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ABSTRACT 

Water-phase Synthesis of Cationic Silica/polyamine Nanoparticles 

By 

Quang Xuan Luong Nguyen 

Functionalizing surfaces with amine groups through the hydrolytic condensation 

of aminotrialkoxysilanes is a typical approach when modifying silica particles for use in 

bioimaging, enzyme immobilization, and other applications. This processing step can be 

eliminated if amine-functionalized silica particles are directly prepared without using 

aminotrialkoxysilanes. Here, a one-pot, ambient-condition, water-phase method to 

synthesize silica-based nanoparticles (NPs) that present surface amine groups is 

described. The formation mechanism involves the electrostatic crosslinking of cationic 

polyallylamine hydrochloride by citrate anions and the infusion of the formed 

polymer/salt aggregates by silicic acid. The particles were unimodal with average 

diameters in the range of 40 to 100 nm, as determined by the size of the templating 

polymer/salt aggregates. Colorimetric analysis using Coomassie brilliant blue and zeta 

potential measurements confirmed the presence of surface amine groups of the hybrid 

silica/polymer NPs. Surface charge calculations indicated the hybrid NPs had a lower 

amine surface density than aminopropyltriethoxysilane-functionalized silica (0.057 #/nm2 

vs. 0.169 #/nm2 at pH 7). 
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Chapter 1 

Introduction 

1.1 Silicon Basics 

Silicon is considered to be among the most important elements in the periodic 

table. It is the second most abundant element on Earth making up 27.7% of the Earth's 

crust and is second to only oxygen.[l] There is speculation among silicon researchers that 

silicon, specifically silica, may have had an integral role in the formation of life on Earth. 

This speculation comes from the fact that diatoms, the simplest form of unicellular algae 

found in all bodies of water on Earth, utilized silicon precursors to form a silica shell for 

protection of their inner essential parts. [2-4] The fact that silicon can have up to four 

covalent bonds similar to carbon supports this speculation. Its importance is not limited 

to the evolution of life on Earth; silicon played a crucial role in the advancements made 

in electronic technology in the 20th century with its semiconducting properties. A 

semiconductor is a material that can conduct or insulate electrical currents depending on 

its form, in this case, crystalline silicon (conductor) or silicon dioxide (insulator). 

Crystalline silicon is mostly used in the semiconductor industry, whereas, silicon dioxide 

found its way for other kinds of applications. 

1.2 Applications for Silica Nanostructures & Mesostructures 

Silica, or silicon dioxide (Si02), is highly utilized for its applications at the 

macroscale level. The basic unit of silica, monosilicic acid (Si04), has a tetrahedral 

structure as in Figure 1-la and these units can combine into different states: amorphous 
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or crystalline (Figure 1-1 b). Crystalline silica can be classified into several distinct 

structures: a and P forms of quartz, tridymite, cristobalite, among others.[5] Amorphous 

silica was manufactured into several forms: fused quartz, fumed silica, silica gel, aerogel, 

and colloidal silica. Previously, amorphous silica was limited to macroscale applications 

such as cement densifier, moisture absorbents, and stabilizing agents, among others. 

Recent development in synthesizing colloidal silica at the microscale level has extended 

its applicability to the biomedical field. 

a b 

Crystalline Amorphous 

Figure 1-1. a) The basic unit of silica with a tetrahedral structure. b) Crystalline and 
amorphous formation of silica. [ 6] 

Colloidal silica particles have been successfully synthesized into smaller size 

nanoparticles (1-1 00 nm) and mesoparticles (1 00-1000 nm). These sub-micrometer 

particles are a major component in cosmetics, surface coatings, food additives, among 

others. Since its existence is everywhere, its potential toxicity must be addressed. The 

most common exposure to crystalline silica is the inhalation in dust or powder form, 

which is hazardous over time and can lead to diseases such as silicosis, pulmonary 

tuberculosis, or lung cancer. These diseases are caused by lodged dust silica in the lung, 
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decreasing its capability to extract oxygen from the air. Prolonged exposure to dust silica 

with levels higher than 0.1 mg/m3 increase the risk for lung damage.[?] Asbestos is 

another crystalline silica-based material that is a well-known health hazard. It is a silicate 

mineral with long and thin fibrous characteristics that was used widely in buildings for its 

fire-retardant and insulation properties.[8] Unlike its crystalline form, amorphous silica 

was determined to not cause silicosis or other lung diseases. Amorphous silica is 

considered to be "low toxicity" by the CDC, but prolonged inhalation can cause 

irreversible false x-ray readings of the lung without disabling its oxygen extraction 

functionality.[9] The World Health Organization (WHO) confirmed that ingestion of 

amorphous silica is harmless. In fact, food such as potatoes, milk, and drinking water 

contains 10.1, 2.1, and 7.1 f.lg silica per gram, respectively. [10] This makes silica of 

great interest for applying silica to biological applications. 

1.3 Background on Silica-Hybrid 

Colloidal silica particles are categorized into three different classes: inorganic 

silica, organosilica, or multi-silicate. Inorganic silica synthesis consists of either 

precursors: tetraethoxyorthosilicate (TEOS) or tetramethoxyorthosilicate (TMOS). 

TEOS and TMOS are frequently used silica precursors because their tetrahedral structure 

(center Si with 4 0 surrounding) form simple silica networks ( -0-Si-0- ) without 

residue of any other elements. TEOS and TMOS structures are shown in Figure 1-2a-b. 

The terminating end of these simple silica colloids are mainly silanol groups (-Si-OH). 

For a different termination of the silica colloids, organosilicate should be used as 

3 



precursor as opposed to TEOS and TMOS. This modified silica 1s classified as 

organosilica. [2, 11-13] 

a 

c 

""0 
I / 

0-Si-O 

/ I 
0"" 

tetramethoxyorthosi licate 

(TMOS) 

octyl triethoxysilane 
(OTES) 

b ~0 
I r-o-si-o 

_/ I 
0 

tetraethoxyorthosilicat~ 
(TEOS) ow I 

d 0~ 
~Si/ 

I .....___o 

0"----~ 
vinyl triethoxysilane 

(VTES) 

Figure 1-2. Typical precursors for silica synthesis with a-b) classified toward inorganic 
while c-d) are considered organosilica. 

Organosilica is further broken into two subcategories: organically modified silane 

(ORMOSIL) or functional organosilica. The main difference between organosilica and 

inorganic silica is the inclusion of organic content within its structure. ORMOSIL has 

carbon chains and carboxylic surface groups in its chemical structure. Commonly used 

precursors to synthesize ORMOSIL are octyl triethoxysilane (OTES) and/or vinyl 

triethoxysilane (VTES) (see Figure 1-2 c-d). Functional organosilane consists of 

additional thiol or epoxide groups along the carbon chains. The resulting particle 

synthesis using these precursors has a surface functionalized with both carboxyl and 
4 



either thiol or epoxide groups. Precursors for functional organosilica include 3-

mercaptopropyltrimethoxysilane (MPMS) and 2- (3, 4-

Epoxycyclohexyl)ethyltrimethoxysilane (EpoMS). As the name suggests, multi-silicate 

is a combination of inorganic silica or organosilica with other silicon precursors to 

achieve multifunctional groups within its structure. [14] 

1.4 Biomimetic Synthesis of Silica 

Diatoms have utilized silicon precursors (found in nature) to synthesize their silica shell 

since the beginning of their existence approximately 190-200 million years ago.[15] A 

sample of several diatom structures are shown in Figure 1-3. Diatoms are believed to 

share ancestry with heterokonts, [ 16] a group of protists ( eukaryotic microorganisms) 

whose existence date back to approximately 725 million years ago. [ 1 7, 18] Silica 

compounds used by diatoms are identified as either metasilicic acid (SiO(OH)3- ) or 

orthosilicic acid (Si(OH)4). The exact process of silicic acid polymerization to silica and 

the delivery of silica to the cell wall within the diatom is unclear, however, silica shell 

formation after absorption into the diatom's internal structure is known. Silicic acid is 

brought into the silica deposition vesicle (SDV) through Na+ proteins, also known as the 

silicic acid transporters (SITs) [22]. Once absorbed by SDV, the silicic acid assumes the 

form of metasilicic acid.[9, 24]. Metasilicic acid hydrolyzes to form dimers, trimers and 

so forth, called polysilicic acid. Polysilicic acid is then deposited onto fustulins, 

pleruralins, or silaffins- highly hydrophilic proteins that are bounded to the cell wall. The 

latter protein contains oligo-N-methylpropylamine units that were found to catalytically 

promote polysilicic acid precipitation to silica. Silica is then deposited into spaces 
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between protonated and unprotonated amine groups. [25] Polysilicic acid fills in the gap 

between the sites of amine-bound silica to form the diatom shell. Diatoms come in all 

shapes and sizes in the 1-1 00 !J.m range with shell thickness being several hundred 

nanometers. 

Figure 1-3. Scanning electron microscopy of diatoms in various shapes and sizes. [ 19] 

1.5 Conventional Silica Particles Synthesis 

The majority of silica particles adapted for biological applications are inorganic and can 

be achieved by using a modified Stober method. Monodispersed colloidal silica spheres 

were first synthesized in 1968 by Stober et al.[20] Briefly, tetraalkyl silicates are added 

into a well-mixed solution of alcohol, ammonia, and deionized water and stirred for 120 

minutes. The size of the silica colloidal sphere is controlled by varying the ratio of 

alcohol to ammonia. The Stober method was able to produce silica particles with 

diameters ranging from 0.05-1.68 !J.m with relative standard deviation (RSD) < 1 Oo/o for 

all samples as seen in Figure 1-4a, which made these particles to be considered "narrow" 

monodispersed. [21] Further improvements to this method by 1) varying the ammonia: 
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alcohol: deionized water ratio, 2) controlling the stirring speed and 3) reaction 

temperature, produce silica diameters as small as 20 nm (Figure 1-4b).[22-25] 

a b 

Figure 1-4. a)Silica particles synthesized by Stober[20] and b) smaller diameter particles 
using a modified method. [25] 

The surface groups on inorganic, colloidal, silica spheres are inefficient in linking with 

dyes, DNAs or other particles. There are two approaches to make the surface groups 

more suitable for the desired applications: 1) start with pre-functionalized organosilane 

silica as the base[26, 27] or 2) functionalize the surface of inorganic silica.[28-34] The 

latter method is used more frequently due to the commonality and simplicity in the Stober 

method. Examples of linker molecules for different surface group functionalization are 

aminopropyltriethoxysilane (APTES) or aminopropyltrimethoxysilane (APTMS) for 

amine groups, or mercaptopropyltrimethoxysilane (MPTES) for thiol groups. Applying 

the linker molecules to the surface requires stirring overnight and slight heating of the 

solution to ensure a tighter packing density. Another way to change the surface groups is 

by adding positively charged molecule/polymers so that it can stick onto the surface by 
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electrostatic forces. Subsequently, inversely charged polymers/molecules can be added 

to further change the surface groups.This method is known as the layer-by-layer (LbL) 

method.[35] 

1.6 Nanostructure and Mesostructure Formation from Polymer 

Cationic polyallylamine is mentioned frequently in many layer-by-layer (LbL) syntheses 

for thin films or surface functionalization; however, it is not as frequently applied for 

nanoparticle synthesis. For a typical synthesis of nanoparticles <1 Onm using nanopores 

created from polyelectrolyte (PE) multilayer film (layers of oppositely charged 

polyallylamine hydrochloride (PAH) and polyacrylic acid (P AA)), metal precursors are 

added followed by a reducing agent to form the desired nanoparticles. Examples of this 

method for synthesizing silver nanoparticles with average sizes ranging from 4-8nm [36] 

and ZnS having average size 3-4nm [3 7] are shown in Figure 1-Sa. 

a 

l Metal ion solution , ..................• I pH=5.5 

i 
f)• ~etal 

tons I 
I" 

1 NaBH4 for Ag NP, 

f Na2S for ZnS NP 

e 
s 
! 
: ! ........................... 

Metal • = . nanopart1des 

b 

NPS 

! 1), 2) ... 

Figure 1-5. Scheme of synthesis of a) Ag, ZnS nanoparticles[36, 37] and b) 
polyelectrolyte microparticles. [38] 
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Besides the LbL method, P AH can also be a precursor for polymer particles. Taking 

advantage of mesoporous silica particles as a template, Figure 1-5b shows the scheme for 

the addition of oppositely charged P AA and P AH followed by dissolution of silica to 

produce nanoporous, spherical, polymeric particles (1.2 - 1.9 f.1m).[6] These particles are 

found to have a high capacity for immobilization of proteins. P AA is not the only 

anionic polymer that can be used to complement P AH for formation of polymeric 

particles. To get smaller size polymeric particles, anionic salt has to be used as the cross­

linking agent. 

Cationic polymer and multivalent anionic salt form spherical aggregates with high 

stability and monodisperse distribution. Sumper et al. showed that cationic polyamines, 

from diatoms, formed silica mesoparticles in the presence of anionic phosphates and 

followed by the addition of silicic acid. [39-41] Expanding from that work, nanoparticle­

assembled capsules (NACs) were formed by combining poly(L-lysine) (PLL) with 

anionic salts such as ethylenediamine (EDTA) or citrate salt resulting in cationic colloidal 

aggregates as core templates. 12nm anionic silica nanoparticles, attracted to the colloidal 

aggregate by electrostatic charge, envelop the aggregate template resulting in the core 

shell structure of NACs.[42] Further study of colloidal aggregate formation was 

performed by changing the anionic salt. Trivalent citrate was found to promote polymer 

aggregation over a larger range of concentrations (Figure 1-6b) compared to tetravalent 

EDTA (Figure 1-6a) and divalent succinate (Figure 1-6c). Also, no polymer aggregate 

formation was found for monovalent acetate (Figure 1-6d). 
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Figure 1-6. Cl dissociation plot of P AH and corresponding pH values. The R on the x­
axis represent the charge ratio of anion to cation. Gray area represents colloidal 
aggregates formation from cationic polyamines and anionic a) EDTA, b) citrate, c) 
succinate, and d) acetate. The wider range of charge-ratio for P AH -cit plot allows more 
flexibility in forming aggregates. [ 43] 

Murthy et al. also showed that colloidal aggregates less than 1 00 nm in size are 

formed ifthe charge ratio of anions to cations is low enough.[43] Bagaria et al recently 

showed that adding silicic acid to NACs increases the shell thickness.[44] The shell 

thickens inwardly by diffusing through the silica nanoparticle shells solidifying the PAH-

citrate core without increasing the overall size ofthe NACs. We want to investigate the 

formation of silica hybrid nanoparticles through the use of silicic acid. 
10 
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1. 7 Silicification of PAD-citrate Particles 

Although polymer salt aggregate (PSA) derived silica nanoparticles is not as complex as 

the diatom biological system, there are many similarities in which the two systems 

silicize particles. Deriving from the functionality of SDV within the diatom, one of the 

steps toward silicification for our PSA is by the aid ofNa+ ion from sodium tricitrate 

precursor. The Na +promotes the instability of silicic acid/ Si02 suspension. The next 

step to consider is the deposition step within the PSA. P AH is known for its high amine 

density, therefore it provides numerous sites for deposition. With numerous sites 

deposited by silica in close proximity, polymerization is highly promoted and in our case, 

formation of solid silica-hybrid nanoparticles that assume the size of their PSA template. 

1.8 Motivation 

Organic-silica hybrid nanoparticles and submicron particles are of great interest for a 

wide variety of applications including optics[ 45], non-viral vectors for genetic 

therapy[ll], enzyme immobilization[46], coatings[47], bioimaging, drug delivery, 

sensing, and therapeutics[ 48]. Currently used approaches for silica particle formation 

include hydrolytic and non-hydrolytic sol-gel syntheses, mini-emulsion polymerization, 

and biomimetic chemistry.[20, 39-41, 49-56] A new chemistry route to silica hybrid 

particles is desirable if the processing steps can be simplified or eliminated while still 

yielding particles of controlled size and uniformity in the more difficult range of sub-1 00 

nm. 
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In this study, we report the ambient-condition, water-phase synthesis of 

silica/polyamine hybrid particles in the sub-1 00-nm range using PSA assembly 

chemistry. The PAH and citrate anion charge ratio was studied for its effect on the 

hydrodynamic diameter of the resultant PAH-citrate aggregates. After the addition of 

silicic acid, the formed silica!P AH hybrid NPs were characterized for particle size, zeta 

potential, and organic content. These NPs are unimodal, with relative standard deviations 

in the 15-20% range. They are also positively charged due to the presence ofPAH amine 

groups exposed at the particle's surface with surface charge properties between those of 

pure silica NPs and aminoalkylsilane-functionalized silica mesoparticles. 
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Chapter 2 

Experimental Methods 

2.1. Introduction 

Synthesis of silica-hybrid nanoparticles is a two-steps method: formation of 

polymer salt aggregates (PSAs) followed by the addition of silicic acid. Figure 2-1 

shows the scheme to form small or large silica hybrid nanoparticles by meticulously 

controlling the size of PSA. The following step of adding silicic acid solidifies the 

electrostatic-linking of the polymer and salt aggregates. In addition, some amine groups 

are exposed on the surface after the silicic acid hydrolyzes to the size of the PSA. The 

experimental details in formation of these cationic silica hybrid nanoparticles are 

presented below. 

Polyallylamine (PAH) 

-·-_._ 1. -~ --- ·- . -·...:" !f .. 

1.ow (Citrate 1 

Polymer/salt 
aggregate (PSA) 

r 
Silicic acid 

Silica/PAH NP 

Figure 2-1. Synthesis schematic of silica/polymer nanoparticles (NPs) from polymer-salt 

aggregates (PSAs). 
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2.2. Chemical precursors 

Polyallylamine hydrochloride (P AH, ~56 kDa, ~600 amines/chain), tetramethyl 

orthosilicate (TMOS, 2:99.9%), NaOH (2: 98%), and Coomassie Brilliant Blue G dye (2: 

80%) were purchased from Sigma-Aldrich and used as-is. Trisodium citrate dihydrate salt 

(2: 99%), NaCl (2: 99%) and 1N HCl were sourced from Fisher Scientific. Materials used 

for the control samples are the following: silica mesoparticles (120 nm, concentration ~ 

50 wt. %, Precision Colloids LLC), 3-aminopropyltriethoxysilane (APTES, 2:98%, 

Sigma-Aldrich), and ethanol (200 proof, Sigma-Aldrich). Deionized (DI) water from a 

Barnstead Nanopure Diamond System (18.2MQ) was used for all experiments. 

2.3. Polymer Salt Aggregates Synthesis 

PSA synthesis is the most crucial step m determining the particle stze of 

silica/polymer hybrid particles. PSAs using sodium tricitrate salt as a template for 

nanoparticles assembled capsules (NACs) synthesis were first reported by Rana et a/.[1] 

Further improvement of this technique by the same group yielded nanosized 

aggregates.[2] To describe the concentrations of polymer (PAH) and salt (citrate) in the 

aggregate, a theoretical overall charge ratio is used for simplification: 

R 
[anion] X [Z-] 

(cation] X (z+] 

where (PAH z+ =600, citrate z-=3). With an R ratio set at 2, PAH concentrations were 

varied from 0.01 to 2 mg/mL to assess the average size and distribution of the PAH-

citrate aggregates. These small-volume samples (#1-6, Table 2-1) were prepared by 
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adding PAH solution to a citrate solution in a 15-mL centrifuge tube followed by 

vortexing at speed '7' for 15 s (Fisher Scientific Mini Vortexer) with the concentration 

specified in Table 2-1. Using a PAH concentration of 0.1 mg/mL, citrate concentrations 

were varied from 143 to 200 JlM to generate larger-volume samples (#7-11, Table 2-1). 

For these syntheses, the PAH solution was added to a citrate solution in a 1 00-mL beaker 

under constant magnetic stirring at 300 RPM for 2 min (Fisher Scientific Isotemp Hot 

Plate Stirrer), and the resulting suspension was left unstirred to age for 30 min. The larger 

volumes (lOx more than those of samples #1-6) were needed to ensure sufficient sample 

amount for characterization. 

Table 2-1. Parameters of samples prepared with # 1-6 to test optimum P AH concentration 
for nano-scale aggregates growth. After finding the best P AH concentration, the citrate 
concentration was varied for sample #7 -11. 

PAH PAH 
Citrate 

Citrate 
Sample concentra solution 

concentra solution Charge 
number tion volume 

tion (JlM) 
volume ratio R 

(mg/mL) (mL) (mL) 

1 0.01 1 3 2.5 2.00 

2 0.05 1 14 2.5 2.00 

3 0.10 1 29 2.5 2.00 

4 0.50 1 143 2.5 2.00 

5 1.00 1 286 2.5 2.00 

6 2.00 1 571 2.5 2.00 

7 0.10 10 143 25 1.00 

8 0.10 10 157 25 1.10 

9 0.10 10 171 25 1.20 

10 0.10 10 186 25 1.30 

11 0.10 10 200 25 1.40 
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2.4. Silica/polymer NP Synthesis 

Silica/polymer NPs formed after adding silicic acid to a PSA suspensiOn. An 

aqueous silicic acid solution (1 M) was prepared by combining TMOS with a dilute HCl 

solution (1 mM) and aging for a minimum of 20 min. The solution (pH= 3), which was 

not used after 24 hr when it turned cloudy, contains monosilicic acid Si(OH)4 and dimers, 

trimers, and larger oligomers of monosilicic acid. These species favor the formation of 

siloxane bonds (Si-0-Si) and minimization of the silanol groups (Si-OH), which led to 

the formation of 2-3 nm particles at the end of aging period [3, 4]. The silicic acid 

solution (10 mL) was added to a 30-min-old PSA suspension (35 mL, sample #7-11 in 

Table 2-1) in a 1 00-mL flask followed by stirring at 300 rpm for 2 min and aging for 2.5 

hr. The resulting suspension was washed by centrifuging at 22,500 relative centrifugal 

force for 30 min to remove any excess silicic acid, dispersing into DI water, and 

repeating once more. The particles are referred hereafter as "silica/PAH" or "hybrid" 

NPs. 

2.5. Control Sample Synthesis 

Silica/P AH NPs were compared against bare Si02 and Si02 modified with amine 

surface groups. For the preparation of "APTES-Si02," a suspension of Si02 

mesoparticles (2 mL) was diluted into DI water (80 mL) and centrifuged at 3,500 RCF 

for 30 min. The resulting precipitate was dispersed into ethanol and centrifuged; this 

cleaning step was performed twice. Then APTES (500 11L) was added to a vigorously 

stirring Si02 mesoparticles suspension, for a final APTES concentration of 26.5 mM. 
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The solution was left stirring overnight, and centrifuged and dispersed into ethanol 

(20mL) for storage. The final suspension had a pH of 8.1, Si02 concentration of 5 wt %, 

and particle concentration of 2.15 x 1014 #/mL). For zeta potential testing, 50 JlL was 

added to 3 mL DI water. 

2.6. Characterization 

Polymer salts aggregates and silica hybrid nanoparticles were characterized by 

several techniques: dynamic light scattering, zeta potential measurements, thermal 

gravimetric analysis, UV-Vis spectrophotometry, scanning electron microscopy, and 

transmission electron microscopy. The processes of each technique are described below 

with emphasis on dynamic light scattering and zeta potential because DLS provides quick 

size analysis before further silicification steps are taken. Zeta potential provides the 

potential measurement in which the surface charge density can be calculated from. For 

other techniques, a brief discussion and methodology to prepare the sample for 

measurements are given. 

2.6.1 Dynamic Light Scattering 

Dynamic light scattering was used to quickly screen polymer-salt aggregates size 

distribution profile and average size before the addition of silicic acid. All particles or 

molecules in suspension experienced Brownian motion due to their thermal energy, ksT 

(k8 being the Boltzmann constant, T =temperature). If the particles or molecules were 

irradiated with a laser, the intensity of the Rayleigh scattering would vary according to 

the size of the product in question. The smaller particles would experience more 
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movements compared to larger one. [ 5] The intensity fluctuation recorded yields the 

velocity of the Brownian motion and hence the particle size. 

Analysis of the signal is the key to dynamic light scattering where the diffusion 

coefficient and subsequently the hydrodynamic diameter. The signals recorded are quite 

random and would yield minimal information as is. However, when the signals are being 

examined and compared at different instances of time, information regarding the system 

can be extracted. This comparison is called the autocorrelation function (ACF). For a 

general analysis of a monodisperse distribution system, the resulting ACF would be an 

exponential decay function 

with r being the decay rate. For a polydisperse system, the analysis would be more 

complicated because the whole system would have to be treated as a summation of 

monodisperse suspensions. The decay rate is related to the translational diffusion 

coefficient (D) as follows 

D - --------...,:-
8 2 

{ 4n0n: sin 2) 

with no being the refractive index of the solution, e is the scattering angle (90 degrees for 

our instrument setup), and "A is the laser wavelength (656 nm). If the laser wavelength is 

changed to other frequency, the ACF and the decay rate, r, will differ resulting in the 

same diffusion coefficient. From the translational diffusion coefficient, the 

hydrodynamic diameter (Rh) can be calculated using the Stokes-Einstein relation 
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where ks is the Boltzmann constant, T the operating temperature, and 11 is the solution 

viscosity.[6] 

The Brookhaven Instrument DLS used for this measurement has built-in 

algorithms to calculate the size from the autocorrelation function specifically CONTIN 

and NNLS. Additionally, the particles in suspension can also be weighted based on 

intensity or number. Intensity-based weighs the particle on the amount of scattering a 

particle or molecule produces, which also means that larger particles will scatter more 

compared to smaller particles. This weighing method produces an average size that is 

geared more toward the larger size particles. Number weighted average size takes the 

intensity-based NNLS or CONTIN results and apply log-normal function to account for 

smaller particle intensity; which is equal to larger particles.[?] In addition, previous 

studies on silica colloids compared SEM average sizes to DLS average size (NNLS 

intensity based, NNLS number based, CONTIN intensity based, and CONTIN number 

based) and it was found that CONTIN number based average size comes within 1% of 

the SEM average size.[6] All DLS values used within this study are number-based 

CONTIN analyses. 

2.6.2 Zeta Potential 

The average surface charges of silica/P AH NPs, bare Si02, and amine-modified 

Si02 were analyzed through zeta potential measurements with the same ZetaP ALS 

instrument equipped with a dip-in electrode. A particle suspension (25 f..LL) was added to 
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a NaCl solution (1.48 mL, 1 OmM) in a cuvette. The electrophoretic mobility (~e) of each 

sample was measured 10 times (with 20 cycles per measurement) at 25°C. Zeta potential 

values (s) were derived from the electrophoretic mobility of each sample with the relation 

where 11 is the viscosity of the medium, Er is the dielectric constant of the medium, and Eo 

is the permittivity of free space. The stability of a NPs suspension can be determined by 

the values in Figure 2-2. [8] 

c 
QJ > 0 
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Figure 2-2. Stability of colloids in suspension based of zeta potential value. 

The stability of particles in suspension can be described by the Derjaguin, 

Verwey, Landau, and Overbeek theory (DLVO theory), which suggests that the stability 

is based on the total potential within the system. At low zeta potential 30 m V ::S s ::S 30 

m V, there are not enough force between particles to prevent flocculation or 

coagulation. [8] The most important factor that affects the zeta potential is the pH of the 

solution. If more alkali is added to the suspension of particles, resulting in an increased 

pH, more negative charge will be attracted to the particles and vice versa for acid. Due to 

this pH effect, the zeta potential of particles suspension tends to be positive at acidic pH 

and negative at basic pH. The point where the magnitude of zeta potential is zero is 
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called the isoelectric point. At the isoelectric point, the suspension of the particle is the 

least stable, which results in flocculation. 

Zeta potentials are measurements at the slipping plane of the double layer for a 

charged particle in solution. As in Figure 2-3, a charged particle is surrounded by liquid 

that can be characterized as two layers. The first layer of ionic charged liquid consists of 

highly attracted counterions, this is also known as the Stem layer.[9] Further away from 

the Stem layer of the charged particle is a freely bound ions/fluid layer that depends on 

the applied electric potential. 

• 
Stern 

Diffused Double Layer 

• 

Condensed 
Counterions 

Layer O 

> 
E 

Figure 2-3. The diffuse double layer of a charged particle and its corresponding surface 
charge base on distance from surface. Highly bound counter ions exist within the Stem 
Layer. Zeta potential values are measured at the slipping plane, not the actual surface 
potential. 

This layer of freely moving Ions IS the diffuse layer with zeta potential 

measurement at the edge of the diffuse layer, which is the slipping plane. The ions within 

these two layers will move with the particle as the particle moves, ions outsid~ this region 
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will not move with the particle.[lO] The potential ('I') from the particle center can be 

described by the Debye-Huckel approximation 

a 
t/J(r) = t/J4 - exp( -K(r- a)) 

T 

where 'l'ct is the potential at the Stem layer, a is the particle radius, and K-1 is the Debye 

length.[ll] By knowing the Stem potential, the capacity of the surface charge (C) can be 

calculated by 

a 
C= 

with cr as the surface charge density and 'l'o as the charge at the particle surface. For 

silica surfaces, the capacity is consistent at 2.9 F/m2 regardless of electrolyte 

concentration or surface geometry. With two unknowns, 'l'o and 'l'ct. the surface charge 

density cannot be determined. However, the surface charge density can be related to the 

Stem potential by the Grahame equation (for a flat surface) 

where K-1 is the Debye length defined as ~ = 0.304/(1)0·5, I is the electrolyte concentration 

(for this study, the electrolyte concentration is kept at 1 OmM NaCl), ~ is the thermal 

energy k8 T, k8 is the Boltzmann constant, T is the temperature, and e is the charge of an 

electron. With a curved surface geometry taken into account, the modified equation is 
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where a is the radius of the charged particle. This equation can calculate the surface 

potential value within 5% of the actual value when Ka 2:: 0.5.[12] For this study 

calculation, one assumption for calculating the surface potential is making zeta potential 

equal to the Stem potential. This assumption will report a lower surface charge density 

because ~ < \jfd; however, it is a good approximation of the magnitude of the surface 

charge. 

2.6.3 Thermal Gravimetric Analysis 

TGA is utilized to determine thermal stability of polymer-salt aggregates 

compared with silica-hybrid, control silica, and functionalized silica nanoparticles. The 

NPs were dried from suspension in a vacuum oven at 80°C for 24 hr, of which 

approximately 50 mg were loaded into an alumina crucible. The sample was heated to 

800 °C at a ramp rate of 2°C/min under flowing argon gas. 

The measurements reported highly precise weight change in relation to change in 

temperature. The weight change can either increase or decrease through different 

processes. Weight increase can happen through absorption or oxidation with a reactive 

atmosphere. Decomposition of chemical bonds, evaporation of volatiles, or desorption 

are the processes that result in weight loss.[13] However, the argon atmosphere that is 

employed in these measurements reduces any possibility of absorption or oxidation 

processes. The weight loss seen in polymer-salt aggregates, silica hybrid, control silica, 

and functionalized silica were due to either decomposition, evaporation and/or desorption 

processes. [ 14] 
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2.6.4 UV -vis Spectroscopy 

UV -vis spectroscopy is a measure of light absorbance or transmittance. This 

measurement is used for the Coomassie Brilliant Blue G (CBBG) dye study in the 

presence of silica particles suspension with different surface charges. For the Coomassie 

blue tests, silica/PAH NPs were centrifuged (22,500 RCF, 30 minutes), washed with 50 

mL DI water, and repeated three times. These were then dispersed in 2.75 mL water. 

The comparison samples were prepared by adding Si02 mesoparticles (50 J..LL) to DI 

water (2.7 mL), and adding APTES-Si02 mesoparticles (50 J..LL) to DI water (2.7 mL). 

To each of these three suspensions, an HCl solution (150 J..LL, 1 M) and a Coomassie 

Brilliant Blue G solution (100 J..LL, 1.2 mg/mL) were added. Each sample (3 mL) was 

analyzed through UV-vis spectroscopy on a Shimadzu UV-2401PC Spectrophotometer 

using 1-cm path length polystyrene cuvettes. Scans were performed from 300 nm to 900 

nm at 1-nm wavelength intervals. 

The instrument used for these measurements is based on a double beam design. 

This design is an improvement over the single beam design where the sample has to be 

measured twice: once with the sample and second without the sample, which would be 

used as an intensity reference. The double beam design consolidates two measurements 

into one by splitting the light source into two as in Figure 2-4. This design allows instant 

calculation of absorbance and transmittance by comparing the light intensity of a 

reference sample with the actual sample.[15] From measuring each sample, the peak 

absorbance varies according to the surface charge of the particles in suspension with 
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CBBG. Further explanation in section IV will explain the significance of absorbance 

peak of CBBG in silica suspension with different surface charges. 

Beamsplitter- half­
silvered mirror or 
rotating half-sector 
mirror 

Light Source 

Reference 

Sample 

Detector 

Figure 2-4. Schematic of a typical double beam UV -vis spectrophotometer. 

2.6.5 Scanning and Transmission Electron Microscopy 

Scanning electron microscopy (SEM) was performed on the silica/polymer NPs 

using a FEI Quanta 400 operating at 15kV. A NP suspension sample was subjected to 

ultracentrifugation at 100,000 RCF for 1 hr, and the collected material was placed onto a 

carbon tape-covered aluminum sample stub, and left overnight to dry at room 

temperature. The sample was sputter coated with gold to minimize charging artifact with 

non-conducting samples. The mean and median sizes, and standard deviation values 

were estimated for each sample using ImageJ analysis of 1 000 particles in the SEM 

images. The scheme for a typical SEM instrument is shown in Figure 2-5. The images 

obtained from SEM are based on back scattered electrons. 

29 



Lens 

Objective 
Lens 

Projector 
Lens 

Trasmission 
Electron Microscope 

Heated Filament 
{electron source) 

Sample 

Lens 

I I 

Scanning 
Electron Microscope 

Figure 2-5. Scheme of transmission and scanning electron microcope. SEM is based on 
scattered electrons while TEM is based on transmitted electrons through the sample. 

Transmission electron microscopy (TEM) was used mostly to determine the solidity of 

silica/P AH particles. TEM is based on transmission of electrons through a sample. The 

difference in gray level is due to the electron density of the viewing sample: denser 

electron density such as gold or silver will appear darker than silica. Sample preparation 

for TEM included loading the sample (1 0 !J.L) onto a Holey copper grid purchased from 

Ted Pella and left over night to dry. The sample was loaded into a JEOL 1230 High 

Contrast Transmission Electron Microscope and set to 80k V. 
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Chapter 3 

Analysis of Silica/polymer Particles 

3.1. Introduction 

This chapter discusses the results of polymer-salt aggregate (PSA) formation by 

varying the P AH and citrate concentration. After determining the optimum 

concentration, a bulk amount (10 times volume, 35mL total) at a predetermined range 

was synthesized followed by silicic acid treatment. The resulting silica/P AH or 

silica/hybrid nanoparticles' diameter and monodispersity was then analyzed with SEM 

images. The thermal stability of the hybrid nanoparticles were found to have similar 

characteristic as pure silica and functionalized silica. 

3.2. Optimization of Polymer-Salt Aggregate Synthesis 

The effect of PAH concentration on the PAR-citrate aggregate size was studied 

towards the synthesis of sub-1 00 nm silica/polymer particles. P AH concentrations were 

systematically varied while the charge ratio was set at R = 2 (samples #1-6, Table 3-1). 

All samples turned cloudy as soon as the P AH and citrate solutions were combined. 

Samples #1-3, which corresponded to low PAH concentrations (0.01, 0.05, 0.1 mg/mL), 

contained smaller PSA's showing little growth over time, whereas samples #4-6, which 

corresponded to high PAH concentrations (0.5, 1, 2 mg/mL), contained much larger 

particles and grew over the course of 30 min, similar to previous observations [1] (Fig. 3-

1 ). 
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Figure 3-1. Hydrodynamic diameter of polymer-salt aggregates with different 
concentrations of P AH with R ratio = 2. 

In fact, the PAR-citrate aggregates prepared at high PAH concentrations 

increased by >900 nm (Table 3-1 ). At low P AH concentrations, the maximum increase in 

the hydrodynamic diameter (Dh) was less than 100 nm. For subsequent studies, the PAH 

concentration of 0.1 mg/mL was chosen as the optimum value for minimal aggregate 

growth and for formation of a sufficient amount of aggregates. 

Table 3-1. Samples' number-weighted hydrodynamic diameters and their growth over 30 
mm. The amount ofPAH and citrate are specified in Chapter 2.3. 

Sample Dh at 3 min (nm) Dh at 30 min (nm) Growth rate (nm/min) 

1 87 220 4.93 

2 100 134 1.26 

3 187 266 3.93 

4 747 1654 33.59 
5 834 2173 49.59 

6 1029 2696 61.74 

7 30 36 0.22 

8 37 48 0.41 

9 57 68 0.41 

10 66 84 0.67 

11 88 111 0.85 

33 



The effect of charge ratio R on the PAR -citrate aggregate size was studied next, 

with the PAR concentration set at 0.1 mg/mL. The narrow R range of 1.0-1.4 was studied 

(samples #7-11 , Table 3-1), as slow aggregate formation occured around these values [1] 

At the low value of R = 1.0, the PSA size was 30 nm at 3 min, growing to 36 nm at 30 

min (growth rate ~ 0.22 nm/min). At the high value of R = 1.4, the PSA size was 88 nm 

at 3 min, growing to Ill nm at 30 min (growth rate ~ 0.85 nm/min). R values less than 

1.0 were expected to yield PAR-cirate aggregates smaller than 30 nm. In fact, R = 0.9 

yielded PSA sizes of ~20 nm. However, the size distribution measurements were difficult 

to reproduce due to the low scattering intensity of the suspension. Thus, R values smaller 

than 1.0 were not studied further. 

The intermediate R values resulted in PSA sizes and growth rates that were 

between those at R = 1.0 and 1.4 at all times (Fig. 3-2a). The PSA's grew between 20% 

and 30% for all R values tested. Macroscopically, the PAR-citrate suspensions did not 

turn cloudy when the PAR and citrate solutions were combined, and they remained clear 

for at least 2 hr after synthesis. 
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Figure 3-2. (a) Number-average hydrodynamic diameters of PAR-citrate colloidal 
aggregates (R range of 1.0 and 1.4) monitored over a period of 30 min. (b) Size 
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distributions measured at t = 30 min, shown with Gaussian distributions and mean (solid 
line) and median (dashed line) values marked. 

The size distributions of the PAH-citrate aggregates prepared at the different R 

values were analyzed at 30 min (Fig. 3-2b, Table 3-2). The number-weighted mean sizes 

for each sample were close, but not equal, to the number-weighted median sizes (i.e., Dh 

of the most populous bin size). Assuming a Gaussian fit, the standard deviation for each 

R value was in the 6-1 0 nm range, giving relative standard deviations (RSD's) in the 6 to 

22% range. With "monodisperse," "narrow," and "broad" distributions having RSD's of 

5%, 5-l 0%, and> 10% [2, 3], the PSA's formed at R = 1.4 were narrow in size and PSA's 

formed at the other R values were broad in size. 

Table 3-2. DLS hydrodynamic diameter measurements of P AH/citrate aggregates 
showed relationship between diameter and charge ratio R. In addition, the standard 
deviation ( cr), RSD, and median Dh are shown. 

Polymer Salt Aggregates 

Charge ratio R mean (nm) cr(nm) RSD (%) median 
(nm) 

1.0 36 8.0 22 38 

1.1 48 6.5 14 47 

1.2 68 7.5 11 69 

1.3 84 9.7 12 83 

1.4 111 6.4 6 111 

3.3. Silica/polymer Nanoparticle Formation 

Silicic acid was added to PSA suspensions of different R ratios to form the silica/polymer 

hybrid particles. We previously showed that silicic acid addition to meso-sized and 
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micron-sized PSA's led to the formation of solid silica/polymer particles [ 4]. The 

diffusion/deposition model used to understand microparticle formation was based on the 

idea that silicic acid (as silicate oligomers and 2-3-nm particles) diffuses and deposits 

throughout the PSA interior, whereas larger, ~ 1 0-nm silica NPs diffuse through only the 

outer corona of the PSA before they deposit to form thick-shelled hollow microspheres 

[ 5]. Silicic acid is a metastable suspension of reactive silicate species, and so its 

deposition within the PSA interior is likely followed by polymerization of the silicate 

species via condensation reaction. The PSA interior contains a high content of amine 

groups of the P AH polymer, suggesting that formation of these silica/polymer hybrid 

particles is akin to biosilicification processes that generate naturally occurring diatoms 

[6-1 0]. 

To verify that silicic acid reacted with the PSA's, we compared their ionic 

strength stability to that of the PSA suspensions by suspending the hybrid particles and 

PSA's in a high-salinity solution and measuring their hydrodynamic diameters. As a 

representative sample, a PAH/citrate aggregate suspension prepared at R = 1.4 had a 

mean Dh average of 111±6.4 nm (Table 3-2). When the suspension ionic strength was 

raised to 1 M with NaCl, aggregates were no longer deteetible via DLS and no Dh size 

was recorded, consistent with our previous observation that high salinity causes the PSA's 

to dis-assemble [5]. After addition of silicic acid, the PAH/citrate aggregate suspension 

had a number-weighted mean average of 139±25 nm (Table 3-3). This PAH/citrate/silicic 

acid mixture was added to a 1 M NaCl solution; DLS analysis did not change the 

number-weighted mean average, indicating that silicic acid reacted with the PSA's to 
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form salt-tolerant particles. These particles could be centrifuged and re-dispersed into 

water, and could be imaged under ultrahigh vacuum conditions (Fig. 3-3). 

Table 3-3. Si02/P AH hybrid particle size information from DLS and SEM analysis. 

Charge 
DLS of particles in wet state SEM of particles in dried state 

ratio R mean cr (nm) RSD (%) median mean cr (nm) RSD (%) Median 
(nm) (nm) (nm) (nm) 

1.0 38 3 9 38 42 9 21 42 

1.1 52 5 10 52 49 7 14 47 

1.2 76 7 9 76 73 13 18 72 

1.3 104 12 11 107 95 15 16 97 

1.4 139 25 18 134 106 18 17 112 
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Figure 3-3. SEM images at 1 OO,OOO x magnification of Si02/P AH particles formed from 
PAR/citrate aggregates prepared with R =(a) 1.0, (b) 1.1, (c) 1.2, (d) 1.3, and (e) 1.4. (f) 
Size histograms of Si02/P AH particles. ~ 1000 particles were analyzed per sample. 

DLS analysis indicated Si02/PAH particles prepared at all the different charge 

ratios had unimodal size distributions. The distributions were narrow for R = 1.0, 1,1, and 

1.2, and broad for R = 1.3 and 1.4. The mean average Dh values were consistently larger 

38 



than the corresponding Dh values of the parent PAH/citrate aggregates (Table 3-3). At 

smaller charge ratios, silicic acid addition led to minimal increase in size. 

SEM analysis of dried Si02/P AH particles corroborated the increase in DLS-

detected particle size with charge ratio, with the particles having broad size distributions 

(RSD --- 14-21 %) (Fig. 3-3f). All charge ratios that were studied yielded silica/polymer 

hybrid NPs, with R = 1.4 giving particles that were close to the nanoparticle/mesoparticle 

demarcation. The Si02/PAH particles were solid and not hollow (Fig. 3-4), consistent 

with silicic acid diffusing and depositing throughout the PSA interior and in accordance 

with the diffusion-deposition model [ 5]. 
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Figure 3-4. a) TEM image of silica/hybrid at R=1.4. b) Six randomly picked particles 
were analyzed to have consistent grayness based on the line-profile for each particle done 
in ImageJ, which signified that there were materials across the diameter. The 
inconsistent gray values suggest that these particles are porous and not hollow. 

3.4. Organics Content of Silica-Hybrid Particle 

TGA was employed to assess the organic content of Si02/PAH NPs prepared at R 

1.0 and 1.4 (Fig. 3-5). Si02/P AH NPs prepared at R = 1.0 lost ---21 wto/o at a 
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temperature of 150 °C, due to residual water entrained within the hybrid particles, 

suggesting the presence of internal porosity. An additional 5 wt% from 150-800 °C, 

indicating that the dried hybrid NPs prepared at R = 1.0 content had an organics content 

of ......,6.3 wt%. If the organics content were assumed to be entirely PAH, then each 42-nm 

hybrid particle is calculated to contain ......,40 P AH chains. Hybrid particles prepared at R = 

1.4 lost ......, 14 wt% at a temperature of 150 oc and ......, 11 wt% between 150 oc and 800 °C. 

The organic content of these 1 06-nm particles (......, 13%, equivalent to ......, 1700 PAH per 

particle) was double that of the 42-nm particles, suggesting that particles prepared at 

intermediate charge ratios have intermediate organics content also. 
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Figure 3-5. TGA profile of Si02/PAH hybrid NPs at R = 1.0 and 1.4. 
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3.5 Analysis of SiOVP AH NP Surface Charge 

Coomassie brilliant blue (CBB) is used in protein assays [11, 12] and protein gel staining 

protocols [13], due to its ability to bind electrostatically to the positively charged 

ammonium groups of proteins and its colorimetric response after binding. CBB can be 

used to characterize amine groups on particle surfaces, though quantification is difficult 

to perform accurately [14]. The dye molecule (with pKa values of 1.15 and 1.82 [15]) 

exists as predominantly cationic, neutral, and anionic species in the pH ranges of <0.39, 

~ 1.3, and > 1.3, respectively; these species correspond to UV -vis absorbance peaks of 4 70 

nm, 650 nm, and 590 nm, respectively [11, 12]. The anionic and neutral form ofCBB can 

be seen at pH values of 1.3 and 6.0, agreeing with the reported peak absorbance (Fig. 3-6 

a,b ). At pH 1.6, a water solution of CBB had an absorbance peak of ~607 nm, indicating 

the presence ofboth the CBB anionic and neutral form (Fig. 3-6c). The red-shifting of the 

absorbance peaks with increasing solution acidity reflects a larger proportion of neutrally 

charged CBB versus the anionic form. 

41 



400 500 600 700 800 
Wavelength (nm) 
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(d) Si02 (pH-1.6) ; Absorbance peak: 643nm 

{e) Si02/PAH (pH-1.6); Absorbance peak: 588nm 

(f)APTES-Si02 (pH-1.6); Absorbance peak: 585nm 

Figure 3-6. UV-vis spectra of CBB in (a) DI H20 (pH~ 1.3), (b) DI H20 (pH~ 6), (c) 
H20/HCl (pH ~ 1.6) only, and H20/HC1 suspensions (pH ~ 1.6) of (d) bare Si02, (e) 
hybrid NPs, and (f) APTES-Si02. 

An acidified CBB solution containing bare Si02 particles had a red-shifted 

absorbance peak at 643 nm, indicating that the silica essentially converted the CBB anion 

to its neutral form at pH 1.6. Point of zero-charge (pzc) values for Si02 are typically 

reported as ~2 [7, 16], suggesting the bare Si02 particle surface gained a net positive 

charge at pH 1.6 and neutralized the CBB via electrostatic binding. An acidified CBB 

solution containing Si02/P AH hybrid and APTES-Si02 particles had absorbance peaks at 

~585 nm blue-shifted from 607 nm, indicating the population of anionic CBB was 

increased in the presence of the particles. This color shift can be attributed to the particle 

surfaces being positively charged, which electrostatically stabilized the otherwise anionic 

CBB form into its neutral form [15]. Importantly, the CBB colorimetric test indicated the 

Si02/P AH hybrid particles carried a positive surface charge, which can only come from 

the P AH amine groups being exposed at the particle surface. 
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Zeta potential measurements were made for the three silica particle types in the 

pH range of 2.5-11.5, to determine pzc and surface charge density values (Figure 3-7). 

Bare Si02 particles were negatively charged in the entire pH range, consistent with Si02 

having an pzc of ~2 [7, 16]. APTES-Si02 particles, in comparison, were negatively 

charged above pH 10 and positively charged below pH 10. The pzc of APTES-Si02 was 

therefore "'1 0, close to the pKa of the propylamine surface groups (pKa ~ 10.6 [17]). 

Si02/P AH hybrid NPs (prepared at R=l.O) had an effective pzc of "'5, lower than the pKa 

value of PAH (8.5 [18]), indicative of negatively charged silica portion at the hybrid NP 

surface. 
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Figure 3-7. (a) Zeta potential and (b) calculated surface charge density values of 
Si02/P AH, bare Si02, and APTES-Si02 particles at different pH values. The gray-colored 
portions of the graphs indicate the ionic strength being higher than 10 mM, which was 
taken into account when calculating surface charge density. 

The surface charge density values for the three silica particle types were 

calculated in the pH range of 2.5-11.5 from the zeta potential measurements (Figure 3-

7b). At any pH value, the hybrid particles had zeta potential and surface charge values 
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between those of the bare and aminated Si02 particles. The Si02/P AH and APTES-Si02 

particles had comparable charge densities (~1 f..1C/cm2) at pH values of ~3.5 and ~8, 

respectively. Curiously, Si02/PAH and bare Si02 particles had comparable charge 

densities (~-1 f..1C/cm2) at pH values of ~8 and ~3, respectively. 

Surface charge density values at pH 4, 7, and 1 0 were calculated by interpolating 

from the collected data (Table 3-4). At pH 7, the values for bare Si02, Si02/PAH NPs, 

APTES-Si02 were -1.48, -0.57, and + 1.22 f..1C/cm2, respectively. In terms, of effective 

charge per nm2, these values correspond to -0.093, -0.036, and +0.076 #/nm2, 

respectively. These values reflect the presence of silica surface hydroxyl groups, and for 

the amine-containing particles, the presence of surface amine groups. Maximum coverage 

of a silica surface by APTES was reported to be 1.52 #/nm2 [19], indicating the amine 

surface densities of Si02/P AH NPs (as well as APTES-Si02) were well below maximum 

coverage. The low values can be attributed to the use of zeta potential values to 

approximate the actual surface potential values of particles. 

Table 3-4. Zeta potential and surface charge density values of bare Si02, Si02/P AH 
hybrid, and APTES-Si02 interpolated at three different pH values using the best-fit 
curves. I = 1 0 mM. 

Bare Si02 Si02/PAH hybrid APTES-Si02 

pH s (J s (J s (J 

(mV) (f..1C/cm2) (#/nm2) (mV) (f..1C/cm2) (#/nm2) (mV) (f..1C/cm2) (#/nmz) 

4 -35 -0.89 -0.056 +18 +0.55 +0.034 +51 +1.51 +0.094 

7 -51 -1.48 -0.093 -19 -0.57 -0.036 +43 +1.22 +0.076 

10 -63 -1.99 -0.125 -39 -1.25 -0.078 -10 -0.27 -0.017 
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The protonated amine surface density for the hybrid and APTES-Si02 particles 

can be estimated from the values in Table 3-4. The O"measured (= O"protonated-amine + <Jsim­

hydroxyi) can be considered the net sum of positive surface charge from the p AH amine 

portion of the surface ( O"protonated-amine) and negative surface charge from the silica 

hydroxyl portion (crsi02-hydroxyi measured for bare Si02). For hybrid particles at pH 4 then, 

the protonated amine surface density was +0.09 #/nm2 ( O"protonated-amine = O"measured - 0"Si02-

hydroxyl = +0.034 - -0.056). The values at pH 7 and 10 were +0.057 and +0.047 #/nm2, 

respectively, consistent with the amine portion of the surface became less positive with 

higher pH values. For APTES-Si02 particles, the protonated amine surface density were 

+0.150, +0.169, and +0.108 #/nm2 for pH 4, 7, and 10, respectively, somewhat consistent 

with the amine portion of the surface became less positive with higher pH values. Hybrid 

particles clearly had lower amine surface densities than the APTES-Si02 particles. 

3.6 Concluding Remarks 

PSA were successfully synthesized in the sub-1 OOnm range by controlling the 

citrate concentration. At charge ratio of 1, PSA hydrodynamic diameter was found to be 

~40nm. Higher R ratio resulted in larger hydrodynamic diameter. Silicic acid added to 

PSA produced silicified silica/polymer NP with similar diameter to the PSA. The 

silica/polymer NPs were broadly dispersed at all tested charge ratio. With the TEM 

images and line profile analysis, the synthesized NPs were porous and retained DI water 

up to 25% of their weight. TGA measurement determined that these hybrid NPs were 

thermally stable up to 800°C similar to bare silica mesoparticles. Surface charge density 
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analysis showed that silica hybrid particle has a lower aminated density compared to 

APTES-Si02 particles. 
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Chapter 4 

Conclusion 

A simple method to synthesize cationically charged, sub-1 00-nm silica NPs without the 

use of aminoalkylsilanes was presented. The polymer-salt aggregate assembly chemistry 

was developed to generate polyallylamine-citrate aggregates in the sub-1 00-nm size 

range, by determining the appropriate charge ratio values and precursor concentrations. 

These aggregates formed silica/polymer hybrid NPs after contacting the aggregate 

suspension with a silicic acid solution. These NPs did not dis-assemble at high salinity, 

unlike the parent polymer-salt aggregates. Whether the NPs were measured in the wet 

state or in dried state, the unimodal particle sizes correlated with the polymer-salt 

aggregate sizes. This hybrid NPs were mostly inorganic by weight, and the polymer was 

located throughout the particle interior as well as on the particle surface. The NPs had 

pzc, zeta potential, and surface charge density values between those of bare Si02 particles 

and amine-functionalized ones, which may prove useful in pH-sensitive applications. 
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Chapter 5 

Future Work 

5.1 Introduction 

Silica hybrid nanoparticles are a versatile material that can be used safely in biological 

applications or further modified for other usages. In this section, several applications for 

silica hybrid nanoparticles are proprosed for future research. This material can be 

combined with metallic nanoparticles for catalysis or capped with metals to form 

nanoshells for thermal treatment. In addition, during the course of this study, hollow 

silica nanoparticles (with polymer-salt aggregates as the core and silica-hybrid as the 

shell) were also detected. This core-shell structure is a suitable candidate for drug 

delivery as a nanocapsule allowing bacteria or virus to easily intake the capsule. [ 1-3] 

These proposed future works will be discussed in this chapter. 

5.2 Core-Shell Structure of Silica Hybrid 

The experimental method reported in Chapter 2 yielded mostly solid silica hybrid 

nanoparticles. However, some nanoparticles were hollow which can be used as 

nanocapsules for biomedical applications such as drug delivery. Throughout the study, 

most of the TEM images taken show silica hybrid nanoparticles with a consistent gray 

shade as seen in Figure 5-l. However, on several occasions, the silica hybrid 

nanoparticles do not have a consistent gray throughout the particle (see Fig. 5-3). The 
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inner core has a lighter gray shade compared to the outer edge indicating a hollow 

interior. 

Figure 5-l. TEM image showed a) silica hybrid nanoparticles with consistent gray 
throughout except 1 particle that can be seen clearly with a lighter shade in the core than 
the edge. 

One of the possible explanations for the formation of the core-shell structure is 

due to rapid hydrolysis of the silica precursor. The silica precursor (TMOS in HCl) was 

assumed to hydrolyze into 2-3 nm silica NPs and diffuse into the polymer salt aggregate. 

There is a possibility that the deposition of 2-3 nm silica NPs occurred rapidly on the 

surface, preventing further diffusion into the center. To test this hypothesis, two 

parameters can be changed to control the shell thickness: silicic acid concentration and 

silicification time. Silicic acid concentration was shown to have an effect on controlling 

the shell thickness.[4] In addition, changing the silicification time can limit amount of 
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silicic acid diffusion into the polymer-salt aggregate. These works have not been done 

but can be easily explored. 

5.3 Silica Hybrid as a Catalysis Support 

Silica has proven to be an ideal candidate as a support for catalytically active metallic 

nanoparticles due to its mechanical strength, thermal stability, high surface area, and 

irreducibility.[5, 6] For example, Au nanoparticles deposited on silica support has been 

widely used for catalytic oxidation of carbon monoxide (C0)[7, 8] and hydrogen (H2) to 

produce hydrogen peroxide (Hz0z).[9] To test the possibility of using silica hybrid 

nanoparticles as a support, negatively charged gold nanoparticles were added to a 

suspension of silica hybrid nanoparticles at pH 3, when silica hybrid NPs have a positive 

surface charge, to see if it would electrostatically bind to the surface. For this 

preliminary study, an excess amount of 2-3 nm gold nanoparticles synthesized by the 

Duff method was added to ensure that maximum adsorption of Au particles.[lO] The 

gold-on-silica hybrid (Au/silica/PAH) nanoparticles suspension was centrifuged to 

remove excess, unbound gold nanoparticles. TEM was used to image the resulting 

Au/silica/P AH to prove the attachment of gold NPs on surface. With prior knowledge 

that gold would appear darker in images due to its higher electron density compared to 

SiOz, Figure 5-1 shows that Au particles are attracted to the surface of SiOz and remain 

on the surface even after centrifugation process described above. Gold NPs are spaced 

out on the surface of silica/P AH NPs with minimal gold clusters formation, resulting in 

maximum gold surface area for catalytic reactions. 
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Figure 5-2. Au nanoparticles deposited onto Si02. The distribution of Au particles is 
uniform on silica hybrid particle surfaces. 

5.4 Silica-Hybrid as Core for Metallic Nanoshell 

Metallic nanoshells have unique electronic property that can be used for thermal 

treatment, sensors, or used as a surface for surface enhanced Raman spectroscopy 

(SERS).[ll-14] Gold is used widely for the mentioned applications due to its plasmonic 

and inert properties. The conventional method to synthesize gold nanoshell is to start 

with a silica core using the Stober method.[15] The silica particles are then 

functionalized with APTES to change the surface group of silica nanoparticles from -OH 

to - NH2 for easier attraction to negatively charged gold nanoparticles. The addition of 

Duff gold nanoparticles covers approximately 30% of the surface of silica particle.[! 0] 

To form a complete shell, gold salt is added and reduced by CO or formaldehyde.[16, 17] 

The gold salt continually deposits on the surface of gold nanoparticles and eventually 

merges to form a complete shell. Figure 5-2 shows preliminary TEM images of 
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unsuccessful nanoshell synthesis using silica hybrid as the core. Since silica/P AH NP has 

surface amine groups, the functionalization step in the conventional method to make 

nanoshell unnecessary. The rest of the experimental method is the same as above. Fig 5-

2a shows cluster of particles rather than individual particles and Fig. 5-2b has many 

unbounded gold NPs from self-nucleation during the reduction gold salt. 

Figure S-3. a) TEM images of cluster of silica-hybrid with gold nanoparticles on the 
surface. b) Gold salt reduction also leads to nucleation of gold nanoparticles. 

Silica hybrid would provide a good base for gold nanoshell synthesis because of the 

availability of the amine-groups of the surface. These amine groups provide anchor 

points for gold nanoparticles. Synthesis of gold nanoshell using silica-hybrid as a core 

involves a similar step to making Au/Si02 catalyst. Using the Au/Si02 catalyst as the 

core, gold salt is added and further reduced using CO method.[16] However, preliminary 

trials for the synthesis of gold nanoshells did not yield complete shell formation. Also 

seen were aggregation of silica-hybrid NPs with bound gold NPs on the surface and 

numerous unbounded gold nanoparticles indicating insufficient surface coverage of gold 

NPs. To make better shells using silica hybrid as the base, more Duff gold nanoparticles 

need to be on the surface. One experimental parameter to attract more Duff gold NPs 
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onto the silica/P AH NP surface is to control the pH, which was not done here. As seen in 

Chapter 3, the pH value changes the surface charge density ofthe silica/PAH NP. With a 

higher positively charged surface, more negatively charged gold NPs will get attracted to 

the surface. 

5.5 Gold Nanoshells 

The reason for the synthesis of nanoshell structure, which consists of a dielectric core and 

a metallic shell, is its plasmonics properties enable a wide variety of applications such as 

biomolecular sensor, thermal treatment of tumors, or surface for chemical analysis (i.e, 

surface enhanced Raman spectroscopy - SERS, surface enhanced infrared absorption­

reflectance - SEIRA).[ll, 13, 14, 17, 18] Gold nanoshells were not successfully 

synthesized using silica hybrid cores less amine coverage on the surface for the 

attachment of gold. Gold nanoshells were experimented by the author to study chemical 

reactions. 

5.5.1 Chemical Reactions using Gold Nanoshells 

Understanding and proving chemicals reactions through measurement has been the holy 

grail for scientific understanding. Microscopic level studies provide fundamental 

understanding of adsorption on surfaces and reaction mechanism of catalytic activities. 

Surface enhanced Raman Spectroscopy has been recently found to have high sensitivity 

and is promising tool to study chemical reactions.[14] With the field re-energized by 

Shuming and Nie, SERS is found to be able to have sensitivities up to 1014.[18] The 

range of surfaces that is suitable for SERS is not limited to roughen metallic films, it now 
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includes nanoparticles[19], nanostars[20], nanoshells[17], or nanogaps[21]. These 

surfaces are all in research stage but nanoshells proved to be the most promising material 

because of thickness controllability, large scale synthesis, and has higher enhancement 

compared to gold nanoparticles. Heck et al. showed Raman spectroscopic study of the 

hydrodechlorination of dichloroethane in aqueous solution using gold nanoshells as 

substrates. [ 14] Knowing that AuNS can be used to study hydrodechlorination reaction of 

trichloroethylene (TCE), it would be interesting to use this tool to study other involving 

chemical reaction such as chloroform hydrodechlorination. Chloroform 

hydrodechlorination is an interesting reaction because it is listed at a higher priority than 

TCE.[22] 

5.5.2 Materials 

The following materials are required for the synthesis of gold nanoshells: gold (III) 

chloride trihydrate (HAuCk3H20), tetrakis(hydroxymethyl)phosphonium chloride 

(THPC, 80 wt% in aminopropyltriethoxysilane (APTES), 

polydiallyldimethylammonium chloride (MW 1 OOK, 35 wt% in H20), K2C03, NaOH, 

NaCl, ethanol (180 and 200 proof), were acquired from Sigma Aldrich and silica cores 

from Precision Colloids (NanoSol120). Palladium precursor is palladium (II) chloride 

acquired was also acquired from Sigma Aldrich. The catalyst used, which is Pd­

Au/Alumina (Au 0.4 wt%, Pd 0.09 wt%), was acquired from Mintek Corp. Deionized 

water (DIW) was provided by Barnstead Nanopure Diamond System (18.2MQ) and used 

in all solutions. 
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5.5.3 Gold Nanoshell Synthesis 

Gold nanoshells are chosen as material for substrate because it can be easily synthesized, 

has high enhancement, and can be easily tuned to laser frequency for maximum 

detections. The method to synthesized gold nanoshells was previously described.[16] 

Briefly, 120nm silica nanoparticles are functionalized with APTES. These functionalized 

cores are placed into an excess amount of gold nanoparticle solution and left overnight 

for surface decoration. These seeded silica cores provide smoother surface and uniform 

shell growth. Duff covered cores are mixed with a potassium carbonate solution of gold 

chloride. Carbon monoxide was bubbled into the solution for 20s to reduce the gold 

chloride. As gold salt reduce onto the gold seeds, the islands become larger and merge 

together to form a complete shell. After the nanoshells were formed, the solution was 

concentrated by centrifuging at 800 rpm for 30min. 

5.5.4 SERS Substrate Preparation 

Gold nanoshells are then immobilized onto silicon substrate for SERS analysis. Silicon 

substrates are first plasma cleaned (Harrick Plasma Cleaner/Sterilizer, PDC-32G) for 5 

minutes. Immediately, 30uL of PDDA (polydiallyldimethylammonium, 5% wt.) in 

ethanolic solution was drop onto the substrate where the droplet was held together by 

surface tension. The PDDA was left for 15 minutes and thesubstrates were washed off 

with DI water. Approximately 30uL of concentrated gold nanoshells solution were 

dropped onto the PDDA functionalized Si wafers and left for 4 hrs for self-assembly. 

The excess nanoshells were washed off with DI water. For best results, the substrate 

should be used immediately after immobilization onto Si wafers. 

57 



5.5.5 Raman Spectroscopy Measurement 

Raman spectra were recorded using In Via Raman Microscope with a 785nm laser and 

40x Nikon optic. Laser power was set at 0.05mW and integration time of lOs totaling to 

scan time of 1 minute per spectrum. The SERS substrate was placed into a closed 

chamber (Warner Instruments RC-43, 273 uL volume) with one outlet and one inlet. 

Before each run, with 5mL ofN2 saturated DI water in a 5mL syringe, 3mL was injected 

through the inlet port. The focus after water injection was tweaked and stabilized for 30 

minutes. Other solutions (H2 water, chloroform with various H2 concentrations, and 

chloroform with N2) were injected in the similar fashion to achieve a complete flush of 

inner chamber volume. The chloroform concentration used for all experiments were 

0.503mM or 60 ppm. Raman spectra were recorded continuously for a period of time, 

which is depending on the reaction. 

5.5.6 Raman Spectra of Chloroform Hydrodechlorination 

Chloroform hydrodechlorination was first studied by checking activities using Raman 

spectroscopy with saturated concentration of N2 and H2• When adding in chloroform in 

N2 saturated water at T = Omin, the Raman bands shift back and forth, however no 

significant thing can be detected on the surface. As soon as chloroform and H2 is added 

to the reaction chamber at T=25 min, increasing Raman activities were seen with a 

significant amount of CF chemisorb onto the surface (Figure x a). The red in the plots 

signified high intensities and blue are minimal activities. If we reverse the sequence and 
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flush with just hydrogen at the end, chloroform was removed off the surface from 

decreasing intensity (red/yellow to blue) (Figure x b). Since the concentration of 

chloroform is high, many vibrational bonds are enhanced from the gold surface resulting 

in overlapping bands. The significant increase in all bands is detrimental to this 

experiment since individual bonds cannot be extracted for interpretation. Hydrogen 

amount was lowered to see if reaction can be held on the nanoshell surface for 

interpretation. 

a b 

Figure S-4. Raman spectra of chloroform a) adsorption to and b) desorption from the 
gold nanoshell surface. Chloroform concentration is 0.503 mM or 60 ppm with saturated 
amount of specified gas. 

In order to restrict the amount of hydrogen, H2 saturated DI water was first purged into 

the cell. During this particular step, an undetermined amount of hydrogen adsorbed onto 

the gold nanoshell surface. When N2 saturated water was purged into the reaction 

chamber, minimal activities were detected on the gold nanoshell surface. The majority of 
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the reaction was seen when chloroform was introduced into the system. Limiting the 

amount of hydrogen prevented rapid hydrodechlorination, therefore spectra of activities 

are held on the surface longer as seen in Figure x from T = 60-80min. These spectra 

provided a multitude of informations in which can be extracted to prove the reaction 

mechanism. These works required much more analysis but these initial Raman 

spectroscopic measurements proved that gold nanoshells is a useful material for SERS. 

Gold nanoshell surface is not a good catalytic surface for hydrodechlorination reaction, 

however it is a good surface for spectroscopic studies of hydrodechlorination reaction 

since it slows down the activities long enough for Raman scan by the instrument. 

Time (min) 

Ra.ma.h Shifl (cm ' 1) 

H2 Water 
(T=Omin) 

'!!!'..., """" Nz Water 
(T=15min) 

.., , Chloroform in 
"""" N2 Water 

(T=45min) 

2000 

Figure 5-5. Raman spectra recorded over a period of 2 hrs of chloroform activities on 
gold nanoshell surface. H2 saturated water was introduced initially at T= Omin, followed 
by introduction ofN2 saturated water (T = 15min), and chloroform in N2 saturated water 
at T = 45 min. 
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