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Abstract 

Statistical Methods for Analyzing Rare Variant Complex Trait 
Associations via Sequence Data 

by 

Dajiang Liu 

There is solid evidence that complex human diseases can be caused by rare 

variants. Next generation sequencing technology has revolutionized the study of complex 

human diseases, and made possible detecting associations with rare variants. Traditional 

statistical methods can be inefficient for analyzing sequence data and underpowered. In 

addition, due to high cost of sequencing, it is also necessary to explore novel cost 

effective studies in order to maximize power and reduce sequencing cost. In this thesis, 

threeO important problems for analyzing sequence data and detecting associations with 

rare variants are presented. In the first chapter, we presented a new method for detecting 

rare variants/binary trait associations in the presence of gene interactions. In the second 

chapter, we explored cost effective study designs for replicating sequence based 

association studies, combining both sequencing and customized genotyping. In the third 

chapter, we present a method for analyzing multiple phenotypes in selected samples, such 

that phenotypes that are commonly measured in different studies can be jointly analyzed 

to improve power. The methods and study designs presented are important for dissecting 

complex trait etiologies using sequence data. 
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Chapter 1 

Introduction 
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Currently there is great interest in investigating the etiology of complex disease due 

to rare variants[l-6]. Until recently, indirect mapping of common variants has been the 

emphasis of complex trait association studies. It has been demonstrated that common 

variants tend to have modest phenotypic effects while rare variants are likely to have 

stronger phenotypic effects[?], although not strong enough to cause familial 

aggregation[8]. For mapping complex diseases due to common variants, instead of 

genotyping functional variants, tagSNPs are genotyped which act as a proxy for the 

underlying causal variants. For rare variant association studies, indirect mapping is not an 

optimal approach due to low correlations ( r 2 ) between tagSNPs and rare variants. Instead, 

direct mapping should be used, where functional variants are analyzed. In order to 

implement direct mapping, variants must first be identified. Large scale sequencing 

efforts have begun including the 1000 Genome Project, which will provide a better 

understanding of the allelic architecture of the genome and a detailed catalog of human 

variants. Next generation sequencing technologies e.g. Roche 454, ABI SOLiD, and 

Illumina HiSeq, have made it feasible to carry-out rare variant association studies of 

candidate regions, exomes and genomes. 

Ideally, when carrying out direct mapping, only causal variants should be tested for 

associations. When DNA samples are sequenced, both causal and non-causal variants are 

uncovered. Bioinformatics tools[9,10] or filters[!] can be used to predict functionality of 

variants, although tools such as PolyPhen[l 0] or SIFT[9]can have low sensitivity and 

specificity[6,11]. Empirical studies have shown that predictive errors can be as high as 47% 

and 37% for PolyPhen and SIFT respectively[6]; therefore, their usefulness in selecting 



variants to be included in association analysis is limited. Even when functionality can be 

correctly inferred, whether the identified variants affect the phenotype of interest is still 

unknown. Two types ofmisclassifications of variant causality can frequently arise: 1.) 

non-causal variants are included in the analysis: a.) sequencing incorrectly identifies 

monomorphic sites as variant sites (false positive SNP discovery), b.) variants are falsely 

predicted to be functional or c.) variants are functional but non-causal; 2.) causal variants 

are excluded from the analysis: a.) due to locus heterogeneity, not all loci containing 

causal variants are included in the analysis, b.) region not sequenced, e.g. intronic 

variants, c.) variants not detected by sequencing assay (false negative SNP discovery) or 

d.) causal variants are falsely predicted to be non-functional. 

Gene interactions are believed to be involved in a broad spectrum of complex disease 

etiologies[12]. Although a number of methods have been developed to detect gene 

interactions between common variants[13-16], their detection has been limited[13]. There 

is evidence that rare variant interaction also plays a role in disease etiology. In direct 

association mapping of rare variants, one or more genetic loci are commonly jointly 

analyzed in order to aggregate information, for example genes with similar functions or 

residing in the same pathway[3,4]. Therefore it is necessary to account for potential 

interactions between rare variants in different loci[17] and interactions between common 

and rare variants[l8,19]. 

Driven by the advancement of sequencing technologies and availability of data, 

statistical and computational methods are needed for analyzing sequence data. It has been 

3 



demonstrated that methods used to analyze common variants are low powered when 

applied to the analysis of rare variants[20,21 ]. Methods to analyze rare variants have been 

proposed[20,21]; although they have clear advantages over implementing common 

variant analysis approaches, more powerful and robust methods need to be developed to 

analyze rare variant data, especially in the presence of variant misclassification or gene 

interactions. 

In Chapter 2 of the thesis, a novel adaptive method Kernel Based Adaptive Cluster 

was developed, which is robust and powerful to variant misclassifications and gene 

interactions. Its statistical properties were explored and compared with several other rare 

variant analysis methods, including weighted sum statistics[21] and combined 

multivariate and collapsing[20]. Chapter 2 of the thesis has been published in PLoS 

Genetics [22]. 

In order to avoid spurious or false positive findings in association mapping, 

replicating significant associations discovered in an exploratory sample (stage 1) using an 

independent dataset (stage 2) is an indispensible part of every genetic association study. 

For mapping rare variants, gene based tests are usually performed, such as combined 

multivariate and collapsing[20] or weight sum statistic[21]. In a gene based test, multiple 

rare variants are jointly analyzed in order to aggregate signals from the gene region[3-

5,20,21]. To replicate significant findings in stage 1 studies, two different strategies can 

be used. As a first strategy, only the variants at the nucleotide sites uncovered from the 

4 



original sample are followed up. Using this strategy novel nucleotide sites that are present 

only in the stage 2 sample will not be incorporated in the replication study. This 

constitutes a replication in a "strict': sense, i.e. both the gene region and the variants 

uncovered in the stage 1 sample are followed up in the replication sample. When only 

variants uncovered in the stage 1 sample are of interest, genotyping is sufficient. We will 

refer to this replication strategy as "variant-based". An alternative strategy is to follow-up 

the entire gene region identified in the stage 1 sample. For this design, analysis of the 

stage 2 sample is not restricted to the nucleotide sites uncovered in stage 1. Variants from 

novel sites in the replication sample are also assessed for their associations with the 

phenotype of interest. We will refer to this design as "sequence-based" replication. With 

this strategy, sequencing the target gene in the stage 2 sample is necessary. The 

efficiencies of the two proposed strategies are compared in Chapter 3 of the thesis. The 

results of Chapter 3 was published in AJHG- the American Journal of Human Genetics 

5 

[23] . 

In order to design powerful studies, it is necessary to deeply sequence samples from a 

large number of individuals[24]. However, many existing studies are small to moderate 

sized, due to the high cost of sequencing or limited availability of samples, and are 

therefore inadequately powered. It would be advantageous if different studies which 

measure the same phenotypes could be jointly analyzed to increase power. In particular, 

many clinically important traits, such as body mass index, systolic and diastolic blood 

pressure are often measured in different studies. When combined analysis is performed, 

in addition to incorporating studies that are targeted at the same primary traits, it is 



desirable to also analyze data from studies for which the phenotype of interest is 

measured as an additional outcome. Combined analyses require modeling multiple 

phenotypes since different studies may sequence selected samples targeted at different 

primary traits. Similar to the idea of analysis of covariance (ANCOV A), jointly analyzing 

multiple phenotypes makes it possible to distinguish the phenotype covariance 

component that is due to gene pleiotropy and the component that is attributable to 

residual correlations. 

6 

Currently, most studies sequence selected samples, e.g. case-control samples or 

individuals with extreme phenotypes[3,4]. Sequencing selected samples reduces 

sequencing cost and improves power. Due to sample ascertainment, secondary traits can 

be associated with the gene region in a selected sample even though they are independent 

in the general population. For example, consider a gene that is associated with the 

primary trait, but not with the secondary trait in the general population (Figure 1). In a 

sample that consists of individuals with extreme primary trait values, the causative 

variant frequency will be different between individuals from the upper and lower 

extremes. The mean value for the secondary trait will also be different due to phenotypic 

correlations. Therefore, a spurious association can occur between the gene region and the 

secondary trait unless the sample ascertainment scheme is correctly modeled. The 

selection criteria for a sequencing study can be complicated and may involve multiple 

traits (multiple-trait study) or sub-phenotypes. For instance, it is hypothesized that the 

etiologies of type 2 diabetes (T2D) are different in obese and non-obese 

individuals[25,26]. In order to reduce phenotype heterogeneity and potentially improve 



----------------------------------------

power, a study of T2D might be performed using an obese population. There have been 

methods developed for detecting associations with multiple phenotypes in selected 

samples[27,28]. However, these methods are limited to case-control studies. They are not 

applicable to more complicated study designs, e.g. the studies that sequence individuals 

with extreme primary traits (extreme-trait study), or the studies where secondary 

phenotypes are also involved in sample selection. In particular, extreme-trait study design 

is becoming increasingly popular and widely applied [29-31]. The results for detecting 

associations with secondary traits can be seriously biased if the secondary traits are not 

properly analyzed [27]. It is desirable to have a unified approach for analyzing secondary 

phenotypes from all available datasets. A flexible likelihood based methods MULTI­

TRAIT -MAP were discussed in Chapter 4 of the thesis for this purpose. The material in 

Chapter 4 is currently under review with revision submitted. 

7 



Chapter 2 

A Novel Adaptive Methods for Mapping Rare 
Variants in the Presence of Gene Interactions 

via Sequence Data 
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2.1. Background: 

Gene interactions are believed to be involved in a broad spectrum of complex disease 

etiologies[12]. Although a number of methods have been developed to detect gene 

interactions between common variants[13-16], their detection has been limited[13]. There 

is evidence that rare variant interaction also plays a role in disease etiology. In direct 

association mapping of rare variants, one or more genetic loci are commonly jointly 

analyzed in order to aggregate information, for example genes with similar functions or 

residing in the same pathway[3,4]. Therefore it is necessary to account for potential 

interactions between rare variants in different loci[17] and interactions between common 

and rare variants[18,19]. 

The Kernel Based Adaptive Cluster (KBAC) was developed to overcome the 

problems of detecting rare variant associations in the presence of misclassification and 

gene interaction. Under the KBAC framework, data-based adaptive variant classification 

and testing of association are unified. The sample risk of a multi-site genotype is modeled 

using a mixture distribution with two components, where one component represents the 

distribution of sample risk of genotype if it is non-causal and the other component 

represents distribution of sample risks of causal genotypes. Ideally, if distributions for 

causal components were known, classification could first be performed and only the 

causal genotypes would be used in association studies. However, when searching for 

genotype-phenotype associations, it is usually unknown which variants are causal. 

9 



Instead of performing an unrealistic two-step procedure, variant classification and 

association testing are unified in the KBAC framework. Continuous adaptive weighting 

which is implemented in the KBAC is preferable, particularly for low frequency alleles, 

than classifying variants and carrying out a stratified analysis, because increasing 

classification and shrinking size of strata can increase both type I and II error. For the 

KBAC, adaptive weighting procedure is implemented using the cumulative distribution 

functions for the multi-site genotype counts. Distributions of multi-site genotype counts 

are compared between cases and controls. Those multi-site genotypes that are enriched in 

cases will be up-weighted. Under the null hypothesis, the assigned weights 

asymptotically follow a uniform distribution. While under the alternative hypothesis, 

disease causal multi-site genotypes tend to be more frequent in cases than in controls. 

Therefore they are more likely to be adaptively up-weighted. The weighted multi-site 

genotype frequencies are aggregated and contrasted between cases and controls. In order 

to evaluate whether there is an association, significance of the KBAC can be assessed 

using either permutation or Monte Carlo approximation (See Monte Carlo 

Approximation). 

10 

The performance of the KBAC was compared to the weighted sum statistic (WSS)[21] 

the combined multivariate and collapsing (CMC) method[20], and the comparison of rare 

yariants found ~xclusively in cases to those found only in controls (RVE)[3] using 

simulated data sets. Forward time simulation[32] assuming infinite-site Wright-Fisher 

model was used to generate population genetic data. Demographic change and purifying 



selection were both incorporated in the simulation, using parameters estimated from re­

sequencing datasets from studies of African Americans (AA) and European Americans 

(EA)[33]. In addition to forward time simulation, population genetic data was also 

generated according to estimated site frequency spectrums (SFS) in AA and EA from the 

Dallas Heart Study (DHS) re-sequencing data ofthe ANGPTL3, 4, 5, and 6 genes. 

For the simulated population data phenotypes were generated separately and 

motivated by epidemiological disease studies. Two types of main effects phenotypic 

model are considered: 1.) constant genetic effects for each causal variant and 2.) genetic 

effects inversely correlated with minor allele frequencies (MAF) of causal genetic 

variants. In order to evaluate the impact of variant misclassification, a variety of 

scenarios were examined where 1.) different proportions of non-causal variants were 

included in the analysis and 2.) different proportions of causal variants were excluded 

from the analysis. 

Two disease models of gene interactions were also evaluated. The example of with­

in gene interaction was motivated by Hirschsprung's disease[18,19], where an interaction 

between a common polymorphism in the promoter region and multiple rare non­

synonymous (NS) mutations in exonic regions ofthe RET gene is hypothesized[18,19]. 

The example of between gene interaction is based on the observation that rare variants 

within the CHEK2 gene increase risk of breast cancer in the absence of BRCAJ and 

11 



BRCA2 mutations, but because of a shared pathway, the same CHEK2 variants in the 

presence ofhigh risk BRCA variants do not further increase risk[17,34,35]. 

Under each ofthe above scenarios, phenotype-genotype association testing is 

performed for rare NS variants. It is demonstrated that the KBAC has a clear advantage 

in power and robustness over other existing methods and this benefit is especially strong, 

when rare variant data is analyzed where there is either variant misclassification or gene 

interactions. 

12 

In order to further illustrate applications of the KBAC and other statistical methods, 

i.e., WSS, CMC, and RVE to carry-out association studies, energy metabolism traits and 

rare variants in ANGPTL 3, 4, 5 and 6 genes obtained from sequence data were analyzed. 

In addition to identifying the originally reported association between triglyceride levels 

and ANGPTL 4, KBAC identified associations for a.) body mass index and ANGPTL 5, b.) 

diastolic blood pressure with ANGPTL 6, c.) high density lipoprotein with ANGPTL 4, 

d.) triglyceride levels withANGPTL 3 e.) very low density lipoprotein withANGPTL 3 

and ANGPTL 4. 



2.2. Results 

The results presented focus on simulations using simulated SFS from AA sequence 

data. Similar results are found for simulations using simulated SFS for EA and estimated 

SFS for AA and EA (data not shown). Although the power varies dependent on the 

underlying model used to generate the data, in all cases the KBAC is the most powerful 

method followed by the WSS, CMC and then the RVE. 

2.2.1. Rare Variant Frequency Distributions in Generated Case-Control Samples 

Rare NS variants carrier information is summarized (Table 1) for replicates used in 

power comparisons in the presence of misclassifications. Under the phenotypic model 

with variable genetic effects, when all variants (both non-causal and causal variants) were 

analyzed, 5.5% of cases and 3.4% of controls are carriers, with carrier frequency in cases 

61% higher than in controls. When only causal variants are included, the fractions of 

carriers in cases and in controls are 3.8% and 1.7% respectively. The case rare variant 

frequency is approximately 2.3 times of the controls frequency, which implicates that 

average ORs of uncovered rare variants lie between 2 to 3. For the phenotypic model 

with fixed genetic effects, the results are similar. The carrier frequency observed in cases 

is around 2.5 times the frequency in controls. Compared to the model with fixed effects, 

lower frequency rare causal variants have larger ORs for variable effects model. The 

probability that these low frequency rare variants are uncovered in a case-control sample 

is higher. Therefore, in all scenarios examined, more rare variants sites are uncovered for 

13 



the model with variable effects. When all the variants are included, 11% more rare NS 

variants sites are uncovered for the model with variable effects. The number of rare 

variants sites that are exclusive to cases or controls is also higher under the variable effect 

model. For example, when 100% ofthe variant sites are included in the analysis, 47.4% 

and 41.1% of the sites are found exclusively in either cases or controls for the variable 

and the fixed effects model, respectively. For both models, within a single gene, very few 

cases and controls carry more than one rare variant. 

For the within gene interaction model (Table 2), similar patterns ofNS variants sites 

and carrier frequencies are observed. When 100% ofthe rare variants are causal, 5.5% of 

the cases and 3.2% of the controls are carriers on average for a case-control sample. Due 

to interaction, frequency differences between cases and controls are mitigated. In the 

between gene interaction model (Table 2), higher case carrier frequency and more rare 

variants sites are observed for the high risk gene than for the low risk gene. The 

proportions of rare variants carriers for the two genes combined can be high, e.g. when 

100% of the variants are causal, up to 12% of the cases can be rare variant carriers. 

2.2.2. Evaluation of Type I Error: 

When permutation was used to evaluate significance for the KBAC, type I error was 

well controlled, because p-values were obtained empirically. Additionally, in order to 

ensure that the type I error for RVE is well controlled permutation is also used to obtain 

14 



empirical p-values. For the WSS[21], CMC[20] method, it was previously demonstrated 

that for the analysis of rare variants, their type I errors are well controlled[20]. For 

moderate sample sizes e.g. 400 cases/400 controls, the distributions of p-values for the 

Monte Carlo approximation are very close to those obtained using permutations and 

theoretical expectations (Fig. 1) and additionally type I error is well controlled. 

2.2.3. Power Comparison: 

2.2.3.1. Main Effects Model without Misclassification: 

For main effects model with fixed genetic effects and no misclassification (Fig. 2), 

the power (1- p} for KBAC, WSS CMC and RVE are respectively given by 82.5%, 

77.7%, 73.9% and 14.8%. The power for RVE is much lower than the power for the other 

three methods. For the main effects model with variable genetic effects (Fig. 3), the 

power for the four methods is given by 83.1%, 78.8%, 74.2% and 44.8%. The power of 

the RVE improves for the variable genetic effects model compared to the fixed genetics 

effect model; while the power for the other methods remains relatively unchanged. 

KBAC is consistently more powerful than WSS, CMC and RVE, e.g. for fixed effect 

model, KBAC is 6.1% more powerful than WSS, 11.6% more powerful than CMC, and 

457.4% more powerful than RVE. 
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2.2.3.2. Impact of Misclassification: 

Under both models (Fig. 2, 3), the power of all methods is negatively impacted by 

exclusions of causal variants and inclusions of non-causal variants at a varying degree. 

When non-causal variants are included in the analysis, K.BAC is consistently more 

powerful and more robust than the other three methods. For example, when 100% of the 

non-causal variants are included, under the variable effects model, KBAC 

(1- f3KBAc = 69.9%) is 19.3% more powerful than WSS(1- f3wss = 58.6%), 27.6% more 

powerful than CMC (1- f3cMc = 54.8%), and 91.0% more powerful than RVE 

(1- f3RvE = 36.6%). When compared under the fixed effects model, the advantage of 

KBAC (1- f3KBAC = 71.2%) over WSS (1- f3wss = 61.1%), CMC (1- f3cMc = 58.2%) and 

RVE (1- f3RvE = 13.9%) remains largely unchanged. For the scenarios where causal 

variants are missing, the relative performances of the methods remain to be in the order 

KBAC>WSS>CMC>RVE. For the variable effects model, the power advantage ofWSS 

over CMC is greater than the advantage observed for the fixed effects model. For 

example, when 60% of the causal variants are excluded from the analysis, under the fixed 

effects model, the power for WSS drops 40.1% and the power of CMC drops 45.1 %, 

while under the variable effects model, the power decreases for WSS and CMC are 

respectively 39.1 %, 47.8%. The KBAC is more robust than the other methods: the power 

decreases under the fixed and variable effects models are respectively 34.1% and 35.6%, 

which are smaller than the decreases in power for WSS and CMC. Exclusion of causal 
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variants from the analysis is more detrimental to power than inclusion of non-causal 

variants. 

2.2.4. Interaction Models: 

2.2.4.1. Within Gene Interaction Model: 

Under the within gene interaction model, KBAC is consistently the most powerful 

method for all scenarios with different proportions of causal variants (Figure 4). The 

advantage ofKBAC in the presence of interactions is apparent and its advantage over 

other methods becomes greater with increasing proportion of non-causal variants. For 

example, when all variants are causal, the power ofKBAC is 8.4% higher than WSS, 

which is the second most powerful method. But when only 50% of all variants are causal, 

KBAC is 30.7% more powerful than WSS. RVE is the least powerful methods for all 

scenarios compared. 

2.2.4.2. Between Gene Interaction Model: 

In the between gene interaction model, power comparisons between the four methods 

remain similar (Figure 4). KBAC is consistently the most powerful method and is robust 

against inclusion of non-causal rare variant sites. Comparing the scenario where all 

variants are causal with the scenario where only 50% of the variants are causal, the power 

for KBAC drops 36.3%, while the power for WSS drops 48.2%. 
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2.2.5. ANGPTL Variants and Energy Metabolism in Humans: 

In order to further illustrate the application of KBAC and other rare variant analysis 

methods (i.e. WSS, CMC and RVE), rare variants in the ANGTPL 3,4,5 and 6 genes were 

analyzed to determine whether they are associated with energy metabolism traits (Table 

3). As in the original DHS study[36], the association ofrare variants in theANGPTL3,4,5 

and 6 genes with triglyceride (TG), low density lipoprotein (LDL), very low density 

lipoprotein (VLDL), high density lipoprotein (HDL), cholesterol, glucose, body mass 

index (BMI), systolic (SysBP) and diastolic blood pressure (DiasBP) were investigated. 

In the original DHS study, NS variants were analyzed using RVE, and significant 

associations were found between ANGPTL3, ANGPTL 4 and TG as well as between 

ANGPTL 6 and cholesterol[5,6]. In this study, NS variants, most of which are very 

rare[5,6], were analyzed. Individuals with confounding factors (lipid lowering drugs, 

diabetes mellitus and heavy alcohol use) were removed for all analyses. Multiple 

associations were identified with KBAC but not with other approaches, i.e. the novel 

associations between ANGPTL 6 and DiaBP 

(pKBAc = 0.045, Pwss = 0.084, PcMc = 0.088, PRvE = 0.405), as well as between ANGPTL 3 

and TG levels (pKBAC = 0.015,Pwss = 0.053,pcMc = 0.058,pRVE = 0.312). Additionally 

multiple novel associations were observed for analyses carried out with KBAC, WSS and 

CMC: 1.) ANGPTL4 and VLDL 

(pKBAC = 0.001,Pwss = 0.006,pcMc = 0.010,pRVE = 0.141); 2.) ANGPTL5 and BMI 

(pKBAC = 0.001,Pwss = 0.003,pcMc = 0.006,pRVE = 0.263); 3.) ANGPTL4 and HDL 

(pKBAc = 0.021,pwss = 0.041,pcMc = 0.045,pRVE = 0.681) and 4.) the previously reported 
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association between ANGPTL4 and TG levels 

(PKBAc = 0.004,Pwss = 0.005,pcMc = 0.006,pRVE = 0.087). It should be noted that HDL 

and TG levels are negatively correlated ( -0.42) and individuals with HDL levels in the 

lower quartile had an excess of rare variants in ANGPTL4 compared to those individuals 

with HDL levels in the upper quartile, while those individuals with TG levels in the upper 

quartile had an excess of rare variants in ANGPTL4 compared to those with TG levels in 

the lower quartile. The association detected by KBAC between ANGPTL4 and VLDL 

and between ANGPTL5 and BMI remains significant after correcting for multiple testing. 

RVE, on the other hand, detected associations between ANGPTL 5, 6 and glucose while 

the other three methods did not. We further investigated this association by applying a 

more stringent MAF cutoffO.l% for the NS variants analyzed inANGPTL 5 and 6. Using 

this new criterion both associations were detected by all methods (for ANGPTL 5, 

(PKBAc = O.OOl,pwss = 0.006,pcMc = O.Oll,pRVE = O.Oll)and for ANGPTL 6, 

(PKBAC = 0.002,Pwss = 0.008,pcMc = O.Ol2,pRVE = 0.012)). 
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2.3. Discussion 

The KBAC method developed for association mapping of rare variants combines 

genotype classification and hypothesis testing in a coherent framework. The risk of each 

multi-site genotype is modeled as a mixture distribution with two components, among 

which only the component representing a non-causal genotype is known and is used in 

the adaptive weighting. Each multi-site genotype is continuously weighted using the non­

causal component. The power of the KBAC as well as the other methods investigated can 

be affected by inclusion of non-causal mutations or exclusion of causal variants in the 

sample, to a varying degree. When non-causal variants are included in the analysis, the 

difference in rare variant carrier frequencies observed between cases and controls is 

mitigated. On the other hand, when causal variants are excluded from the association 

analysis, the marginal effect size of existing variants can vary considerably depending on 

whether missing causal variants exist on the same multi-site genotype. As a result, 

treating each variant (or multi-site genotype) interchangeably will incur loss of power, 

the severity of which will depend on the proportion of misclassified variants in the data. 

The performance of the KBAC is superior to the other approaches that were examined. 

Bioinformatics tools[9,10] and filters[l] can be used to determine which rare variants 

are potentially functional and should be included in the association analysis[!]. Their 

predictive accuracy, which can be low, is dependent on the amount of information 
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available for the gene understudy. Ifbioinformatics tools are used to predict variant 

functionality and determine which variants should be included in the analysis it is best to 

loosen stringency, because the exclusion of causal variants is more detrimental to power 

than inclusion of non-causal variants. Whether or not bioinformatics tools are used as a 

screening tool, misclassification will occur therefore the robustness of KBAC to 

misclassification is particularly beneficial. Additionally in order to avoid potentially 

erroneous exclusion of causal variants due to locus heterogeneity, joint analysis of 

multiple putative genetic loci that carry similar functions or reside in the same pathway 

can be valuable. 

It is of great interest to evaluate gene x gene interactions in the study of complex 

diseases. The KBAC analyzes multi-site genotypes (or multi-locus genotype), which can 

be beneficial in detecting gene interactions[14]. This property is especially important 

when multiple genetic loci are jointly analyzed in order to aggregate rare variants. 

Interactions are more likely to occur between genes involved in the same pathways. In 

addition, it has been hypothesized that functions of rare variants can be modulated by 

common variants[8]. Since the KBAC uses adaptive weighting instead of a fixed model, 

unknown patterns of gene interaction can be automatically integrated into the analysis. 

Through models motivated by Hirschsprung's disease and breast cancer, it is shown that 

in the presence of interactions the KBAC outperforms other approaches. An additional 

advantage of the KBAC is that kernel weights computed for adaptive weighting provide a 
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measure with which the relative risk of each multi-site genotype can be assessed, for 

further replication studies. 

The RVE method which compares the occurrence of variants which are exclusively 

observed in cases to those which are only observed in controls has the lowest power 

among all tests evaluated. The RVE method possesses undesired statistical properties by 

excluding those variants which are observed in both cases and controls. For all variants 

that are not fully penetrant, when sample size is large, they tend to appear in both case 
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and control samples and would thus be excluded from the analysis using RVE. As a result, 

the RVE method is not asymptotically consistent; with increasing sample size power may 

be even lower than for smaller sample sizes[24]. 

Forward time simulations of locus genetic data incorporated both population 

demographic change and purifying selection. Both factors are known to impact SFS for 

observed rare variants (especially NS variants). Only NS variants were analyzed for 

comparing different methods, as it has been suggested that using NS variants will 

concentrate variations on functionally significant class of alleles, and increase signal to 

noise ratio[24]. There have been a number of studies on complex diseases which 

identified associations with NS variants[3,5,6]. When synonymous mutations are also 

considered in the analyses, higher proportions of non-causal variants may be introduced, 

so the adaptive property and the robustness of KBAC will be more advantageous. 



Whether or not phenotypic effects of causal rare variants are inversely correlated with 

their MAF is unknown. Deleterious functional variants tend to have low frequencies[37], 

but the functional effect of a deleterious mutation may not be associated with the disease. 

On the other hand, for mutations involved in complex traits, they may not be at selective 

disadvantage due to the fact that most complex traits are late on-set and may not cause 

reductions in reproductive fitness. For both types of models, the advantage ofKBAC is 

apparent. WSS and RVE perform better under the variable effects models, when only 

causal variants are present. This is because high risk causal variants are assigned higher 

weights. However, as low frequency non-causal variants also receive larger weights that 

negatively affect power, there are no measurable improvements ofWSS compared to the 

model with fixed genetic effects. On the other hand, due to the adaptive nature ofKBAC, 

the method performs consistently the best under both classes of models. 

The KBAC test statistic does not have a closed form distribution; therefore it is 

necessary to evaluate significance either through permutation or using Monte Carlo 

approximation. For small sample sizes i.e. ~~00 cases and 400 controls, permutation is 

recommended, because it can be more reliable than Monte Carlo approximation. For 

larger sample sizes, Monte Carlo approximation not only controls type I error, but also 

the estimates of power do not differ from those obtained using permutations (data not 

shown). Permutation can be computationally intensive for large samples and/or genome­

wide data where a large number of genetic regions are analyzed; therefore Monte Carlo 
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approximation can be particularly advantageous to evaluate significance due to its 

computational efficiency. 

A well known problem of genetic association studies is spurious findings due to 

population substructure and/or population admixture. For rare variant association 

analysis this problem can occur when study subjects are sampled from different 

populations and the distribution of non-causal variant sites and/or aggregate frequencies 

of non-causal variants differ between the sampled populations. To control for population 

stratifications, KBAC can be coupled with principal components analysis (PCA) [38] 

approach and eigenvector(s) can be included as covariates in the analysis (see 2.4.4 

Controlling for Confounders:). PCA approach has been shown to be a powerful tool to 

accurately infer geographical locations [39,40]. In addition, KBAC can also be used with 

clustering/matching based methods, such as structured association [ 41 ,42] to control for 

population stratification. 

The application ofKBAC as well as WSS, CMC and RVE were further illustrated 

by the analyses of genes in ANGPTL family. In the analyses, all individuals with 

potentially confounding factors i.e. diabetics, alcoholics, and individuals treated with 

lipid lowering drug were excluded. In the original studies individuals were excluded 

based upon both their quantitative trait values and the confounding factors. For example, 

only individuals treated with lipids lowering drugs in the lower quartile of TGs were 
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removed, but those in the upper quartile were included in the analysis. We believe 

excluding individuals based upon their quantitative trait values should not be done 
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instead all individuals meeting the exclusion criteria should be removed from the analysis. 

KBAC performs consistently well, and identifies the most phenotype-genotype 

associations among all the approaches compared. The effects of mutant ANGPTL genes 

on lipoprotein lipase (LPL) have been studied through in vitro functional studies and in 

vivo mice studies. LPL has been known to affect glucose metabolism[43], cholesterol 

level[43-46], and blood pressure[47]. This biological evidence strengthens the support of 

the identified associations. Additionally, the association between variants in ANGPTL4 

gene and triglyceride levels were successfully replicated using an independent 

dataset[5,6]. 

Although the examples given are for the analysis of single regions and interaction 

between two regions, the KBAC can also be used to analyze entire exomes (or genomes). 

In order to control for family-wise error rate (FWER), it is sufficient to use a Bonferroni 

correction, since there will be little or no linkage disequilibrium between rare variants in 

different genes. It is thus not necessary to control the FWER using permutations. If 

exome sequencing is carried out and analysis is implemented gene by gene, given that 

human genome contains ~20,000 genes, a significance level a= 0.05/20,000 = 2.5 x 10-6 

can be applied. The correction necessary for gene based association mapping of rare 

variants is less than the threshold currently used for genome-wide association studies [ 48] 

which is usually a = 5 x 1 o-s . 



The KBAC is a powerful tool to detect main association effects and gene 

interactions in large sequence data sets of candidate genes, exomes and in the future 

entire genomes. The KBAC is implemented in a user friendly R package and is available 

from the authors. 
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2.4. Methods: 

2.4.1. Sample Risk 

Total sample size is denoted as N, among which there are NA affected (A) and 

Nu = N- NA unaffected (U). It is assumed that there are M sites within the candidate 

region where rare variants are observed. The rare variant multi-site genotype for each 

"individual" is contained in a vector G = (g1,g2,···,gM ), with the /h entry being the 

number of rare variants observed at /h site, i.e. g1 has value 2 if the site is homozygous 

for the rare allele, 1 if the site is heterozygous, 0 if the site is homozygous wild-type for 

the common major alleles. It is further assumed that k + 1 distinct multi-site genotype 

with at least one rare variant and G 0 represents the wild-type genotype without any rare 

variants (i.e. a vector of all O's). The sample risk for multi-site genotype G; is defined as 

which is a consistent estimator of the ratio 

R.=N;A 
I N.' 

I 

The ratio increases with disease penetrance of G; and provides a sample based measure 

of the relative risk. 
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The sample risk R; for multi-site genotype G; is modeled using a mixture distribution 

with two components, R; ~ lr;k? (R; )+ (1- lr; )k/ (R;). The component k;0 (R;) represents 

the distribution of the sample risk when multi-site genotype G; is non-causal and is 

known, while k;A(RJ represents the unknown distribution of sample risk when G; is 

causal. Ifthe null hypothesis holds, all genotypes are non-causal, therefore, lr; = 1. Under 

the alternative hypothesis, each genotype can be either causal or non-causal and the 

probabilities 1r; in the probabilistic mixtures are unknown. 

If the mixture distribution under the alternative were known, then each genotype 

could be classified and oniy the causal genotypes would be used in the analysis. 

However, in disease gene mapping, the causality of variants is unknown. Instead oftrying 

to 'estimate' ;r; and k;A which are unknown, each multi -site genotype is adaptively 

weighted using only the known component, k;0 ( •). Each k;0 ( •) is called a kernel. The term 

kernel is borrowed from density estimation, where the density being estimated is spanned 

by a linear combination of kernel functions. The weight each rare genotype carries is 

given by the area under the curve which can be calculated as a generalized integral 

where R; is the estimated sample risk for multi-site genotype G; . 



Thereby, under the null hypothesis, the weights are uniformly distributed and under the 

alternative, greater weights can be placed on the multi-site genotypes that are enriched in 

cases. The genotypes with high sample risks will be given higher weights which can 

potentially separate causal from non-causal genotypes. Instead of classifying genotypes 

in a rigid manner with unknown likelihoods, this method weighs each genotype in a 

continuous fashion using only the known component k;0 (•) from the mixture density. The 

adaptive weighting procedure in the KBAC attains a good balance between classification 

accuracy and the number of parameters which are estimated 

2.4.2. Choice of Kernels 

Three types of kernels can be used to assign weights to each rare genotype; they are 

asymptotically equivalent. For small to moderate sample sizes, binomial and hyper­

geometric likelihoods tend to work best, while for large sample sizes the asymptotic 

normal kernel is computationally efficient. All examples shown were carried out using 

the hyper-geometric kernel. 
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2.4.2.1. Hyper-geometric Kernel 

Under the null hypothesis of no disease/gene associations, conditioning on the 

genotype counts {N; = n; };sk and the count of cases and controls { N A = nA} , the number 

of diseased "individuals" having multi-site genotype G; i.e. n~ = n;~i follows a hyper-

geometric distribution with kernel function given by 

As this distribution is discrete, the integral is replaced by summations, i.e. 

2.4.2.2. Marginal Binomial Kernel 

Under the null hypothesis of no disease/gene association, conditioning on the 

genotype counts {N; = n; };sk, marginally, the number of disease "individuals" with 

genotype G, n: = n,r, satisfies a binomial distribution, n,A - Bino{ n, n: ). Thus, 

The weight as above is obtained through summations, i.e. 
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2.4.2.3. Asymptotic Normal Kernel 

Under the null distribution, the sample risk for genotype G; is asymptotically normal, 

I.e. 

probability density function for a standard normal random variable. The weight for 

genotype G; is given by the integral 

2.4.3. Test Statistics 

Each "individual" with multi-site genotype G; in the sample will be assigned weight 

w; . The weight is given by the kernel functions depending on the estimated sample risk 

R; i.e. w; = K;0(R;). The weights assigned to rare genotypes are aggregated and 

contrasted between cases and controls. 



The KBAC statistic is defined asKBAC ~(t(N,' /N'- N," jN")K,'(fl, l)', 
which compares the difference of weighted multi-site genotype frequencies between 

cases and controls. When a one sided alternative hypothesis is tested, e.g. the enrichment 

of causal variants in cases, a corresponding one sided version ofKBAC can be used, i.e. 

k 

KBAC1 = :L(N;A INA- N;u I Nu )K~(.R;). In this thesis, all power comparisons were 
i=l 

based upon two sided tests for each method. 

Standard permutation procedure is used to obtain empirical p-values for small sample 

sizes and for large sample sizes significance can be obtained through the Monte Carlo 

approximation. 

2.4.4. Controlling for Confounders: 

In order to control for sample heterogeneities such as population 

stratification/admixture, it is desirable to be able to incorporate covariates in the 

association analysis. The kernel weights computed for the KBAC statistic can be used 

with logistic regression. For an individual j with multi-site genotype G;, we define a 
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variable for the kernel weight, i.e. X j = W; • The logistic regression model for association 

testing has the form 

where {z jt } . 1 are the covariates such as age, sex or eigenvectors for genotypes. 
], 

A score statistic to test H 0 : /31 = 0 can be computed in closed form. Due to the 

complexities involved in computing kernel weights, the score statistic does not follow a 

normal distribution. Standard permutation procedure can be applied to evaluate the 

significance. When no additional covariates are controlled, the score function U satisfies 

U = LjxAYj- f)[49]. Simple algebraic manipulations will lead to the equivalence of 

the score function U and the KBAC statistic (up to a constant scalar). In addition, when 

common variants in the gene are also hypothesized to play a role in the etiology of the 

phenotype of interest, their genotypes can be included as co variates and tested in a 

similar manner as for the CMC[20]. 

2.4.5. Monte Carlo Approximation 

2.4.5.1. Monte Carlo Approximation under the Null Hypothesis 

Although using permutation can provide an exact empirical distribution under the null 

hypothesis, it can be computationally prohibitive for large sample sizes and genome-wide 
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association studies. A Monte Carlo method was developed which enables fast 

computation of p-values efficiently. Under the null hypothesis, conditioning on the 

genotype counts, {n1 }1, 1,k and the total number of cases and controls nA, n- nA, the 

number of cases n: with multi-site genotype G1 follows a binomial distribution 

n,' - Binom( n, n: ) . Due to the low frequencies for each multi-site genotype containing 

rare variants, the n: 's are approximately independent of each other. Therefore, Monte 

Carlo simulation can be carried out as shown in algorithm 1 : 

Algorithm 1 

Step 1: Simulate a k -vector of independent binomials: {m1, m2, · · · · · ·, mk), with 

Step 2: Compute U = ( t (mJ nA - (n; - m;)/(n- n' ))K;' (m,fn;))' 

Step 3: Repeat step 1 and step 2 N times and record each KBAC statistic 

calculated as U = (U1, • ·····,UN). Through comparing the KBAC statistic calculated from 
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the original data with the N KBAC statistic from Monte Carlo simulation, the empirical 

p-value is given by p = _!_ fl[U; :?: KBAC]. 
N i=t 

2.4.5.2. Monte Carlo Approximation under the Alternative Hypothesis: Power 

calculations 

In this section, power calculations were carried out empirically; haplotypes were 

generated using forward time simulations and case-control status was assigned via a 

linear log odds model. Power calculations can also be carried out using Monte Carlo 

approximation. Under the alternative hypothesis of disease-gene associations, it is 

assumed that the disease model is known (prevalence and population multi-site genotype 

frequencies P = (p1, p 2 , • • ·, Pk) etc.) Therefore multi-site genotype frequencies for cases 

and controls can be assigned. The set of frequencies in cases and controls is denoted as 

PA ( A A A) pU ( U U U) C d' ' ' h = p1 , P2 , • • ·, Pk , = p1 , p 2 , • • ·, Pk . on 1t1onmg on t e genotype counts, 

{n; }1,;sk and the total number of cases and controls nA, n - nA , the number of cases n;A 

with the multi-site genotype G; follows a binomial distribution, i.e. 

( 
A A ) A • n P; 

n; ~ Bmom n;, ( A) u A A . 
n-n 'P; +n P; 
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The power calculation under significance level a can be carried out in the 

following steps: 

Algorithm 2 

satisfying multinomial distribution i.e. 

For each vector(~,n2 , .. ·,nk,n0) = (n: ,n~, .. ·,n!,n~), we follow step 1 to 4: 

Step 1: Obtain an empirical distribution under the null by following step 1 and 2 

in algorithm 1. The vector of U 's obtained is denoted by U0 and the (1-at empirical 

quantile for U0 is denoted by U~ 

Step 2: Simulate a k -vector with independent binomials: (m1,m2,··· ···,mk ), with 

Step 3: Compute U ~(t.(m,/n' -(n,-mJ/(n-n')}K?(mJnJ)' 

Step 4: Repeat step 2 and step 3 N 2 times and record each KBAC statistic 

calculated as {jA = (u1A , ...... ,U~2 ). By comparing the KBAC statistic calculated from 
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Monte Carlo simulation with U~ , the empirical power conditional on 

(n!,n2,···,nk,n0)= (n:,···,n!,n~) is given by 1- /3; =-1-~)[u: ~ u~]. 
N2 J=I 

A 

Step 5: The estimation of unconditional power is given by averaging P;' s , i.e. 

2.4.6. Rare Variant Analysis Methods Which Are Compared to the KBAC: 

The power of WSS, CMC and RVE were compared to KBAC in the thesis. A sketch 

of each method is provided here. More detailed descriptions can be found in the cited 

original reference. WSS was developed by Madsen and Browning[21]. It was designed to 

test for the differences of the number of mutations between cases and controls. Each 

mutation was weighted according to its frequency in controls, and lower frequency 

variants will be assigned higher weights. The statistical significance for the WSS statistic 

is obtained empirically through permutations. 

CMC was developed by Li and Leal[20]. When applied to testing rare variant 

associations, multiple rare variants in the gene region are collapsed and carrier 

frequencies are compared between cases and control using Pearson's Chi-square test. The 



RVE [3,4] was first introduced in the analysis of sequence data from Dallas Heart Study. 

It compares frequency of carriers of rare variants that are found exclusively in cases or 

controls using Fisher's exact test. 

2.4. 7. Generation of Genetic Data: 

2.4.7.1. Simulation of Demographic Model and Selections: 

To evaluate the performance ofKBAC, population genetic data was generated using 

forward time simulation[32]. Genetic data from two populations, AA and EA were 

generated. The parameters for demographic changes and selection coefficients were 

estimated in Boyko et al[33]. For AA, a simple two-epoch model was used. Purifying 

selection was also simulated, with s and 2s being the selective disadvantage of 

heterozygous and homozygous new mutations. Scaled fitness effect r = 2Ncurrs (where 

Ncurr is the current effective population size) is assumed to follow a gamma distribution, 

which was shown to be parsimonious and fit the data well. A mutation rate of 

f.ls = 1.8 x 1 o-s per nucleotide per generation is assumed. On average, the coding region 

for human gene is 1500 base pairs (bp) long[50,51], therefore 1500 bps was used in the 

simulation to specify the locus scaled mutation rate. 100 haplotype pools were generated. 

When generating samples, one pool is randomly chosen for each replicate. The multi-site 

genotype of an "individual" is obtained by pairing two randomly sampled haplotypes. 
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2.4. 7 .2. Generation of Phenotype Data with only Main Effects: 

The disease status of each "individual" is assigned based upon their multi-site 

genotypes consisting of only those rare NS variants (MAF ~ 1 %). Fifty-percent of the 

rare NS variant nucleotide sites were selected to be causal, where the rare mutant allele 

has an effect on the disease odds and the remaining rare variant sites are non-causal with 

no phenotypic effect. Two types of penetrance models were evaluated. In the first type of 

model, the genetic effects of causal variants are constant (OR=3) regardless of their allele 

frequencies. For the second class of models, the genetic effects are inversely correlated 

with the MAFs. Disease odds of individual rare variants varies in the range of2 ~ 20. As 

a majority of rare variants are of extremely low frequencies, most of the uncovered rare 

variants in a case control sample have ORs between 2 and 4. This is compatible with 

surveys for multi-factorial diseases[8]. For both classes ofpenetrance specifications, a 

linear log odds model was applied to assign the affection status for each individual. 

Assignment of disease status continues until a sample of 1000 cases and 1 000 controls is 

obtained for each replicate. To evaluate the effects ofmisclassification due to non-causal 

variants, scenarios were considered where 20%, 40%, 60%, 80%, and 1 00% of the non­

causal variants with all of the causal variants were included in the sample. Additionally to 

evaluate the effect of misclassification due to exclusion of causal variants, 20%, 40%, 

and 60% ofthe causal variants were excluded from the analysis, while no non-causal 

variants are included in the analysis. 
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2.4.7.3. Generation of Data with Gene Interactions 

To evaluate the within gene interaction and between gene interaction models, 

1000 cases/1000 controls and 300 cases/300 controls were generated for each replicate, 

respectively. For each model, 25% to 100% of the simulated rare variant sites are causal 

while the remaining rare variant sites are non-causal. For the within gene interaction 

model, one site with a common variant [MAF >20%] is randomly selected. The disease 

status of each "individual" is assigned based upon their multi-site genotype using a linear 

log odds model. The genetic effects of causal rare variants are modulated by the alleles at 

the chosen common variant site. Each causal rare variant increases disease risk with an 
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OR of3 only ifthe rare variant is on the same haplotype as the minor allele from the 

common variant site, otherwise the OR=l. For the between gene interaction model, two 

unlinked genes are simulated for each "individual". The disease status of each "individual" 

is assigned based upon their joint multi-site genotype at high risk gene 1 and low risk 

gene 2 using a linear log odds model. Each causal rare variant in gene 2 increases disease 

risk with an OR of2.0 if there are no causal rare variants in gene 1; however, if there are 

rare causal variants in gene 1, the causal variants in gene 2 do not increase risk and each 

causal variant in gene 1 increases disease risk with an OR of 4.0 regardless of the 

genotype at gene 2. 



2.4.8. Analysis of Energy Metabolism Traits and Rare Variants in ANGPTL 3, 4, 

5and6 

The DHS dataset is a multi-ethnic population based probability sample [ 1830 AA, 

601 Hispanics (H), 1045 EA, and 75 from other ethnicities] from Dallas County residents 

whose lipids and glucose metabolism have been characterized and recorded[36,52]. In 

order to investigate how sequence variations inANGTPL3, 4, 5 and 6 influence energy 

metabolism in humans, coding regions of the four gene were sequenced using DNA 

samples obtained from 3551 participants in DHS[5]. A total of348 nucleotide sites of 

sequence variations were uncovered in all four genes. Most of them are rare and 86% of 

them have MAFs below 1 %[5]. Individuals with diabetes mellitus, heavy alcohol use, or 

who were taking lipids lowering drugs were removed from the all the analyses because 

these factors could be potential confounders. Additionally individuals who do not belong 

to the AA, H or EA ethnic groups were removed from the analysis. Following the 

original study[5], and to control for potential confounders[ 53] we stratified the sample by 

race, sex, and quantitative trait level. For each quantitative trait, to test if the rare variants 

are enriched in the expected extremes, individuals from bottom and top quartiles are used 

to mimic a case-control type of design. The KBAC, WSS, CMC and RVE were applied 

to carry-out the association analysis. 
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Figure 1: Quantile-Quantile (QQ) plot of p-values 

P values were obtained from Monte Carlo approximation (left panel), permutation 
(right panel) and theoretical expectations. P-values were estimated using 10,000 
iterations and 10,000 permutations for Monte Carlo approximation and permutation, 
respectively. Four sample sizes were investigated: 200 cases/200 controls; 300 cases/300 
controls, 400 cases/400 controls, and 500 cases/500 controls. A total of 3,000 replicates 
were used to generate the QQ plot for each sample size. 
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Figure 2: Impact of misclassifications under main effects model with iiXed genetic 
effects using simulated SFS for AA. 

Each causal rare variant has an OR= 3.0. Power comparisons were made for the 
KBAC, WSS, CMC, and RVE when 0%,....., 60% of causal rare variants are excluded from 
the analysis (left panel) and when 0% ,....., 100% of non-causal rare variants are included 
(right panel). A sample size of 1000 cases and 1000 controls was used for each scenario. 
P-values were empirically estimated using 5,000 permutations and power was evaluated 
for a significance level of a= 0.05 using 2,000 replicates for each scenario. 
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Figure 3: Impact of misclassifications under main effects model with variable 
genetic effects using simulated SFS for AA. 

The disease odds for causal variants are inversely correlated with their MAFs and 
within the range of2 ,...., 20. Power comparisons were made for the KBAC, WSS, CMC, 
and RVE when 0% ,...., 60% of causal rare variants are excluded from the analysis (left 
panel) and when 0% ,.._, 100% of non-causal rare variants are included (right panel). A 
sample size of 1000 cases and 1000 controls was used for each scenario. P-values were 
empirically estimated using 5,000 permutations and power was evaluated for a 
significance level of a= 0.05 using 2,000 replicates for each scenario. 
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Figure 4: Power comparisons for within gene (left panel) and between gene 
interaction model (right panel) with simulated SFS for AA. 
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Power was evaluated for the KBAC, WSS, CMC and RVE. A sample size of 
1000 cases and 1000 controls were used for the within interaction model, and a sample 
size of 300 cases and 300 controls were used for the between gene interaction model. 
Scenarios with different proportions of causal variants were considered. P-values were 
empirically estimated using 5,000 permutations and power was evaluated for a 
significance level of a= 0.05 using 2,000 replicates. 
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Table 1 :Rare variant summary statistics. 

The summary statistics are displayed for the generated replicates under main effects 
model with fixed and variable genetic effects using simulated SFS from AA population. 

Scenarios with different proportions of causal variants excluded and scenarios with 
different proportions of non-causal variants included were considered. The table displays 

for a given sample, the information on a) the average proportion of rare NS variant 
carriers among cases and controls; b) the mean number of rare NS variant sites; c) the 

mean number of rare NS variant sites that are exclusive to cases or controls; d) the 
average proportion of case and control rare NS variant carriers with more than one rare 
variant. For each scenario, a sample size of 1,000 cases and 1,000 controls were used. 

2,000 replicates were generated for each scenario. 

46 



47 

Scenario Rare Variant Mean number Mean number of Proportions of 
Carrier of Rare Variant Rare Variant Sites Rare Variant 
Frequencies in Sites Observed Carriers with More 
Cases/Controls Exclusively in than One Rare 

Cases/Controls Variant in 
Case/Controls 

Phenotypic Model with Variable Genetic Effects Inversely Correlated with MAFs 

Percentage of 20% 0.033/0.014 5.791 2.978 0.013/0.006 
Causal 
Variants 40% 0.025/0.011 4.396 2.285 0.009/0.004 
Excluded 

60% 0.017/0.008 3.048 1.556 0.006/0.003 

Perc 0% 0.038/0.017 6.942 3.609 0.016/0.006 
entage of 

Non-causal 20% 0.041/0.02 7.614 3.859 0.018/0.008 
Variants 
Included 40% 0.044/0.023 8.501 4.274 0.019/0.009 

60% 0.048/0.027 9.535 4.645 0.021/0.012 

80% 0.051/0.03 10.539 5.044 0.022/0.014 

100% 0.055/0.034 11.665 5.53 0.025/0.016 

Phenotypic Model with Fixed Genetic Effects Unrelated to MAFs 

Perc 20% 0.034/0.014 4.455 1.797 0.014/0.005 
entage of 
Causal 40% 0.027/0.011 3.449 1.39 0.01/0.004 

Variants 
Excluded 60% 0.019/0.008 2.36 0.956 0.006/0.003 

Perc 0% 0.041/0.017 5.325 2.158 0.017/0.007 
entage of 

Non-causal 20% 0.043/0.019 5.996 2.439 0.018/0.008 
Variants 
Included 40% 0.047/0.023 7.058 2.875 0.02/0.01 

60% 0.05/0.027 8.007 3.259 0.022/0.013 

80% 0.054/0.03 8.931 3.565 0.024/0.013 

100% 0.057/0.034 10.047 4.132 0.026/0.015 
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Table 2 Rare variant summary statistics. 

The summary statistics are displayed for the generated replicates under within 
gene interaction model and between gene interaction model using simulated SFS from 
AA population. Scenarios with different proportions of causal variants were considered. 
The table displays for a given sample, the information on a) the average proportion of 
rare NS variant carriers among cases and controls; b) the mean number of rare NS variant 
sites; c) the mean number of rare NS variant sites that are exclusive to cases or controls; d) 
the average proportion of case and control rare NS variant carriers with more than one 
rare variant. For within gene interaction model, a sample size of 1,000 cases and 1,000 
controls were used, and for the between gene interaction model, a sample size of 300 
cases and 300 controls were used. 2,000 replicates were generated for each scenario. 
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Mean number Proportions 

Mean of Rare of Rare 

Rare Variant Number of Variant Sites Variant 

Scenario Carrier Frequencies Rare Observed Carriers with 

in Cases/Controls Variant Exclusively in More than 
One Rare Sites Cases/Control Variant in s Case/Controls 

Between Gene Interaction Model 

Gene I 0.049/0.035 7.348 3.6I2 0.022/0.0IS 

5% 
Gene2 0.038/0.035 7.023 3.39 O.OI8/0.0I6 

Gene I 0.065/0.035 7.699 3.749 0.029/0.0IS 

Percentage 0% 0.042/0.034 7.I74 3.475 O.OI9/0.0I6 
of Causal 

Gene2 

Variants: Gene 1 0.079/0.034 8.146 4.024 0.035/0.0IS 

5% 0.046/0.034 7.259 3.509 0.021/0.0IS Gene2 

Gene I 0.096/0.034 8.622 4.276 0.043/0.0IS 

00% 0.049/0.035 7.432 3.553 0.023/0.016 Gene2 

Within Gene Interaction Model 

25% 0.037/0.032 9.109 2.999 O.OI6/0.014 

Percentage 50% 0.043/0.032 9.295 3.026 0.02/0.014 
of Causal 
Variants 75% 0.048/0.03I 9.352 3.003 0.022/0.014 

100% 0.055/0.032 9.627 3.042 0.028/0.0I4 



Table 3: Association analyses of the ANGPTL 3,4,5 and 6 gene variants with human 
energy metabolism phenotypes. 
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Nine phenotypes were analyzed: triglyceride (TG), high density lipoprotein 
(HDL), low density lipoprotein (LDL), very low density lipoprotein (VLDL), total 
cholesterol, glucose, body mass index (BMI), and systolic (SysBP) and diastolic (DiasBP) 
blood pressure. Analyses were carried-out including only NS variants. The KBAC, WSS, 
and CMC were used to analyze each trait and nominally significant p-values are indicated 
with an asterisk. The p values for KBAC, WSS and RVE were obtained empirically using 
10,000 permutations, while the p-value for CMC was analytically calculated. 
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Numbers 
Number of 
Carriers of 

of Rare 
Carriers Variants 

Gene 
of Rare 

Observed 
Phenotype Name KBAC wss CMC RVE Variants Exclusively 

Observed 
in Upper 

in either 

/Lower 
the Upper 

Quartiles 
or Lower 
Quartiles 

ANGPTL3 0.556 0.832 0.915 0.746 47/48 8/6 
BMI ANGPTL4 0.999 0.331 0.412 0.104 62 I 71 2/7 

ANGPTL5 0.001* 0.003** 0.006** 0.263 83/51 511 
ANGPTL6 0.128 0.189 0.217 0.410 40/29 915 
ANGPTL3 0.237 0.805 0.759 0.950 53 I 49 616 

DiasBP ANGPTL4 0.784 0.437 0.445 0.086 56/63 3/9 
ANGPTL5 0.432 0.590 0.652 0.636 71 I 65 314 
ANGPTL6 0.045* 0.084 0.088 0.405 49/33 12 I 7 
ANGPTL3 0.455 0.965 1.000 0.919 49148 716 

SysBP ANGPTL4 0.409 0.835 0.789 0.935 71/67 616 
ANGPTL5 0.106 0.498 0.602 0.053 77 I 71 10/2 
ANGPTL6 0.473 0.349 0.346 0.510 34/42 11 I 7 
ANGPTL3 0.950 0.299 0.326 0.906 40149 717 

Cholesterol ANGPTL4 0.260 0.503 0.515 0.123 68/59 419 
ANGPTL5 0.353 0.697 0.783 0.778 68/63 817 
ANGPTL6 0.348 0.573 0.628 0.052 38 I 33 1012 
ANGPTL3 0.792 0.894 1.000 0.855 46146 817 

LDL ANGPTL4 0.508 0.695 0.709 0.064 66160 4/11 
ANGPTL5 0.544 0.908 0.860 0.278 73/70 1/4 
ANGPTL6 0.307 0.745 0.813 0.388 39/36 915 
ANGPTL3 0.834 0.992 1.000 0.237 50/51 2/7 

HDL ANGPTL4 0.021* 0.041* 0.045* 0.681 84/62 716 
ANGPTL5 0.077 0.115 0.123 0.170 85167 511 
ANGPTL6 0.143 0.211 0.239 0.513 43/33 619 

TG ANGPTL3 0.015* 0.053 0.058 0.312 34152 6 I 11 
ANGPTL4 0.004** 0.005** 0.006** 0.087 46176 2/8 
ANGPTL5 0.212 0.678 0.852 0.165 62164 1/5 
ANGPTL6 0.683 0.664 0.709 0.057 35132 15/6 
ANGPTL3 0.028* 0.047* 0.061 0.352 35 I 53 7112 

VLDL ANGPTL4 0.001** 0.006** 0.010* 0.141 49180 3/9 
ANGPTL5 0.265 0.941 1.000 0.263 67/68 1/5 
ANGPTL6 0.706 0.756 0.806 0.140 35/34 12 I 6 
ANGPTL3 0.485 0.589 0.612 0.690 49/55 511 

Glucose ANGPTL4 0.872 0.549 0.659 0.706 75167 611 
ANGPTL5 0.407 0.896 0.862 0.021* 76172 119 
ANGPTL6 0.196 0.198 0.239 0.026* 44132 14/3 



52 

Chapter 3 

Replication Strategies of Rare Variant 
Complex Trait Association via Sequencing 



3.1. Background: 

Currently there is worldwide interest in studying the role of rare genetic variants 

in the etiology of complex traits. A number of studies provide evidence that rare variants 

are involved in the etiology of complex diseases and quantitative phenotypes[1,3-6]. 

Indirect association mapping using tagSNPs is underpowered to detect associations with 

rare variants due to the weak correlations between higher frequency tagSNPs and rare 

variants[20]. Instead direct association mapping through sequencing candidate genes, 

exomes or entire genomes needs to be applied, where variants are discovered and tested. 

With the rapid development of cost effective next generation sequencing technologies 

such as Illumina HiSeq, ABI SOLiD, and Roche 454 as well as target enrichment 

methods, sequencing-based genetic association studies of complex traits have been made 

possible. For targeting large numbers of genetic regions, hybrid based methods such as 

on-array or in-solution capture with NimbleGen or Agilent products have been very 

beneficial[54-56]. When targeting small genetic regions is of interest, such as in 

candidate genes, capture methods that use molecular inversion probes are 

advantageous[56]. Although sequencing only captured genetic regions can be cost and 

time effective, high sequencing associated cost is still a concern, especially for 

sequencing a large number of individuals at high coverage which is necessary to 

accurately detect rare variants. 

Another constraint of the application of next generation sequencing to association 

studies is error rate. Relatively high false variant discovery rates have been reported for 
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short reads technologies even at high coverage, e.g. Illumina Solexa (6.3%) and ABI 

SOLiD (7.8%)[57]. Given these concerns, there is interest in exploring alternative 

technologies after the variant discovery stage to extract information from targeted genetic 

regions, such as customized genotyping or the development of an exome genotyping chip. 

In this chapter, the plausibility of applying customized genotyping and next 

generation sequencing in replication studies is explored from a combined genetic 

epidemiology and population genetics perspective. The power of the two replication 

strategies is dependent on the percentage of causal variants sites that were uncovered for 

the gene region in the stage 1 sample. If the stage 1 sample is small, there can be an 

advantage to sequence-based replication, since many low frequency variants may not 

have been observed. However, the difference between variant-based and sequence-based 

replication strategies will diminish if a majority of causal variants can be uncovered in 

stage 1. Discovery of SNPs using population-based samples have been addressed 

previously[58,59]. However, in these studies the population genetic models employed 

were overly simplistic; they did not incorporate complex human demographic history and 

purifying selection which are well known factors that can affect rare variant site 

frequency spectrums[37]. A rigorous population genetic model for Africans was used 

with parameters estimated using sequence data[33]. Together with realistic phenotypic 

models motivated by complex traits, we investigate the probability of uncovering rare 

variants in the context of case-control studies and demonstrate their impact on the relative 

performances of sequence and variants based replication. 



Additionally, the relative power of the two replication strategies will also be 

affected by the error rates of next generation sequencing and customized genotyping 

technologies which are employed. To assess the impact of sequencing error on the power 

of rare variant association mapping, a novel sequencing error model was introduced. The 

parameters of the sequencing error model were estimated according to reported false 

positive and false negative variant discovery rates from commonly used next-generation 

sequencing platforms[ 54,55,57 ,60]. 
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It is demonstrated through extensive simulations that the sequence-based 

replication is more powerful than variant-based replication for both small and large scale 

studies. In the ideal scenario where sequencing and genotyping are both of perfect quality, 

for small scale studies with several hundred cases and controls, a large proportion of 

variant nucleotide sites will not be uncovered. However, uncovered rare variants in small 

scale genetic studies can account for over 80% locus population attributable risk (PAR). 

Therefore the advantage in power can be very small. For large scale studies with 

thousands of cases and controls, over 90% causative variant nucleotide sites can be 

uncovered and nearly 100% locus PAR can be explained by the uncovered rare variants. 

Therefore, genotyping can be a temporal solution for replicating stage 1 studies if stage 1 

and 2 samples are drawn from the same population. Resequencing based replication 

studies have an irreplaceable advantage in that novel variants can be discovered. This 

benefit can be important when the stage 1 sample is of small scale. In the presence of 



sequencing errors, genotyping errors and non-converted genotyping assays, the relative 

performances of two replication strategies remain largely unchanged. We show that the 

power for sequencing based association mapping is only slightly impacted by currently 

attainable levels of error rates, for example, false positive rate/false negative rates of 

6.3%/1 %[57] or 10%/5%[61]. 

In order to further illustrate the relative performances of sequence-based and 

variant-based replication, phenotype data on energy metabolism traits and sequence data 

from the Dallas Heart Study on the ANGPTL 3, 4, 5, and 6 genes[5,6] were analyzed 

using both the CMC and WSS. The results provide solid support for the simulation 

experiments. 
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3.2. Material and Methods: 

It is assumed that for a gene region of length L there are S variant sites in the 

study population. The major allele at site sis denoted by as, whereas the minor allele is 

labeled As. The underlying L -site genotype of an "individual" i is coded by a vector, i.e. 

X;= (xJ ,···,xf ,xf+1 ,x; ). For notational convenience, sites l,···,S are assumed to be 

variant sites in the population. Dominant genotype coding is adopted for variant 

nucleotide sites, i.e. 

X s,. __ {o1 if the genotype at nucleotide site s is As as, or As As S 
's = 1, ... ' 

otherwise 

The genotypes at monomorphic sites are identically coded as 0, i.e. 

x; = 0, i = S + 1, .. ·, L 

Following the approach in Li and Leal[20], the collapsed genotype is introduced 

using an indicator function 8(• ), i.e. 

The affection status for individual i is encoded by an binary variable I;, which 

takes value 1 if the individual is affected, and 0 otherwise. 
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3.2.1. Probabilistic Model for Sequencing Errors: 

Due to the presence of sequencing errors, the observed genotype of an "individual" 

i may be different from the true underlying genotype. The observed genotype from 

sequence data is given by zi = (z: ,z; ,···,z{ ), where 

s {1 z -
i- 0 

if the genotype at nucleotide site sis called as A • a•, or As A • 

otherwise 

The corresponding collapsed genotype Z; is similarly defined as 

Two types of sequencing error events are given probabilistically[57]. First, a false 

positive event is defined as {z; = 1,x; = 0 }, where a non-variant genotype at nucleotide 

site s is falsely called a variant. The error rate that corresponds to the false positive event 

is defined as the conditional probability e~1 = P(z; = 11 x; = 0). Second, a false negative 

event can be defined as {z; = 0, x; = 1} where a variant at site s is falsely called 

homozygous for the reference allele. Its error probability is defined as 
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To measure and report sequencing error at a rare variant nucleotide site, it is 

common to use false positive discovery rate and false negative error rate[54,55,57,60,61], 

I.e. 

Empirical estimates of false positive and false negative rates are usually obtained 

by comparing next-generation sequencing with less error prone technologies, e.g. Sanger 

sequencing or customized genotyping [57,61]. 

Using reported false positive and false negative rates, base-pair error rates can be 

calculated as 

According to formula (3.2) and simulated site frequency spectrums, a 

combination of FP = 6.3%, FN = 1.0% corresponds to a locus average sequencing error 

rate of P(Z; = 1IX; = 0 )= 0.18% and P(Z; = OIX; = 1) = 1%. 
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Based on the above sequencing error model, the distribution for the number of 

carriers of rare variants at each site (MA = (m~,m~,-··,m~}.Mu = (m~,m'b,···,mn) can be 

analytically derived. For a sample withRA cases and Ru controls, m~,m~follow 

binomial distribution i.e.m~ = ""'· o(x: = 1,r; = 1)~ Binom(RA,p~), L...Jz,s 

m~ =""' o(x: = 1,¥; = 0 )~ Binom(Ru,P~ ), where parameters L...Jl,S 

- - ( s ) - - ( s ) are given by P A - P A s=l,-··,L' Pu - Pu s=l.-··,L 

{ p~ = P(z; = 11 r; = 1)= (1- e10)x P(x: = 11 r; = 1)+ e01 x P(x: = 0 I r; = 1) s = 1 ... L 
p~ = P(z; = 11 r; = 0 )= (1- e10 )x P(x: = 11 r; = 0 )+ e01 x P(x: = 0 I r; = 0} ' ' 

3.2.2. Models of Genotyping Errors: 

It is assumed that a set K of rare variant sites are uncovered in the stage 1 sample. 

Rare variants from sites K are genotyped and followed up in the stage 2 replication 

sample. Although the accuracy for commercially available genotyping array is high, the 

error rate for customized genotyping is not negligible[62]. Additionally, assays on 

customized probes may have a low conversion rate. 

The observed locus genotype from genotyping data is denoted by 

- ( 1 2 L) TV;= w;, w; ,···, w; , where 

w' = {1 if the genotype at nucleotide sit~ sis called as A' a', or A' A', s E K (3 .3) 
' 0 otherwise 
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The corresponding collapsed genotype w; is similarly defined. For a converted 

assay, the genotyping error is traditionally measured as sample error rate (SER)[63,64], 

i.e. SER. =P(w;• =1,Xt =011~ =1)+P(w;• =O,Xt =111~ =1}seK,where I~ is an 

indicator for an assay being successful (e.g. converted with genotype calls generated) at 

nucleotide site s. Similar to sequencing errors, the genotyping error rates at converted 

probes are defined as: 

fo~ = P(w;• = 11 Xt = 0,1~ = 1} .t;~ = P(w;• = 0 I Xt = 1,1~ = 1}s E K. (3.4) 

To facilitate comparisons of the two replication strategies, an error ratio is 

introduced to measure the relative error rates for sequencing and customized genotyping, 

i.e. ER = Ls~K J;~ = Ls~K /;1 • When the two replication strategies are compared in the 
"' e• "' e• .L..is=1 10 .L..is=1 01 

presence of imperfect technologies, two error ratios are used, i.e. ER = 1 or ER = 0.5 . 

The rate of success for a given assay at site s, i.e P(l~ = 1) is assumed to be 90%. 

For a genotyped sample with RAcases and Ru controls, the observed counts for 

carriers of variants at each nucleotide site are denoted by N A = (n~ )seK , N u = (n~ )seK , 

which follow binomial distribution i.e. n~ ~ Binom(R A, q~), and n~ ~ Binom(Ru, q~) . 

The parameters ij A = (q~ )seK, iiu = (q~ )seK are provided by 



{ q~ = P(zt =II Y, = 1)= (1- _t;~)x P(I~ = I)xP(X;' =II Y, = 1)+ /0~ xP(I~ = I)xP(X;' = Ol Y, = 1) 8 e K (3.5) 
q~ =P(Z;' =liY, =0)=(1- _t;~)xP(I~ =I)xP(X;' =liY, =0)+ /J1 xP(I~ =I)xP(X;' =OIY, =OJ 

3.2.3. Power calculation for sequence-based and variant-based replication: 

Several test statistics for mapping rare variants have been proposed, such as 

combined multivariate and collapsing (CMC) [20], weight sum statistic (WSS) [21]. 

They have been shown to be more powerful than multivariate methods such as Hotelling 

T 2 • Here, both CMC and WSS are used in the comparisons of variant-based and 

sequence-based replication. The CMC has a closed form distribution, which makes it 

computationally efficient for candidate gene, exome- and genome-wide studies. The 

power of the permutation-based WSS method was also evaluated for small scale 

candidate gene studies. For all the scenarios evaluated, WSS is more powerful than CMC, 

but the comparisons for the two replication strategies are largely unaffected by the choice 

of the test statistics. 

For both sequence and variants based replication with CMC, the association tests 

in both the stage 1 and stage 2 studies are implemented using Fisher exact test which 

compares rare variant carrier frequencies between cases and controls. When the WSS 

statistic is used, to guarantee that type I error is well controlled, p-values are estimated 

empirically based upon 2000 permutations for each replicate. Due to computation 

intensity of estimating small empirical p-values, the WSS was not used for the evaluation 

of power to replicate large scale studies. 
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The test statistics used for the stage 1 and sequence based stage 2 studies are 

denoted by T 81 and req respectively· The power of successfully replicating a true 

significant association from the stage 1 study is investigated, i.e. 

stage 1 and the replication study. Since the statistics are conditionally independent given 

the parameters p A and Pu , the following equation must be satisfied, 

The power for "variant-based" replication is given by 

statistics Tvar, T81 are not conditionally independent. Under the alterative hypothesis, the 

distribution of Tvar depends on K which is the set of rare variant sites uncovered in stage 

1. As it is impossible to enumerate the parameter space of (pA,pu,{jA,iju,K), an 

efficient Monte Carlo algorithm was developed to calculate replication power for both 

sequence-based and variant-based strategies. 

For notational convenience, the ratio of total frequencies of uncovered rare 

variants to the total frequencies of all locus rare variants (including those that are not 

uncovered) is denoted by fMAF = LseK P(X;' = 1 )/:L:=I P(X;' = 1} 



In addition, the ratio 

represents the proportion of locus PAR that can be explained by the uncovered 

causal variants. This is asymptotically equivalent to the epidemiological definition of 

PAR which is the reduction of disease incidence rate that would be observed if the 

population were unexposed i.e. ifthere were no carriers of locus causative variants. 

The power comparisons were performed for both the small and large scale genetic 

studies. In order to have enough power to detect associations, 250 cases/250 controls or 

500 cases/500 controls were used for both the stage 1 and 2 samples in a small scale 

study. For the scenario of a large scale study, 2000 cases/2000 controls, as well as 3500 

cases/3500 controls were examined. For small scale studies, examples are given using 

significance levels as1 = as2 = 0.05. The commonly accepted exome-wide significance 

level a st = a s2 = 2.5 x 1 0-{; is used for large scale genetic studies, which is based upon 

Bonferroni corrections for testing 20,000 genes. The empirical power for each scenario 

was estimated using 10,000 replicates. 

3.2.4. Simulations of Complex Demographic Models and Selections: 

To compare relative efficiencies of sequence-based and variant-based replication 

strategies, population genetic data was generated using forward time simulations[32]. 

Genetic data for the African population was generated. The parameters for demographic 
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changes and selections were estimated in Boyko et al.[33] The demographic change for 

the African population is described using a two epoch instant change model. Purifying 

selection was also simulated, with u and 2u being the selective disadvantage of 

heterozygous and homozygous new mutations. Scaled fitness effect y = 2Ncurru (where 

Ncurr is the current effective population size) is assumed to follow a gamma distribution, 

i.e. 

r=-x,x~ ~:)xa-lexp(-bx1 where a=0.184,b=8,200 (3.7) 

The model was shown to be parsimonious and fit the data well. A mutation rate of 

lls = 1.8 x 1 o-s per nucleotide site per generation is assumed. Since the average length for 

human gene coding region is 1500 base pairs (bp) long[50,51], L = 1500bps was used in 

the simulation to specify the locus scaled mutation rate. Based upon the above parameter 

specification, 100 sets of rare variant site frequencies were generated. As suggested by 

Kryukov et al.[24], only non-synonymous (NS) variants were used in the analysis in 

order to increase the signal to noise ratio, and reduce the negative impact of non­

functional variants on power. 

3.2.5. Generations of Phenotypic Model: 

Phenotypic effects of rare NS variants are assumed independent of their 

fitness[50]. 50% ofthe rare NS variants (with MAF ~ 0.01) are randomly picked to be 

causal, and affect the binary phenotype of interest. Based upon surveys of multi-factorial 
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diseases[8], two types of phenotypic models were considered. For the first type of model, 

the genetic effects of causal variants are inversely correlated with their MAFs. It is 

assumed that causal variants with the smallest (or largest) MAFs (i.e. Pmin or Pmax) have 

largest (or smallest) log odds ratio (log-OR) of Pmax (or Pmin) respectively. For a causal 

variant with MAF P;, the log-OR follows the interpolation relation: 

/3; = Pmax + (Pmax- PmiJf(pmax- Pmin)x (pi- PmiJ, i E c. The ORs for causal variants 

thus satisfy an exponential relationship with their MAFs. A choice of 

Pmax = log(10),f3min = log(2)was used. For the second type of model, each causal variant 

has equal disease odds, which is given by /3; = log(3 ), i E C . Under both types of models, 

the affection status for an individual with multi-site genotype X is assigned by the 

following model: 

A baseline penetrance of0.01 is assumed, which gives /30 = log(0.01/(1- 0.01)). 

3.2.6. Applications to the Dallas Heart Study Sequence Data: 

In order to illustrate the relative efficiency of sequence-based versus variant-based 

replication strategies, a data set from DHS was analyzed. The dataset is a multi-ethnic 

population based sample [1830 African Americans (AA), 601 Hispanics (H), 1045 

European Americans (EA), and 75 individuals from other ethnic groups] from Dallas 

County residents whose lipids and glucose metabolism have been characterized and 



recorded[36,52]. In order to investigate how sequence variations inANGTPL3, 4, 5 and 6 

influence energy metabolism in humans, coding regions of the four genes were 

sequenced using DNA samples obtained from 3551 participants in DHS[5]. A total of 

348 nucleotide sites of sequence variations were uncovered in the four genes. Most of 

them are rare and 86% ofthem have MAFs < 1%[5]. Nine phenotypes were measured 

and tested for their associations with rare genetic variants, i.e . .Qody mass index (BMI), 

diastolic .Qlood Qressure (DiasBP), systolic .Qlood Qressure (SysBP), total £holesterollevel 

(TCL), low gensity lipoprotein (LDL), high gensity lipoprotein (HDL), triglyceride (TG), 

yery low gensity lipoprotein (VLDL) and glucose. As a first analysis, to mimic the 

scenario of stage 1 study, individuals with quantitative trait values in the top and bottom 

10% of the phenotypic distributions were used to form a "case-control" dataset. 

Individuals with intermediate quantitative trait values, i.e. in the range of 10-35% and 

65%-90% were used as a replication sample. Sequence-based and variant-based 

replications were compared for the chosen replication dataset. 

Among the identified significant results, the association between TG level and 
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rare variants in the ANGPTL4 gene was supported by in-vitro functional studies and was 

replicated using an independent dataset[5,6]. It is highly likely to be a true association. 

Therefore a second experiment was performed to estimate the "power" for replicating the 

association between TG and rare variants in the ANGPTL4 gene. Individuals with TG 

levels in the range of top 35% and bottom 35% were used to form a case-control "cohort". 

50% of the cases and 50% of the controls from the "cohort" were randomly selected as 

the dataset for the stage 1 study. The remaining 50% of cases and controls are used as the 



stage 2 replication sample. The process was repeated 1000 times, and for each replicate, 

sequence-based and variant-based replication were performed. The fraction of significant 

stage 1 studies that were successfully replicated in stage 2 was reported as empirical 

replication power. Association tests with WSS and CMC were both performed. 
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3.3. Results: 

3.3.1. Discovery Rate of Rare Variant Sites and Frequencies: 

Rare variant discovery rates were compared under the assumption that sequencing 

data is of perfect quality (Table 4). When sequencing is not perfect, the fractions of 

uncovered rare variants will be lowered by false negative rate and additionally a portion 

of observed variants can be false positives. 

When a variable effect model is assumed, relatively low proportions of variant 

nucleotide sites are uncovered for small scale studies. For example, in a sample of250 

cases/250 controls, 43.2% of all variant nucleotide sites and 59.9% of causal variant 

nucleotide sites are uncovered. On the other hand, a fairly large portion of locus PAR 

(91. 7%) can be explained by the uncovered variants. When a fixed effect model is 

assumed, the results are very similar (Table 4). A slightly lower portion of variants can be 

uncovered but the uncovered variants explain a higher fraction of locus PAR. 

When a sample of 500 cases and 500 controls was analyzed, a higher proportion 

of variant sites are uncovered, however, considerable fractions of rare variant sites in the 

"population" are still not observed in the sample for both fixed and variable effects 

models. For example, when the fixed genetic effects model is assumed, only 45.5% of 

causal variant sites are uncovered. 
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When an exome-wide significance level a 81 = 2.5 x 1 o-6 is used, a much larger 

sample size is needed for sufficient power to detect significant associations[24]. Under 

the variable genetic effect model, when a sample of 2000 cases and 2000 controls was 

analyzed, for a gene region that attains exome-wide significance, a much larger fraction 

(72.8%) of rare variant nucleotide sites are present in the dataset, and nearly all (88.7%) 

causal nucleotide sites can be uncovered. These uncovered variants explain nearly 100% 

ofthe locus PAR. Therefore, in principle, when a large stage 1 sample is analyzed, the 

advantage of sequencing for novel SNP discoveries diminishes as long as the stage 2 

samples are drawn from the same population. Similar results hold if a fixed effect model 

is assumed for the binary phenotype. 

Since affected individuals are enriched in a case-control sample, nucleotide sites 

containing causal variants have a much higher probability of being uncovered than non­

causal variant sites. For example, if a fixed effects model is assumed, 62.9% ofthe sites 

uncovered are causal variant sites for a sample of 250 cases and 250 controls. This 

fraction is much higher than the proportions of causal variant sites in the general 

"population" (50%). 
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3.3.2. Power Comparisons for Sequence-Based and Variant-Based Replication 

Strategies: 

The power was compared for sequence-based and variant-based replications 

under different combinations of false positive/false negative variant discovery rate, 

genotyping assay success rate and error rate. 

In the ideal scenario where both sequencing and customized genotyping qualities 

are perfect, the power for sequence-based and variant-based replication is jointly affected 

by the sample size, the proportions of rare variants uncovered and the fractions of 

uncovered rare variant sites that contain causal variants. For most of the examined 

scenarios, the power of sequence-based replication is consistently better than variant-

based replication when CMC is used. For example, under the variable effects model 

(Table 5), for a sample size of 250 cases and 250 controls, the power for sequence-based 

replication is 54.2% while the power of variant-based replication is 50.7%. For large 
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scale genetic studies, the power hardly differs between sequence and variant-based 

replication. This is because a large proportion of variant sites are uncovered in the stage 1 

sample, and the uncovered variants account for nearly 100% ofthe locus PAR. For 

example, for a gene that attains exome-wide significance in a sample of 2000 cases and 

2000 controls, the power for sequence-and variant-based replication are respectively 82.7% 

and 82.5%. 



The power for sequence and variant-based replication is negatively impacted by 

sequencing and genotyping errors. The impact of sequencing error is small. If the fixed 

effects model is assumed (Table 6), for a sample size of 250 cases and 250 controls the 

power of sequenced-based replication is 44.6% in the absence of sequencing errors; when 

a false positive rate of 10% and a false negative rate of 5% are assumed, the power drops 

to 41.0%. Although a lower error rate is assumed for customized genotyping, the 

advantage of sequence-based replication remains. For instance, in this scenario, for a 

genotyping call rate of90% and an error rate ratio of 1, the power for variant-based 

replication is 39.0%. 

Comparisons of two replication strategies were also made when WSS is used for 

analysis of both the stage 1 and 2 datasets. Although the power is consistently higher for 

the WSS than for the CMC, the relative performances for sequence-based and variant­

based replication are largely similar. One noticeable difference is that sequencing error 

tends to have a slightly more negative impact on power for studies using the WSS. For 

example, under the fixed effects model, for the scenario where the false positive rate is 

10%, the false negative rate is 5%, and error rate ratio ER = 0.5, the power for sequence­

based replication 53.3% is even lower than that for variant-based replication 54.7% if a 

sample of 250 case/250 control is used. 
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3.3.3. Applications to the Dallas Heart Study data: 

For the first analysis, the stage 1 and 2 data from the ANGPTL 3, 4, 5 and 6 genes 

are analyzed. Although a small sample size (individuals with trait values in the top and 

bottom 10%) was used for the stage 1 study, multiple (novel) associations were detected 

using the CMC and WSS (Table 7), i.e. a.) TCL withANGPTL3 

(pcMc =0.0283/ Pwss = 0.0218) b.) LDL withANGPTL 4 (pcMc = 0.020&f Pwss = 0.0246) 

c.) TG with ANGPTL 4 {pcMc = 0.0269/ Pwss = 0.0222), d.) VLDL with ANGPTL 4 

(PcMc = 0.0373/ Pwss = 0.0236) e.) BMI with ANGPTL 5 {pcMc = 0.0287/ Pwss = 0.0207) 

f.) HDL with ANGPTL 5 {pcMc = 0.0252/ Pwss = 0.0218) and g.) BMI with ANGPTL 6 

(PcMc = 0.0013/ Pwss = 0.00 11). Among these, the association between BMI and 

ANGPTL 6 is significant even after Bonferonni correction for testing multiple genotypes 

and phenotypes. For most of the analyses, approximately 25%~40% of the nucleotide 

sites observed in the entire DHS sample are also observed in stage 1. The stage 2 

replication sample consists of individuals with less extreme quantitative trait values. To 

ensure that the power of the stage 2 sample is adequate, the stage 2 samples are chosen to 

be larger than the stage 1 sample size. Two of the seven identified associations in the 

stage 1 sample were successfully replicated by both sequence and variant-based 

replication, i.e. associations between TG and ANGPTL 4 as well as between VLDL and 

ANGPTL 4. For both associations, sequence-based replication has slightly smaller p­

values. 
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For the second analysis, the empirical power for replicating the validated 

association between TG and rare variants in ANGPTL4 gene was compared. When the 

CMC is used, the empirically estimated "power" for sequence-based and variant-based 

replication is 65.3% and 62.7% respectively. The "power" for sequence based replication 

is only slightly better. This is very compatible with observations from simulated data. 

When the WSS is used, estimated power is greater but the relative performance (69.3% 

vs. 67.0%) is concordant. 
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3.4. Discussion: 

In this chapter, sequence-based and variant-based replications for complex trait 

rare variant association studies were compared using a rigorous population genetic 

framework. It is demonstrated that in the ideal scenario where sequencing and genotyping 

are both of perfect quality, sequence-based replication is consistently more powerful. 

However, since the uncovered variants can account for a large proportion of locus PAR 

even for stage 1 studies with only a few hundred samples, the advantage in power can be 

very small if stage 1 and stage 2 samples are drawn from the same population. The power 

of sequence and variant- based replication studies is negatively impacted by sequencing 

and genotyping errors. For currently attainable levels of sequencing errors, the impact is 

minimal, and the advantage of using sequence-based replication studies remains. 

It has been found previously that rare variants tend to be population specific[8]. 

Many studies have suggested that disease associated variants in different populations can 

have very different frequencies. For example, the E40K variant in ANGPTL4 gene was 

shown to be associated with TG levels. The MAF for E40K is approximately 3% in 

European-Americans but is very rare in African-Americans and Hispanics[5]. These 

differences can be observed in even more closely related populations, for example, rare 

variants in CFTR, BRCAJ and BRCA2 genes have higher frequencies in the Ashkenazi 

Jewish population compared to other European Jewish populations such as Sephardic 

Jews and also to non-Jewish populations[65,66]. Population specific diversity of variant 

frequencies and sites is believed to be more pronounced for rare variants than for 
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common variants since rare variants tend to be younger and occur more recently in 

human history[8]. When stage 2 samples are drawn from a different population than the 

stage 1 samples, the variant-based replication studies may be at a disadvantage. Given 

that the demographic and selection models incorporating complex migration and 

admixtures are limited[33], simulation studies for variant discovery using multi-ethnic 

samples still remain to be explored. Evaluating the benefits and drawbacks of replication 

studies using samples from different populations will be very important. 

One of our contributions is a model for incorporating sequencing error 

uncertainties into downstream association analysis. Some of the error rates discussed in 

this chapter (e.g. FP = 6.3%, FN = 1%) are attained when a saturated coverage depth is 

used. With the maturation of next-generation sequencing technologies, as well as the 

development of more sophisticated genotype calling algorithms, such as using pooled 

population samples[60], even lower rates should be attainable in the near future. For 

currently attainable levels of sequencing errors, their impact on the power of rare variant 

association mapping is minimal. 

While the error model for Sanger sequencing is well known, the error model for 

next generation sequencing has not been extensively evaluated[61,67,68]. Due to the 

paucity of information on error rate estimation, our error model assumes equal error rates 

across different nucleotide sites. This is certainly an over simplification. In practice, for 
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different frequency bins, different false positive and false negative discovery rates can be 

expected. The proposed error model can be refined and applied to specific frequency bins 

when corresponding false positive and false negative rates estimates become available. 

Various studies have shown that non-random system errors exist, and cannot be 

ignored[57,60]. The system errors can be dependent on the genetic context of the variants. 

However, given that the main interest lies in gene-based association mapping, modeling 

error rate variations across different nucleotide sites may not be a necessity since only 

their overall impact in the gene region needs to be assessed. In particular, when the CMC 

method is used, the power is only affected by total number of errors, but not affected by 

the nucleotide sites where those errors occur. The error rates used in our model can be 

taken as locus averages. When comparing variant-based replication, genotyping error 

rates are assumed lower than sequencing error rate. It can be argued that this is sensible 

for two reasons. First, genotyping technology is more mature than sequencing, so it tends 

to have a lower error rate per base pair. Second, as customized genotyping is performed 

only at nucleotide sites with known polymorphisms, it is less error prone than sequencing 

where SNP discovery and genotype calling are performed simultaneously. 

Population genetic data was generated through forward time simulations. Both 

demographic change and purifying selections are known to be important factors affecting 

rare variant site frequency spectrums. Therefore they are both modeled and incorporated 

in the simulation. Two types of phenotypic models were considered. According to 

surveys on multi-factorial disorders, most of the uncovered disease causative rare variants 



have ORs between 2 and 4[8]. The choice of OR= 3 is therefore reasonable. Other values 

of causative variant odds ratios (i.e. OR= 2, OR= 4) were also experimented, and the 

conclusions remained the same (data not shown). On the other hand, variable effects 

models also have empirical support. It has been observed that lower frequency rare 

genetic variants tend to have larger disease odds compared to more frequent variants[7,8]. 

There is also evidence that highly penetrant rare genetic variants may be involved in the 

etiology of complex traits[69,70]. As a majority of rare variants have very low 

frequencies, when O~ax = 10, O~in = 2 is used, most of the uncovered rare variants 

have ORs ~ 4 . The results of comparisons of replication study designs remain valid and 

robust under both types of phenotypic models. 

In the examples discussed in this chapter, two different significance levels are 

used in stage 1 (a81 = 0.05, a81 = 2.5 x 10-6 ). These significance levels are chosen for 

illustrative purposes. In practice, the significant levels used are dependent on the 

effective number of tests which can be performed. Currently for exome data where 

analysis is performed on a gene by gene basis, it is recommended to use an a level of 

2.5 x 10-6. This significance level is based on the Bonferroni correction for testing 

20,000 genes. Since there is little linkage disequilibrium between rare variants in 

different genes, Bonferonni correction will not be overly conservative. If the analysis is 

not only performed on the gene level but pathway analysis is also performed, a more 

stringent a level is necessary. The choices for stage 2 significance levels are also for 

illustrative purposes. If gene(s) are found to be associated with a trait of interest using an 
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a level which adequately controls the FWER in stage 1, it is not necessary to use the 

same stringent a level to replicate the association. The appropriate significance level is 

determined by the number of tests performed in stage 2. 

Sequencing based genetic studies have an irreplaceable advantage over 

genotyping, which is to discover novel genetic variants. Human population experienced 

complex patterns of demographic expansion and purifying selection[5,37]. Large 

numbers of very rare variant nucleotide sites exist. Based upon observations from our 

extensive simulations and real data, for moderate sized stage 1 studies, only a limited 

proportion of rare variant nucleotide sites can be uncovered. Identifying and cataloging 

rare variants themselves can be of great importance in genetic studies. The novel rare 

causal variants which are uncovered will help enhance the understanding of genetic 

architectures for complex traits. They can also be useful for risk prediction and 

personalized medicine. As a result, sequence-based replication should be eventually 

performed. For large scale genetic studies with thousands of cases and controls, most of 

the disease causative variants can be identified in stage 1. Therefore, for replicating large 

scale studies, customized genotyping can be a viable solution. In addition, customized 

genotyping can be advantageous to targeted sequencing in that multiple unlinked markers 

can be genotyped and used to control for population substructure/admixture. The 

advantage is particularly beneficial when GWAS data is not available for the replication 

sample. 
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With the rapid large-scale application of next generation sequencing, 

understandings of genetic etiologies of rare variants will advance to an unprecedented 

level. Replications of significant findings will be an indispensible part of every genetic 

study. Sequence-based replication for both small-scale and large-scale genetic studies is 

advantageous, and will eventually be affordable and widely applied. In the meantime, 

variant-based replication can be a temporal cost-effective solution for replications of 

genetic studies, and will greatly accelerate the process of identifying disease causative 

variants. 
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Table 4 Discoveries of rare variants in small and large scale genetic studies 

Proportion of Rare Variant 
Number of Sites Uncoveredc 

Cases/Controls Locus PAR 
m Explained by 
Stage 1 and 2 All Causal Uncovered 
Samples Causal Rare 

Variants 

Variable Effects Phenotypic Model 
250/250a 0.432 0.599 0.917 
500/500a 0.524 0.687 0.950 
2000/2000b 0.728 0.887 0.992 
3500/3500b 0.808 0.943 0.996 

Fixed Effects Phenotypic Model 
250/250a 0.369 0.468 0.937 
500/500a 0.455 0.547 0.960 
2000/2000b 0.664 0.757 0.993 
3500/3500b 0.751 0.827 0.995 

asmall scale study: as1 = 0.05 

bLarge scale study: a 81 = 2.5 x 10-6 

Proportionc 

Causal 
Variant Sites 
among all 
Uncovered 
Rare Variant 
Sites 

0.686 
0.645 
0.599 
0.572 

0.629 
0.591 
0.559 
0.538 

cRare variant data was simulated using African rare variant site frequency 
spectrums and case control datasets were generated using variable and fixed effects 
phenotypic models. A total of 10,000 replicates were generated and each reported value 
within the table was obtained by averaging over replicates where significant stage 1 
results were obtained. 
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Table 5 Power comparisons of sequencing-based and variant-based replication 
under variable effects model 

Ratesc Power for 
Number of Replicationd 
Cases/Controls 
in Stage 1 and 2 False False Assay Error Sequence- Variant-
Samples Positive Negative Success Ratio Based Based 

0 0 1 1 0.542 0.507 

1% 4% 0.9 
0.5 

0.521 
0.458 

1 0.452 
250/2508 

6.3% 1% 0.9 
0.5 

0.520 
0.466 

1 0.461 

10% 5% 0.9 
0.5 

0.503 
0.459 

1 0.447 
0 0 1 1 0.731 0.708 

1% 4% 
0.5 

0.719 
0.675 

1 0.667 
500/5008 

6.3% 1% 0.9 
0.5 

0.718 
0.674 

1 0.674 

10% 5% 0.9 
0.5 

0.701 
0.672 

1 0.661 
0 0 1 1 0.827 0.825 

1% 4% 0.9 
0.5 

0.816 
0.780 

1 0.766 
2000/2000b 

6.3% 1% 0.9 
0.5 

0.814 
0.781 

1 0.769 

10% 5% 0.9 
0.5 

0.802 
0.781 

1 0.755 
0 0 1 1 0.899 0.898 

1% 4% 0.9 
0.5 

0.893 
0.870 

1 0.863 
3500/3500b 

6.3% 1% 0.9 
0.5 

0.893 
0.868 

1 0.865 

10% 5% 0.9 
0.5 

0.886 
0.874 

1 0.858 

aSignificance levels for small scale study: as1 = 0.05 and as2 = 0.05 

bSignificance levels forlarge scale study: as1 = 2.5 x 10-6 and a s2 = 2.5 x 10-6 

cThe impact of different combinations of false positive/false negative rate, assay 
success rate and genotyping and sequencing error rate ratio on the replication power is 
examined. 

dThe power was empirically estimated based upon 10,000 replicates. 
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Table 6: Power comparisons of sequence-based and variant-based replication under 
fixed effects model 

Rates< Power for Replicationd 

Number of 
Cases/Controls in Stage 

False False Assay Error Sequence- Variant-I and 2 Samples 
Positive Negative Success Ratio Based Based 

0 0 1 1 0.446 0.437 

1% 4% 0.9 
0.5 

0.432 
0.392 

I 0.386 

250/250' 
6.3% 1% 0.9 

0.5 0.399 
0.429 

I 0.390 

10% 5% 0.9 
0.5 

0.4IO 
0.390 

1 0.378 

0 0 1 1 0.666 0.658 

1% 4% 0.9 
0.5 

0.650 
0.619 

1 0.607 

5001500' 0.5 0.623 
6.3% 1% 0.9 0.652 

1 0.613 

0.5 0.619 
10% 5% 0.9 0.632 

1 0.600 
0 0 I I 0.765 0.767 

0.5 0.703 
1% 4% 0.9 0.747 

1 0.689 

2000/2000b 0.5 0.705 
6.3% I% 0.9 0.746 

1 0.694 

0.5 0.700 
10% 5% 0.9 0.724 1 0.669 

0 1 1 0.875 0.878 

0.5 0.84I 
1% 4% 0.9 0.872 

I 0.834 

3500/3500b 0.5 0.845 
6.3% 1% 0.9 0.870 

1 0.835 

0.5 0.843 
10% 5% 0.9 0.856 

1 0.825 

8Sample size for small scale study: as1 = 0.05 and as2 = 0.05 

bSample size for large scale study: as1 = 2.5 x 10-6 and as2 = 2.5 x 10-6 

cThe impact of different combinations of false positive/false negative rate, assay 
success rate and genotyping and sequencing error rate ratio on the replication power is 
examined. 

dThe power was empirically estimated based upon 10,000 replicates. 
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Table 7: Analyses of sequence data from the ANGPTL 3, 4, 5, and 6 genes 

P-values Proportion Ratio 
Number of Rare Variants 

Observed 
Rare Variant 

Freq in 

Stage 1 
Sequence- Variant- Nucleotide Stage 1 

Sequence- Variant rait Based Based Sites Sample/Rare 
Analysis3 

Replicationb Replicationb Uncovered Variant 
Based Based 

(CMC/WSS) 
(CMC/WSS) (CMC/WSS) in Stage 1 Freq. in 

Replication Replication 

Entire 
Sample 

ANGPTL3 
TCL 0.028/0.022 0.522/0.493 0.726/0.724 0.30 0.87 46/51 39/40 

ANGPTL4 
LDL 0.02110.025 0.272/0.218 0.508/0.473 0.35 0.94 78/62 70/60 

TG 0.027/0.022 0.025/0.016 0.039/0.028 0.26 0.92 77/51 69/46 

VLDL 0.037/0.024 0.03110.020 0.03110.023 0.26 0.92 75/51 69/46 

ANGPTL5 
BMI 0.029/0.021 0.464/0.407 0.45110.423 0.5 0.95 67171 63/67 

HDL 0.025/0.022 1.0/0.959 0.772/0.076 0.5 0.95 63/66 61160 

ANGPTL6 

BMI 0.00110.001 0.909/0.874 0.794/0.774 0.21 0.78 42/40 33/30 

aFor each phenotype analyzed, individuals with QTVs from the top and bottom 10% 
were used as a stage 1 sample 

blndividuals with QTVs in the range of 10%-35% and 65%-90% were used as the 
replication sample. 
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Chapter 4 

A Flexible Likelihood Framework for 
Detecting Associations with Secondary 

Phenotypes in Selected Samples: Applications 
to Sequence Data 
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4.1. Background 

A flexible likelihood approach MULTI-TRAIT-MAP is presented for detecting 

associations with multiple phenotypes in selected or randomly ascertained samples. This 

method can be used to detect both common and rare variant/secondary phenotype 

associations. MULTI-TRAIT -MAP jointly models multiple phenotypes conditional on 

the study subjects being ascertained. The sampling mechanisms are incorporated via a 

prospective likelihood approach. The MULTI-TRAIT -MAP framework is comprehensive 

and can be used to model multiple continuous or categorical traits. To model traits that 

are not continuous, a generalized linear model is used. For example, either a probit or 

logit link function can be applied to model binary traits. In this thesis, the discussion is 

focused on using the probit link function and the liability threshold model, which can be 

justified by the polygenic model of complex traits. It has been suggested that the liability 

of all complex traits can be considered as 'quantitative'[71]. For complex traits that are 

not measured in quantitative scale, there should exist a continuous underlying liability 

trait, which is due to the aggregated outcome from multiple causative variants with small 

effects. In this case, a multivariate liability threshold model is naturally utilized to jointly 

model multiple phenotypes. 

The power ofMULTI-TRAIT-MAP for detecting gene/secondary trait associations is 

examined in different selective study designs. Three study designs are considered, i.e. 

case-control, extreme-trait and multiple-trait. It is assumed for each of the study designs 

that the same continuous secondary phenotype T is measured. For comparison purposes, 
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study designs are also evaluated where the quantitative trait T is selected and analyzed as 

the primary phenotype. Simulation details for each study design can be found in (Table 8). 

It is very beneficial to be able to utilize and combine selected samples from existing 

sequencing based genetic studies. Through extensive simulation studies, it is shown that 

the case-control and extreme-trait designs can be more powerful for detecting 

associations with secondary phenotypes than using a population based design, where 

individuals are randomly selected regardless of their phenotypes. The power for detecting 

associations with secondary phenotypes strongly depends on the aggregation of causative 

variants in the sample. For study designs that facilitate the enrichment of causative 

variants, power will be increased. In the presence of gene pleiotropy, variants that are 

associated with both the primary and secondary traits can be enriched through selections 

on the primary phenotype. When the gene region is only associated with the secondary 

phenotype, if the primary and secondary traits are correlated, selections on the primary 

phenotype can also induce selection on the secondary phenotype. In this case, for a 

sample of equivalent size, the power of rejecting the null hypothesis of no 

gene/secondary trait association in case-control or extreme-trait studies is still superior or 

comparable to a population based study. 

The power for detecting associations with secondary phenotypes in selected samples 

is jointly affected by locus phenotypic effects for both the primary and secondary 

phenotypes, as well as residual correlations. Concordant with observations from previous 

studies of multiple-trait linkage/association mapping[72-74], it is demonstrated that 



power is maximized when the locus induced trait correlations are in the opposite 

direction of the residual correlations. To further demonstrate the utility of MULTI­

TRAIT-MAP in combined analysis, an example is given where samples from a case­

control study and a multiple-trait study are jointly analyzed. The power for detecting 

associations with commonly measured phenotypes can be greatly increased when studies 

are combined, compared to analyzing each individual study separately. 
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As an application of MULTI-TRAIT-MAP, we analyzed the sequence data from the 

ANGPTL3, ANGPTL4, ANGPTL5 and ANGPTL6 genes generated by the Dallas Heart 

Study (DHS). The 3551 study participants of the DHS were phenotyped for multiple 

metabolism related traits, including body mass index (BMI), diastolic blood pressure 

(DiasBP), systolic blood pressure (SysBP), total cholesterol level (TCL), low density 

lipoprotein (LDL), high density lipoprotein (HDL), triglyceride (TG), and glucose (Glue). 

Two primary trait analyses were first performed: 1.) analyzing all samples and 2.) 

analyzing selected samples whose quantitative trait values fall within the lower and upper 

quartiles. Next a secondary phenotype analysis was performed where within each 

selected sample, all other available phenotypes were analyzed as secondary traits. The 

results from the secondary trait analyses confirmed the primary trait analyses. These 

analyses established the importance of analyzing secondary phenotypes and the 

effectiveness of MULTI-TRAIT-MAP. They provided solid support to our simulation 

experiment. 



4.2. Materials and Methods: 

It is assumed that there are S variant nucleotide sites for a gene locus. The multi-site 

genotype for individual i is given by Xi = (x:, Xi2 , • • ·, xf) , where the genotype at 

segregating nucleotide site s is coded by the number of minor alleles, (e.g. x; = 2 if the 

individual is homozygous for the minor allele). To detect associations with rare variants, 

multiple rare variants in a gene locus are usually jointly analyzed[1,21,22,75,76]. The 
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locus genotype coding for an individual i is defined as xi = c(.ii ) , where c(.) is the 

coding function. 

4.2.1. Locus Multi-site Genotype Coding Schemes 

Many statistical methods have been developed for association studies of complex 

traits due to rare variants. Existing methods include combined multivariate and collapsing 

(CMC)[20], the test of an aggregated number of rare variants (ANRV) [76], weighted 

sum statistics (WSS) [21], variable threshold test (VT)[75], kernel based adaptive cluster 

(KBAC)[22], the data adaptive sum test (DAST)[77], C-alpha test[78] and the 

RARECOVER(RC) method[79], etc. Most of these methods are essentially based upon 

weighting or grouping variants. Among them, CMC and ANRV are regression based 

methods which can be incorporated into MULTI-TRAIT-MAP through the coding 

function c(.): 
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1.) CMC: the coding function is defined as X;= ccMc(.xJ= o(LseRVx: > o), 

where 8( •) is an indicator function and L is a summation over the set of rare 
seRV 

variant nucleotide sites RV , which can be determined by a pre-specified frequency 

cutoff. 

2.) ANRV: the coding function belongs to a more general class of weighted sum 

coding (WSC), which can be defined as X; = cwsc (x; )=" ws x: . In the weighted 
L...seRV 

sum coding scheme, the variant from nucleotide sites is assigned weight w5 • The ANRV 

coding assigns equal weight for all variants, i.e. X; = CANRv(x;)=" x:. 
L...seRV 

4.2.2. A General Probability Model for Multiple Phenotypes in Selected Samples 

In order to incorporate the sample ascertainment mechanism and correct for the bias 

induced by phenotypic residual correlations, multiple phenotypes are jointly modeled. 

The primary and secondary traits are assumed to follow a multivariate generalized linear 

model: 
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related to the primary and secondary traits. This multivariate generalized linear model 

can be used with any type of link functions, such as probit link function or logit link 

function. 

For selected samples, a conditional likelihood is used, which is similar to Pearson-

Aitken correction for ascertainment[80]: 

Z 1 is an indicator of individual i being sampled, and N is the number of individuals in 

The sampling mechanism is characterized by Pr(Z1 = 111';1, Y21 , X 1, {w ki } k}, which 

can be explicitly calculated for case-control, extreme-trait and multiple-trait studies. 

When the probit link function is used to model binary phenotypes, the multivariate 

generalized linear model can be simplified. 

4.2.3. Association Testing 



--- -----------

The likelihood based score statistic can be applied to detect associations with rare 

variants. Using collapsing coding, p-values for the score statistics can be analytically 

evaluated. For the weighted sum coding, if the weights are only dependent on the multi­

site genotypes, the score statistic will asymptotically follow a normal distribution and the 

p-values can also be analytically evaluated. Permutation procedures cannot be used to 

analyze secondary phenotypes in selected samples. This is because if the gene region is 

associated with the primary phenotype, study subjects are not interchangeable under the 

null hypothesis of no gene/secondary phenotype associations. The analyses were 

performed using the CMC coding i.e. X; = ccMc (x; ). The results remain the same when 

other coding schemes are used. 

4.2.4. Combining Different Cohorts for the Analyses of Secondary Phenotypes 

Statistical theories for combining multiple studies are well developed[81]. Since 

heterogeneity may exist between different cohorts, meta-analysis methods that combine 

test statistics should be used [29,30]. For rare variant analysis, multiple rare variants are 

jointly analyzed, and their phenotypic effects are not usually estimated and reported. 

Therefore, all the joint analyses in this study were carried-out by combining score 

statistics from different studies. In the joint analysis, score statistics from different 

studies are weighted and summed. The weight assigned for each score statistic is 

proportional to the square root of the sample size according to Skol et al [82]. 
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4.2.5. Generation of Genetic and Phenotypic Data 

Following Boyko et al. [33], a rigorous population genetic model incorporating 

demographic change and purifying selections was used to simulate the African variant 

data. To generate phenotypes, we assume that the phenotypic effects for causative 

variants are independent of their fitness. In a case-control study, the augmented 

phenotype (A;•, I;) for an individual i with multi-site genotype X; = (x: ,x;,. · ·,xn follows 

a bivariate normal distribution MVN{.u;ee ,Lee), with 

(4) 

The rare variants sites evA. and evr are randomly chosen to be causative for the traits 

A* and T . Either set can be empty if the gene is not associated with the corresponding 

trait. variants at sites evA. n evT are pleiotropic and affect both phenotypes. The binary 

disorder status A; is determined by A; =8(A;• >ae). For each scenario, 1,000 individuals 

were simulated. 

In order to evaluate type I errors, phenotype data was generated under the null hypothesis 

of no gene/secondary trait T associations, i.e. Pr = 0. Scenarios were considered where 

1.) the gene region is neither associated with the primary nor the secondary phenotype 

and 2.) the gene is associated with the primary phenotype, but not with the secondary 



phenotype. Scenarios with a combination of two causative variant primary trait effects 

jJA. = 0.5a A" 0 (or jJB, Pc·) , and four residual correlations p A' ,r = ±0.3, ± 0.6 

tor PB,PPc·.r) were evaluated. 
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To compare the power of rejecting the null hypothesis of no gene/secondary trait 

associations, two causal variant secondary phenotype effects Pr = ±0.5ar were 

employed. The power for the three study designs was compared under scenarios with 

different combinations of genetic parameter values. 

4.2.6. Software Availability 

An R-package implementing MULTI-TRAIT-MAP will be available at 

http://www.bcm.edu/genetics/leal/software 

4.3. Results 

Evaluation of Type I Errors 

Type I errors for each study design usmg MULTI-TRAIT-MAP were evaluated 

empirically. Under the null hypothesis of no genetic/secondary phenotype associations, 

the quantile-quantile (Q-Q) plots of the empirical and theoretical distributions ofp-values 

are displayed in (Figure 2 and 3) for the case-control study design. When the 



ascertainment mechanism is correctly specified, the type I errors are controlled. Results 

are shown in (Figure 2) for the scenario where the gene region is not associated with 

either the primary or the secondary phenotypes and the scenario where the gene region is 

only associated with the primary trait. Type I errors for the extreme-trait and multiple­

trait designs were also well controlled (data not shown). The impact of mis-specified 

sampling mechanisms was investigated. The results are shown in (Figure 3) when the 

prevalence parameter is 10%, but is incorrectly set to be 7% (Figure 3a) or 13% (Figure 

3b) in the analyses. The results indicate that mis-specifying prevalence has only a very 

minimal impact on type I error rates as can be observed in the Q-Q plot. 

4.3.1. Power of Detecting Secondary Phenotype Rare Variant Associations 

The efficiency of the three selective sampling designs for detecting secondary 

trait associations was compared when both the primary and the secondary traits are 

associated with the same gene (Table 9). Scenarios were examined where 1,000 

individuals are sequenced for each study design. There is considerable power for 

detecting secondary phenotype associations in selected samples. Analyzing secondary 

phenotypes in a case-control or an extreme-trait study dataset can be consistently more 

powerful than a randomly ascertained population dataset of equal size. 

When a population based sample is used where 1,000 individuals are randomly 

selected regardless of their phenotypic values, the power for rejecting the null hypothesis 
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is only 51.7% . For a case-control sample where the secondary trait T is analyzed, the 

power can be higher (Table 9). For example, when the primary and secondary trait 

~ ~ 

phenotypic effects and residual correlation satisfy pA. = 0.5aA. , Pr = 0.5 O"r and 

pA.,T = -0.6, the power is 56.5%. It is also comparable to the power (56.6%) when 200 

individuals with the most extreme trait T values from a cohort of 5,000 are sequenced. 

Compatible with observations from bivariate phenotype association studies [73], 

the power for detecting associations with secondary phenotypes is jointly determined by 

the sizes and directions of the locus phenotypic effects and residual correlations. The 

power is the highest when the correlation between the locus phenotypic effects is in the 

opposite direction of the trait residual correlations. For example, when the locus induced 

correlation is positive (i.e. p A. = 0.5a A. and Pr = 0.5 a r ), and the trait residual 

correlation is negative (i.e. p A. r = -0.3 ), the power is 55.7%. However, if the trait 

residual correlation is also positive (i.e. p • = 0.3 ), the power is 53.5% (Table 9). 
A ,T 

Similar patterns of power comparisons are observed for detecting associations 

with secondary phenotypes T in extreme-trait studies. The power for an extreme-trait 

study can be substantially higher than that for a population based study of equivalent size. 

For example, if the primary and secondary trait effects and residual correlations are given 

Pr = 0.5 a r and p • = -0.6 , the power of rejecting the null 
C ,T 

hypothesis is 66.7% (Table 9). It is comparable to the power (70.6%) when 600 



individuals with the most extreme trait T values from a cohort of 5,000 are sequenced, or 

the power (66.6%) when 2,000 randomly selected samples are sequenced. 
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When the gene regiOn is only associated with the secondary trait T , using 

samples ascertained on the primary phenotype will induce selections on the secondary 

phenotype. For a dataset of equivalent size, the power for rejecting the null hypothesis of 

no gene/secondary trait associations in case-control or extreme-trait samples is still 

greater than (or comparable to) analyzing the same trait using a randomly ascertained 

population sample. For example, in an extreme-trait study which sequences 1000 

individuals, when causal variants in the gene affect the secondary trait with effect 

Pr = 0.5a r and the wtwo traits are positively correlated with correlation coefficient 

p = 0.6, the power is 60.2%. If the two traits are negatively correlated with p = -0.6, the 

power is 60.6% (Table 9). The power in these two scenarios are both superior to that of a 

population based study ( 51.6%) which sequences an equivalent number of samples. 

The MULTI-TRAIT -MAP method can be applied to analyze samples ascertained 

on multiple phenotypes. In this example of a multiple-trait study, 500 affected individuals 

with trait T value above the 65th percentile are sequenced and 500 unaffected individuals 

are also selected regardless of their trait T values (Table 9). Compared to the extreme­

trait or case-control study design, the multiple-trait study example that is given is not as 

powerful. This is because there is not enough phenotypic variability in the sample, since 

affected individuals are only sampled from the sub-population with trait T above the 65th 

percentile. However, in some scenarios, there can be considerable power in a multiple-



trait study, in particular when sampling on the secondary trait T increases phenotypic 

variability, e.g. affected or unaffected individuals are selected to have secondary T trait 

values from opposite extreme tails. 

MULTI-TRAIT -MAP allows joint analysis of commonly measured phenotypes in 

different genetic studies. These studies may be targeted at different primary traits. An 

example is given where a multiple-trait study is implemented, and the association 

analysis of the secondary trait T is performed by combining a case-control study dataset 

(Table 1 0). A wide variety of scenarios were extensively evaluated, and a sizable power 

increase for the combined analysis is consistently observed. 
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4.3.2. Applications to the ANGPTL Family of Genes 

When each of the eight phenotypes from the DHS was analyzed as primary 

phenotype using selected samples and the entire sample, four nominally significant 

associations were found for both types of analyses, i.e. ANGPTL4 with TG (p=0.005), 

ANGPTL5 with BMI (p=0.003) ANGPTL5 with HDL (p=0.024), and ANGPTL6 with 

BMI (p=0.022). All of the above significant associations were also successfully detected 

when TG, BMI and HDL were analyzed as secondary phenotypes. An additional 

association between ANGPTL4 and HDL (p=0.018) was identified only when the entire 

sample was analyzed. 



The association between TG and rare variants in the ANGPTL4 gene was 

identified using selected samples where the primary traits are BMI (p=0.025), SysBP 

(p=0.012), or LDL (p=0.010) (Table 10). These traits are only weakly positively 

correlated with TG, i.e. PsMI,TG = 0.227, PwL,TG = 0.197 and PsysBP,TG = 0.102. The 

association between ANGPTL4 and TG is not significant using samples with extreme 

DiasBP (p=0.137), TCL (p=0.065), Glue (p=0.117) and HDL levels (p=0.107). 
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Although the ANGPTL4 gene is significantly associated with HDL and the size of 

the correlation between HDL and TG is larger (PHDL,TG = -0.374 ), the association ofTG 

with ANGPTL4 gene is not significant when TG is analyzed as a secondary trait using 

samples with extreme HDL levels. This could have occurred because the locus 

phenotypic effects for HDL and TG are negatively correlated, and the locus induced 

correlation lies in the same direction as the residual correlation, which is shown in our 

simulations to have reduced power compared to when the locus induced correlation and 

trait residual correlations are in opposite directions. 

There is one nominally significant association that was only detected in secondary 

phenotype analyses, i.e. the association between Glue and rare variants in the ANGPTL3 

gene (p=0.024). It was identified when samples with extreme LDL levels were used. But 

when Glue was analyzed as primary trait, the association is not significant (p=0.64). This 

could either be a novel association or a false positive finding. 



4.4. Discussion 

In this part of the thesis, a flexible likelihood framework MULTI-TRAIT -MAP is 

proposed for jointly modeling multiple phenotypes in non-randomly ascertained samples, 

e.g. case-control samples or extreme-trait samples. By coupling multivariate generalized 

linear models with prospective likelihood, complicated ascertainment mechanisms can be 

incorporated. The approach is flexible and particularly suitable for analyzing complex 

traits. It can be applied to any study with known sampling mechanisms. MULTI-TRAIT­

MAP allows efficient statistical inference for the genetic parameters of interest. Although 

the discussion in this section of the thesis is focused on analyzing sequence data, 

MULTI-TRAIT-MAP can also be applied to analyze genotype data. 
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The results presented in this section of the thesis have important implications for the 

design and analysis of complex traits. Most current studies, due to their limited sample 

size, are not adequately powered to detect associations with rare variants. It has been 

suggested that for an exome study, -10,000 individuals with extreme traits from a cohort 

of 100,000 need to be sequenced in order to have adequate power[24]. However, the 

sample size well exceeds the capacity of many existing studies[24]. It is therefore 

particularly important that combined analysis can be performed using data from multiple 

studies in order to have sufficient power. Applying MULTI-TRAIT-MAP, sequencing 

studies that are targeted at different primary traits can be jointly analyzed for detecting 

associations with a variety of commonly measured secondary traits. 



The power of different selective study designs was investigated. It was shown through 

extensive simulations that there is considerable power for detecting secondary phenotype 

associations in selected samples. In particular, when the secondary trait of interest is 

analyzed in a case-control or an extreme-trait study dataset, the power can be greater than 

analyzing an equivalent sized randomly ascertained sample. Utilizing data sharing 

platforms and protocols such as dbGaP[83], samples from existing studies can be freely 

obtained and analyzed. The power can be greatly increased when data from multiple 

studies are jointly analyzed. 

Secondary phenotypes not only have their own clinical importance, but they can also be 

relevant for understanding the primary trait etiologies. For example, in the study of T2D, 

a number of studies are targeted at related quantitative traits including fasting glucose 

levels [54], and C-reactive protein [55]. Given that these traits are often available for 

individuals who participate in T2D case-control studies[84], MULTI-TRAIT-MAP can 

be applied to detect associations with these additional phenotypes. 
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MULTI-TRAIT-MAP was also applied to the analysis of sequence data from the Dallas 

Heart Study. Multiple associations were identified, which confirmed previous data 

analyses. When the traits were analyzed as secondary phenotypes, although these same 

set of associations was observed, they were not detected in every selected sample, e.g. the 

association between TG levels and ANGTPL4 was only detected in secondary trait 

analyses using samples with extreme BMI, SysBP, and LDL, but not in samples with 



extreme DiasBP, HDL, TCL and Glue. This could be affected by the small sample sizes 

that were analyzed, the moderate effect sizes for variants involved in complex trait 

etiologies or the directions and magnitudes of the correlations between the primary and 

secondary phenotypes. Although these identified associations are only nominally 

significant, they all have biological support. In fact, the effects of mutant ANGPTL family 

genes on lipoprotein lipase (LPL) have been investigated through in vitro functional 

studies and in vivo mice studies. LPL has been known to affect glucose metabolism [43], 

cholesterol level [44], and blood pressure [47]. Additionally, the association between 

variants in the ANGPTL4 gene and triglyceride levels has been successfully 

replicated[5,6]. 

Sensitivity of MULTI-TRAIT-MAP to mis-specified sampling mechanisms was 

extensively evaluated. When the disease prevalence is reported as an interval of possible 

values, inferences from MULTI-TRAIT-MAP can be carried-out under different 

prevalence values from the interval. The results can be integrated using a model 

averaging procedure. It has been shown that it is an effective approach to further reduce 

the impact ofmis-specified prevalence [85]. 
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There can be heterogeneities of sequence coverage depth within and between different 

studies. Coverage depth differences within a single study may cause inflated type I errors. 

Possible strategies to reduce the bias include incorporating the mean coverage depth of 

each individual in the analysis as a covariate[86]. The method can be used with the 

MULTI-TRAIT -MAP model. In order to be robust against between-study heterogeneities, 
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meta-analyses procedure should be implemented for the joint analysis, instead of 

performing mega-analysis that combines individual participant data[29,30]. 

When multiple phenotypes are analyzed, to avoid inflated type I error due to testing 

multiple hypotheses, a stringent significance level must be specified. Due to phenotypic 

correlations, Bonferroni corrections for testing multiple genes and phenotypes can be 

overly conservative. Instead, the spectral decomposition based method in Nyholt et al[87] 

can be used. In addition to correctly controlling for family-wise error rates, it is important 

that the findings can be replicated using independent samples[23]. 

With large scale implementation of sequence based genetic association studies, the 

capability for mapping complex traits will be further elevated. Detecting associations 

with rare variants and jointly investigating multiple phenotypes together can be an 

ambitious and difficult task given the moderate sample sizes of existing studies. Taking 

advantage of multiple studies and mapping commonly measured phenotypes using 

MULTI-TRAIT-MAP is therefore highly beneficial and will greatly accelerate the 

process of dissecting complex trait genetic etiologies. 
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Table 8: Definitions of Selection Mechanisms 

Study designs Definition 

Case-control 

Cases and controls are sampled based upon the binary primary 

phenotype A . The trait status is determined by A = 8(A* ;?: ac ), where 

ac is the 90th percentile of the liability trait A*. A total of 500 cases and 
500 controls are sequenced. 

Extreme Trait One thousand individuals with quantitative trait B values in the 
upper and lower 10% were sequenced from a cohort of5,000 individuals. 

The affection status is defined by C = 8(C*;?: cc ), where cc is 

Multiple-trait the 90th percentile for the liability trait c* . Five hundred affected 

individuals with trait T values >65th percentile are sequenced and 500 
unaffected individuals are also sequenced regardless of their T values. 

Extreme-trait study 

where T is sampled 
In an extreme-trait study, individuals with extreme T values in the 

and analyzed as upper and lower 2%, 6% and 10% are sampled and sequenced from a cohort 
of 5,000 individuals. 

primary trait 

Population Based 
One thousand, 2,000 and 3,000 individuals are randomly sampled 

Study Design from the general population regardless of their phenotypes. 
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Table 9 Power to detect secondary trait T associations using case-control, extreme­
trait, and multiple-trait study design. 

Genetic Parameters Power0 

~ ~ ~ b 
p A' ,T (PB,T 'p c',T) CCe/ET1/MTg 

j3 A' (/3 B 'j3 c' ) PT 

0.5 -0.5 -0.3 0.536/0.562/0.316 

0.5 -0.5 0.3 0.548/0.605/0.418 

0.5 0.5 -0.3 0.557/0.582/0.448 

0.5 0.5 0.3 0.535/0.557/0.506 

0.5 -0.5 -0.6 0.533/0.582/0.292 

0.5 -0.5 0.6 0.556/0.654/0.471 

0.5 0.5 -0.6 0.565/0.667/0.391 

0.5 0.5 0.6 0.545/0.589/0.562 

0 -0.5 -0.3 0.510/0.555/0.325 

0 -0.5 0.3 0.499/0.557/0.412 

0 0.5 -0.3 0.508/0.544/0.414 

0 0.5 0.3 0.517/0.555/0.497 

0 -0.5 -0.6 0.527/0.598/0.315 

0 -0.5 0.6 0.513/0.609/0.447 

0 0.5 -0.6 0.521/0.606/0.373 

0 0.5 0.6 0.531/0.602/0.549 

aCausal variant phenotypic effect for liability trait A*, trait Band liability trait c*. 
bCausal variant effect for secondary trait T 
cResidual correlation between the primary (liability) trait and secondary trait T 
dPower was empirically estimated using 5,000 replicates under a significance 

level a= 0.05 
ePower for case-control study. A case-control study sample consists of 500 cases 

and 500 controls. 
fPower for extreme-trait study. An extreme-trait study sample consists of 1,000 

individuals with extreme trait B values selected from a cohort of 5,000. 
gPower for multiple-trait study. A multiple-trait study sample is obtained based 

upon both trait C and trait T. The affection status is determined by C. Five hundred 
affected individuals with T values > 651h percentile as well as 500 unaffected individuals 
are sequenced. 



Table 10: Power to detect secondary trait T associations for individual studies 
(case-control and multiple-trait) and the combined analysis. 

Parameters Powerg 

~MT 

Pc•,r Case- Multi~le Combined-PiCb pA.,T 
c 

Pc· 
d Pr 

e f controlh -Trait' Analysis 

0 -0.5 0.3 0.5 -0.5 0.3 0.510 0.418 0.690 

0 -0.5 03 0.5 -0.5 0.3 0.499 0.418 0.680 

0 0.5 -0.3 0.5 0.5 0.3 0.508 0.526 0.726 

0 0.5 0.3 0.5 0.5 0.3 0.517 0.526 0.732 

0 -0.5 -0.6 0.5 -0.5 0.3 0.527 0.418 0.703 

0 -0.5 0.6 0.5 -0.5 0.3 0.513 0.418 0.685 

0 0.5 -0.6 0.5 0.5 0.3 0.521 0.526 0.731 

0 0.5 0.6 0.5 0.5 0.3 0.531 0.526 0.741 
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acausal variant phenotypic effect for liability trait A* in the case-control study 
sample 

bCausal variant phenotypic effect for trait T in the case-control study sample 
c Residual correlations between liability trait A* and trait T in the case-control 

study sample 
dCausal variant phenotypic effect for liability trait c• in the multiple-trait study 

sample 
e Causal variant phenotypic effect for trait T in the multiple-trait study sample 
r Residual correlations between liability trait c· and trait T in the multiple-trait 

study sample 
g Power was empirically estimated using 5,000 replicates under a significance 

level a= 0.05 
h Case-control sample consists of 500 cases and 500 controls. 
iA multiple-trait dataset is obtained based upon both trait C and trait T . The 

affection status is determined by C. Five hundred affected individuals with trait T 
values >65th percentile are sequenced, as well as 500 unaffected individuals. 



Table 11: Results for the secondary phenotype analyses using sequence data from 
the ANGPTL3, ANGPTL4, ANGPTLS and ANGPTL6 genes. 

Primary P-values for Analvzine: Secondary Phenotypes8 

BMI DiasBP SysBP TCL LDL HDL TG Glue 
Phenotype 

ANGPTL3 

BMI - 0.649 0.766 0.429 0.681 0.717 0.121 0.114 

DiasBP 0.941 - 0.889 0.580 0.745 0.309 0.441 0.398 

SysBP 0.550 0.509 - 0.371 0.223 0.689 0.073 0.222 

TCL 0.988 0.955 0.327 - 0.971 0.289 0.163 0.151 

LDL 0.871 0.372 0.349 0.114 - 0.116 0.183 0.024* 

HDL 0.945 0.616 0.312 0.825 0.668 - 0.561 0.639 

TG 0.910 0.883 0.437 0.945 0.418 0.863 - 0.148 

Glue 0.652 0.208 0.351 0.982 0.475 0.692 0.335 -
ANGPTL4 

BMI - 0.292 0.268 0.733 0.440 0.497 0.025* 0.972 

DiasBP 0.965 - 0.380 0.361 0.363 0.121 0.137 0.389 

SysBP 0.993 0.551 - 0.728 0.754 0.099 0.012* 0.405 

TCL 0.861 0.532 0.571 - 0.052 0.759 0.065 0.933 

LDL 0.281 0.894 0.269 0.135 - 0.053 0.010* 0.999 

HDL 0.708 0.904 0.286 0.318 0.262 - 0.107 0.874 

TG 0.310 0.364 0.584 0.629 0.326 0.784 - 0.845 

Glue 0.824 0.524 0.084 0.848 0.561 0.479 0.118 -
ANGPTL5 

BMI - 0.920 0.114 0.521 0.233 0.056 0.377 0.797 

DiasBP 0.118 - 0.096 0.451 0.803 0.092 0.616 0.367 

SvsBP 0.203 0.887 - 0.117 0.160 0.304 0.791 0.294 

TCL 0.107 0.536 0.923 - 0.399 0.014* 0.221 0.488 

LDL 0.084 0.735 0.587 0.202 - 0.002* 0.147 0.458 

HDL 0.387 0.866 0.917 0.463 0.991 - 0.569 0.900 

TG 0.044* 0.871 0.074 0.296 0.597 0.185 - 0.448 

Glue 0.030* 0.779 0.957 0.546 0.717 0.002* 0.451 -
ANGPTL6 

BMI - 0.300 1.000 0.606 0.457 0.324 0.401 0.419 

DiasBP 0.008* - 0.385 0.459 0.690 0.478 0.721 0.197 

SysBP 0.773 0.816 - 0.622 0.853 0.668 0.338 0.490 

TCL 0.024* 0.530 0.992 - 0.823 0.324 0.702 0.940 

LDL 0.089 0.383 0.850 0.485 - 0.429 0.801 0.314 

HDL 0.034* 0.101 0.873 0.800 0.870 - 0.393 0.215 

TG 0.210 0.735 0.974 0.357 0.695 0.561 - 0.811 

Glue 0.153 0.402 0.897 0.340 0.531 0.267 0.905 -
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8 For each phenotype, individuals were selected with trait values in the upper and lower 
quartiles and the remaining seven phenotypes were analyzed as secondary traits using 
MULTI-TRAIT -MAP. 
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