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Abstract 

Regularity and Nearness Theorems for Families of Local 

Lie Groups 

by 

Tom McGaffey 

In this work, we prove three types of results with the strategy that, together, the 

author believes these should imply the local version of Hilbert's Fifth problem. In a 

separate development, we construct a nontrivial topology for rings of map germs on 

Euclidean spaces. First, we develop a framework for the theory of (local) nonstandard 

Lie groups and within that framework prove a nonstandard result that implies that a 

family of local Lie groups that converge in a pointwise sense must then differentiability 

converge, up to coordinate change, to an analytic local Lie group, see corollary 6.3.1. 

The second result essentially says that a pair of mappings that almost satisfy the 

properties defining a local Lie group must have a local Lie group nearby, see proposi­

tion 7.2.1. Pairing the above two results, we get the principal standard consequence 

of the above work which can be roughly described as follows. If we have pointwise 

equicontinuous family of mapping pairs (potential local Euclidean topological group 

structures), pointwise approximating a (possibly differentiably unbounded) family of 

differentiable (sufficiently approximate) almost groups, then the original family has, 

after appropriate coordinate change, a local Lie group as a limit point. (See corollary 
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7.2.1 for the exact statement.) The third set of results give nonstandard renditions 

of equicontinuity criteria for families of differentiable functions, see theorem 9.1.1. 

These results are critical in the proofs of the principal results of this thesis as well 

as the standard interpretations of the main results here. Following this material, 

we have a long chapter constructing a Hausdorff topology on the ring of real valued 

map germs on Euclidean space. This topology has good properties with respect to 

convergence and composition. See the detailed introduction to this chapter for the 

motivation and description of this topology. 
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Chapter 1 

Introduction: History, Summary, 

Context 

We begin with a summary of contents as well as a perspective, historical and moti­

vational. 

1.1 Content and objectives 

In the first part of this paper we give proofs of the following results. The first re­

sult is a regularity result. Suppose that (9, 'IjJ, v) is an seQ O"local *Lie group (see 

definition 3.1.2) defined on some standard neighborhood of 0 in IRn for n E IN. (See 

preliminaries for definitions.) Then there is a homeomorphic change of coordinates 

on some standard neighborhood of 0 in IRn such that the standard part of (9, 'IjJ, v) is 

an analytic local Lie group in the new coordinates. (This is theorem 6.2.2.) Note that 

the seQ condition only guarantees that the standard part will be a continuous local 

1 
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topological group with respect to the Euclidean topology; i.e., a locally Euclidean 

topological group. (Without this condition, a I7local *Lie group can have a quite 

pathological standard part, if it exists at all.) Some dramatic standard consequences 

follow immediately: eg., and crudely, CO precompact subsets of local Lie groups are 

in fact C k precompact for any integer k (with respect to special coordinates); see the 

results in section 6.3, especially corollary 6.3.l. 

The (generalized) local Fifth problem of Hilbert asks if a general locally Euclidean 

local group has a homeomorphic change of coordinates making the local group into a 

local Lie group in the new coordinates. (vVe say generalized for, as defined, local Lie 

groups generally are not neighborhoods of the identity in (global) Lie groups.) Given 

this statement, we find that a corollary of the above nonstandard result is a statement 

asserting that the (generalized) local Fifth of Hilbert is implied by a density result: ie., 

of local Lie groups in local Euclidean local topological groups. In attempting to prove 

the density result, we have proved the following almost implies near result, see chapter 

7. We define the notion of an almost local Euclidean C k group: an appropriate pair of 

differentiable maps (1/J, v) that are s-almost groups for some s > 0 (roughly: instead 

of satisfying the equations defining a group structure, they satisfy inequalities that 

are pointwise s-close to these equalities) , see definition 7.2.2. Given this notion and 

given that we have some bound on derivatives of putative grouplike objects (1/J, v), we 

prove that for every r > 0, there is s > 0 such that if (1/J, v) is an s-almost group, then 

there is a C k (local) Lie group in an r neighborhood of (1/J, v) (in the C k topology.) 

This is a standard statement but the proof is nonstandard; see the specific statement 

in proposition 7.2.1, chapter 7. Note that this result is new (much stronger than 
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previous results along this line) and properly construed was not considered possible 

in some circles, see Ruh, [42] p. 563. Now given (1): a nonstandard rendition of 

this almost implies near result (ie., corollary 7.2.1), (2): the nonstandard version of 

the main regularity result along with (3): a curious nonstandard smoothness result 

in the appendix (corollary 9.2.1); we can prove the surprising standard result given 

in corollary 7.2.2. Roughly this says the following. Suppose that Q: is a family of 

potential (but not!) Euclidean local topological groups (ie., continuous pairs (1);, v) 

as described above) that has CO precompactness properties, see definition 6.3.1, and 

suppose that this family is pointwise approximated by a good family of C k almost 

groups (whose derivatives are not necessarily bounded) that contains s-almost groups 

for arbitrarily small s > O. Then, in fact, in appropriate coordinates, the family Q: 

has a pointwise limit that is a local Lie group. 

One can also prove an elementary approximation result getting that C k approx­

imations of our local Euclidean group are approximate groups (this result has been 

omitted as it is not informative and awaits other results before it can be useful). The 

author believes that this simple approximation result along with the regularity-near 

results just mentioned should enable us to prove that one can approximate locally 

Euclidean local topological groups by local Lie groups, ie., get the density result al­

luded to earlier. The argument is simple: approximate the local group by almost C k 

groups and then find a local Lie group close to this almost group (using some version 

of the almost implies near), then use some version of the regularity material to show 

that these approximations have bounded derivatives. But the author is having prob­

lems with technical issues and to date has not finished this part. If the proof can be 
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finished, then the density result along with the regularity result will have the local 

Fifth problem as a corollary. 

The majority of the work in this paper is the proof of the main regularity theorem 

which consists of two parts, both fairly elementary with respect to complexity and 

depth of background knowledge. If 9 is our nonstandard local Lie group, the first part 

gives a proof that for x E 9 (the *Lie algebra of Q) adx is a nearstandard linear map. 

This is proved in chapter 4. The second part, see chapter 5, uses this fact to prove 

that the standard part of the exponential map for (g, Q) is a local homeomorphism. 

In the last brief part, chapter 6, we use again that adx is nearstandard to show that 

the Hausdorff series (ie., the *Lie group product in the new coordinates) has analytic 

standard part. Tieing together the regularity results on the ad map, the exponential 

map and the Hausdorff series, we easily get the main result, 6.2.2. 

It should be mentioned that the appendix of this paper, chapter 9, contains techni­

cal results that are new and eg., critical to the proof of the almost implies near result 

noted above. These are results of nonstandard analysis. One part of the statement 

of the primary result, theorem 9.1.1, can be be described as saying that any internal 

function that is pointwise infinitesimally close to an internal S-smooth function (its 

internal derivatives are finite) is itself S-smooth; crudely: a super pointwise restric­

tion implies differentiability restrictions. Note the corollaries of this result, especially 

corollary 9.1.2. 
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1.2 History of the Fifth problem and NSA 

Hilbert stated his Fifth problem within the context of Sophus Lie's work on local 

transformation groups in the late nineteenth century. Roughly speaking, he asked if a 

local group acting continuously could be given coordinates for which the action would 

be analytic. See Palais article, [34], for this and the following historical remarks. With 

the advent of the modern formulation, ie., in terms of actions by (global) groups, the 

general group action problem was found to be false. A restricted question in terms of 

the group acting on itself, ie., the group's own product structure, had some possibility 

of holding if the group had a reasonably nice topology. That is, if it was assumed that 

the group was assumed to be locally Euclidean, then the problem was solved in the 

affirmative. (In the following historical sketch, see Palais' article, [34] for the details.) 

First von Neumann, solved the compact case in 1933, then the abelian case was proved 

by Pontryagin in 1939, followed by the solvable case (Chevally in 1941). Finally, after 

more than 10 years, a proof of the general case followed from the work of a pair of 

papers (Montgomery and Zippin [30] and Gleason [9]) that appeared in a 1952 issue 

of the Annals of Mathematics . Very briefly, Montgomery and Zippin showed that 

a locally Euclidean group could not have "small subgroups", while Gleason proved 

that such groups have continuous, injective homomorphisms into Lie groups and then 

invoked a result of E. Cartan which implied that such groups have smooth structures. 

A proof by Jacoby of the result for locally Euclidean local groups appeared in the 

Annals of Mathematics in 1957, [18]. But as Peter Olver, [33], clearly demonstrates, 

this proof is critically flawed, as will be discussed below and in in detail in chapter 
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8. As Olver also notes in this paper, in the intervening years substantial theory has 

come to rely on this local version of Hilbert's Fifth. Meanwhile, many years later, 

a much shortened nonstandard proof of the Fifth problem by Hirschfeld appeared in 

the Transactions of the AMS, [16]. Hirschfeld followed the approach of the (stan­

dard) proof by Montgomery-Zippin-Gleason; but the nonstandard tools allowed great 

simplification of the original proof. Hirschfeld is able to show that the set of one 

parameter subgroups has a vector space structure by a straightforward identification 

of these with a quotient of the set of infinitesimal elements of a given magnitude 

scale by those whose scale is infinitely smaller. Using this, he is able to then define a 

homomorphism from our group to the group of automorphisms of this vector space by 

hand. Generally, his arguments followed Gleason but substituted a careful analysis 

with infinitesimals in the place of Gleason's functional analysis. 

The author of the present paper discovered Olver's analysis of local topological 

groups (in particular explaining the failure of Jacoby's proof), [33], and began to 

think about a totally different (nonstandard) approach to the (until recently) open 

local version of the Fifth problem. About the same time we learned that Dr van den 

Dries had written up notes on a nonstandard proof of the Fifth problem (of which 

Hirschfeld mentions in his paper) and enquired about the possibility of obtaining a 

copy of such. During this correspondence, the author informed Dr van den Dries 

on the open local Fifth problem. During this time, we began a correspondence with 

I. Goldbring, a student of Dr van den Dries, with respect to our work on the main 

regularity theorem in this paper. In the intervening years, Goldbring has produced a 

proof of the local Fifth problem, [10] apparently following the approach of Hirschfeld, 
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avoiding the problem of nonglobalizability of local Euclidean local groups (see below 

and chapter 8) that doomed Jacoby's approach. Hence, in a strong sense, the proof, 

in spite of its nonstandard detour, is modelled on the original proof of 1952. As 

summarized above, the approach in the present paper could not be more different 

from this. 

vVe need some remarks on why the local Fifth problem is fundamentally different 

than the (global) Fifth problem. Crudely, some local topological groups can not be 

neighborhoods of the identity in topological groups: many-fold associativity follows 

from associativity for topological groups, but for local groups it does not, as it involves 

global topological considerations. For details see Chapter 8 of this paper. The upshot 

of this is that, apparently many years after Jacoby's paper appeared, its argument 

was found to depend on this flawed assumption that the local group embedded in a 

(global) group. For a careful exposition, see Olver's paper [32]. Mal'cev had published 

a paper in 1941 specifying nontrivial conditions necessary for 'globalizing' a local 

group. See [28], but especially see Olver's lucid extension of Mal'cev's result. Chapter 

8 of this paper gives some relevant details. Curiously, Pontryagin refers in his book 

to the paper of Mal'cev [36] p138-39 stating that local groups are not always locally 

isomorphic to a neighborhood of the identity in a global topological group, and nobody 

seemed to have noticed this at the time. Note that nobody seems to have investigated 

the relation of Pontryagin's embedding of local Lie groups with trivial center into 

global Lie groups and Olver's critical counterexamples. 

For an overall understanding oflocal Lie groups and the position of Jacoby's flawed 

result, see Olver's excellent paper, [32]. Good exposition on Hilbert's Fifth Problem 
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are given by Kaplansky's texts [19] and [20], and the book of Montgomery and Zippin 

[29]. A nonstandard rendition of the problem was written by van den Dries, but vVe 

have not seen it. 

1.3 Strategy 

Here we summarize the major strategies in this paper. Overall, and from a standard 

point of view, the strategic approach here is to show that locally Euclidean local 

groups are limits of local Lie groups and that the objects in these limiting processes 

can be regularized by appropriate coordinate changes to preserve their smoothness. 

Finally, strategic use of nonstandard mathematics allows us to avoid sequences and 

limiting arguments. Below, we summarize from the nonstandard perspective the 

major strategies involved. 

1.3.1 Main nonstandard theorem 

The strategy of the proof follows from the insight that if we can prove that the 

*Lie algebra of the ulocal *LG (see 3.1.4) is nearstandard i.e., that the *Lie bracket 

[ , 1 : *1R~es x *1R~es -+ *1R~es' then we can prove our change of coordinates * exp-l is 

an S-homeomorphism and that the group law in the new coordinates, the *Hausdorff 

series, * H series, is S-analytic. For the definition of an S-homeomorphism see 

sections 2.5.1 and 5.4, definition 5.4.1. For preliminaries on the dual use of the 

*Hausdorff (aka *CHD series) see sections 5.2 and 6.1. To prove that * exp is an 

S-homeomorphism, we had to prove estimates on the * H series (see 6.2.2) and prove 
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a subtle NSA fact (section 5.4). The proof that the * H series is S-analytic (see 

section 2.5.4, and 6.1) is straightforward. 

1.3.2 Lie bracket S-continuity 

Yet we must still prove that the *Lie bracket, two derivatives above a group operation 

that is only assumed to have continuous standard part, is in fact continuous (at 

the standard level). The proof depends only on the intertwining formulas of the 

three canonical maps ag : h H ghg-l, Adg(v) = d(ag) Ig=e and adv : w -+ 

[v, w]. Note that we are using these, and what follows, on the internal level. See 

section 4.1, expression 4.1 for the first formula and section 4.2, expression 4.2 for the 

second formula. Using these formulas we reduce the problem to a question about the 

asymptotic behavior of the internal Euclidean exponential map, EXP, and from this 

to the elementary differential equation it satisfies, written in terms of the differential 

of the product map on*Cln , see section 4.3. 

1.3.3 Almost implies near 

The work in chapter 7 was initially motivated by the paper of Anderson, [11. Nonethe­

less, understanding the argument of Spakula and Zlatos in [451 was instrumental in 

our construction of the proper nonstandard equicontinuity argument necessary for a 

good "almost implies near" result for local topological groups. To complete the proof 

of this fact, we also needed the S-smoothness material in the appendix, chapter 9 (see 

the material on S-smoothness below). 
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1.3.4 Summary and prospects 

This paper is structured as follows. Chapter 2 gives basic preliminaries on nonstan­

dard analysis and eg., nonstandard calculus on Euclidean space. Chapter 3 gives the 

basics on local groups, local Lie groups and their Lie algebras and some nonstandard 

renditions of these. In both chapters We have to prove basic groundwork material as 

some does not exist or is not clear in the literature. Chapter 4 gives the preliminary 

one dimensional material, the Ad lemma, the preliminary intertwining formulas and 

finally a proof of our linchpin result: that ad is Sea. Chapter 5 gives a proof that 

the exp map is sca and involves a fair amount of NSA work. Chapter 6 starts with a 

proof, using that ad is S-continuous, that the group product in the new coordinates, 

the *CHD series, is S-analytic, uses this and the previous chapter to give a short 

proof of the main nonstandard regularity theorem. Note that section 6.3 covers a 

fairly compelling standard corollary of this main theorem. Chapter 7 considers the 

density question and chapter 8 gives an account on why local groups don't embed 

in (global) groups along with a nonstandard result on global associativity. Chapter 

9 gives some generally useful technical results on S-smoothness that were helpful in 

chapter 7. 

It seems possible to the author that a more general result is possible, namely that 

the condition on S-continuity of the internal product can be relaxed to S­

Borel measurability of the product. Also, it seems to the author that these results 
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can be extended to Lie groups over p-adic fields, which he will pursue as time allows. 

Finally, as a method for showing that weak regularity implies strong regularity, these 

tools appear to have much broader application than the usual standard tools 

1.4 Topologizing map germs 

The last extensive chapter has an, in house, summary of its contents, see section 

10.1. Here, we will merely note our motivation and then give a descriptive sum­

mary of results. This work was partially motivated by the author's belief that germs 

(of functions, for example) had not been properly covereq by nonstandard analysts. 

Although Robinson, see his book [401 and his paper on germs, [38], had given non­

standard presentations of germs, we believed that the capacity of nonstandard tools 

to analyze this area had not really been utilized. Furthermore, with respect to the 

present work on families local Lie groups, we felt that a nonstandard study of fami­

lies of germs of local Lie groups would help to understand their nature. vVe therefore 

began a study of families of germs of mappings from the point of view of nonstan­

dard mathematics, and immediately the desire for a good ambient topology for these 

seemed critical before we could proceed to a nonstandard study of families of germs 

of topological groups. The last chapter is the result of our analysis to this point. 

Briefly summarizing our results, we are able to construct a Hausdorff topology on 

the ring of germs at 0 of real valued functions on IRn that has the following proper­

ties. A convergent net of germs of continuous functions has a limit point that is the 

germ of a continuous function. Furthermore, ring operations as well as left and right 
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composition are continuous in this topology. The topology is defined in terms of a 

*supremum norm on a ball about 0 of infinitesimal radius 6. Nonetheless, we prove 

that the topology is independent of the choice of 6 and also prove results that give 

close connections with standard convergence. For a much more detailed description 

of the contents of chapter 10, we refer the reader to the extensive introduction to this 

chapter beginning on page 139. 



Chapter 2 

Preliminaries: Nonstandard topology 

and calculus 

2.1 A brief description of NSA and local NS calculus 

For those familiar with nonstandard analysis (NSA), this section can be referred back 

to for some notation, definitions and a few basic results in local differential calcu­

lus, appropriately transferred. In introducing NSA, instead of giving a rigorous, and 

therefore obscure, approach to to its foundations, we will instead begin with a crude 

and descriptive introduction to the basic structures and tools of the superstructure 

approach. Then we will include a basic index of definitions, usually along with nota­

tion. We will then follow with the basic nonstandard local calculus that is needed. 

For NSA, my standard is the text of Stroyan and Luxemburg [43], but Henson 

in [15J and Lindstrom in [26J are good user friendly introduction, and the article 

of Farkas and Szabo [6J give a good picture on how nonstandard methods simplify 

13 
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proofs. For a clear exposition on the relation between ultrafilters and the faithful 

transfer of theorems to ultrapower models, see Barnes and Mack, [3] p.62-64. One 

way to motivate and explain nonstandard models of mathematical objects is to think 

of them as a "structure". See Ballard, [2], for a short introduction to the model theory 

of structures along with a topological introduction to recent versions of nonstandard 

models and more generally Di Nasso, [31], for an overview and analysis of the various 

approaches to a nonstandard mathematics. 

2.1.1 Brief overview of NSA 

We will begin with the notion of structure from model theory, the birthplace of non­

standard mathematics and briefly try to give a model theoretic view of nonstandard 

math. We will rapidly segue into the ultrapower idea and spend the lion's share of this 

introduction on developing a picture of the prototypical example: the nonstandard 

real numbers and its internal and external subsets. 

Loosely speaking, a structure {X, R} consists of a pair: an ambient (variable) 

set X along with a formal (fixed) collection, R of relations (unary, binary, ... ) and 

operations on (unary, binary, ... ) on this set and possibly some canonical elements, 

0.0, bo, ... , of that set. Think of an ordered topological group {g, R} as a set 9 coming 

from a bag of many such, along with R = {e,·, <}, where e, denotes the identity, 

., the product binary operation, and the order, < (binary relation); the formal set 

of symbols, R, structuring any and all such 9 as ordered groups. Or think of an 

ordered field {IF, S} as a set IF along with symbols for the two binary operations and 
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the relation symbol and including two canonical symbols representing the additive 

and multiplicative identities. These object are not an ordered group, respectively 

ordered field, unless all of compatibility axioms among the collection R, respectively 

S, are satisfied. These can be expressed formally; irrespective of the particular set 

X, respectively IF, using the syntax of (usually) first order logic. 

For a given set and structure on it, {X, R}, in our (standard) world, we can con­

struct richer (nonstandard) models {* X, R} that satisfy all of the theorems, suitably 

interpreted, that our standard model satisfies. In fact, we have a formal transfer cor­

respondence between the two 'models'. For example, if our ordered field above is the 

pair {Q, S} where along with the compatibility axioms to get the full set of axioms get­

ting a characteristic 0 totally ordered field (hence containing IQ), then {*Q, S} would 

be a characteristic 0 totally ordered field. But it would now have vastly more elements 

and with this larger (model theoretically isomorphic!) object, we find that those the­

orems which might be conceptually or proofwise difficult in the original structure are 

often much less so in the enriched model. Given that there is a formal correspondence 

(transfer) between the set of theorems of {X, R} and those of {* X, R}, this allows 

the strategic possibly of proving theorems in the richer {* X, R} and then transferring 

them back to {X, R}. (See the example with respect to continuity below.) 

With respect to the ultrapower method for acquiring these enriched models, we 

have the following outline followed by the less abstract constructions for *IR, the 

nonstandard real numbers. Let FJ is a suitable nonprincipal ultrafilter (see the 

discussion below) on a sufficiently large set J, and if, for f, 9 : J -+ X, we define 

f ~ 9 if {j E J : f(j) = g(j)} E F, then the four properties of ultrafilters makes this 
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a particularly nice equivalence relation on the set of maps from J to X (below we 

will write these as sequences in X indexed by J). In fact, * X ~ X/ ~ has precisely 

the same (first order) mathematical properties as X, once they are suitably defined 

for F:J -equivalences classes of J- sequences of elements of X. In particular, * X 

satisfies all of the structural features of n, along with all of the logical consequences, 

eg., theorems, when, loosely speaking, constants and sets being quantified over are 

replaced with the appropriate internal (see below) analog in the nonstandard universe. 

Let us give a simple but in some ways prototypical example of an ultrapower, a 

nonstandard model, *IR, for the real numbers, IR, and we will show how the properties 

of our ultrafilter make *IR a totally ordered field properly containing the totally or­

dered field IR; eg., verify that *IR thickens and extends IR. We begin with a definition 

of an ultrafilter on IN. This will be a collection of subsets, F, of IN that satisfy the 

following four properties: (1) if A, B c IN with A c B and A E F, then B E F, (2) 

if A, B E F, then An B E F, (3) the empty set is not an element of F, and finally 

the maximality property (4): if A c IN, then precisely one of A or IN '" A is in F. To 

get a richer * X from a given X, at least when X is infinite, we need that F be (5) 

nonprincipal; ie., satisfies the additional property that n{ J : J E F} is empty. (Note 

that nonprincipal filters on eg., IN, ie., collections satisfying (1), (2), (3) and (5) are 

easily had: one example is the collection of all A c IN such that IN '" A is finite. To get 

F that satisfy property (4), in addition to the other four properties, we must invoke 

Zorn's lemma; and as such can't have constructive examples of such ultrafilters.) 

To get our ultrapower of IR with respect to F, we introduce an equivalence on 

the set of sequences IRIN = {(ai) : i E IN} via our ultrafilter (as noted in the previous 
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paragraph); namely, if (ai), (bi) E IRN , we declare that (ai) t, (bi), ie., are in the same 

F equivalence class, if {i : ai = bJ E F and we let *IR = IRN / F denote the set of F 

equivalence classes. (The fact that t, gives an equivalence relation follows from the 

definition of ultrafilter.) Typical of the ultrapower construction, we lift all functions, 

relations, operations, etc., that are defined on IR, to IRN componentwise and verify 

that that they push down to *IR as functions, relations, operations with precisely the 

same (finitely stated) properties, ie., they transfer to *IR. For example, first lift the 

prod uct on IR to IRN by defining (ai) . (bi) ~ (ai . bi). Then lift the ordering from IR by 

(ai) < (bi) if ai < bi for all i E IN. This will just give a partially ordered ring (with 

lots of zero divisors.) 

Next, we find that we can, in a well defined manner, push these down to the set 

of equivalence classes, ie., *IR, and magically (via the properties of ultrafilters) get 

a totally ordered field as follows. First, if (ai) E *IR denote the equivalence class 

containing (ai) E IRN, let's show that + and < descend in a well defined way to *IR. 

Define (ai) + (bi) = (ai + bi) and (ai) < (bi) if {i : ai < bi} E F. Is this well defined, 

ie., do they respect equivalence classes? Suppose (ai) t, (a~) and (bi) t;, (b~), we must 

verify that (ai) + (bi) t, (a~) + (bD. But, by definition, if I = {i : ai = aa and 

J = {i : bi = ba, then I, J E F and so property (2) above implies that J( ~I n J E F, 

that is, as J( C L~{ i : ai + bi = a~ + b~}, then L is in F by property (1) above, as we 

wanted. Similarly, (with the same hypotheses and notation) we verify that (ai) < (b i ) 

is well defined: if A = {i : ai < bi} E F, we must have that B = {i : a~ < ba E F. 

But clearly, if i E C~I n J n A, then a~ < b~, ie., C c B and as C E F by (repeated 
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use of) property (2), then B E F by property (1). Continuing with these verifications, 

we get that *IR is a partially ordered ring. 

Let's veri(y that *IR in fact is totally ordered by <. At this point, we need a 

property of nonprincipal ultrafilters, ie., follows from the above five properties. If 

A l , ... ,Ak are pairwise disjoint subsets of IN with Al U ... U Ak = IN, then precisely 

one of the Aj's is in F. From this we will get immediately that the partial order 

< is in fact a total order on *IR. For given (ai),(bi) E *IR and I = {i : ai < bd, 

J = {i : ai = bd and K = {i : ai > bi}. Then I, J and K are clearly disjoint with 

I U J u K = IN and so the previous statement says that precisely one of I, J or K is 

in F, ie., by definition precisely one of (ai) < (bi), (ai) = (bi) or (ai) > (bi) holds, as 

we asserted. One can go on to verify that *IR is a totally ordered field that contains 

an isomorphic copy of IR, ie., the set of equivalence classes of constant sequences, 

ie., those elements (ai) satisfying {i : ai = a} E F. Of course, if we denote such a 

sequence by (a), we have a field injection a H (a) : IR --+ *IR. We will denote this 

embedded field of standard real numbers by (TIR. 

Let's demonstrate that *IR is essentially 'thicker' and 'longer' than the embedded 

copy of IR. We will first show that it is thicker at O. Here is where the nonprincipal 

assumption plays a direct role because it implies that finite subsets of IN cannot be 

elements of F, hence their complements the cofinite subsets must be elements of F. 

Given this, suppose that al, a2, ... E IR are positive and aj --+ 0 as j --+ 00 and let 

a denote (ai) E *IR. Then if a E IR is positive, I ~{i : 0 < ai < a} is clearly cofinite 

in IN and so I E F. But this says that for any positive real number a, we have that 

(0) < a < (a), ie., a is positive in *IR, but smaller than any 'standard' real number; by 
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definition 0: is a positive infinitesimal. One can verify that these are quite numerous, 

and with a little more work, see that the image of IR in *IR is in a strong sense discrete 

in *IR. But aIR is also bounded in *IR in the following sense. If bi E IR is a sequence 

of positive numbers with bi unboundedly increasing and (3 denotes (bi ) E *IR, then an 

identical argument shows that if a E IR is any positive number, then (a) < (3, ie., (3 is 

a positive infinite element of *IR (by definition). So one might say that CTIR is bounded 

between -0: and 0: for any such infinite positive number 0:. 

In the previous example, we used the properties of F directly. Yet much of 

the groundwork theory for the model theoretic approach to NSA is to allow one to 

avoid ever more complicated arguments involving equivalence classes of sequences. 

Instead, one wishes to be able to use the enriched universe by deploying a small 

number of basic principles. For example, in working with 'internal sets' (see our 

discussion on internal subsets of *IR below) one uses the internal definition principle 

instead of equivalence classes of sequences. The internal definition principle exists in 

a range of generalities; see Keisler, [211 p46, for a transparent version, see Henson, 

[151 p31, for a more involved version. Note that, inherent in the logical transfer of 

structure is the fact that some subsets of * X, the external ones (again see below), 

don't faithfully carryover the logical consequences of R. The internal subsets support 

these transferred statements. (As we further develop our example around the transfer 

of IR and its collection of subsets, P(IR), we will give some idea on how this works.) 

But, internal subsets are still remarkably numerous, and the external subsets coupled 

with internality of transferred statements imply the powerful overflow phenomena; 

see below. 
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Continuing with the above concrete construction of *IR; let's give examples of 

internal and external sets in order to get a sense of the difference between internal 

and external sets, see why only the internal sets lift all standard properties to the 

nonstandard level, and also get a crude sense of how to deal with the 'levels problem' 

(see below). In order to do this we must move up to the next rung in the set theoretic 

universe (ie., sets whose elements are themselves nontrivial sets); we will look at the 

transfer of P(IR), the collection of subsets of IR. First of all, we will follow the recipe 

used when trying to lift the properties of IR to *IR; that is, we will lift componentwise 

and then, in pushing down use F as before. Now as P(IR) denotes the the collection 

of subsets of IR; then elements of *P(IR) should be F equivalence classes of elements of 

P(IR)rN. Denoting the elements of P(IR)rN by (Ai), we should, according to the recipe 

for *IR, define (Ai) t;, (Bi) precisely if {i : Ai = Bd E F. (One can check that this 

does give an equivalence relation, again via the use of the properties of F.) According 

to our recipe for lifting relations on IR to *IR, and here 'is a subset of' is a relation, we 

define (A) C (Bi) if {i : Ai C Bd E F. 

This works perfectly. Note though a possibly confusing point (the first manifes­

tation of 'problem of levels'): early on we defined *IR to consist of a set of equiva­

lence classes, but now we also have an element of *P(IR), apparently given by the 

(equivalence class of the constant sequence (IR), denoted (IR)). That is, we have two 

manifestations of the nonstandard reals, as a set consisting of the nonstandard reals 

and as an element of a higher level nonstandard set *P(IR); these need to be the 

reconciled as with our ordinary sets. But once we follow our recipe and define the 

lift of the 'is an element of' relation of set membership, all will fit together. So if 
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a = (ai) is an element of *IR and A = (Ai), then following our mantra, we define 

(ai) E (Ai) if {i : ai E Ai} E F. (Once more ultrafilter properties get this to be a 

well defined relation on *IR x *P(IR).) So every element of *P(IR) can be seen as a 

set of nonstandard reals; in particular (ai) E (IR) if and only if {i : ai E IR} E F, but 

nonstandard numbers (ai) are defined up to F equivalence, ie., this element of *P(IR) 

contains precisely the same elements as *IR. Note also analogous to the inclusion 

IR -+ *IR of the standard real numbers (the image being the isomorphic copy denote 

by O"IR), there is the set of 'standard subsets' of *IR, O"P(IR) c *P(IR), given (as before) 

by equivalence classes of constant sequences. In particular, note that, although as a 

subset of *P(IR), O"P(IR) is external, all of its elements must be internal. ·With a little 

more detail, it's clear that all elements of O"P(IR) are of the form A = (A), for some 

A c IR, and so as such (ai) E A if and only if {i : ai E A} E F. 

Just so the reader may see that indeed these definitions of c and E on the ul­

trap ower (ie., nonstandard) level are consistent with each other (and as a further 

demonstration of the effectiveness of the properties of a nonprincipal ultrafilter), let's 

verify that (Ai) C (Bi) {:} (ai) E (Ai) implies that (ai) E (Bi). (Note that it follows 

immediately that two 'good' nonstandard sets, ie., elements of *P(IR), are equal if 

and only if they have the same elements. This is the transfer of a basic property of 

sets: they are equal if and only if they contain the same elements.) To verify ::::}, let 

1= {i : ai E Ai} and J = {i : Ai C Bi}. Then, our hypothesis and definitions imply 

that I and J are in F and so In J E F. But clearly In J c K~{i : ai E Bi} 

and so property (1) implies that KEF. We will prove <= by contradiction: suppose 

that the conclusion does not hold, ie., that (Ai) ct. (Bi). Then it can't be true that 
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K~{i : Ai C Bd E F and so by property (4), KC, the complement of K in IN is an 

element of F. So, by definition of KC, if i E KC, then there is ai E Ai with ai tt Bi. 

Define an element a = (ai) E *IR as follows: if i E KC, let ai = ai, and for all other i 

define ai arbitrarily. As KC C {i : ai E Ad, it's clear that a E (Ai); so it suffices to 

show that a tt (Bi)' But K'~{i : ai E Bi } C K, as by definition ai tt Bi for i E KC. 

Given this, suppose that a E (Bi ), then K' E F and so by property (1) KEF, 

contradicting this assumption. 

But now we find that there are subsets of *IR that are not of the form (Ai), ie., 

*P(IR) ~ P(*IR). For example, the set, JL(O), of infinitesimal in *IR cannot be written in 

the form (Ai). Let's indicate why this is true and at the same time give some idea on 

why transfer works for sets of the form (Ai), our internal subsets of *IR, ie., elements of 

*P(IR) and not for sets like JL(O), ie., the external subsets of *IR, symbolically elements 

of P(*IR) ,,*P(IR). Recall how we 'transferred' all relations, operations, etc., from 

IR to *IR: componentwise and then take F equivalence classes. The identical process 

works for elements of *P(IR); in particular, let's consider the 'transfer' of supremum. 

If A C IR is bounded above, then the completeness of IR says that sup A exists in 

IR. First, we need to define the transfer of bounded above for elements of *P(IR). 

We say that (A;) is *bounded above (* to indicate the transfer of this property) if 

{i : Ai is bounded above} E F. One can verify that this is well defined and has all of 

the properties of the standard notion bounded above. An important note here: we did 

not demand a uniform bound (for indices in some element of F). Given this and with 

some work, one can verify that if we follow our recipe and for A = (Ai) E *P(IR) that 

is *bounded above define * sup A~(sup Ai}, then * sup A is clearly in *IR and *sup 
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has all of the properties of the standard supremum, ie., the properties of supremum 

transfer to the internal subsets of *IR. (Note that this *supremum can be an infinite 

element of *IR!) In particular, if A is *bounded above and 5 = (Si) is the *supremum of 

A, then 25 tf. A and if a is a *upper bound for A such that a/2 is also a *upper bound, 

then a cannot be * sup A. Now suppose, by way of contradiction, that fL(O) E *P(IR) 

and note clearly that IL(O) is bounded above. Therefore, a = * SUp(fL(O)) E *IR. But 

a can't be infinitesimal as 2a would also be infinitesimal, violating a (transferred) 

property of supremum. Therefore, a must be noninfinitesimal, but then a/2 is also 

noninfinitesimal, eg., a smaller *upper bound for fL(O), contradicting that a is the least 

such. Hence, fL(O) cannot be internal, eg., cannot carry the transferred properties of 

bounded subsets of *IR unlike the internal subsets, where in fact these properties can 

be transferred using our all inclusive recipe. Note that hidden in this discussion is the 

first example of the 'overflow principle'. Namely, suppose that B is an internal subset 

of *IR that contains the infinitesimals, then clearly it must contain noninfinitesimals. 

We will return to this a little later. 

Returning to the general overview, depending on how carefully one chooses F:r, 

internal sets become so densely numerous that various intensities of an extremely 

useful compactness phenomena, saturation may occur. If" denotes a given cardi­

nality, we say that {* X, R} satisfies ,,+ saturation if given a set S ~ {Ai : Ai C 

*X is internal Vi E I} such that cardI :s; " and S has the finite intersection prop­

erty, then niEIAi is nonempty, in fact, usefully fat. Monads occur when S is the 

collection of neighborhoods of, for example, a point in a topological space. vVith 

these, expressions of continuity, Hausdorff-ness, etc, become intuitively simple. The 
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various degrees of saturation do not come into their own until one begins building a 

nonstandard model of whole communities of mathematical objects. See below. 

Let's look at saturation in the example we are considering above. vVe begin with 

the trivial finite intersection property statement about the set J of open symmetric 

intervals around 0 in IR, if k E IN and II, . .. ,Ik E J, then II n ... n Ik is nonempty. 

(Countable) saturation of our nonstandard real numbers, *IR, then says that n{* I : 

I E J} is nonempty, in fact, quite numerous. vVe can see this directly from our work 

above and in fact see that this set is precisely the (external) set of infinite sima Is, tL(O). 

Clearly, if i E tL(O), then Iii < (a) for every positive a E IR, ie., i E *1 for each I E J. 

On the other hand, if i is not in tL(O), then Iii is greater than some positive standard 

number (a) and so is not in, eg., *[-a/2, a/2]. 

Let's get a hint at how infinitesimal (ie., elements in our enriched structure) 

simplify the description of continuity and at the same time say a bit more about 

'overflow'. In order to do this, we need to extend our family of nonstandard sets. If 

~,( E *IR with ~ - ( E tL(O), then ~,( are said to be infinitesimally close (with respect 

to the metric topology on IR) and we write ~ cv ( to denote this. Now just as we 

defined the transfer of the set of all subsets of IR, ie., *P(IR), we can similarly define the 

transfer of the set of all real valued functions, F(IR, IR), on IR to be F(IR, IPY" modulo the 

equivalence relation defined by F; it works as before. And just as we saw that *P(IR) 

can be seen to be (once *set membership is properly defined) to be (the internal) 

subsets of *IR, we can identically get that elements of * F(IR, IR) can be seen to be the 

set of internal functions mapping *IR to itself. That is, we extend componentwise and 
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As before, this is well defined and is indeed an element of F(*IR, *IR). In particular, 

those internal functions that are equivalence classes of constant sequences, ie., those 

(li) where there is 1 E F(IR, IR) such that {i : Ii = f} E F are precisely the set 

of transfers, *1, of elements 1 E F(IR, IR), ie., the 'standard elements' in * F(IR, IR). 

Note now that just as *[1/2,1] is far richer than [1/2,1]' so is *1 much more that 1, 

eg., *1 is now defined on all of *IR so that its asymptotic behaviors in the large and 

the small are explicitly revealed. For example, we now have the capacity to give the 

nonstandard characterization of continuity of 1 at 0: if ~ rv *0, then * 1(~) rv *1(0). 

With this and a few metric properties of nonstandard numbers, proving continuity 

become greatly streamlined. This kind of simplification of proofs is often the case; 

again see the paper [61. 

We can see here a little of the use of 'overflow' and the 'internal definition principle' 

in the verification that this nonstandard condition is indeed equivalent to the usual 

definition of continuity of lat O. Suppose that *1 satisfies the above condition and 

let r E IR be a positive number. The internal definition principle implies that o~{ ~ E 

*IR : 1* 1(~) - *1(0)1 < *r} is an internal set (see the next paragraph). Actually, 

using our recipe (now getting a bit involved) and writing ~ = (Xi), we can see that 

this is just ({Xi E IR : 11(xi) - 1(0)1 < r}), an internal set by definition. But by 

hypothesis, 0 contains the infinitesimals and hence must contain noninfinitesimals 

(this is overflow). In fact, it contains a non infinitesimal interval implying that there 

is a positive s E IR such that Ixi < s implies that *x is an element of O. 

We will finish the analysis of *IR with a remark on the internal definition principle. 

Above, we needed to know that the nonstandard set {~ E *IR : 1* 1(~) - * 1(0) I < *r} is 
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internal to carry out the above argument. For this set, the internal definition principle 

says: the relations and operations «, -, E,junction) are all formally defined, the 

'constants' (*r, * j, *IR) are all internal; hence set formation involving these extended 

operations and relations with internal entities returns internal sets. It's a recursive 

type of definition. Of course, in this case we could see directly that it is of the form 

(8i ) for 'good' sets 8 i and therefore internal, but this can get quite involved. The 

internal definition principle allows one to check if a set is internal by the constituents 

in its definition, a very useful shortcut. 

It is important to note that the standard model fits consistently; standard struc­

tures lift into the nonstandard setting via the embedding into the nonstandard model 

by sending an element, set, function to the equivalence class of the corresponding 

constant sequence. 

In many situations this ultrapower extension of a particular object is sufficient. 

See for example, van den Dries and Wilkie's greatly simplified proof of Gromov's 

theorem on groups of polynomial growth, [44]. But what if a nonstandard model needs 

to be more encompassing of families of objects, their families of maps, functionals 

between these families, etc. One long standing solution to this extended enterprise is 

the superstructure approach of Robinson and Zakon. Over a ground object of ones 

choosing, one builds a tower of objects, a superstructure, in the manner of building 

the universe of set theory. In the examples given above, we have already begun this 

process in passing form the construction of * IR to the next level the construction of 

*P(IR) and then pulling these together by extending the notion of set membership. 

Generally, if we want to build this up to functionals on function spaces, etc., we need 
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to iterate this procedure, and extend the set membership relations (make sense of 

the transfer of a set whose elements are sets whose elements are sets whose ..... ) This 

is the problem of levels mentioned above that was adequately solved by Robinson 

and Zakon in the manner we indicated. Abstractly, for a given 'base' S (above we 

were working with S = IR) we build the superstructure V(S) = UnEIN V(S)n on this 

base. (See Lindstrom, [26] p.23) where V(S)n+1 = V(S)n U P(V(S)n)' For example, 

a collection of subsets of eg., COO(IR, IR), and so for example a germ of a subset of 

CCXl(IR, IR), an equivalence class of family of germs of subsets of COO(IR, IR), etc. is 

an element of V(S)n for some n E N (see, for example Rubio, [41] pp. 19-22) and 

therefore its transfer is a standard element of *V(S)n. Looking at our examples above 

one should not be surprised to see that the internal elements in this transferred tower 

must be precisely the elements of *V(S)n for some n E N. 

2.2 Three principles and working tools 

After the introduction above, we will briefly discuss the main three working principles 

of nonstandard mathematics. The above discussion should be sufficient to make the 

descriptions below understandable. We will then list, with very brief description, the 

nonstandard notations we will use. 

2.2.1 First principle: transfer 

There are three principles that make *V(S) particularly useful. The first, sometimes 

called the transfer principle says, roughly, that any true statement in the standard 
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world has a precise counterpart about the corresponding internal objects in *11(8). 

We saw this at work in (partially) verifying that *IR is a totally ordered field. For this 

paper, there is a basic theorem in Lie group theory that a continuous homomorphism 

of Lie groups is Coo. The transfer theorem (roughly) implies that a *continuous 

homomorphism of *Lie groups is * Coo . Basically, the * that is qualifying the three 

terms continuous, Lie group and Coo says we are talking about internal objects and 

hence guarantees the validity of the statement in *V(8). Sometimes We will say 

that we are *transforming (or transferring) a particular object or statement; in such 

cases We am invoking the transfer theorem. Sometimes We will use it without such 

a remark. 

Note that we will use reverse transfer at critical points in the proofs of the standard 

consequences of nonstandard results, eg., in corollarys 6.3.1 and 7.2.2 (see also the 

curious corollary 9.1.2 of the theorem in the appendix). These will typically be of the 

following form. If B is a set satisfying * B is nonempty, then B is nonempty. This 

curious strategy is helpful as it is often much easier to show that * B is nonempty, 

than to show that B is nonempty! 

2.2.2 Second principle: saturation 

The second principle is that of (sufficient) "saturation" of *V(8). We have described 

consequences of saturation, as well as a brief description on page 23. There are a 

variety of types and degrees of saturation. A *V (8) big enough to have nonzero 

*polynomials that vanish at all standard real numbers is an enlargement. Generally, 
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if K, is a cardinal larger than the countable cardinal, then there exists *V(S) that are 

"K,-saturated." As described above, this means that if {Aj : j E J} is a set of internal 

elements of *V(S) that has the finite intersection property and card(J) is less that 

K" then njEJ Aj is nonempty. Note that this intersection is often an external set. 

For example, let K, be greater than the cardinality of A = {A : A c Coo (IRm , IRn)}, 

let fa E Coo(lRm, IR) and Ufo = {U C coo(lRm, IR) : U is a neighborhood of fa in some 

COO-topology}. Then {*U : U E Ufo} is a collection of internal sets and the cardinality 

of the collection is less than K,; so if *V(S) has" K,-saturation" then 

P,Ua) = n{*U : U E Ufo} I- 0, as an external subset of * A. 

Descriptively, P,Ua) consists of all elements of *coo(lRm, IR) that are infinitesimally 

close to fa in the given topology. This is an example of a monad for the given 

topology. In this paper, We will assume K,-saturation of *V(S) for K, big enough for 

our purposes. Also, as all topological spaces here are Hausdorff, if x and yare two 

standard elements and x I- y, then p,(x) n p,(y) = 0. 

2.2.3 Third principle: overflow 

We said a little about this last principle, but overflow is quite important in putting 

external sets to work. Often external sets are used in simplifying standard notions; 

eg., the set of infinitesimals, p,(O) C *IR in the simple nonstandard characterization of 

continuity (see above discussion). Overflow exists in various guises in NSA; e.g., see 

overflow in Lindstrom, [261 p12 or Cauchy's Principle in Stroyan and Luxemburg, 

[431 pI88. It basically says that if one has an internal statement p(:r) such that x 



Tom McGaffey 30 

is a free variable and p(x) holds for x in an external set E, then p(x) holds for all 

x in an internal set containing E; this also includes a use of the internal definition 

principle. This principle is used repeatedly here. We use this principle explicitly in 

2.2.12 and 2.2.9 and implicitly in 6.5 where it is critical in constructing a standard 

homeomorphism from an internal map. In chapter 7, it is used repeatedly and is also 

important in the appendix, chapter 9. 

2.3 Nonstandard tools specific to this paper 

2.3.1 Definitions of NSA working tools 

We follow this sketch of basic principles of NSA with a listing of definitions of working 

tools from NSA that will be used here. This list is obviously queued by the notation 

for the given tool. Again some of the definitions are heuristic. 

* X --t If X is a standard set, then this is the corresponding internal set in the non­

standard universe *V(S). If XES, then *x is a point in uSC * S. 

U X --t If X is a set in the standard universe, U X is the external set in the nonstandard 

universe given by {*x ; x E X}, e.g., UN is the (external!) set of standardly 

finite integers in *N. 

a'" b --t If X is a standard set with a topology T, and a, b E * X, then a '" b (a is 

infinitesimally close to b with respect to the topology T) holds when a E *U if 

and only if b E *U, for all open set U in T. 

a "" b --t a '" b is not satisfied. 
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a ::i b ----+ a < b and a ry:, b. 

Xnes ----+ If X is a set in the nonstandard universe, set * Xnes = {x EX: there is a 

(standard) element *z in X such that x rv *z}. Obviously, sometimes Xnes = 0 

(is empty); e.g., if w > 0 is infinite, and if X = {a E *IR: a;::: w}, then Xnes = 0. 

The elements of Xnes are called the nearstandard points of X. 

Ox or stx ----+ If x E X nes , so that x rv *z for some standard point *z in X, then Ox = z, 

or st(x) = z. (This is well defined as monads are disjoint). 

IL(XO) or fLx()(X) ----+ If (x, T) is a topological space, the fL(Xo) or fLxo(X) is the set {x EX: x rv xo}. 

This is called the monad of Xo in X (with respect to T). As already noted this 

is n{*U : U E T} i= 0 by sufficient saturation. 

* Xnes "fL(Xo) ----+ This is {x E Xnes : x ry:, xo}. 

u open ----+ This is a set of the form *U, where U is an open set in the given topology. 

For mappings, these refine to 

* f ----+ If f : X ----+ Y is a standard map, then identifying f with its graph r f C X x Y, 

* f is defined to be the internal map with graph *r f C *(X x Y) = * X x *Y. 

U f ----+ Again, identifying f with its graph r f' this is defined to be the external map 

with graph urf, an external subset of *rf . In particular, ur = *rfn U(X x Y), 

could be empty. 

"local ----+ A description of the domain of an internal function: it is a standard open set. 
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2.3.2 Pertinent NSA facts for this paper 

We need some final remarks on the NSA needed for this paper. We will generally be 

working with internal maps f : *U --+ *1R~es' where U c IR is an open neighborhood 

of 0, and attempting to prove that their standard parts, of: O( *U) --+ 0(1 ( *U)) 

have nice properties. First of all, note that O(*U) = U, the topological closure 

of U. The introduction in Wicks, [47], covers the basic results between NSA and 

topology very well. See also Lindstrom, [26], p52-57. Even if U is connected, simply 

connected, etc. U may not have any of these properties. We will assume that our 

U are convex to prevent this. Our arguments will be local and so we will be able 

to restrict our consideration to a convex subset. Second, our "map" Of may not even 

be a function. For example, it might send distinct points in a monad to points in 

distinct monads. S-continuity will prevent this. It might also send nearstandard 

points to non nearstandard points. For example, we will be working with *bilinear 

maps: B : V x V --+ V (e.g., our *Lie bracket - here V is an internal vector space 

over *IR such that Vnes is well defined). If B I Vnes x Vnes does not have image in Vnes , 

then °B will not be defined. 

2.3.3 Transferring maps and their domains 

vVe need to also say something about the domains of standard parts of internal maps. 

If f : *U --+ *IR is an internal map as above with well defined standard part Of : 

O(*U) --+ IR; i.e., Of : U --+ IR, we will restrict to the original open set U. There are 

two reasons for this. First of all, sometimes we will need to consider internal maps 
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f of the form * h, for some standard h : U ---+ IR. In this case, we get 0(* h) = h but 

now extended to U via it limiting behavior. This process gets these limiting values 

automatically - if they exist! In this paper, worry about this is not needed. In 

particular, for this paper we will always have 0(* h) = h by restricting our domain to 

the original open U. The second reason is that we need our map of to be defined on 

an open U in order to consider its regularity properties without needless boundary 

technicalities. Therefore, henceforth when We am considering Of for some 

internal f : *U ---+ *IR, it will be understood that We will be considering 

Of I U. Later in the text, we will typically remedy this by considering * f not on 

*U but on its 'nearstandard part', denoted UJ1" or *Unes , the set of all points in *U 

infinitesimally close to a point of U. In such cases we will use that *Unes = U{JL(x) : 

x E U} = U{*K: K c U is compact}. 

Further tools along with notations are defined in the text. 

2.4 Nonstandard calculus 

In this section we describe the nonstandard calculus required for this paper. Some of 

this is in the literature. vVe turn now to the basic nonstandard differential calculus 

that will be needed. 

2.4.1 Transfer of calculus on Euclidean space 

All internal differential calculus will be O"local near 0 in *lRn, i.e., on standard 

neighborhoods of 0, i.e., on sets *U where U is a neighborhood of O. Here n E 
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"tN. As we will work with only a finite number of such neighborhoods, we don't 

have to worry about externality creeping in. Our nonstandard calculus will follow 

Stroyan and Luxemburg, [431 but be in the spirit of Lutz and Goze (geometry in 

internal set theory), [271. By the transfer theorem, all standard differential 

calculus constructions have parallel NS, nonstandard, copies. For example, 

the existence and properties of tangent spaces and their morphisms, the 

differentials of smooth maps, will be asserted to exist in the nonstandard 

domain without proof. Occasionally, their existence will be asserted by transfer. 

The work arises from the further assertion that these have special properties. These 

properties will often be used in verifying such assertions. 

2.4.2 Nonstandard metric properties at the tangent space level. 

Remark 2.4.1. The development in this subsection was originally motivated by the 

following problem. Given a .finite dimensional internal vector space V over *IR (eg., 

the *tangent space at the identity of an internal Lie group), how does one de.fine Vnes ? 

In fact, generally, Vr,es, the set of nearstandard vectors in V, cannot be de.fined. The 

solution to this question was central to the undertaking in this paper: how could We 

prove that the the *bilinear map ad : V x V ---+ V is S-continuous, the critical technical 

result of this paper, if We did not know what Vnes is? (An internal bilinear map is 

S-continuous precisely when it sends nearstandard pairs of vectors to nearstandard 

vectors.) For an example of such a vector space, let q E *IR be such that "IR n (q '''IR) 

is empty and let V = {t(l, q) : t E *IR}. V is internally isomorphic to *IR, but no 
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element, besides 0 of V is standard. So unless one considers the extrinsic embedding 

of V, it has no nearstandard points (beyond those determined by O)! The nonstandard 

calculus (on *lRn!) developed in this section allowed me to canonically (standardly) 

translate the (standard) metric structure on *lRn up to the (transferred) tangent spaces 

from which a natural notion of nearstandard follows, solving my problem. We should 

be clear on this. The argument here needed the transfer of the natural metrical iden­

t~fication of IRn with TolRn via the identi.fication of the canonical frame on IRn with 

the that on TolRn. As this is the transfer of a standard isomorphism, it automatically 

gives a correspondence between nearstandard vectors. On the other hand, the transfer 

of the process that canonically identi.fies a general n dimensional real vector space, V, 

with its tangent space at 0, To V, to the class of internal vector spaces over *IR is not 

good enough for unambiguously de.fining the notion of a nearstandard vector! 

To begin, if U is a standard neighborhood of 0 in IRn, then *coo(*U, *IR) is just 

the *transfer of COO(U, IR). So * Coo (*U, *IR) = {f : *U ---+ *IR : f is internal and all 

internal derivatives of fare *continuous on *U}. (Sometimes vVe will write this space 

as *COO(U, IR), sometimes as *COO(*U, *IR).) Similarly, we define, for k E tN, *Ck(U, IR) 

to be those internal f : *U ---+ *IR with the property that all internal partial derivatives 

up to order k on *U are *continuous. vVe must qualify here in order to have a good 

notion of nearstandard: all internal derivatives will be with respect to the standard 

basis on *lRn, i.e., the *transfer of the canonical frame on IRn. That is, if (el, ... , en) 

is the canonical frame on IRn and x E *U, and if 1 ::; j < n then we have that 

(*OjJ)(x) ::::: * 1ft It=o (J(x + tej)). 
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Let *TxU be the internal tangent space to *U at x and *TU = U{*7~U : :r: E *U} 

be the internal tangent bundle to * U. 1'\ ote that 

* Hom(*TU ® *TU, *TU) = *(Hom(TU ® TU, TU)) 

and therefore standard elements on the right hand side of this equality give us stan­

dard metric tensors over *U on the left hand side. These are elements of (J (Hom(TU ® 

TU, TU)). For this paper, the notions of nearstandard tangent vectors and nears tan­

dard differentials of *coo maps is critical and we proceed to define these. 

2.4.3 N earstandard tangent vectors. 

For the given canonical frame (el,"" en) for IRn, there corresponds the constant 

canonical sections on TU, denoted by [h, ... , an. As vector fields these act on 

smooth f : U ---+ IR as already defined; namely aj Ix (J) = ajf(x). These *transfer 

to give the corresponding canonical standard frame on *TU, now over *IR. vVe will 

call this a standard frame on *TU. Using these, (*TU)nes can be defined in two 

equivalent ways. (That these are equivalent is just the transfer of basic tensor facts.) 

For each x E U we have the usual inner product ( ) x : TU x TU ---+ IR defined by 

(ai lx' aj IJ x = Oij, extended via IR-bilinearity. The collection of these for each x E U 

will give the constant metric tensor, ( ), over U. If v E TxU, then Ivlx ~ )(v, v)x : 

TxU ---+ IR gives the usual norm on TxU. Note then that as lail x = 1, then taking 

*transfer we get that V~ E *U, *I*ail~ = 1. This allows us an unambiguous 

definition of (*T e U) nes for each ~ E * U, the IRnes-module of nearstandard 

tangent vectors on *U, as the {v E *T~U : Ivl~ E *lRnes}. vVe can then show that 
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(*Tf,U)nes = {L a/aj If,: aj E *lRnes}. 
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We define (*TU)nes ~ U * (*Tf,U)nes. (Note that we have to be careful here 
f,E U 

for we are including tangent vectors over points whose standard parts (if they exist) 

are in U. These problems can be avoided by considering *tangent vectors lying over 

~ E *U that are infinitesimally close to points of au. This is just, following Wick, 

[47], p.6, UI' = U{JL(x) : x E U}.) A more natural approach is given by noting 

that (*TU)nes C *TU and the trivialization of *TU is a standard trivialization that 

defines the topology and is outlined as follows. First note that the standard natural 

bundle trivialization TU ~ U x IRn defines the (smooth) topology on TU in terms of 

the standard product of the Euclidean topologies on U C IRn. Kote also that there is 

a canonical map tx : TxU ~ ToU translating a vector at x to the corresponding one in 

TaU. This is just the differential at x of the map v --+ x-v. In fact tx is the restriction 

of the unique map t : TU ----+ ToU xU: Vx ----+ (tx(vx), x) which is a bundle~. Given 

the natural identification F : TolRn ~ IRn, we get p = (F x lu) 0 t. *Transferring this 

canonical identification, we get a canonical natural standard *bundle isomorphism 

*TU ----+ *ToU x *U. Note that as *p is standard and defines the topology, it carries 

nearstandard points to nearstandard points; i.e., (*TU)nes = p((*ToU)nes x *Unes ). It 

is easy to see that this is the same as the above definition of (*TU)nes. (Note here 

we are talking about nearstandard points and the near standard tangent vectors at 

those points.) 
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2.4.4 Infinitesimal tangent vectors. 

As U is open, in the following our considerations will be restricted to ~ E * U that are 

infinitesimally close to points of au. For the moment we will denote this set by *Uf-L 

(see the introductory topology material in Wicks, [47]) and the set of nearstandard 

tangent vectors to such points by (*TUf-L)nes. Note that these correspond precisely to 

*Uf-L x *1R~es under the trivialization *p. Given this, as p is a topological equivalence 

the following definition makes sense. 

Definition 2.4.1. If x E U we define the monad of a point VaJ E (*TU)nes to be 

*p-l(JL(*p(vx». For Vx E *TxlRn, Wy E *TylRn, this is equivalent to defining VaJ rv Wy 

if and only if *p(vx) rv *p(vy), that is, if and only if I *tx(vx) - *ty(vy)10 rv 0 and x rv y. 

Note that with respect to the first approach writing Vx = L aJ1i Ix and Wy = 

L b/Ji Iy we see that Vx rv Wy -¢==? X rv y and Vi ai rv bi, i.e., the monads on (*TU)nes 

are defined via the standard coordinate chart trivializations. 

We will now define the (alocal) *differentiable structure on *(TU). For later 

purposes, we will give two definitions (whose equivalence as above follows from the 

transfer of equivalent notions: in terms of using the trivialization to define differen­

tiable maps or to define differentiable curves). We define f: *TU ---+ *IR (internal) 

to be *(00 -¢==? f 0 *p-l : *(U x IRm) ---+ *IR is *eoo . We can also define a curve 

c : *IR,O ---+ *TU to be *(00 -¢==? the curve *p 0 cis *eoo . As above, since *p is 

standard, *TU carries a aeoo-structure and as we shall see later an seoo structure. 

The aeoo-structure will not be used and there will be no further mention of it. 
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2.4.5 Differentiable structures and maps. 

Note that we now have enough machinery to well define the following notion. Suppose 

that <p, 'ljJ E *COO(U, V), then we have that (*d<p is the internal differential of <p, etc.) 

*d<p, *d'ljJ E *coo Hom(TU, TV) ( *coo maps, *linear on *fibers covering *coo maps). 

The definition will be given in several (obviously) equivalent formulations. 

Definition 2.4.2. We say *d¢ is infinitesimally close to *d'ljJ on *U, written *dcp '" 

*d'lj; {:::::::} \Ix E *0, for all v E (*TxU)nes, *d<p(v) '" *d'ljJ(v). That is, in standard 

local coordinates on U and V, we have *OicpJ(X) '" *Oi'ljJj(X) for all i, j and x E *U. 

This is the same as saying that for all ~ E *U and \Iv E (*Tt;U)nes, dc.pt;(v) is in the 

monad of d'ljJt;(v). 

As standard local coordinate trivializations preserve monads, then this should be 

clear. Let F, G be *coo bundle mappings: *TU --7 *TV, i.e., linear fiber mappings 

covering a *coo map: U --7 V. Then similar to above we say that F '" G if 

\lu E (*TU)nes, F(u) '" G(u) and as above this is equivalent to FJ(u) f'..' G;(u) for all 

i, j where these are the components of F and G for a given standard trivialization. 

2.5 Nonstandard functions and S-regularity 

Nonstandard mathematics is useful for standard mathematics if we can build subtle 

connections beyond the formal transfer theorem. Here we give an introductions to 

our attempts at such connections. 
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2.5.1 The notions S-property where S IS continuity, smooth-

ness, etc. 

vVe want to give a brief introduction to regularity properties of internal maps with 

respect to the standard world. (After all, proving such regularity criteria is what this 

paper is about.) The idea here is to find useful conditions to impose on a map at the 

nonstandard level that force the needed regularity properties on the standard part of 

the map. Suppose we are given an internal map f : X -+ Y where the internal sets 

X, Y have X nes , Ynes well defined and f-Lx(X), f-Ly(Y) well defined for ;1:: E Xnes and 

y E Ynes . Then we say that f is S-continuous, written f E seD or f E SeO(X -+ Y), 

if f : Xnes -+ Ynes and if \Ix E X nes , f(f-L(x) C f-L(f(x)). See Wicks, [47] p.7, for the 

basic concepts. If X = * M, Y = * N for Hausdorff spaces M and Nand f = *9, 

then this is the nonstandard version of the continuity of f, only that in this case it 

needs to be checked just for x E (T X (checking at all points gets uniform continuity) 

It should not be too surprising to find that for such an internal f as above, not only 

does of: °Xnes -+ "Vnes exist, but it is CO(continuous). 

It is straightforward to give condition on an internal map to guarantee that its 

standard part is continuous. But such conditions are not so clear if we want the 

standard part to be a homeomorphism. In this situation and others it is useful to 

fall back on the default position. That is we say that an internal map f is 

dS - P if its standard part, of, has property P. For example, given X and 

Y as above and internal f as above, we say that f is an dS-homeomorphism, if 

° f : ° Xnes -+ °Ynes is a homeomorphism. Note that there are a variety of nonstandard 
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conditions on f that could force 0 f to be a homeomorphism. In section 5.4 we will 

develop one of these. There is a comparable definition for dS-diffeomorphisms, 

but first we need to say something about our two definitions of sets of internal maps 

whose standard parts are continuous, seo and dSeo. Our perspective will always 

be directed towards a particular type of regularity of the standard parts of internal 

maps. Obviously, seo c dSeo and the particular internal nature of the maps in seo 

is dearly defined so that we can actually work with these on the internal level. But 

sometimes we just need to know that particular maps on the internal level have the 

kinds of standard parts specified without knowing their nature on the internal level. 

For example, let dSAw be those internal maps (unconcerned with domain and range 

at the moment) whose standard parts are well defined (real) analytic maps. We will 

give a working definition for a (functorial!) set of internal maps, denoted by SAW and 

prove that indeed the internal maps satisfying these properties have analytic standard 

parts. vVe also have other subsets of dSAw, U AW which is the *-transfer of standard 

analytic maps and SPoly our notation for the set of internal polynomial maps of 

Ufinite degree with nearstandard coefficients. We will not need the full strength of 

SAW in this paper, here we will need some control in the manner that U AW and SPoly 

interact in dSAw. 

2.5.2 Properties of standard part map 

Before moving on to seoo maps, We would like to point out some well known NSA 

facts. *lRnes is not a field, but is a subring of the field *IR. Our internal maps will be 
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*1R~es valued for some standard n and hence will form on *lRnes-module. As such, the 

"taking the standard part" operation commutes with the module operations, i.e. if 

a, f3 E *lRnes and f and g are *lRnes-valued, then 

If our maps are *lRnes-valued, then in fact the operation of taking the standard part 

of commutes with the algebra operations, i.e., if f and g are *lRnes-valued then 

as IR-valued maps. Finally if uopen c IRm, vopen c IR and if f E SCO(*U, *V) and 

g E SCO(*V, *IRP), then go f E SCO(*U, IRP) and O(g 0 f) = (Og)oef) as elements of 

CO(U, IRP). These properties will be used without further mention. 

2.5.3 S-smoothness. 

Before proceeding we want to cover what is needed with respect to SC= maps defined 

in standard neighborhoods of 0 in :ttRn . In order to define this external set of nice 

internal functions, we first need some notation. If k E alN, then a weight k, m­

multiindex is an ordered m-tuple a = (al,"" am) such that ai 2: 0 are integers Vi 

and lal ::::::: al + ... +am = k. If U is a neighborhood of 0 in IRm and if f E *C=(U, :ttRm), 

then the ath internal derivative of f at x E *U, (*aa)(f)(x) is well defined in 

:ttRm. Similarly, by transfer, if p E IN we say that f : *U -+ *lRm is *CP, written 

f E *CP(U, IRm) if for all multiindices a with lal :::; p, we have that *aaf : *U -+ *lRm 

exists and is *continuous. With this we have the following definition. 



----- ------------------------

Tom McGaffey 43 

Definition 2.5.1. Suppose that we have an internal map f E *COO(U, [Rm). Then we 

say that f E ScooCtJ, [Rm) if for each (k, m)-multi index (weight k, m-multi index), 

the map (*cJa)f : *U ---+ 1Rn is sco. For p E tN, suppose that we have that f E 

*CP(U, [Rm). Then we say that f E SCP(U, [Rm) if for all multiindices a with lal ::; p, 

we have that *8f : *U --+ *[Rm is SCO. (We include here the empty multi index; i. e., 

that f : U ---+ 1Rn is SCO, e.g., the image of f is nearstandard). 

We need to list some basic facts about S-smooth functions. 

Lemma 2.5.1 (S-smooth facts). One can then show that if f E Scoo('tJ, [Rm), the 

following is true 

2. For every (k, m)-multi index a, O((*cJa)f) E COO(U, [R) 

3. For every (k,m)-multi index a, as maps, 8a(Of) = O((*cJa)f) 

4. If f E COO(U, [Rm), then *f E SCOO(*U, *!R) 

5. If f ESPoly(*U, *[R), then f E SCOO(*U, [R) 

6. If f E SCOO(*U, *V) and 9 E SCOO(*V, *[RP), then 9 0 f E SCOO(*U, *[RP) 

7. SCOO( *U, [R) is a *!Rnes-module. 

Proof. These facts follow from the literature and the work in the appendix. See 

Stroyan and Luxemburg [43] p. 96-109, 269-270, for the best background nonstan­

dard material on this topic. Their text is encyclopedic and faithful to Robinson, 
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but has many misprints, so care must be taken in reading. For a careful proof of (3) 

and associated equivalences, from which the others essentially follow, see this paper's 

appendix, chapter 9. o 

2.5.4 S-analyticity. 

We also need to talk about S-analytic maps on *U. We will draw our material for 

(standard) analytic functions from the text of Krantz and Parks, [25]. If U is a 

contractible neighborhood of 0 in IRm, recall that 1 : U -+ IR is analytic if each a E U 

has a neighborhood in which 1 can be written as a convergent power series, and 

we will denote the set of such by AW(U). An IRm-valued map 1 = (f1, h,· .. ,1m) 

on U is analytic on U if all of its components iJ are in AW(U). Transferring, we 

say that an internal f : *U -+ *IR is *analytic, written f E * AW(*IR) if each 

~ E *U has a *neighborhood where it can be written as a *convergent internal power 

series. These can be quite pathological in general; for example for a E *rN, the 

map ~ f-7 * cos(a~) E * AW(*IR) and has a well defined standard part, but for many 

infinite such a's, this standard part is not even Lebesgue measurable, see Stroyan and 

Luxemburg, [43] p.218. Nonetheless, there are useful conditions that can force good 

regularity behavior on these. One type of restriction is in the subset of S-analytic 

internal functions defined below. In the definition, we will use the Taylor expansion 

for the power series representation for analytic functions. (Later we will give a second 

useful criterion for forcing regularity on elements of * AW.) 

Definition 2.5.2. Suppose that 1 E SCOO( *u, *lRn). For k E *rN, let *Tk 1 : *U-+ 
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*lRm be the kth order *Taylor polynomial of f centered at 0 and let *Rk f : *U ----+ *lRm 

be the kth order remainder term f - Tk f. Then we say that f is S-analytic on U 

denoted f E SAW(*U, *lRn), if the following holds: a) for every k E O"rN, *Rk f and 

*Tk f E Scoo (*U, *lRn) and b) for all k > 00 and finite (X, and fOT all x E *U, 

(*[P)( *Rkf)(x) rv o. 

Remark 2.5.1. Note that the above definition is implied if the following holds: a') 

for every k E *rN, *Tk f E SCOO( *U, *lRn) and b') for all k > 00 and finite (x, and for 

all x E *U, (*EY')(*Rkf)(X) rv 0 

The following lemma contains information useful to the argument of this paper. 

Lemma 2.5.2 (S-analytic maps). The follows assertions hold. 

A) If f E SAW( *U), then ° f E AW(U). 

B) If f ESPoly( *U, *IR), then f E SAw (*U, *IR). 

C) If f ESPoly( *U, *IR) and g E 0" AW( *v, *IRP) with f( *U) c *V), then the compo­

sition map go f E dSAw n SCOO(*U, *IRP). 

Remark 2.5.2. As they will not be needed for this paper we will not prove the fol­

lowing facts; 0" AW c SAW and SAw is closed under composition. Yet the conditions 

on SAw are strong. If f E Scoo is such that ° (EY" *f) = 0 for all *multiindices (x, f is 

still typically not in SAw. The tail end Taylor conditions are quite stringent. 

Proof: A) We must show that given a finite multi index (3 then the following is true. 

If x E U and EO is positive in IR, then there exists ko E rN such that 18/3 (Rk (0 f) (x) 1 < EO 
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if k > ko. Let A = {k E *IN : I 8.8 (*Rk f)(*x) I < ~}. From b) in the definition of SAw, 

it follows that *1N00 C A. By definition A is internal and therefore by overflow there is 

ko E <TIN such that [ko, *(0) C A, eg., if k E IN and k 2': ko, then I *8.8 (*Rk f)(*x) I < ~. 

As EO is standard this implies ° (*8.8 (*Rk f)(*x) I) < EO. But by definition for k E IN 

*Rfk E Scoo and this implies ° (*8.8 (*Rk f)(*x) = 8.8(0(*Rkf))(x) by the third property 

of Scoo maps. So we have that 

18.8(0(*Rkf))(x) I < EO for k> ko. 

But, if k E IN, o(*Rk f) = 0(f - *Tk f) = ° f - Tk(o f) ~ Rk(o f), since o(*Tk f) = Tk(o f) 

because for f E SCOO, ° (*8° (f) = 8°(° f) for finite n, again by property 3). That is, 

18°(Rk(0 f))(x)1 < EO as we needed to show. 

B) As f is a nearstandard polynomial, we have that *Tkf = f or a truncation of 

f depending on the value of k E *IN. Hence as a nearstandard polynomial is Scoo, 

then condition a) is satisfied. For k E *IN an infinite integer, *Rk f = ° as f is of finite 

degree, so certainly *8.8 (*Rk f) = 0, so condition b) is clear. 

C) First of all, its clear that elements of SPoly or of <TAW are SCOO. But then by 

the properties of SCOO, go f E SCOO. But then we know that O(g 0 f) = (Og) 0 (0 f) 

and as composition of analytic maps are analytic we have that go f E dSAw. 
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2.6 Properties of *Gln , *Endn , *Exp 

2.6.1 Nonstandard definitions 

For the next section, see the lucid introduction to Lie groups in Warner's text [46J. 

Here we need to talk about the internal topology of * Endn = * End(lRn), the *transfer 

of Endn ~ {A : IRn -+ IRn : A is IR-linear}, and *Gln = *GI(lRn) the * transfer of 

Gin ~ {A E Endn : A is invertible}. First note that * Endn,nes ~ {A E * Endn : A is 

a nearstandard linear map} and *Gln,nes = *Gln n * Endn,nes. This all follows from 

the topological vector space identification of Endn with IRn2 by the identification of a 

linear map with its corresponding matrix with respect to the canonical basis of IRn, 

and therefore of Gin with the corresponding open dense subset of IRn2. It is not hard 

to see an A E * Endn is actually in * Endn,nes if A : *1R~es -+ *1R~es and A E *Gln,nes if 

A E * Endn,nes and * det A # 0, * det A being the determinant of A with respect to a 

standard basis on *IR. Note, if * det A I'o.J 0, then 0 A is not in Gin. 

We have the composition map C : Endn x Endn -+ Endn. As this is a polyno­

mial map, it is analytic and therefore *C is S-analytic on the nearstandard parts of 

* Endn x* Endn, i.e., on * Endn,nes x* Endn,nes. In particular, if A E * Endn,nes, then 

LA = left multiplications by A : * Endn -+ *Endn, LA(B) = A 0 B (composition) is 

S-analytic on * Endn,nes. For the same reason, RA : * Endn -+ * Endn, RA(B) = BoA 

is S-analytic when restricted to * Endn,nes. 
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2.6.2 Properties of the nonstandard EXP map 

Finally we want to look at EXP : Endn -+ Gln , EXP(A) ~ 2::;'=0 JrAJ. EXP is an 

analytic diffeomorphism from a neighborhood U of 0 to a neighborhood V of Id, the 

identity map, in Gln . This follows from e.g., that d(EXP)o = lEndn , e.g., a linear 

isomorphism. Here we are using the canonical identification of To Endn with Endn ~ 

see the discussion earlier in this section. Gln is our protypical Lie group with Endn = 

the Lie algebra of Gln , LA( Gln ), with the Lie bracker [, 1 : Endn x Endn -+ Endn : 

(A, B) -+ AoB-BoA (the commutator). Here EXP is the corresponding exponential 

map tying Lie algebra to its (local) Lie group. At this point all we need to know is 

that *EXP : *Endn -+ Gln is an dB-analytic B-diffeomorphism. (Note here that this 

means in particular (and as alluded to earlier) that O(*EXP) is a diffeomorphism (on 

a neighborhood of 0). More specific facts needed for *Lie groups and *Lie algebras 

will be developed in chapters 4, 5 and 6 as they are needed. 

2.7 Why NSA? The perspective behind this paper 

In this chapter, we have attempted to give an overview of a typical construction of a 

nonstandard setting, of the general working principles as well as those specific tools. 

We have even attempted to give some idea why one might think that it's capacities 

are are worth the trouble to develop some skill in this curious discipline. But we 

have not discussed why the author was motivated by this nonstandard approach to 

this problem. It seems that this belief in the capacities of nonstandard mathemat­

ics for this problem comes from the author's view of it's capacities in the study of 
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asymptotic behavior of (say parametric) families of geometric structures. In partic­

ular, those structures that at each (parametric) instant subtly integrate multileveled 

objects. For example, in considering families of Lie groups, each element of the family 

has a Lie algebra, an exponential map relating these, various canonical 'representa­

tions' (Ad, ad, etc.) and so on. How does one grasp the sophisticated behaviors of 

these asymptotics. Recall in our introduction to NSA, we described how infinites­

imals simplify the criterion for continuity. In a way, this example sells NSA short 

while it is trying to make it understandable. The example with the simplification of 

the formal description of continuity once one enriches the real line (and all of those 

objects defined on it) is a clarifying but undramatic example of the possibilities of 

such 'enrichment'. In this example, we have pulled a typical function up to a realm 

where its asymptotic properties are not only revealed; but to view, ascertain and cat­

egorize these behaviors, we have the full structured framework of the real numbers, 

the algebra of functions defined there, etc., all nicely lifted to this enhanced arena. 

And this enhancement becomes ever more dramatic the more sophisticated the frame­

work we are 'transferring'. Referring again to the above example of families of Lie 

groups (the subject of this paper), the asymptotics are fully revealed by examining 

the nonstandard Lie groups in the transferred family and as noted above (and played 

out in chapters 4 to 6) we can bring into play those elements of the structure theory 

(now transferred) to find regularities in these nonstandard objects and hence (back 

in the standard world) in the families themselves. 

On the level of model theory, Henson and Keisler, [14], have written on this phe­

nomenon. In the context here, what they say is the following. A standard approach 
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to (the standard version of) the main theorem here would mean building families of 

'good' coordinate changes for our equicontinuous family of local Lie groups carefully 

orchestrated, via an argument that must use, eg., asymptotic families of commutative 

diagrams from Lie theory, to have 'stringently good' asymptotic properties. This is 

a tall order, if it can be done. But on the nonstandard level, we essentially deal with 

fixed individual ideal asymptotic elements of these families and bring to bear all of the 

framework of Lie theory (now at this ideal/nonstandard level) in the task of finding 

one good set of coordinates for this solitary ideal group, a feasible project. 



Chapter 3 

The local group setup 

3.1 Local topological groups 

3.1.1 Foundational material 

For local topological groups, LTG's, in general, we follow Montgomery and Zippin 

[29] (eg.,p. 31-35) and Pontryagin [36] (eg., p. 137-143). Olver, [33], is a good 

reference for the varieties of local Lie groups and how they relate to (global) Lie 

groups. On locally Euclidean LTG's, we follow Kaplansky [19] (eg.,p. 87). As such 

after a homeomorphic change of coordinates in some neighborhood of the identity, 

our group will be modeled on IRn with the identity being the point O. The Euclidean 

setting will also facilitate the development of the crucial notions of infinitesimal and 

nearstandard (see the previous section). 

Heuristically, we will have a nonstandard internal local Lie group modeled on a 

standard neighborhood of 0 in *lRn. Its standard part will be our continuous locally 

51 
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Euclidean local topological group. First we give the following definition. 

Definition 3.1.1. Our Euclidean local topological group,LTG, will be given by a 

quadruple G = (U, 1j;, v, 0) where U is a neighborhood of 0 in IRn, 1j; E CO( U x U -+ IRn), 

v E CO(U -+ IRn) such that 'r/x, y, z where all expressions are defined 

a) 1j;(x, 1j;(y, z)) = 1j;(1j;(x, y), z) associativity, 

b) 1j;(0, x) = 1j;(x,O) = x 0 is the identity, 

c) 1j;(v(x) , x) = 1j;(x, v(x)) = 0 v(x) is the inverse of x. 

Note that we may also write x 0 y or xy for 1j;(x, y), x(yz) for 1j;(x, 1j;(y, z)), X-I 

for v(x), etc. As the identity is at the origin we will sometimes write 0 instead of e 

when it seems appropriate. 

3.1.2 Equivalent local Lie groups 

In the previous paragraph we used the qualifying phrase "where all expressions are 

defined." As a local group is defined on neighborhoods of the identity giving various 

representatives, the mapping defining the product of elements or the inverse of ele­

ments may need restrictions to be well defined. For example, if U is a neighborhood 

of the identity, then the map v : x -+ X-I may have v(U) g; U. In this case, we choose 

a symmetric neighborhood of 0; say V = Un u- I which is actually a neighborhood 

of e (see [291 pp.32, 33 and [361 pp. 137-143). So, e.g., to deal with these problems, 

we restrict repeatedly to different neighborhoods of e. In a strong sense ([36], p. 

138-141), the LTG's defined by these various representative neighborhoods of e are 
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isomorphic. (That is, there is a smaller neighborhood of 0 where the two local groups 

coincide. Note that Duistermaat and Kolk, [5] p.31 give a brief and clear definition of 

germ equivalence of local Lie groups. If one changes 'local Lie' to 'locally Euclidean 

topological' we get the modern rendition. Their definition looks different, but is the 

same once one realizes that here we are carrying the various change of coordinates 

representatives along in our calculations.) Critical here is that we clutter an argu­

ment with a finite sequence of qualifying restrictions, each time restricting to another 

isomorphic local topological group, LTG. As long as there is only a finite number of 

restrictions, the final restriction will be equivalent to the original. Pontryagin argues 

in his book [36] p. 431, that for clarity's sake one can forego these qualifications in 

such arguments. In this paper, there is no infinite sequence of restrictions. eWe do 

work with families of LTG's but in this case the domains of definition is uniformly 

fixed.) On the Lie algebra level, such exists in the Hausdorff series work, but the Lie 

algebra is a globally defined object. Hence, with the exceptions of the f-t-exp lemma, 

and the S-lemma, We will generally not use the qualifications for such restrictions. 

(These restrictions may affect the globalizability properties of 0, see Olver's paper, 

[33], but do not affect the proof.) 

3.1.3 Standardly local internal Lie groups 

For this paper, a LTG as defined above will be the standard part of a alocal *Lie 

group (aloc*LG) 0 defined on *lRn. So we need to give this definition. 

Definition 3.1.2. A a local *Lie group ra loc *LG) will be defined in terms of repre-
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sentatives on neighborhoods U of 0 in IRn as follows. By definition 9 = (*U,;jJ, j), 0) 

where a representative is defined on a standard neighborhood *U of 0 in *iRn so that 

;jJ E *C=(U x U, IRn) and j) E *C=(U, IRn) satisfy the conditions a)-c) above. Fur­

thermore, in order to insure that 1j; = a;jJ and 1/ = aj) are CO and satisfy a)-c), we 

must impose S-continuity on;jJ. Also, in order to insure that the standard part of ;jJ 

has the the properties of a local topological group (see Montgomery and Zippin, [29], 

p 32 ) in the topological sense, we also impose on ;jJ the condition that right and left 

*multiplications are S -homeomorphisms where defined. We also assume that right and 

left * multiplications are * local diffeomorphisms, a quite weak assumption (see Olver 

[33]). We write 9 E a loc seQ *LG to denote a a loc *LC with these properties. 

From this point until the finish of the proof of the main regularity 

theorem, this paper will be concerned with the properties of a fixed 9 E 

a loc SCO* LC on a representative neighborhood of the identity. We need 

some observations. As our a loc * LC is internal, it will carryall of the properties and 

structures of a standard local LG, but now *transferred to the nonstandard universe. 

Therefore, note it has an internal Lie algebra with a *IR bilinear, antisymmetric bracket 

satisfying the Jacobi identity, an internal exponential map, etc. 

3.1.4 Structure of the *Lie algebra of the local *Lie group 

Before we proceed with the first lemma, we need to say something about the internal 

Lie algebra (*LA) 9 of g. First of all, as a *IR vector space of *IR dimension n, it is 

the *tangent space of 9 at e. But as a *topological space, 9 is a standard neighborhood 
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of ° in *lRn. So there is a standard identification of 9 as a *vector space with 

* IRn. (See the local differential calculus section.) Therefore, the following are well 

defined. 

Definition 3.1.3. The *lRnes-submodules of 9 of nearstandard and infinitesimal vec-

tors are defined respectively by 

gnes = {v E 9 : Ivl E *lRnes} (3.1 ) 

f-Lg = f-Lg(O) = {v E 9 : Ivl rv O} (3.2) 

Let [ , ] : 9 X 9 --+ 9 be the *Lie algebra product of g. By *transfer, [ , ] 

is a *IR-bilinear map satisfying anticommutativity and the Jacobi identity. As gnes 

is well defined, it makes sense to ask if [ ,] is a nearstandard map, that is if 

[ , ] : gnes X gnes --+ gnes. 'vVe will prove this in the next section; it will be our 

pivotal regularity result. 

Also by *transfer, there is the *C= map exp: (g,O) --+ (9, e) satisfying *d(exp)o = 

h and therefore is a *local diffeomorphism; see the previous section. Note here that 
IRn 

9 has a standard group structure, ggp, given by vector space addition. In the next 

part we will use that in the one dimensional case, exp is a group isomorphism. 

3.2 The p,-exp lemma 

The proof of the f-L-exp lemma, that the exponential map sends infinitesimal vectors 

to infinitesimal group elements and no other vectors close to 0, depends on the one 

dimensional case and the Restriction lemma. We begin with the Restriction lemma. 
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Lemma 3.2.1 (Restriction Lemma). Suppose that we have 9 E U loc seo *LG and 

9 = *LA(9). Suppose that f) < 9 is a *subalgebra. Let U a neighborhood of 0, so that 

*U is a set of definition of 9, 1{' = exp(f)) where defined and 1{ = 1{' n U. Then 1{ 

is a set of definitions of the U loc* Lie subgroup of 9 given by exp(f)) and 1{ is seo 

with the restriction topology. 

Proof. This means of definition for subgroups of local group is well known (see Mont­

gomery and Zippin, [291 pp.33-34, and Kirillov, [231 p.99). We need to prove that 

1{ is an U loc seo *subgroup. But if we can show that h1 "-' h2 in 1{ ::::} h1 "-' h2 

in 9, then the result will follow from 9 E seo. Yet for the restriction topology 

J-lH(h) = 1{ n J-l(h), where J-lH(h) is the monad of h E 1{ in the restriction topology. 

But h1 J:!:, h2 if and only if J-lH(hd n J-lH(h2) # 0; i.e., J-l(h1) n 1{ n J-l(h2) # 0 eg., 

J-l(hd n J-l(h2) # 0, i.e., h1 "-' h2 in 9, as we wanted to show. D 

3.2.1 One dimensional case 

In this part, we will be working with one dimensional local LG's, LG1 , and the ulocal 

restrictions of their internal transfers, * LG1 . All will be modeled on *IR, 0. Hence if 9 

is one such, then 9 ~ 9nes" J-l(0) , the set of nearstandard noninfinitesimal elements is 

well defined. In particular, if (*IR, .) denotes a model for a I-dimensional internal ulocal 

* LG, then (iR, .) is well defined, eg., if (*IR, + ) stan is the standard (local) LG structure 

on *IR in the internal universe, then iR will be well defined. If 91, 92 are in * LG1 and 

<p : 91 ---792 is a * LG isomorphism which is also a (local) S-homeomorphism, we say 

that <p is an S-equivalence. 
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We will prove after two preliminary lemmas that if 9 E * LGI is SCa and A is its 

*exponential map, then A is an S-equivalence. We begin with the following 

Lemma 3.2.2. Suppose that f : (*IR, + )stan -+ (*IR, + )stan is a *LGI isomorphism. 

Then f is an S-equivalence if and only if dfa E iR. 

Proof. Any LGI isomorphism f : (IR, +) -+ (IR, +) is given by t H kt for some k i- 0 

in IR as it is covered on the Lie algebra level by an IR-linear map. Therefore by 

*transfer an * LGI isomorphism f : (*IR, + )stan -+ (*IR, + )stan is given by t H kt for 

some k E *IR" {O}. But the magnification map t H kt is an S-equivalence ¢=* k E iR 

and as df a = k, we have that f is an S-equivalence ¢=* df a E iR. D 

Lemma 3.2.3. Suppose that (*IR, .) E a 10cSC' *LGI such that <p : (*IR, .) -+ (*IR, + )stan 

is an S-equivalence. Then *d<pa is nearstandard; that is, there is c E lR such that *d<pa 

is dilation by c. 

Proof. (*IR,.) is a 10cSCo implies that O(*IR,.) is a Co local topological group modeled 

in a neighborhood of 0 in IR. Also <p is an S-equivalence implies that 0<p is a local 

group isomorphism that is a local homeomorphism and therefore a homeomorphism 

on the domain of definition of O(*IR, .). So 0<p is a homeomorphic identification of 

the local group O(*IR,.) with a Euclidean neighborhood of zero of the standard group 

structure on IR, ie. (IR, + )stan. But then by a very special case of a theorem in Lie 

group theory, (see [Warner], p. 95, Theorem 3.20) this embedded O(*IR, .) has a smooth 

group structure compatible with (IR, + )stan. But then 0<p : ° (*IR, .) -+ (IR, + )stan is a 

Co group isomorphism of (local) Lie groups. But then, we can invoke, a special case 

of another result in Lie groups, (see [Warner], p.l09, Theorem 3.39) to assert that 
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0'P is, in fact Coo. (Note that Warner proves both of these results locally, in some 

neighborhood of the identity, then moves them out globally to the full group, but 

here we are using only the local conclusions of of these results.) But then *d'Po is a 

nearstandard *linear map and the conclusion follows from the previous lemma. D 

Lemma 3.2.4 (One dimensional lemma). Suppose that 9 E ulocSCO*LG I , that 9 = 

*LA(9) and A : 9 -+ 9 is the *exponential map. Then for v E 9 small enough, 1/ '" 0 

if and only if A(I/) '" o. 

Proof. By hypothesis, (9,.) is ulocally S-equivalent to (*IR, +)stan, i.e., on some stan­

dard neighborhood of the identity, there exists an S-equivalence 'P : (9, .) -+ (*IR, + )stan. 

Letting (IR,·) stand for a locally Euclidean model of an object in LG I , and let­

ting 'P : (*IR,·) -+ (*IR, + )stan be an S- equivalence given by the hypothesis, we 

see that the previous lemma implies that *d'Po is dilation by an element of R. Now 

f ~ 'P 0 A : (*IR, + )stan -+ (*IR, + )stan is a * LGI isomorphism and df ° = d'Po, as 

dAo =Id; i.e., dfo E R. But then Lemma 3.2.2 implies that f is an S-equivalence. 

So A = 'P- I 0 f must also be an S-equivalence, e.g., a ulocal S-homeomorphism. 

Therefore, for 1/ E 9 small enough v '" 0 -<====> A( v) '" o. D 

3.2.2 Exp preserves infinitesimals 

We will now use the above one dimensional results to give a proof of the first main 

result toward our goal. Let 9 E U loe SCo* LG, modeled on IRn and 9 be it's *Lie 

algebra. 
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Lemma 3.2.5 (JL-exp lemma). Suppose that v is in a small enough standard neigh­

borhood of 0 in 9· Then exp : 9 -+ 9 satisfies exp( v) rv e ¢=::::? V rv O. 

Remark 3.2.1. Before we prove this we will need to point out the functorality of exp 

from the category of Lie algebras to that of (Ioc) Lie groups. Let LGp be the category of 

10cLG's and morphisms and LA the category of Lie Algebras and morphisms. Then 

exp is a functor: LA-+LGp; see Kirillov, [23} p.l03, or Warner, {46} p.l04j. In 

particular, considering inclusion morphisms, we find that if for a given Lie algebra 

L, expL denotes its exponential map and L2 is a Lie subalgebra of L[, then 

expL2 = expLl IL2. With this, we turn to the proof. 

JL-exp lemma proof. First note that if "1R-dimension of 9 is 1 and 9 is Sea, then this 

is the 1-D lemma. 

Next consider the general case when 9 c *lRn, O. Let v E 9nes, LV ~ *IR . v, 

fV = exp(U), where defined and expv = exp ILv, so that expv : LV -+ £11 is the 

exponential map of a one dimensional *Lie algebra. As 9 is a standard *lRn, for some 

standard n, and LV is a *subspace, if w rv 0 in 9, then w rv 0 E LV (and conversely). 

But if w E U, then w rv 0 ¢=::::? expll(w) rv 0 in £v, by the 1-D lemma. By the 

restriction lemma, JLO(£") = JLo(Q)n£v which implies expV(v) rv 0 in £11 ¢=::::? exp(v) rv 0 

in g, as we wanted. o 

3.2.3 Perspective 

Two comments are in order. First, although the exp map is usually defined in terms 

of the one parameter subgroups, 1PSGps; and approaches to the Fifth problem, both 
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standard and nonstandard, have been through IPSGps, we avoid them. Dealing with 

the relationship between the seo properties of these *eoo maps and the putative sel 

regularity of these seemed to be more work than exploiting the functorality of expo 

Second, the local one dimensional case of the Fifth problem goes at least back to 

the 19th century. After all, this problem was first conceived of locally. Nonetheless, 

vVe felt uncomfortable invoking the local one dimensional case without proof. But as 

it was not explicitly an integral part of the struggle to finish the general proof in the 

middle of the 20th century, We have left my proof in the preliminaries section. 



Chapter 4 

Proof that ad is S-continuous 

In this chapter we prove that ad is nearstandard. The ingredients of the proof consists 

of the *transfers of two basic formulas (see Warner, [461 p 114) that intertwine ho­

momorphisms on the Lie group level with the lifted homomorphism on the Lie group 

level, along with the Ad Lemma. Note a technicality here: as our group object 9 is 

defined locally only, then we will routinely need to restrict to a smaller neighborhood 

of 0, to get well defined expressions, in particular with the mappings ag and Adg , 

we shall shortly use. (Of course this caution applies similarly to our S-continuous 

*groups.) On the Lie algebra level, this is not a problem. 

4.1 Ad is S-continuous 

The first intertwining formula is crucial in the proof of the Ad Lemma. The second 

intertwining formula is the bridge to reducing the problem to a question about sin­

gularities of one parameter subgroups of *Gln . This second part depends on the the 

61 
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fact that if A E *Glnes , then the internal differential of left multiplication by A is 

also nearstandard. 

The first formula, given directly below, is critical to the proof of the ad Lemma. 

Let G E loc LG and L = LA(G). Let g E G, vEL. Then ag : h r----? ghg- 1 is an 

automorphism of G (when restricted to a sufficiently small neighborhood of 0, the 

identity) and as d(ag)e : TeG --+ TeG, in fact is an automorphism of TeG = L, then, in 

particular, Adg~d(ag)ITeG E Gl(L). This gives a smooth Lie group homomorphism 

Ad : G --+ Gl (L) whose differential induces on the Lie algebra level the homomorphism 

of Lie algebras vEL r----? adv E End( L) ( the homomorphism property is essentially 

the Jacobi identity) and it's not hard to prove that adv(w) = [v, w] . Given these 

preliminaries the first intertwining formula is, for vEL and g E G 

ag(expv) = exp(Adg(v)). ( 4.1) 

defined for g in a sufficiently small neighborhood of the identity and vEL sufficiently 

small so that exp( v) is well defined in the expression. This formula will be used to 

show sufficient regularity of Ad. 

Recall that 9 E (J loc SCM LG and 9 = * LA(9) is it's internal Lie algebra. In the 

following lemma, we will use the first intertwining formula above. 

Lemma 4.1.1 (Ad lemma). Suppose that g E 9 (= gnes) is sufficiently small. Then 

if X E 9 with X rv 0, then AdgX rv 0. 

Proof. (Kote here we are working with the transfer of the above machinery although 

*'s are generally absent.) First note that if g E g, then the mapping ag : 9 --+ 9 

given by ag(h) = ghg- 1 is an S-homeomorphism. This follows from the fact that 
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ag = Lg 0 Rg-l and that Lg and Rg-l are S-homeomorphisms, and composition of 

S-homeomorphisms are such. This implies that if h, h' E g, then h rv h' ¢=} ag(h) rv 

o 

ag(h' ). Note also that 

So if X Egis such that X rv 0, then (by the fL - exp lemma) exp X rv e. 

So by ® ag(expX) rv ag(e) = e. But 

ag(expX) = exp(Adg(X)), 

so that exp(Adg(X)) rv e. But then Adg(X) rv ° (again by the fL - exp lemma). D 

4.2 Translating to the general linear group 

In this part we move the problem from 9 to *Gln . 

We will use the (*transfer of) the intertwining formula that connects the group/Lie 

algebra structure of 9 with the group/Lie algebra structure of a Euclidean group. One 

can check that the definition of Adg determines a smooth Lie group homomorphism 

Ad: G -----t Gl(L) whose differential induces on the Lie algebra level the homomorphism 

of Lie algebras ad : vEL H adv E End( L). With this, we have the second formula 

Adexp(v)(W) = EXP(adv)(w), 

where exp is the exponential map for Land EXP is the exponential map for End( L). 

So lemma 4.1.1 (the Ad lemma) along with this formula has as a consequence the 

following restatement of lemma 4.1.1. Before we make the statement, we need some 

notation. When we are looking at Adg, it will be for 9 = exp( tv) for a fixed, small 
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v E gnes with v "u 0, and t E *U, U being a symmetric neighborhood of 0 in IR. See 

the {L-exp lemma (3.2.5). 

Lemma 4.2.1 (EXP(ad) is regular). Let v E 9 be fixed (standardly) small enough, 

and t E *U. Then W E gnes implies that EXP(adtv)(w) E gnes. 

Proof. This follows from Lemma 4.1.1, from the intertwining formula and from the 

next statement in the following manner. Let v E *IRn. Then v E *IRn if and only if nes L 

the following holds. For every E E*IR , E rv 0 if and only if EV rv o. Let tv E gnes be small 

enough and suppose that W E gnes. Then if E E *IR with E rv 0 we have that EW rv 0 

in*g. So Lemma 4.1.1 implies that Adexp(tv)(EW) rv o. That is, EAdexp(tu)(w) rv o. As 

this holds for all E rv 0, we have that Adexp(tv) (w) must be nearstandard. o 

Considering adtv as an element of End(g), we will show that if the conclusion of 

this lemma holds for any A E * Endn, in particular, for any A E * End(g), then that 

A must be nearstandard. That is, Lemma 4.2.1, along with the next general 

result about the relationship between nearstandard elements of * End(IRn) 

and their exponentials in *Clm will be all we need to prove that ad is seQ. 

vVe need one more lemma and some elementary differential geometry before we begin 

the theorem. 

Lemma 4.2.2. Let t H 9t : *U -+ *Cln,nes denote a *local one parameter subgroup, 

where U is a symmetric neighborhood of 0 in IRn. Suppose that v E *!R~es with v "u O. 

Then for t E *u, 9t(V) E *IR~es· 

Proof. But, if A E *Cln,nes and v E *IR~es,then, by definition, A(v) E *IR~es· In 

particular, this holds for A = 9t, when t E *U. o 
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4.3 Differential geometry of the transferred general 

linear group 

4.3.1 Restricted differential of the general linear group struc­

ture 

The tangent bundle of Gln has a canonical smooth trivialization, ie., TGln ~ Gln x 

Tld(Gln), and Tg(Gln) ~ Endn One can, eg., get this via the embedding of Gln as 

an open (dense) subset of IRn2
• (See 2.6 in the paper) Also, using this identifica­

tion, we have that Tg(Gln) ~ Endn, for any 9 E Gln. We *transfer these standard 

identifications to get that *TGln ~ *Gln x *Tld(Gln) ~ *Gln x * End". In particu­

lar, if 9 E *Gln we have an internal, not necessarily nearstandard, identification 

*Tg( Gln) = * Endn But, as this is identification on the standard level was a homeo­

morphism (in fact, an analytic diffeomorphism), then the *transferred identification 

restricts to a nearstandard identification of the nearstandard parts, ie., 

and, in this case, when 9 E Gln,nes, the identification *(TgGln)nes ~ * Endn,nes is a 

nearstandardinternalisomorphism. (Seethelastpartof2.6.1). Let /-l: GlnxGl,,-+ 

Gln denote the product map on Gln, and let 

denote its internal differential at (g, h) E *Gln x *Gln. Then using the identification 

above, we have * d/-l(g,h) : * Endn x * Endn -+ * Endn. Let)..g : Gln -+ Gln : h t---+ gh 
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denote left multiplication by g. Similarly let Ph : Gin -+ Gin: g H gh denote right 

multiplication by h. Then we have the following well known formula (See Greub, 

Halperin and Vanstone, [l1J p 25). Let A E TgGin, BE ThGin, then 

But then, if we restrict this formula to the smooth submanifold of TGin x TGln given 

by ZCln X T1dGin where ZCln is the zero section of TGin ie., when h = I d and A = 0, 

we get dAg(B) = dJ-L(g,Id) (0, B). In particular, as dJ-L is a smooth map, this implies the 

following lemma. 

Lemma 4.3.1. The differential of left translation by g E Gln; 

(4.2) 

is a Coo map, and so if g E *Gin,nes, dAgl *Endn,nes is a nearstandard linear map. 

Proof. See the argument before the lemma. o 

Remark 4.3.1. Essentially, this (almost trivial) lemma says that if a group element 

is nearstandard, then the *differential of (left) multiplication by this element is near­

standard. This, to some extent, reveals the regularity argument of this paper. 

A standard analogue of the next result is a statement of the following sort. Suppose 

that A l , A 2 , ... is a sequence of elements of Endn with gj(t)~EXP(tAj) for all j and 

suppose the following holds. There is a symmetric neighborhood, U, of ° in IR such 

that the sequence of maps t H gj(t) : U -+ Gin is equicontinuous in t. Then the 

sequence A l , A 2 , •.. has a subsequence converging to an element in Endn. vVe could 
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not find a result like this in the literature, and so proved the corresponding needed 

nonstandard result. 

4.3.2 EXP is regular: ad is S-continuous 

Theorem 4.3.1 (EXP is regular). Let A E *Endn, and let gt denote *EXP(tA). 

Let *U be a standard, symmetric neigborhood of 0 in *IR. Suppose that the *one 

parameter subgroup 

t H gt : *U --+ *Gln 

is a t'local) subgroup of *Gln,nes. Then A E *Endn,nes. 

Proof. Suppose to the contrary that, A E * Endn,oo. In the proof below, we will use 

the notation from the previous lemma. So Ag : Gln -+ Gln denotes left multiplication 

by an element 9 E Gln, and by Lemma 4.3.1, if 9 E *Gln,nes, then dAg is a nearstandard 

linear map, ie., dAg : * Endn,nes -+ * Endn,nes. Let c denote the O"local *subgroup given 

by the image of t H gt. Then, as c is a local subgroup of *Gln,nes, we have that the 

restriction of dAgt to the *tangent space of c is a nearstandard linear map. (This, 

again follows from Lemma 4.3.1.) As the O"local subgroup c is abelian, dAgtl*Tc = *dgt , 

the differential of multiplication by gt. In particular, dgt is a nearstandard linear map. 

But, for gt = * EXP(tA), *dgt = A . gt . dt, (see Arnold's ODE book; he writes in the 

usual way, 1k(gt) = A· gt). That is, A· gt is a nearstandard linear map. On the other 

hand, using the hypothesis, let v E *1R~es with v ?f.; 0 such that z ~ A( v) E *IR~ holds. 

Let w ~ g-t(v), so that by Lemma 4.2.2, w is nearstandard. Then A· f1t(W) = z, ie., 

an infinite vector, a contradiction. o 
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Our last result applies Theorem 1 to the case A = adtv . We retain the notation 

used above. 

Corollary 4.3.1 (ad is nearstandard). ad is nearstandard. That is, suppose v E *9nes 

is fixed small enough, and t E *U. Then W E 9nes implies that ad tv ( w) is nearstandard. 

Proof. Lemma 4.2.1 implies that EXP(adtv)(w) is nearstandard for t E*U, the stan­

dard symmetric neighborhood of 0, v and w nearstandard. But applying the EXP is 

regular result, ie., Theorem 4.3.1, to the case where tA = t adv = adt~, we get that 

adv is nearstandard. D 



Chapter 5 

Standard part of the exponential is a 

local homeomorphism 

5.1 Introduction and strategy 

In this section we prove the 

Theorem 5.1.1. ° exp is a local homeomorphism. 

More precisely, we have the standard identification 9 ~ *lRn as a *IR vector space 

and (O,e) C (*lRn, 0). Using these, we can view exp: *lRn,O ---+ *lRn,O. With this 

set up, we will show that there exists U, V, neighborhoods of ° in IRn such that 

the following holds: °exp exist, is a continuous map: U ---+ IRn and in fact is a 

homeomorphism onto V. 

At this point, let's motivate the importance of the above result by indicating 

where we are going with it. Using the exponential map and its inverse to transport 

69 
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the Lie group structure on 9 to the vector space of 9, we get a canonical Lie group 

structure (product) on L that is a rather complicated power series which is essentially 

an infinite sum multilinear forms in the bilinear form given by the Lie bracket on L. 

One can observe that the convergence of this power series depends only on the norm 

of this bilinear form and therefore without loss of information one can view the Lie 

bracket simply as a bilinear map on L. Hence, the point of this transferral to the 

structure on L (via the exponential map) is that this product structure is susceptible 

to estimates in terms of the norm of this bilinear form [ , ] and we know that it is 

nearstandard as [v, w] = adv(w). 

In order to prove that exp is an S-homeomorphism in this section, we need to 

do some estimates with this series, the Hausdorff series of (9, g, [ , ]), using the 

result of the last section that [ , ] : *lRn x *lRn -+ *lRn is a nearstandard bilinear 

form and also using a critical relation between the exp map and the H-series, see 

Lemma 5.2.2. Where defined, the Hausdorff series (H-series) is a *analytic map 

H : *lRn x *lRn -+ *lRn defined in terms of [ , ]. Kirillov, [23] p. 105, and Duistermaat 

and Kolk, [5] p.29-3l, give the power series expansions for the H-series. Bourbaki, [4] 

pp.165-l68 give convergence estimates that are complicated. We will give simplified 

bounding approximations for which the reader can fill in the details. 

5.2 H-series estimates, S-lemma 

First note that we can assume that Hoi O. For suppose that H = 0, then [ , ] = O. 

If [ , ] = 0, ie., if our local group is abelian, then the following argument establishes 
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a alocal analytic structure. If [ , ] = 0, then exp (*lR~es' +) -+ 9 is a group 

isomorphism. That is, exp(x + y) = exp(x) + exp(y); so exp(J-L(x)) = e:r;p(x) + 
exp(J-L(e)) = /1(exp(x)), ie., exp is an S - homeomorphism. It's inverse therefore 

gives a change of coordinates to the analytic structure (*lR~e"' +). 

We will begin by proving the following estimates for the H-series. 

Lemma 5.2.1 (H-lemma). Suppose that lxi, Iyl S 1/2 and ° < t < 1/ Eo, where B o 

is the norm of [ , ]. Then 

t 
21x + yl S IH(tx, ty)1 S 2tlx + yl· 

Proof. We first need some estimates. Let B o = II [ , ]11 ~ *suPlxl,lyl=l I [;r, y]1 E *lR+,nes 

as [ , ] is seo. Then I[x, y]1 S (Bo/2)lx - yllx + yl· This follows from expanding 

[x + y, x - y] using bilinearity and antisymmetry. l!sing this, we get 

I [x, [x, ylll s (B5;2)l x llx - yllx + yl 

I [y, [x, [x, yllli s (B5/ 2)lxl Iyl Ix - yl Ix + yl, etc. 

Now, 

1 1 1 H(tx, ty) = t(x + y) + 2 [tx, ty] + 12 [tx, [tx, ty]]- 24 [tx, [ty, [tx, ty]]] + ... 
t 2 t 3 t 4 = t(x + y) + 2[x, y] + 12 [x, [x, y]] - 24 [x, [y, [x, y]]] + ... 

= t(x + y) + ft(x, y). 

Using the above estimates we get the bound: 
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Now suppose that 0 < t :S ~o (e.g., 0 < Bot :S 1) and that lxi, Iyl :S 1/2. Then 

we get 

B t 2 

:S + Ix - yl Ix + yl as () < 2. 

U sing these estimates, we have that 

IH(tx, ty)1 :S tlx + yl + Ift(x, y)1 :S tlx + yl (1 + B;t Ix - yl) 

:S tlx + yl(1 + 1)(as 0 < Bot :S 1 and Ix - yl :S 2) 

= 2tlx + yl which is the RHS of our bound. 

We have to establish the lower bound. 

B t2 

IH(tx, ty)1 ~ It(x + y)I-lft(x, y)1 ~·It(x + y)l- +Ix - yl Ix + yl 

=tlx+yl (1- B;t ly _ xl ) 

~ tlx + yl (1 - Iy; xl) as 0 < Bot :S 1 

t 
~ 21x + yl as Ixl + Iyl :S 1, 

which finishes the proof of the H-Lemma. D 

Corollary 5.2.1 (H-corollary). Suppose 0 ~ t < 1/ Bo, 0",", lxi, Iyl :S 1/2. Then 

IH(tx, -ty)1 rv 0 ¢:::::? X rv y. 

This follows directly from the H-Iemma. 
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Lemma 5.2.2 (S-lemma). Suppose 0 "'" lXI, WI < 1/2 and 0 < t < 1/ Bo. Then 
". 

exp(tX) '" exp(tY) -¢::::::} X '" Y. 

o 

Proof. We will use the formulas A) exp(tX) = exp(H(tX, -tY)) exp(tY), which 

comes from eg., Duistermaat and Kolk, [5] p.27, and B) if g, 0 E g, then 0 . 9 '" 

g-¢::::::}o '" e, which just follows from the fact that 9 is seo group. So suppose 

that X '" Y, 0 "'" lXI, WI ~ 1/2. Then by the H-corollary this is equivalent to 

IH(tX, -tY)1 '" O. But the It - exp-Lemma (Lemma 3.2.5) implies that this is equiv-

alent to exp(H(tX, -tY)) '" e, where here we might have to shrink our standard 

neighborhood so that the It - exp lemma applies. But then this is equivalent by B) 

above to 

exp(H(tX, -tY)) . exp(tY) '" exp(tY). 

But by A), the left hand side is exp(tX), as we wanted. o 

5.3 Exp is onto a neighborhood of e 

We want to next prove that the image of exp : 9 ---+ 9 contains a standard neighbor-

hood of e in 9 (C ~n). 

First, we need some preliminaries. We will leave the * off the transfer of standard 

sets, e.g., U instead of *U will be used. 

Given 9 defined on a standard neighborhood U of e (= 0), there exists standard 

neighborhoods V, W of e in 9 such that V· W c U. (See Montgomery and Zippin, 
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[29] p. 32). Let Z = V n W, a standard neighborhood of e. So z· Z C U. For q E Z, 

let Z be the standard closure of Z and Lg be the '*local diffeomorphism: *'z -+ *U 

given by left multiplication by g. (see Olver, [33] p. 30). vVe need some notation. 

If 0 < E E ~ and 9 E g, then D€(g) denotes the ~uclidean ball with center 9 and 

radius E. With this, we have the following result. 

Lemma 5.3.1 (Compactness lemma). If 0 < E'" 0, there is 8 E *IR with 0 < 8 '" 0 

such that Lg(D€(e)) ::) D8(g), 'l/g E '2. 

The proof is given after the next lemma. We can now prove the following. 

Lemma 5.3.2 (Onto lemma). Given the setup above, J1(e) C Im(exp). 

Proof. Suppose not. Then there exists go E J1(0), go rf. Im(exp) with Igol minimal for 

this. (This is the transfer of an internal statement, technically this is stated for all 9 in 

some internal disc.) Therefore, there exists gl E Im( exp) such that dist(gb go) < 8/2. 

But then as Lgl (D€(e)) contains the ball of radius 8 centered on gl, it follows that 

go E Lgl(D€(e)). That is, go = glh some some h E Im(exp). So we have that 

gl = exp(vl) and h = exp(w) for some Vb w '" 0 in g. That is 

go = exp(vl) exp(w) = exp(H(vl' w)), 

contradicting that go rf. Im( exp), finishing the proof. o 

Proof of compactness lemma. As Lg is a *local diffeomorphism for 9 E *'z, there is 

a *neighborhood Ug of 9 in *'z and 0 < Eg E ~ such that if g' E Ug, Lg,(D€(e)) ::) 

D€g(g'). This just follows from the fact that Lg is *locally aproximable by a *linear 

isomorphism. 
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Now U ~ {Ug : 9 E * Z} is a *open cover of * Z and as * Z is *compact, there is n E 

*IN and Ugll ... , Ugn E U such that :f<Z C U]=l Ugj" Let J ~ *min{fgj : j = 1, ... , n}. 

Then if 9 E Z, there is jo E {I, ... , n} such that 9 E Ugjo ' This then implies that 

Lg(DE(e)) :J DEjo (9) :J D8(?J), as we wanted to prove. 0 

As a direct result of the Onto Lemma, we have the following statement. 

Corollary 5.3.1 (Onto corollary). If 9 E Imexp, then p,(g) C Imexp. 

Proof. Let k E p,(g). The LTG condition implies that Lgp,(e) = p,(g) and so there 

is h E p,( e) such that k = gh. But the Onto Lemma implies h = exp( w) for some 

wE p,(g) and the hypothesis implies 9 = exp(v) for some v E g. Hence, 

k = gh = exp(v) . exp(w) = exp(H(v, w)) E Im(exp) 

as needed. o 

Using the following result we can finish. We, again, sometimes denote a standard 

neighborhood by U instead of *U. 

5.4 Fact on S-homeomorphisms and finish of proof 

We need a NSA result that verifies that particular properties of an internal map on the 

nonstandard level make its standard part a homeomorphism on some neighborhood 

of the origin. The following definition does this. Suppose that U is a standard 

neighborhood of 0 in *lRn. 
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Definition 5.4.1 (S-homeomorphism). Suppose that f : (*lRn, 0) ----t (*lRn, 0) is an 

internal map. Then we say that f is an 5-homeomorphism on *U ~f for all x, y E 

*u, x "v Y <===? f(x) "v f(y) and (ii) If Y E 1m f, then J-L(Y) C 1m f· 

Lemma 5.4.1 (S-homeomorphism lemma). Suppose that f : (*lRn,o) ----t (*lRn,O) 

is an 5-homeomorphism on *U. Let W = °f(U). Then of: U ----t int(W) is an 

homeomorphism. 

Proof. First of all, it is easy to verify that 

Of: x E int(U) ----t °(f(*x)) E W 

is a well defined map. We want to show of is Co. We will show that if Xj E U, for 

j E IN and Xj ----t Xo E U (converges to xo), then ° f(xj) ----t ° f(xo). To do this we need 

two typical NSA facts. Let *lNoo = *IN " aN be the infinite natural numbers. (a) If 

5 ~ {aj : j E IN} is a sequence in IRn such that aj ----t din IRn and if *5 = {aj : j E *IN} 

is the corresponding internal sequence, then aj rv *d for j E *lNoo . In the reverse 

direction we have the following result. (b) If {).j : j E *IN} is an internal sequence 

such that there exists J-L E *1R;;es with Aj rv I)' for j E *lNoo, then {O'\j : j E *IN} 

converges to ° J-L in IRn. See Stroyan and Luxemburg, !43] p. 73. vVe now turn to the 

proof. 

Now if Xj E U as above such that Xj ----t Xo, then (b) implies that Xj rv Xo for 

j > 00. But then by hypothesis f(xj) rv f(*xo) for j > 00. But then by (a) for j E IN, 

°(f(Xj)) ----t ° f(~xo). So ° f is Co. 

Also ° f is 1 - 1 on U. Let x =J Y in U. Then *x "v *y in U and therefore by 

hypothesis f(*x) "v f(*y). But then °(f(*x)) =J 0(f(*y)). So f is 1 - 1. This implies 
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that (0 f)-I: W --t U is a well defined map where W = int(W). 

We will show that (0 f)-I is Co. Let z E Wand J = {Yj : j E IN} be a sequence in 

W such that Yj --t z. We want to prove that (0 f)-I (Yj) --t (0 f)-I(Z). Let Xj, j E IN 

and w in U be defined by Xj = (0 f)-I (Yj) and w = (0 f)-I(Z); so that f(*Xj) rv Yj and 

j (*w) rv Z by the definition of OJ. 

Let d(x, y) be the standard Euclidean distance between x and Y in *lRn. Now 

suppose that C = {Cj : j E IN} is defined by d(Yj, z) = Cj, e.g., Cj --t 0 as j --t 00. 

Let Z E j(U) with Z rv *z and let y = {Yj : j E *IN} be an internal sequence in j(U) 

such that for j E IN, Yj rv *Yj and d(Yj,z) ::; 2cj where *C = {Cj : j E *IN} is the 

*transfer of C. Such a sequence exists because of the hypothesis: if Y E 1m j, then 

J1(Y) C 1m j. So there exist X = {Xj : j E "IN} c U and w E U such that j(Xj) = Yj, 

for all j E *IN and j(w) = z. So note by (a) that for j > 00, Cj rv 0, i.e., j > 00 

implies that Yj rv Z. 

Now for j > 00, Yj '" z implies that Xj rv W by hypothesis (i) on j. But Z rv *z 

implies that w rv *w for the same reason. That is, Xj rv *w for j > 00. But then by 

result (b), the standard sequence ® O(Xj) --t was j --t a oo. But Yj rv *Yj for j E *IN 

implies that Xj rv *Xj for j E *IN, again by hypothesis (1). But then this implies that 

°Xj = Xj and so ® now reads Xj --t w for j --t 00 as needed. o 

So now we have that OJ: U --t Wand its inverse (0 f)-I : W --t fj are both 

continuous maps, hence OJ: U --t W is a homeomorphism onto W. o 

Proof of theorem 5.1.1. To finish the proof of the theorem, note that if we let exp = j 

in the NSA fact (Lemma 5.4.1) and U = {tx E 9 : t > 0 and Ixtl < 21o} then the 
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S Lemma (Lemma 5.2.2) and f-L exp Lemma (Lemma 3.2.5) give hypothesis (i) in 

the NSA fact and the Onto Corollary (Corollary 5.3.1) gives hypothesis (ii) in the 

NSA fact. o 



Chapter 6 

Main nonstandard regularity theorem 

and standard version 

6.1 The product is S-analytic after coordinate change 

In this section, let [ , ] denote our nearstandard *Lie bracket and let 1jJ : 9 x 9 -+ '1Rnes 

denote our product map. In this section we will finish the proof of the main theorem 

by using the results that [ , ] is seo and 0 exp is local homeomorphic along with the 

Campbell-Hausdorff-Dynkin, CHD, series expansion for the product map of our local 

group in "canonical" (i.e., log) coordinates. 

The CHD series is the Hausdorff series we have already seen. But we need different 

results and so a different formulation (which we will provide), along with how it fits 

in here. Then we will summarize the proof. We find the passage in Kolar, Michor 

and Slovak (henceforth KMS), [24] p. 40,41, most suitable for our purpose. See also 

e.g., [23], p. 105,106. KMS states their results for a global group but it holds locally 
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in the same manner (see [23], pl05,106, and [4]). 

Our *Lie bracket [ , ] is a nearstandard bilinear form: *(lRn x IRn) -+ *lRn and nes nes 

it defines the usual map ad : *1R~es -+ * gl(n)nes by v -+ adv : (w -+ [v, w]). For 

clarity of purpose, we will instead work with an arbitrary nearstandard bilinear form 

B : (*lRn x *lRn)nes -+ *lRnes and define ad~(w) = B(v, w) just as with [ , ]. 

For a standard Lie bracket, [ , ], the text of Kolar, Michor and Slovak [24], defines 

(p. 40) an analytic map H : IRn x IRn -+ IRn by 

H(X, Y) = H[, j(X, Y) ~Y + 11 J(etadxeady). Xdt 

where J(t) = log(t) . 
t-l 

This is a nice closed form for the CHD series. We will substitute B for [ , ] in this 

formula. The (long known: see [4) Historical Notes) Baker, Campbell, Hausdorff 

(BCH) formula is given as follows. 

If g, h E 9 and 1/J(g, h) are all defined and if g,h are in the range of exp then 

1/J(g, h) = exp(H[ , j(exp-1 g, exp-1 h)). (see [23) p. 105). vVe will prove that for B = 

our [ , ], H[ , j has analytic standard part. 

At this point we need to make some clarifying remarks. First of all, for an arbitrary 

*Lie algebra product [ , ] 

defines a * analytic group structure on *lRn (with 0 as the identity) near o. That is, 
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(see [4] p. 162) where defined 

H(H(x, y), z) = H(x, H(y, z)) 

H(x, -x) = H( -x, x) = 0 

H(x,O) = H(O, x) = O. 

81 

Note here that X-I = -x with respect to this group structure. That is, the inversion 

map for the *group structure H is just x -+ -x which is obviously lTanalytic and 

therefore e.g., S analytic. Therefore to prove that this *group structure (on *IRn 

defined by H) is S-analytic, we just need to prove that the product map, i.e. H, is 

S-analytic. 

As the S-analyticity of H[ , 1 depends only on the lTboundedness of [ , ] as a bilinear 

map and as we want to look at the S-analyticity of one map in our proof in the context 

of multilinear maps; for us, it is more clear to work through the steps with a general 

*bilinear map B substituted in place of [ , ]. 

The next lemma verifies that the map H B as defined by the expression ® is S­

analytic by building the expression for HB from clearly S-analytic simpler expressions. 

Lemma 6.1.1 (HB analyticity). If B is nearstandard, HB is S-analytic. 

Proof. The proof will be a reconstruction of HB as the composition of two S-analytic, 

SAW, maps. Suppose that B : IRn x IRn -+ IRn is a bilinear map. For each x E IRn, B 

defines an element ad: E gl(IRn) by ad:(y) ~ B(x,y) for y E IRn. We therefore get a 

linear map 

ad = adB : IRn -+ gl(n) by x Had: . 
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Then note that if the norm on A E gl(n) is defined (typically) by 

II All = sup{IA(x)1 : Ixl = I}, 

then Vx, y E IRn, I adx(Y)I ::; II adx II· 

Note that if A E gl(n), then eA (= expA) E Gl(n) satisfies 

and if p(x) is a real polynomial in x, then p(eA ) E gl(n) and IIp(eA)11 ::; p(1 + IIAII) 

again if IIAII ::; 1. By continuity, these estimates extend to convergent power series. 

So if AI, A2 E gl(n) are such that IIeA1 eA2 11lies in the domain oflog, then log(eA1 eA2 ) 

is defined, as is (e A1 eA2 -1)-llog(eA1 eA2 ) if we also have eA1 eA2 -=J IlRn • Let f(x) = 

(x - I)-llog(x). Then we have the well defined element of gl(n), g(Al' A2 ) defined 

to be f(e A1 eA2 ). 

By construction 9 : gl( n) x gl( n) -+ gl( n) is an analytic function. If t is a real 

number, and x, y E IRn, g(Al ,A2 ,x,y) ~ y + fol g(tAl ,A2 )x· dt is therefore also an 

analytic function: 

9 : gl(n) x gl(n) x IRn x IRn ----+ IRn. 

Let B : IRn x IRn ----+ gl(n) x gl(n) be defined by B(x, y) = (ad~, ad:). Now *transfer 

the above construction. *g is now a O"analytic function (and therefore S-analytic) 

on *(gl(n) x gl(n) x IRn x IRn)nes and if B is nearstandard, then B is an S-analytic 

map: *(lRn x IRn)nes ----+ *(gl(n) x gl(n))nes. But then *g 0 (B X hlRnxlRJ is S-analytic 

(at nearstandard points, of course) as it is the composition of S-analytic maps. (See 

Fact B) and C) in Lemma 2.5.2 in the preliminaries.) But this is just the mapping 
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Hs(x, y) = H(x, y) as defined in [241 p.40, where here we have not specialized our 

general bilinear form B to a Lie bracket. 

That is, if B is nearstandard, then 

is an S-analytic map, as we wanted to show. D 

6.2 Finish of proof of main nonstandard theorem 

Using this we can get the following result. 

Theorem 6.2.1 (Product theorem). Let (9, 'l/J) E CTlocSeo *LG modeled on *U x *U, 

where U is a convex neighborhood of 0 in [Rn. Let (L, [ , ]) = *LA(9, 'l/J). Suppose that 

[ , 1 : *([Rn X [Rn )nes ---+ *[R~es is seo. Suppose that exp is a CTlocal S -homeomorphism. 

Suppose that (9, 'l/J) is the representation of the CT loc *LG(9, 'l/J) with respect to the 

local coordinates given by exp -1. Then 'l/J is SAw on exp -1 (*U) x exp -1 ( *U), where 

U = Un V. Here *V is a standard neighborhood of 0 on which exp-l is an S­

homeomorphism. (See the exp is an S-homeomorphism section.) 

Proof. The result follows from the above preliminaries, the Hs-Iemma (Lemma 6.1.1) 

and the fact that 1j)(x, y) = H[ , j(x, y). D 

We can now give our main nonstandard result. We continue to use the notation 

1j) from the product theorem above for the group structure in the new coordinates. 

Theorem 6.2.2 (Main nonstandard theorem). Suppose that (9, 'l/J) is an seo CTloc *LG. 

Then there exists standard neighborhoods U and V of 0 in [Rn, such that 7] ~ 



Tom McGaffey 84 

O( exp-l) : (U,O) -+ (V,O) is a homeomorphism 0'lj; : V X V -+ IRn is an analytic 

local group structure and rJ 0 1jj 0 (rJ- 1 X rJ-l) : V X V -+ IRn is our original a loc *LC 

structure 'Ij;. 

Proof. This follows immediately from the exp is an S-homeomorphism theorem (see 

Theorem 5.1.1) and from the ad is seD Corollary (see Corollary 4.3.1 ) applied to 

the Product Theorem. o 

Suppose that (9, 'Ij;, /I) is an seD a loc *£C modeled on (IRn, 0). Then we have 

proved the following: there is a (canonical) S-homeomorphic choice of coordinates 

in which our alocal *Lie group is S-analytic. Henceforth in this paper, if we 

have such a alocal *Lie group with standard part a locally Euclidean local 

topological group, then the standard part is in fact S-analytic. For the 

purposes of this paper, this can be heuristically restated as follows. 

Remark 6.2.1. Suppose that we have a a local *Lie group modeled on IRn lying (point­

wise) infinitesimally close to a locally Euclidean local topological group on some stan­

dard neighborhood of 0, then that local topological group is analytic. 

6.3 Standard Consequences of Main Theorem 

In this section, we will give some standard corollaries of the main regularity theorem. 

We start with a nonstandard result that is a statement about how a single nonstandard 

object with mild regularity in fact has strong regularity, and when we shift to the 

standard domain we get a result about the asymptotic regularity of families of objects. 
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This is typical. l\" ote that these formulations have the flavor of the theory that a family 

of meromorphic functions is normal if its elements satisfy a particular property, see 

eg., section 8 of Robinson's paper 1391. But, he"re we relate this to properties that ideal 

(nonstandard) elements of families of local Lie groups might have which then forces 

properties on the family itself. If Gj = ('l/Jj, Vj), j = 1,2, are two local topological 

groups on IRn (here, the identity of any such group will always coincide with 0), and 

U is a neighborhood of 0 in IRn, we say that they GI equals G2 on U if 'l/JI = 'l/J2 

on U x U and VI = V2 on U; we say they are equal if there is such a U on which 

they are equal. Generally below we will be considering families of local Lie groups on 

IRn; in this case 0 will always be the identity and all will have a common domain of 

definition. Nevertheless, we have the following lemma. 

Lemma 6.3.1. Suppose that U eVe IRn are convex open neighborhoods of 0 and 

G I , G2 are local topological groups such that V c DCI n DC2 and G I = G 2 on U, then 

G I = G2 on V. 

Proof. vVe prove the statement for the products, 'l/JI, 'l/J2, the proof for the inversions 

following from this and using a similar open and closed argument. First of all, one can 

adapt the theorem on connected topological groups in 1291 p.37 to get that elements 

of both G I and G2 in V are products of elements of these groups in U. vVe therefore 

proceed by induction on the length of the product keeping in mind that convexity of V 

implies that k-fold associativity holds for G I and G2 on V (see chapter 8 for why this 

could be a problem). Let's verify that if z E V'-... U is given by 'l/Jj(x, y) for j = 1,2 (as 

G I = G2 on U), then w in some neighborhood of 0, we have that 'l/JI(Z, w) = 'l/J2(Z, w). 
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Choose ~ E p,(0); then *7j;j(*Y,~) E *U and so *7j;I(*7j;I(*Y'~)) = *7j;2(*7j;2(*Y'~)). But 

the left hand side is (by associativity) *7j;1 (*7j;1 (*x, *y),~) = *7j;l(*Z,O and the right 

hand side is *7j;2(*7j;2(*X, *y),~) = *7j;2(*Z, ~). This holds for all ~ E p,(0) and therefore 

by overflow (everything here being internal) there is a neighborhood N of 0 such that 

*7j;I(*Z, *w) = *7j;2(*Z, *w) for all WEN, ie., 7j;1(Z, w) = 7j;2(Z, w) for Z E U2 and 

wEN. By doing the previous with *7j;j(*x,~) instead, we get 7j;1(W,Z) = 7j;2(W,Z) 

for w in a neighborhood of 0 and Z E U2. So we have that if 7j;1 (z, w) = 7j;2 (z, w) 

for some z, w E V, then this holds on some neighborhoods of Z and w, ie., the set 

where they are equal is open. On the other hand, if 7j;1 = 7j;2 on some set 81 x 82 

and (~,() E *81 X *82, then transfer implies that *7j;1(~,() = *7j;2(~'(). But then if 

x, y E V are in the closure of 8 1 x 82, then choosing (~, () E *81 X *82 with o~ = x 

and O( = y, we have, by the continuity of the 7j;/s on V =:> 8 1 x 82, that 

ie., they are equal on the closure of 81 x 82. So we know that the subset where 

7j;1 = 7j;2 contains U x U and is an open and closed subset of V x V and so as V x V 

is connected must be equal to V x V. o 

We will be talking about families of local topological groups defined on some 

neighborhood of 0 on some fixed IRn. As such, we need to fix a convex neighborhood V 

of 0 in IRn, where our local groups will be defined. If G = (7j;, /I) is a local group defined 

on IRn, let Dc C IRn denote a domain of definition for G, ie., an open neighborhood 

N of 0, such that 7j; is defined on N x N and /I on N Given this, then note that 

as our choice for V is arbitrary; then for a given family 15 of local groups such that 
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n{vc : G E <!5} contains an open set, N, then we can just choose V to be a convex 

neighborhood of 0 contained in N. 

As we will be talking about potential groups on this fixed neighborhood of 0 of 

varying degrees of differentiability, we will include some organizational definitions 

here. If k E {O} U IN, we will let Ok = Ck(V) denote Ck(V x V, IRn) x Ck(V, IRn) 

Recall that Gp = Gpk denotes the family C k local Lie groups on V for some fixed 

2 :S k :S 00 and if G E Gp with G = ('IjJ, v) and (x, y), (x, y) E V x V, then we write 

IG(x, y) - G(x, y)1 for max{I1/J(x, y) - 'IjJ(x, ml, Iv(x) - v(y)I}· Given an ordered pair 

of multiindices (a, (3), we will write ;ya,(3)G for (a;:ae'IjJ, aav ) where a;: means taking 

the 0: partial derivative in the first coordinates of 'IjJ and a~ the (3 partial derivative 

in the second coordinates. We now have our first result. 

Proposition 6.3.1. Suppose that Gl, G2 , ... is a sequence in Gpk and H E CO such 

that for all x, y E V we have IH(x, y) - Gj(x, y)1 tends to 0 as j -t 00. Then there 

are coordinates on V in which H can be given the structure of a local Lie group on V. 

Furthermore, for each (x, y) E V x V and all multiindices (0:, (3) with 1001 + 1(31 :S k, 

we have laaa!3(Gj - H)(x, y)1 tends to 0 as j -t 00 . 

Proof. Let Wo be any fixed infinite integer; then the transfer of the hypothesis gives 

I*H(~,() - *GW(~,()I rv 0 for all W 2: Wo0 In particular, this implies that *G'O is 

S-continuous on *V. But then *G'O is a "local SCO *Lie group and therefore there are 

coordinates on V so that *Gwo is an S-analytic "local *Lie group. That is, O(*Gwo) is 

a local analytic Lie group. Yet * H(~, () rv *Gwo (~, () for all ~,( E *Vnes means that 

H = 0(* H) = O(*GWO), eg., H is an S-analytic group in these coordinates. Backing 
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up, since in these coordinates, both *cw, for w 2: Wo, and *H are eg., in SCk(U), we 

have by theorem 9.1.1 that the condition * H(~, () rv *CW(~, () for all~, ( E *Vnes (and 

all w 2: wo) implies in fact that for all multiindex pair (CY, (3) with ICYI + 1(31 :S k, we 

have that *a(O',(3)(* H)(~, () rv *a(O',(3)(*CW)(~, () for all ~,( E *Vnes (and all W 2: wo). 

As this holds for all W E *IN with W 2: Wo and as *Vnes = U{* K : K c V is compact}, 

then we can rewrite this statement as follows. (A): For every compact K c V we 

have *a(O',(3)(* H)(~, () rv *a(O',(3)(*CW)(~, () for all ~, ( E * K and all w > woo l\ow 

consider, for each r E IR+ and compact K c V the following set. 

tK,r = {jo E IN: la(O',(3)cj(x,y) - a(O',(3)H(x,y)1 < r 

for all x, y E K, j 2: jo and ICYI + 1(31 :S k}. (6.2) 

vVe claim that ICK, r is nonempty; this will follow from reverse transfer when we verify 

that *tK , r is nonempty. By transfer, we have 

*tK, r = {Ao E *IN : *1*a(O',(3)(*C'\)(~, () - *a(O',(3)(* H)(~, ()I < *r 

for all ~,( E * K, A 2: Ao and ICYI + 1(31 :S k}; (6.3) 

and note that statement (A) above says precisely that *cwo E *ICK, r' So given 

this, if Kl c K2 C ... is a sequence of compact subsets of V with union V, then 

for each t > 0 and x, y E V, we have that there jo E IN such that x, y E K j and 

j E ICKJ , t for all j 2: jo. In other words, if t > 0 and x, y E V, we have that 

la(O',(3)Cj(x,y) - a(O',(3)H(x,y)1 < t for all multiindex pairs (CY,(3) with ICYI + 1(31 :S k 

Mdj2:~. 0 

Let's give a more nuanced version of the previous proposition. First note that 
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the convergence condition in the above proposition is distinctly weaker than uniform 

convergence on U. Given this, we have a definition. (See Stroyan and Luxemburg, 

[43], p217 for a nonstandard rendition of the usual definition of equicontinuity.) 

Definition 6.3.1. We say that a family F C GO(U) is equicontinuous if the following 

holds. For each x E V and each r > 0, there is a neighborhood of x, Ux, an element 

of F, GX, and SX E IR+ such that the following holds. If for all y, y E UX, we have 

IGX(y,y)-GX(x,x)1 < sX, then for every G E F, we have that IG(y,y)-G(x,x)1 < r. 

This is not the usual definition of equicontinuity; ours relates all elements of F to 

some element of F rather than to the universal function dX(y) = Iy-xl. This is a weak 

form of equicontinuity, a more typical form is a uniform version of this. A typical 

example of of such a uniform equicontinuous subset of GO(U) is given as follows. Let 

9Jt denote the set of functions m : IR+ -? IR+ satisfying limHo m(t) exists and is O. Let 

Fm denote the set of G E GO(U) such that there is ba E IR+ such that for all x, y, x, Y E 

U with max{lx - xl, Iy - yl} < ba , we have IG(x, y) - G(x, Y)I < m(l(x, y) - (x, Y)I). 

Note also that if m, m' E 9Jt and m decays no slower that m', ie., limHO(m(t)/m'(t)) 

exists and is finite, then Fm ~ Fm" but note that this uniform condition implies that 

GO(U) ~ U{Fm : m E 9Jt}. A nonuniform version of the Fm that still defines an 

equicontinuous set is as follows. Choose M : U x IR+ -? IR+ such that for each x E U, 

limHO M(x, t) = 0 and define FM as follows: we say that G E FM if for each x E U, 

there is Ka,x E IR+ and rx > 0 such that for max{ly - xl, Iy - xl} < rx, we have that 

IG(y, y) - G(x, x)1 < Ka,xM(x, max{ly - xl, Iy - xl}) . Note that these sets FM are 

also subrings of GO(U). Furthermore, we find that for these equicontinuous sets we do 
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get exhaustion; ie., if 1M denotes the set of these M's, then CO(U) = U{FM : ME 1M}, 

which follows from the fact that we can define an M E 1M in terms of a given G E 

CO (U), in which case we will have G E F M. Hence our equicontinuity can be defined 

in this manner; and note, in particular, that the rate of decay of t H M(x, t) at 0 can 

be arbitrarily slowly as x E U leaves compact subsets of U. In spite of this severely 

weak form of equicontinuity, we nonetheless have our second standard consequence 

of the main nonstandard theorem. 

Proposition 6.3.2. Suppose that F c Gp is an infinite equicontinuous subset. Then 

there are coordinates on V and c E IR+ depending only on F such that for all G E F, 

we have that IIGllk < c. 

Proof. Suppose that the conclusion is false, so that for each bE IR+, there is Gb E F 

with IIGbll k > b for all choices of coordinates on V. Transferring this statement get 

an element 9 E * F with *11911k infinite in all *coordinates. Given this, let x E V 

and consider ~,( E /-L( x). Choose an arbitrary r E IR+, so that UX, GX, SX exist 

by the hypothesis of equicontinuity. We have the statement 6(x, r, UX, GX, SX) as 

follows: if y, Y E UX with IGX(y, y) - GX(x, x)1 < sX, we have that for all G E F that 

IG(y, y) - G(x, x)1 < r. Therefore the transfer, *6(x, r, UX, GX, SX), of this statement 

is the following. If I), Ij E *ux, satisfy (:I:) I*GX(I), Ij) - *GX(*x, *x)1 < *sx, then for 

all 9 E F, we have that 19(1), I)) - 9(*x, *x)1 < *r. Yet as ~,( ('o..J *x, we have that 

(:j:) is satisfied for I) = ~,Ij = (. But r > 0 was chosen arbitrarily and so in fact 

19(~, () - 9(*x, *x)1 ('o..J o. Yet as we chose ~,( arbitrarily in /-L(x) and we chose x E V 

arbitrarily, we have that 9 is S-continuous in V. But then the main nonstandard 
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theorem, 6.2.2, implies that there are coordinates (in fact the standard part of logO 

coordinates) for which 9 is S-analytic. But then eg., we must have *11911k is finite; in 

particular *IIQllk is finite, a contradiction. o 

From the previous fact, we have the following consequence. If G E Ck(U), G = 

(7j;, v) and if a = (aI, a2) is a multiindex with lal + a21 ~ k, then GOl = GOll,0l2 will 

denote (7j;Oll,0l2, V Oll ) E Ck-IOlI(U) where eg., 7j;Oll,0l2(X, y) = [)~2[)';17j;(X, y). 

Corollary 6.3.1. Suppose that F c Gpk is equicontinuous, k E IN and S c F is a 

sequence. Then there is a homeomorphic change of coordinates on U, a subsequence 

S' = {GI , G2 , ... } c Sand G E Gpk (in these coordinates), such that for each r E IR+ 

and x, y E U, there is jo E IN such that we have IGj(x, y) - GOl(X, y)1 < r for j 2=: jo 

and lal ~ k in these new coordinates. 

Proof. Consider 90 E * S" as. Then by the previous proposition, we have that 

90 E SCk(U), eg., that Go ~ 090 is a ck group on U. Assume for the moment that 

we have verified the following statement (j,): for each ~,( E *Unes , we have that for 

lal ~ k, *Go(~, () f"V 9o(~, (). Fixing arbitrary compact K c U and r E IR+ and 

define 

BK , r = {G E S : IGOl(x, y) - Gg(x, y)1 < r for lal ~ k and for all x, y E K}. (6.4) 

We claim that Br , K is nonempty and will show this by verifying that its transfer, 

*BK , r, is nonempty. To this end, transfer gives 

*BK , r = {9 E * S : 1901(~, () - *Gg(~, ()I < *r for lal ~ k, for all ~,( E * K}. (6.5) 
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But the expression (~) implies that go E *BK,r and therefore, eg., by reverse transfer 

BK , r is nonempty. So choosing successively, r = 1/2,1/3, ... , K = K 1 , K 2 , .. . with 

K j C Kj+1 for all ) and U{ K j : ) E tN} = U, the above conclusion implies that we 

can find Gj E S such that Gj E BKj,l/j. But given arbitrary x, y E U, we have that 

there is )0 E tN with x, y E K j for) 2: )0. So given r > 0 and x, y E U, there is big 

enough )0 such that x, y E Kjo and 1ho < r. Given this, the above argument assures 

us that Gj for) 2:)0 satisfies our conclusion. So we just need to verify (~) above. But 

as the previous proposition gets go E SCk , this fact follows from theorem 9.1.1. 0 



Chapter 7 

Almost implies near and a partial 

solution to the approximation 

problem 

7.1 Summary of Initial Approach 

The initial approach to this part of the result was to use a *transferred version of 

Anderson's almost ~ near construction as follows. [See Anderson's paper ([1]) or 

Keisler's jazzed up version, [22], for the details of this unused theory]. 

First note that his construction implies than an accumulating sequence of almost 

(local) Lie groups has a local Lie group as an accumulation point. From Anderson's 

perspective if an almost Lie group is sufficiently close to being a Lie group (locally 

speaking), then there is a local Lie group lurking quite close. (In the author's work 

on this, this is all structured in terms of careful numerical estimates; we are giving a 

93 
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crude description here). 

We then *transferred this entire argument. So that now we have that if an *al­

most *Lie group is *sufficiently close to being a *Lie group, then there is a *Lie group 

lurking *nearby. The author had set this problem up so that he could apply the 

transfer of Anderson's nearby implies (now infinitesimally) close. That is, we applied 

this (almost::::} near) set up to a *transferred sequence of almost Lie groups approx­

imating a local topological group. Fixing one of these *sufficiently close to being a 

*local Lie group, and by construction infinitesimally close to the top group, we could 

then find a *local Lie group infinitesimally close to the approximating *almost Lie 

group. This is where the *transfer of Anderson's result is used. Together these ap­

proximations imply that the approximating *local Lie group is infinitesimally close 

to our (standard) local topological group. But this implies that our *local Lie group 

is S-continuous, the hypothesis needed to get the main nonstandard theorem. 

This is a crude statement of the argument. For example, we need to work in alocal 

instead of *local. Nonetheless, we found a mistake in the estimates for our approxi­

mating sequences that we have not been able to fix. It seems that this approximation 

(density) result must certainly be true and in fact should be in the literature. To date, 

we have not been able to locate or prove this result, although we now believe that it 

will follow from the work done here. Furthermore, some discussion with experts in 

this matter indicates a general sense of the plausibility of the density assertion. 

Recently, a reconstruction of the strategy just described may potentially give a 

proof of the local Fifth problem. We will summarize the strategy here and prove 

big parts of it's components later. First of all, we will prove an almost implies near 
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result for local Lie groups motivated more by the approach of Spakula, Zlatos, [451, 

buttressed by a nonstandard formulation of a equicontinuity type property of C k 

mappings. 

7.2 Almost implies near for local Lie groups 

7.2.1 almost implies near 

In this subsection, we will prove that if ('l/J, v) E Ck is almost a (local) group, then 

there is a local (Lie) group nearby in the C k topology. Let us first define a nearness 

notion for potential locally Euclidean topological groups. 

Definition 7.2.1. Suppose that V is a neighborhoods of 0 in IRn. Ifk E {O}UN, recall 

that Ck denote the set of ('l/J, v) E Ck(V X V, IRn) x Ck(V, IRn) and if bE IR is positive, 

let C~ denote those ('l/J, v) E Ck such that 11'l/Jllk and Ilvllk are bounded by b, where 

the supremum is on V. If G = ('l/J, v), we may write IIGllk for max{II'l/Jllk, IIvlld. In 

particular, if Gj = ('l/Jj, Vj) E C~ for j = 1,2, then G1 - G2 E C~, and so we have 

IIG1 - G211k = max{II'l/J1 - 'l/J21Ik' Ilvl - v21Ik}. 

One can check that the triangle inequality holds for 1IIIk : C~ -+ [0,001 and that 

IIG1 - G211k = 0 if and only if G1 = G2 on V. Henceforth, until the finish of this 

subsection, all smooth maps will be defined on U or its Cartesian products 

as is appropriate and all norms, ie., as in the previous definition will be 

on V. 

Lemma 7.2.1. Suppose that 91,92 are in SCo n *Ck are such that *1191 - 92110 rv o. 
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Then, for j = 1,2, °9j exists are continuous and equal on V. 

Proof. This is clear. o 

Let us next define a notion measuring how close an element of Ck is to being a 

(local) topological group (on V). Essentially, we take approximations to the defining 

relations, ie., definition 3.1.1. Note that the approximations are pointwise only and 

this is what makes the following almost implies near result a bit surprising. 

Definition 7.2.2. Suppose that H = (7jJ, v) E C k and B c V is compact. Let 

1. D 1(H)B = 117jJ 0 (Id x 7jJ) -7jJ 0 (7jJ X Id)IIB, 0, 

2. D2 (H)B = max{ll7jJ 0 (v x Id)IIB, 0, 117jJ 0 (Id x v)IIB, o} 

3. D3(H)B = max{ll7jJ 0 (Id x 0) - IdII B, 0, 117jJ 0 (0 x Id) - IdII B, o}. 

If S E IR is positive, then we say that H is an s-almost (local) group on B if D j zs 

defined at all elements of V, V x V, etc., and Dj(H)B < s for j = 1,2,3. Let's denote 

the set of (C k ) s-almost groups on B by As (V, B) and A~(V, B) = As (V, B) n C;(V). 

Let's also denote the subset of 0; of local groups on B, ie., such that D j (G) B = 0 

for j = 1,2,3, by Gp~(B) = Gp~(V, B) (or Gpb(B) if k is understood). If we want to 

emphasize that V is a domain of the mappings defining the B-local Lie group G, then 

we may write G E Gp(V, B). 

Remark 7.2.1. Note that we did not demand a C k closeness for our C k structures, 

nonetheless this will be sufficient. In particular, note that if H E Ok is such that 

D j (H) B = 0 for j = 1, 2, 3, then we have the defining conditions, definition 3.1.1, for 
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H to be a local (Ck ) group on B although now B is a compact set and H is defined 

on the larger open V. 

We can now state our first almost implies near result. Note the history of at­

tempts to verify that differentiable manifolds that are sufficiently close to being Lie 

groups in some sense must therefore have Lie group structures. All previously proven 

facts follow from hypotheses that, crudely speaking, are stated in terms of global 

C 1 smallness conditions on tensor fields that obstruct (on the tangent space level) 

a group structure. Furthermore, the hypotheses assume a particular type of group 

structure. For example, see the papers of Ruh, [421 and [81. On the other hand, our 

conditions are pointwise (ie., much weaker) conditions and do not assume that we 

are approximating a particular type of group. Note that although our assertions are 

local, assuming our local groups are globalizable, they may imply the global results. 

Again note that to get a local Lie group Ck-near the given almost group, we are 

assuming only CO closeness to a group structure for this almost group. Although 

this seems to regularize the nearness condition, this result is independent of our main 

nonstandard theorem. Nonetheless, the CO closeness allows us to pair the following 

result (through a nonstandard argument) with the main nonstandard theorem, see 

the next subsection. 

Let cpt(V) denote the set of compact subsets of V. Note that V = U{ K : K E 

cpt(V)} and here we can always find a countable subset of cpt(V), whose elements 

are increasing with respect to inclusion whose union is V. 

Proposition 7.2.1 (Almost implies near). For each (B, r, b) E cpt(V) x IR+ x IN, 
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there is a positive s E IR such that if H E As(B) n Cf(V), then there is a local Lie 

group G E Gpk(B) n Ct(V) such that IIG - Hlk k < r. 

Proof. By way of contradiction, suppose that the conclusion is false. That is, sup-

pose that there is (Bo, ro, bo) E cpt(V) x IR+ x tN such that the following statement 

S(Bo, To, bo) holds. For all positive s E IR and for all H E As(Bo) n Cta (V), we have 

that for every local Lie group G E Gp(Bo) n Cta(V), we have IIH - GilBo, k ;::: roo 

Transferring statement S(Bo, ro, bo) gets the following internal statement. For all 

positive .5 E *IR, and 1-l E * As (Bo) n *C:b(V), we have that for all local *Lie groups 

9 E *Gp(Bo) n *C~ (V), we have *111-l - 911* Bo, k ;::: *ro. But then choosing an 

.5 f"V 0 and an il E * As(Bo) n *Cta(V), this must imply that for all local *Lie groups 

9 E *Gp(B) n *C:ba(V) we have *llil- 911*Ba, k ;::: *ro. Yet we will now verify that 

.5 f"V 0 implies that the standard part of il is a C k group on Bo. First of all, if 

il = ('ljJ, v), then 0'ljJ and °v exist and are in Cta (V). This is a direct consequence of 

Theorem 9.1.1. It also follows from this theorem that for all ~,( E *Vnes , we have 

that 'ljJ(~, () f"V *(0'ljJ)(~, () and v(O f"V *(Ov)(O and as these are S-continuous we have 

that compositions are also infinitesimally close; for example if 'r] is also in *V and the 

again by S-continuity. But also we have that as .5 f"V 0 and ('ljJ, v) are in As(B), the Dl 

condition gives 'ljJ(~, 'ljJ((, 'r])) f"V 'ljJ('ljJ(~, (), 'r]) for ~,(, 'r] E * Bo. Putting this together 

for all ~,(, 'r] E * Bo, and as both sides are standard if ~, ( and 'r] are standard, then 
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and 'fJ = *z with x, y, z E Bo; this gets that 07j; : V x V -+ V satisfies associativity on 

Bo. This was a consequence of S-continuity and * Dl (il) '" O. Similarly, we can get 

that * D2 rv 0 and * D3 '" 0 imply the other two conditions that oil = (07j;,o v) is a C k 

local group. To show that the verification of the other two is quite similar, let's verify 

that * D2 rv 0 implies the second group condition for il. As above, .5 rv 0 applied to 

the first * D 2 (il) '" 0 condition gets that 7j;(v(~, ~» rv 0 for all ~ E *Vnes. This along 

with the S-continuity of 7j; and the facts that *(07j;) rv 7j; and *(Ov) '" v, gets 

(7.1) 

Summarizing, we have that oil is a local Lie group in Gp( Bo) n Cta (V) and so 1l = 

*(Oil) is a local *C:bo group on Bo. But note that Theorem 9.1.1 also implies that 

*11*(°7j;) - 7j;11* rv 0 and *11*(Ov) - vll* rv 0, ie., 1llies in a C k infinitesimal 
Ba,k Ba,k 

neighborhood of il over * Bo in *C:bo (V), eg., as ro is a positive standard number, 

it's certainly not true that *llil- 1l11* 2: *ro, contradicting our assumption of 
Bo, k 

the contrary conclusion. D 

Definition 7.2.3. If K E cpt(V) and r E IR+, we say that the pair (b, 8) E IN X IR+ 

is (K, r)-good if the band s satisfy the hypothesis in the above proposition for the 

conclusion to hold for this K and r. 

Remark 7.2.2. Note that this proof would not work if the hypotheses in the theorem 

did not include the fixed positive bound b > O. (This result is a kind of nonstandard 

equicontinuity argument; see eg., {43J, p.217 and (45].) Yet as our approximations to 

the given local Euclidean topological group sharpen, the C k norms of these approxi-

mations grow in an unbounded way. But this turns out to not be a problem. As noted 
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earlier in this paper, the local *Lie groups in our regularity theorem may have no 

restrictions on how large (in *IR+) their *derivatives may be. Nonetheless, according 

to our regularity theorem, as long as they are infinitesimally close to a local topologi-

cal group (on IRn), this local group is, in fact, an analytic group. This is the crux 

of our strategy to prove the local Fifth. See the next subsection for our 

principal result; which is a consequence of this strategy. 

7.2.2 Principal standard result 

Consider the following corollary of the above proposition and our main nonstandard 

theorem. See the appendix, chapter 9, definition 9.2.1, for the definition of dSCk(U). 

The principal standard result is a direct corollary of this nonstandard result. 

Corollary 7.2.1. Let k 2:: 2 be an integer. Suppose that Q3 E *cpt(V) with Q3 => *Vnes 

and t E *IR+ with t rv 0 and b E *IN is arbitrary (possibly infinite). Given these 

data, there is S E *IR+ such that if 1{ E *As(Q3) n *C;(V) is S-continuous, then 

there are coordinates on V such that 1{ E *A;C(Q3) for some c E IR+, eg., 01{ is in 

C~(V) and is, in fact, a local Lie group. In particular, if il E SCO(V) is such that 

*111{ - illl * rv 0, then il E dSCk with respect to these coordinates. 
0, Vnes 

Proof. First, transfer proposition 7.2.1 above. So: for all (Q3, t, b) E *cpt(V) x *IR+ x 

*IN, there is s E *IR+ such that if 1{ E * As(Q3) n *C;(V), then there is g E *Gp(Q3) n 

*C;(V) such that *llg - 1{11'B, k < t. We will use this statement for the (fixed) 

(t, b, Q3) in the hypothesis. So we have g E *Gp(Q3) n *C;(V) with *111{ - gll*'B, k < 

t rv O. But as *Vnes C Q3, we have that the S-continuity of 1{ implies that g is 
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S-continuous on *Vnes. Given this, the main nonstandard theorem implies that there 

are S-homeomorphic *coordinates on V so that in these *coordinates 9 is S-analytic, 

ie., °9 is analytic in the corresponding standard coordinates. Now *IIH - 911')3, k rv 0 

implies, eg., that °H = °9 on V (as °IB = V), eg., °H is a local Lie group (in these 

coordinates) on V. With respect to ii in the hypothesis, note that as 9 is S-analytic 

in these coordinates, we have in particular that *11911 * < *c for some c E IR+ 
k, Vnes 

ie., 9 E SCk(V) and so from the above hypothesis on ii, we have *llii - 911*v
nes

, 0 ::; 

*llii - HII* + *IIH - 911')3, k rv 0 in these new coordinates as homeomorphic 
Vnes , 0 

coordinate change preserves infinitesimal distances (for pairs of nearstandard points). 

But then 9 E SCk and corollary 9.2.1, implies that ii must be in dSCk. o 

We have the following standard corollary of the above nonstandard result. First 

we need some notation, we write m E ,c(V) if m : V X V x IR+ -+ IR+ is a continuous 

map such that for each x, y E V, we have limt-+o m(x, y, t) = o. 

Corollary 7.2.2 (Principal result). Let k ~ 2 be an integer. Suppose that S) C CO(V) 

is an equicontinuous subset and m E ,c with the following properties. For each compact 

K c V and r > 0, there is if E S) such that the following holds. There is (s, b, H) E 

IR+ x N X Ck(V) such that (1) IH(x, y) - if(x, y)1 < m(x, y, r) and (2) (b, s) is (K, r)-

good with H E As(B) n C~(V). Then, there is a sequence 6 = {Hj : ] E N} c S), a 

choice of coordinates on V and a Ok local Lie group G on V so that for every t > 0 

and x, y E V, there is ]0 E N so that we have IHj(x, y) - G(x, y)1 < t for all] ~ ]0. 

Proof. We will demonstrate the existence of the sequence with the asserted properties. 

Transferring the above hypothesis statement, we get the following statement. If IB E 
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*cpt(V) and t E *IR+, then there is H E *fj such that the following holds. There 

is (5, b, 1l) E *IR+ x *N x *C~(V) such that (*1): *11l(~, () - H(~, ()I < *m(~, (, t) 

and (*2): (b,5) is (~, t)-good with 1l E * A5(~) n *Ct(V). Now first note that the 

conditions on m imply that if K c V is compact then t,....., 0 implies that *m(~, (, t) ,....., 

o for all ~,( E * K and so as *Vnes is the union of these * K's, then for t ,....., 0, we have 

that *m(~, (, t) ,....., 0 for all ~,( E *Vnes. So fix some ~ E *cpt(V) with ~o ~ *Vnes , 

to ,....., 0 and ito E *.fj and 1£0 E * Ab(~O) n *C~(V) satisfying the above (*1) and 

(*2). With this setup, the previous discussion implies the following. First, (*1) now 

implies the statement (*3): 1lo(~, () ,....., Ho(~, () for all ~,( E *Vnes. But as .fj is 

equicontinuous, we have that Ho is S-continuous on *Vnes , so that (*3) implies (*4): 

1lo is S-continuous on *Vnes. But then, as t,....., 0, (*2) and (*4) imply that 1lo satisfies 

the hypotheses on the 1l in the previous corollary, 7.2.1; that is, after a change of 

coordinates, we have the statement (*5): G~ °1lo is, eg., a C k local Lie group on V 

and by (*3) and S-continuity, we have that Ho ,....., *G on *Vnes , which is equivalent to 

saying that, (*6): for each compact K c V, we have that IHo(~, () - *G(~, ()I ,....., 0 

for each ~,( E * K. Given this development, consider, for each t E IR+ and compact 

K c V, the following set: 

1)K,t~{H E.fj: IH(x,y) - G(x,y)1 < t for all x,y E K}. (7.2) 

We assert that for each t > 0 and compact K c V, 1) K, t is nonempty. By reverse 

transfer, it suffices to prove that *1) K, t is nonempty. But transfer of 1) K, t implies 

that 

*1)K,t = {H E *.fj: IH(~,() - *G(~,()I < *tfor all~,( E *K}. (7.3) 
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And clearly, statement (*6) says that flo E *n K, t, eg., *n K, t is nonempty. It's now 

clear how to find the sequence 6. For each j E IN, let K j C V be compact so that 

K j C Kj+l for all j and V = U{Kj : j E IN}. Then for each j E IN, we have just 

proved that there is Hj E n Kj, 1/j. So given t > 0 and x, y E V, there is a j' E IN so 

that x, y E Kjf and there is a j" E IN with 1/j" < t; choosing jo ~ max{j', j"}, we 

get our result. D 

Remark 7.2.3 (Interpretation). The previous result uses our main non­

standard theorem to, in some sense, preserve the conclusion of the almost 

implies near result (in the limit) while greatly weakening the condition on 

the almost hypothesis. That is, although the Hj's are not required to lie 

within an A~ for (b, s) r-good for r's tending to 0, eg., they aren't even 

differentiable, nevertheless, as they are only Co approximating an almost 

implies near sequence, this is sufficient to prove that they are getting ar­

bitrarily close to (for the appropriate coordinates) local Lie groups. The 

operative example of an equicontinuous sequence .fj is one that for which every sub­

sequence has a limit point in CO(U); eg., a sequence in CO that is approximating our 

local Euclidean topological group M. 

7.2.3 Technical lemmas 

Lemma 7.2.2. Let b E IR+ with b ~ 1, ro, So E IR+ and Rso(b) C IR+ denote the set 

{O < s < So : if H EA~, there is G E Gp~ such that IIH - Gllk < ro}. 

Then Rso (b) is nonempty. 
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Proof. By way of contradiction, suppose that there is 5 E IR+ such that Rso (5) is 

empty. So the following statement 7(5) holds: for all s E IR+ with s < So, there exists 

H E A~ such that for all G E Gp~, IIH - Gllk 2: roo Therefore, transfer implies that 

*7(5) holds, ie., for all .5 E *IR+ with .5 < * So, there exists 1i E Akb such that for all 

Q E *Gp~b' we have *111i - Qllk 2: roo But choosing:S rv 0, then *5 being finite implies 

that if 1i E * A kb, then we know from the proof of the previous lemma that 01i E G~ 

and also that *111i - *(o1i)llk rv 0 which is certainly less than ro, contradicting the 

contrary conclusion. o 

Remark 7.2.4. If for some s, b, A~ is empty and So > s, then Rso(b) is nonempty. 

We will, of course, use this lemma in situations where A~ is not empty. Note that if 

s < Sf, then A~ C A~, and so if Sf E Rso(b), then s E Rso(b). 

In order to expose a closer relationship between sand (b, r), we need a definition. 

Definition 7.2.4. Let q(A, b, r) be the assertion: there exists G E GPb with IIA -

Gllk < r. Let 

m(b, r) = sup{s E IR+ : if A E A~, then q(A, b, r) holds}. (7.4) 

Lemma 7.2.3. The following holds. 

3. For all b E IR+, we have limr--+o m(b, r) = O. 
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Proof. The first assertion follows from the fact that for a given positive 5, we have 

that for some A E (jk, q(A, b, rl) holds implies that q(A, b, r2) holds. That is, the 

set of positive 5 satisfying A E A~ implies that q(A, b, rl) holds is a subset of the set 

of positive 5 satisfying A E A~ implies that q(A, b, r2) holds. The second statement 

follows similarly as A~l C A~2 and so, for fixed r,8, if q(A, b2, r) holds for all A E A~2 

then q(A,b1,r) holds for all A E A~l. Suppose that the last statement is false, ie., 

there is bo E IR+ such that limr--+o m(bo, r) > 280 for some positive 80 E IR+. So let 

rl > r2 > ... be a decreasing sequence of positive numbers with limit 0; then we 

have the following statement: for each j E rN we have that for all A E A~o' there 

exists G E Gp~ such that IIA - Gllk < rj. Tranferring this statement we have that 

the following holds. For each j E *rN, we have that for all .91 E * A:~(), there exists 

r;§ E *Gp:~ such that *11.91 - r;§llk < *rj. Pick j E *rNoo, so that the previous statement 

implies that *11.91 - r;§llk rv 0 and choose do E A:~o so that * Dk(d) > *80/2 for 

at least one of k = 1, 2, 3. If k = 1 and writing .91 = (</J, rt), we have that there is 

~o, (0, 'Yo E *V such that (t): I</J(</J(~o, (0), 'Yo) - </J(~o, </J((o, 'Yo)) 1 > *80/2. But we know 

that there is r;§ = (1j;, v) E *Gp:~ such that *11.91 - r;§llk rv 0, eg., *II</J -1j;llk rv o. It's 

easy to check that this and S-continuity of 1j; and </J imply that for all ~,(, 'Y E *V, 

we have </J(</J(~, (), 'Y) rv 1j;(~)(~, (), 'Y) and similarly </J(~, </J((' 'Y)) rv 1j;(~, 1j;((, 'Y)). But 

then these can be strung together with the associativity expression for 1j; to imply 

</J( </J( ~, (), 'Y) rv </J( ~, </J( (, 'Y)), contradicting (t). A similar argument applies if instead 

* D2(d) > *80/2 or * D3(d) > *80/2. 0 

The following lemma (which is a consequence of the previous standard lemma) 
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will give us the critical information on the asymptotic relation between (b, r) and s 

from a nonstandard perspective. 

Lemma 7.2.4. Let m : IR+ x IR+ -+ IR+ be as defined above. Let *m be its transfer 

and suppose that to E *IR+ is infinitesimal. Then for any infinite bo E *IR+ we have 

that 0 < *m(bo, to) rv O. In particular, if t rv 0, irrespective of the value of b E *!N, 

an 5 that is (t) good must be infinitesimal. 

Proof. Fix 0 < to rv 0 and note that if b E IR+, then Item (3) in Lemma 7.2.3 implies 

*m(*b, to) rv O. That is, we have a map b f---t m(*b, to) : IR+ -+ p,(0)+, ie., the set of 

image values is a family F of positive infinitesimals (internally) parametrized by a 

standard set. But, then as our model is sufficiently saturated, F is bounded above 

by a positive infinitesimal 50, ie., *m(b, to) < 50 for all b E IR+. Next, note that 

also by the transfer of Item (2) of Lemma 7.2.3, if b E *IR+ is larger than a given 

bE IR+, then *m(b, to) :s: *m(*b, to) < 50, eg., this holds for all infinite b E *IR+. That 

*m(b, to) > 0 follows from the transfer of Lemma 7.2.2. 

D 



Chapter 8 

The error in Jacoby's proof of the 

local Fifth according to Olver 

8.1 Hilbert's Fifth: Local does not follow from global 

Let's first use a paragraph to give some idea about why the 1957 proof of the local 

Fifth fails and cannot be fixed. Let G A denote global associativity (defined on the 

following pages) and G L denote globalizability (also defined on the following pages). 

Olver finds in his J. of Lie Theory paper, [33], families of local Lie groups that are not 

GL. So for local Lie groups and especially for local topological groups GL does not 

hold in general. In fact, as mentioned early in the paper, Olver, [33], clarifies Mal'cev's 

GA condition for GL to hold. Jacoby in his paper Jacoby, [18], proving the local fifth 

problem, assumes that his local topological group has the GA property of (global) 

topological groups in order to prove his result with a line of argument along the line 

of Gleason, [9]. But as Olver, [33] (p.28), makes clear, such an assumption cannot be 

107 
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made and hence the proof cannot be fixed without throwing out the strategy. 

Before we talk about how local Lie groups are not like global Lie groups, about 

GA and GL, let's be clear on how they are similar. (See, eg., Kirillov,[23] p. 99 for the 

following facts.) First of all, if (L, () is a local Lie group and its Lie algebra, and (G, g) 

is a (global) Lie group with its Lie algebra and we have a Lie algebra isomorphism 

¢ : ( ---t g, then a (classical) consequence is that there is a neighborhood, L', of the 

identity in L and a (local) Lie group isomorphism <I> : L' ---t G such that d<I> = ¢ 

(ie., Lie algebra isomorphisms induce (sufficiently local) Lie group isomorphisms). 

Furthermore, given any finite dimensional IR Lie algebra, g, there is a (real) Lie group 

G with Lie algebra g. It's clear that these two statements together imply that any 

local Lie group is (locally!) isomorphic to a Lie group, locally in the sense that we 

may have restrict to a smaller neighborhood of the identity of the local Lie group 

to get a Lie injection into a (global) Lie group. Nonetheless, Olver, [33] explicitly 

produces the worst case scenario: for every lie group G, and any local Lie subgroup 

H c G, there is a local subgroup H' cHand a local group isomorphism H' ---t H 

where H cannot be embedded as a local subgroup of any (global) Lie group. It's 

important to note that all of these groups have isomorphic Lie algebras (given by well 

defined maps) and so all of these groups and local groups are locally isomorphic. 

The strategic approach of the present paper is totally different from, and hence 

uses different ingredients from that of of Gleason (and hence Jacoby) and so GA is 

not an issue here. The local topological group that We am approximating with an 

internal local Lie group is not assumed to be GA and so the internal local Lie group, 

will generally not be GA either (a variation on the easy arguments of the next pages). 
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But it doesn't matter, GA does not playa role in the arguments here. 

Apparently, if attaching the assumption of GA to Jacoby's proof somehow allowed 

it to be fixed, my result (along with a proved conjecture) would still be more general 

- my result would prove the local fifth for the apparently larger class of 

non GA local topological groups. (Note here, for simplicity sake, \lYe have not 

included the niceness qualifiers for the local topological group, nor the (Tlocal one for 

the infinitesimally approximately (Tlocal *Lie group.) 

On the next pages we prove that if the local topological group is GA, then the 

standard part of the approximating internal local Lie group is GA. \lYe will then prove 

an almost implies near result, stated roughly: if a local Lie group is close to being 

p-fold associative, then it must have a p-fold associative local Lie group nearby. 

8.2 Olver's construction 

To begin, we have the following definitions from Olver, [331 p. 27. Let G be a loc LG. 

G is associative to order n, denoted G E A(n), if for all k, 3 :::; k :::; n and for 

every ordered k-tuple (Xl, ... , xd E Gk, all k-fold products of Xl, ... , Xk are equal. A 

k-fold product of (Xl, .. . ,xn ) is a sequence of choices of products of these elements 

(in the given order) by pairing adjacent pairs, adjacent elements and parentheses, 

adjacent parentheses, etc. For example the 4-fold products of the ordered four tu­

ple (Xl, X2, X3, X4) are ((XIX2)X3)X4), ((XIX2)(X3X4)), ((XI(X2X3))X4), (XI((X2X3)X4)), 

and (XI(X2(X3X4))). G is globally associative, GA, denoted G E A(oo) if G E 

A(n) \In E rN. 
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Given this definition, let's sketch Olver's construction of nonGA local local Lie 

groups. Remove a point Xo from a neighborhood of the identity, e, in a Lie group 

(G, m, e). For this construction G should be two dimensional, but an analogous 

construction works for any Lie group of dimension larger than one. Suppose also that 

G is simply connected, so that the fundamental group of G with a point removed 

is isomorphic to 1... Olver's construction is an insightful integration of the given 

group product with the monodromy associated with the fundamental group of the 

punctured group into the making of a nonGA local Lie group. In particular it displays 

a dependence of global associativity on semilocal topology. Let G denote the simply 

connected covering space, with 7r : G ---t G the projection map. On a sufficiently 

restricted neighborhood U of e in G, we can lift enough of the group structure to get 

a 3-associative product, ie., a local Lie group (G, rh, U, e) on a selected component 

of U C 7r- l (U), the identity being the unique point in 7r- l (e) n U. For n E IN, 

Olver constructed 2n-fold products of elements consisting of n-fold products of the 

same ordered n-tuple, but associated in reverse order: m(m(··· m(xl' X2),· .. ), xn) 

and m(xl' (m(x2,··· ,m(xn-l, xn) ... ))). As summarized below, GA of G implies 

these determine a closed loop in G, ie., associating the sequence in reverse order 

gets the same element of G; but, for n ~ 4, we can get n-tuples of elements in fJ 

products enclosing Xo which therefore prevents the lifted loop from closing. Associate 

to m(m(··· (m(xl, X2),··· ), xn) the polygonal path, P l , with ordered vertices given 
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e -+ Xl -+ m(Xl' X2) -+ m(m(Xl' X2), X3) -+ ... 

-+ m(m(··· m(Xll X2), .. . , xn-d, Xn). 

111 

Here the arrows indicate directed movement along the path from vertex to vertex, 

beginning at e and ending at the given n-fold product. If care is taken with respect to 

the singularity Xo, then the sequence of lifted products, and hence the lifted polygonal 

path, i\ whose vertices are given by this ordered sequence of m-products of the lifted 

points Xll ... , x~, 

e -+ Xl -+ m(Xl' X2) -+ m(m(Xl' X2), X3) -+ ... 

-+ m(m(··· m(Xll X2), ... ,Xn-l)Xn) 

is well defined in G and unique once e E (j is chosen. 

Similarly, to the same ordered n-tuple Xl, X2, ... , Xn, we assign the polygonal path, 

P2 , with vertices given by doing the associations in the product in the reverse order, 

namely 

As with Pi giving the well defined polygonal lift of Pi, we have the well defined lift 

P2 given by the successive m-products of lifted points 



Tom McGaffey 112 

As Lie groups are GA, Pi and P2 begin and end at the same points, and so form a 

closed polygonal loop. Olver chooses the x/s, in his explicit example n = 4, so that 

this loop encloses Xo. But then the lifted polygons i\, i\ cannot form a closed loop; 

the endpoints lie on different sheets over the n-fold product of Xl, ... ,Xn in G. That 

is, the n-fold m- product associated in one way is not equal to the n-fold m-product 

associated in the other manner. By an artful choice for U, Olver produces the worst 

case scenario when n = 4, as local associativity is tested with 3-fold products. 

From this construction, it should be clear that if we restrict our domain to smaller 

V c U, then for product of elements in 11 = ]f-l(V), we may get a higher associativity 

but global associativity still does not hold. 

Olver's general assertion follows this example: here he is given a (global) Lie 

group, G, chooses a neighborhood of the identity, U, that is punctured ie., not simply 

connected. From this he chooses a piece fJ (a part of a sheet over U) of a good covering 

space of the altered G so that we get associativity of 3-fold products of elements of U 

but associativity fails for sufficiently long associations as 'downstairs' we are getting 

noncontractible loops in U . . Note that U is diffeomorphic to U via the covering map, 

and, in fact, with his choice of lifted group sturcture, this is a local isomorphism on a 

sufficiently small part of U. But we see that although locally isomorphic, U is globally 

associative (it is a subset of a global group!) but, by construction, U is not. 

Later in the paper, his Theorem 21 (p.43) proves that any local Lie group is fully 

covered by a partial covering group that also is locally a group isomorphism onto a 

neighborhood of the identity of a (global) Lie group. So although the local Lie group is 

only locally isomorphic to a Lie group, we can extend the domain of the isomorphism 
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(to all of the local Lie group) by weakening the notion of Lie group equivalence (via 

the covering group intermediary). Olver gives a very careful definition of a local group 

homeomorphism (p28). Suffice it to say that it is a smooth group isomorphism with 

great care given to the intertwining of domains of definition of product and inverse 

maps. He then defines a local Lie group to be globalizable if there is a local group 

homeomorphism onto a neighborhood of the identity in a Lie group. His version of 

Mal'cev's theorem (p46) is as follows. A connected Lie group is globalizable 

-¢:=::?- it is globally associative. Note here that connected is a technical condition 

(p31) concerning connectivity and generation. 

8.3 Almost associativity 

It seems that nonstandard analysis can say something about the subject of k-fold 

associativity by asking questions about almost or near associativity. Our perspective 

is similar to the almost implies near question for topological groups. 

N ext, let Q E U loc *LG so that its representatives are defined on standard neigh­

borhoods of 0 in *[Rm (m E IN). Fix a standard domain of definition *U for Q. Let 

n E IN. Then Q is said to be almost associative to order n on *U, denoted 

Q ~ A(n) if for all k, 3 :S k :S n, and ordered k-tuple (Xl' ... ' Xk) E U x ... x U, 

all corresponding k-fold products are defined and infinitesimally close to each other 

(in *lRm). Similarly, we say that Q is almost globally associative on * U, denoted 

Q ~ A(oo), if Q ~ A(n) for all n E ulN. Note that if G E A(n) and k :S n, then all 

k-fold products of (Xi E G, Vi) (Xl, ... , Xk) are equal and so we can unambiguously 
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denote this by [Xl, .. . , XkJ. Similarly if 9 E A(n), then all k-fold products, for k ::; n, 

of (Xl, . .. ,Xk) (Xi E Q) are in the same monad, so we will denote this monad by 

/-L(XI, . .. , xn). Now suppose that og = G, then it follows that 9 '" *G; that is if the 

product in G, and in *G is denoted X • Y (for x, y E G or *G) and in 9 is denoted by 

X * Y and if *U is a standard representative neighborhood of 0 in "lRm , so that both 

X· Y and X * Y is defined, then X· Y '" x * yin "lRn. We will prove the following result. 

Lemma 8.3.1. Suppose that 9 and G are as given above, e.g., 9 '" 't'. Then 

G E A(oo) =? 9 ~ A(oo). 

Proof. We will actually prove that if n 2: 3, 9 ~ A(n). The result follows directly 

from this. So suppose that G E A(oo), then we will prove by induction that 9 ~ A(n). 

The induction beginning will be obvious (2 fold products) and the induction step will 

be to assume that we have proved that 9 E A( n -1) and to show that this assumption 

and G E A(oo) implies that it holds for A(n). 

So given an ordered n-tuple (Xl, ... , xn) E gn we want to show that all n-fold 

products are infinitesimally close to each other. We do know that all k-fold products 

of a given ordered k-tuple for k < n, are infinitesimally close. An n-fold product 

of (Xl' ... ' Xn) will be of the form y * Y2 where YI is a k fold product of (Xl' ... ' Xk) 

and Y2 is an n - k fold product of (Xk+1, . .. ,xn) where 1 < k < n. Let k' and k" 

be two such k. So we have y~ a k'-fold product and y~ a n - k'-fold product such 

that y~ * y~ gives one of the n-fold products. We also have y~ a k"-fold product and 

y~ a n - k"-fold product such that y~ * y~ gives another possible n-fold product of 

(Xl, ... ,Xn) in g. Let tJ~, tJ~, tJ~ and tJ~ be the corresponding products in *G. Then 
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/ -/ / -/ /I -/I d /I -/I h· h r 11 f h· d . h h· Yl "-' Yll Y2 "-' Y2' Yl "-' Yl an Y2 "-' Y2' W lC 10 ows rom t e m uctlOn ypot eSls. 

Now G E A(n) =? (a)y~ . y~ = y~ . y~, but as g is SCO,(b) Y~ * Y~ "-' y~ * y~ and (c) 

Y~ * Y~ "-' y~ * y~. Also (d) y~ * y~ "-' y~ . y~ and (e) y~ * y~ "-' y~ . y~. Putting all of 

these together, we get that Y~ * Y~ "-' Y~ * Y~. Specifically, from (b) Y~ * Y~ "-' y~ * y~ 

which by (d) is "-' y~ . y~. But by (a) this is"-' y~ . y~. By (e), this last is "-' y~ * y~ 

which finally by( c) is "-' Y~ * Y~. That is, an arbitrary pair of the n-fold products are 

infinitesimally close to each other as we wanted to prove. o 

Lemma 8.3.2. If g is an SCk local group defined on V, and let G = og denote the 

standard part restricted to V. Suppose that for some p E tN and an ordered p-tuple 

(6,·· ., ~p), we have that all p-fold product associations in g are defined and for two 

such associations [6·· .~p]] (j = 1,2), we have [6·· ·~p]l "-' [6·· .~p]~. Then, if 

Xj~ O~j, for j = 1, ... ,p, we have [Xl·· ·Xp]r = [Xl·· ·Xp]¥. 

Proof. The proof is by induction on the length p of the product. The first nontrivial 

length is p = 3 and this is just associativity. So it remains to prove that given the 

result holds for associations within p - I-fold products, p > 3, it follows that it holds 

for associations within p-fold products. But just as with the proof of the previous 

lemma, the result follows from the fact that associations in p-fold products decompose 

into associations within products of length less than p (so that we may use the fact 

for q-fold products, q < p) and also from the S-continuity of the product. o 

In the other direction, we have the following statement. Recall the notation: 

cpt(V) denotes the set of compact subsets of V. 
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Definition 8.3.1. For BE cpt(V), let Gp~(V) n Asct(B,p) denote the elements 

of G E Gp~ that are t-almost p-associative on B, ie., such that for each ordered ordered 

p-tuple (Xl, ... ,Xp) E B x ... x B, if [Xl··· xp]j, for j = 1,2 are any two associations 

defining a G-product of the Xj'S (in this order), then I[XI ... xph - [Xl··· Xphl < t. 

If G is actually p-fold associative on V (t = 0), then we will denote this by G E 

Gp~(V) n Asc(B,p). 

Proposition 8.3.1 (p-fold associativity: almost implies near). Fix p, n, k E tN and 

V a convex neighborhood of 0 in IRn. For each B E cpt(V) and positive r E IR+, there 

is t > 0 in IR such that if G E Gp~(V) n AsCt(B,p), eg., a local Lie group on V that 

is t-almost p-fold associative on B, then there is H E Gp~ (V) n Asc( B, p) such that 

IIG - HIIB, k < r. 

Proof. The proof is an analogue of our proof of the almost a group implies a group 

nearby result, proposition 7.2.1. Suppose that the conclusion does not hold, that is, 

suppose that there is compact Bo C V and a nonzero positive ro E IR satisfying the 

following statement. S(Bo, TO): For all s > 0, there is G E Gp~(V) n Asct(Bo,p) 

with the property that for all G' E Gp~(V) n Asc(Bo,p), we have IIG - G'IIBo, k ~ roo 

Therefore, the transfer of S(Bo, ro) holds. *S(Bo, ro): For all S E *IR+, there is 

9 E *Gp~(V) n *Ascs(Bo,p) with the property *P: that for all 9' E *Gp~(V) n 

* Asc(Bo,p), we have *119 - 9'II*B, k ~ *ro. So now choose S f'V 0 and so there is 

90 E *Gp~(V) n * Asc(Bo,p) with the above property P. But, first, we claim that (as 

S f'V 0), if Go = 090 restricted to V, then Go E Gp(V,p) n Asc(B, k). To see this, 

first, we have that the group properties in definition 3.1.1 hold by the S-continuity 
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of 90, second, Co E Gk(V) by theorem 9.1.1 and finally, Co is p-associative follows 

from s rv o. For suppose that (Xl, . .. ,Xp) E B x ... x B is an ordered p-tuple and 

[*Xl ... *xp];O, for j = 1,2, are two product associations in 90 of this ordered p-tuple. 

Then s rv 0 implies that [*Xl··· *xp]rO rv [*Xl'··· *xp]~O and so the lemma above 

implies that [Xl··· Xp]rO = [Xl··· Xp]~O, ie., Co is p-fold associative. But given this, 

we have that *Co E *Cp~(V) n * Asc(B,p) and claim that 1190 - *Coll*Bo,k rv o. But 

S-continuity of 90 implies that 1190 - *Coll*Bo, k rv 0 and so theorem 9.1.1 implies 

the claim. But then the existence of *Co with these properties violates our contrary 

conclusion that 90 has property * P above, finishing the proof. D 



Chapter 9 

Appendix 1: Nonstandard conditions 

of smooth equicontinuity 

In this part, we will prove that internally regular maps satisfying mild nonstandardly 

stated regularity properties have good (again nonstandardly stated) regularity prop­

erties, see theorem 9.1.1. We then give standard corollaries of this result, see eg., 

corollary 9.1.2. We follow this with results on the the nonstandard class of maps, 

dSCk(U), followed again with standard corollaries, for example see corollary 9.2.1 

and 9.2.3. More specifically, in this section we will first present *smooth represen­

tations of maps whose standard parts are Ck for 1 ::; k ::; 00 or asymptotically C k . 

Theorem 9.1.1 is the principal result for these SCk internal maps: it says that internal 

differentiation behaves nicely with respect to being infinitesimally close (pointwise!) 

and also with respect to the operation of taking standard parts. This theorem is 

used repeatedly in the previous chapters. (In later work, we will extend this to Lip­

schitz maps, to maps belonging to the Sobolev classes of maps and other classes 

118 
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of weakly differentiable functions.) These representations act in different ways and 

have different uses. The * representations of standard smooth maps effectively give 

straightforward criteria for *smooth maps to actually have standard smooth parts; 

eg., these are regularity results. For example, in this paper, we have families of differ-

entiable maps and we are looking at the asymptotic properties of these families. Here, 

we do this by transferring the families and looking at elements 'at infinity'. Knowing 

that these are *differentiable, if their standard parts exist, the results of this chapter 

imply that the asymptotic behavior of these families have certain regularities. 

The nonstandard representations for the various classes of maps (asymptotically) 

lacking differentiability properties are of a different nature: they give these standard 

mapping extra facility. These nonstandard representations of asymptotically non-

differentiable families of maps have all of the operational properties of differentiable 

maps, although the standard parts of 'asymptotic elements' are potentially quite wild. 

Nevertheless, the transfer of, eg., (typically nonlinear) differential equation type re-

strictions on these families (eg., the Maurer Cartan equations in this paper) can 

directly force (on the nonstandard level) certain regularizing behavior. This section 

gives one way of seeing when nonstandard maps have standard regularity properties 

and when these are preserved under nonstandard operations (eg., * 8~. ). (Parenthet­
J 

ically, although the results in this appendix play an important role in this paper, the 

primary motivation behind these results is the facilitation of direct, often nonlinear 

methods in investigations on partial differential equations.) 

The proof of the results for smooth maps is rather involved. Most of the hard 

work will occur in the next central proposition. 
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Proposition 9.0.2. Iff E SC1 (U, IR), then d(°f)x exists (and is finite) for all x E U, 

O(*df)x = d(°f)x for all x E U, and finally x t---+ d(°f)x is continuous on U. That is, 

Of E C 1(U, IR). In particular, if -a a , ... , -aa is the canonical basis for TU, the tangent 
Xl Xn 

space of U, with * -a a , ... , * -aa the transferred internal basis for *TU, then for each 
Xl Xn 

x E IRn, we have O(*a~f)(x) = a~(Of)(x) and x t---+ a~(Of)(x) is continuous on U. 
J J J 

Proof. We will first prove the existence of d(°f)x for all x E U. We will then prove 

that O(*df)x = d(°f)x and finally we will prove the continuity statement. 

First, we want to show that for every x E IRm and 0 < 60 E IR, there exists 

0< EO E IR, and Lx E hom(lRm, IRn) such that if v E IRm, then 

(9.1) 

if 0 < E < EO. We left the *'s off x, v, E, 6 above. (Without loss of generality, we may 

assume that Ivl = 1.) To prove expression 9.1, it suffices to prove that if 0 < E rv 0 

then 

If(x+EV)-f(x) -*Lx(v)1 <60 
E 

(9.2) 

as indicated by the following argument. (Here We am writing x for *x and I I for*1 I·) 

Let 60 > 0 as given above and let 

6 ~ {E > 0 : I f( x + EV) - f( x) - * Lx (v) I < *60}, 
E 

where we at this point choose Lx(v)~O(*df)v which is finite as ~ t---+ *df(. is S-continuous 

by hypothesis. Then Q; is internal and {E E *IR : 0 < E rv O} C 6 by(9.2). Therefore, 

by overflow, there exists Eo with 0 < Eo rf 0 such that Eo E 6. That is 

o < E < EO => I f( x + EV) - f( x) - * Lx (v) I < *60 
E 

(9.3) 
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Note that as f, *L, and II are SCo, then O(f(x+w)) = f(x+ Ow), O(*Lx(v)) = Lx(v), 

and O(lwl) = 10wl if w E *1R~es' Therefore taking standard parts of expression (9.3), 

we get expression (9.1), as we wanted. 

We have reduced the proof of the first assertion to proving the assertion (9.2). By 

hypothesis, if u, v E *1R~es' then u rv V '* *dfu rv *dfv. It follows that if 0 < E rv 0, 

then t E [0, E] '* *dfx+tv rv *dfx. In particular, as Lx ~ O(*dfx), we get that 

*dfx+tv rv * Lx for 0 ~ t ~ E. So as {II*dfx+tv - * LxII : t E [0, E]} is *compact 

and a subset of 11(0), there is 0 with 0 < 0 rv 0 such that II*dfx+tv - * LxII < 0 for 

o ~ t ~ E. (Here II II stands for * II II, the *transfer of the usual operator norm on 

hom(lRm, IRn).)With this, we have that 

li€ *dfx+tvdt - i€ * Lx(v)dtl ~ Elvl· II*dfx+tv - * LxII = EO (9.4) 

But substituting J; *dfx+tv(v)dt = f(x + w) - f(x) and Jo€ Lx(v)dt ELx(v) into 

expression (9.4), we get expression (9.2). 

Let's now prove the second assertion. We have preliminaries; let (x, v) E IRn and 

in the following, we shall let x = *x, and v = *v, ie., use the same symbols whether 

in IRn or *lRn. Then we shall prove that 

(9.5) 

Now we have f E *C1(U, IRm), and so if 0 < r E O"IR, then 

f(x + rv) - f(x) = i r 
*dfx+tv(v)dt (9.6) 

where we leave (as usual) the * off the integral and also off r. Now the fact that 

*df is SCO implies that if 0 < 0 E IR, then there exists 0 < E1 E IR such that 
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I*dfx+£v(v) - *dfx(v)1 < ~ if E < El. That is, 

(9.7) 

On the other hand as of is differentiable, then for the given 8 above, there exists 

o < E2 E IR such that 

(9.8) 

But °f(x + EV) '" f(x + EV) and °f(x) '" f(x) and as E is a standard positive number, 

then there exists", E *IR+ with", '" 0 such that 

1
°f(X+ EV) _0 f(x) f(X+EV) -f(x)1 

- <",. 
E E 

(9.9) 

But then expressions (9.8) and (9.9) give 

(9.10) 

On the other hand, using expression (9.6) at r = E( < Ed, dividing it by E and 

combining it with expression (9.7), we get 

(9.11) 

Finally, using the triangle inequality with expressions (9.10) and (9.11), we get that 

(9.12) 

But in this inequality, the left side is independent of the arbitrarily chosen standard 

positive number 8, that is, I d(°f)x(v) - *dfx(v) I '" 0; which is the same as saying 

O(*dfx(v)) = d(°f)x(v). But the standard map O(*df) : IRm x IRm -+ IRn is defined by 
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wanted. 

Finally, we will prove the continuity of the map x -7 O(*df)x. It suffices to verify 

that if ~,( E *Unes with ~ rv (, then *(d(°f))~ rv *(d(°f)),. But note that we have 

proved that O(*df) = d(°f) and so, transferring, we have *(O(*df)) = *(d(°f)). Given 

this, it is sufficient to prove that *(O(*df))~ rv *(O(*df)k But we know that the map 

tJ r--+ ~(tJ)~*dfb is S-continuous. It is basic in NSA that this implies two things: first, 

we have for all tJ, tll E *Unes with tJ rv tll, ~(tJ) rv ~(tll); and second, for all tJ E *Unes , 

we have *(O~)(tJ) rv ~(tJ). Applying both of these statements to ~(tJ)~*dfb' we have 

(9.13) 

as we wanted; finishing the proof of the three assertions of the proposition. For the 

result on the coordinate derivatives, since we have (<»: d(°f)x = O(*df)x for each 

x E U, and ~ r--+ *df~ is S-continuous and so (~): ~ r--+ *df~(* 8~.) = * 8~ (f)(~) is 
J J 

S-continuous. With this we have 

(9.14) 

where equality (1) is basic vector calculus, (4) is its transfer, (2) is the above formula 

(0) we just proved and both (3) and (5) follow from the S-continuity expressed in m 
above. o 

Given the previous proposition, we can now prove the main theorem of this ap-

pendix. 
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9.1 Basic S-smooth regularity theorem and conse-

quences 

The representation result for internal S-smooth maps and some related results are 

contained in the following theorem. 

Theorem 9.1.1. Let f : *Unes -+ *lRn be an internal map and k E tN U {oo}. Then 

the following statements hold. 

1. If f E SCk(U, IRn), then of exists and is in Ck(U, IRn). 

Furthermore, if 0: is a "finite multiindex, with 10:1 ::; k then O(*cJCl<f) = aa(0f) on 

U. 

2. If f, 9 E SCk(U, IRn), and f(~) rv g(~) for all ~ E *Unes , then *aa(f)(~) 

*aa(g)(~) for all "finite multiindices 0: with 10:1 ::; k and ~ E *Unes . 

Proof. We shall show that 2) follows easily from 1) and 3) from 1) and 2). 

As these assertions are true if and only if they hold for points infinitesimally close 

to some point of U, then it suffices to prove these when the domain is *1R~s. To 

verify 2), let ~ = f - g, then ~ E SCk and ~ rv 0, ie., o~ = 0, eg., aa(o~) = ° for all 

multiindices. In particular, using 1), and as eg., *aaf and *aag are nearstandard, we 

see that this implies that, for 10:1 ::; k, that 

(9.15) 
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which implies 2). So now let us verify 3) assuming that 1) and 2) holds. We know 

that if f E SCO, then f'"" *(0f). But 1) implies that 

(9.16) 

Therefore 2) implies that for multiindices ex with lexl ::; k that *8a f '"" *8a (*(0f)); that 

To prove 1), we need the above technical result, which is essentially the induction 

step in the proof of 1) and the lemma below. The previous proposition gives statement 

(1) for k = 1. We will first verify that 9 E SCk implies that 0g E C k . Inductively 

assuming that we have the statement for all k up to some value l E tN, we will verify the 

statement for k = l+1. Supposing that 9 E SC I+1(U), we know that this is equivalent 

to having the map ~ f---t *dg~ in SCi. Writing *dg~ = *a~l g(~)*dXl + ... + *a~n g(~)*dxn, 

we see that this is equivalent to ~ f---t * a~g(~) being SCi for all j. By the induction 
J 

hypothesis, this implies that 0(* a~ g) E C k . But l 2: 1, and so proposition 9.0.2 
J 

all j, which therefore implies that 0g E Cl+1 , completing the induction step. Finally, 

we need to show that taking standard parts intertwines internal and standard partial 

derivatives. Again we will verify this by induction: we have the k = 1 case in the 

proposition; suppose that we have the result up to k = l for some l 2: 1 and we need 

to verify it for k = l + 1. To this end, suppose that 9 E SCI+1(U) and let f3 be a 

multiindex with 1f31 ::; l + 1. Writing f3 = exj where lexl ::; l, and letting 8 j denote a~' 
J 

we have the following. 

(9.17) 
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where equalities (a) and (d) are obvious, equality (b) follows from the fact that as 

lal :S l, then *8°9 is se l and equality (c) follows from the fact that 9 is, in particular, 

in se l , lal :S l and the induction hypothesis. D 

Before we proceed to a nonstandard corollary, let's demonstrate how this nonstan­

dard theorem about individual mappings has standard consequences about asymp­

totic properties of families of maps. The next corollary is a consequence of the third 

statement of the theorem. It is close to (note we are working on an open set!) a ek 

version of a classic result on equicontinuous (as usually defined) families of continu­

ous maps. For the closest nonstandard rendition, see [43], chapter 8.4. The corollary 

following this, which is a consequence of the second statement of the theorem, as 

stated, may be new. It's important to note at this point that theorem 9.1.1 is much 

more effective in this paper in its nonstandard form. 

Before we proceed to the corollaries, we will give some lemmas that simplifies a 

step in both corollaries. The first lemma, although a conceptually simple result, has a 

tedious proof. But it will streamline the proof of the second lemma and allow weaker 

hypotheses in the following two corollaries. 

Lemma 9.1.1. Suppose that U c IRn is open and connected and f : *U -t *IR is an 

internal function with the following properties. For each ~, ( E *Unes with *I~ - (I r'V 0, 

we have *If(~) - f(()1 r'V ° (Se-criterion) and there is ~o E *Unes with f(~o) E *lRnes. 

Then f is finite on *Unes and therefore S-continuous on *Unes . 

First, as ~o E *Unes , then for some Xo E U, ~ r'V *xo and so the hypothesis implies 

that f( ~o) is finite if and only if f(* x) is finite; so we may assume that ~o is standard 
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and in fact, we can take it to be 0 by composing with a standard translation. Next, it 

suffices to verify the conclusion for (the transfer of) connected, compact subsets of U. 

Finally, it suffices to prove the result for K a closed ball Br of radius r E IR+ centered 

at 0, for one can cover K by overlapping balls (contained in U) such that If! can 

change a finite amount on each ball. Given this, suppose that we have f : * Br -+ *IR 

with f(0) E *lRnes and such that, for each ~,( E * Br with !~ - (! "-' 0, we have 

!f(~) - f(()! "-' o. Assuming also that f(0) = 0 (by adding a finite constant to f), 

suppose that the conclusion does not hold; ie., there is lJo E * Br with Ao::::::!f(lJo)! 

infinite. So now define the internal 9 : *[0,1] -+ *IR+ by g(t) = * sup{!f(tlJo)! : 0 :S 

t :S t}. First, the hypothesis on f implies that if t l , t2 E *IR+ with 0 :S tl < t2 :S 1, 

then g(tl ) "-' g(t2). For, by definition, we have g(td :S g(t2) and on the other hand, 

we have f(tllJO) "-' f(t2lJo). Now let W E *fNoe be the largest integer with W :S Ao and 

for j = 1, ... ,W, let aj = j/w. Using the monotonicity of g, we have 

w 

Ao = g(l) - g(O) = * L (g(aj) - g(aj-d) :S w . * max{g(aj) - g(aj-d : 1 :S j :S w}. 
j=1 

(9.18) 

That is, 1 "-' Ao/w :S * max{g(aj) - g(aj-1) : 1 :S j :S w}, eg., there is a jo such that 

g( ajo) - g( ajo-l) is noninfinitesimal, a contradiction. 

Lemma 9.1.2. Let U c IRn be open and connected, and suppose that {hj E CO(U, IR) : 

j E J} is an equicontinuous family with the property that there is c E IR+ and compact 

B c U such that for each j E J, there is Xj E K with !hj(xj)! < c. Then, for 

w E *!Noe , we have that *hw is S-continuous. 

Proof. That *hw is S-continuous is basic in the NSA literature; but let's give a proof 
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from basics. {hj : ] E II\I} is equicontinuous means (in the usual rendering) that for 

each x E U and r E IR+, there is s E IR+ so that if y E U is such that Iy - xl < s, then 

for all] E 11\1, we have Ihj(y) - hj(x)1 < r. So we have a family of (x, r, s) statements 

S(x, r, s). Transferring each of these separately we get the following statement. T: 

For each x E U and r E IR+, there is s E IR+ such that if ~ E *U and I~ - *xl < * s, 

then, for all A E *11\1, I*h,\(~) - *h,\(*x)1 < *r. Given this, let E E *IR+ be infinitesimal 

and consider the set ~ = {<5 E *IR+: if I~ - *xl < E, then I*h'\(~) - *h,\(*x)1 < <5}. 

Now ~ is internal and contains arbitrarily small standard *r's (as for any r E IR+, 

the corresponding s E IR+ in statement ~ is bigger than E). Therefore, underflow 

implies that ~ contains infinitesimals, proving the SC-criterion (previous lemma) for 

each *h,\ for A E *11\1. But note, eg., that our boundedness hypothesis implies that 

there is ~ E *Unes with *h,\(~) finite and therefore as *h,\ satisfies the SC-criterion on 

~ E *Unes , the previous lemma implies that *h,\ is S-continuous on *Unes . 0 

Corollary 9.1.1. Suppose that F = {fl : l E L} is a family of functions in Ck(U) 

satisfying the following. For each multiindex a with lal :S k, the family {aO fl : l E L} 

is equicontinuous. Suppose also that there is c E IR+, a compact K c U and Xl E K 

for each l E L, such that lao fl(XI)1 < c for all I ELand a with lal = k. Then there 

is a sequence S = {Ii : i E II\I} c F and g E Ck(U) such that for each r > 0, x E U, 

we have that there is ]0 = ]o(r,x) E 11\1 with lao fj(X) - aOg(x) I < r for all a with 

lal :S k and] ~ ]0. 

Proof. The result will follow from statement (1) of the above theorem and the above 

lemma. First, note that the condition on the ao it's with respect to the sequence of 
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points XI implies that for [ E * L, we have *x( E * K c *Unes , so that for each a, ao. The 

previous lemma applied, for each a with lal ~ k, to the the families {ao. fl : l E L} 

implies that for [ E * L -...... (1 L, we have that for each of these a's, *ao. f( E SCO(U), 

ie., by definition * f( E SCk(U). But then statement (3) of the theorem implies the 

statement (~): 9 = 0(* f() is a well defined element of Ck(U) and for all e E *Unes 

and a with lal ~ k we have *ao.(* f()(e) f',.J *(ao.g)(e). Given this, let K j for j E IN be 

an increasing sequence of compact subsets of U satisfying U = U{Kj : j E IN}. For 

j E IN, define the following subset of F. 

£j = {f E F: lao. f(x) - ao.g(x) I < Ifj for all X E K j , for all a with lal ~ k}. 

(9.19) 

We will show that £j is nonempty by verifying that *£j is nonempty. Now, by transfer, 

f E * F is in * £j precisely if 

(9.20) 

But the statement (q) above implies that * f( satisfies these properties as * K c *Unes 

and so eg., *£j is nonempty, hence £j is nonempty, ie., for each j E IN, there is fj E F 

that is in £j . So given r > 0 and x E U, then first as the Kj's are nondecreasing and 

U{Kj : j E IN} = U, there is jl E IN such that x E K j for all j 2:: jl and so choosing 

jo > max {jl, 1/ r} we have our assertion. D 

We now consider a second corollary to the above theorem. As far as the author 

can tell, this result, although of a basic nature, seems to be new. 

Corollary 9.1.2. Let U c [Rn be connected and open. Suppose that for j E IN, 

F = {fj} and 9 = {gj} are two sequences in Ck(U) with the following properties. 
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For each multiindex 0: with 10:1 ::; k, the sequences {oa fi : i E tN} and {oa gi : i E tN} 

are equicontinuous sequences on U and there is compact B c U, C E IR+ and Xj, a E B 

such that sup{loa fj(xj,a) - Oagj(xj,a)1 : ] E tN, 10:1 ::; k} < c. Given this, if, for each 

r > 0 and x E U there i = ix, r E tN such that Ifi(x) - gi(x)1 < r for i :::: ix, r, then, for 

each s > 0 and x E U, there is ]x,r E tN such that loc> fj(x) - oc>gj(X) I < s for every 

multiindex 0: with 10:1 ::; k, for all] :::: ]x,r' 

Proof. First of all, if we let hi = fi - gi, then the above hypotheses imply that for 

each multiindex 0: with 10:1 ::; k, the sequence {OC>hi : i E tN} is equicontinuous on 

U and is appropriately bounded on a good sequence of points and so lemma 9.1.2 

implies that we can restate the first part of the hypothesis as statement (SC): for 

each infinite A E *tN, *h).. E SCk(U). Now the second part of the hypothesis can be 

restated as follows: for each r > 0 and x E U, there is io = io(x, r) E tN such that 

Ihi(x)1 < r for all i :::: io. Given this, if we can verify that for each s > 0 and x E U, 

there is]o E tN with 10C>hj(x) I < s for each multiindex 0: with 10:1 ::; k and all] :::: ]0, 

then the conclusion will clearly follow. 

Now, as the hi, i = 1,2, ... form an equicontinuous sequence, a version of the 

second part of lemma 9.1.2 above implies that the second part of the hypothesis can 

be restated as (2S): for each r > 0 and compact K c U, there is io E tN such that 

we have that Ihi(x)1 < r for all i :::: io and x E K. But now fixing r, K, io in (2S) and 

transferring we get statement (2N - T, K, i o): l*h)..(~)1 < *r for all A E *tN with 

A > *io and ~ E * K. In particular, if A :::: w E *tN is infinite, we have that (2N­

r, K, io) holds for all r E IR+ and compact K c U, eg., *h)..(~) rv 0 for all ~ E *Unes 
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and)" 2: w. This, along with statement (SC), gives the hypotheses for statement (3) 

in the theorem above for all ).. 2: w. That is, we have the fact (HT): *oD:(*hw/)(~) /"V ° 
for all ~ E *Unes and 10:1 :::; k and Wi 2: w. Given this, define for each r E IR+ and 

compact K c U the following set: 

Br , K = {j E IN : for all j' 2: j, for all 0: with 10:1 :::; k, I oD: hj' (x) I < r for all x E K}. 

(9.21) 

Then, for each r > ° and compact K c U it's clear from (HT) that w E *Br, K, eg., 

*Br, K is non empty and so by reverse transfer, Br, K is nonempty. So let x E U and 

s > 0, then there is compact K c U such that x E K and we have just verified that 

Bs , K is nonempty, ie., by definition of Bs , K, there is jo E IN such that x E K and so 

we have that j 2: jo implies loD:hj(x) I < s for all 0: with 10:1 ::; k. D 

9.2 dS-smoothness 

Returning to the nonstandard developments, we have some material relating internal 

functions of apparently different S-regularities. We begin with a definition. Note that 

it's easy to see that agE SCO(U) generally will not satisfy g /"V f for any f E SCk(U), 

eg., for f E (J"Ck(U) when g tj. SCk(U). But, it is true that all standard iterated 

difference quotients up to degree k must eventually approximate an SCO function 

on *Unes . The corollary below gives a statement of this. vVe need to first give a 

definition of this (external) class of internal functions. 1'\ ote that we are using the 

recipe discussed in subsection 2.5.1 and plays a role in the corollary, 7.2.1, that is the 

nonstandard version of the standard principal result that follows it. 
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Definition 9.2.1. For kEN U {oo}, we will define the (external) class of internal 

functions dSCk(U) as follows. We say that f : *U -7 IR belongs to dSC 1(U) if for 

each x E U there is an infinitesimal EO E *IR+ and a nearstandard internal linear 

L~ : *lRn -7 *IR such that ~ f---ct L~ is S-continuous on *Unes the following is satisfied: 

I f(~ + Et1) - f(O I . 
E - LE(t1) rv 0 for all EO < E rv 0 and all t1 wzth 1t11 = 1. (9.22) 

More generally, we say that f E dSCk(U) if there are nearstandard j-*multilinear 

symmetric maps L~ : *lRn x ... x *lRn -7 *IR for j = 1, ... , k such that ~ f---ct L~ is 

S-continuous on *Unes and there is an infinitesimal EO E *IR+ such that the following 

holds 

for every t1 E *lRn with I t11 = 1, for every E with Eo < E rv 0 

(9.23) 

Note that "Ck(U) c SCk(U) ~ dSCk(U) as elements of dSCk(U) are not neces-

sarily internally differentiable, eg., again consider the infinitesimal saw tooth function. 

We will show that dSCk(U) is the maximal class of internal functions (with 

standard parts) whose standard part is in Ck(U). 

Lemma 9.2.1. {1}: The property of being in dSCk(U) is stable under perturbations. 

That is, if f E dSCk(U) and 9 : *V -7 *IR is an internal map with f(~) rv g(~) for all 

~ E *Vnes , then 9 E dSCk(U). {2}: If f : U -7 IR is such that *f E dSCk(U), then 

f E Ck(U). {3}: In particular, if f E dSCk(U), we have Of E Ck(U). 

Proof. For assertion (1), note that we just need to prove the statement on * K for 

K c U compact as x E U implies that M(X) C * K for some such K. Given such 
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a K, then we have that, as *K is internal, J = {IHe) - g(e)1 : e E *K} is internal 

and therefore if it contained arbitrarily large infinitesimals, overflow would imply that 

'J contains noninfinitesimals, contrary to hypothesis; hence * sup{IHe) - g(e)1 : e E 

* K} = to rv O. So now choose our infinitesimal EO in the definition that f E dSCk(U) 

above so that E~/to rv 0, ie., so that 

If(() ~ g(()1 rv 0 for all ( E * K. 
EO 

(9.24) 

We will now apply the above expression for ( = e and ( = e + Ell. In expression 

9.23 let T[f( 0, ll) denote the higher 'Taylor' expansion for f, ie., the summed term. in 

expression 9.23 (starting with first order part). Then, we have that 

(9.25) 

We see that this is infinitesimal for all E with 0 rv E 2: EO, since the first two terms in 

the second line are infinitesmal from expression 9.24 and the last by hypothesis. 

To prove the second assertion, assume that for x E U, f has the expansion as in 

expression 9.23, with the nearstandard multilinear maps £.~, and define an internal 

function B as follows: 

(9.26) 

Now B is an internal function on *IR+ which, because * f E dSCk(U), we have that 

for EO ::; E rv 0 , B(E) rv O. Let r E IR be arbitrary positive, and define 

B ~ {E' E *[EO, 1] : for all E E [EO, E'], B(E) < r/2}. (9.27) 
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Then all E' with EO :::; E' '" ° is in B and so by overflow, there is a positive noninfinites-

imal a in B, eg., by the definition of B, if s = °a/2, then *s E B. Given this, we have 

that 

(9.28) 

But, as £~ is a nearstandard multilinear linear operator and so has a standard part 

(at each x E U), we have a multilinear operator 4(v, . .. , v) ~ O(£{x(*v, ... , *v)) for 

v E IRn. Furthermore, we have for each j that I£{x(*v, . .. , *v) - * 4(v, .. . , v)1 '" 0, 

so that, using the triangle inequality for each £{x, for each v E IRn with Ivl = 1, the 

above inequality restricted to standard values becomes: 

*\ \* f(*x + *t*v) - * f(*x) - t *tj* L~x (*v, ... , *v)\ 
t j=l 

k 

L *tj-kl£~x(*v, ... , *v) - * L~(v, ... , v)1 
j=l 

< 

+ 

*\ \* f(*x + *t*v) - * f(*x) - t *t j £~x (*v, ... , *v)\ < *r 
t j=l 

(9.29) 

for t E IR+, t < s as the middle term is infinitesimal. But this is just the statement 

(9.30) 

which, as x f--t L~ is continuous for each j, is the statement that f E Ck(U). 

To prove the third assertion, first note that as f E SCO(U), then if f~ Of, we 

have f'" * f and so the first assertion implies that * f E dSCk(U) and so the second 

assertion implies that f E Ck(U). D 
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Corollary 9.2.1. Suppose that k E {a, 1,2, ... ,oo} and U c IRn is open. Let f : 

*U -+ *IR be an internal map and 9 E SCk(U, IR) with f(~) rv g(~) for all ~ E *Unes . 

Then f E dSCk(U, IR); in particular, SCk(U) C dSCk(U) as noted earlier. 

Proof. By (3) of the above lemma, f~ of E Ck(U); and so * f E dSCk(U), but on 

*Unes we have that 9 rv f rv * f; ie., 9 rv * f with * f E dSCk(U) and so by (1) in the 

above lemma, 9 E dSCk(U). 

D 

We have the following (almost) standard corollary of the previous result. To 

shorten notation, let sn-l denote the set of v E IRn with Ivl = 1. 

Corollary 9.2.2. If f E dSCk(U) and ~ = {fJ : j E N} is a sequence of continuous 

maps fj : U -+ IR satisfying *I>..(~) rv f(~) for all ~ E *Unes and A E *Noo, and if for 

each j = 1, ... ,k and x E U, L~ is the standard part of the nearstandard (multi}linear 

map .c~x in the expansion for f as in expression 9.23, then the following holds. For 

every x E U and r E IR+, there is jx,r E Nand sx,r E IR+ with the following properties: 

for every j > jx,n positive S < sx,r and vector v E sn-l 

sl, I!;(x + sv) - /;(x) - t s' L~(v, ... , v) I < r (9.31) 

Proof. From lemma 9.2.1 we know that, for infinite A E *N, we have *1>.. E dSCk(U). 

To simplify notation here for A E *N, ~ E *Unes , 8 E *IR+, U E *lRn with lui = 1, we 

will let 
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where C~ are the nearstandard internal multilinear maps corresponding to the same 

notation f in expression 9.23. Next fix an arbitrary compact K C U, and let 

R K ().., 8) ~ * sup{ R()..,~, 8, tl) : ~ E * K and Itll = I}. (9.33) 

Now it's easy to see that that there is 0 < 80 rv 0 such that for A E *lNoo , 80 ::; 

8 rv 0, ~ E * K and tl E * sn-\ we have that R(A,~, 8, tl) rv O. This follows from 

the same argument as used in the proof of statement (1) of lemma 9.2.1: use the 

* f>.. in place of 9 and 80 in the place of EO in expression 9.24. But then, as * K x 

* sn-l is internal, *1>, is internal and R is internal function of ~ E * K and tl E 

* sn-\ then the set 91:~{ R(A,~, 8, tl) : ~ E * K and tl E * sn-l} is internal and so 

if 91: has arbitrarily large infinitesimals, overflow would imply that 91: would contain 

noninfinitesimals. If this were true, then there must be ~o E * K and tlo E * sn-l such 

that R(A, ~o, 8, tlo) ~ 0 contrary to the above statement. Hence, we have statement 

(I): R(A,8) is infinitesimal for infinite A E *IN and positive infinitesimal (bigger than 

80 ) in *!R+. Given this, if r E !R+ and K C U is compact, we will define the following 

internal set: 

Or,K ~ {(A', 8') E *lNx[80 ,*00): if (A,8) E [A', *00) x [80 ,8']' then RK(A,8) < *r/2}. 

(9.34) 

Now statement (I) above implies that if A E *IN is infinite and 80 is a positive in­

finitesimal at least as big as 80 , then (A, 8) E Or, K, and this statement implies the 

following. If [a] denote the integer part of a E !R+ and if AO E *IN is the infinite integer 

given by AO = [1/80] + 1, then (A,I/A) E Or, K for infinite A E *IN with A ::; AO. 

That is, {>. E *IN : (A, 1/ A) E OK, r} contains the external set of infinite integers 
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less than AO and so, as OK, r is internal, contains finite integers, eg., *jo for some 

jo E rN. By the definition of OK, r, this says that if (A, 5) E *[jo, 00) x [50, *l/jo], then 

R K().., 5) < *r /2. That is, if *Iul = 1 and ~ E * K, then RK(A,~, 5, u) < *r /2. In 

particular, this holds for standard values in these ranges, ie., if v E IRn with Ivl = 1, 

x E K, j E rN with j 2: jo and s E IR+ with s ::; So ~l/jo, then we have fact (B): 

RK(*j, *x, *s, *v) < *r/2. But, as already argued twice [) = 0t:) satisfies (C): 

1*U!x(*v) - £{x(*v) I rv 0 for all x E K. Using (B) and (C) along with the triangle 

inequality, we can weaken the bound some, say to r, to get 

*~k 1* f*j(*x + *t*v) - * f*j(*x) - t *tj* L{x (*v, ... , *v)1 < *r. 
J=l 

(9.35) 

But everything is standard in this statement and we finish just as we finished the 

proof of the second statement of lemma 9.2.1. o 

The previous work now has the completely standard consequence. Again, consider 

a sequence of saw tooth functions converging pointwise to a constant function! 

Corollary 9.2.3. Suppose that f E Ck(U) and J = {fl, h, ... } is a sequence in 

CO(U) such that for each x E U, fj(x) --+ f(x) as j --+ 00. If we denote the j-

multilinear differential of f at x by L~, then we have the conclusion of the previous 

result. That is, for every x E U and r E IR+, there is jx,r E rN and sx,r E IR+ such that 

for every j > jx,r, positive s < sx,r and vector v E sn-l 

(9.36) 

Proof. As the hypothesis on J implies that for infinite A E *rN, we have *1>..(0 rv * f(~) 

for all ~ E *Unes and as UCk(U) C dSCk(U), the result follows from the previous 
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proposition. o 

9.3 Functorial expression of S-smoothness 

Here we will give easy consequences of Theorem 9.1.lin terms ofrelationships between 

our canonical maps. 

The following diagram is an immediate corollary of Theorem 9.1.1. 

Corollary 9.3.1. For every afinite multiindex 0:, the following diagram of maps is 

commutative: 

SC=(lRm, IRn) 
*{)O 

S C= (IRrr\ IRn) -----t 

stl st 1 (9.37) 

C= ( IRm , IRn) 
{)" C=(lRm, IRn) -----t 

where stU) ~ of· 

Let J!:"n denote the affine bundle of k jets of maps in C= (IRm, IRn). We have 

the usual source projections 7rk : JAn ---+ IRm and target p : J!:"n ---+ IRn pro-

jections. Let C=(J!:"n) denote the C=(lRm, lR)module of smooth sections of J!:"n' 

Let h : C=(lRm, IRn) ---+ C=(J!:"n) , denote the k jet operator, given by sending 

f E C=(lRm, IRn) to the map x H j~f. Now *transfer this setup. 

Corollary 9.3.2. jk : SC=(lRm, IRn) ---+ SC=(J!:"n) satisfies st 0 h = jk 0 st, ze., we 

have an abelian diagram 

~ C=(J!:"n) 

ik T 
SC=(lRm, IRn) ~ C=(lRm, IRn) 

Proof. This is just the jet version of the previous corollary. 

(9.38) 

o 



Chapter 10 

Good Hausdorff topologies on 

families of map germs 

10.1 Introd uction 

It is commonly believed that one cannot construct a non discrete "good" topology on 

the ring of germs at 0 of smooth real valued functions on IRn, much less the ring of 

germs of continuous real valued functions on IRn. For example, Gromov, [121 remarks 

(p.36) that "There is no useful topology in this space ... of germs of [Ckl sections ... " 

over a particular set. Furthermore, there are hints in the literature, for example in 

the work of eg., Du Pleisses and Wall, [35], on topological stability, see p.95 and 

chapter 5 (p.121-) on the great difficulties of working with germ representatives with 

respect to aspects of smooth topology (eg., how to define the stability of germs), but 

that there are no alternatives, eg., in working with the germs directly. In this paper, 

using nonstandard analysis, we will give a construction of a good Hausdorff topology 

139 
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on the ring of germs of real valued functions on IRn at 0 that has good convergence 

properties. 

More specifically, we give a construction of a nonmetrizable Hausdorf topology 

on the ring of real valued germs on IRn at 0 that has the following properties: Net 

convergence is akin to uniform convergence of continuous functions in the sense that 

a convergent net of germs of continuous functions has limit the germ of a continuous 

function. Moreover, germ composition is a continuous map with composition on the 

right by germs of homeomorphisms giving topological ring isomorphisms. In one 

very special instance, we show how this topology extends the usual norm topology if 

the 'germs' come from functions all with a common domain. For example, we give 

theorems relating types of convergence of a family of functions all defined in a given 

ball to our germ convergence of the *finite extensions of these families restricted 

to germ domains. As time allows, we will extend this work; eg., we will extend 

this framework to the context of the orbit space of the action of the topological 

group of homeomorphisms germs acting on locally Euclidean topological groups. The 

overall intention is to develop what might be called a categorical framework for germ 

topologies. 

Our constructions rely critically on nonstandard methods. To have some chance 

of success, we needed the following critical facts to make these results possible. First, 

the algebra of germs at 0 is canonically isomorphic (via the domain restriction map) 

to the external algebra of standard functions on any infinitesimal ball about 0, see 

corollary 10.2.1. Second, we need that the germ topology be defined in terms of these 

nonstandard algebras of standard functions on these infinitesimal balls, see definition 
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10.3.1 on page 157. Third, we have a criterion, in the context of these functions 

restricted to these infinitesimal balls, to determine those germs that are germs of 

continuous functions, see proposition 10.2.2 on page 150. 

Let us next summarize the strategies and results here. Our topologies are simply 

defined as norm topologies on infinitesimal balls. But unlike the standard case, it's 

a serious problem (1): to determine a choice of a family of bounds {a}, so that as 

II * III is controlled by these specific values, we get a good notion of nearness. The 

second problem is, (2): we want this topology to have good convergence properties, 

eg., we want a convergent net of continuous germs to have a continuous germ as the 

limit point. The third problem is, that II II is defined as a norm over a ball with 

radius some positive infinitesimal 6, symbolically: *11 110' and thus we want (3): this 

topology to be independent of the choice of this infinitesimal. Although, we don't, as 

yet, have a standard rendering of this topology, we still want (4): to find relationships 

with standard convergence results. Finally, we hope that (5): this topology has good 

properties with respect to ring operations and composition of germs. 

Let's describe how we solve all these problems. First, problems (1) and (2) are 

intertwined and are solved in section 10.2 and section 10.3 up to page 198. Simply 

posed: to get a good set of distances for *11 110' we must, in fact, define multiple 

families of infinitesimals, all related to the No families, see eg., 151 and show that 

they define "equivalent" sets of distances (this is defined in terms of several forms 

of the notion "coinitial" in the text), analogous to the trivial standard fact that eg., 

1/2,1/3,1/4, ... and 1/4,1/9,1/16, ... form equivalent sets of distances for, say, the 

sup norm for the continuous functions on the unit ball (see the abstract definition on 
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page 159). (Note that, unlike in such a simple example, our set of distances cannot be 

countable, eg', is not metrizable; see corollary 10.3.2 and especially the construction 

in the previous lemma.) But, it turns out that for these infinitesimal balls, the families 

No do not have the right properties to prove that a limit point of a convergent net of 

continuous germs is a continuous germ. Therefore, we must define other families of 

infinitesimals, the various SO families (one, 51<,0, which depends on two, incomparable, 

infinitesimals, again see page 10.2.5), as well as the notion of U]-good infinitesimals 

(see definition 10.2.2), specifically for this purpose. Essentially, convergence akin to 

uniform convergence is implied by the existence of U]-good numbers in our sets of 

moduli, see theorem 10.3.1 and especially lemma 10.2.8 on page 155. We must also 

show the equivalence of the No and So families. This essentially occurs in lemma 

10.2.6, on page 153, but occupies several other lemmas, ego see lemma 10.3.7, on 

page 163, and its corollary. 

Problem (3) depends essentially on the existence of a simultaneously sufficiently 

numerous and sufficiently rigid family of positive functions defined near infinity in IR. 

Sufficiently numerous means that they define a coinitial subset Ao of the No moduli. 

This is the Hardy construction rendered in lemma 10.4.3, on page 173, but we needed 

a systematic version, see definition 10.4.8 on page 181, the following lemmas and 

lemma 10.4.9 on page 184. Sufficiently rigid means a subset of these Hardy series 

gives a coinitial subset of No when evaluated at an infinitesimal 5 if and only if they 

give a coinitial subset of No, for any other infinitesimal 5'. This was accomplished 

by looking at the sequences of integer exponents defining them and proving that 

these have certain asymptotic rigidity properties, see eg., corollary 10.4.4. vVe then 
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convert this sequential rigidity into a perturbation rigidity for values in the domain 

of the Hardy series, see lemma 10.4.8 and the consequence of this and the sequential 

rigidity just mentioned, corollary 10.4.5. These elements are pulled together in lemma 

10.4.10 and it's following corollary. 

The solutions of problems (4) and (5) can now be found. Problems (4) needed 

a new definition for coinitial subsets of N8 (see definition 10.5.1). We need this for 

internal sequences of infinitesimals that are given by the values of the transfers of 

standard sequences of functions evaluated at an infinitesimal. These have properties 

quite different from the moduli, N 8; eg, see corollary 10.5.1, on page 193. Nonetheless, 

with a bridging definition for convergence of a sequence of functions in our germ 

topology T (see definition 10.5.2 and the following cautionary remark), we get a group 

of results for the relationships between standard convergence and T convergence, 

of which proposition 10.5.1 (for uniformly convergent sequences) and proposition 

10.5.3 (for one parameter families of maps) are representative examples. For problem 

(5), the topological aspects of the ring operations for the space of continuous map 

germs occupy subsection 10.6.1; eg see proposition 10.6.1 and the preceding lemma. 

The material on composition of continuous germs occurs in subsection 10.6.2; see 

proposition 10.6.4 for the continuity of right composition and for the statement of the 

more difficult left composition, see proposition 10.6.5. 
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10.2 Germs and their infinitesimal restrictions 

Let n E tN and if 0 < r E IR, respectively 0 < t E *IR, let Br = B~ = {x E IRn : Ixl :S r}, 

respectively * B~ = {~ E *IRn : I~I :S t}. Let JL(O) = JLn(O) = {~ E *IRn : I~I rv O} and 

JL(Oh = {~ E JL(O) : ~ > O}; we will sometimes write 0 < 0 rv 0 instead of 0 E JL(O)+ 

Definition 10.2.1. Let F = F(n, 1) = 

{(U,1) : U c IRn is a convex neighborhood of 0 and 1: U -+ IR} (10.1) 

and F(n, 1)0 c F(n, 1) denote the set of those (U, 1) such that 1(0) = O. If y is some 

point in the range, we may also use F(n, l)y for those (1, U) with 1(0) = y. For the 

associated set of equivalence classes of germs, let 90 = 9n,l denote the ring of germs 

of 1 : (IRn,O) -+ (IR,O) at 0 E IRn, that 98 c 90 the subring consisting of germs of 

continuous functions. 

Although elementary, the following basic result is apparently folklore. There are 

many variations of this; the statement below is needed for this paper. 

Lemma 10.2.1. Suppose that A c IRn and 0 < 0 rv 0 are such that {~ E JL(O) : I~I > 

o} c *A. Then there is 0 < r E IR such that Br" {O} c A. Similarly, z! B c IRn is 

such that *Bi5 C *B, then there is 0 < r E IR such that Br C B. 

Proof. First, it's clear that as * A is internal, then overflow implies that there is a 

standard a > 0 such that {~ : 0 < I~I :S *a} C * A. Let E denote An Ba and let 

EC denote the complement of E in Ba " {O}; so that E U EC = Ba " {O}. We know 

that * EC c Bi5 " {O}; that is, for 0 < dE IR, we have the statement: ~ E * EC ::::} ~ E 
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* Bd ,,{O}. But then reverse transfer gives the statement: x E EC '* x E Bd " {O} 

and as d > 0 in IR was arbitrary, then we get that EC = 0 so that E = Bd " {O}. To 

prove the second assertion, suppose the conclusion does not hold so that there is a 

maximum positive 6 ,....., 0 such that if Bt is the set {t E IR+ : Bt C B}, then 

[0,6) C *B~{t E *IR+ : * Bt C * B}. 

But then {t : 6 < t,....., O} C *Bc and so as 6,....., 0 and is nonzero, the first part (n = 1 

here) implies that {t : 0 < t,....., O} C *Bc, forcing [0,6) rt. *B, ie., * B t ~ * B for t < 6, 

a contradiction. o 

Let * F(Bt5) denote the *IR algebra of internal functions on Bt5 and U F(Bt5) denote 

the (external) subring of standard functions on Bt5 which is clearly an UIR algebra, 

and so can be viewed as an IR algebra. Note that go and its subring gg are IR algebras. 

The above lemma has the following immediate consequence which is the critical fact 

that allows the characterizations of germs in this paper. 

Corollary 10.2.1. Suppose that U C IRn is a neighborhood of 0 in IRn, f : U ~ IR 

is a function and 0 < 6 ,....., O. Then if *f(~) = 0 for all ~ E Bt5 , then there is 

another neighborhood of 0, V C IRn such that Ilv is identically zero; ie., [I] E go is 

the zero germ. That is, the map Rt5 : go ~ U F(Bt5) : [J] f--t *IIBo is an IR-algebra 

isomorphism. 

Proof Let supp(j) cUbe the set of x E U such that 1 (x) i= 0 and A C U denote 

U "supp(j). Then Bt5 C * A and so the above lemma implies that there is a positive 

r E IR such that Br C A, eg., f(x) = 0 for x E Br; eg., [g] = o. To verify that Rt5 
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is an IR-algebra homomorphism is straightforward as [J], [g] E go and e E IR satisfy 

e[J] = ref], [f] + [g] = [J + g] and [J][g] = [Jg] and eg., (* f· *g)IB6 = (* fIB6)(*gIB6) 

as internal functions on B li • D 

Given the above proposition, when we talk about germs or elements 

of go, we will usually be working with subalgebras of the external algebras 

0' F(B6). In particular, all work on germs will occur in the algebras 0' F(B6), 

for some infinitesimal 6. 

10.2.1 Monadic regularity of standard functions 

We begin with the following simple but surprising proposition. 

Proposition 10.2.1. Suppose that 0 < 0 rv 0 and [J] E go is sueh that *f1B6 zs 

*continuous on B li . Then [J] E go. 

Proof. The proof is trivial: if A = {r E IR+ : flBr is continuous on Br }, then * A = 

{t E *IR+ : * fl* Be is *continuous on* Br } and the hypothesis says that * A # 0 and 

so A # 0. 

D 

Remark 10.2.1. Analogues of these two results for various regularity notions, eg., 

for homeomorphism germs, or differentiability classes, eg., germs of C k submersions, 

hold by almost identical arguments. We will return to these and their implications 

in later sections and in following papers. These results will allow one to work on 

monads where domains and ranges for standard functions are remarkably well defined 

and then lift to local standard results. 
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The following corollary indicates that the topology we define on germs will be 

independent of the infinitesimal neighborhood. 

Corollary 10.2.2. Suppose that [J] E go and E, 15 are positive infinitesimals. Then 

*f is *continuous on Eo if and only if it is *continuous on BE. 

Proof. This is clear from the previous proposition. D 

Definition 10.2.2. Let E,b be positive infinitesimals,ie., E,b E J.l(O)+ with E «< b. 

For a nonzero germ [J] E go, we say that 0 < E rv 0 is [J]-good on *Bo if the following 

holds. Suppose that for all ~,( E *Bo with I~-(I sufficiently small, l*f(~)-*f(()1 < E 

holds; then [J] has a continuous representative on some neighborhood Br of o. We 

say that 0 < E E */R is go -good if E is [J]-good for all nonzero [J] in go. 

Note that if E E */R is [J]-good (respectively go-good), and 0 < E < E, then E 

IS [J]-good (respectively go-good). The proof of existence of [J]-good numbers of 

appropriate magnitudes will be carried out later; existence go-good numbers needs 

saturation. Clearly, but implicitly the magnitude of a go-good, or a [J]-good number, 

is dependent on the degree of pinching, E, occurring on this ball; but also it depends 

on the magnitudes of the size of the ball, 15, where this occurs: the relative magnitudes 

are critical. This should be kept in mind in the follmving 

Moreover, one can show that There exists 0 < E E */R that is go-good. Since this 

fact will not be used here, the proof, which is an easy saturation argument, "V ill be 

omitted. 
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10.2.2 A good set of moduli 

vVe want to choose a collection of potential distances between germs on Eij that will 

separate germs without getting a discrete topology. One possible way is as follows. 

In the world of standard functions on the unit interval I c IR, if f is any nonzero 

bounded function on I, then we can always find a positive r E IR such that r < Ilfll = 

sup{lf(x)1 : x E I}, eg., a Hausdorff topology can be defined strictly in terms of 

positive numbers via Nc = {j : II f II < c} and these are in fact determined by eg., a 

(countable) sequence of positive numbers dense at O. But in our case, there is no clear 

set of numerical moduli. Such a set must be infinite and as such cannot be internal 

(infinite *finite will not work; eg., the first obvious problem with such is that it will 

have a minimum!). Given this, we look to the standard functions (restricted to * Eij) 

themselves for our set of moduli. The first guess would be to take the external set 

from *supremums of collections of standard functions. This is quite analogous to the 

definition of the compact open topology on the space of continuous function between 

topological spaces, where here, the family of (guaging) open sets in the range collapse 

to a single ideal infinitesimal element. 

Recall that we are assuming sufficient saturation in the following. Given sufficient 

saturation, there exists incomparably pairs of infinitesimals J C Jl+ (0) XJl+ (0), defined 

as follows. Let F(IR+,O) denote the set of maps f : (U, 0) ~ (V, 0) where U, V are 

arbitrary interval neighborhoods of 0 in IR+ = {r E IR : r > O}. 

Definition 10.2.3. 1. Let M C F(IR+,O) denote the set of {m IR+ ~ IR+ 

ifr, S E IR+ then r < t {:} m(r) < m(t) and t ~ 0 {:} m(t) ~ O}. 
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2. Given 0 < 5 rv 0, we say that 0 < E r-..J 0 is incomparably smaller than 6 

if for all m E M, we have *m(5) > E. We may write this E «< 6 or write 

(5, E) E J. 

3. Let MO = {m EM: m is continuous on some neighborhood ofO}. 

4· Let M denote the set of m E F(IR+, 0) with possible value 0 such that if r, s are 

in the domain ofm with r < s, then m(r) ::; m(s) and as above limHo m(t) = o. 

Remark 10.2.2. Clearly we have that M ::J M. Note that if j E F(IR+, 0) has values 

in [0,00), 5 E p,(0)+ and E «< 5, then by the definition, z{ *j(5) < E, then, in fact, 

*j(5) = o. Also note that ifm E MO, then m- 1 EM, where here m-1 may be defined 

on an arbitrarily small neighborhood of 0 in IR+. Finally, note that z{ ml, m2, . . . zs a 

sequence in M, then lim inf j-HXl mj is an element of M. 

A proof of the existence of incomparable pairs of positive infinitesimals is an easy 

concurrence argument in an enlarged model. Given this, let's give a criterion for 

[J] E 90 to be a continuous germ. We first need a preparatory abstract lemma that 

gives a (new) standard interpretation of incomparable infinitesimals. 

Lemma 10.2.2. Suppose that w, D E *tN are such that D »> w, and let rj E IR+ 

with rj --+ 0 as j --+ 00. Let A : IRn x IRn --+ IR+ and for j E tN, let SA(j) denote the 

assertion: 

there is r E IR+ such that Ix - yl < r =? A(x, y) < rj (10.2) 

and for n E tN, SA(n,j) denote the statement (x,y E BrJ 1\ SA(j). Suppose that 

*SA(w,D) holds. Then there is no E tN such that SA(no,j) holds for infinitely many 



Tom McGaffey 150 

j E rt-J. 

Proof. If the conclusion does not hold, then for each n E IN, there are only a finite 

number of j E IN such that SA(n,j) holds. Therefore, for each n E IN, the integer 

L(n)~max{j: SA(n,j) holds}. That is, L: IN -+ IN is a map such that 0:::; *L(w), a 

contradiction. D 

Proposition 10.2.2. Suppose that 0 < 5 rv 0 and [f] E 90 satisfies the following 

condition. For~,( E *Bo sufficiently small, we have that I*f(~) - *f(()1 «< 5. Then 

[J] E 98· 

Proof. Using the notation of the previous, let A(x, Y)~lf(x) - f(y)1 and let Sj(j) 

denote the statement SA (j) of the previous lemma and S j (n, j) the corresponding 

SA(n,j). Then to say that Sj(w,O) holds is precisely our hypothesis as *rw «< *ro. 

Hence, we have the conclusion: there is no E IN such that Sj(no,j) holds for infinitely 

many j E IN. That is, there are j1,j2,'" E IN, such that for each k E IN the following 

holds: 

there is r E IR+ such that lxi, Iyl < rjno' Ix - yl < r::::} If(x) - f(y)1 < rjk (10.3) 

That is, since rjk -+ 0 as k -+ 00, this says that on the ball of radius rjno intersected 

with the open set where the representative f for [J] is defined, we can, for any k, 

make If(x) - f(y)1 < rjk by choosing Ix - yl sufficiently small, ie., f is continuous; 

eg., [J] E 98· D 

The above is some motivation for the next definitions. 
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Definition 10.2.4. Given our 0 < 8 rv 0, let 0 < K, rv 0, K, incomparably smaller than 

8. Then for each [f] E Yo we have the following definitions. 

(a) Define :;t/ = *sup{1 *f(O- *f(()1 : I~-(I < K, for~, ( sufficiently small and~, ( E 

*Bo}. 

(b) If 0 < r E IR, let --:t; = limt--+o sup{lf(x) - f(z)1 : Ix - zl ::; t; x, z, x - z E B r }. 

(c) For 0 < 8 E *IR infinitesimal, define *]~ = *limHOsup{l*f(O - *f(()1 : 

I~ - (I ::; t : ~,(, ~ - ( E Bo}. 

Definition 10.2.5. Given this, define 

(1) Define = 81<:,0 = {J/'o : [fl E Yo} " {O}. 

(2) If 0 < 8 E *IR, let SO = *{]~ : [f] E Yo} " {O}. 

We will later find that the previous collection of numbers is asymptotically compa­

rable with the collection, No, to be defined next. Those defined above will allow us to 

prove that convergence in the topology To on Yo (shortly to be defined), is like uniform 

convergence. The following collection of numbers will essentially play the role of the 

appropriate distances between germs, our set of moduli. It is critical that we show 

that these sets are at least asymptotically intertwined so that our topology has the 

good properties that come from these sets being asymptotically equivalent moduli. The 

remainder of this section achieves this goal along with verifying the good convergence 

properties. 

Definition 10.2.6. If 0 < r E IR and 9 : Br -+ IR, write IIglir ~ sup{lg(x)1 : x E Br} 

so that *lIgllo~*sup{l*g(~)I: ~ E B,,}, we may write this as IIgll". Let No denote the 
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set {*II *g118 : [g] E Qo} and Noo = {*II *g118 : [g] E Qg} As the ring structure will later 

playa role, let N8 = N8 U -N8 and define N80 similarly. 

Note that N2 consists of a set of positive infinitesimal and 0, whereas N8 contains 

positive noninfinitesimals (equal to or infinitesimally close to standard values taken 

by elements of Qo at 0.) We also clearly have N2 C N8 n JL(O). 

vVe have the following easy information. 

Lemma 10.2.3. Viewing *IR as an ITIR algebra, we have that N8 is an ITIR subalgebra 

of *IR such that ITIR < N where N8 is the subset of positive elements in *IR. N2 is also 

a ITIR algebra and as it is a subring of JL(O), it does not contain ITIR. 

Proof. vVe just need to verify that if t, s E S, then t + sand tS are also elements of 

S as the rest is obvious or follows immediately from this. o 

vVe will now return to some properties of the various J/s. Note that if (5 « 0, in 

the case where we need A = "" to be incomparably smaller than A, then we may need 

to choose a much smaller ~ corresponding to it and then our S~ will consist of a set of 

positive elements that will cluster around 0 in a much tighter fashion. In general, as 

f is standard, we clearly we have J} 2: *]~, but not necessarily related to Y; and so 

eg., if [f] E Qg, then Y; may not be 0 for some representatives, we will have *]~ = 0 

and J) "" O. Consider the following function. Let S c IR such that both Sand IR " S 

are dense in IR. Define f : IR ---+ IR by f(x) = x if xES and 0 otherwise and finally 

define f to be constant for Ixl > r /2. Then one can see that, if 0 < "" «< 0 "" 0, then 

-=- *-8 o = J f' 0 = J f »> "" = J'} > o. Of course, f defines a noncontinuous germ that 
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is continuous at o. Furthermore, again because f is standard, we have the following 

tighter relation. 

Although the next lemma is obvious, it's important in the considerations on If]-

good numbers. 

Lemma 10.2.4. For each [f] Ego) J'f"5 ;::: *]~. 

Proof. This is clear D 

Lemma 10.2.5. Given J E tL(O)+) ~f Mo = {*m(J) : m E M} = {II *mll o : m E M}, 

then Mo = (No n tL(O)) " {O}. If M,s is similarly defined, then Mo = Mo U {O}. 

Proof. Just note that if [f] E go, and f E If] is any representative with * II * f II 0 rv 0, 

then on the neighborhood where it's defined t ~ m(t) = Ilfll t E M so that *m(J) = 

11* fll o giving No C Mo. On the other hand, if mE M, then f(x) = m(lxl) E F(n, 1)0 

with 11* fll o = *m(J) rv o. The proof of the last assertion is left to the appendix. 

D 

Lemma 10.2.6. We have that SO = No; that is, if t E S ; then there is [g] E go such 

that Ilgllo = t and conversely, if S E No, then there is [f] E go such that J[jJ = s. In 

particular, .for every t E 5",,0, there is s E No with s :::; t. 

Proof. Letting, for any 0 < r E IR, f : Br ---t IR be a representative for t = * Ilfllo' 

define 9 : Br ---t IR as follows: 

g(x) = limsup{lf(y) - f(z)1 : Iy - zl :::; t with y, z, y - z E B 1xl }. (10.4) 
t-+O 

Then if x, y, z E Br with Ixl :::; IYI, and Izl = r, then we have g(x) < g(y) < 

g(z) = Ilgllr which is, by definition equal to limHo sup{lf(y) - .f(x)1 : Iy - xl < 



Tom McGaffey 154 

t,x,y,y - x E B r } = J;' But then, by transfer we have that * II*g118 = J~, ie., 

58 C N8. Note that a simpler version of this argument gets 58 C N8 by instead 

letting g(x)~ sup{II(y) - I(z)1 : y, z, y - z E B 1xl }' 

On the other hand, if! E N8, we will find [g] E go such that Jg = t. From the con-

structions above, we may assume that the [1] E go with 111118 = t has representative 1 

that is continuous on some neighborhood U of 0. Let K CUbe a dense subset such 

that U"-. K is also dense and t = * sup{* I(~) : ~ E * K n B8}. Define h: U ---+ {O, 1} 

by h(x) = 1 if x E K and h(x) = ° if x E U"-. K and let g(x) = I(x)h(x) for x E U. 

Now, on the one hand, by density of K and continuity of 1 2: 0, we have that for 

each x E Br that 

I(x) = limsup{lg(x) - g(y)1 : y,x - y E B r , Ix - yl < t}. 
t-+O Y 

(10.5) 

On the other hand, if vt~{lg(x) - g(y)1 : x,y,x - y E Bn Ix - yl < t}, and for a 

given x E B r , Vx,t~{lg(x) - g(y)1 : y, x - Y E B r , Ix - yl < t}, then we have the 

decomposition vt = U{Vx,t : x E B r } so that 

sup vt = sup{ sup Vx,t : x E B r } (10.6) 
X,Y y 

and so 

lim sup vt = lim sup{sup Vx,t : x E B r } = sup{lim sup Vx,t : x E B r }. (10.7) 
t-+O x,YEBr t-+O Y t-+O Y 

But, by expression 10.5 and the definition of Vx,t, the last term is just IIIll r and by 

definition, the first term is J: for the function 9 defined above in terms of the given 

1, ie., we have constructed 9 so that ~ = IIIll r . But then our assertion follows 
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by transfer. The last assertion follows from lemma 10.2.4 and the first part of this 

lemma. D 

The following lemma will be important in constructing a counterexample to T­

continuity of composition with a general continuous germ. 

Lemma 10.2.7. No does not contain an incomparable range relative to O. That is, 

for all t E No, then (0, t) tI. J. 

Proof. We must verify that if t E No that there is f E M such that * f(o) ::; t. We 

may assume that t = II*gllo for some pseudomonotone [g] E 9g so that for r < s 

sufficiently small, r < s, Ilgllr ::; Ilglls' Given this, for r E IR+, sufficiently small define 

f(r) = ~ Ilgllr' Then f E M by the previous sentence and upon transfer we get that 

* f(o) = ~ II*gllo < t. D 

Remark 10.2.3. For our given 0 rv 0, we have defined three (external) sets of num­

bers S, Sand N. Above we have verified that S = N. We also know from Lemma 

10.2.4 that we can bound elements of S below by elements of S, hence if S has [f]­

good numbers, so does S = N, the set of numbers that will form the moduli for our 

system of neighborhoods of the ° germ. It's not that important for our purposes that S 

contain 90-good numbers, but, if we wish to prove that 9g is closed in 90, it's critical 

that it contain [f]-good numbers for each nonzero [f] E 90. Finally, note that the 

last lemma will allow us to give a characterizations of the topology TO invariant of the 

choice of the given infinitesimal O. 

Lemma 10.2.S. If [f] E 90 is nonzero, then No contains [f]-good numbers for *Bo. 
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Proof. We know the following: lemma 10.2.6 implies that for every t E 5>.,8, there is 

s E N8 with s ::; t, and also if t, t' E 11(0)+ with t' < t and tis [f]-good for * B>., then 

it follows that t' is [f]-good for * B>.. Hence, it suffices to show that 5>.,8 contains 

[f]-good numbers. But note that, as 5 «< A, if 1* f(~) - * f(()1 is coinitial with N8 for 

~,(, ~ -( E * B>. with I~ -(I sufficiently small, then [f] E 98 by proposition 10.2.2. 0 

Assuming we wish to include magnitudes akin to those of f-good numbers in our 

range of neighborhood diameters, then with the previous lemma we get an upper 

bound on these moduli on how finely we wish to resolve our germs. In the next 

subsection, we will see that this resolution range works well. 

10.3 Topology on germs with fixed target 

This section is the lions' share of the work here. We will verify that a convergent 

net of continuous germs is a continuous germ. We will prove that 90 and its higher 

dimensional analogs have good topological algebraic properties in Subsections 10.6.1 

and 10.6.2. With a fair amount of effort, we prove in Subsection 10.4.2 that the 

topology defined in terms of the given infinitesimal 5, ie., T 8, is independent of the 

choice of infinitesimal. In Subsection 10.5, we prove results giving correspondences 

between convergence of a sequence of functions on a neighborhood of 0 in lRn and T 

convergence of an extended net of 'germs'. 

Here we will develop our topology only on 98 

For a given 0 < 5 rv 0, using N8 (or equivalently NR as we shall) see we wish to 

construct a system of neighborhoods of [0], the zero germ in 90. 
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Definition 10.3.1. Given t E N 8, let Ur = uf c 90 denote the (external) set 

{[f] E 90 : II *f118 < t} where II *f118 = *SUP{EBo I *f(~)1 . By definition, t E N8 

implies that Ur is nonempty, in fact, infinite. Let 70 = 78 = {Uf : t E N 8} and note 

that by the definition of N 8, 70 is closed under finite intersections. If 0 is fixed in 

the discussion, we will often write 7 or 70 and Ur leaving off the 0 'So Suppose that 

(D, <) is a directed set and that ([Jd] : dE D) is a D net in 90. Then ([Jd] : dE D) 

converges in 7 8 to the zero germ in Yo if for each t E N 8, there is do E D such that 

if dE D with d> do, then II *fd118 < t, ie., [Jd] E uf· 

We will work with the properties of 7 8 here, for the arbitrary positive infinitesimal 

o already knowing that, at least for continuity of germs, the choice of 0 is irrelevant 

and later find that the topology generated by 7 8 itself is invariant of the choice of o. 

10.3.1 A good system of neighborhoods at the zero germ 

Lemma 10.3.1. Fix 0 < 0 f"V 0 and suppose that [f] E 98 and [g] E 90' With the 

hypothesis that 0 < t E 58 is [g]-good, we have that if *flBo - *glBo E Ur / 3 then 

[g] E 98. 

Proof. The proof is a nonstandard version of the three epsilon argument with the use 

of good numbers. Suppose that tis [g]-good and let t = t/3. As * f is *continuous, 

if ~,( E B8 are sufficiently small, we have that 1* f(O - * f(()1 < t/3; so that if 

* flBo - *glBo E Ur , we have that l*g(O - *g(~)1 ::; I*g(~) - * f(~)1 + 1* f(~) - * f(OI + 

l*g(O - * f(()1 < t. But as t is [g]-good, we obtain our result from the definition, 

10.2.2. o 
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The following theorem along with the nondiscrete nature of our topology indicates 

that our topology has good properties; in particular this result indicates that T8 

convergence is analogous to uniform convergence. 

Theorem 10.3.1. Suppose that D is a directed set and that d E D M [Jd] is aD-net 

in 9g that is TO convergent to [g] E 90. Then [g] E 9g. 

Proof. The result follows easily from the above preliminaries. As d M [Jd] is T 

convergent to [g], if t E S, there is do E D such that * f d l B6 - *g1B6 E Ut for d> do. 

But then, by Lemma 10.2.8, S contains a [g]-good number t and as just noted we know 

that there is d E D such that if dE D with d > d, we have that * f d l B6 - *g1B6 E Ut 

and so by Lemma 10.3.1, we have that [g] E 9g. D 

10.3.2 Convergence in our topology 

In this part 0 < 8 rv 0 is still fixed. We have defined a system of neighborhoods of 

the 0 germ with the collection of sets TO; that is, a neighborhood base for a topology 

for 90 at [0]. Given the above preliminaries, we will now make 90 into a topological 

vector space in the usual way by translating the sets of TO. 

Definition 10.3.2. Given TO above and [f] E 90, let Tf denote the [f] translation of 

TO; ie., Tf = {U + *f1B6 : U E TO} and let T denote the topology generated, in the usual 

way, by finite intersections of arbitrary unions of elements of Tf as [f] varies in 90· 

Before we can say anything more about this topology we need more formalities on 

orders. See Fuchs, [7], for a good coverage of the mathematics of ordered algebraic 

systems. So returning to the discussion at the beginning of subsection 10.2.2, let's 
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begin with a definition from the theory of ordered sets. Suppose that (P,:::;) is a 

partially ordered set (ie., for all p, q, rEP we have p :::; p,p :::; q and q :::; p implies 

p = q and p :::; q, q :::; r implies p :::; r) and J c P with the induced partial order. We 

will often assume that our partially ordered sets are downward, respectively upward, 

directed, ie., if p, q E P then inf{p, q} E P, respectively sup{p, q} E P. 

Definition 10.3.3. If (P, <) is a partially ordered, downward directed set and J c P, 

then we say that J is coinitial in P with respect to <, if for all PEP, there is 

a E J such that a :::; p. Suppose that we have two subsets J, K c P. Then we say 

that J is coinitial with K, written J := K or K ~ J if for all all k E K, there is 

j E J such that j :::; k and we say that J and K are co initial, written J :=: K if 

J is coinitial with K and K is coinitial with J. If t, <5 are positive infinitesimals, we 

say that t is almost in N8, if there is 5, t E N8 such that 5 :::; t :::; t; we will write this 

as t a= N8 . Ift,5 E p,(O)+ with t a= Ns and 5 a= N.c, then we write t ~ S. 

Remark 10.3.1. Note that J:= K defines a partial order (on subsets of p,(O)+) and 

J :=: K defines an equivalence relation on subsets of p,(O)+. In particular, if J1 := K 1, 

J1 :=: J2 and J2 := K 2 , then K1 :=: K 2 . Note that if t, 5 and t E p,(O)+ and if t :::::: 5, 

and 5 :::::: t, then t :::::: t; eg., :::::: defines an (external) equivalence relation on p,(O)+. 

Note that it's possible (and even probable depending on the saturation) that t :::::: 5, yet 

N.c n Ns = 0. Nonetheless we have the following good asymptotic correspondence. 

We need a further definition on convergence within the framework of coinitiality. 

Until now we were generally satisfied with considered subsets S of N8 that are coinitial; 

this corresponds to the notion of accumulation. We have considered convergence of 
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nets in eg., 90, but have not formalized this notion with respect to the NI/s. vVe will 

do this now. 

Definition 10.3.4. Suppose that (T, <) is a totally ordered, upwardly directed, set 

with SeT given the restricted total order, (D, <) is an upward directed set, and that 

V = (tid: d E D) is a D net in T. Then we say that V is convergently coinitial in 

the range of S, if for each .5 E S, there is do E D such that, if d > do then tid > .5. 

If, in addition we have that for each tI E V, there is .5 E S with .5 2: tI, then we say 

that V is convergently coinitial with S. 

If we already know that the map D -+ T : d H tid is (order reversing) monotone, 

then clearly coinitiality implies coinitial convergence. 

Given the above definitions, we can say a little more about the totally ordered 

sets defining our topology. If [m] E M O, and t,.5 are positive infinitesimals with t < .5, 

then II*mllr ::; II*mll s and so eg., Nr is coinitial with Ns. We also have the following. 

Lemma 10.3.2. 1fO < fJ rv 0 and t E N 8, then Nr c N8 . 

Proof. We will show that if [m] E M O, then II*mllr E N8• But, by definition, 

letting t = II*m'118 for some m' E M O and we may assume, as m is continuous, that 

II*mll r = *m((o) where (0 = *m'(~o) for some ~o E B8. (This gives the third equality 

in the following expression, ie., the * sup occurs on the image of *m'.) Now recalling 

that all of our functions are positive 

II*mllr = lI*mllllm'lId = * sup{*m(() : ( ::; II*m'118} 

= *sup{*mom'(~): ~::; fJ} = II*m o m'118' 

(10.8) 
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and of course II*m 0 m'llo E No· o 

Remark 10.3.2. It will follow from the results in subsection 10.4.2 that if t, S are 

positive infinitesimals such that t :::::: s; then N.c and Ns are coinitial in *lRnes,+. 

At this point, we need to refine a definition given in Definition ?? 

Definition 10.3.5. Let (5 E f.L(O)+ and suppose that (Dl, <) and (D2, <) are directed 

sets. Suppose that Jl = (td : d E Dl) and J2 = (Sd : d E D2) are nets in f.L(O)+. 

Then we say that Jl and J2 are co initial with each other in the range of No if for 

each td1 E Jl with tdl > u for some u E No, there is Sd2 E J2 such that Sd2 < tdl and 

the analogous statement with the indices 1 and 2 switched holds also. 

With this definition we need an elementary but useful fact. 

Lemma 10.3.3. Suppose that Jj C IL(O)+, j = 1,2 are co initial with each other in 

the range of No and that [m] E MO. Then *m(Jj), j = 1,2 are coinitial with each 

other in the range of No. In particular, *m(Jd is coinitial with No if and only if 

*m(J2) is co initial with N d . 

Proof. As *m(No) C No and as *m is monotone and so eg., sends sandwiched elements 

to such respecting their orders, then this statement is clear. o 

vVe also have a convergence version of the above. 

Lemma 10.3.4. Suppose that (Dj, <) for j = 1,2 are directed sets and that X j = 

(u~ : d E Dj) are nets in f.L(O)+ such that the maps d H u~ are monotone (order 

reversing). If [m] E M O, let m 0 Xj, j = 1,2 denote the net d E Dj H *m(u~). 
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Suppose that Xl and X 2 are convergently co initial in the range of No. Then m 0 Xl is 

convergently co initial in the range of No if and only ~f m 0 X 2 is convergently co initial 

in the range of Ns. 

Lemma 10.3.5. If V(8) is the semiring {*m(8) : m E M}, then V(8) = Ns. 

Proof. For each [J] E 9, we have the element [mil E M given by t M Ilfllt' call this 

map A. Then A is clearly a surjection, as given [m] E M, we get a [J] E 9 such 

that A([J]) = [m] by defining f(x) = m(lxl). But also it's clear by the definition 

of A that if [J] E 9, then Ilfll t = A([f])(t), and so by transfer if 8 E tL(O)+, then 

11* fils = * A([J]) (8). But then {II* fll o : [J] E 9} = {* A([J]) (8) : [f] E 9} and as the 

image of A is all of M, this last set id just {*m(8) : [m] EM}. o 

If t E No, let Ns,t C No be the set of S E No such that s :s; t. Then a net 

(D, ~d) C No is coinitially convergent with No if and only if for each t E No, there is 

do E D such that {~d : d> do} C No,t. 

Corollary 10.3.1. Suppose that 0 < 8 rv 0 and mEMo. Then V(8) = V( *m(8)) 

as subsemirings of tL(O)+ and N*m(S) = No· Also *m(No) = Ns, ie., if tENs, then 

Nc=Ns. 

Proof. We know by definition that V(*m(8)) C V(8), but m- l EM and so we have 

that M = [m- l ] 0 M = {[m- l 0 m] : [m] EM}. Therefore 

V(8) = {*m(8) : [m] EM} = {*m 0 m- l 0 m(8) : m E M} 

= {*m 0 in(8) : [in] E [m- l ] 0 M} 

= {*m 0 m(8) : [1n] EM} = V(*m(8)). (10.9) 
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The last statement follows by an identical verification using instead that M 0 [m] = 

M. D 

Kote that it possible that 0 < E rv 0 is not incomparably large or smaller than <5, 

ie., for some ml,m2 EM we have *ml(<5) < E < *m2(o) and yet Nc nNo = 0. One 

should check Puritz, [37], for 'discrete' versions of this and much other. ]\'"onetheless, 

we have the following result. 

Lemma 10.3.6. Suppose that t E No, then No and {u E No : <5 < u < <5 + t} have 

the same cardinality. 

Proof. It's easy to see that as m varies in M O, the map T : *m( <5) H <5 + *m( <5) : 

No ----t No is one to one. Also if M~ = {m E M O : *m(<5) < t}, then it's clear that the 

cardinalities of {*m(<5) : m E M~} and No are the same. Therefore, because of this 

and as T is an injection, the cardinality of T( {*m(<5) : m E M~}) is the same as that 

of No. But by construction T({*m(o) : m E M~}) lies in {u E No: <5 < u < <5+t}. D 

Proposition 10.3.1. Suppose that R I , R2 are positive subsemirings of *lRnes,+ that 

don't contain incomparable ranges and are coinitial in *IR+. Then T(Rdo and T(R2)0 

define equivalent neighborhood systems of the zero germ in 90. 

Proof. This is straightforward. Suppose that (D, <) is a directed set and (Jd; dE D) 

is a T(Rdo-convergent D-net; ie., for each t E RI there is do E D such that id E Ut 

for d 2: do· But by hypothesis, if S E R 2 , there is t E RI with t < s and therefore a 

do E D such that d 2: do implies that dd E Ut C Us. D 

Lemma 10.3.7. M O eM is coinitial in M. 
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Proof. Let [m] E M; we will find [m] E M O such that ih(t) :S m(t) for t > 0 

sufficiently small. Now, as [m] is monotone, the germ at 0 of the set of points of 

discontinuity, 5, is discrete, eg countable with possible limit point at 0; let PI > P2 > 

... be a enumeration of these, noting that only the tail end is well defined. Define a 

piecewise linear mEMo as follows. For each j E IN, let m(pj)_ denote the limit m(t) 

as t t Pj) and m(pj)+ denote the limit m(t) as t .} Pj (exists by monotonicity and m 

assumes one of these). We know that m(pj)_ :S m(pj)+ < m(t) for Pj < t < Pj-I; 

so there is qj E (Pj, Pj-I) such that if mj : [pj, qj] --+ IR+ is the affine map with graph 

the line segment connecting the two points (Pj, f(pj)-) and (qj, f(qj)), then we have 

mj(t) :S m(t) for t E [pj) qj]. Therefore defining rn to be mj on [Pj) qj] for all j E IN 

and to be m on the complement of U{[Pj) qj] : j E IN}, we have defined a function in, 

(representative) in M O with m(t) :S m(t) for sufficiently small t E IR+. D 

Definition 10.3.6. LetN'j c Nf, denote the set {t E N8 : t = II *f118 : for some [f] E 

gg}. It's easy to see, as with N 8, that N8° is a semiring. Let iI'j = N8° U -N8° U {O} 

denote the subring of.f.fo it generates. 

Proposition 10.3.2. ~o is co initial in No. 

Proof. This is a direct consequence of the proof of Lemma 10.2.5 and Lemma 10.3.7. 

D 

From work later in this paper (see Subsection 10.4.2) we have some idea of the 

cardinality of minimal coinitial subsets of N 8 . 

Lemma 10.3.8. There exists a coinitial subset of N8 with the cardinality of IR. 
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Proof. From Lemma 10.4.3, we know that the subset of M given by germs of analytic 

functions, SM, satisfies As = {*m(5) : m E SM} is coinitial in No and we also know, 

by Corollary 10.4.1, that the map Eo : SM -t No : [m] f---t *m(5) is an injection onto 
" .-

this coinitial subset. The assertion follows as the cardinality of SM is the same as 

that of IR. o 

So the previous fact gives a lower bound on the possible cardinalities of minimal 

coinitial subsets. vVe will now prove that this cardinality must actually occur. Now 

consider F(I) the ring of real valued functions on the unit interval I and in the sup 

topology on F(I), consider the collection (C, C) of all neighborhoods of the the zero 

function partially ordered by inclusion. (C, C) is an uncountable partially ordered 

set, but it has a (many) countable coinitial subset {N1/ n : n E N} where Nl/n = {f E 

F(I) : Ilfll < l/n} hence to prove completeness or not it suffices to test convergence 

for one of these countable coinitial sets. The critical fact here is that (0,00) has 

countable coinitial subsets, but as we shall see S does not, hence convergence in 

(9, TO) will need uncountable nets. 

The previous is elementary and standard, but motivates the following. vVe will 

show that No does not contain a countable coinitial subset and hence according to 

the above discussion, one needs nets on at least uncountable directed sets to give 

convergence. Consider the following example. Here we will be considering real valued 

germs of maps at ° in IR; fix our positive infinitesimal 5. For each ° < r E IR, let 

fr(x) = exp(-l/xr ) for x> 0, setting fr equal to 0 for x < O. fr is monotone (and 

in fact smooth) and so it is straightforward that lI*frllo = *exp(-1/5r ) and so as 
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(10.10) 

From this one can check that 11* frllo rv 0 and that if a> 0, then 11* fr+a II 0 « (11* frllo)n 

for all n E IN. That is, we have an uncountable subset 

(10.11) 

such that for each r, s E IR+ with r < s, Rs < (Rr)n for all n E IN, yet there is t E S 

such that t < Rr for all r E IR+. We will give a general proof of this below but here we 

will give an explicit bound. If g(x) = exp( _e1/ X ), it's straightforward to check that 

* fr (J) > * 9 (J) for all positive r E IR. 

For what it's worth the net of functions fr does indeed have a countable coinitial 

subset fn for n E IN ie., as IN is cofinal in IR+. But we will prove the following. 

Lemma 10.3.9. There is no countable subset C = {5j : j E IN} c S with 5j > 5j+1 

for all j, that is co initial in S. 

Proof. Suppose, by way of contradiction, that such a sequence exists. By Lemma 

11, we may work with the collection of No, so suppose that t1 > t2 > ... is a 

countable subset of S such that, if [g] E 90, then there is j E IN with IITllo < Ilg11 8 · 

Here, for each j E IN, we have that T is any representative of a germ [f] E 90 

with tj = IITllo. Without loss of generality, we may redefine the T's preserving 

tj = II*Tllo by defining P(x) = sup{IT(y)1 : y E B 1xl } so that if r > 0 such that p 

is defined on Br and x E Br has Ixl = r, then P(x) = IIPllr = IIfjllr. (In this case, 

we have that the representatives P are nonnegative and pseudo-monotone: (Ixl ::; Iyl 
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implies that J1(x) :::; J1(y))). We may further assume that the representatives J1 

are defined on a ball B j for j E IN with radius bj such that bj -+ 0 as j -+ 00, so 

that now if x E 8Bj , then J1(x) = 11J1llbj . Define h : Bi -+ IR as follows. Writing 

Bi = u{ B j "Bj+1 : j E IN} U {O}, a disjoint union, we will define h as a step function 

undercutting successively more of the J1's. For j E IN, define 

h(z) = sup{min{Jj(z) : 1 :::; j :::; k} : z E B j "Bj +1}, (10.12) 

defining h(O) = O. We have that, as the J1 are pseudo-monotone, that h is pseudo-

monotone on Bi and constant on B j "Bj+1. In particular, if D c IRn is a closed ball 

centered at 0 with Bj+i ~ D c B j , then we have (<» IIhllD = Ilhllbj by the following 

argument. First h pseudomonotone on D implies that IlhiiD = IlhIID,Bj+1' but h is 

constant on B j " Bj+1 and so IlhIID,Bk+l = IlhIIBj,Bj+1 and again by pseudomono-

tonicity of h we have IlhiIB. = Il hII B,B+1 • 
J J J 

Transfer this setup. The transfer of the set {Jj : j E IN} defined on the balls B j will 

be denoted by {* Ii : j E *IN} where the transfer of the set of Bj's will be denoted by 

* B j for j E *IN with the (internal) set of radii denoted *bj satisfying * limj-too *bj = 0; 

eg., for j large enough * Bj C B 8 . Also, we have, by transfer, that if t E *IN and 

~ E * Be" * BHi , then *h(~) = * min{* Jl(~) : 1 :::; .e :::; t}. Now there is t big enough 

so that * Be C B8 C * Be-i. (At this point, note that in our original choice of the radii 

bi > b2 > ... , as we already have b in hand we need to be sure that b rt * {b i , b2 , ... }, 

which is no problem.) So we have that 

(10.13) 
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But by the transfer of ( <)) above, we have 

(10.14) 

and so putting expressions 10.13 and 10.14 together we get that liP lis ~ tj > * lI*hlls 

for all j E IN, contradicting the assertion on the coinitial sequence. o 

Corollary 10.3.2. Suppose that (D, <) is a countable directed set and d f-t [Jd] 2S a 

D net in go that is not eventually constant. Then ([Jd] : d E D) does not converge. 

In particular, this is also true if D contains a countable cofinal subset. 

Proof. Suppose that a countable noneventually constant net ([Jd] : dE D) converges. 

Then there is a coinitial subset TeN such that for each t E T, there is a d E D 

such that [fd] E Ut . But this defines a map from D onto T which is impossible as T 

is uncountable. o 

Although TO appears to be defined by a norm, as we have seen the associated 

'metric' takes values in a set without a countable coinitial set. 

Corollary 10.3.3. (90, TO) is not metrizable. 

Remark 10.3.3. Note that later we will use a construction of Borel to show that any 

countable sequence in gg (and therefore gg), there is a power series germ that blocks its 

coinitiality. But such limiting constructions lie outside the HardY.field constructions, 

hence it appears that such do not define consistent coinitial moduli. 

The T topology is about nearness in the sense of how closely pinched the graphs 

of map germs are. If we try to extend the topology on go to a ring of map germs with 
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arbitrary target value, eg., Q, we get bad behavior. For example, if [II], [h] E Q~ are 

germs such that h(O) Ie h(O), then for all t,5 E No, we have that Uf([h])nUi([h] = 

0). In particular, if Q(x) c Q consists of those germs [I] such that f(O) = x, and 

Q( -x) = Q "-. Q(x), then Q(x) and Q( -.1:) would be disjoint open sets in this extended 

TO topology, that is, Q(x) would be both open and closed in this extended topology. 

The previous assertion follows easily from the observation: [I] E Q(x) implies that 

Ut([f]) c Q(x) for all t E No and Q( -x) is just the union of such Q(y) for y Ie x. 

Hence we will extend the topology to all of Q = UXEIRQ(x) in a different manner. 

Lemma 10.3.10. With respect to the T topology Q is the union of its disjoint open 

subsets Q (x) as .1: varies in IRn. 

Although this seems to foreclose topological relations between the different Q (x) 

and therefore a good rendering of Td continuity of eg., families of map germs t H [It] 

when ft(O) is not constant, we shall see that this is a fixable problem. 

10.4 Rigid coinitial subsets and topological indepen­

dence from <5 

The first subsection constructs coinitial subsets of No that come from increasingly 

rigid subfamilies of M. Initially, we are not able to force topological independence 

from the choice of infinitesimal, 15. vVe do get some good ordering properties, in 

particular a total ordering of analytic germs at good (generic) infinitesimals. In the 

second subsection, we prove independence by systematically exploiting the Hardy 
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construction (from the first sUbsection) by using a critical (and somewhat surprising, 

see eg., corollary 10.4.3) fact about increasing sequences of integers. 

10.4.1 Coinitial subsets and order 

In this subsection, a warmup for the next, we investigate some coinitial subsets of N8 

that are defined in terms of quite rigid families of functions. Before we proceed with 

the motivation for this part, we need a formal definition. 

Definition 10.4.1. If 0 E p(O)+, let £8 : go -+ *IR denote the evaluation map [m] f--t 

*m(o). If.:1 C M, then we will often denote £8(.:1) by .:18. 

The original hope here was to prove that the topologies Td were independent of 

the infinitesimal 0 via an order preserving argument for some good coinitial subset 

S C MO. That is, we wanted to find S so that (1): S f--t S8 was injective for 

sufficiently numerous good infinitesimals 0, so that (2): S8 was coinitial in N8 for 

sufficiently many infinitesimals 0 and such that (3): the graphs 0 f--t *m( 0) as 15 

varied over positive infinitesimals satisfied a local intersection property. Assuming 

the injectivity property for sufficiently numerous o's so that for each r E £8(S), the 

element mt = £-l(r) E S is well defined, then the local intersection property can be 

stated as follows. Given a given good infinitesimal 00 and r E S80' then there is an 

So E S80 such that for all 5 E S80 with 5 < So, we have that the graphs 0 f--t *mt ( 0) and 

o f--t *ms(d) would be disjoint. After some thought, one could see that this strategy 

would allow us to prove that if 00,151 are good infinitesimals and T C S is such that 

To l is coinitial in S81' then we would also have To2 coinitial in S82. From this fact, we 
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could derive that our topology is independent of 8. 

This approach foundered. We found good subsets of M O satisfying conditions (1) 

and (2), but, we could not get a handle on condition (3). This subsection contains 

the results of this approach. In the next subsection, we use some the results here and 

a different strategy to reach our goal. We begin with some constructions of good S 

and then consider some order properties for good infinitesimals. 

Definition 10.4.2. Let P£o c M O denote the set of piecewise affine germs in MO. 

That is, an element [m] E M O is in P£o if there is the germ of a countable discrete 

subset S of points PI > P2 > . .. whose only possible limit point is 0 such that for all 

j E IN, m![pj+l>Pj] is an affine map. If 0 < 8 rv 0, let Pl8 denote £8(P£0) c p,(0)+. 

Given this definition, we have the following construction of an element of P £0. 

We may assume that if mEMo, we have eg., m(l/lO) < 1/2. Fix any such m and 

for j E IN greater that 10, say, choose ej E IN such that (m(I/j))e j < m(I/(j + 1)). 

This is clearly possible, as m(I/j) > 0 for all j E IN and for a given jo E IN, j 2: 10 say, 

we have (m(l/jo))k --+ 0 as k --+ 00. Given this, note then that the line segment over 

the interval [1/j + 1, 1/j] joining the two points (1/(j + 1), (m(l/(j + l))yJ+l) and 

(1/j, (m(I/j)Yj) lies below the graph of m over the segment [1/(j + 1), 1/j] as its lies 

below the 'horizontal' line segment over [1/(j + 1), 1/j] with 'y-coordinate' the value 

(m(j))ej < m(I/(j + 1)). Hence defining the continuous piecewise affine function m 

on the interval (0,1/10), say, such that for each j E IN, m![l/(j+l),lfj] gives the graph 

just described, we find for all positive t < 1/10 that m(t) < m(t). We have therefore 

proved the following. 
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Lemma 10.4.1. Pl8 is co initial in Nf; that is, if t E N8°, then there is s E Pl such 

that 5 :'S t. 

Proof. If t E Nf, there is mEMo such that t = *m(6), but then choosing m E P£o 

as defined above, transfer of the statement that 0 < t < 1/10 :::::;> m(t) < m(t) gets 

that 5 ===*m(6) < *m(6). o 

Yet P £0 does not either have sufficient rigidity for the evaluation map to be an 

injection. In order to find a sufficiently rigid semiring, we will use an old result of 

Borel, [see Hardy]. But, to make our constructions a little easier, we will, for the 

moment convert to asymptotics at 00 instead of 0 using the following recipe. vVe say 

that a real valued function f is defined in a neighborhood of infinity if there is c > 0 

such that f is defined on (c, (0). Note then that x H f(x) is defined on a neigh­

borhood of infinity if and only if x H f(l/x) is defined on a (deleted) neighborhood 

of 0 in IR+ and that x H f (x) is monotone increasing at infinity with limit infinity 

(ie., for some such c, c < x < y implies f(x) < f(y) t 00 as y t (0) if and only if 

x H 1/ f(l/x) is monotone decreasing to 0 with limit O. Given this, it is elementary 

that given f, 9 monotone increasing to infinity with f dominating 9 at infinity, ie., 

on a possibly smaller neighborhood (c, (0) of infinity, we have x > c implies that 

f(x) > g(x), then for all x > 0 sufficiently small, we have that l/f(l/x) < l/g(l/x). 

It is also elementary that x H f (x) is continuous (a convergent power series) in a 

neighborhood of 00 if and only if x H 1/ f(l/x) is continuous (a convergent power 

series) in a neighborhood of 0 in IR+. This and the previous follows easily once one 

considers (IR+.·) as a totally ordered abelian group with inversion the (rational) order 
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reversing isomorphism I : IR+ -t IR+ : t H t-1 giving a one to one correspondence 

between germs of functions at 0 and germs of functions at 00 by f H I 0 f 0 I (as 

1= 1-1). We have the following obvious lemma. 

Lemma 10.4.2. Let 6 E f,l(0)+ and 1)0 C f,l(0)+ and let ~ = 1(6) and 1)00 = 1(1)0). If 

Fo is a family of germs at 0 of non vanishing functions and Foo~{[IofoI] : [f] E F o}, 

then (Fo)" is coinitial in 1)0 if and only if (Foo)~ is cofinal in 1)00. Furthermore, if 

F~ is a second family of germs at 0 of nonvanishing functions, with F!:x, defined as 

F oo , then Fo and F~ are coinitial in 1)0 if and only if Foo and F!:x, are cofinal in 1)00. 

Given this conversion recipe, we can prove the following. 

Definition 10.4.3. Let SM, respectively SM, denote the ring of germs at 0, re­

spectively at 00, of strictly positive monotone (increasing) convergent power series 

functions, m, with limit 0 at 0, respectively with limit 00 at 00, defined on some 

neighborhood of 0 in IR+, respectively neighborhood of 00 in IR+. such that all deriva­

tives of m are positive where m is defined. 

Lemma 10.4.3. If [m] E M O, then there is [u] E SM such that for some a > 0 we 

have that if 0 < x < a, then u(x) < m(x). 

Proof. First of all, according to the above conversion recipe any germs in MO just 

the germ of a mapping m given by x H 1/m(1/x) where m is representative of 

the germ [m] at infinity of a continuous monotone increasing mapping; and also 

according to the above recipe we need only find a monotone convergent power series 

function u at 00 such that for sufficiently large x, m(x) < u(x) for then for sufficiently 
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small x, x H u(x)~l/u(l/x) will be a convergent power series function in SM with 

u(x) < m(x). So given the m, we will produce u via a construction that Hardy 

attributes to Borel (see Hardy's text, [13]) as follows. For j E tN, choose aj E IR+ 

and finally we choose nj E tN, nj < nj+l for all j whose growth will be more closely 

specified shortly. First note that 

00 (X )nj 
u(x) ~ L t; 

j=l J 

converges for all x E IR+ (10.15) 

as can be verified with the root test. Next, note that if x E raj, aj+d we have 

u(x) > (aj/bj)n j , but then assuming we have (inductively) chosen nl, ... ,nj-l, choose 

nj larger than these and also large enough so that 

(10.16) 

Assuming we have so chosen our n/s, we see that for x E raj, aj+l) 

(10.17) 

giving our domination requirement. Note that as u converges uniformly on any closed 

interval, then it is indefinitely differentiable, its derivatives given by termwise differ-

entiation. But then, by inspection, one can see that u(k)(X) > 0 for all x > 0; Ie., 

uESM. o 

We will now consider the relationship (with respect to the ordering induced from 

As) between the evaluation map [s and (internal) derivatives of elements of SM. 

Although this part does not playa role in the present work, it will playa role in later 

work on differentiable germs. 
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Definition 10.4.4. IfO < 0 rv 0, let As denote the image of 5M under the evaluation 

homomorphism EfJ. We say that an infinitesimal 0 E *IR+ is generic if the map EfJ [A 

is an injection. 

In a later section we shall need the fact that NfJ is given by the set of values *m( 0) 

as [m] varies in M. Here, we need a more precise determination of a coinitial subset 

Corollary 10.4.1. AfJ is cofinal in N fJ . Also, there exists generic infinitesimals 0 E 

*IR+, ie., the semiring homomorphism EfJ : 5M ----+ AfJ is an isomorphism. 

Proof. The proof of the first statement is an immediate consequence of the previous 

lemma. The last part of the second statement follows from the existence of a generic 

infinitesimal O. The existence of 0 depends on the fact that if power series function 

germs [m], [m] E 5M are equal on the germ of a countable set with limit point 0, then 

[m] = [m]. This fact will allow the construction of a concurrent relation. Saturation 

of *IR will imply the existence of ideal points, ie., generic points, for this relation. 

Let 5 denote the set of convergent power series (m, (0, c)) defined on some neigh­

borhood (0, c) of ° in IR+. Let 5(2) demote the set of unequal ordered pairs 

5(2) ~ {((m, (0, c)), (m, (0, c))) E 5 x 5 : m i= m, c i= c} (10.18) 

and define a relation R C IR+ x 5(2) by 

(5, ((m, (0, c)), (m, (0, c)))) E R if 5 < min{ c, c}, and m(s) i= m(s). (10.19) 

This relation is concurrent; that is, if k E fN and ((mj, (0, Cj)), (mj, (0, Cj))) for j = 

1, ... , k are k elements of 5(2), then there is So E IR+ with So < co~ minj {Cj, Cj} such 
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E = {s E (O,co): there is j such that mj(s) = mj(s)}, (10.20) 

then clearly E is a countable subset of (0, co/2), eg., there is So E (0, eo/2) "-.. E which 

by definition satisfies our condition. The result now follows from saturation, ie., there 

is 8 E *IR+, such that for every (m, (0, c)) E 5, we have (8, (*m, *(0, c))) E *n. This 

means that 8 < *c for every c E IR+ (ie., is infinitesimal) and second, if [mIl, [m2J E 

~M are distinct germs, then *ml(8) =I *m2(8). D 

Definition 10.4.5. The isomorphism [15 mapping 5M onto a semiring of positive 

<5 15 
elements of *lRnes ,+ induces a total ordering --< on 5M by [mIl --< [m2l if and only if 

Remark 10.4.1. This total order extends the total ordering of all field extensions 

of IR+ by.fields of functions (Hardy type .fields) on (IR+, 0). We don't yet know how 

this fit into the current framework (see eg., Aschenbrenner and van den Dries ????? 

or Boshernitzan ?????) and will return to this point later. The problem with this 

isomorphism for our needs is that as we vary our generic 8 's, although it leaves the 

ordering of these field extensions of IR unchanged, it is shuffling a large number of 

the [15(m) 's around for arbitrary mEMo. We can only fix this problem in an 

asymptotic sense, ie., as we vary our infinitesimal (generic or not) the shu.ffling does 

not alter asymptotic behavior of families in MO. This will be sufficient to prove that 

our topology TI5 is independent of 8. 

vVe need a further restriction of our coinitial structures in order to prove the main 

result of this subsection. 
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Definition 10.4.6. Let SM = {[m] E SM *m(~) = o(~) for ~ E J.L(O)+} and 

.A" = £,,(SM). 

Let's collect some useful properties of SM. 

Lemma 10.4.4. SM is a convex ideal in the semiring SM as is A" in A" for any 

positive infinitesimal 5. In particular, SM is coinitial in SM and A" is coinitial in 

A". Also if [m] E 8M, then m'(O rv 0 for all ~ E J.L(O)+ and we also have that for 

Proof. Let ( E J.L(O)+ and as m(~) = o(~) for all ~ E J.L(O)+, then choosing>. E J.L(O)+ 

such that>. » ( and so m(>') « >. implies that m(>') « >. - ( and therefore 

m'(() < m'(X) = m(>') - m(() < m(>') rv 0, 
>.-( >.-( 

(10.21) 

where we used the transferred mean value theorem to get "X E ((, >.) for the equality 

above; the rest follows by induction. o 

The previous result can be improved with the following lemma. 

Lemma 10.4.5. Suppose that [m] E SM and 5 E J.L(O)+ and m(5) = 0(5). Then 

m(~) = 0(0 for all ~ E J.L(O)+; ie., [m] E SM. 

Proof. First of all, note that as the graph of m is convex on J.L(O)+ (as mil > 0 on 

J.L(O)+), then for all ~ E J.L(O)+ with ~ < 5, we have m(~) = o(~). But if 0 < c E IR, and 

Bc = {t E *IR: m(t) < ct}, then (0,5) c *Bc and so by lemma 10.2.1, *Bc contains a 

standard neighborhood, eg., J.L(O)+ C * Bc , and as c > 0 was arbitrary in IR+, we are 

finished. o 
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Proof. This follows from Corollary 10.4.1 and the previous lemma. o 

10.4.2 Topological independence from delta 

Although N = N/j depends on the 'size' 8 of our infinitesimal disk, we will see that 

all topological properties are independent of the choice for 8. This approach has the 

following ingredients. First of all, we break the Hardy construction in two parts: we 

get a map 1£ : M O ----t I ncr where I ncr is the set of strictly increasing sequences of 

integers, the set of sequences of exponents for the u's of the previous subsection, and 

we have the map E : Incr ----t fk, B where 5)<, B is the set of Hardy series and E assigns 

to an increasing sequence the corresponding series. Second, we prove an asymptotic 

growth result for Incr, lemma 10.4.6, that says that given a subset J c Incr and 

an infinite Wo E *IN with the property that the set of values *m(wo) as m varies in J 

is bounded in the set {*m(wo) : m E Incr}, then there is an element in E Incr such 

that m(j) < in(j) for all m E J and j E IN. Next, we prove that this pointwise-bound­

implies-uniform-bound in a family of exponents of Hardy series implies a a pointwise 

implies uniform result for the graphs of families of Hardy series, see lemma 10.4.8. 

Combining this with the systematic bounding of elements of M O by elements Hardy 

series, we are able to prove our main assertion: that the topology given by T/jo and 

T/jl for any positive infinitesimals 80 ,81 are homeomorphic. 

We need a specific subspace of SM taylored for the considerations here. In order 

to prove it has certain properties, we need a result about boundedness of increasing 
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sequences of integers that are all bounded at a given infinite value. We need some 

notation. 

Definition 10.4.7. Let Incr = {In : tN ---+ tN I In(j) < In(j + 1) for all j E tN} 

and if k E tN, !D. E Incr(tN), let Incrk,f!!. = {In E Incr : In(k) :S !D.(k)} and note 

that if W E *tN, we still have a well defined standard set I ncr W,f!!. = {In E I ncr : 

*In(w) :S *!D.(w)}. If 1n1, 1n2 E Incr, we write InI < 1n2, and say that InI is smaller 

than 1n2, if for sufficiently large jo E tN, we have 1n1(j) < 1n2(j) for j > jo. If 

£ c 3~ "Incr(a) = {*In(a) : In E Incr,a E *tN oo } and W E *In, then we say that 

a subset J c Incr is w-cofinal with £ if for each A E £, there is In E J such that 

*In(w) > A. If £ = Jncrw~{ *In(w) : In E Incr}, we say that ,£ is w-cofinal. If for 

every In E Incr, there is i1 E J and jo E tN with In(j) < i1(j) for j > jo, then we say 

that J is cofinal. 

We chose £ as a subset of 3 instead of *tN as 3 is far from being all of *tN and 

we are considering the analogs of the Nd'S for strategic reasons. Now for clarity, first 

note that InI < 1n2 precisely when *1n1(~) < *1n2(~) for all (sufficiently) small ~ E *tNoo . 

Next, note that a subset J C Incr is not w-cofinal precisely when it Given these 

definitions, we have a lemma. 

Lemma 10.4.6. Let w E *tN oo and!D. E Incr. Then there is n E Incr such that for 

each In E *Incrw,f!!. we have In(j) < n(j) for all j E tN. 

Proof. Let X C I ncr denote I ncr W,f!!. and let 

P = {k E tN : In(k)/!D.(k) :S 1 for all In EX}. (10.22) 
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Then, clearly w E * P and so P is infinite (see Hirschfeld, [17], for this interesting 

hook). Let kl < k2 < ... denote an enumeration of the elements of P; so for each 

j E IN, and m E X we have m(l) < m(kj ) ::; i[!(kj ) for l < kj . So given this, define 

in : IN ---t IN as follows: for l < kb define m(l) = i[!(k1 ) and inductively for i ~ 1, 

suppose that we have defined m(l) for l < ki . Then, for l such that ki ::; l < ki+b 

define m(l) = i[!(ki+d. With this, m(j) ::; m(j + 1) for all j and has the property 

that if m E X, then m(j) ::; m(j) for all j. Therefore, defining in(j)~m(j) + j, we 

have in E Incr and if m E X, l E IN, then for some i E IN, k i ::; l ::; ki+l and so 

o 

We have a consequence of this lemma will be critical to proving the invariance of 

our topology TIj of the choice of infinitesimal 6. 

Corollary 10.4.3. Suppose that 'J C Incr and WO,Wl E *lNoo . Then 'Jwo is cofinal in 

'Jncrwo if and only if 'JWI is cofinal in 'JncrWI • 

Proof. Suppose, by way of contradiction, that 'Jwo is cofinal in 'Jncrwo ' but 'JWI is 

not cofinal in 'Jncr WI. SO we have that there is i[! E I ncr such that 'J C *1 ncr WI, 1[2 

and therefore the previous lemma implies that there is in E I ncr such that for every 

m E * Incrwl ,I[2' we have m(j) < in(j), and so by transferring this statement for each 

given m E Incrwl ,I[2' we have that for each m E Incrwl ,1[2 that *m(~) < *in(~) for 

each ~ E *IN; eg., for each such m, we have that *m(wo) < *in(wo). But this says, in 

particular that {*m(wo) : m E 'J} has all elements less than *in(wo), contradicting our 

hypothesis. o 

From this corollary follows another rather surprising consequence. 
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Corollary 10.4.4. Suppose that J c Incr with Jwo cofinal in Incrw . Then Jor every 

III E Incr, there is m E J such that *III(W) < *in(w) Jor all w E *tN oo . 

Proof. Suppose not, ie., there is 1110 E I ncr, such that for every m E J, there exists 

W1 E *tNoo with *1II0(W1) 2: m(wd. But this just says that JW1 is not cofinal which by 

the previous corollary implies that Jwo is not cofinal, a contradiction. o 

Given the above initial work on increasing sequences of integers, we will now 

formally systematize the Hardy growth properties in these families of analytic maps 

by carrying the asymptotic ordered properties of I ncr into the analytic families. 

Definition 10.4.S. Given B (and A) as above, !Q E Incr(tN) and Wo E *tNoc, define 

the B-Hardy class oj analytic maps 

00 

n<,B = {u E SM: u(x) = uDl(x) = LbjDl(j)xDl(j) Jorlll E Incr} 
j=l 

where E : Incr ---+ SM<, B denote the map III H UDl • 

With this, we have the following lemma. 

(10.23) 

Lemma 10.4.7. E is a strict order preserving bijection onto n<, B. Furthermore, 

iJ Wo E *tN oo and U E n~{:'fj Jor some !Q E I ncr, then there is mEl ncr such that 

n~~'ff c n~',~ Jor all W E *tN oo . So there is u E n<, B such that u(x) < u(x) Jor all 

U E n~~'B Jor all sufficiently large x E IR+. 
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Proof. If m,Q} E Incr with m(j) < Q}(j) for all j E IN, then E(m)(x) < u(Q})(x) for 

all x E IR+. It's easy to see that E is a bijection which is order preserving in the 

sense that if m,Q} E Incr with m(j) < Q}(j) for all j E IN, then u(m)(x) < u(Q})(x) for 

all x E IR+. Note that as SJ~':1 = E(Incrw,,!}) , then as the in found in Lemma 10.4.6 

satisfies in(j) > m(j) for all m E Incrw,,!}, then u===E(in) satisfies u(x) > u(x) for all 

U E SJ~',~ and :r E IR+, as we wanted to show. D 

Definition 10.4.9. If ~ E *IR+ is infinite and .R c SJ<, B, let SJ1 = {*u(~) : U E SJB} 

and .R~ c SJ1 denote {*u(~) : U E .R}. 

Lemma 10.4.S. Let ~o E *IR+ be infinite and A c SJ<,. Then there is Wo E *INCXJ such 

that A~() is not cofinal in SJ~ if and only if E- I (A) c I ncr,!}, Wo for some Q} E I ncr. 

In other words, A~o is cofinal in SJ~ if and only if E-I(A)wo is cofinal in JncrW()' 

Proof. It suffices to prove that if A~o is not cofinal in SJ~, then there is Wo E *lNo such 

that E-I(A) c Incr,!},w()' Suppose that this is not true. Then, by corollary 10.4.4, for 

every m E Incr, there is m E E-I(A) such that *m(w) < *m(w) for all w E *INCXJ' But 

as E is order preserving (lemma 10.4.7), then this implies that for every m E Incr, 

there is m E E-I(A) such that *E(m)(O < *E(m)(O for all infinite ~ E *IR+. But as 

SJ<, B = E(Incr), this says that for all U E SJ<, B, *u(O < * E(m)(~) for all infinite 

~ E *IR+, an absurdity. D 

Corollary 10.4.5. If.R C SJ<. B and ~o, 6 E *IR+ are infinite, then .R~o is cofinal in 

SJ~ if and only if .R~1 is cofinal in SJ~ 

Proof. By the previous lemma there exists Wo and WI in *INCXJ such that .R~j is cofinal 
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in 5)~j if and only if E-1(Jt)Wj is cofinal in Incrwj for j = 1,2. But by corollary 10.4.3, 

E-1 (Jt)wo is cofinal in I ncr Wo if and only if E-1 (Jt)W1 is cofinal in I ncr "-'1 . o 

Returning to the Hardy series bounding above a given element of MO, with a bit 

more care on the determinations of the exponents of the power series u in Lemma 

10.4.3, we will give a bound on a particular exponent in the power series expansion 

in terms of the magnitude of the monotone function m at a value associated with 

the given index of this exponent. This will give us a map from subsets of MO to 

subsets of 8M, so that by factoring through the map E, this map will allow a strong 

correspondence between the growth of a given subset of MO at infinity, and the 

corresponding subset of 5)<, B. 

Without loss of generality in the Hardy construction, we will assume that q = 

aj/bj > 1 is constant. For example, if we want q = 2, we can let aj = ej and 

bj = ej /2, getting aj < bj +1 < aj+1 for all j E IN. As is easy to see, this has no effect 

on the above construction. This will ease the process of finding an explicit formula 

for our sequence of exponents. Given [m] E MO, with m E [m], and j E IN, taking the 

logarithm of the expression qnj > m(aj+1), we find that for this expression to hold 

and for nj > nj-1 to be satisfied, it suffices to define out exponent nj as follows: we 

find that if we define 1l(m) : IN ---+ IN by 

1l(m)(j) ~ ih(j) ~ f!(IOg(m(aJ+1))) + j. 
log(q) 

(10.24) 

where if r E IR+, f!(r) is the least integer k such that k 2: r. To explain, clearly 

1 < aj < aj+1 and monotonicity of m implies that log(m(aj)) < 10g(m(aj+1)), and 
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the assertion follows. So given the mEMo, we have defined an element in E Incr 

by defining in(j) to be the integer nj above and with in so defined in terms of m, we 

get a specific form of the power series constructed in Lemma 10.4.3 

00 ( ) m{j) 
um(x) = L :. 

j=l J 

(10.25) 

which as noted in that lemma clearly converges uniformly on compact intervals, and 

so eg., is analytic on IR+. Formalizing this, we have 

Lemma 1004.9. Let H : MO ---+ Incr denote the map m ---+ in and E : Incr ---+ fk, B 

the map defined in definition 10.4.8. Then for all sufficiently large x E IR+, we have 

that E(H(m))(x) > m(x). In particular, if ~ E *IR+ is infinite, then *E(H(m))(~) > 

*m(~). 

Let mEMo and ~o E *IR+ be infinite and define :Jt;o,rn = {m E MO : *m(~o) ~ 

*m(~O)}. Suppose now that .:1 c MO is such that for infinite ~o E *IR+, .:1r;o is not 

cofinal in Nf.o; that is, there is mEMo such that m(~o) > m(~o) for all m E .:1. 

Now for each mEMo, we have H(m) = in E Incr given by the increasing sequence 

in(l) < in(2) < ... , and we also have ~o E *[aw , aw+1) for some w E *Noo . 

Given this we have the following assertion. 

Lemma 1004.10. Suppose that P c MO and ~o E *IR+ is infinite. Suppose also that 

Pr;o is not cofinal in Nr;o· Then Pr; is not cofinal in Nr; for all infinite ~ E *IR+. 

Proof. As P is not cofinal in Nr;o, there is mEMo so that *m(~o) > *m(~o) for all 

m E P. But by lemma 10.4.9, this says that *um(~o)===* E(H(m))(~o) > *um(~o) for 

all U m E E(H(P)). That is, E(H(P) )r;o is not cofinal in .fj~. But by corollary 10.4.5, 
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this implies that E(ll(P))t; is not cofinal in S)~ for all infinite ~ E *IR+. Yet again by 

lemma 10.4.9 (applied now for all infinite ~), this says that Pt; is not cofinal in Nt; for 

all infinite ~ E *IR+. o 

This has an easy but important consequence. 

Corollary 10.4.6. Suppose that m E Jt;o,m for some mEMO and some infinite 

~O E *IR+. Then there is u E S) such that m E Jt;,u for all infinite ~ E *IR+. Said 

differently, if A c MO, and ~o, 6 E *IR+ are infinite, then A is cofinal at ~o if and 

only if A is cofinal at 6. 

Proof. Let u be equal to E(rnm) in the previous lemma. Then the transfer of the 

conclusion of that lemma implies the following statement. If m E Jt;o, m for some ~o 

and mEMo, then *m(~) < *u(~) for all ~ E *IR+, in particular, the infinite ~; ie., 

m E Jt;, u' The second statement follows easily: by symmetry we need only show 

cofinal at ~o implies cofinal at 6. Suppose not, ie., we have cofinal at ~o and not 6, 

ie., A C :h.l,m for some mEMo, but then the conclusion of first part says A is not 

cofinal at all ~, eg., at ~o, a contradiction. o 

Summarizing our framework, we have the following. We have the mapping system 

M°---'!!:"""'Incr~S)<,B : [m] t-t (rnm(j))jEIN t-t Lb-lI1m(j)xll1m(j) 

j 

(10.26) 

where for [m] E MO, E(ll([mJ)) = [urn] the element of M<,B satisfying *um(O > 

*m(~) for all ~ E p,(0)+. With the above results we can conclude the following. 

Corollary 10.4.7. If ~o E *IR+ is infinite, mEMo, W E *1l\I(X) is the unique integer 

such that ~o E *[aw , aw+l) and 11 E Incr is the sequence of integers defined in Lemma 
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10·4·10, then Eo 1{(.1E,Tfl) c S)~';1. In particular, if [m] E M O is such that *m(~o) :S 

*m(~o), then um(x) < E(n)(x) for all sufficiently large x E IR+; eg., *um(~O) < 

*E(TI.)(~o). 

Proof. This follows from the previous work; ie., by Lemma 10.4.10, we have 1{(.1Eo,m) C 

Incrw,'!! and by Lemma 10.4.7, E(Incrw,nJ C S)~',~. The last part is just a restatement 

of this. D 

Corollary 10.4.8. Suppose that J E 11(0)+ and that .1 c MO. Then there is K c 

SM such that for each ° < J '" 0 we have that K8 = £8(K) is coinitial with .18 = 

£8(.1). That is, K can be chosen so that for any J '" 0, .18 is coinitial in N8 if and 

only if K8 is. 

Proof. Applying lemma 10.4.2 to the above corollary, to get the corresponding result 

for germs at o. D 

From this point until the end of the paper, we will use SM instead of SM. 

Theorem 10.4.1. If ° < J, J' '" 0, with J generic, the identity map I : (9°,78) -+ 

(9°,78') is a homeomorphism. Hence, for all positive infinitesimals J, J', we have that 

I : (9°,78) -+ (90, 78') is a homeomorphism. 

Proof· We will show that a net in g converges with respect to the 78 topology if and 

only if it converges with respect to the 7"8 topology. D 

We have the useful corollary. 

Corollary 10.4.9. Suppose that [g] Ego, (D, <) is a directed set and ([Jd] : dE D) 

is a net in go and J, J' are positive infinitesimals. Then II * id - * g 118 converges to 
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° if and only if II *fd - *g1181 converges to 0; that is, [id] -+ [g] m T8 if and only if 

[fd] -+ [g] m T8' · 

10.5 Relationship with nongerm convergence 

First of all, whether talking about a sequence of germs at ° or a sequence of continuous 

functions defined on a neighborhood of 0, we will fail at finding a relation with T 

convergence. For germs, see below. As far as a sequence of functions defined on some 

fixed neighborhood of zero, we must still deal with the fact that there are no countable 

neighborhood bases of the zero germ in the T topology, and so unless we can extend 

the sequence to an uncountable net without a countable coinitial subnet, we are stuck. 

Of course, we can transfer the sequence noting that *IN does not have a countable 

coinitial subset. Although *IN is too large, *finite initial intervals {I, 2, ... ,w} don't 

have countable coinitial subsets, and are suitable for what we need. vVe do introduce 

the problem that our nets are no longer standard, but as we will see below, the 

relationship of these *finite nets to the T is directly related to standard behavior 

of the original sequence. Note that, we could have also considered '*finite' directed 

index sets of the form {j E *IN : j «< 3} where 3 is an infinite integer. Given mild 

saturation, these also do not have countable coinitial subsets and in a sense are more 

natural, but they are not internal, a needed property. 

If we have a sequence of germs {[fJ] : j E IN} in Q~, and consider the transferred 

sequence {*[Ii] : j E *IN}, we see immediately that for any given ° < 0" rv 0, there is 

w E *IN large enough to that representatives of *[fw] are not well defined on B8. For 
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example, if XBr : IR -+ {O, I} is the indicator function of BTl let h(x) = x(2jx)fj(x) 

where we extend the function fJ arbitrarily outside of Br so that fj will be well defined 

on Br . Then for all j E N, [fJ] = [h] as elements of g, ie., their values on 11(0) are 

the same. But for j E *Noo, * fj and * K are not equal on 11(0). On the other hand, 

if the germs of mappings arise from standard mappings all defined on some standard 

ball Br centered at 0 and if we have a sequence of such fJ, j E N, then clearly all 

* fj for j E *N are defined on all of 11(0), but note that even if * Ii(~) is nearstandard 

for ~ rv 0, typically * Ii is not nearstandard for any nonzero x E Br; eg., consider the 

sequence h(x) = xj and the transfer of the dilated sequence fJ(x) = h(2j x). 

Nonetheless, we shall prove two basic results giving a correspondence between 

the convergence of a sequence of functions and T convergence of extensions of these 

sequences restricted to germ type, ie., monadic domains. First, we shall see (in 

Proposition 10.5.1) that in the case that Ilfjllr -+ 0 as j -+ 00, then in fact the 

'germs' associated to any extended *finite sequence * Ii, j = 1,2, ... , w do, in fact, 

'converge in the topology T', once properly interpreted. In contrast to the uniform 

situation just mentioned, we will also give a pointwise correspondence, Proposition 

10.5.2. Given the setting, it turns out that the pointwise and the uniform versions are 

equivalent; the nonstandard setting allows a sort of uniform convergence at a point 

phenomena. We will also give converses (to both): if this internally extended family 

converges in T on Bo C 11(0)+ for some fJ rv 0, then {fJ : j E N} is convergently 

coinitial (see below) in a sufficiently small neighborhood of o. 

Definition 10.5.1. Fix fJ E 11(0)+. Suppose that (D, <) 2S a (upward) directed set 
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and S = (~d : dE D) is a net in J-L(O)+. Then we say that S is convergently coinitial 

in the range of No if for each t E No, there is do E D that if d > do then ~d < t. 

It will be said to be convergently coinitial with No if in addition we have that No is 

coinitial with S. 

Note that (*IN, *<) (and all of its subsets) is a directed set so that if w E *IN and 

~j E *IR for 1 :S j :S w, we may consider {6, 6, ... , ~w} as a net in *IR. It's clear that 

if S is monotone decreasing and coinitial in the range of No, then it is convergently 

coinitial in the range of No. If S = (~d : d E D) is convergently coinitial with No, 

then it is roughly monotone, ie., for each do E D, there is d l E D, such that if d > db 

then ~d < ~do. We need to first state some lemmas giving useful properties of these 

nets that arise by extensions of standard sequences. 

Lemma 10.5.1. Let L E MO(O, a). Given a sequence A = {ml' m2' ... } in MO(O, a), 

we can always find another sequence A = {ml' m2, ... } in MO(O, a) such that ml (t) > 

m2(t) > ... for all t and for all fJ E J-L(O)+, Ao is co initial in Lo if and only if Ao is 

coinitial in Lo. So Ao is coinitial with Lo if and only if Ao is convergently coinitial 

with Lo. 

Proof. It's easy to see that defining mj(t) = min{ml(t), ... , mj(t)} for j E IN and 

° < t < a. It's clear that mj(t) > mj+1(t) for all t and j. As mj(t) :S Wj(t) for all 

j and t so that this holds after transfer, we need only verify that Ao is coinitial in 

Lo implies that Ao is coinitial in Lo. But if t E Lo, then there is j E *IN such that 

*mj(fJ) < t and clearly as * min{*mi(fJ) : 1 :S i :S j} = *mj(fJ), then there is i :S j with 

*mi(fJ) < t. 0 
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Lemma 10.5.2. Suppose that ml, m2, . .. is a sequence in M, 6 E No, w E *IN and 

*ml (6) > *m2 (6) > . . .. Then the following are equivalent. 

z) {*ml (6), ... , *mw (6)} is convergently coinitial in the range of No· 

Proof. For z) implies zz), assume z) holds but zz) doesn't hold, ie., there is to E No 

such that *mw (6) :2: to, but then for all j E {I, 2, ... ,w }, *mj (6) I- to, a contradiction. 

Next we will verify zz) implies zzz), ie., that *mw (6) < t for all t E No implies that 

*m(6) «< t for all t E No. Suppose this is not true, ie., there is t E No and [m] E M O 

such that *m(t) < *mw (6) and by definition t = *m'(6) for some m' E MO. But then 

we have *m 0 m'(6) = { E No satisfying { < *mw (6), a contradiction. m) implies z) is 

obvious. o 

Remark 10.5.1. As the generic infinitesimal 6 grows, ie., as we evaluate our semir­

ing of monotone function germs at larger infinitesimal values, our set of moduli No 

are gradually getting 'closer' to noninfinitesimal values. To give a sense of how the 

No are becoming unbounded in p,(O)+ as 6 is increasing in an unbounded way in p,(O)+, 

we have the following lemma. 

Lemma 10.5.3. Suppose that 0 < E "'-' O. Then there is a 0 < 6 "'-' 0 such that E < t 

for all t E No. 

Proof. This lemma follows from the fact that given a positive infinitesimal E, there 

is another positive infinitesimal 6 incomparably larger than E. Assuming this for the 
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moment, then Lemma 10.2.7 implies that the elements of No are all larger than E. SO 

given 0 < E rv 0, if mEMo and j E fN, let 12m,j = {t E *IR+ : *m(E) < t < l/*j}. 

It's clear that the (external) set £ = {12m,j : [m] E MO and j E fN} has the finite 

intersection property, so that saturation (see eg., Stroyan and Luxemburg, [43], p181) 

implies that n£ is nonempty, ie., there is 0 E *IR+ such that 0 < l/*j for all j E fN 

and *m(E) < 0 for all mEMo. 0 

Nonetheless there is are technical results that dramatically shows how different 

internal sets of the form {* jj(o) : j E *fN} (where {fj : j E fN} is a sequence of 

functions converging to zero, in some sense, on some neighborhood of 0) are from our 

sets Jo, where J c MO is such that Jo is coinitial in No, in the sense of the above 

noted properties. In the next lemma we show that for our nets that the truncated 

*sequences that are convergently coinitiality in No for some 0 have the full *sequences 

coinitial in *IR+. (As it is usually true that relations between the characteristics of 

convergence and those of coinitiality can be captured by simplifying to the extremal 

values of function-germs in MO, the following is stated in that context.) 

Lemma 10.5.4. Suppose that K = {mj : j E fN} is a sequence in MO(O, a), and for 

w E *fN let Kif denote {*mj (0) : 1 ::; j ::; w}. Then the following are equivalent. 

a) There is 0 E p,(0)+ such that *Ko is convergently coinitial in *No. 

b) There is 0 E p,(0)+ such that for some w E *fN, Kif is convergently co initial in 

the range of No. 

c) There is ro E IR+ such that limj-too mj (r) = 0 for r ::; ro. 
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Proof. We will first prove (a) holds if and only if (b) holds. Suppose that (a) is 

true. As * Ns is coinitial with J'L(O)+, we have that there is 3 E * Ns such that 3 is 

less than all elements of Ns and by hypothesis * Ks is coinitial with * N s, then there 

is ).. E *ti'J such that *m.x(c5) < 3, so that {*ml,"" *m.x(c5)} is certainly coinitial in 

the range of Ns and if monotone decreasing is convergently coinitial there. If (b) 

holds, we know from the previous lemma that *mw(c5) «< t for all tENs. Given 

this, let ih(t) = limj-+CXl inf mj(t) so that we have m(t) 2:: 0 where defined. But 

*m(c5) = * limj-+CXl inf mj(c5) ::; *mw(c5) «< 15 and so by remark 10.2.2, we must have 

*711(15) = O. But this says that *Ks is convergently coinitial in *IR+, ie. in *Ns. 

To finish, it suffices to verify that (c) holds if and only if (b) holds. But if 

P = {r E IR+ : Kr is convergently coinitial in IR+}, then (b) is equivalent to * P i= (/) 

which then implies that P is nonempty. On the other hand if rEP and r' E IR+, 

r' < r, then mj E MO implies r' E P; transferring the statement: r' E IR+ with 

r' ::; ro implies r' E P gets (c). o 

The next lemma also shows the special nature of these transferred sequences: if 

the full transferred sequence is convergently coinitial, then in fact a *finite truncation 

is. 

Lemma 10.5.5. Suppose we have the same notation of the previous lemma. If Ks 

is convergently co initial in Ns, then there is w E *ti'J such that K';j is convergently 

coinitial in N s. 

Proof. Fix a E IR+ and let mEMo and consider the following internal set 

Km = {w E *ti'J I {*mj(c5): 1::; j::; w} is coinitial with [*m(c5),a]}. (10.27) 
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First of all, (a) implies that Km -1= 0 for each mEMo by definition of coinitiality: for 

any mEMo, there is W E *IN such that *mw(5) < *m(5). We will prove that the set of 

internal sets Jt~{Km : [m] E MO} has the finite intersection property. Suppose that 

m I , ... , m k E MO; then there is mEMo such that *m(5) < *m j (5) for j = 1,··· ,k. 

Kow K!!l is nonempty and if fo:!. E K!!l' it's clear that fo:!. E Kmj for all j, ie., fo:!. is in 

their intersection. Hence, the elements of Jt have the finite intersection property and 

as the cardinality of MO is bounded above by that of P(IR), then saturation implies 

that n{ Km : mEMO} -1= 0. That is, there is Wo E Km for all mEMo or equivalently 

{*mj (5) : 1 ::; j ::; wo} is coinitial in Ns. 0 

As we saw in the previous section, for a given :I C MO and 5,5' E 11(0)+, there 

is no good reason to believe that :lsf is coinitial in NSf if :Is is coinitial in N s. With 

these extended sequences, this does occur. 

Corollary 10.5.1. Keeping the notation of the previous two lemmas, we have the 

following. If.for some 5 E 11(0)+ we have that Ks is convergently coinitial in N s, then 

in fact KSf is convergently coinitial in NSf for all 5' E 11(0)+. 

Proof. The hypothesis and the (a) if and only (b) equivalence of Lemma 10.5.4 gets 

* Ks is convergently coinitial in * N s. And as the last is coinitial in *IR+, then, this 

implies that * limj_H<Xl *mj(5) = o. That is, if Q = {r E IR+ : limj-t<Xl mj(r) = O}, 

this says that 5 E *Q and so Q has infinitely many r E IR+ accumulating at O. Pick 

r E Q and note that monotonicity implies the statement: r' E IR+ with r' ::; r implies 

that r' E Q. Transfer of this statement gets * limj-+*<Xl *mj (5') for all 5' E *IR+ with 

5' ::; *r. But then applying (a) implies (b) of Lemma 10.5.4 for any such 5' E 11(0)+, 



Tom McGaffey 194 

we get our conclusion. o 

Suppose now that 0 < r E IR and that for j E IN, fj : Br ~ IR is a sequence of 

continuous functions on B r. Recall that {fJ : j E IN} converges (uniformly) on Br to 

o if Ilhllr ~ 0 as j ~ 00 (equivalent to pointwise convergence of the values as Br 

is compact). We will define another type of convergence related to the topology T. 

Given a sequence {fj} as above, we have the *transfer {* Ii : j E IN}. We need the 

following definition in order to relate our two topologies. 

Definition 10.5.2. Let r E IR+, F = {fj : j E IN} be a sequence of real valued 

functions on Br . We say that the extension of {fj : j E IN} converges in the topology 

T (to the zero germ), if for 6 E j.L(O)+, there is W E *iN such that the internal W 

sequence of numbers {II *Ii II" : 1 :S j :S w} is cnvergently co initial in the range of N". 

For example, the sequence of constant functions x f----t fj (x) == 1/ j, as a sequence of 

functions uniformly defined on BTl converges in the topology T at each x E Int(Br ). 

Note also that the *sequence of constant functions * fj : ( E j.L(O) ~ 1/j E *IR converge 

in the T topology, a hint at what follows. 

Remark 10.5.2. This definition is not possible if we are speaking instead of a se­

quence of germs. First, recall that for a given 6, the corresponding N" cannot carry 

an incomparably range of numbers; eg., N" is contained in a very narrow interval 

in j.L(O)+ (there are *infinitely many). Given this, we note that the transfer of a se­

quence of domains of representatives of the germs may shrink through infinitesimal 

disks contained in j.L(O) so rapidly that the common domain of the first w maps, for 

a given w E *iN 00 , may be a B" for 6 so small that the corresponding N" consists 
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of infinitesimals that are too small for the J-norms of this extended sequence to be 

coinitial. 

'vVe will now prove some results that give correspondences between uniform con­

vergence (to the zero function) on some neighborhood of 0 and T convergence of the 

extended sequence. 

Proposition 10.5.1. Suppose that F = {fj j E N} zs a sequence of functions 

defined on Bro' The following are equivalent. 

a') There is r E IR+, r::; r, such that Ilfjllr -+ 0 as j -+ 00. 

b') For some J E /-l(0)+, there is w E *IN such that {II *fillc5 1 < < w} zs 

convergently coinitial with N c5 . 

c') For each J E /-l(0)+, there is w E *IN such that {II *fdlc5 1 < < w} is 

convergently coinitial with N c5 . 

Proof. The hypothesis for the first claim clearly implies the statement: for all r E IR+ 

with r ::; r {llfjllr : j E N} is convergently coinitial in IR+ whose transfer gives: for 

all r E *IR+ with r ::; *r, {II* fill. : j E *N} is convergently coinitial in *IR+. But then 

Lemma 10.5.4 implies, in particular, that if J E /-l(0)+, then there is w E *N such that 

{11*fdlc5 : 1 ::; j ::; w} is convergently coinitial in N c5 . Conversely, if given J E /-l(0)+, 

there is w such that {II * fi II c5 : 1 ::; j ::; w} is convergently coinitial in Nc5 , then again 

by Lemma 10.5.4 we have that {II* fillc5 : j E *N} is convergently coinitial in /-l(0)+, 

ie., in *IR+ for all J rv O. But then as this is, for each J, an internal statement, 

overflow implies that it holds for all J less than some noninfinitesimal A > 0, eg., for 
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some standard *r < A. But then, reverse transfer of this statement for *r gives our 

conclusion. 

D 

We have the following equivalent 'pointwise' formulation of the previous proposi­

tion. 

Proposition 10.5.2. Suppose that ro E IR+ and F = {fj : j E IN} is a sequence of 

real valued functions on Bra'- then the following are equivalent to a ') and b ') of the 

previous proposition. 

a'') There is r E IR+, r :S ro such that for each x E B r , fj(x) --+ 0 as j --+ 00. 

b'') Given 5 E fL(O)+, there is w E *IN such that if ~ E B 8, then {I * jj(~) 1 : 1 :S j :S w} 

is convergently co initial in N8 . 

Proof. We will show a"), respectively b"), is equivalent to a'), respectively c'), of the 

previous proposition. The equivalence of a') and a") is clear and c') clearly implies 

b"), so it suffices to verify b") implies c'). By way of contradiction, suppose b") holds 

but that c') does not hold. That is, there is 5 E fL(O)+ such that for each w E *IN, 

{11*jjI18: 1:S j:S w} is not convergently coinitial in N8; ie., given w E *IN, there is 

to E N8 such that 11* fdl8 > to for all j :S w. In particular, for j :S w, there is ~j E B8 

such that 1* jj(~j)1 ~ to. But choosing our w to be the element of *IN asserted in b"), 

then b") implies, as ~w E B8, that {1*jj(~w)1 : j :S w} is convergently coinitial in N 8, 

in particular, there is jo < w such that if j > jo, then 1* jj(~w)1 < to, eg, this must be 

true for 1* fw(~w)l, a contradiction. D 
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Here we will give a correspondence result that relates 'pointwise convergence' that 

is analogous to the way the previous proposition gives a correspondence for 'uniform 

convergence' . 

vVe want to consider the analogous situation of one parameter families of functions. 

Definition 10.5.3. We say that a map F : (IR,O) -t CO(B~) is continuous at t = 0 

if the corresponding map F: IRn+l -t IR, F(t,x) = F(t)(x) is continuous in x and in 

t at t = 0 separately with respect to the usual topology on the Euclidean spaces. We 

will sometimes write F(t) = ft and say that, eg., the map t t--7 ft(x) is continuous for 

x E IRn such that ft (x) is defined for I t I small. 

We first need a lemma. 

Lemma 10.5.6. If 0 E IL(O)+ let U/j C IL(O)+ denote the set {o' E IL(O)+ : 0 < o'}, 

and suppose that c E MO. Then for each 0 E IL(O)+, there is E E IL(O)+ such that 

*c(U£) is convergently coinitial with N/j. 

Proof. This is clear as for a given 0 E IL(O)+ we have *c(N/j) = N/j so that just pick 

E «< o. D 

Proposition 10.5.3. Suppose that, for some r E IR+, t t--7 ft : IR -t F(BnlR) is 

such that ft(O) = 0 for all t E IR where defined and fo is the zero function. Then the 

following are equivalent. 

ex) The map t t--7 ft is a continuous at t = O. 

(3) The extended map t E *IR+ t--7 * ft satisfies the following. For each 0 E IL(O)+, 

there is ex E *IR+ such that {II * fs II /j : .5 > ex} is convergently coinitial in N/j. 
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Proof. Since our condition in f3) is the same as saying for each c E JL(O)+, there is 

W E *IN, such that the *sequence {1/j : 1 ::; j ::; w} is convergently coinitial in U" then 

our condition is equivalent to proving that there is w E *IN such that the sequence 

j E IN t---+ 11/ j satisfies {II * Iljj II {j : 1 ::; j ::; w} is convergently coinitial in N{j. With the 

same reparameterization, we similarly get that for each x E B r , I is continuous at 

t = 0, ie., It(x) -+ 0 as t -+ 0 for each x E Br is equivalent to fIjj(x) -+ 0 as j -+ 00 

at each such x. But now the equivalence of a) and f3) has been reduced to that of a") 

and b") in Proposition 10.5.2. D 

10.6 Continuity of germ operations 

In this section, armed with all of the preliminaries, eg., with the relationships among 

all of the various families of infinitesimals functioning as moduli, we can prove that 

our spaces of continuous germs have good algebraic properties. That is, in the next 

subsection, we verify good ring properties and in the following good compositional 

properties. 

10.6.1 Topological properties of the ring operations of germs 

In this subsection we will verify that if [I] E go, then the maps +[f] : go -+ go : [g] t---+ 

[I] + [g] and x [f] : go -+ go : [g] t---+ [I][g] are continuous in the topology T. 

Lemma 10.6.1. Given t,.5 E N{j with t <.5, there is t E N{j such that.5t < t; that is, 

.5N{j C N{j is co initial. 
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Proof. As each element .5 EN is bounded above by an element *c for some c E IR+, 

and as such *l/c E N8 , then a good choose for tis t = (*l/c)r. D 

It should be clear that we cannot weaken the previous lemma to assume r < .5 

and only one of r or .5 is in M; an easy example is to choose .5 E N8 and r E fL(O)+ 

with r «<.5 (eg., rand .5 cannot be incomparable). 

Proposition 10.6.1. (90,7) is a Hausdorff topological ring. 

Proof. We need to show that the ring operations are continuous and as the vector 

space addition is continuous by the definition of the topology, we need only prove 

the product is continuous. First left and right multiplication by a given element of 

90 is continuous. By the previous lemma, for a given [J] E 90, multiplication on the 

right x [fJ (and so multiplication on the left [fJ x) is continuous. That is, if .5 E N8 

is IIfl18 and given r E N, then there is t E N8 such that .5t < r, ie., x [fJ(Ut) CUt. 

In fact, this shows that given t E N 8, then certainly there are r,.5 E N8 with r.5 < t 

and so Ut . Us = {f . 9 : f E Ut, 9 E Us} CUt. This shows that ([f], [g]) t-+ [J][g] 

is continuous in the following special case: ([Jd] : d E D) and ([gd] : d E D) are 

nets converging to [0] in 7 8 , then d t-+ [Jd][gd] converges to [0] in 7 8 . Given this 

let's verify that if we have nets [fd] --+ [f] (in 7 8) and [gd] --+ [g] (also in 7 8), then 

[Jd][gd] --+ [f][g] (in 7 8 also). First, 7 8 continuity of left and right multiplication 

implies that [J]([gd]- [g]) --+ [0] in 7 8 and ([Jd]- [J])[g] --+ [0] in 7 8 . But the previous 

assertion says also that ([Jd] - [J])([gd] - [g]) --+ [0] in 7 8 . Adding the previous three 

expressions (noting that addition is a continuous operation in 90) gets [fd] [gd] --+ [f] [g] 

(in 7 8) as we wanted. D 
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Proposition 10.6.2. yg is a closed subring of Yo. 

Proof. We just need to prove that yg is a closed subspace of Yo. But this is the import 

of Theorem 10.3.1. D 

Definition 10.6.1. For n,p E tN, let Yn,p denote the germs of maps at 0 of maps 

f : (IRn,O) -+ IRP, Y~,p these map germs that are germs of continuous maps and 

Yn,p,O C Yn,n those map germs sending 0 to O. Considering Yn,p,O as a Cartesian 

product of p copies of the topological ring Yn,O, we give it the natural product topology. 

We give the subsets Yn,n,O, Y~,n,O' etc., the subspace topology. 

It is clear from the definition above that the product reS topology defined on y~,p,o 

is generated by translates of open neighborhoods of the zero germ and that the system 

of open neighborhoods of the zero germ is generated by Cartesian products of the 

form U# = U~ x ... x utn where t denotes the ordered n-tuple (tI,"" t n ) E NeSn . Of 

course, given such t, if! < tj for each j, then UJ.. x ... X UJ.. cUr, eg., when checking 

convergence we may test with these diagonal neighborhoods. Similarly, given any of 

the typical norm functions N : IRn -+ [0,(0) on IRn, the family of nested neighborhoods 

of the [0] germ defined by UN,t = {[J] E Y : * N(f(~)) < t for each ~ E B eS } as t varies 

in NeS , gives a coinitial family of neighborhoods of [0] in reS. 

Proposition 10.6.3. y~,p,o is a Hausdorff Y~,o-module. 

Proof. This is clear: as a finite product of Hausdorff spaces (with the product topol­

ogy), it is clearly Hausdorff. Also the continuity of the module operation Yn,O x 

Yn,p,O -+ Yn,p,O is clear as it's just the ring operation Yn,O x Yn,O -+ Yn,O on each of the 

p coordinates. D 
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10.6.2 Topological properties of germ composition 

We return to the context of subsection 10.6.1 and consider the morphisms of these 

topological rings induced by continuous map germs. 

The composition of germs of maps is well known and routine and we will assume 

the general definitions and facts known. Heuristically, composition of functions obvi-

ously distorts domains and range and so it will be here, but cutting down domains will 

not be a problem as our monad representatives remain well defined as such when do-

mains are repeated expanded and contracted within p,(0). If n,p E tN, let gn,p,o c gn,p 

denote the set of germs at 0 in IRn of maps I: (IRn,O) --+ (IRP,O). We begin by noting 

the obvious problem: if h E gn,n,o or even in g~,n,o, and lEg, then * IIBo 0 *hl Bo is 

often not defined. On the other hand, if [h] E g~ n ° and [f] E gn, then *(f 0 h)Bo is , , 

always defined even when *h(B8) r:t. B8 as h(p,(O)) c p,(0) and although we are defin-

ing the composition with [f] in terms of its representative that is uniquely defined on 

all of p,(0). If [h] E g~ nO' we will denote the map gn --+ gn : [f] f-t [f] 0 [h] by rC[h] , , 

and if [g] E g 

To begin with, we look at the effect of composition on our sets of moduli. As right 

composition carries algebraic operations, we start there and as moduli are determined 

in terms of one dimensional mappings we will consider both the right and left actions 

of MO on inself. We will begin with some preliminaries on the effects of compositions 

on our semirings of moduli. 

We begin with a corollary of results in subsection 10.3.2. 

Corollary 10.6.1. Suppose that [f] EgO, 0 < 6 '" 0, and t = II */118. Then for each 
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UtO E 78 with t E No, there is U: E 78 with S E Nr such that U: c UtO, eg., the subset 

of 78 given by the set of U: with s varying in Nr is a subbase at 0 for 78. 

Proof. Of course, according to Remark 10.3.1 it suffices to prove that N..0 is coinitial 

with Ni· But this is a consequence of corollary 10.3.1 and the fact that Ni is coinitial 

in No which is proposition 10.3.2. o 

Before we proceed, we need to point out an obvious fact. 

Lemma 10.6.2. Suppose that (A, <) and (r, <) are directed sets and that {t>. : A E 

A} and {s')' : 'Y E r} are subsets of p,(0)+ that are coinitial with each other in the 

range No. Then if [m] E M, we have that {*m(t>.) : A E A} is coinitial with No if 

and only if {*m(s')') : 'Y E r} is co initial with No. 

Given the previous, we will see that continuous germs sending zero to zero send 

coinitial magnitudes to coinitial magnitudes. 

Corollary 10.6.2. Suppose that [h] E g~,P'o and that {tl>. : A E A} c fLn(O) is such 

that {ltl>.1 : A E A} is coinitial with No. Then {*h(tl>.) : A E A} c p,p(O) satisfies 

{I *h(tl>.) 1 : A E A} is co initial in No. 

Proof. Without loss of generality, we may assume that [h] is pseudomonotone (recall 

that this means that if I~I ~ 1(1, then l*h(OI ~ l*h(()I). We can also assume that 

p = 1 and we can therefore assume we are working with [m] E MO, for which the 

problem becomes: if X = {6 : A E A} is coinitial in No, then {*m(6) : A E A} is 

coinitial in No. But as X and No are coinitial with each other in the range of No, 

then, by Lemma 10.3.3, this is equivalent to showing that *m(Nd ) is coinitial with 

Nd , and in fact they are equal by Corollary 10.3.1. o 
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Note that the previous result certainly does not imply that {ltJAI : A E A} is 

coinitial with {1*h(tJA)1 : A E A}, eg., this certainly does not hold if [h] is the zero 

germ. 

Definition 10.6.2. We say that [h] E g~,n,l is regular if *h(f-l(O)) = f-l(0) and there 

is n E IN such that for each e E f-l(0), *h-1(e) n f-l(0) has cardinality at most n. 

So clearly homeomorphisms are regular. Note that we can replace this last condi­

tion with the same condition on inverse images of points of B{j. 

Lemma 10.6.3. If t E N{j with t < J, respectively t > J, then there is mEMo such 

that *m( J) ::s: t, respectively *m( J) 2:: t. 

Proof· Suppose that there is t E N{j with t < J, but there is no m E M such that 

*m( J) ::s: t. Then we have that t and J are incomparable and we know this can't 

happen by eg., Lemma 10.2.7. The other statement has the same proof. D 

Proposition 10.6.4. If [h] E g~,n,o, then rC[h] : g~ -+ g~ is a continuous homomor­

phism. 

Proof. If 0 < J '" 0, [f] E g~ and [h] E g~,n,o and *h(B{j) C BE for some positive 

E '" 0, then 1* f 0 h(e)1 ::s: 11* filE for e E B{j, so that if t = II*hll{j' then e E B{j implies 

that 1* f 0 h(e)1 ::s: 11* flit and so 11* f 0 hll{j ::s: 11* flit· 
Given this, if ([fd : d E D]) is a net in g~ converging to the zero germ [0] in say 

the T{j topology, it is sufficient to show that it follows that ([fd 0 h] : dE D) converges 

also (in some Ts topology for some 0 < ,5 '" 0, as topology is independent of ,5). The 

above estimate gives 11* fd 0 hll{j ::s: 11* fdll t for all d E D. Now by above (Corollary 
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10.6.1) ~o is coinitial in Noo and [fd] converges in the 7 t topology and so in the 70 

topology and so {II* fdll t : d E D} is coinitial in Nt But the estimates above then 

imply that {II* fd 0 hllo : dE D} is coinitial in NR, as we wanted. 0 

Corollary 10.6.3. Suppose that [h] E g~,n,o. Then rC[h] is a continuous g~ module 

homomorphism of g~,p,o. 

Proof This is clear from the previous proposition. o 

Before we proceed to proving that left composition is a continuous operation, we 

want a more explicit description of the convergence of a net ([fd] : d E D) c g~,P'o 

to [f] E g~,p,o· This result once more indicates the uniform convergence flavor of 7 

convergence. 

Lemma 10.6.4. Suppose that ([fd] : dE D) is a net in g~,P'o and [f] E g~,p,o. Then 

[fd] -+ [f] in 7 if and only if the following holds. Let <5 E p(O)+. Given t in No, then 

there is do E D such that if ~ E Pn(O) satisfies ~ E Eo, then *fd(~) E tlp(O) satisfies 

I *fd(~) - *f(~)1 ::; t for all d > do. 

Proof. This is a direct consequence of the definition. o 

Left composition by an element of g~,n,o acting on g~,P'o is obviously not a homo­

morphism, but we have a good topological result. Note also that, unlike proving the 

7 continuity of right composition, proving the continuity of left composition does not 

follow immediately from such at [0] upon translation. The proof of left continuity 

will follow after a bit more formal development. We begin with a definition. 
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Definition 10.6.3. We say that [hJ E 9n,n,o is uniformly continuous at 0 if it satisfies 

the following. There is r E IR+ such that for each m E M(Br), there is m E M(Br) 

with the following property. For each x, y E Br with Ix - yl < m(lxl), we have 

Ih(x) - h(y)1 < m(lxl). 

So if [hJ is uniformly continuous at 0, then there is Gh : M(Br) --7 M(Br) for r 

small enough defined by Gh(m) = m. 

Lemma 10.6.5. Suppose that [hJ is uniformly continuous at [OJ and that 8 E JL(O)+. 

The the following holds. For each tENt" there is t E N/j such that if t;, ( E B/j with 

It; - (I < t, then I *h(t;) - *h(() I < t. 

Proof. Transfer the statement for the r E IR+ for which uniform continuity at 0 holds. 

That is, if t;,( E *Br with It; - (I < *Gh(m)(It;I), then I*h(t;) - *h(OI < *m(It;I) 

and note that if t E N/j, then there is m E M(Br) with *m(8) = t so that we can 

use the corresponding t = *Gh(m)(8) E N/j satisfying the transfer of the properties 

of Gh. That is, if 1t;1 = 8, so that any t E N/j is given by t = *m(8) and therefore 

to get I*h(t;) - *h(()1 < t, we need only to choose t = *Gh(m)(8) for the inequality 

I~ - (I < t to imply the needed inequality. D 

Lemma 10.6.6. Suppose that [hJ E 9~,p,o, then any representative h E [h] is uniformly 

continuous at O. 

Proof. Suppose that h is a representative for [hJ, so that there is r E IR+ such that h 

is a continuous function on the ball Br and therefore, Br being compact, uniformly 

continuous there. That is, building a parameter into our statement of uniform conti­

nuity, if m E Mro then there is m E Mr such that for x, y E Br and a given real t 
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with 0 < t < r, if Ix - yl < m(t), then Ih(x) - h(y)1 < m(t). But as t is an arbitrary 

parameter in (0, r), then for 0 < Ixl < r, we have that if Ix - yl < m(ixl), then 

Ih(x) - h(y)1 < m(lxl), as we wanted to prove. o 

We are now in a position to prove the following proposition. 

Proposition 10.6.5. Suppose that [h] E g~,P'o, then lc[hJ : g~,P'o -t g~,P'o is a contin-

uous map. 

Proof. Suppose that ([fd] : d E D) is a net in g~,P'o such that [Jd] -t [f] E g~,P'o 

in the topology T. We want to show that [h] 0 [Jd] = [h 0 fd] -t [h 0 fd] in T. By 

Lemma 10.6.4, it suffices to prove given a fixed 8 E /-l(0)+ the following statement. 

Given t E N6 , there is do E D such that for d > do and each ~ E B6 , we have 

I*ho fd(~) - *ho f(~)1 < t. Fix this t E N6 and notice that Lemmas 10.6.5 and 10.6.6 

together imply the following. (0): Given the fixed t, there is t E N6 such that if 

~ E B; and ( E Bf satisfy I( - * f(~)1 < t then we have that I*h«() - *h(f(~))1 < t. 

But then applying the hypothesis in the guise given by Lemma 10.6.4 once more, 

we know that there is do E D, such that for ~ E B; and d > do, we have that 

1* fd(O - * f(~)1 < t. But this is precisely the condition, with ( = * fd(~) for d > do, 

required for the previous statement (<» to hold. o 

We will show that if [h] E g~,n,o is the germ of a homeomorphism, then composition 

on the right is a topological ring isomorphism on g~. 

Definition 10.6.4. We say that [f] E g~ n 0 is a homeomorphism germ if there exists , , 

[g] E g~,n,o, its inverse, satisfying [f] 0 [g] = lid] = [g] 0 [fl. This set of germs is 

clearly a group, which we will denote by 1i~. 
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Proposition 10.6.6. Germs of homeomorphisms [h] E g~,n,o give topological ring 

isomorphisms rC[h] : go --+ go. If we are considering rC[h] : go --+ go then rC[h] is a 
n,p n,p' 

g~ module isomorphism. 

Proof This follows immediately from Proposition 10.6.4 and Corollary 10.6.3 as fol-

lows: both rC[h] and rC[h-1] are continuous homomorphisms, and as rC[h] orC[h-1 ] ([g]) = 

D 

Note that only right composition is a ring homomorphism, nonetheless left com-

position satisfies lc : g~,P x g~,P --+ g~,P and a formal proof similar to that above gives 

the following. 

Proposition 10.6.7. Germs of homeomorphisms [h] E g~,P'o give homeomorphisms 

lc[h] : g~,P'o --+ g~,P'o : [f] f--t [h 0 f]· 

Note that the following gives a numerical bound on regularity growth and decay 

of a homeomorphism germ independent of the particular element of 1i~ .. 

Proposition 10.6.S. Suppose that [h] E 1i~ is the germ of a homeomorphism. Then 

there are t, t E N8 t < t, such that Bt C *h(B8) C Bt . Equivalently, if 3 «< 6 «< ro, 

then for every [h] E 1i~, B3 C *h(B8) C Bro. 

Proof We will just verify that if 3 «< 6, then B3 C *h(B8). As *hl Bd is a *homeo-

morphism sending 0 to itself, then transfer implies their is a *neighborhood V of 0 

such that V C *h(B8). We also know that if the *boundary (ie., *frontier) of B8, is 

denoted by *8B8, then *8*h(B8) = *h(*8B8). Now if m(r) = inf{lh(x)1 : Ixl = r} 
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we have m( r) 2: r for all r and as h is a bijection for sufficiently small r E IR+, we 

have m(r) > 0 for small r. But then we know that m(8) is coinitial with N8, eg., that 

*m(8) >>> 3. Of course, this says that if ~ E *8B8, then l*h(~)1 »> 3, eg., *8*h(B8) 

is disjoint from B3• Now by the transfer of the Jordan separation theorem (for a 

sufficiently large ball) *8*h(B8) *separates Btu (for some ro »> 8) and as V is disjoint 

from *8*h(B8) and contained in * Int*h(B8), one of these *components, and as the 

frontier of *h(B8), ie., ( E Btu of the form *h(~) for ~ E *8B8 have length greater 

than 3, then B3 c *h(B8). 0 
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Shorthand Notation and 

Abbreviations 

(Included is is a basic set of notations defined and used in this work.) 

m*,x or dmx == the differential at x of a differentiable map (might 

be the internal differential with * (*transfer) suppressed 

Vg == a tangent vector at 9 

F DV Sk == finite dimensional vector space over K 

V S(g) == if 9 is a Lie algebra, this is the underlying vector space of 9 

,= unique 

LA == Lie algebra 

LG == Lie group 

LA(G,</J) = (L,[, ]) == (G,</J) is a local Lie group and the associated Lie algebra 

is (L, [ , ]) 

*LA == is this functor star transferred 

*FDLAK == an internal O"finite dimensional Lie algebra (over the 

internal field K, usually i[R) 

rJ < 9 == rJ is a Lie subalgebra of the Lie algebra 9 
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