


ABSTRACT
Modeling Systems from Measurements of their Frequency Response
by

Sanda Lefteriu

The problem of modeling systems from frequency response measurements
is of interest to many engineers. In electronics, we wish to construct
a macromodel from tabulated impedance, admittance or scattering pa-
rameters to incorporate it into a circuit simulator for performing circuit
analyses. Structural engineers employ frequency response functions to de-
termine the natural frequencies and damping coefficients of the underlying
structure. Subspace identification, popular among control engineers, and
vector fitting, used by electronics engineers, are examples of algorithms

developed for this problem.

This thesis has three goals.

1. For multi-port devices, currently available algorithms are expensive.
This thesis therefore proposes an approach based on the Loewner ma-
trix pencil constructed in the context of tangential interpolation with
several possible implementations. They are fast, accurate, build low
dimensional models, and are especially designed for a large number
of terminals. For noise-free data, they identify the underlying sys-
tem, rather than merely fitting the measurements. For noisy data,
their performance is analyzed for different noise levels introduced

in the measurements and an improved version, which identifies an



CONTENTS

approximation of the original system even for large noise values, is

proposed.

2. This thesis addresses the problem of generating parametric models
from measurements performed with respect to the frequency, but
also with respect to one or more design parameters, which could
relate to geometry or material properties. These models are suited
for performing optimization over the design variables. The proposed
approach generalizes the Loewner matrix to data depending on two

variables.

3. This thesis analyzes the convergence properties of vector fitting, an
iterative algorithm that relocates the poles of the model, given some
“starting poles” chosen heuristically. It was recognized as a refor-
mulation of the Sanathanan-Koerner iteration and several authors
attempted to improve its convergence properties, but a thorough
convergence analysis has been missing. Numerical examples show
that for high signal to noise ratios, the iteration is convergent, while
for low ones, it may diverge. Hence, incorporating a Newton step
aims at making the iteration always convergent for “starting poles”
chosen close to the solution. A connection between vector fitting
and the Loewner framework is exhibited, which resolves the issue of

choosing the starting poles.


















CHAPTER 1

Introduction and motivation

The purpose of this introductory chapter is to provide the reader with details regard-
ing the problem treated in the rest of the chapters. As the thesis title indicates, the
topics addressed revolve around various aspects of modeling linear dynamical sys-
tems from measurements of their frequency response. The statement of the problem
at hand is simple: given measurements of a system’s frequency response (see Fig.
1.1(a)), one wishes to construct a rational model that matches the data closely (see
Fig. 1.1(b)). Having a simple problem statement is by no means equivalent to dealing
with an easy problem, as we shall see in the following. Depending on the underlying
systems, engineers from various areas have produced an extensive literature on the
topic and different algorithms have been proposed (covered partially in Chapter 2).
To obtain the measurements illustrated in Fig. 1.1(a), the following technique is
applied. For single-input single-output (SISO) systems, the system is excited with a
sinusoidal signal of a certain frequency and the output is observed. At steady-state,
the output is a sinusoid of the same frequency, but with a different amplitude and
phase. The amplitude change is recoded as the magnitude and the phase change is
the phase of a complex number which is used to represent the measurement data for

that particular frequency.
























CHAPTER 1. INTRODUCTION AND MOTIVATION 11

tions. Microelectromechanical systems, electronic chip design and VLSI interconnect
modeling yield examples of parameterized systems. Fig. 1.8 shows a voltage driven
RLC circuit for which the output is measured as the current at that port. The induc-
tor L2 can be considered as a parameter in the system if its value is not fixed. For
different values, the step response shows a different rise time.

The aim is to create parametric models that incorporate the dependence on these
parameters. This approach is useful in the optimization process arising in product
development, since models for many configurations of the design variables are needed
for each component to maximize a desired criterion. It is unfeasible to perform new
measurements or run a full-wave simulation for each different configuration of the
parameter values needed during optimization, and thus having parametric models
available ensures a faster design workflow. For fixed parameter values, the frequency-
dependent model of, for example, a component in an electrical circuit is rational, so

it can be used directly in a circuit simulator.



























CHAPTER 3

Problem formulation

3.1 System theoretic concepts

We present a review of system theoretic definitions and basic concepts which we build

upon in the following chapters.

ul() —
'UQ() —

wp() —

Ex(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

. — y1(+)

— y2(+)

— y:m(-)

Definition 3.1.1. A linear dynamical system X with m-input ports, p-output ports

and n-internal variables in descriptor-form representation is given by a set of differ-

ential and algebraic equations

>: Ex(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t), (3.1)

where x(t) is an internal variable (the state, if E is invertible), u(t) is an input, y(t)

is the corresponding output, while E,A € R™", B € R*™, C € RP*", D € RP*™

are constant matrices with E possibly singular. Typically, E is taken as identity I,
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in which case the representation is referred to as the state-space representation of 3.
The first set of equations, namely Ex(t) = Ax(t) + Bu(t), describes the dynamics of
the system, while the second one simply consists of algebraic equations which define

the output variables in terms of the state and input variables.

Definition 3.1.2. The set of matrices [E, A, B, C, D] is called a realization of H(s).
The realization of a transfer function is not unique, but the one of the smallest possible
order n is called a minimal realization. The minimal realization is also not unique, as
for any invertible matrices T1 and T, the realization [T1ET,, T;AT,, T1B, CT,, D]

corresponds to the same transfer function.

Definition 3.1.3. The matriz pencil (A, E) is regular if the matrizx A — AE is non-

singular for some finite \ € C.

Definition 3.1.4. The poles of a system X are the eigenvalues of the pencil (A, E):

poles of E=p; = ANA,E),i=1,...,n. (3.2)

Definition 3.1.5. X is called stable if all its finite poles are in the left-half plane:

Y stable & Re(p;) <0 for |pi| <o0, i=1,...,n. (3.3)

Definition 3.1.6. Several representations are used for the transfer function of X:
e H(s)=C(sE—A)"'B+D.

e pole-residue form:

H()=Y = +D,

i=1
where R; € RP*™ are the residue matrices (they are of rank 1) and p; are the

system poles. Due to the fact that the polynomial term may be incorporated in
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the E matriz, the D-term in the pole-residue expansion D may be different from

the one in the descriptor-form representation D.

e pole-zero representation: each entry (k,h), fork =1,...,p,h = 1,...,m, of

the transfer function is expressed as:

i (s = =™)
Bl = dl i T
The transfer function is proper if SIH& H(s) < 0o and improper, otherwise. More-
over, if sl_igl() H(s) = 0, H(s) is strictly proper.
Definition 3.1.7. A descriptor system with the pair (A,E) regular is completely
controllable [£5] if rank[A — AE, B] = n, for all finite A € C and rank[E,B] =n. It
is called completely observable if rank [AT — XET, CT] = n, for all finite A € C and

rank [ET,CT| = n, where (-)7 denotes transpose.

Definition 3.1.8. The H,, norm of a dynamical system s

15l = sup o1(H(jw)) (3.4)

weR

where o, is the largest singular value of the transfer function matriz H(s) evaluated
on the imaginary azis at jw.

In case of a system with only one input and output, the Hy-norm is the peak
on the frequency response. If the system has several inputs and outputs (p > 1), the
Hoo-norm is given by the mazimum of the largest singular value of the p x p transfer
function matriz H, as a function of frequency. Fig. 3.1 illustrates this concept, both

for a SISO (m = p = 1) system, as well as a MIMO (m = p = 2) system.

Definition 3.1.9. The H, norm of a dynamical system is

1= = (52 [ uHUw)n?dw)%. (35)

—00
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which is computed as the difference between the transfer function evaluated at that

frequency and the corresponding measurement:

H(j-2rf;) —H® = Err(f), i=1,... k. (3.7)

If all error matrices have small norm (for instance, in the 2-norm, or their largest

singular value), the model is accurate.
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1 5L _ 21, 1 _18 1
10 130 — 130 10 65 T 65
L= , oL = . (4.29)
11 _ 7. _2 3 4 2. 15
260  260° 104 85 T 50 52

Since the theorem’s assumptions are satisfied, we can write a realization as

1 SL_ 21, 1 18 4 124
10 130 130 10 65 65
E, =-— , A, =-— , (4.30)
=17 _ 74 _23 342, 15
260 260 104 65 65 52
=i =6 _t__=6_
5—57 5—57 5+51 24107
B, — , c, = . (4.31)
1 5—21 1 5421
2—-107 2—-10: 5451 24107

The transfer function is as expected:

1 s —6

HT(S) = CT (SET — A.,,‘)_1 Br = m

(4.32)
1 s+5

The following remarks are in place:

e Instead of the matriz obtained by evaluating the transfer function at s = 1,

i —6 i =6
H(i) = i245i+6 24546 | _ | 5i+5 5i+5 (4.33)
= = , .
1 i+5 _1_ i+5
1245146  i24+5i+6 5i+5  5i+5

which would be used in matrix interpolation, tangential data uses only the vector
w; = H(i)r;, in our case the first column of H(i), since ry is the first identity
vector. Therefore, instead of interpolating the entire matriz, we interpolate it
along a direction wq, which is obtained by multiplying the matrix measurement
by a constant vector ri. In our example, ry, the first identity vector, selects
the first column of H(1), yielding w1. In general, wy is a linear combination of
the columns of the matriz measurement H(i). A similar observation holds for
wy. The left data vy, vy are, in general, linear combinations of the rows of the

matriz measurement at the sampling points p1, pe.
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l,...,n+pand ¥¢; € C™P j =1,...,n+ p. Note that once the sampling points \;
and p; and the sampling directions r; and ¢; were chosen, the left and right data w;
and v; are set, as they are obtained as H(\;)r; = w; and ¢;H(u;) = v;, respectively.
This gives a total number of free parameters of 2(n + p) + p(n + p) + (n + p)p =
2n + 2p + 2np + 2p?. Thus, the number of the free parameters needed to uniquely
define the transfer function matrix is smaller than the number of unknown parameters
when n + p tangential measurements are chosen on the left and on the right.

In the following, we show how the Loewner matrix can be factored in terms of
tangential controllability and observability matrices. A similar expression exists for
the shifted Loewner matrix. Given n + p left interpolation data v; = ¢;H(u;), j =
1,---,n + p and the same number of right interpolation data w; = H(\))r;, i =

1,---,n+ p, we obtain

_vir — LWy EH () — LH()r

]L'z' = =
" Hi — As My — Ai
C(E—A)"'B+D - C(\NE—A)'B-D
= {; r;
Bj— As
F — -1 _ (\.F — -1
= ZJC (MJE A),LL i)\zE A) Bri = —€]C(M]E - A)_IE()\,E - A)_IBI',
3 = N
Similarly,
N — Nl W (i.E—A)! = M(\ME — -1
O-]Lj,i — )u‘Jvlrl Alejwl — e]clu’ﬂ(lu’JE A) A1()\1]3 A) Br,- + ejDr,‘
i = Ai Hi = Ai
iy ,U,JC([LJE - A)_lB + /,LJD — )\zC()\ZE — A)_lB — )\iDr
- i

Bi— A
= —£JC(/,L]E - A)_IA()\ZE - A)_lBri + ZjDri, ],Z = ]., .oo,n+D.

Thus
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i original poles \; Y mjin \Aj — N IR, g
1-2 -7.6le-1+4.61e-11 -7.6le-14+4.61e-1i 3.07e-8 1.69e+0 2.21
3-4 | -1.33e+0+£2.02e+0i | -1.33e+0+42.02e+0i 9.67e-8 1.38e+0 1.03
5-6 -1.57e-11£5.52e-1i -1.57e-1+5.52e-1i 3.90e-9 2.67e-1 1.69
7-8 -8.29e-2+1.87e+0i | -8.29e-2+1.87e+0i 1.20e-9 1.03e-1 1.24
9-10 -2.19e-246.96e-1i -2.19e-246.96e-1i 3.85e-10 3.86e-2 1.76
11-12 | -2.22e-3%1.53e+0i | -2.22e-3+1.53e+0i 1.37e-10 1.05e-2 4.73
13-14 | -9.98e-3%8.01e-1i -9.98e-3%8.01e-1i 2.77e-10 8.71e-3 | 8.72e-1
15-16 1.58e-4+6.11e-1i 8.81e-2 2.84e-11 | 1.79e-7
17-18 -4.53e-51+9.04e-1i 1.03e-1 2.28e-12 | 5.04e-8
19-20 3.16e-5+8.55e-1i 5.48e-2 8.52e-13 | 2.69e-8
Table 4.3: Results for SNR = 80
i original poles \; i mjin l)\j - IRl ¢
1-2 -7.6le-1+4.61e-1i -7.66e-1+4.53e-1i 9.46e-3 1.75 2.28
3-4 | -1.33e+0+£2.02e+0i | -1.32e+0%1.99e+0i 3.61e-2 1.38 1.04
5-6 -1.57e-11£5.52e-1i -1.57e-14£5.53e-1i 1.61e-3 2.67e-1 1.69
7-8 -8.29e-21+1.87e+01 | -8.17e-2+1.87e+0i 2.68e-3 1.02e-1 1.25
9-10 -2.19e-246.96e-1i -2.17e-2+6.97e-1i 5.06e-4 3.77e-2 1.73
11-12 | -2.22e-3%+1.53e+0i | -2.35e-3+1.53e+0i 1.54e-4 1.07e-2 4.58
13-14 | -9.98e-3+8.01e-1i -9.80e-3+8.01e-1i 2.13e-4 8.48e-3 | 8.65e-1
15-16 -3.72e-3+5.98e-1i 1.00e-1 6.46e-4 | 1.73e-1
17-18 3.92e-317.67e-1i 3.62e-2 3.67e-4 | 9.34e-2
19-20 -1.32e-4+7.91e-1i 1.36e-2 2.71e-4 2.03

Table 4.4: Results for SNR = 20


























































CHAPTER 5

Parametric models

Another topic addressed in this thesis is the problem of generating parametric models
from measurements performed with respect to the frequency, but also with respect
to one or more design parameters. These design parameters could relate to geometry
(the width, length or height of some components), material properties (the electrical
conductivity or dielectric constant of the various materials which can be used) or vary-
ing boundary conditions (of Dirichlet, Neumann or Robin type). These models are
suited for optimizing certain performance criteria over the space of design variables.

Fig. 5.1 shows the variation in the step response of the RLC circuit as the value
of the inductor L, increases. The transfer function for this circuit (considering the
voltage as input and the current as output), when assuming the value of the inductor
L, to be a design parameter and the rest of the circuit elements are unit-valued,

depends on two variables: the Laplace variable, s, and the inductor value:

Lys3 + Lys? +2s+1
§4Lo+283Lo+352Ls+2524+5Ly+3s+1"

H(S, L2) =

Therefore, the approach presented in this thesis to address the parametric macro-
modeling problem consists of building 2D transfer functions, in other words, transfer

functions depending on two variables. Using the frequency response measurements
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C=[OIOIe§Z+1],B=[0'p‘o], (5.20)
F‘pu = N]Jlag(s; A,;,TL)H 0 0 l
O(s,t)= EATI It (t; 5, m) 0 , (5.21)

kBII 0 [Jiag(t; 5, m), Pl

with k=conj(A11+A12), which contains only real quantities.

Example 5.3.2. We consider a more involved example. The transfer function is of

3s2t4-st42

Serosiiio1, and the measurements

order n =3 in s and order m =1 in t: H(s,t) =
we consider are: s; = {j, —j, 27, —23,3j, —3j,4j, —4j} and t; = {3,5,7,9}.

The usual realization is

[ s—1 —i— S 0 0 0 0 0
s—1 0 2t — s 0 0 0 0
s—1 0 0 —2i—s 0 0 0
O(s,t)=| B Ay L Ly B4, 8 1i1¢-3] 0 0
-B 4L XSy B2y 1 5—t| 0 0
—1-4 g+ B4R -3 0 [t—-3 -1/2
| et it s it ts il wstiet | 0 |5t 1/2
C=|000 0|0’0 1]
. T
B=L0 ~1/2 1/2\0 0‘0 0] : (5.22)
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[ (s—20)T, (M=),

s—Xo)1L A—3s)I
I(s; 0, k)= (s=20)1 Go=s)L, eRFP* k1P (5.26)

| (s— o)L, (A—=s)I,

Theorem 5.4.1. The following is a descriptor realization of H of dimension (k+1)p:

J(s; i, k) 8 Okpxp (5.27)

a I,

-~

C=b, &)=

Proof. Interpolation conditions H(Ai)=6$_1(Ai)§=Wi and H(,ui)=é:f>_l(,ui)l§=
V,; should be satisfied. For the first, we denote <I>“1()\,~)l§ by x, so ®(\;)x = B:

CEDYS) SOV} A o1 To)
A — Al A — )L
( 1) v ( ) ) X1 Op
0, =
()\, - )\1)Ip ()‘k—l—l _ Ai)Ip Xk OP
Qo a1 . (6 5] . O _Xk+l_ _Ip-

.
()\i - )\1)X1 = ()‘i - )\2)3‘2
( X1 = 0

=9 M—A)x; =0 :j .
. Xp+1 =

_ _ -1
| Qim1X; = L=x=0_

\ ooX1+ ...+ X . opXe =1,

for i # 1, where each x; is of dimension p X p and «;_; invertible. Similarly, for z = 1,

X; = 05,80 X; = a;,Vi=1,...,k+ 1. Therefore,
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c={[—2/21 0 —6/7 0 —1/3 0 1 or,
[0 —2/21 0 —6/7 0 —1/3 0 1}T},

so, after a reasonable scaling, cgg = —2I5, ag = —1815, ay9 = =TIy and aq; = 2115.

The matriz B is

42 44 =21 -26
Boo  Bo 46 48 =31 -36
Bor Bu —134 —148 59 70
—-162 —-176 81 92

Using the previous formulas we have the realization

T
C= 0, 02 0y 0Oy _IQ:I7B=[02 -I, I, 0O, 02] )

[(s—2)I, (1/2-5)I 0, 0, 0, ]
Qoo ap  (t+1/2)I, 0, O,

(s, t)= Q10 a;; (—t—=3/2)I 0, 02 |»
Boo B1o 0, (t+1/2)I, -1,

i Bor B 0 (—t—3/2)I, I

which recovers the original MIMO transfer function.

5.5 Numerical examples

5.5.1 RLC Circuit

In the circuit below, all elements have unit value except for the inductor Lo which is

taken as the parameter p.
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6.7 Proposed reformulation of vector fitting

We aim at finding the transfer function of the underlying system, which is a rational

expression, equal to a ratio of two polynomials:

N(s) ag+a15+as®+ ...+ aps”

fls) = D(s)  bo+b1s+bys®+...+bs"

(6.51)

One can express polynomials in various bases. Above, the expressions N(s) and D(s)
are in the monomial basis, which is known to be ill-conditioned for a high degree n
(as in real applications). A better suited basis is that of Lagrange polynomials:
s —
%(s) = H :

b
o<isn &% O
J#

for a; chosen a-priori. A polynomial N(s) can be expressed in the Lagrange basis as
N(s) = Biai(s)-
=0
It is easy to see that the following interpolation conditions hold: N(a;) = f;, i =

0,...,n. Changing notation, we can express the transfer function as

_ N(s) _ codo(s) + c1gi(s) + c2da(s) + - - -+ cadn(s)
D(s)  Ggo(s) +€141(s) + C2ga(s) + ... + Cndn(s)

f(s) : (6.52)

with the numerator and denominator in the Lagrange basis, where

a(s)= [ (s—a)
0<j<n
i

and the constant factor H
0<ji< (ai — a )
Sjsn
J#i
can divide the numerator and denominator by H (s — a;) to obtain:
0<j<n

is incorporated in ¢; and ¢;, respectively. One

fo) =N _rmteatiet ot (6.53)
D(s) 8-+ 2+ 2+ + 5
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in the vector fitting case, as opposed to
X = (A%FDTDAVF)_'lAgFDTDbVF,
in the Lagrange case. Clearly, xyr # x.

6.7.2 Numerical example

The accuracy of the models is assessed using two error measures:

e the normalized H,-norm of the error system, which is the absolute value of
the largest deviation between the model and the measurements divided by the
absolute value of the largest value of all measurements:

Tilla*); |f(jwi) — Hi

H =z
oo €ITor ax || ,

i=1...k

e the normalized Hs-norm of the error system, which is the sum of the square of
the magnitude of the deviation between the model and the measurements at all

samples, divided by the sum of the square of the magnitude of all measurements:

k , 3
H, error = \/Zzzl |J;(Jw) : | |
> i | Hil

The first error measure evaluates the maximum deviation between the model and
the measurements, while the second one evaluates the deviation at all points, proving

to be a good estimate of the overall performance of the model.
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6.7.2.1 Noise-free measurements

Let us consider the following transfer function:

2 30+ 740 30-j40 ..

H(s)= .
(s) 5+5 | 5= (=10017500) T 5= (=100—;500) ’

which we sample at N, = 101 points distributed as s=2*pi*j*logspace(0,4,Ns).
We also append the complex conjugates of these data as the information at —jw;.

We compare the original formulation of VF to the proposed reformulation in
terms of the resulting errors. The starting poles were chosen real, for simplicity, more
precisely as poles=-2*pi*logspace(0,4,n), in all cases, where n, the approximation
order, was chosen 3.

The errors in our proposed reformulation depend on whether we choose the extra
starting pole to be 0 or at some large value. We discuss both cases. Tables 6.2 and
6.3 present the H,, and H, errors at the first 2 iterations, with all the original, as
well as the proposed reformulation. The proposed reformulation with an extra pole
located at 0 yields errors in the same range as those with the original VF formulation,

while those obtained with the extra pole located at 10° are slightly larger.

Iteration | Original VF | New VF with New VF with
extra pole at 0 | extra pole at 108

1 3.5399%e-012 | 2.3275e-014 1.1669e-011
2 2.9933e-015 1.5174e-015 8.1688e-013

Table 6.2: H, error

Iteration | Original VF | New VF with New VF with
extra pole at 0 | extra pole at 108

1 1.6864e-012 1.1000e-014 4.8523e-012
1.3394e-015 1.1515e-015 3.7602e-013

Table 6.3: 3, error

Next, we show on this numerical example that the dimension of the underlying
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Original VF | New VF with New VF with | VARPRO
extra pole at 0 | extra pole at 10°
[ -4.9303 47600 | 49297 | -4.9376 |
Table 6.5: Pole at —5
Original VF New VF with New VF with VARPRO
extra pole at 0 | extra pole at 106
| -98.647+£497.96j | -98.627+£491.95j | -98.6451+497.94j | -98.843+498.06j

Table 6.6: Poles at —100 =+ 5005

Original VF | New VF with New VF with | VARPRO
extra pole at 0 | extra pole at 10°
| 2.0340 | 2.0229 | 2.0340 | 2.03514'
Table 6.7: Residue at 2
Original VF | New VF with New VF with VARPRO
extra pole at 0 | extra pole at 108
r29.34:t39.864ﬂ 27.759+40.049j | 29.337+39.864] T29.404:|:39.904j |

Table 6.8: Residues at 30 £ 405

Original VF | New VF with New VF with | VARPRO
extra pole at 0 | extra pole at 108
.50031 .50257 .50031 .50027

Table 6.9: D-term at .5
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Therefore,
4
N—X)xo=(N—M)x1 =>x = i\i:—’;‘;xo, unless i=1
()\i — )\O)XO = ()\, - )\2)X2 = Xg = —i—:‘:—}‘%){o, unless i=2

(A — Ao)xo = (X — Xi)x; = X0 =0,

(N — Xo)xo = (Ni — Mgy )Xk, = Xi, = /\’\i‘_—):\klxo, unless i = k;

QooXo+Q10X1+. . Ak 0Xk, +(T; — M) (Y1 + - - - + Vi) =L

Qo1 Xo+a11X1+. . A1 Xk H(T1 — T;)y1=ql,

N j Qo Xo+aX1+. . Ak X+ (T — 7)Y =¢;1p (A-2)
Qok, X0t 01k, X1+« -0y ky XKy +(Thy — T)¥1=ar,1p

ﬁ00X0+,310X1+. . .+ﬂkloxk1+(7rj - 71‘0)(20 + ...+ zk2_1)+qozk2 =0
BorXo+Biix1+. . .+ Bk Xk, +(m1 — Tj)Zo+ @12k, = O

BojXo+BrjX1+. . ALy iXe, +(m5 — 7;)20+ g2k, =0

/30k2x0+ﬁlk2x1+- . '+ﬂk1k2xk1 +(7Tk2 - 7Tj)ZO+Qk2Zk2 = 0.

\

Thus Xg, X1, ..., Xz, = 0 and x; # 0. This implies
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( aoXi+(m; — mo)(y1+ ... + Vi) =l
aaXi+(m — m5)y1=qol,
a,-jxi+(7rj - 7Tj)yj =QjIp = x¢-=ai‘j1qj1p
iy Xi+(Thy — 7)Y 1=0k,1
< ko ( k2 ])yl Gk lp (A3)

\

Bixi+(m1 — 7;)zZo+q12k, = O

,Bikgxi+(77k2 — 7Tj)Z0+qk2Zk2 =0.

Bioxi+(m; — m0)(Zo + - . . + Zky—1)+qoZk, = 0

,Bijxi+QjZk2 =0= (Wijaija{j1+zk2)qj =0=>—Zk2=C¢l’_l (/\i, 7rj)B=Wij

Note that this part of the proof holds for any o;; invertible as we made use of no

other properties of the matrices o;;. To show that the second condition also holds,
namely H(ux,v) = Ca:;_l(/,tk,l/l)B = Vi, Vk =0,...,k, VI = 0,...,ko, let us
denote &~ (u, v;)B as v, so ®(u,v;)v = B:

W= Ip Ar—pi)Ip
: ' [ X0 0, ]
(=20 Ip A=) I :
Qoo a0 WiEm)lp... Wi—mo)lp Xk, 0,
o1 TP (T ) 1 qolp
Qok, Qksky (=) I Vs Gk Ip
Boo Bk.0 vi—mo)Ip. .. i—mo)I, qolp Zo 0,
Bo1 Bri1 mi—v)Ip al, :
: : | Zk2 | 0, ]
Bo,k» Bry ks r=)Ip ik, Ip |
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This leads to the following linear system:

(&1
[ 5 1 1 _Hy H H | F ]
s1—a1 s1—a2 s1—a2 s1—a1 s1—a2 s1—a2 C2 Hl
1 1 1 H Hy H = 3
—81—ai —81—a2 —s81—az2 —s1—a1 —S81—az —s81—az C2 Hl
d |~ (B.1)
1 1 1 Hy _Hy Hy P
SN—a1 SN—a2 SN—Qa2 SN—a1 SN—a2 SN—Q2 €1 HN
1 1 1 Hy Hy Hy = i
| —sy—a1  —sN—a2 —sN—a2 Tsn—a1  —sy—az —sy-azd | ©2 _HN4
~ ~~ 7| SN——
A o b
———v
X

Post-multiplying A by II, and pre-multiplying x by II; !,

where I1, = blkdiag(1,11,1, 1,1I),

1 7
withII= | 2 , leads to A, = AIl,:
L )
3 3
1 1(; 1 ) i( 11 ) _H 1(_H;_ _HL) 1(_11;___&_) ]
s1—a1 2\ s1—a2 ' si—az 2\ s1—a2 s1—az s1—ai 2\s1—a2 ' si1—az 2\s1—a2 s1—a2
1 ;( 1 1_) z( 11 ) o 1(_m Fh_) 1(_1‘11____‘1__)
—s1—a1 2\—si1—az ' —s1—asz 2\—s1—az —si1—az —81—a1 2\—s1—az —s1—az 2\—s1—a2 —s1—az
1 1( 1, 1 ) 1( 1 ) Hy 1( Hy Hy ) l( Hy HM_)
SN—a1 2\sy—a2 ' sy—a2 2\sny—a2 sN—dz SN—a1 2\sy—a2 ' sy—a2 2\sy—a2 sy—a2
1 1( 1 ) ( 1 ) 1 Ay 1 _Hx ) if_Hy )
|-sn—a1 2 —SN-—az —SN—az SN—a2 —sN—-_dz —sN—a1 2 —sN—a2 —sN—a2/ 2 —sN—az —sN a2
T
and x,=II]1x= [Cl Cot+C —jca—C) d & E+ey _j(52_g)] . We simplify these
expressions in terms of the real and imaginary parts of the quantities involved:
[ 1 s1—R(az) —3(az) 1 - Hi (s1—R(az)) —H13(az)
s1—a1  (51—R(a2))?+](a2)?  (s1—R(a2))?+(az)? si—a1  (s1—R(a2))2+X(a2)? (s1—R(a2))2+3(az2)?
-1 —s1—R(a2) —S(a2) 1 —H —H; (s1+R(az)) —H19(az2)
sitar  (51+R(a2))?2+%(a2)?  (s1+R(a2))%2+3(az)? s1t+a1  (s1+R(a2))?+S(a2)?  (s1+R(a2))?+3(az2)?
A, = . . . .
1 (sn—%R(a2)) —S(a2) 1 -Hx Hy(sn—R(a2)) —HnS(a2)
sn—a1 (sn—R(a2))?+(az)? (sny—R(a2))2+3(a2)? sn—a1 (sn—R(a2))?+S(az)? (sv—R(a2))2+3(a2)?
-1 —sn—R(a2) —(a2) 1 —Hy —HN(sn+R(a2)) —HNS(a2)
sn+a1 (sN+R(a2))2+S(a2)? (snv+R(a2))2+S(az)? sn+a1 (sn+R(a2))2+S(a2)? (sn+R(a2))2+S(az2)2

(B.3)




















































APPENDIX D. ADDITIONAL NUMERICAL EXAMPLES

ANALYZING THE CONVERGENCE PROPERTIES OF VECTOR
FITTING 179

D.1.1 2 measurements

Suppose we have 2 measurements available of H(s) at s; and s9, namely H; and H,. In
this case, we have two pieces of information given (H; and H») and two unknowns (a
and b), so a and b can be found in one step, without any iteration involved. The linear
system we are solving is A(s;,2;a;,1)x(c;, 1;8,1) = b with A(s,2;a;,1) € Cc2x2,
x(ci, 1;6,1),b € C**L The solution can be found exactly, since the system is not

overdetermined and we are not solving a least squares problem:

HiHz(s2—s1)

1 Hi—
x = = 1=Hs : (D.3)
. Ha(sz—a1)—Hi(s1—a1)
1 Hi1—Ha2

so the new starting pole is a; — ¢ = &%:—Ziﬂ Note that this quantity does not

depend on the initial starting pole, but rather, only on measurements. This implies

that there is no iteration, or that the iteration stagnates after the first step.

D.1.2 N > 2 noise-free measurements

The underlying system is of the form H(s) = 8—:—p, with 7, the residue, and p, the

- T — —_ T . .
pole, so H; = T H, et yHN = 77— Therefore, the matrix A is
1 __H 1 _ r
s1—a1 s1—a1 s1—a1 (s1—p)(s1—a1)
A(s;, Nja;,1) = : : = : : ; (D.4)
1 __ _Hn 1 _ T
SN—a1 sN—a1 SN—a1 (sn—p)(sn—a1)

while the right hand side vector b is

H, L

s1—p

b=| ¢ |=] : (D.5)

SN—P
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D.1.3 3 noisy measurements

The underlying system is of the form H(s) = -Z, with r, the residue, and p, the

s—p’

pole, but instead of noise-free measurements, we are provided with H; = pral
ny, Hy = === + ny and H3 = —*— + n3, where n;, i = 1,...,3 are values of the

82—p 83—p

measurement noise. At this point we make no assumptions on the distribution of the
noise or its magnitude. Suppose the frequencies where measurements are provided
are distinct, therefore the measurements available are also distinct: s; # so, S # s3,
s3 # s; and, consequently, H, # H,, Hy # H3, H3 # H;. The linear system we
are solving is A(s;, N;a;, 1)x(c;,1;6,1) = b. The system is overdetermined, so the
solution x is found via least squares. The starting pole at the next iteration is simply

a; — ¢;. Since this analysis is geared towards finding the convergence points, we use

the convergence condition that the starting pole stays constant to write agk) = aﬁkﬂ) ,
yielding a® = o — & 50 & = 0.

We first use the normal equations to write the solution x = (ATA)~tATb, so

- CM3(],:13 + aga% + a1a1 + o
Cc1 =
2 1
azai + Bia; + Bo

, (D.13)
where og, a1, as, as, [y, B1 are expressions in terms of sy, s9, s3, H1, Ha, H3:

a3 = (Hl — H2)2 + (H2 — H3)2 + (H3 - H1)2

Qg = (31 + So + 33)(H1H2 + H{H; + H2H3)
_3

2

Q)] = S%(Hz - H3)2 + S;(Hl - H3)2 + S%(Hl — H2)2

[s1(Ha — Hs)? + s5(Hs — Hy)* + s3(Hy — Hp)?]

—2s1(Hy—H3)(s2 H3— 53 Ho)—2589(H3—H (53 H1—51 H3) —253(H1—H2)(51Ha—52 H1)
o = 8189(81 HoHa+syH Hs—s1 Ha—so H2)+-5253(59 Hy Ha+83 Hy Hy—so He—s3 H?)
+81$3(31H2H3+83H1H2—81H3—33H3)
Br = —s1(Ha — H3)? — so(Hy — Hs)? — s3(Hy — Ha)?

ﬁo = S%(HZ - I‘.{a)2 + S%(Hl - H3)2 + S%(Hl - H2)2. (D.14)
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Clearly, if H; # Hy # Hj (which is implied by our assumption that measurements
are distinct), then az # 0. Also, since we assume that measurements are noisy, ¢; will
be an order 3 polynomial in the numerator, divided by an order 2 polynomial in the
denominator. We have reached convergence when ¢; is 0, so we are essentially looking
for the roots of the polynomial in the numerator, namely aza$ + aza? + aja; + ayp.
These will be possible convergence points of the iteration. The VF iteration is (for

better layout, we change the notation a(lk) to ax)

Qg1 = A — C1 = Qpq1 = A — gasai + Bia}, + 50)—i'£asa2 + azal + oqar + ap) .

g(ap)-1 flax)
(D.15)
Recall that the Newton iteration is of the form
aks1 = ax — f'(ax) " f(ak), (D.16)

where f’(ay) is the derivative of the polynomial f(a;) evaluated at the current iterate

ag, so for our case, this would be

Qk1 = a — (303 + a2 + aya; + ap) - (Bazai + 2anay, + al)_lj. (D.17)
F(ax) F(ax) !

On the other hand, we can also have a Newton iteration of the form

(2 (1 T fla) _ f(ax)g(ax)
o = (g (§) lome ) 5a =~ o - ftomwtay 19

For the Vector Fitting iteration, h(a) = a — %, therefore,

Ha)=1-1 l(a)g(ag)lzzaj;(a)g ta) (D.19)

which, when evaluated at those a which make f(a) = 0 leads to

f'(a) 3aza’+2a00+a;  —2a3a® + (81 — 2az)a + (Bo — 1)
=1— = . (D.20)
g(a) aza’+pra+Bo aza? + Bra+ Bo

h'(a)=1—











































































