed primarily for enterprise environments, 

they may help improve enterprise backup practices by (i) write-protecting data until 

it is has moved to offiine storage, and (ii) lowering the cost of the solutions that are in 

place today by replacing expensive equipment like tape robots with the use of storage 

lease-enabled disks. 

Home and Small Business Environment 

Homes and small businesses have many of the same problems as enterprise users in 

that they have important financial or personal data that they wish to be retained. 

However, they can not afford the same professionally managed infrastructure as in 

the enterprise. Thus they are more vulnerable to viruses, security attacks, or even 

user error which could result in data loss. 

Currently, diligent users install backup software (e.g., Apple's TimeMachine [110] 

or Microsoft's Backup and Restore [119]) but the fact that these backups are not 

offiine implies that data is vulnerable to security compromises, like a virus or worm 

infection that destroys on-line data, or even to software bugs that silently erase backup 

data [36]. 

Some users may create off-line copies by periodically copying snapshots to write­

once storage (e.g., DVDs). But, because this process cannot be automated, it is 

burdensome and often not performed on a regular basis (unless professional IT staff 
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is managing it, which is not practical). 

Finally some users may use cloud backup as their means of data safety. However, 

cloud providers give no guarantees about the persistence of data, and the users have 

no knowledge about how the data is stored by the provider. If the provider make 

an error, the data stored could be lost [55]. Furthermore, data stored on the cloud 

can be overwritten, either by a malicious software or accidentally by the user. Also 

a limited upload bandwidth to the cloud can lead to a high data transfer time and 

therefore increase the window of vulnerability during which data is not backed up. 

6.2.2 The storage lease abstraction 

In this section, we present the Storage Lease (SL) abstraction. Storage leases can 

be used as a building block to protect data from operator error, security breaches 

and most software errors. We begin this section by defining the abstraction and its 

properties. 

The main goal of storage leases is to protect stored data, for a pre-determined 

period of time, from accidental or malicious modification. Once written under a 

storage lease, a unit of data cannot be modified or deleted until the lease expires. 

During the lifetime of a SL, data stored under the SL is protected from modification or 

deletion due to human error, worms, viruses or other security breaches, and software 

bugs above the storage layer [36]. 

Storage leases provide the following guarantee. When a unit of data b is written 
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to an SL-enabled device D with an expiration time of t, the device ensures that: 

At any time smaller than t, the device rejects write requests for data block b. 

Furthermore, once a storage lease is written, the device can issue a certificate c 

that attests to the storage commitment. 

This guarantee holds despite arbitrary faults outside of the system component 

that implements the storage lease. For instance, one of the solutions we will propose 

is implementing storage leases in the firmware of a disk drive. In this case, this 

guarantee holds despite any faults outside the device hardware or firmware (e.g., 

even if subsequently the host to which the device is attached becomes infected by 

mal ware). 

Note that writing a block with a storage lease of infinity has the same effect as 

writing a block to write-once storage. Thus, write-once storage can be viewed as a 

special case of a storage lease. 

Benefits of a write protection spectrum 

Storage committed under a storage lease cannot be reclaimed during the lease period, 

but can be reclaimed anytime after the lease has expired. Thus, SL-enabled storage 

covers a spectrum from conventional read-write storage (which can be reclaimed at 

any time but does not protect data integrity) to write-once storage (which protects 

data but can never be reclaimed). 

This additional degree of freedom enables a continuous trade-off between data 
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protection and storage commitment, which is important in environments that lack 

professional system administration: on the one hand, we need write protection, be­

cause taking storage off-line by manual or mechanical means is not practical. On the 

other hand, we cannot backup all data in write-once storage, because many systems 

produce large amounts of scratch data that would be expensive and unnecessary to 

store permanently. Storage leases provide a degree of freedom that can be used to 

resolve this tension. 

Benefits of generating certificates 

The certificate that is generated when writing a storage lease provides unforgeable 

confirmation that the data was written with a certain lease period to a given SL­

enabled device. 

Certificates arc useful when SL-cnablerl devices are attached to machines that 

may be compromised. For example, consider the following scenario. A user has two 

machines in a home or corporate network, m 1 and m2 , where m 2 is infected by a 

virus but m 1 is not. When rn1 tries to use m2 's SL-enabled device to back up data, 

the malicious software running on the machine might act is if it had stored the data 

but in practice it discards it, leading m 1 to wrongfully believe the data had been 

backed up. To prevent this attack, the backup agent can request a certificate from 

the SL-enabled device. This certificate provides a signed confirmation of the write 

operation. 
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Furthermore, as we will exemplify in Section 6.3.5, certificates can also enable 

other uses of storage leases, namely to provide proof of storage commitment in en­

vironments where multiple parties from mutually distrusting administrative domains 

need to interact, such as peer-to-peer storage systems or cloud storage. 

Managing storage space-time 

Storage leases prevent the corruption of stored data, even when a computer's oper­

ating system is compromised by an attacker. However, leases also introduce a new 

attack vector: an adversary (e.g., a virus that has infected a machine) can commit 

the resources of an attached SL-enabled device by storing large quantitates of useless 

data with long-term leases. The effect of such an attack is less serious than data 

corruption, as it is limited to preventing future use of the storage (denial-of-service). 

Nevertheless, it is a threat that must be addressed. 

To understand how we can mitigate this attack, we must precisely characterize the 

resource that is being managed by an SL-enabled device. The resource commitment 

associated with a storage lease is proportional to both the amount of data and the 

period of the lease. This commitment is captured by the storage space-time Si = ni *ti, 

where ni is the amount of data covered and ti is the period of lease i. The total space­

time 8 committed in a device is 8 = LiEL si, where L is the set of existing leases 

(whether expired or not) in the device. 

To mitigate space-time filling attacks, an SL-enabled device limits the rate at which 
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space-time can be consumed by new leases, i.e., dSjdt::::; R. The device enforces that 

R can only be set once by the administrator installing the device; it should be chosen 

to limit the space-time an attacker can consume within a given period. To illustrate 

the usefulness of this rate limiting, assume that a virus infection or a security breach 

is detected after no more than T detect' and that a device with capacity C has an 

expected lifetime of f_,, i.e., after L units of time the clevice will be fillecl with storage 

leases when used at its maximum rate. Then, we can ensure that an attacker can at 

most consume 1% of the device's total space-time by setting R = 0.01T 0 *£ . Note 
detect 

that the attacker can choose to consume more data for a shorter time, or vice-versa, 

but the damage is limited either way. 

Chasing R involves a trade-off between limiting the damage an attacker can cause 

ancl aclmitting legitimate leases at a sufficient rate to cover peak demand. In practice, 

however, satisfying the latter concern is not as critical as it may seem. First, there is 

often high demand for space-time during the installation of a new storage device, e.g., 

when an operating system or a database is installed. We can make sure this initial 

demand is not subject to the rate limit by setting R after the initialization. Second, 

legitimate users of leases (e.g., file systems or backup applications) can work around 

the rate limit should they exceed it during peak demand; they can simply request a 

lease with a shorter period than desired, and extend the lease prior to its expiration. 

An attacker, on the other hand, only has limited time until detection, and can at 

most commit R · Tdetect of space-time. 
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Nevertheless, if an attack is not detected for a long time, a large amount of space­

time may be wasted. To enable recovery from such an event, SL-enabled devices may 

provide a hardware switch (DIP switch or jumper) on the circuit board of the device, 

which can be used to reset all leases and the rate R. The switch can be operated by 

an expert as part of the system recovery. Note that the guarantees of storage leases 

are not affected by the presence of such a switch, because it cannot be activated by 

any software action. 

Storage lease interface 

The storage lease interface is similar to that of a block device. Defining the storage 

lease interface at the block level allows an implementation of storage leases in the 

firmware of a storage device (e.g., a disk drive). Such an implementation depends 

only on the integrity of the disk firmware and hardware, and is robust to bugs and 

compromises of all higher-level software. 

The interface, as shown in Table 6.1, contains three key elements that depart from 

a traditional block device interface. 

Lease period: The block write operation takes the expiration time t for the lease of 

the newly written block as an argument. A write fails if the target block is currently 

protected by a lease, or granting the lease would exceed the rate limit U. There is 

also an update operation used to extend the lease of an existing block, and an attest 

operation used to obtain the lease period of an existing block. 
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Certificates: The storage lease interface allows clients to obtain a signed lease cer­

tificate after data has been written with a given retention period. Note that the 

certificate must cover the expiration time (and not the lease duration) to prevent 

replay attacks. 

Batching: To amortize the overhead of signature generation for certificates, a se­

quence of SL operations can be hatched together and a single certificate issued for 

the batch. Reducing the number of signatures to one per batch instead of one per op­

eration greatly improves the performance of, for instance, large file writes consisting 

of many block writes. Also, we must give upper layers control over how operations 

are delimited within a batch, so that the certificate can identify objects such as files 

or directories rather than blocks. Therefore, at any time within a batch, it is possible 

to obtain a hash of a series of data blocks operated on as part of the batch. These 

hash values are what is attested to when a certificate is subsequently generated. 

Thereforefore, certificates have the following format: 

[Hash(oi + 02 + .. +on), D]av where 01, ... ,On is a sequence of operations in a batch, 

as delimited by the application, + indicates concatenation, and D the SL device. 

Moreover, oi is the concatenation of the operation identifier, arguments and results 

of the ith operation in the batch. 
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6.3 Implementing storage leases 

Next we focus our attention on how to implement the storage lease abstraction. We 

discuss three possible implementations: in the firmware of a disk device, in the OS 

driver of a storage device, and as part of a cloud storage service. 

6.3.1 Firmware implementation 

One implementation of storage leases adds the required functionality to the firmware 

of a disk storage device. Implementing storage leases at this level has a significant 

advantage: the trusted computing base required to enforce the properties of storage 

leases is limited to the firmware and the device hardware. Software faults and com­

promises affecting applications, file systems and operating systems do not affect the 

storage lease guarantees. 

Implementing storage leases requires four tasks: 

• Maintaining lease information for each data block and enforcing write protec­

tion. 

• Keeping track of real time to decide when a lease has expired. 

• Controlling the rate of space-time committed to leases. 

• Generating signed lease certificates on demand. 

We consider each of these tasks in turn. 
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Keeping lease information and enforcing protection 

The firmware sets aside a set of data blocks on the storage device, which contain 

the lease expiration times for each of the primary data blocks (we call these lease 

blocks). Given that a 16-bit timestamp is sufficient for a lease granularity of one day, 

the overhead for storing an array of timestamps, one for each 4KB data block, is less 

than 0.05%. 

Before writing to any block on the device, the respective lease block must be 

checked, and the write fails if there is an unexpired lease protecting that block. To 

speed up this step, a cache of lease blocks is maintained in the on-disk DRAM cache. 

Modified lease blocks are flushed to disk before the certificate for the respective batch 

of writes is returned (only then can the application be sure that the storage lease was 

successfully created). 

The lease blocks are grouped on the physical disk into extents of at least the 

same size as the cache line of the on-disk cache. Therefore, once the disk head is 

positioned for a desired lease block, an entire extent can be read or written efficiently 

to/from the cache, taking advantage of likely spatial locality. The lease block extents 

are placed equidistantly on the disk, such that an extent contains leases for the data 

blocks closest to the extent. This choice minimizes, subject to the choice of lease block 

extent size, the seek distance between a data block and the lease block containing the 

associated lease. For instance, if the block size is 4KB (containing 2048 lease values) 

and a cache line has 64 blocks, then a lease block extent of 64 blocks follows every 
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extent of 64 * 2048 = 128K data blocks. 

When lease blocks become corrupt, the disk can no longer validate whether a write 

to the corresponding data block is allowed. This case can be handled in different way, 

namely: (i) replicating lease blocks, which would double the overhead, (ii) optimisti­

cally allow the write, risking losing data, or (iii) upon detection, set all corresponding 

leases to the lifetime of the disk. Because a data block corruption is a relatively rare 

event, we decided for option (iii) because it is always safe. 

Keeping real time 

Keeping track of real time to determine when leases expire presents a design challenge. 

We cannot depend on the real-time clock of the attached computer, because that 

clock could be compromised by an attacker. Alternatively, adding a hardware real­

time clock with the required battery to the circuit board of a storage device would 

add significant component and maintenance cost. 

Fortunately, two observations come to the rescue. First, it is sufficient for the 

device to maintain a time that is earlier or at most equal to the actual real time. 

Having an earlier time means that leases are enforced longer than needed, which is 

conservative. Second, the passage of time can be tracked at a coarse granularity, 

because leases are for long periods, e.g. months. Thus, a coarse precision on the 

order of one day is acceptable. 

Given these observations, it is sufficient to have the operating system periodically 
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provide a signed time certificate generated by a trusted time server to the device. 

A fault or compromise affecting the OS can at worst delay the flow of valid, up­

to-date time certificates, which would delay the expiration of leases. As mentioned, 

delaying the expiration is conservative and causes no harm to data (though it delays 

the reclamation of storage). 

The requirements for the trusted time server are straightforward in terms of preci­

sion and query load. As mentioned, a precision as low as one day is sufficient. Serving 

a cached certificate even to hundreds of millions of devices once every hour is straight­

forward with current server technology. However, a successful attack to significantly 

advance the clock on the server could place vast amounts of data at risk. Therefore, 

the signing keys must be kept off-line and certificates issued based on a manually 

verified clock. Once a day, a new certificate can be generated at an off-line computer 

and manually transferred to the on-line time server, using a portable storage device 

like a USB stick. Such time servers could be operated, for instance, by the vendors 

of SL-enabled storage devices. 

We can further strengthen this scheme by requiring that k certificates are pre­

sented by independent trusted sources. 

Rate-controlling space-time 

As described in Section 6.2.2, the rate at which space-time is allocated to new leases 

is limited to prevent a compromised system from filling the disk with long-term lease 
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commitments. The parameter R can be set once on a new disk (or after a manual 

reset) using the Set Rate operation. 

Whenever a new lease is requested or an existing lease extended, the firmware 

checks the sum of space-time commitments due to new or extended leases during the 

past 24 hours, and rejects the request if the rate exceeds R. Of course, the system 

can retry a rejected request with a shorter lease period. Note that a request may be 

denied because the firmware's notion of real-time is behind. In this case, providing 

the disk firmware with a recent time certificate resolves the problem. 

Generating lease certificates 

The device firmware must generate signatures for certificates, and verify the signatures 

of time certificates. 

The crypto primitives must be strong enough to prevent attacks on the signing 

keys. Because the keys need only be secure for the lifetime of a storage device (i.e., 

on the order of 5 years), we do not foresee the need for updates of the crypto libraries 

or keys on a device. The necessary keys can be assigned, and their validity verified 

once the devices are deployed, by the device manufacturer; crypto algorithms can be 

upgraded with each new device generation. 

Another possible concern is the performance penalty due to signing. However, 

hatching reduces the frequency of signature generation to a point where it is not of 

concern. 
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Finally, the state associated with a batch does not require more than a few hundred 

bytes, and can be stored in the device controller's existing RAM. 

Firmware updates 

To prevent an attacker from bypassing the lease protection, firmware updates must 

be protected. Therefore, the disk firmware must accept only updates that are signed 

by the device vendor or another trusted authority. The crypto infrastructure already 

in place for verifying time certificates can be reused for this purpose. 

6.3.2 Driver implementation 

An implementation of storage leases in the firmware of a storage device requires 

support from the device vendor. We believe that such support is feasible, because 

the cost for implementing leases is moderate and vendors have an incentive to include 

value-added features. For instance, disk vendors have recently added support for data 

encryption to disk drives [1]. 

If SL-enabled storage drives are not available, an alternative implementation is to 

provide the functionality as part of the storage device driver. Such an implementation 

is straightforward; however, a driver implementation increases the computing base 

trusted to enforce storage leases to include the OS kernel. Thus, the leases would be 

vulnerable to bugs and compromises of the OS kernel. This problem can be mitigated 

by reducing the size of the TCB, either through the use of a micro-kernel or a virtual 

machine monitor. 
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6.3.3 Storage enclosure implementation 

Storage leases can also be implemented as part of a storage enclosure, for instance, 

a RAID box. Low-end enclosures of this type are now inexpensive enough even 

for home environments. Again, the implementation is straightforward. The storage 

enclosure firmware becomes part of the computing base trusted to enforce storage 

leases. However, unlike an operating system, this firmware is embedded, does not run 

applications and has a narrow interface. Therefore, it is likely to be far less vulnerable 

to compromise than an OS. 

6.3.4 Cloud storage implementation 

Storage leases can be implemented as part of a cloud storage service as well. In 

this case, the cloud service implements and ensures the guarantees associated with 

storage leases. Here, the trusted computing base for storage leases comprises the cloud 

service implementation. While this computing base is substantial, it is professionally 

managed and can be designed to have a narrow interface that minimizes the attack 

surface. Moreover, the faults it may suffer are unlikely to be correlated with a fault or 

compromise in the customer's computing base. Thus, a combination of client-side SL­

enabled storage devices and an SL-enabled cloud service provides strong protection 

from operator error, software faults, security compromises, and even catastrophic site 

failures. 
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6.3.5 Applications of storage leases 

In this section, we sketch applications of storage leases beyond SLStore. A storage 

lease enabled device appears to the operating system as a normal block device with 

an augmented interface. As such, the device is fully backward compatible and an 

unmodified operating system can use it as if it was a normal device. To make use 

of storage leases, however, an operating system, file system or application has to be 

modified to use the extended interface, and it has to be prepared to deal with the 

semantics of blocks protected by a lease. 

In the following, we sketch four applications. The first a lease-aware snapshotting 

file system, is representative of integration with the existing operating system and file 

system. The other two, peer-to-peer storage and cloud storage, highlight interesting 

uses of lease certificates. 

Lease-aware file system 

A tight integration of lease-based storage requires a lease-aware file system. For in­

stance, a lease-aware snapshotting file system could use leases to protect the integrity 

of in-place, copy-on-write snapshots, obviating the need to copy data to a dedicated 

device as part of a backup. 

Starting from a snapshotting file system like WAFL or ZFS, the required changes 

arc relatively modest. First, the file system must be cxtcmled to request leases for all 

data and metadata blocks associated with a given snapshot. Second, the file system 
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allocator must be made aware that leased blocks cannot be reclaimed until the lease 

expires. Lastly, metadata stored under a lease must be append-only. The changes are 

very similar to those required for SSD-aware file systems, where data blocks cannot 

be modified and reclaimed freely and individually. The design of a lease-aware file 

system is beyond the scope of this paper. 

Peer-to-peer storage 

Lease certificates can be used as proof of resource usage in volunteer-based systems 

where users might not have the right incentives to contribute to the system. For 

instance, in a cooperative peer-to-peer backup system [21], peers might pretend to 

contribute their fair share of resources, while in reality they are using the system 

without storing data on behalf of others. With storage leases, peers can demand 

lease certificates to other peers that are supposed to store their data, and exclude 

those that refuse to present lease certificates. 

Cloud storage 

Lease certificates can also be used by cloud providers to prove to their customers 

that their data is being stored for a certain period, and also that certain replication 

levels are being met. This would add value to a cloud storage service, since it would 

increase transparency, and overcome one of the main concerns that deter potential 

customers of cloud services, namely that a lack of proper data management from the 

cloud provider might lead to data loss, as has happened in the past [55]. 
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6.4 Planner 

In this section we discuss the planner, which generates a backup plan which conforms 

to a pre-defined backup policy. We begin with a description of backup policies. 

6.4.1 Backup Policy 

The backup policy defines how often a snapshot of the system's data should be created, 

how long these snapshots should be retained, and how many copies of the snapshot 

data should be stored on and off site. An example backup polky may specify that 

daily snapshots are stored on site for one week, that weekly snapshots are stored with 

one copy on site and another copy off site for one month, and that yearly snapshots 

are stored indefinitely off site. Here, it is assumed that on site copies are stored on 

SL-enabled devices and that off site copies are stored on an SL-enabled cloud storage 

provider, each with a lease period equivalent to the retention period of a snapshot. 

SafcStore defines a set of default policies, from which the planner automatically 

selects the best feasible policy, given the available resources and the prevailing work­

load. If the resources are not sufficient to sustain the weakest default policy, or of 

the current policy will lead to an exhaustion of storage within the foreseeable future, 

the users are prompted to add more storage to the system. Sophisticated users can 

also define their own policies, but given that SafeStore is designed for lay users, it it 

discouraged. 

The set of default backup policies are shown in Tables 6.2 and 6.3. The de-
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faults are chosen to provide reasonable policies that maximize data protection with a 

given amount of available resources. They are influenced by common best practices 

in enterprise data management, and in commercial backup programs like Apple's 

TimeMachine [110]. 

6.4.2 Planning Process 

The planner is responsible for (i) choosing the best backup policy from the set of 

default policies, and (ii) computing a backup plan that satisfies this policy. vVe 

discuss each of these task in turn. The planner formulates each task as a linear 

optimization problem and uses a state-of-the-art solver to compute a solution. 

Choosing a policy 

To choose a policy, the planner considers the currently available storage and space­

time resources on SL-enabled devices in the system, as well as the expected rate at 

which data is likely to be generated or modified in the future. To estimate the latter, 

the planner looks at the rate at which data has been backed up in the recent history. 

Based on this information, the planner determines the best backup policy that is 

either sustainable indefinitely, or leads to an expected storage exhaustion sufficiently 

distant in the future. By default, we consider a predicted exhaustion of storage within 

30 days as acceptable, because it leaves users sufficient time to purchase and install 

additional storage, or to manually choose a weaker backup policy. (Because SafeStore 

is designed for lay users, the latter is strongly discouraged.) 
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The planner repeats this optimization daily, in order to be able to adjust to changes 

in the workload and storage availability. If the available resources drop below a level 

where the minimal backup policy can be implemented, users receive a strong warning 

that data can no longer be adequately protected. 

Computing a backup plan 

Given a policy choice, the planner next computes an assignment of snapshots to 

SL-enabled devices. This assignment is guided by three concerns: 

• A snapshot should reside in its entirety on one device whenever possible. This 

policy maximizes the chance that a snapshot is available, considering that de­

vices may fail and partial snapshots are of limited use. 

• Related snapshots of the same data should be placed on the same device to 

maximize the benefits of de-duplication, while maintaining the same high avail­

ability of snapshots in the presence of device failures. 

• The available storage space and storage space-time of all devices should be 

utilized. 

The resulting assignment is then communicated to the backup agents. 
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6.5 Backup Agent 

Given a backup policy and backup plan provided by the planner, it is the task of 

the backup agent to actually back up user's data. In this section, we describe the 

operation of the backup agent. Note that a backup agent may run on any participating 

node, including nodes that do not contain an SL-enabled storage device. 

We describe the steps involved in backing up and restoring data in the following 

subsections. 

6.5.1 Snapshots 

A snapshot is a collection of files that represent the state of a (part of a) file system 

at a certain point in time. Because a snapshot is normally created concurrently with 

other activity on a given machine, the snapshot may not be consistent with any 

instant in the evolving state of the file system. This is a property of many backup 

applications and not unique to our solution. The alternative is to take the system 

offline while a checkpoint occurs (not practical) or to use a file system that explicitly 

support copy-on-write and checkpoints (e.g., ZFS). 

A snapshot is made in two steps. The first step is to push all new data to the 

SL-enabled devices and gather lease certificates for the data. The second step is to 

migrate pointers to any unchanged data to the new snapshot and to update the lease 

period for that data. The decision about how to store new data is determined by the 

planner, as discussed in the previous section. 
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In order to be able to recover from catastrophic failures, a root for the last known­

good snapshot must be locatable on the SL-enabled device. An initial block is pre­

allocated to serve as the root of a chain of snapshot pointers. When a new snapshot 

is added, a pointer to that snapshot on disk is written into this block, and then a new 

block for the next pointer is pre-allocated. This process repeats to form a chain. Each 

block in this chain is written to the SL device with an infinite lease period. When a 

the last known-good snapshot must be found, this chain is followed until the point 

in time desired or the chain ends. If while the system was compromised, this data 

structure was written to, the chain is still valid up until the point of compromise, 

and the last known-good snapshot is the end of the chain. If an attacker tries to 

compromise this chain, it will be detected the next time a good node attempts to 

make a snapshot. 

6.5.2 Determining which files have changed 

It is assumed that between successive snapshots, the backup agent is notified of all 

files that are being created or modified. This list is used to identify files that should 

be included in the next checkpoint. The method by which it is determined which files 

are changed is not important. Many operating systems provide an API by which an 

application can be notified of files that have been changed in a particular tree of the 

filesystem. When possible, the backup agent will leverage such API's. Otherwise, a 

separate process can crawl the file system and look for changes since the last snapshot. 
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6.5.3 De-duplication 

The backup agent performs de-duplication, so that files stored on the same machine 

with identical content are backed up only once. For this purpose, the backup agents 

cache the lease certificate of each file they have backed up. During a snapshot creation, 

a backup agent broadcasts a query to determine if the file has already been backed up 

by another agent. Other backup agents respond with the associated lease certificate 

of each requested file they have backed up. In this case, the querying agent can store 

the existing certificate in its checkpoint, instead of actually writing the file. 

Queries and responses are hatched (1000 files per batch) for efficiency. Combined 

with the limited number of nodes in home office and small business environments, 

the simple broadcast approach has acceptable performance and overhead. Note that 

due to the secure lease certificates, faulty or compromised backup agents can at worst 

cause redundant data to be backed up. 

6.5.4 Restoring a snapshot 

When a storage device fails or a user wishes to roll back the system state, then a 

restore from a checkpoint occurs. The first step is to recover the checkpoint data 

structure. Then we gather all blocks in the checkpoint, and write them to the desti­

nation files that are recorded in the checkpoint data structure. Once the blocks are 

recovered, the data contained can be verified by hashing the contents and matching 

them to the hash and the signature of the hash stored in the receipts. Once all blocks 
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have been written and verified, the restore is considered successful. 

6.5.5 Snapshot verification and repair 

Periodically all currently live checkpoints are verified to ensure that the data stored 

matches the recorded hashes. This process is done in the background. If an error 

is discovered then the system attempts to repair the problem by making additional 

copies of the data in question. 
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Function Description and Exceptions 

Bid startBatch() starts a new batch and returns its id; fails if too 
many open batches 

void write(Bid id, Bnum b, writes data block #b from buffer buf with lease 
expiration time t; 

Expiration t,void *buf) fails if block #b is protected by a lease, or space-
time rate limit exceeded 

void read(Bid id, Bnum b, void *buf) reads block # b and stores it in buffer buf 
void update(Bid id, Bnum b, extends the lease of block #b to expiration time 

t· , 
Expiration t) fails if t is earlier than the block's current lease 

expiration, or space-time rate limit exceeded 
Expiration attest(Bid id, Bnum b) returns the current lease expiration time for block 

#b, or zero if block is not covered by an active 
lease 

Hash hash(Bid id) returns the accumulated data hash in the batch, 
then reinitializes the hash accumulator; read, 
write and attest operations update the hash ac-
cumulator with the hash of the block they act on 

Certificate getCertificate(Bid id) returns a certificate confirming the set of opera-
tious in the hatch; the certificate is a signed hash 
of the set of successful operations in the batch, 
including their arguments and results 

void endBatch(Bid id) terminates a batch; subsequent invocations of any 
operation with this batch id fail 

void setTime(TimeCerticate T) Advances the device's clock to the time provided 
in the certificate T; fails if T's signature can't be 
verified; ignored if T's time is less than or equal 
to the device's current time 

void setRate(long rate) Sets the rate at which the device admits new 
leases by specifying the maximal rate of storage 
space-time committed per day; only the first in-
vocation succeeds 

Table 6.1 : Storage lease device interface. Additionally, the device supports normal 
read and write operations. However, write operations to a block with an active lease 
fail. 
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Policy Guarantees Notes 

1 copy of snapshot + 1 offsite Data that was stored when 
a snapshot St was created 
is resilient to site, hard­
ware and software failure for 
R(St) 

Requires additional site or 
budget for cloud storage 

2 copies of snapshot 

1 copy of snapshot 

Data that was stored when 
a snapshot St was created 
is resilient to hardware, soft­
ware failure for R(St) 
Data that was stored when 
a snapshot St was created is 
to software failure for R(St) 

Tolerant of the failure of any 
SL device storing checkpoint 
data in a short period of 
time 
Tolerant only to failure of 
node storing original data 

Table 6.2 : Replication policies in order from strongest to weakest. The planner 
chooses the strongest feasible policy from this table, and then chooses the best feasible 
snapshot schedule from Table 6.3. 

Snapshot Type (St) Retention Time (R(St)) Notes 
Yearly Indefinitely Minimum snapshot schedule 
Monthly 1 Year Ability to do monthly snap-

shot implies yearly snap-
shots 

Weekly 1 Month Ability to do weekly snap-
shot implies monthly snap-
shots 

Daily 1 Week Ability to do daily snapshot 
implies weekly snapshots 

Hourly 1 Day Ability to do hourly snap-
shot implies daily snapshots 

Table 6.3: Snapshot schedules, ordered from weakest to strongest. 



132 

Chapter 7 

Evaluation 

In this chapter we evaluate the performance of SLStore. We first evaluate the per-

formance of a storage lease device, which SLStore is built upon. We then describe 

the implementation of our prototype system. We then conduct a series of controlled 

experiments where we verify the system functions as designed. We follow this by run-

ning a set of trace-based experiments, whose goal is to measure the cost and overhead 

of running SafeStore in its target deployment scenario. 

7.1 Storage lease evaluation 

In this section, we evaluate the costs of storage leases. There are two main sources of 

overhead: the storage costs for the lease values, and the performance costs of checking 

leases, updating leases, and producing lease certificates. 

As mentioned in Section 6.3, the storage overhead of a 16-bit lease value for each 

4KB block is less than 0.05%1. Lease values must be checked during each block write, 

leases values must be updated after a batch of block writes with storage leases, and 

a lease certificate may need to be generated when a batch terminates. The cost for 

1This value is conservative, because it may be possible to include a lease value within the existing 
low-level framing information stored with each block when a disk is formatted. 
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these operations depends on the placement of lease values on the disk, the policy for 

caching lease values in the disk controller's DRAM cache, and in the case of lease 

update and certificate generation, the batch size. Our evaluation seeks to quantify 

these overheads, explore the tradeoffs among different lease value placements, caching 

policies and batch sizes, as well as the performance impact on real applications. 

We use an implementation of storage lease in the DiskSim [14] disk simulator to 

explore different lease value placements and caching policies under different workloads. 

DiskSim evaluation 

In this section, we present results from an implementation of storage leases in DiskSim. 

Experimental setup 

To implement storage leases in DiskSim, we made modifications to support a subset of 

the storage lease API (i.e., startBatch, write, read, endBatch), reserve a region of the 

disk for lease blocks, support caching of lease blocks, and implement lease certificates 

as described in Section 6.3. 

We use a validated disk model included in the DiskSim distribution. This disk is a 

15K RPM Seagate 15K.5 drive, with a capacity of 146GB and an on-disk cache size of 

16MB. We did not have access to the exact details of the internal cache organization, 

so we configured both disk models to use segmented LRU cache replacement and a 

write-through cache policy for writes. We used this particular disk model (A SCSI 

disk manufactured in 2007), as it was distributed and validated by the providers of 



Workload Type Description Amount of 1/0 Think Time Identifier 
Sequential All data read/written to sequential blocks 400MB 0 SR/SW 
Local All data read/written to blocks with N blocks 400MB 0 LR/LW 
Random Random blocks read/written disk 400MB 0 RR/RW 
Bittorrent Download of movie file 3087MB 4231.91 BT 
Game Playing a strategy game 659MB 3517.8 G 
Install Downloading and installing Firefox 647MB 221.123 IN 
Movie Viewing a movie 1000MB 7391.63 M 
Web \Vchsurfing and n1ail t·ca.ding 591MB 3770.6 w 
Bulk Sequential write Bulk background write using storage leases 1000MB 0 B 

Table 7.1 : Workloads used in evaluation 
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ID Placement 
B The lease values are stored in a single extent of 4KB blocks at the beginning of the disk. 
Sx The lease values are stored in equidistant extents of x 4KB blocks, 

followed by an extent of x * 2048 associated data blocks. 
I The lease value is stored together with the associated block. 

Table 7.2 : Placements of lease values 

ID Lease cache configuration 
u Lease blocks are cached alongside normal data blocks in a unified cache. 
Cx x% of the cache is dedicated to storing lease blocks. 
I The lease value is cached along with a cached data block. 

Table 7.3 : Lease cache policies 

DiskSim. 

Table 7.1 list the workloads used in the evaluation. We use the DiskSim synthgen 

module to generate three different synthetic workloads. The random workload gener-

ates a sequence of single-block writes to random blocks on the entire disk. The local 

workload generates single-block writes to random block numbers within a range of 

4000 consecutive blocks from the current position. The sequential workload generates 

single-block writes to consecutive block numbers. In each workload, a total of 400MB 

of data is being written. 

In addition, we gathered several I/0 traces from an author's MacBook Pro note-

book with 135GB of storage and the HFS+ file system. The traces were gathered 

using the iosnoop script, which is a wrapper around the DTrace [29] utility, and post-

processed into a format usable by DiskSim. During each of the trace collections, the 

described activity was performed, while normal system and user background tasks 
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were running (e.g. updating the mail database, or reading configuration files for 

Skype). The I/0 from these tasks were recorded in the trace as well. Unless oth­

erwise stated, we ignored the think times between consecutive disk requests when 

re-playing the traces, which amplifies the load imposed by the trace on the storage 

lease device and yields conservative results. 

Lease lookup overhead 

Prior to a write operation, the associated lease value must be checked to decide if the 

write can proceed. The cost of this check depends on several factors: the placement of 

lease values relative to the associated blocks on disk; the policy and size of the cache 

for lease values; and the workload. We begin by measuring the impact of the lease 

lookup for different workloads, and for different lease value placements and caching 

policies. 

We experimented with the lease value placements shown in Table 7.2 and the 

lease cache configurations shown in Table 7.3. The "I" cache configuration makes 

sense only with the "I" placement; in this configuration, we generously assume that 

the 16-bit lease values can be stored on disk and in the cache without reducing the 

effective size of disk or cache. Kate that the line size of the cache is 16 blocks ( 4KB 

each). The lease blocks are aligned such that a cache line is used in its entirety either 

for lease blocks or for data blocks. For placements with less than 16 blocks per lease 

extent, we reduce the cache line size accordingly to avoid the obvious loss of cache 
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Figure 7.1 : Normalized I/0 throughput (ops/sec) for synthetic workloads, with 
different lease placements shown on the x axis. The cache configuration is Unified 
(U), except for the inline (I) placement, where lease values are cached inline (I). The 
results are normalized to the throughput without leases. 
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Figure 7.2 : Normalized I/0 throughput ( ops/sec) for trace workloads, with different 
lease placements shown on the x a.."Xis. The cache configuration is Unified (U), except 
for the inline (I) placement, where lease values are cached inline (I). The results are 
normalized to the throughput without leases. 

Figures 7.1 and 7.2 show the normalized throughputs for the synthetic and trace-

based workloads, respectively, with a unified cache (except as noted in the caption) 

and different lease value placeulCnt~. VVe nu:tke the following observations: 

• 816 appears to be the best overall placement, because it has good performance 

on the synthetic workloads (including the important sequential reads) and the 

trace-based workloads. 
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• Random writes (RW) are the worst-case workload for storage leases. The 

throughput of random writes is slightly less than half of that without leases, 

because caching is not effective in absorbing the disk access to read the lease 

value, which is required to validate the write. In practice, systems tend to avoid 

random writes to disks because of their inherently poor performance; therefore, 

we believe that the additional overhead should have limited impact on most 

systems: 

• Ignoring the 84, 88 and I placements for the moment, the workloads are not 

strongly affected by the placement. In particular, the trace-based workloads 

all achieve between 8x and 100% of the normalized throughput. Note that 

the traces are replayed without think times; in a replay with think times, the 

increase in completion time resulting from storage leases would be negligible. 

• The in-line placement (I) has very poor throughput for writes, because every 

block write requires an additional disk rotation between reading the lease value 

and writing the block. Caching is not effective, because the placement allows 

no pre-fetching of lease values. Inline placement also has the highest overhead 

on the trace-based workloads. 

• The 84 and 88 placements achieves superior throughput for 8W, LR and RR 

at the expense of a significant drop in sequential read (8R) performance. The 

reason is that the shorter cache line size benefits these workloads, while 8R 
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benefits significantly from the increased pre-fetching that comes with a larger 

cache line size. 
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Figure 7.3 : Normalized I/0 throughput (opsfsec) for synthetic workloads, with 
different cache configurations shown on the x axis. The total cache size is 16MB in 
all cases, and the lease value placement is 816. The results are normalized to the 
throughput without leases. 
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Figure 7.4 : Normalized I/0 throughput ( opsjsec) for trace workloads, with different 
cache configurations shown on the x axis. The total cache size is 16MB in all cases, 
and the lease value placement is 816. The results are normalized to the throughput 
without leases. 

Next, we explore how different cache configurations affect the overhead of stor-

age leases. Figures 7.3 and 7.4 show the normalized throughputs for the synthetic 

and trace-based workloads, respectively, with the 816 placement and different cache 

configurations. 
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The unified cache configuration achieves the best throughput across all synthetic 

workloads. While C12.5 , C25 and C50 achieve better throughput on some of the trace 

workloads ( C and IN), they have slightly worse throughput on sequential writes, 

which is an important workload. We conclude the unified cache configuration is the 

best overall. This result is intuitive, as it provides the greatest flexibility iu using the 

cache resources in the way most appropriate for a given workload . 

We have performed additional experiments to explore many combinations of lease 

value placement and cache configuration. They confirm that Sl6 and a unified cache 

is a good overall configuration across the workloads we have studied. 
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Figure 7.5 : Average per-operation I/0 response time for the trace workloads. The 
traces were replayed with the recorded operation inter-arrival times (think times), 
and the per-operation response times measured. The placement is S16 and the cache 
configuration is unified. The results are normalized to the average per-operation 
response time without leases. 

Figure 7.5 shows the average per-operation response time in our trace-based work-

load, with the S16 placement and a unified cache. Here, we played the operations in 

the traces while observing the recorded inter-arrival times, and measure the response 
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time for each operation. The increase in response time due to storage leases on the 

trace based workloads is between 3 and 23%. 

Lease write overhead 

Next we focus on workloads where data is written with a storage lease. In this case, 

there are additional overheads for writing lease values and for generating a lease 

certificate at the end of a batch of writes with storage leases. 

In the experiment, we run the different trace workloads (replayed without think 

time) concurrently with a mock backup workload, which writes 1GB of data sequen­

tially in batches of increasing size. A lease certificate is requested for each batch. We 

assume that the disk controller has a crypto co-processor, which efficiently computes 

cryptographic data hashes and RSA signatures. Such crypto chips are inexpensive 

and widely available in devices like broadband wireless routers. In our simulation, 

we assume an inexpensive, low end coprocessor like the SafeNet SafeXcel-1741 [89] 

which can hash data at 325MB/s, and generate an RSA signature in 8.4ms. We added 

support to DiskSim to keep track of the crypto co-processor utilization and block if 

a new request is posted while it is still busy with a previous request. 

In addition to the cryptographic overhead, the updated lease blocks must be 

written to disk when the end of a batch is requested. This requires flushing all 

modified data and lease blocks associated with that batch from the cache. 

Figure 7.6 shows the throughput of the combined trace and mock backup workload 
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for different batch sizes, normalized to the throughput of the same workload on a disk 

without lease support. Decreasing the batch size increases the frequency at which the 

signing occurs and dirty lease blocks must be flushed to disk. The results show that 

decreasing the batch size below lOl\tiB has a significant impact on performance. In 

order to get good performance for storage lease writes, the sizes of the batches should 

be maximized. In backup applications, this is easy to achieve. It should be noted 

that our results are conservative, because (i) we assume a low-end crypto chip (more 

powerful co-processors can generate an RSA signature in tens of microseconds), and 

(ii) we replayed the trace workloads without think times. 
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Figure 7.6 : Normalized throughput (I/0 ops/sec) for combined trace and mock 
backup workload with lease, with different batch sizes shown on the x axis. Crypto 
processor with 325 MB/s hash throughput, RSA latency 8.4ms. Unified 16MB cache, 
placement S 16. 

7.1.1 SLStore evaluation 

7.1.2 Implementation details 

We have developed a prototype of SafeStore, which includes an implementation of a 

SL-enabled device. The storage lease device was implemented as a user level Java 
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wrapper for an ordinary disk device, because we did not have access to the firmware 

of a real disk. In the implementation, all blocks within a batch are written to a 

single file, using standard read and write system calls. For signing receipts we use 

RSA [86], and for computing hashes we use SHA1 [69]. All encryption and hashing 

implementations are from the BouncyCastle [12] Java library. 

The rest of SafeStore is also implemented as a user level Java program. Our proto­

type implements all of the functionality described in the previous sections. SafeStore 

utilizes BerkeleyDB [6] as the storage back end for storing the checkpoint data struc­

ture, which includes a list of files, and the receipts that correspond to those files. In 

order to perform de-duplication, we query the other nodes in the system using appli­

cation level multicast, which is implemented using the Free Pastry library [7 4]. The 

SafeS tore code base currently consists of 20,738 lines of code, not including libraries. 

The planning module in SafeStore makes a series of a calls to an outside linear 

programming solver when computing a backup strategy. In the current implemen­

tation we use the CPLEX solver, but this choice is not fundamental, and the solver 

could be replaced by an alternative solver. 

7.1.3 Methodology and traces 

In this section, we discuss the methodology and traces we use in this evaluation. 
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Methodology 

In evaluating SafeStore, we have several goals, all of which require differing method­

ologies. First we wish to quantify the performance overhead of using a storage lease 

device. We do this in a controlled manner by using synthetically generated file work­

loads, and measure the time relative to simply copying the data. We next wish to 

verify the backup system functions correctly and measure its overhead with a realistic 

workload. In order to do this, we use our full evaluation to perform both backup and 

restore, on a running machine, and verify the correctness. In order to measure over­

head in a wider variety of scenarios than just a single machine we use a trace driven 

evaluation. Finally, to get a longer term picture of the cost of running SafeStore, 

both in terms of storage and financial cost, we use a simulation and modeling based 

approach, based on the above mentioned traces. We next discuss the traces we will 

use in our evaluation. 

Traces 

As there are, to the best of our knowledge, no traces available for home office and 

small business storage workloads, we utilize two sets of traces that we gathered. 

The first was gathered from a previous project, and is from home users. This trace 

includes the storage workload from the households of 8 computer science researchers2 

over the course of approximately one month. It includes detailed information at 

2 In the final evaluation there will be one additional household included 
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file granularity, including name, size, modified time and content hash. The storage 

workload included in this trace includes both personal and work data. Given this mix, 

we feel that this trace is a reasonable first approximation of a home office environment. 

These traces cover approximately 30 days worth of use. The households in this trace 

had between 2 and 10 storage devices which contain data to be backed up. 

The second trace is from the main backup up server at a computer science research 

institute. This trace includes more nodes (25 laptop nodes), but it includes much 

less detailed trace information. In this trace, it simply includes a backup id, size 

and amount of new files generated since the previous backup, as well as the size and 

amount of existing data stored. The data in this trace has does not provide individual 

file information so we can not test the effectiveness of de-duplication with this data. 

While this is just a single data point, we feel that this trace is somewhat representative 

of a small business setting. For each node, the trace includes 30 backups. For a user 

who is often connected this means it covers 30 days. For users who are intermittently 

connected, it may cover a much longer period of time. 

In the rest of the evaluation we will refer to the first trace as the home office trace 

and the second as the small business trace. 

7.1.4 Backup evaluation 

In this section our goal is to show that the backup functionality in SafeStore works 

as it should. We first verify that it both successfully can backup and restore data, as 
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well as adapt to changing conditions. We then measure the overhead of the system by 

running the system for 30 days with both the small business and home office traces. 

Verifying functionality 

In order to verify the system functionality, we had the system make a backup of a 

users laptop. We then used the restore functionality to verify that both the backup 

functionality worked correctly and that we could successfully execute a restore. 

Adaption to increased or decreased resources 

We verified that the planner does indeed adjusts its strategy as expected when re­

sources are added or removed. It correctly adjusts as the rate at which files are added 

changes over time. If the rate increases past what the system can handle it will raise 

an alert. 

Trace driven overhead evaluation 

In order to show the SafeStore works in a more challenging environment than simple 

benchmarks, we drove the implementation using the previously described traces in 

order to measure the overhead, both storage and networking, of the system. Since 

our traces contain events for several devices, sometimes over different time periods 

we shift the first event for each device to be at the same time (and adjust all of the 

subsequent events for that device accordingly), and then replay the trace. 

In order to simplify the experiment, we included only one resource node with 



147 

unlimited capacity (data is deleted from the disk if it is close to full). Since the 

traces last for 30 days, and we wish to test the system in a time efficient manner, we 

limited the system to take no hourly checkpoints, and we included a mechanism for 

fast forwarding idle periods when no trace events were occurring, and no backup was 

in progress. In all of the following graphs, results prefixed with H are the results from 

the home office trace, the results prefixed with S are from the small business trace. 

Figures 7.7 and 7.8 shows the results for this experiment. In all cases the system 

ran successfully, and finished with all data backed up, and the correct number of snap­

shots. The figures show absolute and relative overhead respectively. The overhead is 

all data sent or stored that is not contained in the original files in the trace. Figure 7. 7 

shows that the network overhead varies from less-than 10% to 22%. This overhead is 

predominately from sending checkpoint metadata to the backup nodes to be stored. 

The storage overhead is less, as it is required to only store non-expired checkpoint 

metadata. The overhead for the small business trace is the highest, as it contained 

the most files, and these were of small average size. Thus, the resulting checkpoint 

metadata is larger than for the home office cases. This overhead could be reduced by 

the use of incremental checkpoints, but at the cost of increased complexity. 

In Figure 7.8, we examine the absolute overhead. The upper bar shows the amount 

of actual non-file data that was sent over the course of the experiment. The lower 

bar is all non-data that is stored on the storage lease device at the end of the trace. 

In the worst case household, the network overhead is 20GB during the month long 
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experiment period. During the same time the disk overhead is 8GB. For the small 

office trace, the network overhead for the month is slightly less than 100GB, and the 

storage overhead is approximately 40GB. 
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Figure 7.7 : Percentage overhead in a variety of home offices 
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Figure 7.8 : Absolute Overhead in a variety of hmne offices. 

One task the system performs is that of de-duplication. In order to quantify 

the effectiveness of the de-duplication in SafeStore we measured the amount of data 

transferred relative to the amount of data in the trace. In Figure 7.9, the result of 
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this experiment is shown. The different user groups reduced the amount of data sent 

by between 5% and almost 50%. Due to limitations of the small business trace, we 

were unable to quantify the effectiveness of de-duplication, and so just show the data 

sent. This result shows that de-duplication is effective. Note, that these households 

were relatively heterogeneous, incorporating a mixture of USB hard drives, media 

players, ancl computers with different opC'rating system~. In a more homogeneous 

environment with only computing nodes, we would expect that the effectiveness of 

de-duplication will increase. 
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Figure 7.9 : Effectiveness of de-duplication 

Another way to look at these results is to examine the amount of bandwidth 

required to support the entire backup application. For the most intense household, 

it would require 470GB of data (the amount of de-duplicated data plus overhead) 

to be transferred in one month. For the small business trace the total amount of 

data transferred is slightly less than 600GB of data. The bandwidth required to 

support this would be 0.19MB/s and 0.23MB/S respectively. This is, however, the 
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worst case scenario for the system, all machines are turned on simultaneously, and all 

begin backing up at the same time. If backup clients are added to the system more 

gradually, this bandwidth requirement would be spread over a longer period of time. 

All values above would double when backing up to 2 storage lease devices instead of 

one. 

7.1.5 Simulated long-term results 

In this section, we seek to look at the longer term costs of running SafeStore. Since 

none of our traces contain a full years worth of data, we take the traces we have and 

extrapolate them to a year by taking the average amount of data added, modified, 

and removed for the time period after the trace ends. We exclude the data that is 

already stored before the beginning of the trace. Instead of running full fidelity ex­

periments for one year, which would have been prohibitively time consuming, we use 

the planning functionality built into SafeStore, to compute the amount or resource 

running the system would consume. Once we have computed the resource require­

ments, we can convert these into monetary terms by analyzing how much providing 

those resources would cost. 

Please note that these results omit many details of the full simulation in order to 

compute costs. We currently do not take into account de-duplication, overhead, or 

the removal of data into account in these calculations. Refining the model is a topic 

of ongoing work. 
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Resource requirements. 

In Figure 7.10 we show the resource requirements for each of the households we 

analyzed. The bar on the left is the amount of storage required to be free for the 

initial backup of all of the users data. The bar on the left, is the amount of new 

data that must be allocated by the storage lease device for each user. The initial 

requirements for all are on the order of a 100GB, and the rates required vary between 

lOMB and 100MB a day. For all of these users, their yearly storage requirements 

could be filled by a 1 TB disk, which currently sells for around $100. The policy 

followed in the experiment is to have daily, weekly, monthly and yearly checkpoints. 
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Figure 7.10 : Minimum settings required for initial capacity and rate, assuming no 
ded u plication. 

7.2 Summary 

In this evaluation, we have used a variety of techniques to show that SafeStore works 

as described in the design. We have shown that it functions correctly, performs well, 

and is reasonably cost-effective. 
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Chapter 8 

Conclusion 

In this thesis, we have shown how to provide transparent storage management in 

environments where expert system administrators and dedicated hardware are not 

available. We described two new systems: The first, PodBase, transparently ensures 

availability and durability in the home, for mobile, personal devices that are mostly 

disconnected. The second, SLStore, provides enterprise-level data safety (e.g. pro­

tection from user error, software faults, or virus infection) while requiring minimal 

management. 

We have built prototypes of both systems, and evaluated them. In the course of 

building and designing the system, we were required to develop several novel tech­

niques, problem formulations, and abstractions. Experimental results show that both 

systems are feasible, perform well, require minimal user attention, and do not depend 

on expert administration during disaster-free operation. 
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