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ABSTRACT 

Low electrical resistivity carbon nanotube and polyethylene nanocomposites 

for aerospace and energy exploration applications 

by 

Padraig G. Moloney 

An investigation was conducted towards the development and optimization of low 

electrical resistivity carbon nanotube (CNT) and thermoplastic composites as 

potential materials for future wire and cable applications in aerospace and energy 

exploration. Fundamental properties of the polymer, medium density polyethylene 

(MDPE), such as crystallinity were studied and improved for composite use. A 

parallel effort was undertaken on a broad selection of CNT, including single wall, 

double wall and multi wall carbon nanotubes, and included research of material 

aspects relevant to composite application and low resistivity such as purity, 

diameter and chirality. 

With an emphasis on scalability, manufacturing and purification methods were 

developed, and a solvent-based composite fabrication method was optimized. CNT 

MDPE composites were characterized via thermogravimetric analysis (TGA), 
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differential scanning calorimetry (DSC), Raman spectroscopy, and multiple routes of 

electron microscopy. Techniques including annealing and pressure treatments were 

used to further improve the composites' resulting electrical performance. 

Enhancement of conductivity was explored via exposure to a focused microwave 

beam. A novel doping method was developed using antimony pentafluoride (SbFs) 

to reduce the resistivity of the bulk CNT. Flexible composites, malleable under heat 

and pressure, were produced with exceptional electrical resistivities reaching as low 

as 2*10-6 n•m (5*105 S/m). 

A unique gas sensor application utilizing the unique electrical resistivities of the 

produced CNT-MDPE composites was developed. The materials proved suitable as a 

low weight and low energy sensing material for dimethyl methylphosphonate 

(DMMP), a nerve gas simulant. 
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CHAPTER 1: INTRODUCTION 

The increasing use of electrical systems to replace hydraulics in aerospace, 

combined with the rigors seen by undersea umbilicals for energy exploration, 

creates a real need for lightweight conductors to replace copper wire. The creation 

of such a conductor is the central goal of this thesis. 

In Chapter 2, the rationale for research is presented, both the need and a brief on 

the proposed solution to meet that need, a polymer nanocomposite. A background 

on polyethylene (PE), the polymer designated as the matrix material for this work, is 

included with special attention paid to material aspects relevant to composite 

processing. A similar background on carbon nanotubes (CNT), whose unique 

properties include the promise of low electrical resistivity, is also put forward. 

Consideration of what factors affect electrical resistivity, which include nanotube 

chirality, are presented. Finally, a review of the most promising CNT-PE composite 

research is discussed. 

Chapter 3 lays out the steps taken to prepare, characterize and optimize the CNT for 

use in a low resistivity composite. An improved and scalable purification procedure, 

suitable for large amounts of CNT, was developed and compared to more 

established methods. In an effort to bridge this materials-engineering goal with the 

latest fundamental nanotube research, a chirality and diameter assessment was 
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carried out and presented. A multi-scale analysis of nanotube resistivities was 

attempted and the data gathered included in the chapter. 

Combining the CNT with polyethylene, with a focus on medium density polyethylene 

(MDPE), and extracting the best electrical performance possible from the produced 

composites, is central to Chapter 4. A scaled-up and improved solvent blending 

procedure was created and its products analyzed. The electrical resistivities are 

noted and detailed microscopy, spectroscopy and other analysis is employed to 

understand the nuances of different composites' resistivity performance. 

Chapter 4 continues with an emphasis on techniques explored to improve the 

electrical resistivity of the as-produced composites. Annealing and pressure is 

investigated, with success, while more inventive research using focused microwave 

beams is less promising that originally envisioned but proves itself worthy of future 

research. A novel doping route, using antimony pentafluoride (SbFs), was developed 

in order to improve the fundamental electrical performance of the CNT, and is 

included in this chapter. 

An innovative, flexible and low energy gas sensor, made from the low-resistivity 

composites developed in Chapter 4, is presented in Chapter 5. This chapter begins 

with a broad investigation of the relevant literature, the identification of the most 

suitable analyte, and then lays out the development and discussion on the sensor 

invented. 



CHAPTER 2: BACKGROUND AND RATIONALE 

2.1 RATIONALE FOR RESEARCH - INDUSTRIAL APPLICATIONS OF 

ELECTRICALLY CONDUCTIVE POLYMER CABLES 

2.1.1 Oil and Gas Undersea Umbilicals 

Offshore exploration for fossil fuels continues to push into deeper water (>3000m) 

and with longer exploration or "step-out" distances (>SOkm)l. These subsea 

networks require power cables or "umbilicals" of increasing length, which must 

deliver significant amounts of power for a design life up to 20 years or more. As 

depths and distances increase, conventional copper wire will fail under its own 

mass, which produces the need for new conductors. 

This need for a new conducting cable material was the basis for the Research 

Partnership to Secure Energy for America (RPSEA)-sponsored program involving 

Rice University, NanoRidge Inc. and its partners, entitled "Ultra-High Conductivity 

Umbilicals: A paradigm Change in Conductors Using Carbon Nanotubes" whose aim 

was to produce an engineering prototype of a "polymeric conductor". Figure l(d) 

below shows the CNT-based cable, while Figure l(e) shows the cross-section of the 

nanotube filled polymer wire. 



(c) 

Figure 1: Schematic showing predicted schematic of PNU in use in undersea 

umbilical 1 

4 

Much of the research in this thesis was funded by this study, and most importantly, 

it played a central role in dictating some of the technical approaches taken, namely 

using carbon nanotubes as a filler to produce a conducting polymer, and the choice 

of matrix or polymer, polyethylene. The program proposed a ((polymer nanotube 

umbilical// or PNU whose material capabilities could reduce the diameter and weight 

of current materials such as aluminum (AI) and copper (Cu) (Figure 2). The polymer 

was proposed as a binder allowing the manufacture of a strong, yet flexible cable. 

Current umbilicals typically contain a thermoplastic extruded layer, which 
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surrounds bundles of functional components. These sub sections are then 

assembled into a compact tubular structure 1. This use of a thermoplastic and the 

subsequent recommendations on polyethylene (PE) from umbilical manufacturers 

as part of the RPSEA program~ was the primary reason PE was used in this thesis. 

200mrn2 Aluminium 30mm
2
PNW 

(Target) 

Figure 2: Comparison of AI and Cu to proposed PNU cable 1 

Studies were carried out showing the potential weight loss from using CNT-

enhanced polymers~ predicting a significant reduction in mass and an increase in 

buoyancy (Table 1). 
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Cable 1 Cablel Cable3 
Cable area (mm2) 200 (AI) 120 (Cu) 30(PNU) 
Mass in air (k~m) 1.45 1.82 0.54 
Diameter (m) 0.038 0.0327 0.0253 
Mass of displaced water 

1.16 0.86 0.52 (kg/m) 
Weight in water (N/m) 2.820 9.406 0.242 
Or (kg/m) 0.288 0.959 0.025 

Table 1: Current and proposed cable weights 1 

CNTs were proposed due to their high current density capacity z, and conductivities 

that are possibly one order of magnitude in excess of Cu 3 and weights that are 1j6th 

3, 

2.1.2 Aircraft Electrical Cables 

The previous Space Exploration initiative at the National Aeronautics and Space 

Administration (NASA) had set out an ambitious plan of manned and unmanned 

missions to explore both the Moon and Mars. Solutions to reduce mass and increase 

energy are always relevant to space systems, and will continue to be whatever 

future NASA missions beyond earth's orbit replace the cancelled Exploration 

architecture. The wiring mass estimate for the Crew Exploration Vehicle (CEV), or 

Orion, was approximately 940 lbs. for the Control Module and 720 lbs. for the 

Service Module. It was expected this number would have grown as the design 

matured and the actual wire routing in the vehicle was determined. An additional 

historical reference to wiring mass growth as a system evolves, is the Space Shuttle. 

It contained 228 miles of metallic wire, which, including relevant connectors, was 
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originally in excess of 4,500lbs. That number now had grown to well in excess of 

S,OOOlbs as the shuttle faced retirement. The increased use of electrical systems in 

aircraft to replace hydraulics has only hastened the need for lightweight conductors 

in aerospace. 

In addition to the reduction of wiring mass, enhancements are sought by the 

aerospace industry for lightning strike, static electricity build-up mitigation and 

protection for composite structures of aircraft and spacecraft. An active area of 

research to provide solutions to these challenges is the use of nanoscale materials to 

improve the conductivity of polymers as a replacement for traditional metal wiring. 

In support of this goal of higher conductivity cables for aircraft use, the National 

Institute of Standards and Technology (NIST) Advanced Technology Program (ATP) 

supported a multi year effort involving Rice University, Nanoridge Inc. and Boeing 

(NIST). This program was also key in funding this thesis, and in influencing the 

technical approaches taken, especially one of its key requirements being the 

production of a cable composed of electrically conductive carbon nanotubes 

embedded in a polymer 4• One supporting element of this program worth noting was 

a key foundational requirement, not part of this thesis research; that of the supply 

or sourcing, and use of highly metallic carbon nanotubes. 
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2.2 POLYETHYLENE- POLYMER MATRIX 

Polyethylene (PE) is one of the most widely used polymers or plastics. PE has a 

linear chemical formula of H(CH2CH2)nH s. As mentioned, its choice as the polymer 

matrix for this thesis stems originally from the recommendations of umbilical 

manufacturers. Through these requirements or recommendations, it was decided 

medium density polyethylene (MDPE) would be the primary polymer matrix of this 

thesis. MDPE has a density range of 0.926-0.940 g cm-3, and good shock and drop 

resistance properties l,6, It is also noted as resistant to stress cracking and being less 

notch-sensitive than high density polyethylene (HDPE). 

2.2.1 Electrical Properties 

PE is considered chemically inert due to the small dipole moments associated with 

the carbon-hydrogen and carbon-carbon covalent bonds, which limit reactions 

between the polymer and potential reactants 7• In fact, with its lack of free electrons, 

PE is widely used as an insulating material for cables. Although it has a relatively 

simple chemical composition, PE's electrical properties are complex. Peacock lists 

resistivity, permittivity, dissipation factor, dielectric strength and arc resistance as 

key quantities studied in polyethylene engineering. The first three are relevant at 

low electrical "stress", while the final two come into play at high stresses. 
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PE has a bulk resistivity on the order or greater than 1Q16 n•cm, and a dielectric 

constant of 2.25 - 2.35 at lMHz 7• It is noted in the literature that bulk resistivity of 

PE is not just dependent on chemical composition, but can be modified through 

contaminants and additives7• The chemical composition also affects morphology, 

which affects melting temperature and in turn resistivity. This does provide some 

optimism that the addition of a highly conductive filler material, such as metallic 

carbon nanotubes, may provide the twenty two order of magnitude change in 

resistivity to match that of copper. Changes in bulk resistivity were a key focus of 

this thesis. 

The dielectric constant or relative permittivity is a measure of the materials 

inertness to an electric field. PE has a low dielectric constant because of its 

aforementioned lack of polar characteristics. It also has a low dissipation factor (D) 

which is a ratio of the lost to stored energy in an alternating electrical field. 

Increases in temperature decreases the dielectric strength of PE, most notably with 

melting of crystalline structures. For this reason, high density and linear 

polyethylene are used for high voltage insulator applications. Polyethylene has both 

crystalline and amorphous regions, and it is thought that the boundary between 

these creates trap sites for electrons, affecting its dielectric properties a. 

It has been shown that the mean free path in low-density polyethylene films can be 

increased by increasing crystallinity, making electron transport more efficient 9• 

Tanaka et al. increased the mean free path length from under 5nm to greater than 
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15nm by annealing. However, the mean free path is only one component that 

electrical resistivity depends upon, and the resultant improvement in resistivity was 

negligible considering the target resistivity of copper. However, the use of annealing 

will be put to consideration during the thesis research. 

High electrical fields will cause PE's insulting abilities to breakdown in both a 

chemical and mechanical manner, as the electrical "stresses" utilize impurities, 

catalyst residues, absorbed water and polarizable bonds in carbonyl and vinyl 

groups to find a path for current to flow through 10• Lower molecular weight PE's are 

more susceptible to failure from high voltage electrical fields, principally through 

formation of conductive paths, also known as "trees" or "treeing" 7•10• These 

microscopic paths can also be formed at electrical or sulfide-based paths of cavities 

and contaminants. 

Figure 3: Left: Tree growth from fiber in polyethylene (30X mag) 10, Right: Treeing 

from inserted needle in cross-linked polyethylene 11 
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The addition of CNT to PE may provide a number of possible routes for treeing to 

begin from the mechanical stresses, thermal stresses and possible increase in 

oxidation of the polymer. This may alter bulk resistivity in a controlled manner. 

There is little attention paid in the literature to these phenomena with regards to 

the electrical resistivity of nanotube polymer composites, and none with regards to 

polyethylene and SWNT. Past research has even shown the possible benefits of 

carbon and other inorganic fillers in cross-linked polyethylene as prevention to this 

dielectric breakdown or treeing u, a situation that does not assist in this study's 

cause to reduce bulk electrical resistivity. In general, understanding of 

"nanodielectrics", especially in nanocomposites, is still considered relatively 

immature 12,13, 

A distinct decrease in resistivity is noted in many composite mixtures of insulators 

and conductors once a critical volume fraction of the conductive filler is attained. An 

accepted explanation for this is that a percolating network of conductive fillers has 

been achieved, and that any additional reduction in resistivity is due to the 

increased connectivity and conductivity of the network 14,15. Dielectric composites 

consist of well-dispersed conducting non-touching particles whose electrical 

connectivity in an insulating matrix is via tunneling 16,17. Polyethylene is an 

uncommon choice of matrix for either approach. Vionnet-Menot et al. suggest there 

is little relationship between the critical volume fraction and the change in 

conductivity, while Bauhofer's extensive review suggests shape of the particle may 

have little to play either 18,19. Relatively recent research has attempted to address 
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the tunneling-percolation problem in the intermediate regime between the 

"percolation-like" and the "hopping-like" regimes 16,20. The former is a distinct and 

noticeable change in conductivity while the later is a continuous relationship with 

inter-particle distance. Through what was originally proposed in the RPSEA project, 

a hopping-like solution in polyethylene was put forward. 

2.2.2 Solvents and Conditions for Polyethylene Processing 

Dissolving the polymer matrix for manipulation with nano fillers has often played a 

useful role in the author's prior research in carbon nanocomposites 21-23. The 

preferred solvents for PE are refluxing xylene, decalin or dichlorobenzene (DCB) at 

a temperature in excess of the melting point 7• Complete dissolution in solvent is 

sometimes used as a first step to reducing polymer entanglement on route to 

creating high modulus, highly orientated, samples through wet spinning, solid state 

extrusion or drawing, or fiber growth from sheared solutions 7• This is notable given 

the research of this thesis is in support of the creation of conducting PE cables. 

Preparation for wet spinning typically requires -6% w fv concentrations 7. 

Unfortunately, other than gel-spun fibers, PE products processed from solution are 

of little commercial interest. 

In addition to being in excess of the melting point (140-170°C), using an excess of 

solvent reduces overlap between adjacent coils of polymer, which decreases the 

amount of intermolecular entanglement along the polymer chains 7• If cooled 
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rapidly, the result will be a PE with relatively few entanglements compared to melt­

crystallized PE. This is an important point to consider when contemplating 

dispersing carbon nanotubes, and their large aspect ratios, effectively in a polymer. 

It has been shown that PE chains configure themselves as random coils when 

allowed to equilibrate from a molten state or when dissolved in solvent. 

PE crystallization from solution is dependent on the control of some key issues such 

the interactions between the solvent and the polymer, the concentration of the 

polymer in the solvent, the temperature and the molecular elongation 7• A general 

guide that has been suggested is that the lower the concentration and the higher the 

temperature, combined with the lower the molecular weight of the polymer, will 

enhance the regularity of crystal formation 7• 
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2.3 CARBON NANOTUBES 

2.3.1 Manufacturing Methods and Sources 

In this thesis, nanotube types produced via different methods were explored. CNTs 

can be produced via a number of ways. These methods include arc discharge, 

chemical vapor deposition (CVD), laser ablation and high-pressure 

disproportionation of carbon monoxide (HiP co). These techniques are based on 

nanotube formation from carbon feedstock in the presence of a metal catalyst(s). 

The main differences are with the type and form of carbon feedstock and metal 

catalysts used. 

In the CVD and HiPco processes, the CNTs are formed from the decomposition of 

carbon-containing gases 24• With the arc and laser ablation processes, the CNTs are 

formed by the vaporization of solid carbon. High temperatures, often >800°C, are 

used in the active regions of the reactors to produce single carbon atoms or carbon 

atom clusters which eventually form CNTs. Each method produces tubes with 

unique properties, and the material can even vary depending on the area of the 

reactor it is harvested from. 

The arc process was used by lijima to produce the first SWNT 25. It is still considered 

a batch process for SWNT production that often produces a large variation in 

diameters (1.0-1.8 nm). With laser ablation CNT, a laser is used to vaporize a solid 
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carbon target containing approximately 1 atomic weight percent of metal catalyst 26. 

It has been shown to produce lg per day of larger diameter SWNT ( --1.4 nm). 

2.3.2 Nanotube to Nanotube Junctions 

It has been suggested that the resistivity of a network of CNT is far more dependent 

on the network or interconnectivity between the tubes, rather than the distance 

from the electrode 27. Further research has supported this claim 19,28. 
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Figure 4: Local resistance analysis via atomic force microscopy (AFM) of pathways 

through bundle and individual tubes 29 

Recent studies have also shown that resistivity of nanotube networks can be 

lowered by reducing the bundle size of tubes, ideally to single tubes (Figure 4) 29 . A 

qualitative summary of nanotube to nanotube junctions was recently formulated for 

the RPSEA project 1, and is presented in Table 2 below 
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CNT 
SWNT-

Junction Type 
Rope-

CNT 
Semiconductor- Semiconductor- DWNT- m-SWNT 

CNT Semiconductor Metallic DWNT -m-SWNT 
Rope Rope 

Relative 5 4 3 3 2 I 
Contact (5 is High) (I is Low) 
Resistance 

Table 2: CNT -CNT JUnctiOns and their relative contact resistances 1,6 

2.3.3 Nanotube Type and Chirality 

Armchair quantum wires (AQW) are metallic-SWNT (m-SWNT) wires, which rely on 

ballistic electron transport and resonance quantum tunneling 1,30,31. As already 

noted, obtaining metallic CNT in quantity was a key deliverable of the ATP project, 

with dependent research such as success of the nanotube-polymer composite in this 

thesis. Different forms of the same nanotube type can be described by their chiral 

vector (n,m), where nand mare the integers of the vector equation (Figure 5). 



', 
' (11,n) armchair 

Figure 5: Chiral vector map of graphite 32 
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The chirality or twist is described by (n,m), which in turn describes the lattice 

structure and conductivity of the tube. SWNT material is metallic if n and m can be 

divided by three. While not AQW CNT, nanotubes of various chiralities were 

explored as part of this study. 
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2.4 CARBON NANOTUBE AND POLYETHYLENE COMPOSITES 

2.4.1 Carbon nanotube and polymer composites 

In their thorough review of CNT -polymer composites, Bauhofer summarized the 

highest performing composites in terms of electrical conductivity or resistivity 

(Figure 6)19. Summarizing this further, one can see that composites with the lowest 

resistivities had less than a stellar performance in comparison to the target set for 

this study, that of copper (Table 3). It is noted that these "best of the best" 

composites utilized polymers more suitable to the task than the one designated for 

this thesis, polyethylene. The amount, or wt%, of CNT used in these examples was 

also not insignificant. 
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Figure 6: Review of electrical conductivity of CNT -polymer composites 19 

Skakalova et al. achieved a low resistivity of 1 *10-2 .n•cm with their composite of 

19 

SWNT and PMMA 33. Using a simple doping method ofthionyl chloride (SOCl2), they 

reduced the resistivity of the SWNT from 2e-3 .n•cm to 4e-4 .n•cm, and the SWNT-

polymer composite from 6*10-2 .n•cm to 1 *10-2 .n•cm. Combined with the choice of 

polymer, the composites took the form of thin layers created by evaporation of 

solution, a low scale manufacturing method which reduces the relevancy of this 

research towards this thesis. 
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Composite Type Resistivity wto/oCNT 

SOClz SWNT PMMA 33 1 *10-2 .O.•cm 10 

SWNT PANI 34 3*10-1 .O.•cm 15 

MWNT PU 35 2*10-1 .O.•cm 15 

Table 4: Summary of lowest resistivity composites in the literature 

Blanchet et al. also took the approach of creating thin films, of SWNT and polyaniline 

(PAN I), for their study. The only note of relevance of their work towards this thesis, 

was that neither nanotube type (HiPco and Laser), nor purity (leftover metal 

catalyst), affected their results. It was only the dispersion of the nanotubes that was 

considered significant. 
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2.4.2 Carbon nanotube and polyethylene composites 

There is a limited amount of research and data within in the literature pertaining to 

composites of polyethylene and CNT, especially when compared to the body of work 

dedicated to combining CNT with thermosets and other thermoplastics. Within pre-

existing efforts on polyethylene and CNT, there is an even more limited subset that 

concentrates on, or even touches upon, the study of electrical resistivity or 

conductivity of the CNT-PE composites. Given the aforementioned starting high 

resistivity of polyethylene, this is not surprising. 

ZHANG (2006) 
W T 

MIERCl'iNSKA (2007) BIN (2003) 

HAGGENMUEllER 
ZHANG (2006) (2007) 

Resistivity 
(O•em) 

(U 

OORRASI (2006) 

ISAJt (2009} 

JEON (2007) 

10 30 

CNT Concentration (w~) 

Figure 7: Summary of lowest resistivity carbon nanotube and polyethylene 

composites 
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In 2003, Bin et al. combined MWNT of 10-20 nm diameter with ultrahigh weight 

molecular weight polyethylene (UHMWPE) via gelation/crystallization from 

solution in decalin, or decahydronaphthalene, a saturated analog of naphthalene 36. 

They found that resistivity was at its lowest of 10 .n•cm at a 15wt% loading and 

then saw an increase with resistivity with higher loading, thought to be due to 

worsening dispersion in solution due to higher shear stress and hence, larger 

amount of tube entanglement. The percolation threshold was found at 

approximately 10wt%. They discovered that mechanical stretching up to a draw 

ratio of 100 actually increased resistivity to 100 .n•cm. In 2006, Chen and Bin 

repeated this work to make MWNT -UHMWPE composites, also including other 

polymers at varying ratios, but did not improve upon their previous electrical 

performance. Isaji et al. continued this group's research by fabricating 

UHMWPE/LMWPE and 10wt% MWNT composite films via a solvent blend in 

decalin. Through thermal cycling they reduced the resistivity further to 1 .n•cm 

Xi et al. utilized paraffin as a solvent and reduced the percolation threshold of 

MWNT-UHMWPE composites to 3wt% and achieved a lowest resistivity of 10-100 

.n•cm 37• Zhao et al. utilized similar first steps, using solution casting method in 

dimethylbenzene to prepare MWNT-LDPE film composites up to 30wt% 38• The 

films were mechanically mixed in a Banbury mixer as a final processing step. A 
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percolation threshold was noted at 15wt% and a minimum resistivity of 

approximately 1 * 107 n•cm at 30wt%. 

Using a "hot coagulation" method, or solvent blend, of dichlorobenzene (DCB), 

Haggenmueller et al. produced composites of SWNT (produced via laser ablation) 

and LOPE and MDPE respectively 39,40. This work achieved a resistivity between 1 

and 10 n•cm at a 30wt% loading. }eon et al. used similar methods and solvent to 

produce SWNT-HDPE composites up to 8wt% with a 0.2 n•cm, a lowest resistivity 

observed in the literature reviewed. A percolation threshold at 0.13wt% was noted 

41 

With regards to mechanical approaches to creating CNT polyethylene composites, 

McNally et al. used a melt blending method using a Haake mini-twin screw extruder 

to produce MWNT-MDPE composites in various ratios up to 10 wt%42. Increasing 

MWNT loading past this amount was probably not possible due to the increasing 

viscosity of the MWNT-MDPE mixtures and the torque needed to mix such pre­

composites. They noted a percolation threshold of approximately 7.5 wt% and a 

lowest resistivity point of 1000 n•cm. Using hot pressing of mechanically mixed 

powders of MWNT-UHMWPE has shown a resistivity limit of 100 n•cm 43. A similar 

hot press approach was utilized by Gorrasi et al., but was preceded by high energy 

ball milling (HEBM) of linear low density polyethylene and MWNT powders up to 

10wt% 44. They achieved a percolation threshold at 2wt% and a plateauing 

reduction of resistivity to approximately 1 n•cm at Swt%. 



24 

Mierczynska et al. prepared composites using UHMWPE granules covered in both 

SWNT and MWNT 45. The composites were processed via the mixing of polymer 

"microgranules" with CNT, followed by sintering. They noted that effective 

dispersion in solvent prior to the addition of polymer granules and drying, reduced 

the percolation threshold by approximately one order of magnitude for SWNT 

composites. The processing time of mixing was studied showing that increased 

dispersion of CNT and breaking up of bundles is achieved, and hence a reduction in 

resistivity of up to one order of magnitude is possible, but that further mixing 

appears to retract some of that improvement, possibly by reducing CNT 

interconnectivity and pushing the material to polymer voids. Best results of 10 

fi•cm for 0.75wto/o MWNT-UHMWPE and 100 .n•cm for 3wto/o SWNT-UHMWPE 

were noted. 

Zhang et al. also took an unusual mechanical mixing approach to their composites of 

SWNT with HDPE 46• They sprayed SWNT aqueous solutions onto HDPE powders 

before mechanical mixing. While they claim that this process had benefits towards 

dispersion and rheological properties, there was no direct conclusion the process 

reduced resistivity. A percolation threshold was noted at 4wto/o while the reduction 

in resistivity began to plateau at 10 .n•cm with 6 wto/o. Of note, was that the 

rheological percolation threshold was lower than the electrical one (1.Swto/o vs. 

4wto/o). This was explained as a higher effect on resistivity by absorbed polymer 

layers around tube and tube bundles than on rheology. In further work, Zhang et al. 
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reduced the resistivity to 2 .n•cm at a loading of 10wto/o and improved percolation 

threshold to 0.6. They achieved these improvements by processing the powders in 

solvent and producing films, rather than melt mixing. 

Overall, one can see from the literature, there are numerous challenges involved in 

achieving low electrical resistivity in nanocomposites of polyethylene and carbon 

nanotubes, while a wide variety of technical approaches and methods have yet to 

provide a clear route to matching the low resistivity of copper. 



CHAPTER 3: LAYING THE FOUNDATION: NANOTUBE TYPE, 

PROCESSING & CHARACTERIZATION FOR COMPOSITES 

3.1 CARBON NANOTUBE TYPE AND PURIFICATION 

Over the span of research conducted for this thesis, a number of nanotube types 

from various sources were utilized. These included SWNT produced via HiPco (Rice 

University), laser ablation (NASA Johnson Space Center) and CoMoCAT (Southwest 

Nanotechnologies Inc.) methods, in addition to two sources of MWNT (Mitsui and 

Bayer). Double wall carbon nanotubes or DWNT (CCNI) were also explored in the 

later stages of research. A diverse selection of CNT was used in seeking the best mix 

of properties for a conductive polymer composite cable. These include electrical 

conductivity, dispersability and compatibility with the composite matrix, availability 

and cost. 

3.1.1 As-Received Nanotube Material Quality Assessment: Protocol 

The challenges of a wide variation in initial quality of nanotubes produced via 

different manufacturing methods, and successful characterization of these 

deviations, have already been introduced in Chapter 2. The initial qualities of CNT 

used in this study were no exception. Using the most useful elements of established 

protocols, the starting quality of CNT was explored 47. 
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Non-tubular carbon content was evaluated using SEM and TEM. CNT were prepared 

as-received for SEM, mounted on aluminum SEM pucks using double-sided adhesive 

carbon tape. A variety of SEM instruments were used by the author during the 

course of this research including FEI Quanta 200 ESEM and Hitachi S-5500. 

TEM samples were prepared by probe sonicating (Cole Parmer 7SOW) at 20kHz for 

3 minutes in 20-30mL of dimethylformamide (DMF- Sigma Aldrich). One drop of 

this suspension is placed on 200 mesh lacey carbon grids on filtration paper. The 

majority of TEM work was completed using a JEOL 2100F, with some additional 

scanning transmission electron microscopy (STEM) characterization (Hitachi S-

5500). 

A quantitative assessment of nanotube purity was performed by TGA in air at 

5°C/min to 800°C. Flow was set at 100sccm unless otherwise indicated. Three 

instruments were used interchangeably during the course of this research: TA 

Instruments SDT Q600 TGA/DSC (NASA Johnson Space Center and Rice University) 

and QSOO TGA (NanoRidge Inc.). Ceramic crucibles were used in the former 

instrument type and platinum in the latter. 
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3.1.2 As-received Nanotube Quality Assessment: Results 

The as-received materials from Mitsui and Bayer had similar low residual catalyst 

amounts. In Figure 8 below, TEM images Al and A2 highlight the slight amount of 

catalyst found in the Mitsui MWNT, and the good integrity of the tube sidewalls. It 

also confirmed the tube diameters centered in the 40-60nm range. Residual catalyst 

amounts of less than 8wt% were confirmed by TGA (Figure 9). As a result, these 

materials did not warrant any further purification. 

The SWNT from Southwest Nanotechnologies (also known as "SWeNT") was the 

commercial grade CG100 type, and had a residual catalyst content of less than 5% 

(Figure 10). SEM and TEM, as seen in Figure 8, qualitatively confirmed this. Images 

Bl and B2, high resolution SEM and TEM respectively, show the low amount of 

residual metals. However, TEM analysis brought to light an issue with these tubes 

that would later be thought to play a role in composite conductivity; an amorphous 

carbon layer often found on the tube or bundle surfaces. As CG100 is both produced 

and purified via proprietary means, it is not clear what caused this. Spectroscopic 

analysis via the TEM and SEM did confirm the presence of fluorine, which the author 

suspects is present due to a purification procedure using hydrofluoric acid. SWeNT 

did supply a very limited amount of what was described as higher conductivity 

SWNT, grade "CG200", which was analyzed via TEM and TGA, and also faced chiral 

analysis. It proved to have an enormous amount of residual catalyst (>20wt%) and 

was not any more conductive in composite use. 
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Figure 8: (Al & A2) TEM of as received Mitsui MWNT, (Bl & B2) SEM and TEM 

images of as-received SWeNT CG100 CoMoCAT SWNT, (Cl & C2) SEM and TEM of 

as-produced laser SWNT. 
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Figure 9: TGA analysis of as-received Mitsui Corp. MWNT showing low residual 

catalyst 
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Figure 11: TGA analysis of as-produced laser SWNT 

Figure 8 C1 and C2 show representative SEM and TEM of the laser-produced 

material. It highlights a material known for producing larger diameter tubes, with 

less residual catalyst. However, as confirmed by TEM in C2, the catalyst is typically 

wrapped in onion-like layers of carbon, which presents an issue with purification. 

The laser material contained between -19wt% catalyst, as confirmed via TGA 

(Figure 11). It was decided given both the limited amount of material on hand, and 

knowing the inefficiency of purification procedures, that this SWNT would be used 

as received. It was also noted that this unique material is no longer produced by 

NASA Johnson Space Center. 
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The SWNT produced via both laser ablation and HiPco methods were received with 

significant residual catalysts. The HiPco material contained approximately 35% 

residual catalyst. Given this high number, and the important role HiPco material 

would play in producing composites with polyethylene, purification of the material 

was pursued. 
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3.1.3 Purification of Nanotubes 

Figure 12 highlights the typically high residual metals content in HiP co material, this 

example was -33wt%. This material, often iron coated in oxide and carbonaceous 

species, would have to be removed before use. The as-received HiPco SWNT 

material was purified using two different methods. The first method was via a 

previously-developed multistage procedure, which encompasses slow oxidation in 

humid air at 250-325°C for 24 hours, stirring in concentrated hydrochloric acid 

(HCL), washing to neutral pH with DI water and methanol and annealed at 800°C in 

argon (Ar) for one hour4B. The relatively low temperature wet air oxidation step 

exposes metal particles from within carbon shells. Also, the water has been shown 

to enhance the low-temperature catalytic oxidation of carbon, which assists in the 

removal of non-tubular carbon content. The HCL step then extracts the iron or 

residual catalyst. The author has utilized this protocol extensively in the past, in 

addition to its modified form 49, and found it consistently able to reduce leftover 

catalyst impurities to 2.5-Swt% (Figure 13) and have a yield of-20-40wt%. 
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Figure 13: TGA analysis of HiP co SWNT purified via the slow oxidation method 

In an effort to find a process more suitable for easy purification of larger amounts 

than SOOmg of CNT, and one with a greater yield, a second process was also 

explored. The carbon coated leftover catalysts were dissolved by reaction with a 

"one-pot purification method" of hydrogen peroxide (HzOz) and HCL at 40-70°C for 

4-8 hours so. This process combines the oxidation of raw carbon materials by HzOz 

with the removal of metals by HCL. Maintaining the pH to 1-3 reduces the 

consummation of SWNT by HzOz. It is thought the HzOz penetrates graphitic shells 

though imperfections and combines with the iron to assist in the oxidation of the 

carbon coatings (Figure 14). The metal particles act as a catalyst to effect the 
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purification via Fenton's chemistry to produce hydroxyl radicals. Wang et al. noted 

that the reactivity of the SWNT with H202 rests sharply on temperature. It was 

observed that below 60°C the reaction is scarcely observable, while at 90°C the 

semiconducting SWNT are more reactive than metallic because of faster oxidation 

caused by hole-doping by H202s1. This protocol also offers the advantage that the 

purifying materials are relatively affordable and benign. H202 is an oxidant common 

in wastewater treatment while HCL is a common industrial chemical than can easily 

be turned into a common salt (NaCl). 

Fe2+ 

Figure 14: Schematic of localized catalytic reaction of H202 with iron particles in 

carbon shells so 
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The original protocol calls for a 20-SOmg portion of raw HiPco to be mixed with 

20mL of 1N HCL and 20mL of 30% Hz02 in a 250mL open flask and stirred with a 

Teflon coated magnetic stirrer to form a slurry. The slurry is then heated on a hot 

plate at 60±5°C for 4 hours. 20mL of HCL and 20mL of HzOz are then added at the 

end of each hour. The SWNT are filtered and washed with SOOmL of purified water 

(HzO). 

After some initial experimentation, this process proved relatively easy to scale up. 

2.8g of HiPco SWNT was down packed using isopropyl alcohol (IPA- Sigma Aldrich) 

in its container from the as-received "fluffy" form into a safer-to-handle compacted 

state. 2.5g of SWNT were mixed with SOOmL of l.ON standardized HCL (Alfa Aesar) 

in a triple-neck round bottom flask, and actively stirred with a Teflon stir bar 

throughout the reaction. Using a variac and a heating mantle, the temperature of the 

mixture was heated to 60°C and monitored via thermometer. 200mL of HzOz and 

200mL of HCL is then added. Smaller volumes of HzOz and HCL were initially used, 

but were found via TGA and TEM to be less effective than originally hoped. 200mL 

represents a volume that matches effectivity of reaction with practicality of 

experimental setup for this scaled-up protocol. 

A vigorous bubbling and boiling was observed as the exothermic reaction took 

place. The excess HCL was found to serve a number of purposes including 

maintaining the pH at a low enough level to prevent the HzOz attacking the SWNT 50 

and effectively dispersing the large amount of tubes being processed. The heating 
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mantle is lowered to match the heat of reaction produced so that the temperature 

does not exceed -75°C. As with the original protocol, the solution turned a green or 

yellow color, which is indicative of iron dissolution. 

After one hour, it was observed that the reaction had abated and the temperature 

was actively maintained above 60°C. At this point 200mL of HzOz and 200mL of HCL 

was added once more. These steps were enacted a total of four times as found in the 

original protocol. Given the acidity of the HCL, the strong oxidizing nature of the 

HzOz and the propensity for large amounts of heat to be produced, the author found 

that temperature management to be critical and the incremental increase in 

experimental volumes tested, to be a useful preparation. At the end of the fourth 

hour the external heat is turned off and the stirring reduced to a slow rate. 

The slurry was then filtered using a glass filter. The material was washed and 

filtered with deionized water until a neutral pH is achieved. It was found that 3-SL of 

water is necessary and that filtration will take -8hours. 

Prior experience of both the author and his collaborators at NanoRidge Inc. has 

shown that SWNT filtered with deionized water becomes highly compacted with 

large bundle sizes which is less than ideal as a working material facing dispersion 

via either mechanical or chemical means. A higher packing density is probably to 

blame from the SWNT being drawn together by the action of surface tension during 

dryingsz. Additional research has been conducted to formalize these observations, 
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and it is thought that the relatively slow evaporation of water, migrating through the 

sample via capillary action and of variable concentration, is causing 

disproportionate contraction S3(Figure 15). 

Table 1 - The properties of buckypaper collated from casting MWCNTs in solvents of differing surface tension 

Solvent Film diameter (mm) Apparent density (gem-') Porosity (%) 

Dichloromethane 15.4"' 0.1 0.28 85.8"' 0.2 
Hexane 14.7"' 0.2 0.26 86.9"' 0.4 
Methanol 14.8"' 0.2 0.28 86.2 ± 0.9 
Toluene 14.8"' 0.3 0.30 84.8 ± 0.9 
Water 13.0"' 0.7 0.32 83.9"' 0.4 
Triton-X100 n/a 0.42 79.2"' 1.1 

Each figure was derived from an average of three samples per solvent and includes the standard deviation. 

Figure 15: Data from the literature showing density and porosity of CNT papers 

formed via evaporation 53 

Although this explanation simplifies the obvious solvent-solvent and SWNT-solvent 

interaction differences between solvents, it formalizes results that solvents such as 

alcohols and benzenes create less dense and more porous agglomerations of SWNT 

under evaporation (Figure 15). To abate this issue, the still wet filtered material was 

then washed with IPA and filtered. The material was then slowly dried using a Pyrex 

dish on a hotplate, while continuingly cutting and dicing the material with a razor 

blade. This produces a fine powder, which disperses more effectively in solvent. 
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TGA analysis of the as-purified material showed success in terms of residual 

catalyst, with amounts less than 4wt% (Figure 16). However, the nature of the 

second derivative peak, or oxidation peak, is broader in nature than the TGA in data 

for the previous purification method, and has a lower peak temperature. 
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spectroscopy was carried out (Figure 17). The ratio between the G band (the 

graphite related optical mode) at 1550-1605 cm-1, and the D band (defect or 

disorder induced) at -1350 cm-1 is accepted as an accurate measure of nanotube 

damage or modification 54. 

Raman Shift (cm·1) 

Figure 17: Raman spectra comparing HiPco SWNT before and after modified "one-

pot" purification protocol 

Figure 17 shows no significant changes in this D-G ratio between as-received 

material and the purified SWNT. This is comparable in performance with the lower-

scale slow oxidation method already explored. 
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SEM and TEM were also carried out on the /(before" and /(after" SWNT. Figure 18 Al 

and A2 show the fluffy nature of the as-received tubes and the significant amount of 

residual catalyst respectively. Figure 18 B1 does highlight the compacting nature of 

this purification procedure, which is no worse nor better than the slow oxidation 

process, while the TEM in B2 shows the process ability to reduce residual catalyst. 

Figure 18: SEM and TEM image (A1 & A2) of as-received HiP co SWNT, SEM and TEM 

image (B1 & B2) of HiPco SWNT purified via scaled up /lone-pot" protocol 
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Overall, the modified and scaled-up "one-pot" process proved a success in a number 

of aspects including scalability (>1g can be processed easily), effectivity (residual 

catalyst reduced) and efficiency (yield of 60-80%). The differences in homogeneity 

of tubes between the two purification methods were put to consideration when the 

materials were used for composite fabrication. 
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3.2 NANOTUBE CHIRALITY AND DIAMETER ASSESSMENT 

As already discussed, carbon nanotubes may differ in diameter and chirality. 

Previous work in the literature is clear that due to differences and distributions in 

CNT properties such as these, CNT polymer composites are far from ideal systems 

19. In this thesis, an attempt was made to get a handle on this issue, via 

characterization. Even though the emphasis of this study is on the production of 

macro scale polymer composites with improvements in electrical resistivity, the role 

of nanoscale properties such as chirality were explored. There appears to be little or 

no examples in the literature of previous attempts to bridge the gap between 

research of chirality and effects at the macroscale. 

There are a number of approaches for characterizing SWNT (n,m) distributions, 

including microscopic tools such as TEM, scanning tunneling microscopy (STM) and 

AFM. These methods are tedious at best, and difficult to build statistically relevant 

result sets. Analysis methods for bulk amounts of SWNT include Raman 55,56, 

ultraviolet visible near infrared (UV-vis-NIR) absorption 57 and near infrared (NIR) 

fluorescence 58. 

The author was familiar with the work of the Weisman Group at Rice University, 

through previous funding and collaboration efforts at NASA Johnson Space Center 

(Alliance for NanoHealth NASA JSC-NNJ06HC25G). Using the latest emission and 

absorption spectrometer designed by this group 59, data was collected and used to 
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identify and quantify numerous SWNT structural species in the relevant bulk 

samples used in this research. The system employs fixed wavelength diode lasers to 

excite emission, a broadband lamp to probe absorption spectra and NIR and visible 

spectrometers for absorption and fluorescence measurement. It also disentangles 

the spectral contributions of (n,m) species that may overlap by fitting the emission 

spectra under constraints based on the large prior spectroscopic database collected 

by the Weisman lab. Using NIR fluorescence is considered the most up to date bulk 

SWNT spectroscopic technique, and is based on distinct band gap 

photoluminescence from individualized SWNT 59. It is claimed this technique is 

more sensitive than Raman or absorption. However, it is relevant only for 

semiconducting species of SWNT ( -2/3 of most as-produced) because metallic 

tubes are non-emissive. Also, this technique is not relevant to MWNT materials. 

3.2.1 Sample Preparation 

Solutions of SWNT were suspended by 1wt% 4-Dodecylbenzenesulfonic acid (SDBS) 

surfactant in deuterium oxide (DzO) at a concentration of 1.5mg/SmL (DzO, unlike 

HzO, will not overlap or interfere with the bands of interest for spectrometry). These 

solutions were bath sonicated for 30 minutes (Sharpertek XP), followed by tip 

sonication for 3-5 minutes in continuous mode at 8W RMS (Microsonic Ultrasonic 

Cell Disrupter). These steps were then followed by centrifugation for 120 minutes at 

SO,OOORPM (Beckman Coulter Optima Max Ultracentrifuge). The various 

supernatants were then taken off and found to be (by eye) well dispersed but still 

too concentrated for reliable measurement. To improve absorbance and dispersion, 
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a dilution of 2X to 4X with the 1 wt% SDBS solution was then used. The samples 

were then placed in cuvettes for analysis. 

3.2.2 Results 

The complete dataset is presented in Appendix A. For brevity, the data and analysis 

from NASA JSC Laser Ablation SWNT, Batch JSC 390 AQW is presented, while a 

summary of results for the rest of the SWNT types is presented. Figure 19 shows 
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Figure 19: Fluorescence emission from Laser Ablation SWNT excited at 785 nm 
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the fluorescence emission from the laser nanotubes excited at 785nm. The blue line 

shows the experimental data, the individual grey /black lines are calculated 

contributions from indicated (n,m) species and hence diameters, while the red line 

shows the full simulated spectrum. The signal from each (n,m) species is found by 

integrating its peak along the emission axis at the excitation frequency giving 

maximum emission. A lot of fine-tuning, optimization and data fitting takes place in 

the background 59 to make this an effective method and instrument. 

Figure 20 below shows the graphene sheet plot constructed from the full three laser 

excitation (660, 729, and 785 nm). Density or abundance of these distributions is 

illustrated by the thickness or weighting of the hexagon lines. 
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Figure 20: Graphene sheet plot showing the calculated (n,m) species relative 

abundance in laser ablation SWNT 
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Diameter distribution is graphically represented in Figure 21. As noted by the 

author from prior experience, the laser material has a larger diameter distribution 

in general than HiPco or other SWNT material. 
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Figure 21: Diameter distribution histogram of laser ablation SWNT 

Table 5 summarizes the data found by this analysis. As expected, the laser material 

provided a larger diameter nanotube, while the commercially available CG100 was 

the smallest. A challenge with this technique is deducing SWNT composition from 

what can be described as discrete slices of the full excitation emission 59 . While 

using the Weismann Lab empirical based models for SWCNT excitation and 



emission spectra can solve this issue, approximations in these models can lead to 

inaccuracies in addition to overlapping emission peaks. 

SWNTType Diameter ( nm) Comment 

SWeNT CG100 0.75-0.95 Mostly semiconducting 

SWeNT CG200 Lot 400 0.75-1.1 Mostly semiconducting 

SWeNT CG200 Lot 700 0.75- 1.15 Mostly semiconducting 

NASA JSC Laser 1.05-1.4 Mostly semiconducting 

Rice University HiPco 0.8-1.4 Mostly semiconducting 

Table 5: Summary of diameter and general findings on SWNT material 

so 

While this analysis was incapable of providing direct statistics on metallic tube 

species content of the various tube batches, it did provide data useful for matching 

the tube types in this study, with composition data previously presented by the 

Weisman group (Table 6). With these positive "fingerprints", metallic content can be 

reasonably assumed from the literature. 

Nanotube Type o/o Metallic o/o Semiconducting 

Rice U. HiPco SWNT 37 63 

SWeNT CG100 SWNT 48 52 

NASA Laser SWNT 45 55 

Table 6: Metallic and semiconducting compositions (adapted from 60) 
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3.3 RESISTIVITY ASSESSMENT OF CARBON NANOTUBES 

Resistivity analysis of nanotubes used in this study, before deployment as fillers for 

polyethylene composites, was conducted. In a similar vein to the chirality 

assessment, the author identified the need to bridge engineering data with scientific 

studies by analyzing the CNT across length scales, from macroscopic bulk resistivity, 

to microscale and onto nano. This was in an effort to identify CNT conductivity 

aspects across the length scales and see if any affect bulk properties and why. 

3.3.1 Resistivity Assessment on the Macroscale 

Macroscale resistivity was tested using a simple process of compressing a 

"buckpaper" of nanotubes in a press, and then testing resistivity using a 4-point 

probe. 50-lSOmg of material was weighed, placed in a lcm diameter stainless steel 

die and pressed (Carver Press) under 20,000lbs pressure for 5 minutes. The CNT 

disks were then removed for electrical measurement. 

A 4-point probe (Jande!) was used to measure electrical resistance of various CNT 

types available. The probe was instrumented with a Keithley 6221 DC & AC Current 

Source paired with a Keithley 2182A Nanovoltmeter. The system was setup in delta 

mode, which is typical for use on low resistance devices where noise from thermal 

electromotive forces (EMF) maybe an issue. An alternating current source with 

coordinated voltage measurements is used towards that end. Typically, the current 
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varied in a square wave fashion from 20*10-6 amps to -20*10-6 amps for a total of 

1000 readings per test. A graphical representation of the current swing and 

measurement is shown in Figure 22. 
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Figure 22: Graphical explanation of delta mode used in obtaining 4-point probe data 

At least three measurements where taken at different positions on the sample and 

then averaged. Each measurement file produced 1000 readings for resistance, 

calculated from voltage divided by current (V /I), which was then converted to 

resistivity, p, in units of ohm•cm (.Cl•cm). This conversion begins with the equation: 

p = 2*n*s*(V/I) 
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Where s is the spacing of the probe in em and V /1 is the resistance in ohms 61. The 

vast majority of the samples tested during this study did not contain semi-infinite 

dimensions, in particular thickness, as assumed by this equation. Valdes showed 

that when the sample thickness t is <= Ss, the true resistivity can be calculated from 

62· 

p = 2*a*rr*s*(V/I) 

Where a is a thickness correction factor plotted by Valdes. For tjs <= 0.5, this plot is 

a straight line providing a value of a of: 

a= 0.72 (t/s) 

Plugging this into the basic equation one obtains for samples where t/s <= 0.5 one 

gets: 

p = 4.53*(V/I)*t 

This equation was utilized throughout the research presented as the vast majority of 

samples had dimensions of tjs <= 0.5, unless otherwise indicated. Resistivity 

measurements of as-received CNT are presented in Table 7. All resistance 

measurements were verified by using a second experimental setup comprised of a 

Cascade C4S-67 4 point probe combined with Agilent 34410A Digital Multimeter. 
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The resistivity data summarized in Table 7 appears to verify a relationship between 

bulk resistivity and chirality. 

Carbon Nanotube Source & Type Resistivity (n•cm) 
SWeNT CG100 SWNT 1.4 * 1Q-2 
NASA JSC Laser SWNT 6.4 * 1Q-3 
Rice University HiPco SWNT 1.7 * 10-2 
Mitsui MWNT 6.3 * 1Q-2 

Table 7: Bulk resistivities of the various carbon nanotubes initially considered 

The chirality data presented, organized the CNT by metallic content in the following 

order: SWeNT CG100 > NASA Laser > Rice University HiPco. However, the table 

above shows that the as-received laser CNT has a lower resistivity (6.4 * 10-3 !l•cm) 

than the SWeNT CG100 equivalent (1.4 * 10-2 !l•cm) . The author suggests this is 

due to two factors. Firstly, the CG100 have clearly been coated in amorphous carbon 

as seen in the TEM and secondly, their diameter is noticeably smaller than the laser 

CNT. It has been suggested that larger diameter SWNT provide higher conductivities 

in both buckypaper and composite forms 19. 
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3.3.2 Resistivity Assessment on the Microscale 

Microscale resistance measurements were conducted by the author at NASA Ames 

Research Center (ARC). Using a chip-based platform previously developed by ARC 

for gas sensing 63, nanotube resistance was measured by microscale platinum 

interdigitated electrodes integrated as sensor pads on silicon chips. Each chip 

consisted of multi-layer array of sensor pads fabricated from P-type boron-doped 

silicon (100) wafers, a 0.5 11m silicon dioxide (Si02) layer and patterned 200 nm 

thick lines of platinum to form the interdigitated electrodes or sensor pads. Each 

pattern had 10 or 20 11m finger widths with finger spacing's of 4, 8, 12 or 50 11m This 

platform was successfully used by the author in the development of a CNT -based 

radiation sensor 64, which functioned on the basis of CNT resistance change under 

radiation stimuli. This measurement method had the advantage of measuring 10-

100 nanotube to electrode contact points, an electrical network many orders of 

magnitude smaller than the billions of CNT present in the bulk samples. 

The sensor chips were prepared by washing with methanol, aceton~ and finally 

isopropyl alcohol. The chips were then installed into a plastic leaded chip carrier 

(PLCC), a standard plastic four-sided chip carrier. 

CNT samples were prepared by bath sonicating 15mg/mL solutions of CNT and DMF 

for at least 2 hours. -7nL of solution was deposited on each sensor pad using pulled 

micropipettes of glass fabricated by the author, combined with a microinjection 

system (Nanolnject II, Drummond Scientific) starting at the smallest volume of 
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2.3nL. Each sensor chip had 60 sensor pads of interdigitated electrodes. Three pads 

were used for each sample. Resistances were measured using a multimeter 

(Keithley 2002) and multichannel switch (Keithley 7001). Figure 23 shows the 

result of deposition of SWNT onto a single sensor pad. 

Figure 23: SEM image of CNT deposited onto sensor pad 
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Image analysis of each sensor pad was carried out by hand, to ensure that both the 

number of CNT -electrode contacts and relative size of CNT networks were similar 

between nanotube species tested, and a weighting was applied if there was notable 

differences. Relative resistance measurements are presented in Figure 24: 

Nanotube Type 

Figure 24: Relative resistance data for various CNT types and species 

It should be noted that no accommodation was made for differences in tubes specie 

contact resistance with the platinum electrodes. The general trend of CNT 

resistances did not match that found at the macroscale nor did it relate well to 

chirality measurements. These microscale measurements found that the relative 

resistances of the CNT followed a pattern of NASA Laser> SWeNT CG100 > Rice 

University HiPco. The aforementioned chirality data presented organized the CNT 



58 

by metallic content in the following order: SWeNT CG100 > NASA Laser > Rice 

University HiPco, while the bulk resistivity measurements rated as-received laser 

CNT material having a lower resistivity (6.4 * 10-3 n•cm) than the SWeNT CG100 

equivalent (1.4 * 10-2 n•cm). The author surmises that perhaps small differences in 

dispersion and bundle size, unseen using SEM, could have provided these changes. 

This exercise on the microscale did serve the useful purpose of confirming that 

MWNT resistivity is larger than SWNT even at this scale, and that much of the touted 

commercial "enhanced conductivity" nanotube products on the market do not 

provide added value over purified HiPco. 
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3.3.3 Resistivity Assessment on the Nanoscale 

Continuing the journey to bridge the knowledge gap of CNT resistivity across scales, 

an effort was made to characterize nanotube conductivity on the nanoscale. Multiple 

avenues of characterization methods were explored. The author trained himself 

with the use of a Focused Ion Beam (FIB) microscope at the University of Houston, 

in an effort to replicate early nanotube research 65, and explored methods utilizing 

AFM. Unfortunately, the complexity involved, the scope of the work (which would 

warrant a thesis unto itself) and the lack of both facilities and expert technical 

advice made this task extremely challenging. 

Relying on a SEM (FEI) at Rice University, in combination with a 4 probe mechanical 

nanomanipulator (Zyvex), individual tube measurements were explored. Figure 25 

shows the basic configuration of a two point measurement of a Mitsui MWNT. 

Figure 25: Two-point measurement of MWNT using Zyvex nanomanipulator 
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Use of this setup had some serious drawbacks. The smallest movement possible 

with the manipulator was --SOnm which, when combined with the relatively low 

resolution of an SEM, made manipulation of MWNT extremely challenging and any 

meaningful interaction with SWNT impossible (Figure 26). The bulk of the 

equipment itself necessitated a large working distance in the SEM, which reduced 

image resolution further. The exercise was successful solely in measuring the 

conductivity of the Mitsui MWNT, which it estimated at 10-3 .n•cm, a slight 

improvement from bulk measurements. 

Figure 26: Manipulation of SWNT bundles and tubes 



CHAPTER 4: CONDUCTIVE POLYETHYLENE COMPOSITE 

4.1 PREPARATION OF CARBON NANOTUBE AND POLYETHYLENE 

COMPOSITES 

4.1.1 Solvent Blending 

As previously discussed, 1,2-dichlorobenzene (OCB) is an effective solvent for both 

carbon nanotubes and polyethylene. It has also been shown that solutions of SWNT 

in OCB do not pass through PTFE membranes (1.2J..lm), which is critical for 

successful vacuum filtration 66. With this in mind, and having prior success 

combining SWNT with polymer matrices, a simple solvent blending technique using 

OCB, sonication and vacuum filtration was pursued. 

Unfortunately, the obvious conclusion to use OCB for SWNT -polyethylene composite 

fabrication was not lost on earlier work in the literature. Haggenmueller et al. used 

what was described as a "hot coagulation method" to disperse SWNT in PE using 

OCB. HOPE and LOPE were dissolved in OCB at a concentration of 20 mg mL·1 at 

temperatures of 115 and 85°C respectively 39. SWNT at a concentration of 0.2mg 

mL·l in OCB were bath sonicated for 48 hours. The bath temperature was increased 

to 97°C and the PE solution added. Following five minutes of further sonication, the 

mixture was cooled to below 70°C to allow polymer crystallization. Although not 

explicitly stated, if following "the previously described coagulation method" 67, this 
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mixture was then immersed in a large amount (5:1) of room temperature purified 

water. It is claimed that this step precipitates the polymer immediately due to its 

insolubility in water. The SWNT are then trapped within the polymer chains and 

prevented from forming larger bundles. The mixture is then filtered and dried under 

vacuum at 120°C fro 24 hours. The filtrate was noted as clear. 

4.1.2 Nanotube and Solvent 

Where practical, a concentration of 0.1mg mL-1 (or 100mg L-1) SWNT in DCB was 

used in this work for the preparation of composites, which was more in keeping 

with noted maximum concentrations for successful dispersion 66• This prevents the 

presence of large agglomerates seen in similar recent work and deems unnecessary, 

the decanting steps used in that study 68. 

4.1.3 Sonication Optimization 

With scalability in mind, the protocol presented in this thesis used a probe versus 

bath sonicator. Initial experiments used bath sonication, but the multiple days 

required to disperse the SWNT were found to be inefficient, and the resultant 

dispersions appeared poor using simple optical microscopy. Bath sonication is 

limited in the amount of energy it can deliver to a sample. Haggenmueller et al. used 

a 260W system operating at 48kHz. Sonicators such as this produce a power density 

at the transducer face of -1-2 W cm-2 using piezoelectric transducers 69. 
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A 750W ultrasonicator operating at 20kHz (Cole Parmer) with a 13mm probe was 

utilized for SWNT sonication in DCB. This provides a high intensity cavitational 

collapse and hence, a large amount of energy on the order of 100's of W cm-2, albeit 

on a smaller area. Given the two order increase in power per area, combined with 

the approximately one order reduction in possible useful area exposed in 

comparison to Haggenmueller's protocol, it was estimated that sonication time 

could be reduced to 2.5 hours. Using simple optical microscopy of SWNT dispersion 

in DCB, greater than 2.5 hours of sonication offered little improvement. 

It has been long recognized in carbon nanotube science that ultrasonication can 

damage or even cut SWNT 70. Longer nanotube and nanotube bundle lengths are 

generally favorable for good electrical conductivity 71 . Hennrich et al. noted a 75% 

reduction in average length after 30 minutes of ultrasonication during an 

experiment with similar nanotube-in-solvent concentrations used in this thesis 72. 

They provided a relationship of average length L(t) as a function of timet scaling as 

t-n, with n=0.5. However, the overall volumes used for sonication exposure during 

this work were small, and there was an aspect of nanotube sorting through 

centrifugation that reduces the relevance of its result to this thesis somewhat. Lucas 

et al, using MWNT and a large reservoir of circuiting nanotube suspension, came to 

the conclusion that n=0.2 73. This resulted in approximately a 25% reduction in 

nanotube length during the first 2.5 hours of sonication. While the use of MWNT 

reduces relevance, the large circuiting volumes and experimental approach is closer 
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to the protocol of sonication used in this thesis. Given the consideration towards 1. 

the aforementioned SWNT-PE composite literature, 2. bath versus probe sonication, 

in combination with 3. the literature on nanotube length reduction from sonication 

and 4. simple observation of SWNT dispersion on the micron scale, a sonication 

time of 2.5 hours was settled upon. 

4.1.4 Polyethylene and Solvent 

As noted in the literature, one can improve dissolution and lower polymer chain 

entanglement by lowering the concentration and increasing the solvent 

temperature 7. To that end, this work diverged from prior efforts 68 39, by increasing 

the DCB temperature to greater than 120°C (melting temperature) and reducing the 

concentration to lmg mL-1 where practical. 

Differential Scanning Calorimetry (DSC) was carried out on the MDPE both before, 

and after, solvent processing with DCB. It was found that the crystallinity increased 

from -35 to -45%. 
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4.1.5 Composite Nanotube in Polyethylene Composite 

Concentrations, varying from 0.001wt% to 90wt%, of various nanotube types were 

combined with a number of PE densities, focusing primarily on MDPE. As described, 

the nanotubes were dispersed using -2 hours of sonication in DCB. PE was melted 

and dissolved in solvent at temperatures comfortably in excess of the polymer 

melting point. The sonicating nanotube and DCB mixture was then heated to match 

the dissolved polymer. The two mixtures were combined, stirred vigorously using a 

Teflon-coated stir bar for 30 seconds. The resultant mixture was then placed in a 

room temperature water bath too cool, while sonication continued for 3-5 minutes. 

Once the mixture was less than the melting point of the polymer, vacuum filtration 

would begin using a 0.451J.m pore size Teflon filter (Satorius Stedim). The 

coagulation step described in the literature was not found to improve nanotube 

dispersion nor reduce electrical resistivity of the composites so was dispensed with 

early in this research. 

The resultant composite samples were then dried in an oven at 65°C to remove 

excess residual DCB. Unfortunately, no vacuum oven was consistently available for 

the authors use during this research. 

4.1.6 Filtrate Observations 

It was observed that filtrate from the vacuum process had a yellowish color, 

independent of nanotube concentration. Concerned that nanotube material had 
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been lost through the filter, or worse, that the nanotubes had been reduced to 

amorphous carbon by one or more steps of the process such as sonication, the 

filtrate material was characterized via TEM. In addition, DCB with no nanotubes was 

exposed to 2 hours of sonication. It too changed to a yellow color. TEM of this 

material was also performed as a comparison (Figure 27). 

TEM analysis showed what is thought to be DCB sonopolymer as present (there are 

no TEM examples in the literature). Figure 27-6 through 27-8 shows the evidence 

seen from the DCB filtrate. This material is clearly different from TEM analysis of 

polyethylene. One can see examples from the literature in Figure 27-1 through 27-4 

are similar in appearance to lamellae structures seen in the filtrate from SWNT­

MDPE processing in Figure 27-6, but different in overall dimension. Also, one should 

note that staining and similar sample preparation was used in these images from the 

literature. For these images of PE from the literature, the light areas are crystalline 

while the dark are non-crystalline. Non-crystalline scatter electrons more effectively 

because of heavy atoms, compared to the crystalline areas which contain only 

carbon and hydrogen 7. The structures observed from this research in Figure 27-6 

are remarkably similar to nanotube-related graphitic and tubular arrangements 

seen throughout the authors experience in carbon nanoscience. This similarity was 

considered throughout this research. 
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Figure 27: 1 & 2 TEM of low molar mass examples ofMDPE showing wide and thin crystal lamellae 

74, 3. HOPE lamellae in central area of spherulite 75, 4. Lamellae of branched PE 76, 5. TEM of 

sonicated DCB filtrate from SWNT-MDPE composite production. 6.- 8. TEM of sonopolymer material 

produced by sonication of DCB. 



68 

4.2 ELECTRICAL RESISTIVITY PERFORMANCE OF CARBON NANOTUBE 

POLYETHYLENE COMPOSITES 

Many hundreds of permutations and combinations of polyethylene and nanotube 

were explored as part of this study in order to glean the lowest resistivity carbon 

nanotube polyethylene composite. Some matched the poor performance seen in the 

literature, understandable given polyethylene's suitability as an insulator, while 

others were even less desirable. Certain samples and approaches exceeded current 

results in the literature and it is these that have warranted reporting and discussion. 

4.2.1 High Density Polyethylene and Electrical Current Conditioning 

Composites of 30wt SWNT (SWeNT CG100) and high density polyethylene (HDPE­

Sigma Aldrich) were prepared as previously described. These composites proved to 

have relatively disappointing electrical resistivity performance. In an effort to 

improve performance, and in collaboration with Nanoridge Inc., electrical current 

conditioning was explored as a means to improve the bulk resistivity of the 

composite by passing electrical current through the sample. The composites were 

crushed and packed into a quartz tube, and electrical contacts applied at each end 

(Figure 28). Electrical current was passed through using a D.C. (Xantrex XFR 600-2) 

power supply. 
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Figure 28: Simple sample setup for electrical and thermal conditioning 

Given both evidence in the literature and prior experience, sample tubes were 

placed in a furnace to melt the sample in order to improve both interconnectivity 

between the composite pieces and the interface with the copper leads. Initial results 

did show some promise, with up to a two order of magnitude improvement (Figure 

29). This experiment was later advanced and explored in detail by others 68. This 

result, and that of the work explored by Chakravarthi, contained a major issue. It 

was suggested that resistivity improvements were achieved by one or more factors. 

Firstly, the electrical current was bridging gaps between the nanotubes by burning 

the polymer or secondly, the CNT were rearranging themselves under the force of 

electrical field for a more optimized conductive pathway. The second option was 

never likely in the author's opinion, given the large viscosity of the HOPE and SWNT 

composite, and the weak electrical fields employed. 



70 

14,00 

12.00 

U:tOO 

j $JJ)(l g 
> 

i tiOO 

Cll: 
400 

.too 

«tOO ~ 

\tOO $1100 10(t00 tS(},OO 

Temperatwe rQ 

i~,OO 

u~.oo 

iOO,OO 

J 
g i1(l,(WJ + /.'. 

~ 
"'$ 
i '{tOO 

i 
4il00 ,, 

2~.00 

0,00 
0 so !00 150 

Tempe:ratwe rQ 

Figure 29: Resistivity improvements through electrical and thermal conditioning 

To settle the issue, TGA and Differential Scanning Calorimetry (DSC) were used to 

characterize the composite both pre, and post, electrical conditioning. Figure 30 
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shows the 30wt composite, and highlights features typical of polyethylene such as 

the melting endotherm between 105-135°C and the decomposition peak -460°C 77 
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Figure 30: TGA/DSC of 30wt% SWNT HDPE composite before electrical and thermal 

conditioning process 

The DSC analysis of the conditioned sample, as seen in Figure 31, is lacking these 

clear features. With this evidence, and combined with SEM observations, the route 

of electrical conditioning was deemed unsuitable and left to others to explore 

further 68. 
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Figure 31: TGA/DSC of 30wt SWNT HDPE post process 
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4.2.2 Carbon Nanotube and Medium Density Polyethylene Composites: High 

Loading 

73 

As previously noted, an effective protocol for distributing CNT into MDPE had been 

developed as part of this research. However, the results in the literature suggested 

that even this evolved, more efficient and simplified method might not be effective 

in meeting the goal of matching copper's resistivity or even bettering prior research. 

To that end, composites with higher loading of CNT than previously explored in the 

literature were attempted. The aforementioned tube types, namely SWNT from 

SWeNT, Rice University and NASA JSC, and MWNT from Mitsui were used. In the 

later stages of research, DWNT from CCNI were also used. In the literature, issues 

with processing, viscosity and dispersion were given as reasons that the maximum 

attempted loading rarely went about 30wt%. 

The range of loading explored varied between nanotube types. A critical 

dependency was the amount of CNT material at hand, which limited the volume of 

samples that could be produced. For that reason, the broadest range of loadings 

explored were with HiPco, Mitsui and SWeNT CNT. With the emphasis of this 

research placed on lowest resistivity, less attention was put on percolation 

thresholds at low loading than in prior research. 

Figure 32 summarizes the resistivities achieved through the plethora of composites 

produced. Some of the results are unprecedented among composites using MDPE. 
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Figure 32: Resistivity vs. Loading for various nanotube types in MDPE 
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The most impressive of these results are included in Table 8: 

Nanotube Type Loading (wt0/o) Resistivity (U•cm) 

HiPco SWNT 30 0.08 

HiPco SWNT 90 0.0066 

Laser SWNT 30 0.027 

DWNT 30 0.01 

DWNT 90 0.0013 

Table 8: Highlights of CNT MDPE composite resistivities 

Overall, relatively flexible and conductive composites were produced. Figure 33 

shows a 90o/o DWNT sample that was flexible and resilient to repeated handling and 

bending, aspects that are not found in 100°/o nanotube papers. 

Figure 33: Simple illustration of the flexibility of 90wto/o DWNT and MDPE 

composite 
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One point of interest that arose from these data was that for HiPco and OWNT MOPE 

composites, the 90wto/o samples were found to be less resistive than the earlier bulk 

resistivity analysis of the 100% nanotube material. Considering the presence of the 

highly electrically resistive MOPE, albeit in relatively small amounts, this was 

surprising. 

4.2.3 Electron Microscopy and Analysis of High wt% Loading Composites 

Extensive electron microscopy was carried out on all the composites to evaluate 

nanotube dispersion, in addition to composite and polymer morphology. Analysis of 

SEM imagery of the composite surfaces provided a simple potential answer to the 

phenomenon of lower resistivity in 90wto/o composites versus 100% nanotube 

samples. As seen in Figure 34, the porosity of the 90wto/o HiPco SWNT and MOPE 

composite suggests that the presence of the MOPE, and the composite fabrication 

process itself, is actually acting as a forcing function, tightening the bundles of SWNT 

and reducing the presence of air pockets and small scale porosity in the 100% 

nanotube sample. 

Figure 32 also highlighted the odd trend for resistivity to change tack from 

decreasing, to rising and back to decreasing, as loading of CNT was increased. The 

author attributes this to a simple trick of morphology. Strata or layers of polymer 

and nanotube were formed during fabrication. The size of these layers changed with 
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adjustment of SWNT loading, which would have a knock-on effect on 4-point probe 

results. 

The author has utilized the porosity and surface area of CNT before, for use in fuel 

cells 79, and the porosity of these composites were applied to a novel application as 

seen in Chapter 6. 
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Figure 34: Surface morphology of HiPco and MDPE composites 
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SEM imagery of inside the composites was also enlightening. One aspect discovered 

was that there was little or no difference seen between SEM samples prepared by 

simple tearing, and those prepared by the commonly used freeze fracture technique 

with liquid nitrogen (N2). 

Figure 35 is representative of the various loadings of MWNT in MDPE. Throughout 

the analysis, it was noted that the polymer did not adhere well to the MWNT 

surfaces, with some exceptions. As the loading increased to SOwto/o and beyond, the 

imagery showed a distinct breakdown in composite morphology, favoring a 

buckypaper like form with distinct spherical particles of MDPE. Figure 36 shows the 

equivalent images for the CGlOO SWNT MDPE composites. The increase in CNT 

loading showed less drastic transitions than the MWNT samples. The HiPco 

composites shown in Figure 37 are representative of a bundle-size transition that 

varied with changing wto/o. Also, a distinct layering or strata was observed in the 

SWNT composites along the edges. This was probably a result of the vacuum 

filtration fabrication process. 

The porosity, combined with the layers or strata observed, suggests that these 

composites are far from optimal. The resistivity data collected maybe considered 

conservative given that it relies on thickness as part of the calculation, and clearly, 

these materials have a more complex morphology through thickness than expected. 
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Figure 35: SEM analysis of MWNT MDPE composites 
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70 wt% CG100 

Figure 36: SEM analysis of SWeNT CG100 SWNT MDPE composites 
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Figure 37: SEM analysis of HiPco SWNT MDPE composites 
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TEM analysis of the nanotube and MDPE filtrate during solvent processing, sampled 

just in advance of vacuum filtration, was also carried out in an effort to analyze 

polymer and nanotube interactions. TEM grids were prepared as described in 

Chapter 3, with the difference being the solvent used, DCB rather than DMF. 

Figure 38: TEM of 30o/owt laser SWNT and MDPE pre-filtration 

While not providing a plethora of quantitative data, this microscopy did give some 

insight on how the CNT and MDPE were interacting on the nanoscale. The distinct 

onion layers of carbon surrounding residual catalyst particles from the laser SWNT 

were noticeable, and bundles of SWNT could be found throughout the material 

(Figure 38). 
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Figure 39: TEM of 30°/owt DWNT and MDPE pre-filtration 

Similar electron microscopy of the DWNT MDPE composites painted a different 

picture. The DWNT were found to be better dispersed throughout the polymer, and 

there was also repeated evidence of polymer wrapping around the nanotube 

bundles (Figure 39). 

No distinct wrapping was found in the CG100 SWNT samples, however, bundles of 

SWNT and polymer lamellae were found to be present (Figure 40). The HiPco MDPE 

composite TEM samples were less forthcoming with distinct pronouncements on 

morphology. Bundles of CNT were found, with little or no lamellae present (Figure 

41). The MWNT equivalent was distinct in that there appeared to be little polymer 

and nanotube interaction. When MWNT were found sticking out of the polymer 

matrix, their sidewalls appeared as pristine as the TEM images of the as-received 

material (Figure 42). 
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Figure 40: TEM of 30o/owt CG100 SWNT and MDPE pre-filtration 

Figure 41: TEM of 30o/owt HiPco SWNT and MDPE pre-filtration 
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Figure 42: TEM of 30wto/o Mitsui MWNT and MDPE pre-filtration 
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4.2.4 Ultramicrotomy of High wt0/o Loading Composites 

In an effort to gather microscopy images that would lend themselves to more 

quantitative analysis, the author taught himself the art of ultramicrotomy in order to 

produce samples for TEM. Samples were prepared as described in the literature so, 

using a diamond knife and Ultramicrotome (Leica Ultracut). Figure 43 shows 

prepared samples after placement on Cu Tern grids. 

Figure 43: Ultramicrotome sample of CNT MOPE composite on TEM grid 

This technique proved laborious and did not yield the deep insight into CNT MOPE 

interactions on the nanoscale as originally envisioned. Preparing samples of SOnm 

thickness or less was beyond the abilities of both the author and the equipment. 
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Compatibility of the sample, a relatively hard composite of SWNT and MOPE, came 

into play here. Figure 44 and 45 provide some highlights of the images gathered. 

Overall, they provided no additional insight to the TEM already discussed in the 

previous section. They were in agreement to the findings from those images 

however. 

Figure 44: TEM of ultramicrotome sample of70wt% CG100 SWNT and MOPE 

Figure 45: TEM of ultramicrotome sample of 50wt0/o CG100 SWNT and MOPE 
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4.2.5 Analysis of CNT Bundle Size to Resistivity 

Using the aforementioned abundance of microscopy collected, SEM, scanning 

transmission electron microscopy (STEM) and TEM, a rather laborious study was 

completed to analyze the average bundle size of the CNT found in 30wto/o 

composites (Figure 46). 

Figure 46: Example of STEM images gathered and analyzed using Hitachi S-5500 

These data were then compiled and compared with the relevant resistivity data. 

While reduction of bundle size does lower resistivity, comparison of bundle size 

versus resistivity is not relevant across difference nanotube types (Figure 4 7), 

instead being outweighed by higher wt o/o of metallic nanotubes. It can been seen 

that smaller CNT diameters, and damage or coatings to tube sidewalls, can outweigh 

the relevance of bundle diameter data. 
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Figure 4 7: Average bundle size of CNT versus resistivity 
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The results found for the DWNT were even more marked than the laser tubes, as 

that composite had more impressive resistivity results (0.01 Q •em at 30wto/o), and 

larger bundle size. However, it was not included in Figure 4 7 due to the scarcity of 

material and resultant low number of samples to generate relevant statistics. 
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4.2.6 TGA analysis of CNT MOPE Composites- Crystallinity of Polymer 

As stated in Chapter 2, the crystallinity of the MDPE may play a role in enhancing (or 

detracting from) the conductivity of the produced composite. Crystallinity analysis 

of the CNT MDPE composites was first attempted using TGA/DSC. 
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Figure 48: TGA/DSC analysis of raw MDPE 
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While analysis of the raw MDPE and lower wt% composites did provide the 

necessary melting endotherms for crystallinity data (Figure 48 and Figure 49), it 

was found that the samples of most interest to this study, the high wt% composites, 

did not yield data suitable to gauge crystallinity. The larger amounts of CNT present 

masked the polymer features in the data. As can be seen in Figure SO, the drop in 

sample mass due to absorbed water, completely shrouded whatever melting 

endotherm may have been present due to the polymer. 
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Figure 49: TGA/DSC analysis of 10wt% CG100 SWNT and MDPE 
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Figure 50: TGA analysis of 70wt% CG100 SWNT and MDPE 
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4.2.7 Raman Spectroscopy analysis ofCNT MDPE Composites 

As TGA analysis proved inadequate for examining the polymer crystallinity, 

examples of Raman technique and data from the literature were compared to. 

Figure 51 highlights the region of most interest for MDPE samples both pre, and 

post, solvent processing. Stuart et al. showed that CH2 bending in PE is reflected 

between 1390-1510 cm-181. This bending was related the orthorhombic crystalline 

material content in the PE, and was more clearly defined at 1416 cm-1 by Strobl 82. 

Raman Shift (cm~ l ) 

Figure 51: Raman spectra ofMDPE 



94 

Peaks between 1160-1020 cm-1 have been defined by C-C bond stretching, while 

those between 1250-1350 are a result of CHz twisting 81. Peaks at 1303 and 1080 

cm-1 can be attributed to amorphous content 82. Keeping these points in mind, DCB 

solvent processing appears to have no change on either crystalline or amorphous 

MDPE content (Figure 51). 

:::>· 
<( -

100 MOPE 

Raman Shift (cm·1) 

Figure 52: Raman spectra of HiPco MDPE composites 

It would appear, looking at the raw data of SWNT composites, that the addition of 

SWNT in MDPE reduces polymer crystallinity (Figure 52. However, the overall 
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intensity of the MDPE features are low compared to that of SWNT, and both 

amorphous and crystalline Raman features were affected. As loading increased 

beyond 10%, there was little evidence of the unique MDPE signature. One should 

also note that it overlaps with both the D and G peaks of the SWNT Raman signature. 
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Figure 53: Raman spectra of RBM region of HiPco MDPE composites 

Analysis of the D to G peak ratios between 100% HiPco SWNT in Figure 52 and 

those from the MDPE composites showed no notable difference, suggesting that 

little or no damage to the SWNT was sustained during composite fabrication, while 

no shifting in the peaks was observed either. The RBM region also exhibited 
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negligible shift in peak positions. The increase in strength of the RBMs between 200 

and 250 has been attributed to a vibrational mode of the composite being added in 

this regionB3. 
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Figure 54: Raman spectra of MWNT MOPE composites 

The Raman data focusing on the MWNT MOPE composites was even less exciting. 

Even at low loadings, features associated with both the amorphous and crystall ine 

content of MOPE were not present (Figure 54). 
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4.3 REDUCING RESISTIVITY 

4.3.1 Thermal and Pressure Processing 

The benefits of annealing and pressure processing for reducing the electrical 

resistivity in nanocomposites have been espoused in the literature on numerous 

occasions 40,84. To that end, a simple process of annealing in a heated press was used 

to reduce the resistivity of the composites already explored. It proved surprisingly 

successful. 
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Figure 55: Resistivity vs. loading with pressure & annealing for Mitsui MWNT and 

MDPE composites 
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Experiments were conducted using a Carver Press. Samples were placed between 

two sheets of Teflon, and allowed to reach press temperature before pressure was 

applied. 20,000 lbs. of pressure was then applied for 15 minutes. An initial 

temperature of 110°C, the MDPE melting point, was used. Some samples, in 

particular the high wt% loading examples of CG100 SWNT and Mitsui MWNT, were 

found to not flow and spread at this temperature. A second round of experiments 

was conducted at 126°C, which had a more pronounced effect on all the samples 

tested, especially at high wt%. 
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Figure 56: Resistivity vs.loading with pressure & annealing for CG100 SWNT and 

MDPE composites 
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Annealing and pressure was found to have little benefit for the CG100 composites at 

high loading. It was observed these samples did not flow, melt or spread during 

treatment, and resistivity actually increased (Figure 56). The MWNT samples did 

benefit from an almost one order magnitude reduction in resistivity, but there was 

little change in morphology at any scale (Figure 55). 

100~····· ·-·················~·····················································~··································~················~·············~············································~···················· 

126C 

0 20 40 80 100 120 

CNT Concentration (wt%) 

Figure 57: Resistivity vs. loading with pressure & annealing for HiP co SWNT and 

MDPE composites 

The HiPco and DWNT samples showed the most impressive results from annealing 

and pressure (Table 9). The result of 2 * 1Q-4 (.n•cm) for 90wt% DWNT and MDPE is 

exceptional considering how flexible, lightweight and formable the material proved 

in handling. 
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Nanotube& Loading Resistivity Before Resistivity After 

MOPE (O•cm) (O•cm) 

HiPco SWNT 90 6.6*10·3 3.0*10·3 

CCNI DWNT 30 1.0*10·2 5.5*10·3 

CCNI DWNT 90 1.3*10·3 2.0*10·4 

Table 9: Summary of most promising results from annealing and pressure treatment 
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4.3.2 Microwave Processing 

The Tour group at Rice University has shown the heating effect of carbon nanotubes 

(CNT) with microwaves to be highly efficient, even when included in a polymer to 

form a composite 85,86. Higginbotham et al. have shown that even less than 1 wt% of 

CNT included in a ceramic composite can be heated in excess of 1000°C in minutes 

using 30-40 watts of microwave energy 21. 

Throughout this thesis, an interest or vein has been considered on scalable 

processes, suitable for industry adoption, to produce and improve electrically 

conductive nanotube polymer composites. Utilizing a microwave process as a low 

cost, highly scalable procedure that can improve the electrical conductivity (reduce 

resistivity) of CNT polymer composites was considered as part of this research. 

Thermometer 

Power 
Supply 

Figure 58: Simple diagram of microwave apparatus setup by the author in 

collaboration with the Tour Group 
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A variable power control 2.45 GHz 10-100 W microwave generator (Opthos) was 

connected via coaxial cable to a waveguide that also acted as sample holder (Figure 

58). The CNT MDPE composites were inserted into the waveguide through a 1 em 

hole positioned 10 em away from the microwave source. Power was set to between 

35 to 70 W. It was noted that the forward power was greater than the reflected. 

Therefore, the actual microwave power that reached the samples was considered to 

be -30-40 W, defined as the forward minus reflected power. The unabsorbed 

microwaves were absorbed by a large vessel of water at the open end of the 

waveguide that acted as a resistor or sink. 

As noted in prior sections concerning the literature, the resistivity of CNT polymer 

composites can be reduced to as low as 1 *10-2 .n•cm via mechanical, chemical and 

electrical processing. Often, these steps are costly, time consuming and not scalable 

from the laboratory to industrial usefulness. Harnessing the heating effect of CNT 

via microwaves, a novel process for the enhancement of CNT polymer composite 

conductivity (reduction in resistivity) was observed. 

The composite is exposed to microwave energy, thereby causing the CNT to rapidly 

heat 21, This thermal energy changes the polymer in the immediate vicinity of the 

CNT. Electrical resistivity in various composites was reduced. It is thought this 

reduction in resistivity was due to either: 
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1. Polymer char between the CNT providing increased electrically conductive 
pathways (Figure 59) or 

2. Polymer char between the CNT providing increased electrically conductive 
pathways in combination with movement and alignment of the CNT due to 
the melting of the polymer and electromagnetic forces placed on the CNT by 
the microwave radiation (Figure 60). 

Electrically tonductive polymer usinc carbon nanotubes - Post 
microwave. Thermal modification of polymer fn contact with nanotube 
creates conductive pathways. 

I 
Figure 59: Possible mechanism of resistivity reduction via microwave 



Electrically conductive polymer using carbon nanotubes -Post microwave. 
Heating of polymer in contact with nanotube creates conductive pathways 
due to heated polymer and nanotube migration within molten polymer 
due to electromagnetic field. 

C~ I'IM!otvb<M with t~~lly tN:>d~d ~ iM~~t ANi) mttt#Mn 

I 
Figure 60: Alternate mechanism of resistivity reduction via microwave 
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This microwave method did not prove especially effective in reducing the 

resistivities of CNT MOPE, certainly not to the degree that annealing and pressure 

achieved. With 30wt% loading SWNT composites, the improvement was one half an 

order of magnitude of resistivity. TGA analysis confirmed that the method was 

effective in preventing damage to the polymer; polymer features remained. The 

method also showed success with thermoset composites produced in collaboration 

with Nanoridge INC. that are mentioned elsewhere1·6. 
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4.3.3 Novel Doping Method 

In much of the literature, intercalation is a term used to describe the reversible 

incorporation of a foreign molecule between two other molecules, most often in a 

periodic structure. It is most associated with the incorporation of foreign species 

between layers of graphite hence the term; graphite intercalation compounds 

(GICs). The five main subgroups of highly electrically conductive GICs were 

summarized by Inagaki et al., as shown in Figure 1 87. Vogel et al. claimed electrical 

connectivity of 1 X 10A6 S em is possible with GICs of arsenic pentafluoride (AsFS) 

and antimony pentafluoride (SbFS), however this result has never been reproduced 

88-90, 

Conductivities between 2.1 X 10A4 and 1.0 X 10AS S em have been obtained with 

vapor grown carbon fibers (VGCFs) and AsFS 91,92. While using pentafluorides, the 

necessity for highly crystalline graphite or VGCF was emphasized. Much of the 

literature shows improvement of electrical conductivity with intercalation 

compounds by a factor of ten or more 87. In addition, some of the techniques 

involved are more suitable for scalability than the chemistry protocols of selective 

functionalization of CNT. 
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Figure 61: "Highly conductive graphite intercalation compounds", Inagaki 1989 87 

The introduction of foreign species to carbon nanotubes is more commonly 

described as doping. Doping in this sense can be broken down into three main 

categories 93 : 

(a) Endohedral inclusion of the free space within the nanotube 
(b) Replacement of carbon atoms of the nanotube structure with a dopant 
(c) Exohedral incorporation of molecules between nanotubes within a bundle or 

agglomerate 

The exohedral doping correlates closely to the intercalation of graphite, in particular 

when a charge transfer between dopant and nanotube leads to novel electrical 

properties 93•94• 

For this initial study, SbFs was chosen as the intercalate species due to the high 

conductivities found in the literature, its ease of use relative to AsFs and that it has 

not been combined with carbon nanotubes previously. 
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Experimental Method 

Single wall carbon nanotubes (SWNT) and SbF were combined in a method based on 

one from Lalancette et aJ.9S The SWNT were supplied by SouthWest 

NanoTechnologies Inc. (CG 100 grade). These SWNT are produced by a catalytic 

CVD process utilizing CO disproportionation at 700-950 oc in the presence of a Co­

Mo catalyst 96. 250 mg of as-produced SWNT were dried by heating under vacuum in 

a boiling flask for 72 hours at a temperature range of 90 - 110°C (Figure 62). The 

SWNT was transferred to a plastic glove bag for processing under an atmosphere of 

dry nitrogen. 0.084 mL of SbFs (Sigma Aldrich) was pi petted onto the SWNT inside a 

boiling flask to provide a 50o/o by weight concentration. 

Figure 62: Vacuum heating flask and nitrogen-filled glove-bag 
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This preliminary experiment showed the necessity for dry inert conditions, as some 

residual moisture was clearly present in the glove bag, which reacted with the SbFs 

to produce hydrogen fluoride (HF) gas. These reactions and the products they 

presented produced the need to complete the experiment in an expedited fashion. 

The resultant material was sealed in its flask, placed under vacuum and heated at 

90-120°C for 72 hours. The initial application of vacuum, applied to the boiling flask 

while inside the glove bag, led to a deposition of black material on the inner surface 

of the vacuum line (Figure 63). The difficult conditions combined to reduce the 

expected yield of the experiment. 

Figure 63: Resultant product and noted deposition inside vacuum line 
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The end product was a dry black powder, similar to the starting SWNT, which 

appeared stable under normal atmosphere and resistant to hydrolysis. The bulk of 

the material remained inside the boiling flask. 

Characterization and Results 

In order to measure electrical conductivity, the small amount of first-round material 

produced dictated the use of a simple two-point probe measurement. The material 

was placed inside a Teflon tube and a probe attached at each end. Two-point 

electrical probe measurements were obtained using a Commercial Electrical 

HDM350 Multimeter with the following results: 

Nanotube Resistance (0) 

RawSWNT 55.3 

SWNT SbF5 2.3 

Table 10: Summary of 2-point resistance measurements 

With additional samples, 4-point tests were prepared as described in earlier 

sections. In addition, a simple procedure of iodine doping was also explored 97• 



110 

Initial Post-Doping 
Nanotube ! Dopant , Resistivity , Resistivity 

~ 1 (0 •em) 1 (O•cm) 
············--·······················<-·································<-·········································->···································· 
SWeNT CG100 ! Iodine i 0.014 l 0.0027 
·s·w~N·r·cGiaa·T;~·d·;~~··& .. s.bF·~r············a·:ai4·············r········cJ:aa·i7 ........ .. 
·····································->·································<-·········································>Oo···································· 
SWeNT CG100 !SbF 5 ! 0.014 ~ 0.0038 
·H·i·P~·;·swN·r ...... -rs·b·F·~ ....................... !" .............. o:ai ................ l" ........ o:aaa·3 ........ .. 

Table 11: Summary of 4-point resistance measurements 

The SbFs-treated SWNT showed over an order of magnitude improvement in 

conductivity. This is in keeping the typical factor of ten improvement noted by 

Inagaki et al.'s review 87• Given the difficult processing conditions, and the 

correlation of packing density of SWNT to electrical resistance, this result should be 

taken as a preliminary one with expected room for improvement. 

The iodine samples also showed an impressive improvement, although there was no 

additive benefit from combining the two protocols. Both methods yielded stable 

doping, which had consistent resistivity results even 6 months after doping. 

Scanning electron microscopy (SEM) and scanning transmission electron 

microscopy (STEM) was performed on both the main sample and the material found 

deposited inside the vacuum line (Hitachi S-5500). Simultaneous energy dispersive 

x-ray spectroscopy (EDS) was also carried out (Hitachi-Bruker). 
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Fourier transform infrared spectroscopy (FTIR) was performed on the original 

sample, with inconclusive results (Nicolet). XPS data was also collected and 

analyzed (PHI Quantera). 

Two primary material subjects were studied using SEM and STEM: material 

recovered from inside the vacuum line and the main body of material produced. The 

specimens shared a number of key characteristics, while some differences were also 

observed. The material from the vacuum line contained two types of tube structure; 

one similar in size to the starting SWNT but with clear additions to the sidewall and 

a second tube type in the size range of 20-40nm (Figure 64). 

EDS data confirmed the presence of carbon, antimony and fluorine with the vacuum 

line sample (Figure 65). One key difference noted when compared the bulk material 

produced, was that the larger tubes found were neither as rigid-looking, nor as 

straight as those found in the main sample. 
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Figure 64: (A) Low resolution SEM of material inside vacuum line (B) two sizes of 

tube structure present, (B) High resolution SEM of smaller tube type 
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Figure 65: STEM and EDS analysis of larger tube structure 
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The main body of sample showed a similar mix of two tube types, but the 

microscopy consistently found very rigid and straight nanotubes in the 20-40nm 

range (Figure 66). 

Figure 66: STEM imagery of material produced with high resolution images of large 

diameter tube structures 
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High-resolution STEM images of the smaller --2nm nanotubes suggest these are 

modified or functionalized SWNT (Figure 67). EDS data shows the presence of C, Sb 

and F (Figure 68 and 69) on these smaller nanotubes. 

Figure 67: High resolution STEM of smaller tube structure 
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Figure 68: EDS spectra of small nanotube material 
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Figure 69: EDS and STEM area scan confirming the presence of C, Sb and F 
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Clearly, a complex morphology of material was formed at the nanoscale. TGA data 

confirmed that the CNT suffered damage, as the oxidation peak has been broadened 

and shifted. The production of large diameter, straight tubular structures is 

considered a factor here. A considerable amount of metallic species has been added 

by the process, >40% (Figures 70 & 71). 
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Figure 70: TGA data on CG100 SWNT doped with SbFs 

The XPS data did not provide a concrete answer to the species present. It appeared 

from the literature and NIST, that no XPS standard for SbFs currently exists. The 

data collected showed the presence of C, Sb and F. Analysis software suggested 

numerous forms of Sb present, including KSbFs and KSbF6. The author and Rice 



118 

University Share Equipment Authority XPS expert took this as an attempt by the 

analysis software included in the XPS instrument to fit the data to as close a known 

standard. 
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Figure 71: TGA data on HiPco SWNT doped with SbFs 

Both doped nanotube samples were explored as conductive fillers with MDPE. The 

samples were prepared as previously described and tested with a 4-point probe. 

Results were disappointing; resistivity had increased by 1-2 orders of magnitude. 

Given the CNT had suffered some modification and possible damage during the 

doping process, and considering the positive performance of the doped CNT tested 

with MDPE, the sonication process used during composite fabrication was 
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considered the main problem. Clearly, these doped materials are more suitable to 

used as-is, rather than be processed through vigorous processing procedures. 

The most obvious improvement for future work will be to use a more robust 

nitrogen atmosphere glove box. The heated vacuum preparation of the SWNT was 

adequate, but using an actual vacuum furnace might also be beneficial. 

Experimenting with additional types of CNT will also be useful. DWNT may provide 

a more robust nanotube surface as STEM and TEM analysis of the SWeNT CG 100 

nanotubes show a rough surface morphology of carbon. 



CHAPTER 5: LIGHTWEIGHT AND LOW ENERGY NERVE GAS SENSOR 

5.1 INTRODUCTION 

Sensors based on carbon nanotubes (CNT) have been an area of interest since the 

material's discovery by Iijima in 1991 25 , and an active area of research once CNT 

availability began to increase via the innovations of Smalley and others 24,26. Their 

long aspect ratios of over 1000-to-1, varied electrical and thermal properties and a 

decade of research in manipulating nanotubes through functionalization chemistry 

make them an idea target material for sensor research. The scientific community 

has responded to this opportunity with a wealth of experiments using CNT to sense 

a wide range of analytes. Some of this work has yielded impressive results in an 

laboratory setting, such as parts per billion (ppb) sensitivity to chlorine 98 , 

ammonia 99 and nitrogen dioxide 100. 

The author was given a broad requirement to apply the electrically conductive CNT 

MDPE composites towards a sensor application for the United States Army Research 

Laboratory (ARL). The application had to be novel, and suitable for use in micro air 

vehicles (MA V), whose operational environment and low energy use present some 

unique requirements. A thorough literature search was conducted, with special 

attention paid to use of CNT towards sensing analytes of potential suitability to this 

application. 
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A large body of work in the literature concentrates on hydrogen detection and the 

detection of water vapor. For relevance to applications of chemical detection, 

inclusion of these references has been kept to the minimum. Also of note is the 

sizable number of research studies that have been conducted in sensing of ammonia 

(NH3) and nitrous oxides (NOx). A summary of some of the most promising 

research in this field is provided in Appendix A. 

5.2 PRIOR RESEARCH 

As with all areas of active research, there are a number of pre-existing review 

articles of relevance to this study. Moore et al. have provided a good review of 

instrumentation for trace detection of explosives 101. While this does not have direct 

relevance to nanotechnology, it benefits any research in the sensor area by 

providing information such as the vapor pressures of various common analytes of 

interest. Moore makes the useful distinction of breaking down electrochemical 

sensors in this field into two types, galvanic and electrolytic, a note often ignored by 

reviews of CNT sensors. A short review by Seto et al. gives a summary of the current 

sensing technology for nerve and chemical agents 102. This work also includes 

testing of actual battlefield substances such as sarin, but also sensing of dimethyl 

methylphosphonate (DMMP) and other common chemicals that closely resemble 

such agents. 
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As this research will utilize composites of CNT and polymers, a useful reference is 

Lange et al. review on conductive polymer sensors 103. This work includes a table of 

electrochemical and electrical results with analyte and polymer. Although of more 

relevance to biological sensing applications, Rajesh et al. have reviewed conductive 

polymers, in particular composite applications 104. Included is a summary that 

highlights analyte, diameter/size, detection limit and voltage among other 

important data. 

With regards to sensor reviews focusing on CNT -based technologies, there are a 

number of papers of note. Mahar et al. wrote a broad review of CNT sensors, 

summarizing many of the unique attributes of CNT materials and touched upon 

sensor applications ranging from temperature to strain 1os. They also highlighted 

research that showed changes in Raman spectroscopy data when single wall carbon 

nanotube (SWNT) are immersed in various liquids, including common organics 106, 

In their review, Wang et al. provided a useful summary of specific data for 

interactions between single wall carbon nanotube (SWNT) and gases 107• These 

included adsorption energy, charge transfer and tube-molecule distance. 

Bondavalli concentrated on CNT field effect transistors (FET) in their review, a 

common technical approach taken in CNT sensors 108. They present an informative 

table on source/drain current change after exposing two types of CNTFET 

functionalized with DNA sequences to various vapors, including DMMP. Also 
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focused on FET devices is a review by Yariez-Sedefi.o 109. This work investigated 

CNT -metallic nanoparticle electrodes. Rounding out these reviews is one by Jacobs 

et al. 110 which concentrated on CNT sensors for biomolecules, a broad review by 

Varghese et al. which included a useful explanation of sensor nomenclature and 

basics111, and Sinha et al. which has a summary of gas sensors 112. 

The most useful review work as reference for this research was by Kauffman et al. 

113. It came closest to summarizing the data of interest to the application, including 

tables that note analyte, method, detection limit, CNT material and references. 

Appendix A summarizes the data from the literature most useful to the research 

while reflecting the most useful aspects of the aforementioned CNT sensor reviews. 

Research by Boul et al. has previously developed CNT-based sensors for radiation 

sensing applications for NASA 64. These consisted of networks of SWNT deposited 

on 32-channeljsensor pads (Figures 1 and 2). The SWNT were optimized via 

functionalization and were designed to register a change in resistivity upon impact 

from radiation. A change in resistivity will be the primary signal change for our 

current study. 
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5.3 ARMY MISSION APPLICABILITY DIMETHYL 

METHYLPHOSPHONATE (DMMP) 

DMMP was of particular interest to this study due to its suitability as a nerve agent 

simulant 102•114• Use of color-changing paper is currently a commonly used method 

to test for nerve agents such as sarin 102,11s. The weaknesses of this method are that 

the agent must be applied directly to the paper in a liquid form, and that the 

material cannot distinguish between organic solvents, such as DMMP, and actual 

nerve agents. Instruments such as gas chromatograph-mass spectrometers, surface 

acoustic wavelength detectors and ion mobility spectrometers have been produced 

with a level of portability suitable for limited handheld application 1o2,116, but not 

miniaturized nor automated enough to warrant suitability to low power vehicle 

applications. 

An optimized nanotube sensor could offer a solution for sensing a nerve agent 

simulant such as DMMP. Picking some of the most relevant research from the 

literature and focusing on the chemiresistive sensor approach, Figure 73 below 

illustrates chemical sensitivity to DMMP versus resistance change. One can note that 

an enormous resistance change is not produced in any of this previous research; 

these small-realized signal changes may make applicability of these technologies 

challenging. 
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Figure 73. Summary of select research: sensitivity vs. relative resistance change of 

CNT-based DMMP sensors 



126 
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Air 

Figure 7 4: Suitable experimental setup 117 

Novak et al. used a permeation tube and mass flow controllers to deliver calibrated 

doses of DMMP 118. They also improved the sensitivity of their sensor by applying a 

100nm coating of an acidic strong hydrogen-bonding polycarbosilane, which acted 

as a chemical-selective polymer. In follow-on research, Snow and Novak improved 

the sensitivity further by changing to a capacitive rather than resistive response and 

achieved sensitivity in the parts per billion (ppb) level 119. They also observed that 

DMMP absorbs onto SWNT, and is a strong electron donor, causing a transfer of 

negative charge which in turn changes transistor threshold voltage by -2V 118. This 

work also showed that after an initial response of 10+ minutes, it took many hours 

for the sensor to fully recover as DMMP desorbs slowly from SWNT. An additional 
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positive charge can be applied to offset the negative resulting from DMMP 

adsorption and speed up recovery of the device. 

Wang et al. also took a composite-style approach, using hexafluoroisopropanol 

substituted polythiophene (HFIP-PT) and poly(3-hexylthiphene) (P3HT) and SWNT 

spin coated films as chemiresistors 120. They chose the HFIP group to polythiophene 

because of its H-binding with phosphate esters. These esters are common in 

chemical warfare agents including sarin gas and simulants such as DMMP. They 

showed sensitivity as low as 0.6ppm and responses as fast as 1-2 minutes. 

Cattanach et al. produced network films of SWNT on substrates of polyethylene 

terephthalate (PET) 114. This work is highly relevant from a composite standpoint to 

ours. They filter out interfering vapors such as hexane by using a 2-micron thick 

barrier film of chemical-selective polymer polyiobutylene (PIB) on the SWNT 

surface. Their experiment was at room temperature. A major advantage of their 

work is a large resistance swing of 75-100%, albeit at a response time measured in 

the 10's of minutes. Also, one should note that their experiments were conducted 

solely in the presence of DMMP, with no other gas present. 

A variety of voltage levels were also found throughout the literature to "drive" such 

CNT sensors of DMMP. These range from SOmV 121, 0.1 V 120 to 3V 118. Such voltage 

levels should be taken into consideration when reflecting on the proposed 

application of such a sensor towards low-power applications. It was hoped that the 
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use of conductive nanotube fibers and composites in this study would reduce the 

overall power needs when compared to previous studies, while increasing the 

fidelity of signal change. 

Observing relevant research in the literature, one can note a number of suitable 

experimental apparatus for gas sensing. The experimental setup as illustrated by 

Choi et al. represents what is probably the most optimal 117 (Figure 74). However, 

given the limited amount of time and resources available for this study, a less 

complex test setup was used. Instead, an approach similar to a simple one found in 

the literature was employed 122. A glass vessel with a Teflon-taped plastic lid, was 

combined with the appropriate outlets for vacuum, wiring and syringe (to introduce 

the DMMP). Given the restrictions of having only one available multimeter, only one 

sample/sensor was tested at a given time. 

With regards to the initial experiments conducted, a two-fold approach was initially 

proposed. Recently produced highly-conductive double wall carbon nanotube 

(DWNT) fibers were to be tested as chemiresistors for DMMP 97• However, a scarcity 

of material and lack of mechanical robustness prevented their exploration towards 

this application. A follow-on experiment was proposed to modify these fibers with a 

polymer layer or functionalization to improve selectivity and sensitivity. 

The second approach proposed, and eventually executed, was to use the conductive 

composites of polymer and CNT produced in earlier chapters of this thesis, as 
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chemiresistors of DMMP. An initial attempt was made to modify the porosity and 

available surface area of these composites to improve their suitability as a gas 

absorber by refluxing in boiling DCB. This step later proved unnecessary at the gas 

testing level used. DMMP was obtained from Sigma Aldrich. A colorless liquid, it has 

a boiling point of 181 °C, a vapor pressure of 160 Pa at 25°C, vapor density of 4.2 and 

a liquid density of 1.15 gjmL 123 124. The flammable flash point is 69°C. Calculated 

and measured vapor pressure data in a temperature range from 263°K (-10°C) to 

453.8°K (180.65°C) can be found in the literature 124 125 (Figure 72). 



Table 3. Measured Vapor Pressures for DMMP, Calculated Values 
Based on Antoine Coefficients listed in Table 9, and Percent 
Difference 

T p pealed differencea 

K Pa Pa % 
258.2 3.73 3.67 1.8 
263.4 5.67 6.20 - 8.6 
273.2 15.2 15.2 - 0.1 
278.2 24.5 23.5 4.4 
283.2 35.0 35.5 - 1.4 
285.0 41.7 41.0 1.7 
288.2 52.8 52.8 0.1 
293.2 78.5 77.2 1.8 
326.4 653.3 677.3 - 3.8 
330.2 799.9 840.3 - 4.8 
332.4 933.3 949.5 -1.7 
335.2 1067 1112 - 4.1 
337.6 1200 1265 - 5.1 
339.2 1387 1376 1.0 
345.8 1973 1921 2.7 
356.8 3346 3271 2.3 
376.8 7999 7880 1.5 
389.8 13 350 13160 1.4 
402.0 21280 20 580 3.4 
421.8 39930 39 920 0.0 
454.4 102 200 102 800 - 0.6 

a Percent difference was calculated as IOO(Pmeas- Pcalcd)/PcakxJ. 
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Figure 3. DMMP vapor pressure: [ , data generated by DSC methodology; 
9, data generated by saturator methodology; s , Antoine correlation 
equation. 

Table 4. Calculated Vapor Pressure, Volatility, and Enthalpy of 
Vaporization for DMMP Based on Antoine Coefficients Listed in 
Table 9 

T p volatility I:J.vaplf 

K Pa mg·m- 3 kJ·mol- 1 

263.2 6.025 341.8 55.9 
273.2 15.22 831.8 54.9 
283.2 35.49 1871 54.0 
293.2 77.15 3928 53.2 
298.2 111.1 5562 52.8 
303.2 157.7 7763 52.4 
313.2 305.1 14 540 51.8 
333.2 992.2 44450 50.6 
353.2 2760 116600 49.5 
373.2 6758 270 300 48.6 
393.2 14900 565 700 47.8 
413.2 30100 I 088 000 47.1 
433.2 56490 I 947 000 46.5 
453.8 101 325 3 333 000 46.0 

Figure 72: Measured and calculated vapor pressures for DMMP 124 
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5.4 EXPERIMENT: COMPOSITE DMMP SENSOR 

Early stage experiments were carried out using a sealed 2-liter glass vessel with air 

at ambient conditions. Small droplets of DMMP were placed at the bottom of the 

vessel to simulate various ppm conditions. The composites were placed on a four­

point probe (Cascade C4S), sealed in the glass vessel and instrumented with a 

multimeter (Agilent 34410A). The vessel was then put on a hot plate to evaporate 

the analyte. Temperature near the sample and the hot plate were monitored using 

thermocouples. 

High weight percentage composites of both SWNT (HiPco, Rice University) and 

MWNT (Mitsui) in medium density polyethylene (MOPE) were tested. The SWNT 

nanotubes were purified via a simple 1-pot method so. The MWNT were received in 

a highly pure state. Composite preparation was as described in Chapter 4. Percent 

loadings of 90% SWNT were utilized for these tests as they produce the lowest 

electrical resistivity (Chapter 4). 

Data from these experiments show great promise. Figure 75 shows the results of 

1000ppm DMMP exposure on the MWNT composites. Upon introduction of DMMP 

vapor into the air inside the vessel, the composites showed an increase in resistivity 

of almost 30% within minutes, and a recovery response time of 5-15 minutes. It 

should be noted that the atmosphere inside the vessel is static, an optimal testing 

regime would include active mixing of the analyte and controlled flow as previously 
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described. With that in consideration, these results here may actually be 

conservative. 

The first of two possible sources of error was then considered for this experimental 

setup; radiative heating. Tests were performed that showed negligible effect from 

radiative heating on either the MWNT or SWNT samples, shown as ((no DMMP" for 

both data sets. A resistance change 2°/o can be attributed to radiative heating for the 

MWNT samples and 1 °/o for the SWNT samples. 

%llR/R 

2S 

20 

lS 

·S ,,. 

1000 ppm DMMP Test .. 90% MWNT MOPE 

OMMP 
"'fVaporatton 

o 1 2. 3 .~ ~ b 1 8 . 9 10 n 12 n 14 lS l b 17 18 19 
Time{mln) 

-1000-p m OM .1P f~H l 

-lODOppm DM .,w test 2 

- No0v1 .-w 
-1000pp-m HlO 

-IOOOpptn DMMP hit.t 3 

Figure 75: DMMP sensing tests with MWNT MDPE composites 
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The SWNT tests also showed interesting performance under the exposure to DMMP. 

1000ppm testing had response times in minutes and a positive resistance change. 

The SWNT composite showed a higher sensitivity to both convective heating and 

water vapor than the MWNT. Figure 76 highlights this sensitivity. It should be noted 

that while opening the vessel and exposing the composites to fresh air contributed 

to signal recovery, the thermocouples showed that the heating effect on the samples 

and 4-point probe was slower to abate. This lead the author to believe that it is the 

presence of vapor that is causing the initial change in resistance, rather than any 

thermal effect. 
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Surface area and porosity analysis through BET was performed on the SWNT 

composites. Composites exposed to boiling dichlorobenzene, to increase porosity 

and surface area, showed no large surface area change. The surface area of these 

composites remains at 100-20Qm2g-1 and has no marked difference in DMMP 

sensitivity. 
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Figure 76: DMMP sensing tests with SWNT MDPE composites 
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Additional experiments were performed on the SWNT composites to explore the 

lower bounds of DMMP sensitivity. Given both the aforementioned simplicity and 

weaknesses of this initial experimental protocol, these data should be considered 

conservative. The 10 and 100ppm tests in Figure 77 show a positive change in 

resistivity. At these lower ppm, one can see that radiative and convective heating 

effects associated with this test, while ineffectual at 1000ppm, are now dominant 

and mask the sensing of the DMMP itself. Only at SOOppm does the DMMP sensing 

become dominant. Figure 78 explores this further by carrying out isolated water 

versus DMMP tests. 
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Figure 77: Low ppm exposure tests SWNT MDPE composite to DMMP 
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5.5 DISCUSSION 

The most interesting point that came from the data presented was not that the 

composites were sensitive to DMMP, but that the two different types of CNT 

changed resistivity with different sign. 

It has been shown that when using CNT FETs comprised of different metals as 

electrodes, DMMP molecules influence the metal work function in a specific way 

despite metals such as Pd and Au having the same starting work function 126. As 

mentioned, Snow et al. provided an experimental result showing a negative shift in 

voltage and an explanation of DMMP interaction with SWNT as a result of an 

electron transfer from DMMP to SWNT ("gas electron-donating behavior") 119. What 

was also of note from this research was the question of whether the change was due 

to interaction between the DMMP and the SWNT-metal junctions or between the 

DMMP and the SWNT material itself. Given that the contact resistance between 

dissimilar SWNT (metallic and semiconducting) is higher than similar tube types 

127.128, it has been proposed that the metal work function change at the contacts 

between the electrode metal and SWNT is dominant in influencing sensing 108,122. 

Perhaps this begins to explain the performance of the SWNT versus the MWNT. In 

addition, there has been a previously observed correlation between sensor response 

and solvent polarity (ET30) for more common organic vapors that does not work 

for DIMP or DMMP 114. Cattannach et al. proposed that DMMP could "preferentially 
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adsorb at sites whose microenvironment significantly affects electron transport 

through the SWNT film"114. 

Gohier et al. proposed in a study involving MWNT, that the response was dependent 

on the semiconducting behavior of the MWNT, and stated that the sign can be 

modified by n-doping using PEl as doping agent 98. Aside from the effect of the 

semiconducting behavior, they demonstrated the crystallinity of the MWNTs plays a 

key role in the sensitivity of CNT -based sensors. While the ideas presented here do 

not provide a conclusive thesis on why the two CNT types performed in such 

different manner, the author proposes that the effects and attributes discussed are a 

starting point for further research 



CHAPTER 6: CONCLUSIONS & FUTURE DIRECTIONS 

A real-world, engineering-scale challenge of producing a polymer composite, 

suitable as a replacement for copper in aerospace and energy exploration, was the 

central driver of this research. To that end, science on the nanoscale, which included 

material properties of polyethylene and examination of fundamental nanotube 

properties such as diameter and chirality of a suite of CNT types, was combined with 

materials engineering which studied, designed and optimized fabrication techniques 

to create low resistivity polyethylene and CNT composites. 

The purity, chirality and diameters of a broad range of CNT types were evaluated. A 

purification process, relevant for industrial use, was matured and scaled-up. The 

resistivity of various CNT types was measured at both macro and micro scales. It 

was seen that the macro scale data in general matched the micro scale, despite the 

large differences in network size. It was shown that these resistivities on the whole 

reflected the chirality or metallic tube content of the CNT. It was shown that smaller 

diameters, in addition to surface coatings or damage to the tube sidewalls, have an 

adverse effect on conductivity, even if respectable amounts of metallic CNT are 

present. 

A scalable and optimized composite fabrication method was developed. The 

presence of a sonopolymer, formed via sonication of solvent, was confirmed and 
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assisted in the dispersion of CNT in the polymer matrix. Crystallinity, CNT bundle 

size and composite morphology were observed. It was found that chirality or 

metallic CNT content was dominant. The initial idea that relatively high amounts of 

crystalline polymer, or at least many transitions between amorphous and crystalline 

zones, would aid in producing a low electrical resistivity composite was proven 

premature. Composites which flowed well under annealing and pressure treatments 

, which had relatively low amounts of crystallinity, were shown to be more useful. 

Resistivities impressive for nanotube polymer nanocomposites in general, let alone 

nanotube polyethylene composites, were achieved with a lowest value in the lQ-4 

.n•cm (Figure 79). This result far outperforms data found for similar thermoplastic 

composites in the literature. Weight percent loadings of CNT in MDPE were 

achieved to a level not seen before in the literature. Annealing and pressure 

treatments were used to reduce bulk resistivities further. Additional optimization of 

annealing and pressure procedures warrant future research. Continued 

improvement in nanotube supply should be monitored and integrated into future 

research, in particular the production of higher metallic content CNT. The as­

received conditions of the CNT used in this research were far from perfect. 

Additional purification and functionalization processes, also of a scalable nature, 

should be pursued. Selective functionalization was considered by the author early in 

the research, but not pursued as proven methods in the field have yields mostly in 

the microgram range. Although relationships suggested in the literature between 

both nanoscale and bulk aspects and resultant resistivity were explored and some 
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proven, such as crystallinity, bundle size and chirality, a clear dominant dependency 

on nanotube type and source was found. 

The results in this thesis show some validity of the concept originally proposed for 

both the RPSEA and ATP programs. The supply of highly metallic nanotube stock 

was considered a dependency in these efforts, and considering the result showing 

polyethylene actually reducing the resistivity numbers of bulk CNT at high loadings 

in composites, using such metallic CNT with resistive polymers may offer surprising 

results. It is doubtful however, even with purely metallic CNT, that one could 

achieve the nanotube densities and alignment necessary in a composite with a 

polymer to produce the conductivities to match copper. The composites produced 

by this research have a unique mix of low resistivities and are malleable, flexible and 

formable. These materials have the potential to be of great use towards applications 

such as EMI/ESD shielding and abatement. 
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Figure 79: Low resistivity values of SWNT and DWNT composites compared with 

the best found in the literature 

The author attempted some research in alignment, but availability of equipment to 

generate very strong AC fields (the most suitable for the task) that could be used in a 

chemical hood environment proved difficult. In early 2009, in collaboration with Dr. 

Ajayan, the author grew SWNT and DWNT in a CVD reactor to develop a second, 

alternative approach to CNT MDPE composites. Using fibers pulled or drawn from 

the produced material, it was thought that highly aligned nanotube cables could be 

produced. The resultant materials had relatively high resistivity, while availability of 
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the reactor was scarce. However, the concept was validated and proven with the use 

ofDWNT from China by Dr. Yao Zhao of the Barrera Group 97. 

In addition to annealing and pressure, a novel doping method was developed to 

decrease the resistivity of bulk CNT further using SbFs. While its products proved 

unsuitable for use in solvent-blended composites, it reduced the resistivity of 

purified HiP co SWNT by over an order of magnitude to 10-3 .n•cm. 

The most obvious improvement for future work in this doping method would be the 

availability of a more robust nitrogen atmosphere glove box. The heated vacuum 

preparation of the SWNT was adequate, but using an actual vacuum furnace would 

be beneficial. Experimenting with additional types of CNT will also be useful. DWNT 

may provide a more robust nanotube surface as STEM and TEM analysis of the 

SWeNT CG 100 nanotubes show a rough surface morphology of carbon. 

Future doping work may include exposure to moist air for further exploration of 

resistance to hydrolysis. Lalancette et al. also investigated the suitability of their 

graphite SbFs as an agent for the exchange of halogens with organic chlorides with a 

view to producing a stable and useful fluorinating agent 95. This is perhaps a worthy 

target application for the SWNT SbFs. With regards to characterization, perhaps 

further XPS work is warranted, in conjunction with a standards authority such as 

NIST, in order to produce a reliable standard for SbFs. 
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As its purpose was to reduce the resistivity of CNT polymer composites, the use of 

microwave processing produced only a tangential success in this thesis. It showed 

however great promise, especially with thermoset and extruded composites. There 

remains a dearth of research on how microwaves interact with CNT. Size and 

antenna effects were noted in this research, and warrant further attention. High 

intensity thermal effects in the immediate vicinity of the CNT due to microwaves 

may have combinatorial effects with additional species introduced into the 

composite such as metals. Use of microwave heating techniques were put forward 

for patent consideration as central to repair mechanisms for complex carbon fiber 

composite structures, in addition to large civil structures such as bridges and 

roadways. 

A novel composite gas sensor for sensing a nerve gas simulant was presented. This 

research has been put forward for additional funding. This early stage work created 

a possible binary composite approach to sensing, using two variants of CNT 

composites that could easily be integrated as a wing material for a micro air vehicle. 

It warrants an improved test setup, and the author has proposed one based on a gas 

permutation tube system. Modification of either the polymer layer and/or 

functionalization should be explored as a means to improve selectivity and 

sensitivity. Further research and optimization of pore size would also be valuable. 
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APPENDIX B - SUMMARY TABLE OF CNT GAS SENSOR RESEARCH. 

(Arranged alphabetically with respect to analyte targeted by sensor) 

CNT Functlonalized Detection 

Year Author Analyte Type /Matrix Enviro Method Limit Ref. 

Acetone, Resistance, 

2006 Robinson MeOH SWNT Oxidation Gas Capacitance 129 

Resonant 

2005 Anand Air SWNT Gas Cavity 130 

2004 Chung Air, oxygen MWNT Gas Voltage 131 

2003 Someya Alcohols SWNT Gas Current 
1;j2 

2006 Kim Ar MWNT Gas Voltage 
1;j;j 

2010 Leghrib Benzene MWNT Rh, Pt, Au, Pd, Ni Gas Resistance 50ppb 134 

Benzene, 

2004 Cho ethanol SWNT Ethyl cellulose Gas Resistance 1000ppm 135 

Polyelectrolyte 

2009 Mabrook C2H50H SWNT inkjet Gas Current 300ppm 136 

CH30H, 

2002 Yang C2H50H SWNT Gas Absorbance 137 

Chlorometha poly(3-

2005 Santhanam ne MWNT methylthiophene) Gas Resistance 5ppm 138 

2011 Gohier Cl2 MWNT PEl Gas Resistance 27ppb \It! 

2004 He co MWNT HCI04 Gas Cyclic volt 
1;j\l 

2006 Wanna co MWNT PAN I Gas Resistance 150ppm 140 

Gas, 

2007 Santhosh co MWNT PDPA Liquid Voltage 0.01ppm 141 
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Wongwiriy 

2008 a pan co SWNT Pt Gas Resistance 1ppm 142 

2010 Kauffman co SWNT Au Gas Modeling Paper 143 

CO, C02, 

2007 Kuzmych 02 SWNT PEl Gas Resistance 5ppb 144 

2001 Ong C02 MWNT Si02 Gas Permittivity 14l> 

2004 Star C02 SWNT PEl, Starch Gas Current 146 

Vibrational 

2005 Zribi C02 SWNT Gas Resonance 147 

Dichloromet 

hane, 

acetone, 

2003 Philip chloroform SWNT Oxidation, PMMA Gas Resistance 148 

Dichloromet 

hane, 

acetone, 

2004 Jose chloroform MWNT PMMA Gas Resistance 149 

2010 Wang DMMP SWNT PEl Gas Resistance 1ppm 11>0 

2011 Wang DMMP SWNT CoPe Gas Resistance 0.5ppm 121 

DMMP, Carbon 

2001 Hopkins DIMP Black/Polymer Gas Resistance 151 

DMMP, 

2006 Cattanach DIMP SWNT PET, PIB Gas Resistance 299ppm 114 

DMMP, 

DPGME, Al203, ln203, Pt, 

2005 Choi DCM Pd, ZnO, Zr02 Gas Resistance 0.5 ppm 117 

DMMP, 

Hexanes, 

Xylenes, 

2003 Novak H20 SWNT Gas Resistance 118 
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Voltage, 

2008 Wang DMMP, VOC SWNT HFIP-PT, P3HT Gas Resistance 0.05ppm 120 

Cyclic volt, diff 

2007 Ali Dopamine SWNT PABA Liquid pulse volt 40pM, 1nM 152 

2011 Delalande DPCP SWNT Au Gas Voltage 1ppm 1b3 

2006 Yujin Ethanol MWNT Sn02 Gas Resistance 50 ppm 104 

2008 Krishna H2 SWNT Pd Gas Resistance 1bb 

2011 Zilli H2 MWNT Pd Gas Resistance 70ppm 106 

1999 Liu H2 SWNT 1bl 

2008 Gong H2 SWNT Sn02 Gas Resistance 1bH 

2001 Kong H2 SWNT Pd Gas Resistance 40ppm 1btl 

2005 Sayago H2 SWNT Pd Gas Resistance 1oo 

2007 Sayago H2 SWNT Pd Gas Resistance 1o1 

2009 Srivastava H2 MWNT PAN I Gas Resistance 1o:< 

2003 Wong H2 MWNT Pd Gas Voltage 103 

Sippel-

2005 Oakley H2 SWNT Pd Gas Resistance 10ppm 164 

MWNT 

2004 Ahn H2, NH3 Forest Gas D.C. 8 ppm 165 

H2, CH4, 

2006 Star CO, H2S SWNT Pd, Pt, Rh, Au Gas Voltage 5 ppm 166 

H20, acid, 

MeOH 

2005 Staii DMMP etc. SWNT DNA Gas Current 25 ppm 167 

2010 Bekyarova H2CI SWNT 
1oH 

2000 Zahab H20 SWNT Gas Resistance 1otl 

2003 Kim H20 SWNT PMMA Gas Voltage 110 

2004 Star H20 SWNT Nation Gas Current 111 

Quartz 

2005 Chen H20 SWNT Nation Gas microbalance 15.76 172 

2005 Na H20 SWNT Gas Voltage 113 
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2006 Su H20 SWNT PAMPS-Si02 Gas Impedance 174 

2006 Yu H20 MWNT PEl Gas Resistance 1/b 

2007 Jiang H20 MWNT Liquid Resistance 1 fll 

2007 Su H20 MWNT PMMA, KOH Gas Impedance 177 

2011 Tang H20 MWNT PI Gas Resistance 1 (I! 

H202, Voltage, 

2003 Wang NADH SWNT Teflon Liquid Resistance 179 

Carboxyl, amide, 

2011 lzadi H2S MWNT Mo, Pt Gas Resistance 180 

H2S, CO, 

2009 Fam NO SWNT Ag Gas Current 2ppm 181 

2004 Valentini HCI MWNT POAS Gas Resistance 100ppm 11!2 

2006 Li HCI, Cl2 SWNT CSPE,HPC Gas Resistance 2ppm 1sa 

Boron modeling 

2006 Zhang HCN SWNT paper Gas 184 

2006 Wang HCOH SWNT Modeling paper 184 

2010 Khani Hg(ll) MWNT BMIM.BF4 Liquid Voltage 0.5ppb 11!b 

2010 Lee Hg2+ SWNT Liquid Resistance 1!!6 

LPG, 

2006 Liu C2H50H MWNT Sn02 Gas Voltage 10ppm 187 

Gold Mylar 

1989 Bartlett MeOH Layers Gas Resistance 188 

2010 Chen MeOH, IPA SWNT DNA Gas Resistance 
189 

2004 Valentini Methane MWNT Gas Resistance 190 

Modeled 

2004 Arab Various SWNT Gas 
191 

Modeled 

2010 Tooski. Various 
192 

2003 Bradley CNT NaPSS polymer Gas Voltage 
193 

SWNT Ni Gas Voltage 
194 

2009 Loh 
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2005 Huang N2 MWNT Gas Resistance 190 

Sumanase 

2000 kera N2,He SWNT Gas Resistance 196 

2001 Varghese NH3 MWNT Si02 Gas Impedance 19( 

Microwave 

2002 Chopra NH3 SWNT Epoxy conductive Gas Resonance 100ppm 198 

2003 Bradley NH3 SWNT Liquid/Gas Voltage 199 

2003 Bradley NH3 SWNT PEl Gas Voltage :.!UU 

2003 Modi NH3 MWNT Gas Voltage :.!U1 

2003 Suehiro NH3 MWNT Gas Resistance 10ppm :.!U:.! 

2004 Bekyarova NH3 SWNT PABS Gas Resistance 5ppm :.!U3 

2004 Jang NH3 MWNT Gas Resistance :.!U4 

2004 Lu NH3 SWNT Pd Gas Resistance 6ppm :.!Ub 

2004 Wang NH3 MWNT Gas Resistance >10ppm :lUll 

2005 Feng NH3 SWNT HN03 Gas Absorbance :wr 

2006 Li NH3 MWNT Gas Resistance 50 ppm :lUI:! 

SWNT 

2006 Nguyen NH3 MWNT Gas Resistance 5ppm 209 

2006 Quang NH3 SWNT Gas Resistance 5ppm 21U 

2006 Zhang NH3 SWNT PAN! Gas Resistance 50ppb :.!11 

2007 Due Hoa NH3 SWNT Sn02 Gas Resistance 10ppm :.!1:.! 

2008 Van Hieu NH3 MWNT Sn02 Gas Resistance >100ppm :.!13 

2009 He NH3 MWNT PAN! Gas Resistance <12ppm 214 

2009 Zhang NH3 SWNT PANI(CSA) Gas Resistance 10ppb 99 

2010 Lim NH3 SWNT Gas Resistance 1ppm 21!> 

2010 Mangu NH3 MWNT alumina Gas Resistance :.!16 

2009 Peng. NH3 SWNT Si02 Gas Resistance <100ppm :.!1f 

Villalpando NH3, 

2004 -Perez acetone, OH Modeling paper 218 

NH3, CO, 

2003 Chopra Ar, N2, 02 SWNT Epoxy conductive Gas Dielectric 100ppm 219 



179 

100 ppm, 

NH3, CO, 10ppm, 

2006 Bittencourt N02 MWNT W03 Gas Resistance 500ppb 220 

NH3, EtOH, 

2006 Jones H20 SWNT DNA,ACDEP Gas Voltage 221 

(NH20H)(HCL), 

2007 Li NH3, MeOH MWNT PMMA Gas Voltage 222 

NH3, 

N(CH3)3, 

2006 Ma Et3N MWNT PAN I Gas Current 223 

100ppb, 

2007 Zhang NH3, N02 SWNT PABS Gas Resistance 20ppb 224 

PEDOT:PSS, 

2011 Mangu NH3, N02 MWNT PAN I Gas Resistance 100ppm 225 

NH3, N02, 50,500 and 

2010 Lim. H2S SWNT PAN I Gas Resistance 500ppb 215 

2007 Terranova NH3, NOx SWNT Gas Resistance 75ppm 226 

NH3, 02, 

2002 Ong C02 MWNT Si02 Gas Permittivity 227 

2007 Tabib-Azar NH30h, HCI MWNT Gas voltage 228 

SWNT 

2007 Maklin NO MWNT carboxyl Gas Resistance 100ppm 229 

2011 Li NOCO SWNT Pd,PT Gas Modeling Paper 230 

2009 Hoa NO, NH3 SWNT Gas Resistance 2ppm 231 

2003 Cantalini N02 MWNT Gas Resistance 10 ppb 232 

2003 Valentini N02 MWNT Gas Resistance <10ppb 233 

5ppm 

(extrapolate 

2004 An N02 SWNT Ppy Gas Resistance d) 234 

2004 Cantalini N02 MWNT Gas Resistance 10 ppb 231> 
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2004 Valentini N02 MWNT Gas Resistance 10ppb ;,l;l6 

2005 Mercuri N02 SWNT Gas Photoemission 237 

2005 Young N02 SWNT MPCs Gas Current 4.6ppb 100 

2006 Larciprete N02 SWNT Rh Gas Photoemission 238 

2006 Suehiro N02 MWNT AI,Cr Gas Resistance 0.5 ppm :.139 

Wongwiriy 

2006 a pan N02 SWNT Gas Resistance 200ppb 240 

2006 Zhang N02 SWNT PMMA, SU-8 Gas Resistance 20ppm 241 

2007 Larciprete N02 SWNT Rh Gas Photoemission 242 

2008 Bal·zsi N02 MWNT hex-W03, Ag Au Gas Resistance 100 ppb 243 

2008 Lee N02 SWNT Gas Resistance 3ppm :.144 

2008 Moon N02 MWNT Binder Gas Voltage 50 ppm :.14!:> 

2011 Leghrib N02 MWNT B, N, Sn02, Gas Resistance 100ppb :.146 

2004 Wei N02 SWNT Sn02 Gas Resistance 200ppm :.141 

2004 Liang N02, MWNT Sn02 Gas Resistance 2ppm :.1411 

2003 Santucci N02, CO MWNT Gas Resistance 10ppb :.149 

N02, CO, 

NH3, EtOH, 10 ppb 

2003 Cantalini C6H6,H20 MWNT Gas Resistance (N02) 232 

N02, CO, 

NH3, H20, 

2004 Valentini C2H50H MWNT Gas Resistance 10ppb 236 

N02, HCN, 

HCI, Cl-2, 

acetone, Metal, polymer 

2006 Lu benzene SWNT coatings Gas Resistance Various ppm 250 

Semiconducting 

2000 Kong N02, NH3 SWNT Tubes Gas Resistance 200ppm 251 

2003 Qi N02, NH3 SWNT Nation, PEl Gas Resistance <1ppb 252 
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2005 Li N02, NH3 5WNT Gas Resistance 253 

2007 Jung N02, NH3 MWNT Gas Resistance 100 ppb 254 

2007 Penza N02, NH3 MWNT Gas Resistance 10ppm 255 

5ppm, 

2007 Penza N02, NH3 MWNT Au, Pt Gas Resistance 100ppb 256 

N02, NH3, 

2008 Penza H25 MWNT Pt, Pd Gas Resistance <1ppm 257 

N02, 

2003 Li nitrotoluene 5WNT Gas Resistance <44ppb 63 

N02, 502, 

2003 Goldoni NH3 5WNT Gas Photoemission <10ppb 258 

N02, 502, 

2004 Goldoni NO 5WNT Gas Photoemission <10ppb 259 

2008 Ueda NOx MWNT Gas Resistance 2ppm 2ti0 

2008 Ueda NOx MWNT laser Gas Resistance 2tl1 

5WNT, 

2008 Ueda NOx MWNT Gas Resistance 5ppm 262 

2000 Collins 02 5WNT Gas Voltage 263 

2001 Wadhawan 02, Ar, H2 5WNT Gas Voltage 264 

2007 Watts 02, H20, MWNT Gas Resistance 2c:. 

02, H20, 

2004 Valentini NH3, N02 MWNT Gas Resistance 100 ppb 266 

20ppb, 

2011 Ghaddab 03, NH3 5WNT 5N02 Gas Resistance 1ppm 267 

Pyrenecyclodextri 

2008 Zhao Organic 5WNT n Liquid Resistance 266 

2004 Picozzi Ozone 5WNT modeling paper 269 

Pressure, 

2010 Choi et al. Flow MWNT Gas Resistance 270 



182 

Resistance/Parti 

2005 Suehiro SF6 MWNT Gas al Discharge 271 

2010 Kang SF6 SWNT Benzene Gas Resistance 'J.f'l. 

2011 Chaudhury S02, H2S MWNT PS Gas cyclic volt 273 

SOCI2, 

2006 Lee DMMP SWNT DNA Gas Resistance 50ppm 274 

TEA(aminoc 

2005 Auvray ylane) SWNT Gas Voltage 20 ppb 275 

THF, 

ethanol, 

2006 Wei cyclohexane MWNT PVAc, PI Gas Resistance 276 

Toluene, 

acetone, 

hexane, 

2006 Parikh water MWNT PET Gas Resistance 277 

Toluene, Optical, 

2007 Con sales xylene SWNT Gas Acoustic 120ppb 276 

2001 Doleman voc Polymers Gas 1ppm 'J.f!l 

2003 Hosseini voc PVAc-graft-PPy Gas cyclic volt 200ppm 260 

SWNT, 

2004 Penza voc MWNT Gas Acoustic 2ppm 261 

2005 Penza voc SWNT CdA Gas Acoustic <1ppm '1.1:!'1. 

2005 Snow VOC, DMMP SWNT Pd Gas Capacitance 60ppm 119 

Capacitance, 

2006 Snow VOC, DMMP SWNT Resistance 263 

VOCs, other Resonant 

2005 Picaud gases SWNT Cavity ppb 264 
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