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ABSTRACT 

Modeling Systems from Measurements of their Frequency Response 

by 

Sanda Lefteriu 

The problem of modeling systems from frequency response measurements 

is of interest to many engineers. In electronics, we wish to construct 

a macromodel from tabulated impedance, admittance or scattering pa­

rameters to incorporate it into a circuit simulator for performing circuit 

analyses. Structural engineers employ frequency response functions to de­

termine the natural frequencies and damping coefficients of the underlying 

structure. Subspace identification, popular among control engineers, and 

vector fitting, used by electronics engineers, are examples of algorithms 

developed for this problem. 

This thesis has three goals. 

1. For multi-port devices, currently available algorithms are expensive. 

This thesis therefore proposes an approach based on the Loewner ma­

trix pencil constructed in the context of tangential interpolation with 

several possible implementations. They are fast, accurate, build low 

dimensional models, and are especially designed for a large number 

of terminals. For noise-free data, they identify the underlying sys­

tem, rather than merely fitting the measurements. For noisy data, 

their performance is analyzed for different noise levels introduced 

in the measurements and an improved version, which identifies an 
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approximation of the original system even for large noise values, is 

proposed. 

2. This thesis addresses the problem of generating parametric models 

from measurements performed with respect to the frequency, but 

also with respect to one or more design parameters, which could 

relate to geometry or material properties. These models are suited 

for performing optimization over the design variables. The proposed 

approach generalizes the Loewner matrix to data depending on two 

variables. 

3. This thesis analyzes the convergence properties of vector fitting, an 

iterative algorithm that relocates the poles of the model, given some 

"starting poles" chosen heuristically. It was recognized as a refor­

mulation of the Sanathanan-Koerner iteration and several authors 

attempted to improve its convergence properties, but a thorough 

convergence analysis has been missing. Numerical examples show 

that for high signal to noise ratios, the iteration is convergent, while 

for low ones, it may diverge. Hence, incorporating a Newton step 

aims at making the iteration always convergent for "starting poles" 

chosen close to the solution. A connection between vector fitting 

and the Loewner framework is exhibited, which resolves the issue of 

choosing the starting poles. 
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CHAPTER 1 

Introduction and motivation 

The purpose of this introductory chapter is to provide the reader with details regard­

ing the problem treated in the rest of the chapters. As the thesis title indicates, the 

topics addressed revolve around various aspects of modeling linear dynamical sys­

tems from measurements of their frequency response. The statement of the problem 

at hand is simple: given measurements of a system's frequency response (see Fig. 

1.1 (a)), one wishes to construct a rational model that matches the data closely (see 

Fig. 1.1(b)). Having a simple problem statement is by no means equivalent to dealing 

with an easy problem, as we shall see in the following. Depending on the underlying 

systems, engineers from various areas have produced an extensive literature on the 

topic and different algorithms have been proposed (covered partially in Chapter 2). 

To obtain the measurements illustrated in Fig. 1.1(a), the following technique is 

applied. For single-input single-output (SISO) systems, the system is excited with a 

sinusoidal signal of a certain frequency and the output is observed. At steady-state, 

the output is a sinusoid of the same frequency, but with a different amplitude and 

phase. The amplitude change is recoded as the magnitude and the phase change is 

the phase of a complex number which is used to represent the measurement data for 

that particular frequency. 
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Figure 1.1: Modeling a SISO system. Given measurements (here shown as magnitude 
and phase) of the frequency response of a system (for example, the (1, 1) entry of the 
scattering parameters of a 26-port device), the goal is to construct a model which 
matches the data closely. 
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Figure 1.2: Using sinusoidal signals to measure a system's frequency response. The 
output signal is a sinusoid of the same frequency, but different magnitude and phase. 
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Figure 1.3: Entries of a MIMO system. For MIMO system, the transfer function is 
a matrix of functions (instead of a scalar, as is the case for SISO systems), and this 
figure shows different entries of such a system. 

In the case of systems with multiple inputs and outputs (MIMO systems), one 

input is excited and the output is observed at all output ports, so measurement data 

is provided for each input-output pair. This leads to matrix data: the ( i, j)th entry 

in the matrix is a complex number describing the magnitude and phase of the output 

signal applied at input port j and observed at output port i. Fig. 1.3 shows the 

magnitude of different entries of a system with 26 ports (this system is discussed 

thoroughly in Sect. C.l). Due to the large number of ports, it is unfeasible to 

check each input-output pair (for a system with p = 26 input and outputs ports, 

there are p2 = 262 = 676 entries for which the magnitude and phase need to be 

checked) . Therefore, one can examine the p singular values of the matrix obtained 

as measurement data for each frequency. Fig. 1.4(a) shows the singular values of the 

measured frequency response for all ports and Fig. 1.4(b) shows the singular values 

of the model evaluated for each sample frequency, against those of the data. 
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Figure 1.4: Modeling a MIMO system. Instead of checking the accuracy in each entry 
of the transfer function matrix, it is preferred, especially for multi-port systems, to 
investigate the accuracy in the singular values of the transfer function matrix. 

The problem of building a model from measurements of a system's frequency re-

sponse is of interest to many engineers. In electronics, the aim is to construct a 

macromodel from tabulated data representing impedance (Z-), admittance (Y-) or 

scattering (S-) parameters. When modeling a transmission line as an RLC circuit , 

one can consider the inputs as the voltage drops at ·the terminals and the outputs as 

the currents (as in Fig. 1.5), in which case the admittance transfer function provides 

frequency response measurements representing the Y-parameters of the system. How-

ever, one can also consider the current injections as inputs and measure the voltage 

drops , which yields the impedance transfer function. The impedance transfer function 

is the inverse of the admittance transfer function . 

Impedance parameters from one input port are calculated under open circuit con-

ditions for the other ports. Similarly, to measure the admittance parameters from one 

port , the others are short circuited. On the other hand, S-parameters use matched 

loads instead of open or short circuit conditions to characterize a linear network. At 

high frequencies , matched loads are easier to use, so S-parameters are preferred to 

characterize high-frequency behavior. Therefore, S-parameters are usually measured 
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Figure 1.5: Two-port transmission line. Inputs are voltage drops and outputs are 
currents, hence the measured frequency response provides the admittance parameters. 

on wide frequency bands, from low frequencies up to tens of GHz. Scattering param-

eters are the reflection and transmission coefficients between incident and reflected 

waves and they are measured by devices called VNA (vector network analyzers). As­

suming the same reference impedance Z0 for all ports (usually Z0 = 500), these waves 

may be expressed in terms of the port voltages (V) and currents (I): 

b = -
1 V- Z0I 

2 J IRe(Zo)l ' 
where b are the reflected waves (1.1) 

1 V + Z0I 
a=- where a are the incident waves. 

2 JiRe(Zo)l' 
(1.2) 

After discussing the different ways one can characterize electrical systems based on 

the chosen inputs and outputs, this paragraph provides a motivation as to why model-

ing systems from measurements of their frequency response is an important problem 

in the electronics industry. Oftentimes, parts are not manufactured in house, and 

manufacturers only provide to their clients tabulated data that describe the behavior 

of the electronic component. To integrate the component on the chip and be able to 

simulate the entire chip, a model is sought for each individual component. Regard-

less of the kind of tabulated parameters used to characterize the circuit, electronic 

engineers seek a rational model which should match the tabulated measurements as 
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closely as possible. This model is subsequently incorporated into a circuit simulator , 

allowing the engineers to perform various circuit analyses. 

For structural engineers, frequency response functions (FRFs) provide an analysis 

tool for vibrations. Vibration is oftentimes undesirable, as it wastes energy and creates 

sound (noise). The noise caused by the vibrations of engines in cars or airplanes is 

unwanted , so careful designs are employed to reduce vibrations. Sound, or "pressure 

waves", are generated by vibrating structures, but the latter can also induce the 

vibration of structures. Hence, reducing noise and vibration are two related problems. 

Frequency response functions are measured using a sinusoid forcing function pro-

duced by a shaker at some location on the structure. The output is measured as the 

displacement , velocity or acceleration at one or several points across the structure. 

FRFs can be employed to build a rational model to determine the natural frequencies 

and damping coefficients of the underlying system. These allow the engineers to pre-

diet when undesired resonance (causing vibration) may occur and to determine the 

appropriate steps to take to prevent it from occurring. 

PC 

,; 
PusloC!lg~r ( 'omp.u-uneut 

(a) Picture from [1] (b) 

Figure 1. 6: Concret e car 

The concrete car (Fig. 1.6(a)) is a test setup mimicking a vehicle. It was built at 

LMS International as part of the EU FP7-funded RTN project "A computer-aided 

engineering approach to smart structures" (MRTN-CT-2006-035559) and it contains 
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two cavities, one as the engine cavity and the other as the passenger cavity, separated 

by a firewall. There are 9 inputs to the system, namely the piezo-patches attached 

to the metal frame that separates the two cavities and 6 measured outputs (the 

sound pressure level at 6 locations in the passenger cavity), so the frequency response 

function matrix is of dimension 6 x 9 (Fig. 1.6(b)). Fig. 1.7(a) and 1.7(b) show 

different entries of the FRFs obtained from measurements of the concrete car, as well 

as of the rational model found using the Loewner framework described in Chapter 4. 

Magnitude of the (2.2) entry Magnitude of the (.0,9) entry 

-40 

Frequency (Hz) Frequency (Hz) 

(a) (b) 

Figure 1. 7: Modeling different entries of the transfer function of the concrete car 

Another possible application to modeling systems from frequency domain mea-

surements is for large scale systems, for which smaller order models would be ob­

tained by applying model order reduction techniques. Traditionally, model reduction 

has been applied to systems for which an accurate, but very complex model, is avail­

able, obtained, for example, by a finite difference or finite element discretization of 

the governing equations of the systems, oftentimes expressed as PDEs (e.g., Maxwell's 

equations for electrical systems, or the heat equation for thermodynamical systems). 

An alternative technique [2] is model reduction from time domain or frequency do­

main measurements of devices for which no model is available yet. This black-box 

technique, in which a reduced order model is built from measurement data, is some-
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times preferred by engineers when there is not enough insight available to correctly 

model the system. Constructing models from time or frequency domain data are 

essentially different research problems as each presents different challenges, but this 

thesis focuses on modeling systems from measurements of the frequency response. 

We do not investigate what makes for a good choice of sampling points, as this is a 

complex research question by itself. Assuming that the measurements capture the 

dynamic behavior of interest , chapter 4 presents an efficient framework to construct 

a macromodel of low complexity that is consistent with the data. 

step Response 

Source : 
12 'I 0 

parameter 
- L2=1 

- L2=2 

0.2 - L
2
:3 

L2=4 

5 10 15 20 25 
Timefsec:) 

Figure 1.8: Systems depending on parameters. Changing the value of the parameter 
(the inductor L2) changes the system's response (the step response). 

The next chapter, namely chapter 5, investigates the problem of modeling sys-

terns from frequency domain measurements in a more general context. Oftentimes, 

the behavior of dynamical systems (and consequently of their mathematical models) 

depends on parameters, such as material properties (e.g., dielectric permittivity) , ge­

ometric characteristics (e.g. , spacing between conductors) or varying boundary condi-
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tions. Microelectromechanical systems, electronic chip design and VLSI interconnect 

modeling yield examples of parameterized systems. Fig. 1.8 shows a voltage driven 

RLC circuit for which the output is measured as the current at that port. The induc­

tor L2 can be considered as a parameter in the system if its value is not fixed. For 

different values, the step response shows a different rise time. 

The aim is to create parametric models that incorporate the dependence on these 

parameters. This approach is useful in the optimization process arising in product 

development, since models for many configurations of the design variables are needed 

for each component to maximize a desired criterion. It is unfeasible to perform new 

measurements or run a full-wave simulation for each different configuration of the 

parameter values needed during optimization, and thus having parametric models 

available ensures a faster design workflow. For fixed parameter values, the frequency­

dependent model of, for example, a component in an electrical circuit is rational, so 

it can be used directly in a circuit simulator. 



CHAPTER 2 

Survey of existing methods and contributions of 

the thesis 

2. 1 Literature survey 

There is a large body of literature available on the topic of modeling systems from 

frequency response measurements, which is essentially a rational interpolation prob­

lem, and the literature review following in this chapter is by no means exclusive. 

There are two main approaches. One (e.g., subspace identification, Nevanlinna-Pick 

interpolation, Loewner framework, etc), in which the model's state-space represen­

tation is computed, is based on system theory. The goal of the other techniques 

(e.g., PolyMAX, the Cauchy method, vector fitting, variable projection, etc.) is fit­

ting the data (i.e., no prior determination of the order of the underlying model), 

basically interpreting it as an optimization problem in which the deviation between 

the measurements and the model is minimized. Thus, these procedures are based on 

least-squares approximations. 

Subspace identification, originally developed for time domain measurements [3], 

is currently implemented in Matlab as the n4s i d function available in the System 

Identification Toolbox. Together with its frequency-domain version [4], it is widely 
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used by control engineers. 

13 

The algorithm introduced in [5] uses Nevanlinna-Pick interpolation in the context 

of bounded-real interpolation of S-parameters. As shown in [6], passivity is enforced 

by interpolating at the original points (si, H(si)), together with the associated mirror­

image points ( -si , H(~si) ). Hence this method cannot recover the original system, 

unless the latter satisfies the mirror-image interpolation constraints , which is generally 

not the case. Moreover, this work employs matrix interpolation (the entire matrix 

transfer function is used for each sample) , instead of tangential interpolation, which 

is employed in this thesis. Other algorithms enforcing passivity by construction are 

described in [7, 8]. 

Poly MAX [9], a non-iterative method, is mainly used in the automotive and 

aerospace industries for operational modal analysis. It involves two steps. In the 

first step, a stabilization diagram is constructed, which shows how the poles of mod­

els of different orders evolve when increasing the approximation order. The user needs 

to select those poles which remain almost constant for all model orders and, based on 

this selection, the second step consists in determining the mode shapes (i.e. , system 

poles) by solving a second weighted linear least squares problem. The advantage, 

when compared to frequency domain direct parameter identification (FDPI) [10] or 

least squares complex exponential (LSCE) [11], the industry-standard, is that the sta-

bilization diagrams are very clear, thus lowering the potential of user mistakes. Just 

like the least-squares complex frequency-domain (LSCF) estimation method [12], a 

z-domain model is employed (in other words, a frequency-domain model that is de­

rived from a discrete-time model) , so the basis functions used for representing the 

numerator and denominator of the transfer function are Ok(w) = ejwD.tk (with !::l.t , the 

sampling time). 

The Cauchy method [13, 14, 15, 16, 17] is another non-iterative method, in which 

the numerator and denominator of the transfer function are expressed as polyno-
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mials in the monomial basis. A linearization is then employed, which leads to a 

Vandermonde-type matrix. This matrix is well known to be ill-conditioned for large 

orders of the polynomials used to model the numerator and denominator of the under­

lying system transfer function. Moreover, another effect of the ill-conditioning of the 

Vandermonde matrix occurs when samples span a wide frequency band. To address 

these issues, authors in [14] proposed the computation of the Vandermonde matrix 

via an Arnoldi process (however, this approach did not improve the accuracy of the 

solution) , as well as the use of preconditioners and the QR decomposition (these lead 

to a decrease in the condition number of the Vandermonde matrix, thus yielding ac-

curate solutions). To improve robustness when measurements are corrupted by noise, 

authors in [17] proposed to solve the overdetermined least squares problem via the 

total least squares method. 

Vector fitting [18, 19, 20, 21 , 22, 23, 24, 25, 26] has lately become the method 

of choice among electronics engineers for constructing a model given tabulated fre-

quency domain data. It was also extended to handle time domain data [27]. This 

technique solves the rational interpolation problem in two stages: the first for comput-

ing the poles of the transfer function and the second for finding the residues. In the 

first stage, the poles of the model are relocated, using a set of "starting poles" chosen 

heuristically at the first step, through an iteration process, to their final location. The 

location of the new poles is determined by solving a least squares problem obtained 

when linearizing a model for the transfer function of the system with the numerator 

and denominator expressed in the rational basis. Vector fitting was recognized as a 

reformulation of the Sanathanan-Koerner iteration [28], but a thorough convergence 

analysis of the algorithm is still missing. Several authors have attempted to improve 

its convergence properties. Following the suggestion in [28], authors in [22, 26] de­

veloped Orthonormal Vector Fitting, which uses an orthonormal basis obtained via 

the Gram-Schmidt orthonormalization process applied to the rational basis. Since 
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the convergence properties of the iteration are impaired in the case of noisy measure­

ments , the improvements proposed in [21] include "skimming" the spurious poles and 

iteratively increasing the order of the approximant by "adding" new poles. 

The authors of [23] performed extensive numerical experiments involving data sets 

containing 1001 frequency samples, obtained from devices with various port sizes , 

comparing vector fitting [18] to frequency domain subspace identification [3]. The 

conclusion was that subspace identification requires a large computational time due 

to the large number of samples in the data set and, oftentimes, it fails to produce 

meaningful results. Vector fitting was tested using the element-wise and column-wise 

implementations for dealing with MIMO systems and, while the method never fails , 

sometimes the resulting errors are large. 

Variable projection [29, 30] can be applied to any problem in which a least squares 

problem which involves a set of separable linear and nonlinear variables is solved. 

When expressing the transfer function of the model in pole-residue form , the poles 

are the nonlinear parameters, while the residues are the linear variables. The linear 

variables are eliminated and a least squares problem is solved only in terms of the 

non-linear parameters via a Newton iteration such that the difference between the 

measurements and the model is minimized at the sampling points. 

This thesis also addresses the problem of generating parametric models from mea­

surements performed with respect to the frequency, but also with respect to one or 

more design parameters, which could relate to geometry or material properties. Sev-

eral techniques have already been proposed for solving this parametric macromodeling 

problem. In [31 , 32], the authors use vector fitting to first construct models for a set 

of known parameter values, followed by a parametrization of the numerator and de­

nominator of the transfer function by linear combinations of basis functions that are 

piecewise linear in each parameter. A generalization of the Sanathanan-Koerner itera­

tion to the parametric case was developed in [33] and improved in [34]. A multivariate 
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formulation of the Orthonormal Vector Fitting technique was introduced in [35), but 

the stability of the resulting models was not ensured. Thus, this issue was revisited 

in [36) by employing barycentric interpolation of univariate nodes. A recursive al-

gorithm to compute the parametrized residues of the multivariate transfer function 

was presented in [37) and later combined with [35) to provide a hybrid method in 

[38). Last, [39) discusses a generalization of multivariate Vector Fitting that includes 

parameter derivatives. In the related area of parametric model order reduction, the 

most common approach is interpolatory reduction (see [40, 41 , 42), and references 

therein). 

2.2 Contributions of the thesis 

Current applications require a model of reasonable dimension that approximates the 

response accurately in the desired frequency range. All available techniques are ex­

tremely computationally demanding for constructing low dimensional models for sys-

terns with massive ports. The algorithms presented in this thesis employ tangential 

interpolation in the Loewner matrix pencil framework (see Chapter 4) to address the 

issue of multi-port systems. Tangential interpolation is of great importance in our 

context because it allows building reduced models for devices with a large number of 

input and output ports using a small computational time [43). Our algorithms are fast 

and accurate; they construct models of low complexity and are especially designed for 

devices with many ports, since their computational complexity scales with the second 

or third power of the number of terminals, as opposed to vector fitting, which scales 

with the 4th power. Also, they allow the identification of the underlying system in 

the case of enough noise-free measurements. If more measurements are available than 

needed, plotting the singular values of the Loewner matrix pencil allows the identi­

fication of the original system via an SVD truncation. Our algorithms (presented in 
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Chapter 4) are general and can be applied to any kind of frequency-domain data (see 

Sect. 4.4 for numerical examples spanning various areas) since we use a black-box 

approach by not assuming any underlying structure of the systems to be modeled. 

Moreover, they can construct a non-minimal model exclusively from the available 

measured data by arranging them in an appropriate way. Another advantage is that , 

except for the measurement data, no other user input is required. Vector fitting , on 

the other hand, requires a set of good starting poles for the pole-relocation process 

to be successful and produce good macromodels, as the outcome of the least-squares 

optimization depends on the location of the starting poles. The number of starting 

poles is an additional important parameter for vector fitting which, moreover, requires 

an additional compacting step [19] for system identification, while in the case of our 

algorithms, this process is automatic [43]. 

Modeling systems based on tabulated data is an even more difficult problem be-

cause of measurement noise. Due to their limit ed capability, measurement devices 

can output only a certain number of digits of the measured quantity, some of which 

may be wrong. On the other hand, noise should not affect a robust algorithm used to 

build the model. The effects of noise on our algorithms' performance was investigated 

and an improvement is proposed in Sect. 4.3. 

This thesis addresses the parametric macromodeling problem by generalizing the 

Loewner matrix to the two variable case in Sect. 5.1 - 5.5. Using the frequency re-

sponse measurements obtained for several parameter values, we generalize the Loewner 

matrix to the two variable case to construct models that are reduced both with re-

spect to frequency and to the parameter. This generalization is valid for SISO, as well 

as MIMO systems and it was validated on academic, as well as practical examples 

consisting of real measurements. 

This thesis provides the first analysis ever attempted (to the author's knowledge) 

to understand the convergence properties of the pole relocation iteration of vector 
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fitting (in Chapter 6). Experiments show that for high signal to noise ratios , the 

iteration is convergent , while for low SNRs, the iteration will most likely diverge. 

Based on this observation, the natural way to proceed is by incorporating a Newton 

step to guarantee that the iteration will always converge. We illustrate these different 

situations through simple numerical examples featuring synthetic data. 

Sect. 6. 7 exhibits a relationship between vector fitting and the Loewner framework 

[2, 44] that allows us to propose a reformulation meant to address some of the issues 

in the vector fitting algorithm, namely the choice of starting poles, and determining 

the true model order (currently, the user guesses the order of the model). 

This thesis is organized as follows. Chapter 3 presents a review of system theoretic 

definitions and basic concepts used in the rest of the chapters. Chapter 4 provides 

a derivation of the Loewner matrix framework for the scalar case based on Lagrange 

polynomials , followed by the introduction of the concept of tangential interpolation, 

and the corresponding Loewner framework for this case. The Loewner framework is 

completed with the introduction of the shifted Loewner matrix. Sect. 4.1.4 shows 

that , given the appropriate number of noise-free measurements, the Loewner fram-

work recovers the underlying system. Sect. 4.2 shows various implementation ap-

proaches , while Sect. 4.4 presents numerical examples from various areas to validate 

the proposed implementations. Chapter 5 discusses our approach to solving the para­

metric macromodeling problem: through a generalization of the Loewner matrix to 

the two variable case. We introduce the 2D Loewner matrix in Sect. 5.1 , while Sect. 

5.2 discusses realizations for the single and two variable case in the Loewner frame-

work. Sect. 5.3 presents the left and right basis transformations one needs to perform 

to obtain a realization containing real coefficients for the case when the measurements 

provided in one variable come in complex conjugate pairs, while the measurements 

in the other variable are real. The issue of multiple input multiple output systems is 

addressed in Sect. 5.4, while Sect. 5.5 concludes this chapter with some numerical 
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examples. Next, chapter 6 presents an analysis of the convergence properties of the 

pole relocation iteration of the vector fitting algorithm, as well as a proposed refor-

mulation in Sect. 6. 7, a reformulation that is based on insights from the Loewner 

framework. Lastly, chapter 7 concludes this thesis. 

The main contributions of this thesis are: 

1. addressing the issue of a large number of ports by employing tangential instead 

of matrix interpolation in the Loewner framework, 

2. addressing the issue of parametric macromodeling by generalizing the Loewner 

matrix to two-variable transfer functions, 

3. providing a convergence analysis of the already existing vector fitting algorithm, 

as well as several reformulations. 



CHAPTER 3 

Problem formulation 

3.1 System theoretic concepts 

We present a review of system theoretic definitions and basic concepts which we build 

upon in the following chapters. 

:E . { Ex(t) = Ax(t) + Bu(t) 
· y(t) = Cx(t) + Du(t) 

Definition 3.1.1. A linear dynamical system :E with m-input ports, p-output ports 

and n-internal variables in descriptor-form representation is given by a set of differ­

ential and algebraic equations 

:E: Ex(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t), (3.1) 

where x(t) is an internal variable (the state, ifE is invertible), u(t) is an input, y(t) 

is the corresponding output, while E, A E 1Rnxn, B E ]Rnxm, C E ]Rpxn, D E ]Rpxm 

are constant matrices with E possibly singular. Typically, E is taken as identity I, 
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in which case the representation is referred to as the state-space representation of E. 

The first set of equations, namely Ex(t) = Ax(t) + Bu(t), describes the dynamics of 

the system, while the second one simply consists of algebraic equations which define 

the output variables in terms of the state and input variables. 

Definition 3.1.2. The set ofmatrices [E,A,B,C,D] is called a realization ofH(s). 

The realization of a transfer function is not unique, but the one of the smallest possible 

order n is called a minimal realization. The minimal realization is also not unique, as 

for any invertible matrices T 1 and T 2, the realization [T1ET2, T 1AT2, T1B, CT2, D] 

corresponds to the same transfer function. 

Definition 3.1.3. The matrix pencil (A, E) is regular if the matrix A- .AE is non­

singular for some finite .A E C. 

Definition 3.1.4. The poles of a system E are the eigenvalues of the pencil (A, E): 

poles ofE =Pi= .A(A,E),i = 1, ... ,n. (3.2) 

Definition 3.1.5. E is called stable if all its finite poles are in the left-half plane: 

E stable{::} Re(pi) < 0 for IPil < oo, i = 1, ... , n. (3.3) 

Definition 3.1.6. Several representations are used for the transfer function of E: 

• H_(s)=C(sE-A)-1B+D. 

• pole-residue form: 

~ ~ A 

H(s)=L---+D, 
i=l s- Pi 

where Ri E wxm are the residue matrices (they are of rank 1) and Pi are the 

system poles. Due to the fact that the polynomial term may be incorporated in 
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theE matrix, the D-term in the pole-residue expansion D may be different from 

the one in the descriptor-form representation D. 

• pole-zero representation: each entry (k, h), fork = 1, ... ,p, h = 1, ... , m, of 

the transfer function is expressed as: 

ITn ( (k,h)) 
A • 1 s- z. 

Hk,h(s) = dk,h IT2=n ( _ 2 
·) 

i=1 s p2 

The transfer function is proper if lim H(s) < oo and improper, otherwise. More-
s-too 

over, if lim H(s) = 0, H(s) is strictly proper. 
s-too 

Definition 3.1.7. A descriptor system with the pair (A, E) regular is completely 

controllable [45} if rank [A - AE, B] = n, for all finite A E C and rank [E, B] = n. It 

is called completely observable if rank [AT - AET, cr] = n, for all finite A E C and 

rank [ET, CT] = n, where ( · f denotes transpose. 

Definition 3.1.8. The Jf00 norm of a dynamical system is 

II:EII:H:= =sup a1(H(jw)) 
wEIR 

(3.4) 

where a1 is the largest singular value of the transfer function matrix H( s) evaluated 

on the imaginary axis at jw. 

In case of a system with only one input and output, the JC00 -norm is the peak 

on the frequency response. If the system has several inputs and outputs (p > 1), the 

Jf00 -norm is given by the maximum of the largest singular value of the p x p transfer 

function matrix H, as a function of frequency. Fig. 3.1 illustrates this concept, both 

for a SISO (m = p = 1) system, as well as a MIMO (m = p = 2) system. 

Definition 3.1.9. The JC2 norm of a dynamical system is 

(3.5) 
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Figure 3.1: Frequency response plots for different systems showing the J-f00-norm 

For further details on these issues, we refer to [2]. 

3.2 Problem statement 

We say that :E models the data set obtained from measuring the frequency response 

of an unknown underlying system with m = p ports for a number of N samples 

H(i) 
11 

H(i) 
lp 

jwi, H(i) := ,i = 1,··· ,N (3.6) 

H(i) 
pl 

H(i) 
pp 

if the value of the transfer function evaluated at the sampling point jwi is close to 

the measured matrix at the frequency wi : 

H( . ·) rv H(i) . - 1 N JW~ rv ) '/, - ) •.. ) • 

The function H( s) we are seeking is rational (as opposed to a simple polynomial, 

since transfer functions are rational expressions); this is commonly referred to as the 

rational interpolation problem. We define the error matrix at a specific frequency 
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which is computed as the difference between the transfer function evaluated at that 

frequency and the corresponding measurement: 

H(j · 2nfi)- H(i) = Err{fi), i = 1, ... , k. (3.7) 

If all error matrices have small norm (for instance, in the 2-norm, or their largest 

singular value), the model is accurate. 



CHAPTER 4 

Loewner framework 

This chapter provides a derivation of the Loewner matrix based on Lagrange poly­

nomials for the scalar case, followed by the introduction of the concept of tangen­

tial interpolation and the corresponding Loewner framew9rk for this. The frame­

work is completed by the introduction of the shifted Loewner matrix. These con­

cepts were introduced in [44], while their practical implementation was clarified in 

~6 , 47, 48, 43, 49, 5~ . 

4 .1 Theoretical Aspects 

We start by analyzing the rational interpolation problem in the simple case of scalar 

data (i.e. , one input , one output system, so m = p = 1): 

(4.1) 

where si, Hi E CC (we use the notation Hi for the scalar case, instead of H (i), in the 

general case). The sampling points si are not necessarily on the imaginary axis , as 

was the case in Eq.(3.7). The rational interpolation problem is equivalent to finding 

H(s) as a ratio of two polynomials, namely~' where n , dare coprime polynomials , 

such that H(si) = Hi, i = 1, ... , N . Our main tool , the Loewner matrix, is derived 
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by considering the Lagrange basis for the polynomials n(s) and d(s) [51]. 

We denote by~\ the space of all polynomials of degree at most k. This space has 

dimension k+ 1 and one can consider the monomial basis (which consists of monomials 

si, i=O, 1, ... , k) as a basis for this space. Given Ai, i=O, ... , k, Ai #Aj , i# j, the set 

of polynomials 

IT (s- Ai') . 
q i(s) := (-\·--\·,)'z=O,···,k, 

i'::f=i ~ ~ 

. (4.2) 

yields another basis for the same space ~\, the so called Lagrange basis. For ai 

set, p(s) := I:~=o aiqi(s) is the Lagrange form of the interpolating polynomial, which 

satisfies these k + 1 conditions: p(-\i) = ai, i = 0, ... , k. 

We can express any rational function g( s) as a ratio of two Lagrange polynomials: 

(4.3) 

for arbitrary ai, f3i with ai # 0. g(s) can be completely determined if the 2(k + 1) 

parameters, namely ai and /3i, are known. These can be found by setting 2(k + 1) 

interpolation constraints. We first consider k + 1 conditions: 

(4.4) 

By incorporating the constants into the a and f3 coefficients and dividing both the 
k 

numerator and the denominator by IT (s- Ai), we can rewrite g(s) as 
i=l 

(4.5) 

By multiplying with the denominator, bringing everything on one side and using 

Eq.( 4.4) to group terms, we obtain that g satisfies the equation 

(4.6) 

We determine ai (and consequently, f3i, from f3i = wiai in Eq.(4.4), by considering 
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h + 1 ( h ~ k) additional interpolation conditions: 

(4.7) 

where (J.Lj, vj) are pairs of complex numbers (J.Li=I=J.Lj, for i=f=j and "Ai=f:-J.-lj for V i,j). 

Substituting ( 4. 7) in ( 4.6) we obtain the following condition for a( ILc = 0, where 

VQ-WQ VQ-Wk ao 
J.Lo->..o J.Lo->..k 

IL= E C(h+l)x(k+l), C= E ck+l. (4.8) 

Vh-WQ Vh-Wk ak 
J.Lh-AO J.Lh->..k 

The matrix IL is the Loewner matrix [52, 53, 44, 2] associated with the partition of 

(si, Hi) into the row array (J.Lj, vj), and the column array ("Ai, wi)· It was first used 

for solving rational interpolation problems in [52]. Thus g is found by determining c 

in the right kernel of IL. 

One such partition could be ("Ai = si, wi = Hi), i = 1, ... , If and (J.Lj = sj+~, Vj = 

Hj+~), j = 1, ... , If, if N is even, or, (A.i = si, wi = H i), i = 1, ... , N;l and 

(J.Lj = sj+Ntl, vj = Hj+!!.p) , j = 1, ... , N:;l, if N is odd. When dealing with 

noise-free measurements, the chosen partition of the measurements will not infi uence 

the results. However, for noisy data, results will be different depending on the way 

measurements are partitioned into the row and column arrays. This is due to the 

fact that interpolation at the sampling points in the column array is exact (these 

make up the Lagrange polynomials in Eq. ( 4.2)), while interpolation at the sampling 

points in the row array is approximate (these determine the weights of the Lagrange 

polynomials). 

There are several reasons why this is the right tool to use. The rank of the Loewner 

matrix constructed from noise-free measurements using any partition is the same as 

the degree of the minimal interpolant of the data, defined as the maximum between 

the degrees of the polynomials in the numerator and denominator. This property is 
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due to its system theoretic interpretation in terms of the generalized observability 

matrix, C) , the underlying E matrix and the generalized controllability matrix, ~. In 

particular, suppose that the data is obtained by sampling a strictly proper rational 

function H(s) with minimal state space representation [E, A, B , C, OJ. Then 

IL=-

Assuming a strictly proper system, the matrix E is full rank. The system is completely 

controllable and observable, so the controllability and observability matrices ~ and 

CJ, respectively, are also full rank. Therefore, the rank of IL is precisely the rank of E , 

which is the order of the minimal degree interpolant of the data [54]. This factorization 

of the Loewner matrix was used to arrive at a state-space realization in [53]. Last , 

for data given at a single point with multiplicity: ( s1; H1, HP ), ... , HiN -I)), i.e. the 

value of the function at s1 and that of N -1 of its derivatives, the Loewner matrix has 

Hankel structure, so the Loewner matrix generalizes the Hankel matrix [52, 55, 53]. 

Example 4.1.1. Consider this simple example. The transfer function generating the 

data is H( s) = s!5 and we are given N = 4 samples of this function: 

(4.9) 

We partition this set as follows: 

and build the Loewner matrix according to Eq. ( 4. 8): 

( 4.11) 
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One can easily see that the matrix above is singular, as its determinant is 0. Thus, 

it follows that the rank of L is 1, so the interpolant for these 4 points has minimal 

degree 1, which is indeed the case, since H(s) = s!s is of degree 1. The null space 

of the Loewner matri:c is cr = [ 6 ~ 7] , so ao = 6, a, = ~ 7, f3o = 6 · t = 1, 

{31 = -7 · ~ = -1. Therefore, the interpolant is as expected: 

1 1 --- 1 
( 4.12) g(s) = s-1 s-2 

6 7 =----- s+5 
s-1 s-2 

4.1.1 Tangential interpolation 

In the case in which a rational matrix function is sought, tangential interpolation is 

of interest [44]. This concept was investigated in [56] from the model reduction point 

of view. The data consist now of the right interpolation data, denoted as 

fori= 1, ... , k, or, more compactly, 

A 

R 

w 

and of the left interpolation data 

for j = 1, ... , h, or, more compactly, 

( 4.13) 

(4.14) 

( 4.15) 

( 4.16) 

( 4.17) 
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M ( 4.18) 

L E c_hxp V = 
' 

(4.19) 

The quantities .Ai, J.-li are points at which the function is evaluated; ri, fj are referred 

to as tangential directions on the right and on the left; and w i, V j are right and left 

tangential data, respectively. 

Tangential data may be given as above, but most often matrix data, i.e., the 

value of a transfer function matrix at several points, is provided. Modeling measured 

S-parameters puts us in the last scenario, as we are given data as in Eq.(3.6), so 

tangential data can be obtained by following Sect. 4.2.1. 

The rational interpolation problem for tangential data aims at finding a realization 

[E, A , B , C , D ), such that the associated transfer function satisfies the right and left 

interpolation conditions 

( 4.20) 

The key tools for studying this problem are the Loewner matrix, variously called 

the divided-difference matrix and null-pole coupling matrix, together with the shifted 

Loewner matrix associated with the data; for the material in Sect. 4.1.2 and 4.1.3 , 

we refer to [44] for details on proofs and derivations. 

4.1.2 The Loewner and the shifted Loewner matrices 

Given a set S = { s1 , · · · , SN} of points in the complex plane and the evaluation of a 

rational matrix function H(s) at those points: {H(s1), · · · , H (sN)}, we partitionS: 
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where k + h = N. Matrix data leads to tangential data by selecting directions ri and 

.ej (see Sect. 4.2). The Loewner matrix using tangential data is built as: 

lL= 

It satisfies the following Sylvester equation 

Vlrk-£1Wk 

J.Ll-;>..k 

vhrk-ihwk 

J.Lh-;>..k 

JLA - MJL = LW - VR 

( 4.21) 

( 4.22) 

and has a system theoretic interpretation, this time in terms of the tangential con-

trollability and observability matrices. For strictly proper systems, we could use, 

for example, the SVD to factor JL and identify a realization [53]. If the system has a 

nonzero or hidden D-term, identification is more involved. This motivates introducing 

alL= 

f..Ll Vlri -Aifl WI 

J.Ll-;>..1 

f.J,h Vhrl-Al£h WI 

J.Lh-;>..1 

f..Ll VIrk->-.kii wk 

J.LI-;>..k 

f.J,h vhrk-)..kfh Wk 

J.Lh-;>..k 

( 4.23) 

called the shifted Loewner matrix, which is the Loewner matrix corresponding to 

sH(s). It also satisfies a Sylvester equation 

alLA- MalL= LWA- MVR . ( 4.24) 

These Sylvester equations allow for an efficient Matlab implementation to initialize 

the matrices, by avoiding nested for loops to initialize entries one by one [43]. 
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4.1.3 The solution to the general tangential interpolation 

problem in the Loewner framework 

Next we review the conditions for the solution of the general tangential interpolation 

problem by means of state-space matrices [E, A , B , C , D], as presented in [44]. 

Theorem 4.1.1. Assume that k = h and that det(xJL- alL) =I 0, for all x E {.Ai} U 

{JLi} (i.e., the matrix pencil (alL, JL) is regular and /Lj, Ai fj: .A (alL, JL)). Then E = -JL, 

A = -alL, B = V , C = W and D = 0 is a minimal realization of an interpolant of 

the data. Thus, the associated transfer function 

H(s) = W(aJL- sJL)-1V ( 4.25) 

satisfies the left and right interpolation conditions: .eiH(JLi) = V j, H( .Ai)ri = wi. 

This theorem holds if the number of samples are not more than needed (k and h 

are smaller or equal to n + rank(D), where n is the McMillan degree of the system 

and the rank(D) term comes from the fact that the realization above has a D = 0 

term). If k and hare larger than n + rank(D) and measurements are noise-free, the 

assumption that the matrix pencil (alL, JL) is regular does not hold. 

Example 4.1.2. We revisit the previous example from the point of view of tangential 

interpolation. This was also discussed in {50}. We consider the transfer function 

H(s) = s!5 , as well as right tangential data (.A, r , w) = (1, 1, ~) (i.e., k = 1) and left 

tangential data (JL,f, v) = (-1,1,1) (i.e., h= 1). Compactly, we write this as 

A = [ 1 ] , R = [ 1 ] , W = [ ~ ] and M = [ -1 ] , L = [ 1 ] , V = [ i ] . 

The Loewner matrix pencil is built according to Eq. (4.21) and (4.23): 

The theorem's assumptions are satisfied: k = h = 1, det ( xJL-a lL) = det ( x (- 2~)- 2
5
4 ) =I 
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0, for x E { 1, -1} and /-Lj = -1, Ai = 1 ~ eig ( o-JL, JL), so we directly write the realization 

The transfer function associated to this realization is the same as the original 8~5 . 

Example 4.1.3. We discuss an example that shows how to apply the Loewner frame-

work to modeling systems from measurements of their frequency response. This ex­

ample was also considered in {50). The transfer function generating the data is 

1 
H(s)---­

- s2 + 5s + 6 

As tangential interpolation data we have 

[ 
s -6] 
1 s + 5 

k = 2, (A, r, w) = { ( i, [ ~ ] , 5 ~ Si [ : ]) , ( 2i, [ : ] 

Tangential data leads to the following matrices 

and the Loewner matrix pencil is given by 

( 4.26) 

( 4.27) 

( 4.28) 
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IL = [ 

1 
10 

-17 7 . 
260 - 260'l 

_18 + 12i ] 65 65 

15 
52 

Since the theorem's assumptions are satisfied, we can write a realization as 

[ 1 
51 21 ] 

[ 1 -"+"i] Er=- 10 130 - 130'l 
Ar 

10 65 65 

-17 7 . 23 3 2 . 15 
260 - 260'l -104 65 + 65'l 52 

B, = [ 

-i 
-6 ] 

[ 5~5i -6 ] 5-5i 5-5i 
Cr 2+10i . 

-
1 5-2i 5+2i 

2-lOi 2-lOi 5+5i 2+10i 

The transfer function is as expected: 

[ 
s -6 ] 

1 s+ 5 

The following remarks are in place: 

34 

(4.29) 

(4.30) 

( 4.31) 

(4.32) 

• Instead of the matrix obtained by evaluating the transfer function at s = i, 

[ 
i -6 ] [ i H( i) = i2+5i+6 i2+5i+6 = 5i+5 

1 i+5 1 
i2+5i+6 i2+5i+6 5i+5 

-6 ] 5i+5 ' 

i+5 
5i+5 

(4.33) 

which would be used in matrix interpolation, tangential data uses only the vector 

w 1 = H(i)r1, in our case the first column ofH(i), since r1 is the first identity 

vector. Therefore, instead of interpolating the entire matrix, we interpolate it 

along a direction w 1, which is obtained by multiplying the matrix measurement 

by a constant vector r 1 . In our example, r 1, the first identity vector, selects 

the first column of H( i), yielding w 1 . In general, w 1 is a linear combination of 

the columns of the matrix measurement H( i). A similar observation holds for 

w 2 . The left data v 1 , v 2 are, in general, linear combinations of the rows of the 

matrix measurement at the sampling points ftl, J-L2. 
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• In the realization [Er, Ar, Bn Cn DrL the matrices have complex entries, so 

using the same matrix data and considering the tangential data as 

(4.34) 

( 4.35) 

{i.e., points and their conjugates on the same side) leads to the realization 

After applying the coordinate change II = }. [ ~ - ~ ] , a realization with real 

entries is obtained as: 

E n= -II*ILII=- [ - ~ = 6
: l, 

65 65 

Bn= II*V = 
[ 

486 460 l 1787 2819 

473 1458 
-8696 -1787 

The associated transfer function is as in Eq. (4.32), as expected. 

• Tangential directions in Eq. (4.34)-(4.35) are equal, but this still allows us to 

identify the system {see Sect. 4.1.4 for the theoretical reasoning). 
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The theoretical material presented in this chapter up to this point is only a review. 

The following sections are contributions of the author of the thesis. 

4.1.4 System identification 

In this section, we show that one is able to identify the underlying system given the 

right number of measurements [50]. Assume that our system has McMillan degree n , 

that the number of inputs and outputs is equal ( m = p) and that the underlying D 

matrix is full rank. Thus, we are looking for a realization of the system of order n 

which is minimal (both controllable and observable). 

Let us begin our argument by noting that, even though our realizations have 

D = 0, we can also identify systems with a non-zero D , because the D-term can be 

incorporated either in the B or the C matrices. Assume a realization of the system 

as [E, A , B , C, D] withE, A invertible. The following realization 

E = [ : : l , A= [ : : l , B = [ ~ l , C = [ C D ] , D = 0 (4.36) 

corresponds to a system of order n + p (i.e., both A and E are of dimension ( n + p) x 

(n + p)), but a zero D-term. One can easily check that the transfer function of the 

system in the new realization is as before. 

Next , we show that if n + p left tangential data and n + p right tangential data are 

provided, and the conditions in Theorem 4.1.1 are satisfied, we recover the system. 

The number of free parameters for a rational matrix function H( s) E cp xp with 

D =J 0 and McMillan degree n is 2np + 2p2
, which is obtained by considering the 

control canonical form [57] of the system. Thus, we can freely choose n entries on 

p rows of A , p entries on p rows of B , np entries of C, as well as the p2 entries of 

D. On the other hand, the number of free parameters in tangential interpolation are 

2(n+p) for Ai, J.-li , i, j = 1, ... , n+p, as well as the tangential directions r i E Cpxl, i = 
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1, ... , n + p and .ei E C1xP,j = 1, ... , n + p. Note that once the sampling points .Ai 

and J.Li and the sampling directions ri and .ei were chosen, the left and right data wi 

and Vj are set, as they are obtained as H(.Ai)ri = wi and .eiH(J.Li) = Vj, respectively. 

This gives a total number of free parameters of 2( n + p) + p( n + p) + ( n + p )p = 

2n + 2p + 2np + 2p2 • Thus, the number of the free parameters needed to uniquely 

define the transfer function matrix is smaller than the number of unknown parameters 

when n + p tangential measurements are chosen on the left and on the right. 

In the following, we show how the Loewner matrix can be factored in terms of 

tangential controllability and observability matrices. A similar expression exists for 

the shifted Loewner matrix. Given n + p left interpolation data vi= .eiH(J.LJ), j = 

1, · · · , n + p and the same number of right interpolation data wi = H(.Ai)ri, i = 

1, · · · , n + p, we obtain 

Similarly, 

Thus 
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lL=-

(') 

a-lL=-

(') 

+LDR. 

E [ (A1E- A )-1 Br1 . . . (An+pE- A )-1 
Brn+p], 

:R 

( 4.37) 

A [ (A1E- A)-1 Br1 . . . (An+pE- A )-1 
Brn+p l 

:R 

( 4.38) 

The pairs (E , A , B) and (C, E , A) are controllable and observable, respectively, so 

provided that the sampling directions are chosen appropriately, the rank of the 

Loewner matrix is precisely the rank of the underlying E matrix, while the rank 

of the shifted Loewner matrix is p more than the rank of the underlying A matrix, 

which is as expected from Eq.( 4.36). Next we provide an outline on how to choose 

the sampling tangential directions. 

• If D=O, then JL = -<9E~ and a-lL = -()A~ and we can choose the same 

sampling direction for all sampling points: f 1 = f 2 = ... = fn+p and r 1 = 

r 2 = ... = r n+p· This is because (E, A , B ) is controllable, so by using a linear 

combination of the columns of B , one can still control the system. Similarly, 

as (C , E , A) is observable, choosing a linear combination of the rows of C still 

makes the system observable. Denoting f 1 C by c and Br1 by b , we have that 
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IT...=- E [ (>.1E- A)-1 b 

( 4.39) 

and similarly for a-IT.... 

• The statement above does not hold when (A, E) has at least one multiple eigen­

value with the same algebraic and geometric multiplicity ( eg., E = A = I ), as 

one would need more than one vector b to make (E, A, b) controllable. Sim­

ilarly, more than one c is required to make ( c , E, A) observable. Hence, the 

sampling directions for each evaluating point should be different. Note that 

having Jordan blocks associated with the same eigenvalue is not an issue from 

the controllability/ observability point of view. 

• IfD =1- 0 , Eq.(4.38) shows that the D-term cannot be recovered unless we choose 

at least p linearly independent vectors ri and f!j. In particular, one can choose 

the sampling directions as unit vectors of dimension p. 

Theorem 4.1.1 provides a realization of the system in terms of the Loewner matrix 

pencil and the V and W matrices. Therefore, this method constructs a descriptor­

form representation of an underlying dynamical system exclusively from the data, 

just by arranging it in a convenient form, with no further manipulations involved. 

Example 4.1.4. Consider the following transfer function with D =1- 0{50} 

1 
H(s) = -s2_+_5s_+_6 

[ 
s -6] [ 1 2] 
1 s+5 + 3 4 

( 4.40) 

This purpose of this example is to show how the D term affects the realization. We are 

given matrix data at i, 2i , 3i, 4i and their complex conjugates (i.e., H(i), ... , H (4i) 

and H( -i) = H(i) , ... , H( -4i) = H (4i)). We construct tangential data as 
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k = 4, (>., r , w)={(i, e 1 , H(i)e1), ( -i, e 1 , H( -i)e1), (3i, e 2 , H(3i)e2) , ( -3i , e2 , H( -3i)e2)} 

h = 4, (jl, f, v)={ (2i, ef , efH(2i) ), ( -2i, ef , efH( -2i) ), 

( 4i, ef, efH( 4i)), ( -4i, ef , efH( -4i))} 

and obtain the following realization, after performing the appropriate basis change: 

1 2 0 3 159 1 29 0 -130 -65 -26 130 -130 13 

4 7 1 5 1 4 0 3 

Er= -IL=-
65 -130 13 -26 

,Ar=-aiL=- 65 65 13 

1 1 2 _li_ 743 1 1291 6 
-250 125 -325 650 250 -250 325 -325 

4 3 38 83 2 4 8 38 
-125 125 -975 975 125 -125 325 -325 

31 49 
26 26 

1 15 

[ 11 

1 27 

1
5
3] B r= V= 

-26 -26 
Cr=W= 10 10 13 

Dr= 02. ' ' 149 203 31 _ _l_ 161 14 
50 50 10 10 39 -39 

1 7 
25 25 

The singular values of Er , which is the Loewner matrix up to a szgn change, are 

487 345 0 0 h ·z th f A 2349 397 364 44 . d d z· t . 
1811 , 6374 , , , w z e ose o r are 422 , 1246 , 1359 , 55193 , so zn ee our rea zza zon 

has order 4 = 2 + 2 = n + p with Ar full rank and Er of rank 2 = n. Moreover, 

the eigenvalues of the matrix pencil are -5 · 1014 , -2 · 1014 , -3, -2. The first two 

correspond to poles at infinity, while the last two are precisely the poles of our original 

system (given by the roots of the equation s2 + 5s + 6 = 0). 

4.2 Implementation 

After demonstrating the application of the theoretical concepts described in the previ-

ous sections to the problem of modeling measured multi-port frequency response mea­

surements, this section presents several efficient implementation approaches [43, 50). 

These implementations are contributions of the author of this thesis. Data sets con­

tain N samples of the measured frequency response, H (i), at frequency samples jwi, 
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fori = 1, ... , N. To obtain a real system, the condition H(s) = H(s) needs to be 

satisfied, so the response at the complex conjugate values of the sample points - jwi 

should equal the complex conjugates of the measurement at jwi, namely H (i) . 

4.2.1 Complex approach 

Setting the tangential directions r i and fi as rows and columns of the identity matrix 

of dimension pleads to the right and left data wi and Vj being rows and columns of 

the measured frequency response matrices, respectively [ 43]. 

The right interpolation data can be chosen as 

( ' · - J·w · r · w · - H (i) r ·) A t - 'l.l 'l.l '1.- '1. ' ( 4.41) 

where wi = 21r fiE JR. The direction r i is r i =em E JRPxl, with m = p for i = p · c1 and 

m=1, · · · ,p-1 for i=p ·c1+m, for some c1EZ, where em denotes the m-th column of 

the identity matrix Ip. Consequently, the right data are wi=H(i) ri=H~;~ECpxl (i.e., 

the m-th column of H (i)) for i=1, · · · , N. 

The left interpolation data 'are constructed as 

( //. · = -]·W · f. V · = /}. H (i) ) 
t"''l. '1.' '1.' '1. {,'I. ' ( 4.42) 

where fi = rT E lR1xp. When fi is a unit vector e;;., the left data v i is v i = fi H (i) = 

H~,: EC1xp (i.e. , them-throw of the complex conjugate value of H (i), where m is p 

for i=p·c1 and 1, · · · ,p-1 for i =p·c1+m, for some c1 EZ) for i=1, · · · , N. 

After the tangential data have been identified, the Loewner and shifted Loewner 

matrices are built as in Eq.( 4.21) and ( 4.23). 

4.2.2 Real approach 

Even though the complex approach uses the information at the complex conjugate 

values of the points, the realization matrices are complex and the poles, which, ac-
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cording to Theorem 4.1.1 , are the eigenvalues of the Loewner pencil, may not come 

in complex conjugate pairs due to numerical issues [43]. To guarantee a resulting 

system which is real, the right interpolation data can be chosen as 

( 4.43) 

where wi = 27r fi E JR. The right directions may be chosen as r i = em E JRPxl, with 

m = p for i = p · c1 and m = 1, · · · , p - 1 for i = p · c1 + m, for some c1 E Z, where 

em denotes the m-th column of the identity matrix lp, for i = 1, · · · , !f. The left 

interpolation data is constructed as 

( 4.44) 

The left directions .ei may be chosen as before. Without loss of generality, we assumed 

an even number of samples. After tangential data are constructed, the Loewner and 

shifted Loewner matrices are built using Eq.( 4.21) and ( 4.23). Next, a change of 

basis needs to be performed to ensure that the matrix entries are real: A= ll* Aft, 

M =IT* MIT, L=IT*L, v =IT*V, R=RIT, w =WIT, i=IT*JLIT, iJL=IT*aJLIT, where 

"' . NxN 1 [ 1 - j l II= blkd1ag [II, ... , II] E IC , II= J2 l j . 

Thus, each 2 x 2 block can be written explicitly as: 

Ai = [ -wo w~] Mi = [ -w : wi+~] 
'/, t+2 

L; = J2 [ e~] , it.= J2 [ r ; o] , 

Vi= v'2 [ R(vi) l , W i = v'2 [ R(wi) ~(wi) ] · 
-~(vi) 
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To build i and (j1L efficiently in Matlab, without the use of "for" loops, we wish to 

transform the Sylvester equations 

iA- N.Ji = tw- v:R, 

(jlA- N.J(jt =twA- N.!v:R 

( 4.45) 

(4.46) 

to equations of the form ix- Yi = Z where X andY are diagonal. Note that A2 

and M2 are diagonal, so by multiplying Eq.( 4.45) on the left by M and on the right 

by A, and adding the resulting equations gives the desired expression: 

Similarly, the shifted Loewner matrix with real entries is the solution of the following 

Sylvester equation: 

4.2.3 Real alternative approach 

We present an alternative ordering in which the tangential data in the real approach 

are arranged, which yields better results in the entire frequency band. Recall that 

interpolation is exact at,\, since these are the expansion points in the Lagrange basis, 

so it is better to choose them distributed over the entire frequency range, rather than 

only at the beginning. The right interpolation data can be chosen as 

where wi = 2?T fi E JR. The right sampling directions may be chosen as r 1 = r 2 = e 1 E 

... , where em denotes the m-th column of the identity matrix Ip , m = 1, ... , p. 

Consequently, the right data are columns of H (i) and H (i), eg. w 1 = H~,1{ E cpxl, 

- -(1) - (2) - - (2) 
w2 - H :,l , w3 - H :,2 , w 4 - H :,2 , etc. The left interpolation data is constructed as 



CHAPTER 4. LOEWNER FRAMEWORK 44 

ru.-J·W ·· 1 II · 1--J·W· 1.1J . IJ . 1-IJ.·v · - 0 ·H(i+1)v · --v ·- 0 ·H(i+
1
)) ti-l 3 N \_r''L- t+ ,,...,z+- t+ ,t.z,t.t+ -t.z, 'L-t.'L , z+1- z-t.z ,t-- , , ... , 

( 4.48) 
The left sampling directions fi may be chosen as rows of the identity matrix Ip, so 

the left data are rows of the admittance parameters H(i) and H (i). 

Without loss of generality, we assumed that we have an even number of samples. 

After tangential data are constructed, the Loewner and shifted Loewner matrices are 

built according to Eq. ( 4.21) and ( 4.23), and the same change of basis as in Sect. 4.2.2 

can be performed to obtain matrices with real entries. 

4.2.4 SVD implementation 

The first idea (as presented in [44]) is to use all measurements to construct the 

Loewner matrix pencil, in the complex approach, presented in Section 4.2.1 , or in one 

of the real approaches, presented in Sect. 4.2.2 and 4.2.3. Theorem 4.1.1 ensures re-

covery of the system when the Loewner matrix pencil is regular and the measurements 

are noise-free. However, when too many measurements are available, the pencil is sin-

gular, so one needs to eliminate the singular part via a rank revealing factorization. 

Under the assumption that \fx E { .Ai} U {!-li} 

rank (xJL- alL) =: r, ( 4.49) 

one can perform the singular value decomposition: 

( 4.50) 

where rank (xJL-aJL) =rank (:E) =: r, Y1, X 1 E e,kxr, with r, the dimension of the 

regular part of xJL-aJL. For strictly proper systems, r is precisely n, the order of 

the underlying system, while for proper systems, r=n+rank(D). Using the singular 

vectors as projectors, the realization [44] is given as E =-Y~JLX1, A=-Y~alLX1, 

B = Y~V , C = WX 1 , D = 0. The choice of x is not an issue since the pencil (alL, JL) 

loses rank only when x is one of its eigenvalues. However, Theorem 4.1.1 includes 
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this assumption (f.lj, .Ai tJ: .A (alL, JL)), which holds in the case of modeling frequency 

domain data as xis on the imaginary axis, while the underlying system is stable (so 

the eigenvalues of (alL, lL) are in the left half plane). 

Nevertheless, real-world measurements are noisy, so the zero singular values of 

the singular pencil are corrupted by noise. As pointed out in [58], the singular values 

corresponding to zero singular values in the unperturbed pencil are larger than the 

noise by a factor proportional to the square root of the number of samples. Conse­

quently, one can perform the SVD of the matrix xlL - alL for some x E { .Ai} U {f.li} 

and identify the order of the underlying system based on a large drop in the singular 

values , or the above criterion. The pseudocode is included in Appendix B.l. 

To extract the regular part of the pencil (for reasonable matrix dimensions), one 

may also use GUPTRI [59], [60], which computes the generalized upper triangular 

form of a matrix pencil A - .AB [ 46]. 

The SVD approach is global, since it uses all samples to identify the model, but 

the computational cost for data sets with a large number of samples N is big, as 

the cost of the SVD of the matrix xlL- alL scales with N 3
. The adaptive approach 

presented next is not global , as it only uses some samples to build the system, but it 

is faster for large N and p. 

4.2.5 Adaptive implementation 

In the next proposed implementation, we choose samples from the available ones 

adaptively to construct the desired model [47, 43]. A common technique would be 

to assess the error between the current model and the data from the magnitude of 

all entries of the p x p scattering matrix. Nevertheless , because this technique is 

expensive when the number of ports p is large, we use the singular values of the 

error matrices defined in Eq. ( 3. 7) instead. They encode the errors in all entries and, 

moreover , have the advantage that they are real and positive. Recall that the 2-norm 
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of a matrix is given by the largest singular value, so using the first singular value of 

the error matrices as an error criterion is justified. If the first singular value is small 

for all samples, the overall errors are small and t he model is accurate. 

By using block processing and adding p samples at each step, our approach is ­

better suited for large p , as the computational complexity scales with O(Np3 ) . 

The pseudocode is shown in Appendix B.2. Algorithm 2 uses the original measure­

ments as right data and their complex conjugate values as left data, so the resulting 

model may have complex entries. It can be extended to the real approach (see Ap­

pendix 4.2.2) by using half of the measurements added at each step, together with 

their complex conjugate values, as right data and the rest as left data. 

4.2.6 Stability and passiv ity 

Our algorithms identify the underlying system; therefore, for data sets describing 

real-world systems, the models are stable (after extracting the necessary D-term). 

If the underlying system is symmetric, by choosing the left tangential directions as 

transpose of the right tangential directions (see Sect. 4.2.1), passivity is preserved. In 

general , passivity is not enforced by construction, but for slight passivity violations 

(of less than 0.1%), the easiest way to obtain a passive model is to divide either the B 

or the C state-space matrix of the corresponding realization by this maximum. Out 

of band violations can be corrected by an a posteriori passivation enforcement , for 

example [61]. Passivity can also be enforced in the current framework, as in [6]. 

The concepts presented here are more general than [5], which employs Nevanlinna­

Pick interpolation for the bounded-real interpolation of S-parameters. In particular, 

as shown in [6], passivity is enforced by interpolating at the original points (si, H(si) ), 

together with the associated mirror-image points ( -s;, H(~si) ). Hence this method 

cannot recover the original system unless the latter satisfies the mirror-image inter­

polation constraints , which is generally not the case [43]. 
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4.2. 7 Computational Complexity 

Recall the following quantities: N, the number of samples, p, the number of ports , 

k , the number of starting poles for vector fitting (VF) and n , the dimension of the 

resulting model (the vector fitting algorithm is explained in Chapter 6). For easily 

comparing the complexities, we assume that the dimension of the macromodel n is as 

in column-wise VF, namely k · p. This assumption is not necessary in our SVD and 

adaptive approaches. This section gives expressions for the computational complexity 

of each algorithm in terms of these quantities. 

4.2.7.1 Vector fitting 

The complexity of the column-wise implementation of the vector fitting algorithm is 

(') (N2Np4e) = (') ( N2Nn4 
: 2 ) , 

where N2 is the number of iterations used to fit each column. This expression is due 

to the fact that a least-squares problem with a matrix of dimensions (Np) x (k(p + 1)) 

is solved when fitting each of the p columns using N2 iterations. 

4.2.7.2 SVD implementation approach 

The complexity is 

The first term is from computing the SVD of xJL- O"lL, which is a matrix of size N , 

while the next terms come from computing the projected reduced systems. 

4.2. 7.3 Adaptive implementation approach 

The most expensive operation is the evaluation of the transfer function of the current 

model, for which a matrix inversion is necessary, for all samples, so the complexity is 
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4.2. 7.4 Discussion of the algorithms' computational complexity 

As expected, our approaches are better suited for data sets obtained from devices 

with a large number of ports, as the complexity depends on p2 or p3 , as opposed to 

column-wise VF, for which the computational cost scales with p4 . As for the number 

of samples available in the data set, all algorithms scale linearly with N, except for 

the SVD approach, which depends on the third power, making it suitable for sets 

with fewer samples, but with a large number of ports. 

4.3 Noisy measurements 

As mentioned previously, system identification, as described in Sect. 4.1.4, is only 

possible if measurements are noise free. However, in real applications, measurement 

devices are only able to output a certain number of significant digits of the measured 

quantities. Therefore, measurements are corrupted with noise. Next, we investigate 

the effects of noise on the SVD implementation of the Loewner framework. 

Problem Statement: An LTI system :E models a set with N noisy samples of a 

device with p ports (fi, fl(i) = H(i) +N(i)), i = 1, · · · , N, where fiE IR (the frequency 

where we measure), H(i), N(i) E Cpxp (the true measurement and the noise matrix, 

respectively), if the value of the associated transfer function evaluated at j · 2n}i is 

close to the noisy measurement: H(j · 2?T fi) ~ fl(i), i = 1, ... , N [49]. 

4.3.1 The Loewner matrix pencil under noisy data 

Noisy frequency domain data is contained in the V and W data matrices, while A, 

M, R and L are assumed not affected by noise. We denote the matrices V and W 

containing noisy measurements by V and W. Thus, the Loewner matrix is affected 
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by noise, but still satisfies a Sylvester equation: iA - Mi = L W - VR, so 

( i - lL) A - M ( i - JL) = L ( W - W) - ( V - V) R. 
~ ~ "'--v---' ~ 

(4.51) 

AlL AlL AW AV 

Similarly, for the shifted Loewner matrix, we have that 

(Llo-JL) A-M (Llo-JL) = L (Ll W) A-M (Ll V) R , 

where LllL and Llo-JL are perturbations introduced by noise. Thus, the poles of the 

system recovered from noisy data, which are the generalized eigenvalues of the ma­

trix pencil (o-IL, i) = ( o-JL + Llo-JL, JL + LllL) , are perturbations of the original values, 

which are the eigenvalues of (o-JL, JL). 

4.3.2 Proposed Improvements 

We investigate the performance of the SVD implementation in the real alternative 

approach when dealing with noisy measurements in a controlled experiment. Based 

on its performance, improvements are proposed [49]. In the experiments, we introduce 

random noise relative to the entries in H(i) : N (i) = H (i). * lo-SNRf10 (randn(p) + j · 

randn(p)), where ·* is the entry-by-entry multiplication in MATLAB. 

The accuracy of the models is assessed using two error measures: 

• the normalized J-C00-norm of the error system, which is the largest singular value 

of all error matrices (defined in Eq. ( 3. 7)) divided by the largest singular value 

of all measured frequency response matrices: 

• the normalized J-C2- norm of the error system: 

2::7=1 IIH(jwi) - H (i) II~ 
2::7=1 IIHCi) II~ 
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where 11·11~ stands for the square of the Frobenius norm, namely the sum of the 

magnitude squared of all p2 entries, which, for the error matrix, is: 

p p 2 

IIH(jwi)- H(i)ll~ = L L IHk1 ,k2(jwi)- Hki;,k21 

kl=1 k2=1 

The first error measure evaluates the maximum deviation in the singular values , 

while the second one evaluates the error in the magnitude of all entries , proving to 

be a good estimate of the overall performance of the model. 

For comparison, we compute the 9-C00 and 9-C2-norm errors of the noise: 

• the 9-C00-norm of the noise we introduced: 9-C00 norm = maxi=l...k 0"1 (N(i) ), 

We consider an a-priori known system of order 14 with 2 ports. We generate 134 

measurements of its transfer function for frequencies between 10-1 and 101 radjsec. 

4.3.2.1 Noise-free case 

When we create measurements of the transfer function and do not introduce any noise , 

we can immediately identify the order of the system from the drop of the singular 

values of the Loewner and shifted Loewner matrices and recognize that there is no 

underlying D-term (Fig. 4.1(a) ). We employed the SVD real alternative approach 

in these numerical examples. Using the singular vectors associated to the non-zero 

singular values as projectors, the original system is recovered (Table 4.1). 

9-C00 error 
9-C00 error 9-C2 error 

Model 1.8032e-7 1.5312e-7 
Noise 5.5257e-8 2.7242e-7 6.9291e-14 1.6246e-14 

Table 4.1: Results for noise-free data 
Table 4.2: Results for SN R = 80 
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(a) Noise-free (b) SNR = 80 (c) SNR=20 

Figure 4.1: Singular value drop of the Loewner matrix pencil 

4.3.2.2 SN R = 80 

For small amounts of noise added to our measurements, we still notice a decay in 

the singular values of the Loewner matrix pencil (Fig. 4.1(b) ), suggesting that the 

underlying system is of order 14. The singular values which used to be zero are now 

perturbed by noise. Table 4.2 shows the errors for the order 14 system built using the 

SVD implementation from Sect. 4.2.4 in the real alternative approach (Sect. 4.2.3) 

when compared to the noise errors. 

4.3.2.3 SN R = 20 

When the added relative noise is large, the order of the underlying system can no 

longer be identified from the singular value decay of the Loewner pencil (Fig. 4.1 (c) ). 

Thus, it is instructive to look at stabilization diagrams [62, 9). They compare 

the location of the poles of the system when incrementally increasing the order of 

the model. Physical poles are distinguished from spurious ones based on a criterion 

involving the difference between the poles obtained from two consecutive orders. If 

the differences are within pre-set limits, the pole is labeled as physical. 

In our case, the order is given by the number of singular values retained in the 

SVD truncation. The stabilization diagram in Fig. 4.2 show the absolute value of 

the imaginary part of the poles (on the x axis) versus the different model orders (on 

the y axis). Pluses are stable poles, while stars are unstable poles. Moreover, we 



CHAPTER4. LOEWNERFRAMEWORK 52 

highlighted as black circles the poles which are obtained when truncating at order 14 

(which is the true order of the system) and as green circles, the original poles. 

For SN R = 80, the diagram (Fig. 4.2(a) ) shows that the poles of the order 14 

model approximate well the original ones. Once physical poles were identified, they 

are present for all subsequent orders higher than that of the underlying system. For 

S N R = 20, the stabilization diagram in Fig. 4.2(b) is not as clear as before. Trun-

cation at order 14 has occurred too early, since not all physical poles are present and 

it is necessary to go to order 30 and higher to obtain relatively good approximations 

of the original poles. This diagram suggests that it is necessary to construct a high 

order model from our noisy data. However, such a high-dimensional model would 

have unstable poles, as well as others that are non-physical, so a reduction step is 

necessary to eliminate the spurious part of the model. 
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Figure 4.2: Stabilization diagrams 

In the civil and mechanical engineering communities, stabilization diagrams are 

built to reveal the physical poles as those that do not move too much in the complex 

plane with increasing the order of the model. This is based on the intuition that noise 

in the data should not affect the underlying system poles. Therefore, stable poles 

with almost constant imaginary part for different model orders are good candidates 
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for physical poles. However, for SN R = 20, some stable poles with almost constant 

imaginary part · are not physical. Thus, this criterion gives, apart from the physical 

poles , others which are spurious and try to fit the noise. This suggests employing 

another criterion to detect the true poles of the underlying system. 

Below, we investigate two alternatives. The first is to compute the 2-norm of the 

residue matrices of the high-order model and retain the poles with the largest residue 

norms. For descriptor systems, residues are computed as: 

( 4.52) 

where Xi and Yi are the right and left eigenvectors associated to the eigenvalue Ai of 

the matrix pencil (A , E ): Axi = AiExi, y ; A = Aiy; E . The second is to preserve the 

most dominant poles, where dominance is measured by the quantities qi defined as: 

( 4.53) 

Both criteria are motivated by the pole-residue expansion of the transfer function: 

H(s) = 2::::~= 1 s~'t , as a pole with large residue norm and/or large dominance quantity 

contributes more to the response, while the rest do not influence it very much. 

For SN R = 80, it is clear that the first 14 poles are the physical ones from the 

residue norms, as well as the dominance quantities (Table 4.3). 

For SN R = 20, the first 14 poles sorted according to the residue norms are ap-

proximations of the original ones. If sorted according to the dominance criterion, this 

would not be the case (non-physical poles 19, 20 are more dominant than recovered 

poles 13, 14). Tables 4.3 and 4.4 also include a column for the minimum distance 

between each recovered pole and all original ones. All distances are in the range of 

t he noise level. For SN R = 80, the shortest distances are between those poles with 

the largest residues (and most dominant) and the original poles. This is not true for 

SN R = 20, as the non-physical poles 19, 20 are closer than the recovered poles 3, 4. 
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1 original poles >.i >.i min j>-·- ij j J ~ 11~112 qi 

1-2 -7.61e-1±4.61e-1i -7.61e-1±4.61e-1i 3.07e-8 1.69e+O 2.21 
3-4 -1.33e+0±2.02e+Oi -1.33e+0±2.02e+Oi 9.67e-8 1.38e+O 1.03 
5-6 -1.57e-1±5.52e-1i -1.57e-1±5.52e-1i 3.90e-9 2.67e-1 1.69 
7-8 -8.29e-2±1.87e+Oi -8.29e-2±1.87e+Oi 1.20e-9 1.03e-1 1.24 

9-10 -2.19e-2±6.96e-1i -2.19e-2±6.96e-1i 3.85e-10 3.86e-2 1.76 
11-12 -2.22e-3±1.53e+Oi -2.22e-3±1.53e+Oi 1.37e-10 1.05e-2 4.73 
13-14 -9.98e-3±8.01e-1i -9. 98e-3±8.01e-1i 2.77e-10 8.71e-3 8.72e-1 
15-16 1.58e-4±6.11e-li 8.81e-2 2.84e-11 1.79e-7 
17-18 -4.53e-5±9.04e-1i 1.03e-1 2.28e-12 5.04e-8 
19-20 3.16e-5±8.55e-1i 5.48e-2 8.52e-13 2.69e-8 

Table 4.3: Results for SNR = 80 

1 original poles >.i >.i m~n j>-J- :Xij 
J 

11~112 qi 

1-2 -7.61e-1±4.61e-1i -7.66e-1±4.53e-1i 9.46e-3 1.75 2.28 
3-4 -1.33e+0±2.02e+Oi -1.32e+0±1.99e+Oi 3.61e-2 1.38 1.04 
5-6 -1.57e-1±5.52e-1i -1.57e-1±5.53e-1i 1.61e-3 2.67e-1 1.69 
7-8 -8.29e-2±1.87e+Oi -8.17e-2±1.87e+Oi 2.68e-3 1.02e-1 1.25 

9-10 -2.19e-2±6.96e-li -2.17e-2±6.97e-1i 5.06e-4 3.77e-2 1.73 
11-12 -2.22e-3± 1.53e+Oi -2 .35e-3± 1.53e+Oi 1.54e-4 1.07e-2 4.58 
13-14 -9.98e-3±8.01e-1i -9.80e-3±8.01e-1i 2.13e-4 8.48e-3 8.65e-1 
15-16 -3. 72e-3±5.98e-1i l.OOe-1 6.46e-4 1.73e-1 
17-18 3.92e-3±7.67e-1i 3.62e-2 3.67e-4 9.34e-2 
19-20 -1.32e-4±7.91e-1i 1.36e-2 2.71e-4 2.03 

Table 4.4: Results for S N R = 20 
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Table 4.5 presents the errors after the SVD truncation of order 14, as well as after 

the 14 poles with the largest residues were chosen from a model of order 56. 

Model J-C00 error J-C2 error 
Order 14 after SVD truncation 5.00e-1 4.39e-1 
Order 56 after SVD truncation 8.02e-2 3.30e-2 

Order 14 after largest residue selection 2.45e-2 2.44e-2 
Noise 5.13e-2 2.69e-1 

Table 4.5: Results for SN R = 20 

We looked at the pseudospectra of the original matrix and compared the location 

of the poles given by our improved algorithm for SN R = 20 to the pseudospectra 

bounds corresponding to perturbations in the range 10-1.6 - 10- 2 (Fig. 4.3, generated 

using EigTool [ 63]). Pseudospectra can be defined as [ 64] 

A~:(A) = {z E C: z E A(A + P ) for some P with liP II :::; c} ( 4.54) 

The above definition is not for matrix pencils. Still, the poles recovered by selecting 

those with the largest residues of a high order system are enclosed by the circle in 

the complex plane which bounds the original poles, perturbed by adding matrices P 

with norm up to 10-2 to the matrix E - 1 A . 

-1 .6 

0.5 

0 

-0.5 

-1 

-1 .5 

-2 
dim= 14 

-2 
-1 .2 -1 -0.8 -0.6 -0.4 -0.2 0 

Figure 4.3: Pseudospectra of the A matrix (contours correspond to levels of E of 
10-1.6 , 1o-1.s, 1o-2 ) 
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We performed Monte Carlo analyses for 20 different random perturbations for 

each SNR value. The 9-C2 and 9-C00 error results are shown in Fig. 4.4. We notice that , 

with a few exceptions , the 9-C2-norm errors for our models are well below the values 

of the noise, while the 9-C00-norm errors are close to those of the noise. 
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I.. *;oo I.. 
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(a) :J-C2 error results (b) 9-C00 error result s 

Figure 4.4: Results for different SNR values (the circles are the norms of the noise, 
while the pluses are the norms of our models) 

4.4 Numerical Results 

In this section, we apply the implementations proposed in Sect. 4.2 to various nu­

merical examples. We often compare our approach to vector fitting (see details in 

Chapter 6). Our analysis focuses on the accuracy of the macromodels and the CPU 

time required to produce such models. We plot the singular values of the transfer 

function versus frequency of the model which provides the best trade-off between 

accuracy and CPU time, as well as the singular values of the measured frequency re­

sponses. The agreement in the singular values is an indication of the good quality of 

the model since, when comparing the magnitude and angle of some of the individual 

entries of the frequency response matrices to the model, we notice a very good match . 

Experiments used column-wise VF with the same options: 
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• The starting poles are complex conjugate pairs with weak attenuation, dis­

tributed over the frequency band. 

• The starting poles for each column are obtained by fitting the column sum with 

N1 = 5 iterations; these are used to fit the column itself with N2 = 5 iterations. 

• The fast implementation of relaxed vector fitting [18, 20, 25) was used. 

Experiments were performed on a Pentium Dual-Core at 2.2GHz with 3GB RAM. 

4.4.1 Noise-free system with 2 ports, 14 poles and D -=/=- 0 

We consider an explicitly given system of order 14 with p = 2 ports and a non-zero 

D-term [47, 43). This system has a priori known matrices and we create k = 608 

noise-free measurements of its transfer function on the imaginary axis between 10-1 

and 101 rad/sec. The purpose of this example. is to show that our approaches can 

identify the system and recover the system matrices, but also to illustrate how the D 

term affects the singular value drop of the Loewner pair. 

Fig. 4.5(a) shows the magnitude of the original system, while Fig. 4.5(b) shows the 

normalized singular values of the Loewner and shifted Loewner matrices constructed 

using all samples in the complex and real approaches (we show the first 30 singular 

values as the rest are zero). The Loewner matrix has rank 14, while the shifted 

Loewner matrix has rank 16 so we generate models of order 16 with E singular and 

A invertible, to obtain the 14 finite poles and 2 infinite ones. Vector fitting was given 

N = 7 starting poles and was required to produce aD matrix. 

Table 4.6 presents the CPU time and the errors for the resulting models. We 

conclude that all proposed approaches were able to identify the original system, while 

vector fitting did not (Fig. 4.6 and 4.7). 

With k = 7 starting poles, column-wise VF constructs a model of dimension 

n = p · k = 2 · 7 = 14 (same order as in our approach), by fitting each of the two 
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Figure 4.5 : Original system and singular value drop of the Loewner pencil 

Algorithm CPU (s) 9i00 error 9i2 error 
VF 1.15 1.0536 2.2278e-001 

SVD Complex 2.18 1.3937e-010 2.4269e-011 
SVD Real 2.41 1.3146e-012 3.0687e-013 

Adaptive Complex 0.42 2.0402e-009 2.5888e-010 
Adaptive Real 0.4 7.0155e-013 2.9316e-013 

Table 4.6: Results for an order 14 system with 2 ports 

Singular Value Plot 
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(a) Adaptive Real Approach builds a model which 
matches the data 
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(b) VF does not provide a good model 

Figure 4.6: Models for a system with p = 2 ports 
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columns with the same poles. However, in this example, all entries of the transfer 

function share the same n = 14 poles. With k = 14 starting poles, each of the two 

columns are fitted by 14 poles and the resulting errors are similar to ours. Nonetheless, 

overmodeling occurs as the realization has order n = 28 and each pole has multiplicity 

2, so an additional step [19] is needed to recover the original system. 

--260 
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·c 
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:iE -300 
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(a) Adaptive Real Approach yields small errors 

Singular Value Plot of the Error 

-40~--~~~~~--~~~~~ 

10-1 10° 101 

log of frequency (rad/sec) 

(b) VF yields large errors 

Figure 4. 7: Error plots for a system with p = 2 ports 

4 .4.2 S-parameter measurements 

These scattering (S- )parameter measurements were performed using a vector network 

analyzer (VNA) and were provided by CST AG [43]. This set contains N = 100 

frequency samples between lOMHz and l GHz from a device with 50 ports . For better 

conditioning, all frequencies were scaled by 10-6 . 

Fig. 4.8(a) shows the normalized singular values of the Loewner and shifted 

Loewner matrices constructed from all measurements, using the complex and real 

approaches. The singular values of the Loewner matrices show a decay of several 

orders of magnitude between the 9th and lOth, while the singular values of the shifted 

Loewner matrices show a decay of several orders of magnitude between the 59th and 

60th. The drop in singular values suggests that there is an underlying D -term and, 

moreover, allows to identify the order of the system. 
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Figure 4.8: Singular value drop of the Loewner matrix pencil and Hankel singular 
value drop of the VF model 

Table 4. 7 presents the results for models of order n = 9 obtained with our ap-

proaches, after extracting the D matrix. Vector fitting was required to produce an 

asymptotic D matrix, but the lowest order model we could construct was n = 100. 

All proposed algorithms yield better fits than VF. 

For comparable errors, VF needs to build a model of order n = 300. Fig. 4.8(b) 

shows the Hankel singular values of this large VF model, which exhibit a decay of 

two orders of magnitude between the 9th and lOth singular values. After reducing 

to order n = 9 using balanced truncation (BT) [23], the resulting errors are close to 

those of our models. The reason behind the poor performance of VF is that each 

column is fitted by the same poles in the column-wise VF implementation, so for 

the n = 100 model, each column shares only two (~ = 1
5°0° = 2) poles, which is too 

restrictive. 

The model obtained with the complex SVD approach is shown in Fig. 4.9(a) , 

while the VF model of order 100 is shown in Fig. 4.9(b) . The plots in Fig. 4.10(a) 

and 4.10(b) show the singular values of the error matrices (defined in Eq.(3.7)). 

Fig. 4.11 compares the measured 81,1 and 810,20 entries to the model obtained 

with the real SVD approach and with VF. Our model is very close to the data. 

Table 4.8 shows that all our models are stable and very close to being passive, as 
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Algorithm CPU t ime (s) 9i00 error 9i2 error 
VF (n=lOO) 1.97 3.4831e-001 4.8449e-002 

SVD Complex (n=9) 0.12 5.3638e-003 5.2756e-004 
SVD Real (n=9) 0.15 6.1575e-003 5.9957e-004 

Adaptive Complex ( n=9) 1.21 7.0829e-003 8.3487e-004 
Adaptive Real (n=9) 1.01 5.3318e-003 4.4008e-004 

VF (n=300) 5.27 4.2894e-003 2.4 770e-004 
VF & BT (n=9) 7.62 7.3339e-003 1.4120e-003 

Table 4. 7: Results for a device with p = 50 ports 
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Figure 4.9: Models for a device with p =50 ports 
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their 9-C00-norm is at most 0.2% above one, so by dividing the B or the C matrix of 

the corresponding realization by this 9-C00-norm, one will introduce an error of -50dB, 

but the resulting systems will be bounded-real passive. 

Algorithm Stable 9-C00-norm 
VF (n = 100) Yes 1.9729 
SVD Complex Yes 1.0002 

SVD Real Yes 1.0002 
Adaptive Complex Yes 1.0003 

Adaptive Real Yes 1.0002 
VF (n = 300) Yes 1.9761 

VF & BT (n = 9) Yes 1.9763 

Table 4.8: Stability and passivity results for a device with p = 50 ports 

4.4.3 RC transmission line 

We consider an RC transmission line [65] with 3252 voltage nodes (which are taken 

as states in the MNA formulation) and 21 of them are considered as terminals (i.e., 

inputs/ outputs): 

(G + sC ) x (s) = Bu(s) 

where the MNA matrices G and C are symmetric, non-negative definite and sparse. 

The conductance matrix G contains the values of the resistors, while the capacitance 

matrix C contains the values of the capacitors. The states x( t) are the node voltages 

and u(t) are the currents injected into the terminals. The outputs are taken as the 

voltage drops at the terminal nodes: y( s) = B T x( s), so the impedance transfer 

function is H(s) = BT (G + sC)-1 B. 

We consider 30 admittance (Y-)parameter measurements logarithmically distributed 

between 10° and 1015 and build the Loewner matrix pencil using matrix data (each 

21 x 21 block is JL . · = - 1-(V · -W·) and oi .. · · = - 1 -(u ·V · -A·W ·) respec-2,J J-Li->-.i J t t,J J-Li->-.i rJ J t t ' 

tively, for i = 1, ... , 30, j = 1, . .. , 30, i -=J. j). To preserve the symmetry of the 

original problem, the left and right data are taken equal to each other: Vi = W i and 
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J.-li = Ai , fori = 1, ... , 30. Since the entries in the Loewner pencil are not defined for 

i = j , we make use of the derivative measurement: 

H'(s) = -BT (G + sC)-1 (-C) (G + sC)-1 B. 

and shifted Loewner matrices are of dimension 30 x 21 = 630. The singular value 

drop of the matrix pencil constructed from the measurements is shown in Fig. 4.12. 

21 
1.283e-008 

SVD Loewner matrix pencil 

10-50~----~~------------~~ 
0 200 400 600 

Figure 4.12: Singular value drop of the Loewner matrix pencil 

We truncate to orders 21 and 42. The fact that the singular values of the shifted 

Loewner matrix decay slower than those of the Loewner matrix indicate that there 

exists an underlying non-zero D-term (see Sect. 4.1.4). Fig. 4.13 and 4.14 show 

the largest and smallest singular values of theY-parameter measurements, as well as 

the largest and smallest singular values of the transfer function matrix obtained by 

evaluating the reduced model for the same frequency samples considered previously. 

Fig. 4.15 shows the AC analysis of the original and the two reduced circuits. The 

netlist representation was constructed based on RLCSYN unstamping (66], [67] and 

there-simulation was performed with Spectre [68], courtesy of NXP Semiconductors. 
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The order 42 model yields a signal which is very close to the original. 
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Figure 4.15: AC simulation of the original (red, 3253 nodes), and the two reduced 
net lists: order 22 (blue) and order 43 (magenta) 

Fig. 4.13, 4.14 and 4.15 represent post-processing steps and are also included in 

[69], but the reduced system was obtained by the author of the present thesis. 

4.4.4 Biochip 

Microfluidic systems represent a promising approach towards the realization of a so 

called 'lab-on-a-chip' , a device made by integrating several lab functions on a chip. 

Such a device dealing with microfluids is called a microfiuidic biochip (Fig. 4.16). 

These are used in pharmaceutical, medical, and forensic applications for genotyping 

in genomics, protein profiling in proteomics, and cytometry in cell analysis. 

The compressible Stokes equations with low viscosity coefficient v [70, 71 , 72] are 
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rn terd1gi ta l t ra nsducer 

(a) Picture from [70, 71] (b) Picture from [72] 

Figure 4.16: Microfiuidic Biochip 

used to model the biochip [70, 71 , 72]. The resulting state space is 

[ 
M v l [ v ( t) l [ -v A - B T l [ v ( t) l + [ K l h( t) 

MP p(t) B 0 p(t) L 
( 4.55) 

y(t) = [ c1 o ] [ :~:; ] ( 4.56) 

with v(O) = 0 and p(O) = 0 for t E (0, T). The state variable v(t) denotes flow 

velocity, while p( t) is the pressure. The matrices Mv and Mp are the mass matrices 

corresponding to velocity and pressure, respectively, A is the stiffness matrix, B is 

the divergence matrix while K and L are the input matrices. The output y(t) is the 

integral of the curl over the entire spatial domain n. 

The low viscosity coefficient v puts most of the eigenvalues of the system close to 

zero (see Fig. 4.18). Note that for high viscosity, namely v = 1, all eigenvalues are 

real and the system would be easy to approximate due to the fact that the response 

would contain no resonant peaks. One can easily note that the poles for v = 10-6 are 

closer to the imaginary axis (within 10-3 ) than for v = 10-2
. 
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Figure 4.18: Poles for various values of v; the smaller the viscosity value, the closer 
the poles are to the imaginary axis 
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From this point on, we consider the viscosity to be v = 10-6 • We use an "original" 

system of dimension N = 724 obtained by discretizing the PDE using the Finite 

Element Method (Fig. 4.17) with P2-P1 elements, i.e., continuous piecewise quadratic 

elements for velocity and piecewise linear elements for pressure. 

We compare reduced systems of order n = 40 obtained with Balanced Truncation 

to those obtained by applying the Loewner matrix framework to the Ns = 1000 

frequency response measurements considered for frequencies varying logarithmically 

between 10-2·2 and 101 . Fig. 4.19( a) shows the magnitude plot of the original system 

and a reduced one of order 40. The behavior of the original system is only shown at the 

samples that were considered for building the Loewner matrix pencil and the reduced 

system is evaluated precisely at these samples. The response of the original system 

is approximated quite well by the reduced system for low frequencies. Moreover, the 

peaks with the largest magnitude are matched. 

Singular Value Plot 
100 _._ data o original - 10 • Loewner al -model 

"C - 50 - • • • Q) c< • 
"C - 0 0 0 0 ~ 
::l E 
~ • • • • 

s:::: 0 C) 
ca -10 :E 

-50 
10° 10

2 -2 -1 0 10-2 

Frequency (rad/sec) Re(A.) X 10-3 

(a) Sigma plot (b) Pole plot 

Figure 4.19: Sigma magnitude plot and pole plot comparing the original and reduced 
order 40 system 

Fig. 4.19(b) shows the poles of the original and the order 40 reduced system. As 

expected from the magnitude plot, some of the poles close to the real axis (those with 

low frequency) and close to the imaginary axis (those corresponding to the highest 

resonant peaks) are matched. 
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Fig. 4.20(a) shows the magnitude plot of the original system and the reduced 

order n = 50 system. The response of the original system is approximated better by 

this reduced system than the one of order n = 40. 

Singular Value Plot 
100~--------~--~~--~d~at~a-. 

m 
"C 
Ci) 50 
"C 

:::::s 
~ 

s::::: 0 
C') 
cu 
:E 

--model 

-50----------~------~~ 

10-2 10° 102 

Frequency (rad/sec) 
(a) Sigma plot 

~ -E 

10 

0 

-10 

-4 

o original 
• Loewner 

• 

• 
000 

-2 
Re(A.) 

(b) Pole plot 

c 

• 

• 

c 

0 
X 10-3 

Figure 4.20: Sigma magnitude plot and pole plot comparing the original and reduced 
order 50 system 

Fig. 4.20(b) shows the poles of the original and order 50 reduced system. Like in 

the case of the order n = 40 reduced system, some of the original poles are matched by 

this reduced model, namely those close to the real axis (corresponding to the peaks at 

low frequency) and close to the imaginary axis (corresponding to the resonant peaks 

with the largest magnitude) . 

Fig 4.21 shows a comparison of the t ime responses of the original and reduced 

systems (the plots show the output obtained for a sinusoidal time domain input 

signal). The order n = 40 reduced systems are able to track the signal only up to 

about 2s (see Fig. 4.21(a) ) . The reduced systems of order n =50 shown in 4.21(b) 

are much better, with our reduced system tracking the original response better for 

small times and the BT reduced system tracking better after approx. 7.5s. 
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Figure 4.21: Comparison of time domain responses 



CHAPTER 5 

Parametric models 

Another topic addressed in this thesis is the problem of generating parametric models 

from measurements performed with respect to the frequency, but also with respect 

to one or more design parameters. These design parameters could relate to geometry 

(the width, length or height of some components), material properties (the electrical 

conductivity or dielectric constant of the various materials which can be used) or vary­

ing boundary conditions (of Dirichlet, Neumann or Robin type). These models are 

suited for optimizing certain performance criteria over the space of design variables. 

Fig. 5.1 shows the variation in the step response of the RLC circuit as the value 

of the inductor L2 increases. The transfer function for this circuit (considering the 

voltage as input and the current as output), when assuming the value of the inductor 

L2 to be a design parameter and the rest of the circuit elements are unit-valued, 

depends on two variables: the Laplace variable, s, and the inductor value: 

Therefore, the approach presented in this thesis to address the parametric macro­

modeling problem consists of building 2D transfer functions, in other words, transfer 

functions depending on two variables. Using the frequency response measurements 
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obtained for several parameter values , we generalize the Loewner matrix to the two 

variable case to construct models which are reduced both with respect to frequency 

and to the parameter (in Sect. 5.1 - 5.5). 

step Response 

So rcc : 

parameter 

- L2=1 

- L2=2 

0.2 - L2=3 

L2=4 

5 10 15 20 25 
T~melsec) 

Figure 5.1: Motivation for using parametric models 

5.1 The Loewner matrix in the two-variable case 

We denote the space of polynomials in two variables, s and t, of degree at most n 

in s and at most m in t by P n,m· For this linear space of dimension ( n+ 1) ( m+ 1) , 

one can consider different bases. The monomial basis consists of all monomials of 

the form siti, i = 0, 1, ... , n, j = 0, 1, ... , m. This basis for the two variable case can 

be regarded as the Kronecker product between the monomial bases of the space of 

polynomials Pn in s and of the space of polynomials Pm in t. An alternative basis 

which is better suited for generalizing the Loewner matrix to two variables is the 

Lagrange basis [51 , 73]. This is constructed using given (distinct) complex numbers 
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Ai, i=O, ... , n, and 'Trj, j=O, ... , m, by defining the Lagrange polynomials 

For arbitrary ai,j, the polynomial 

n m 

p(s , t) := L L ai,j q i,j(s, t), 
i=O j=O 

75 

(5.1) 

(5.2) 

is the two-variable Lagrange form of the interpolating polynomial that satisfies the 

interpolation conditions p ( A i, 1r j) = ai,j, i = 0, ... , n, j = 0, ... , m. This is the unique 

polynomial in P n,m satisfying these interpolation conditions. 

We can express any rational function of degree n in s and m in t as a ratio of two 

polynomials (in particular Lagrange polynomials): 

( t) 
= 2:~=0 2:;:0 f3i,j q i,j ( s, t) 

g s, ~n ~m ( )" 
L...,. i=O L...,. j=O CY.i,j q i,j S, t 

(5.3) 

Assuming ai,j =1- 0, Vi, j, we set ( n+ 1) ( m+ 1) interpolation conditions: g ( Ai, 1r j) = ~ =: 
t,J 

w i,j· Since 
~n ~m f3i,j 

( ) 
_ L...,.i=O L...,. j=O (s->.i)(t-1rj) 

g S, t - 2:n 2:m a· · ' t,J 
(5.4) 

i=O j=O (s- >.i)(t-1rj) 

it follows that g satisfies the equation 

n m 

LL g-wi,j 
CY.ij = 0. 

. . ' ( s - >.i) ( t - 1r ·) 
t=O J=O J 

(5.5) 

To determine ai,j, ( n+ 1) ( m+ 1) additional conditions are imposed on g: 

g(J..Li, Vj) = v i,j, i = 0, · · · , n, j = 0, · · · , m, (5.6) 

where (J..Li, vj; v i,j), are given triples of complex numbers (>.i=f-f..Lj, 1ri=/:-vj , i=f-j, Vi,j). 

Using the notation e7J·~ = ( Vk~ .)(i ,j ·) and substituting Eq. (5.6) in Eq. (5.5), we 
' f..Lk- t vz-1rJ 
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obtain the condition ILc = 0 for determining the coefficients a i, j , where 

ao,o 

.eo,o .eo,o .eo,o ... f, ,O t_,O ... .eo,o . . . 0 0,0 ,m 1,0 1,m n,O n,m 
ao,m 

.eo,m ... .eO,m .eO,m .eO,m .eo,m ... .e?_,m 
a1 ,o 

... . .. 
0,0 O,m 1,0 1,m n,O n,m 

IL= 
' C= (5.7) 

.en,O .en,O .en,O ... .en,O .en,O ... .en,O 
a1 ,m 

. . . 0 ... 
0,0 ,m 1,0 1,m n,O n,m 

.en,m ... .en,m .en,m ... .en,m ... .en,m ... .en,m 
0,0 O,m 1,0 1,m n,O n,m 

The matrix IL defined above is the two-variable Loewner matrix associated with 

the column and row data sets 

(5.8) 
Pr ={(f.i,k, vz; Vk ,z) : k=1 , ... , n1

, l=1, ... , m 1
}, 

where n1 = n + 1, m 1 = m + 1. It is a square matrix of dimension (n + 1)(m + 1) x 

( n + 1) ( m + 1). Thus , g satisfies the additional interpolation constraints if the vector 

c , of dimension (n + 1)(m + 1) , is in the right kernel of IL. 

Lemma 5.1.1. Given the rational function g of degree (m, n) and the arrays in Eq. 

{5.8) , assuming n 1 ~ n + 1, m 1 ~ m + 1, then the rank of the Loewner matrix i is 

1 1 ( 1 ) ( 1 ) M l AT [ A A A "' J tr1n'm' n m- n -n m -m . oreover, etc = a1,1 ... a1 ,m' ... an' ,1 ... a n' ,m' E~L-

Remark 5.1.1. In the one variable case, the rank of the Loewner matrix is inde­

pendent of the number of measurements. This nice properly not longer holds in the 

two-variable case. 
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In a real applications scenario, we are given two-variable interpolation data and we 

wish to construct a rational function using the two-variable Loewner matrix. First, 

we determine the degree of the underlying rational function . We seek integers ( n, m) 

to write g as the quotient of two polynomials n, d, both belonging to Pn,m· By 

fixing t and computing the rank of the Loewner matrix constructed for varying s we 

determine n, and similarly, by fixings and computing the rank of the Loewner matrix 

constructed for varying t we determine m . Next, we construct an interpolant using 

the Loewner matrix in Eq. (5.7). We recover the underlying g from Eq. (5.3), where 

c defined in Eq. ( 5. 7) satisfies JLc =O, and f3i,j =cxi,jw i,j . 

5.2 Generalized state-space realizations 

In this section we derive generalized state-space (descriptor) realizations in the Loewner 

matrix framework [51]. 

5.2. 1 Single variable realizations 

Of all descriptor realizations for the one variable rational function g( s) = E£~ !:::, 
with bn =I 0 or an =I 0 or both, we present one that can be generalized to the two 

variable case, where the corresponding dimension is low [51 , 73]. 

We introduce the following notation 

X -1 

J(x; k)= 
X -1 

E:IR.kx (k+l) [x], (5.9) 

X -1 

d [ ] b [b b · · · , bn] Emlx(n+l), while e k denotes the kth an a= ao, al, .. . ' an' = o, 1, .!& 

canonical unit vector of dimension n + 1. 
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Lemma 5.2.1. The triplet ~ (the inverse of the resolvent), B and a constitutes a 

descriptor realization of g: 

(5.10) 

of dimension n+1 which is R-controllable and R-observable [14}, that is [~(s), B] and 

[~*(s), C*] ( * denotes transpose for real matrices and complex conjugate transpose 

for complex matrices) have full rank \/sEC. 

For g expressed in a Lagrange basis, the realization is as follows. We define the 

Lagrange basis analogue of Eq. ( 5. 9): 

(5.11) 

and a = [ao, a 1 , ... , an] = cT (where c is the right null space of JL), while b = 

[J3o, J31, · · · , J3n] E JRlx(n+l) (where J3i = aiwi)· 

Lemma 5.2.2. The following is a descriptor realization of g: 

...-. ...-. [ J lag ( s; Ai, n) ] ...-. 
C = b, .P ( s) = , B = en+l, 

a 
(5.12) 

of dimension n+ 1 which can represent arbitrary rational functions, including polyno-

mials. Also, it is R-controllable and R-observable. 

The following corollary is useful for the two-variable case. 

Corollary 5.2.1. With the notation as in Lemmas 5.2.1 and 5.2.2, 
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[~] [i3] C = [ 0 I - 1], <l'(s) = ~ , B = ~ , 

is a R-controllable and R-observable realization of size n + 2. 

5.2.2 Two variable realizations 

We assume the rational function given as 

n 

L bi(t)si m m 

g(s , t)= i:o , with <li(t)= L ai,jtj, b i(t) = L ,8i,jtj. 
L <li(t)si j=O j=O 
i=O 

We also use the following notation 

A:= 'Iffi:= 

,Boo ,810 

,Bm ,Bn 

,Bno 

,Bnl 

,Bnm 

79 

(5.13) 

(5.14) 

Theorem 5.2.1. The following depcriptor realization of the two-variable rational 

function g is of size n +2m+ 2: 

C = [ 0 I 0 I e;;;+l ], BT = [ 0 I e 1 I 0 ] , (5.15) 

J(s; n) 0 0 

4>(s, t) = J*(t; m) 0 (5.16) 

0 [J*(t; m) e1] 

with 4> partitioned as: (n, m+ 1, m+ 1) x (n+ 1, m, m+ 1). It is R-controllable and 

R-observable, i.e. [4>(s, t), B] and [4>*(s, t), C*] are full rank, 'v's, tEC. 

For g expressed in the Lagrange basis, we need A and Iffi as in Eq. (5.14), where 
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the quantities ai,j are obtained from the right null space of the two variable Loewner 

matrix IL and /3i,j=ai,j W i,j· We also need a vector pECm+l such that [Jiag(t; 7rj, m), p] 

is a unimodular matrix in t. The entries of this vector can be chosen as: 

1 
(5.17) Pi = rrm ( ) , 

j=O,j=/=i 1ri - 1rj 

in which case det [Jiag(t; 7rj, m), p] = ( -1)m. 

Theorem 5.2.2. This is a descriptor realization of the two-variable rational function 

g expressed in Lagrange form ( 5. 3) 

C = [ 0 I 0 I e;;;+ 1], B = [ 0 I p I 0 ] (5.18) 

Jlag( s; Ai, n) 0 0 

<l>(s , t)= A Jiag(t; 7rj, m) 0 (5.19) 

Iffi 0 [Jiag(t; 7rj, m), p] 
... -

of dimension n +2m+ 2, R-controllable and R-observable. 

5.3 Obtaining a real realization 

This section discusses the issue of obtaining a real realization from the one presented in 

Theorem 5.2.2 when one of the variables, for examples, the frequency, is measured on 

the imaginary axis, and the other one, t, the parameter, leads to real measurements. 

We first discuss this for an example, which we later generalize. 

Example 5.3.1. Consider a system described by the transfer function H (s, t) 

1+ 2s+3t+4st We take measurements at s = ±]. and t = 1 t = 2 so the Lagrange basis 
5+6s+ 7t+8st · ' ' 

is (s-j)(t+1), (s-j)(t+2), (s+j)(t+1), (s+j)(t+2). The order ins is n = 1, and in t 
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is m = 1. Therefore, 

[ 

-2 + 38j -38- 2j l ' :IE= [ -2 + 38j -38- 2j l 
A = 19 - 180j 181 15 - 104j 105 - 4j 

and the resulting realization, following Theorem 5. 2. 2 is 

r- - -1 

s-j -s -j 0 0 0 

-2 + 38j -38- 2j t+l 0 0 

g(s,t)= [ o ol ol o -1] 19- 180j 181 -t-2 0 0 

-2 + 38j -38- 2j 0 t+l -1 

15- 104j 105- 4j 0 -t-2 1 
-

This realization contains complex quantities in the (1, I)-block, namely Jza9 (s; Ai, n), 

as well as in A and :IE. To obtain a real realization, one may think of scaling the first 

two columns of ct>(s , t), by k1 and k2 . Unfortunately, no such scaling exists, but for 

k=conj(A11+A12)=-40- 36j, the scaled A and :IE are 

k [ 1-j l+j l k [ 1-j l+j l 
A.=A181. 2. 4 = -5+9/2j ....fJ-9/2j , lffi.=lffi181· 2. 4 = -3+5/2j -3-5/2j . 

Next, we apply the transformation M=blkdiag(II, Im, Im+I) to ci> on the right where 

[ 
1 •] II= J . 
1 -j 

The first n + 1 = 2 columns of new ci> are 

[ l [ 2j 2 -10 2 -6] T' 

Jza9 (s; A;, n)Il A.II B.II = ~js 
2 

_
9 2 

_
5 

while C stays unchanged by multiplication with M on right. Next, multiply the new 
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il> by N = blkdiag(N 1, Im+l, Im+l) on left, where N 1 = [ ~ ] to make iJ> completely real 

(B is not affected by pre-multiplication with N). The realization containing only real 

quantities is 

.... 

1 -s 

2 2 

g(s,t)= [ o oioio -1] -10 -9 

2 2 

-6 -5 
L. 

0 0 

t+1 0 

-t- 2 0 

6 t+ 1 

0 -t- 2 

0 

0 

0 

-1 

1 

-1 

0 

-1 

1 

0 

0 

In the general case, assume that the measurements ins come in complex conjugate 

pairs: A1 = jw1, A2 = A1 = - jw1, ... , An= jw!Jdl., An+ I =An= - jw!Jdl.. Construct the 
2 2 

realization as in Theorem 5.2.2 and, afterwards, apply the following steps: 

1. Scale A. and :J:ffi by k, where k=conj(An+A12 ). 

2. Post-multiply q, by M = blkdiag(II, Im, Im+1), where II= blkdiag(II1 , ... , II1), 

II E c<n+l) X (n+l) and Ill = [ 1 J ]· 

1 -J 

3. Pre-multiply the new q, by N = blkdiag(N1 , Im+I, Im+1 ), where 
-

j WI -s 

-11 1 s WI -s -w2 

0 j -j 0 0 -w2 s 

-1 1 1 s WI -s -W!Jdl. 
2 

0 J -J 
L. -

0 0 -Wn+l s 
-2-

This way, we obtain the following realization: 
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C = [ 0 I 0 I e~+1 ], B = [ 0 I p I 0 ] ' (5.20) 

<I>n = NlJ!ag(s;>.i,n)II 0 0 

<I>(s, t)= kAIT Jiag(t; 7rj, m) 0 ' (5.21) 

klBSII 0 [Jiag(t; 7rj, m), p] 

with k=conj(An+A12 ), which contains only real quantities. 

Example 5.3.2. We consider a more involved example. The transfer function is of 

order n = 3 ins and order m = 1 in t: H(s, t) = s;::~t:!~~l' and the measurements 

we consider are: si = {j, -j, 2j, -2j, 3j, -3j, 4j, -4j} and tj = {3, 5, 7, 9}. 

The usual realization is 

S-'t -i-s 0 0 0 0 0 

S-'t 0 2i- s 0 0 0 0 

s-i 0 0 -2i- s 0 0 0 

<I>(s, t) = 13 ll 0 

l16 - 116 2 
17 1 . 
l16 - 1161, 

25 49 . 
-58+ 116 2 

35 1 ° 

-58- 116 2 t-3 0 0 

23 15 . 27 5 . 21 - 20i 1 5-t 0 0 -116 + 116 2 -116 + l16 2 29 29 
1 1 . 

-4-42 
1 41 . 

-116 + l16 2 
49 79 . 
l16 + 1161, 

19 91 ° 

-116 - 116 2 0 t- 3 -1/2 

51 55 . 
116 + 116 2 

1 75 ° 

-116 - l16 2 
83 135. 

-116 - 116 2 
33 155 ° 

116 + 116 2 0 5-t 1/2 

c=[o o o ololo 1] 
B = [ 0 -1/2 1/21 0 0 I 0 0 ] T' (5.22) 
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while the real realization is 

1 - s 0 0 0 0 0 

s 1 -s -2 0 0 0 

0 0 -2 s 0 0 0 

<I>(s, t) = 9 _L 9 15 t-3 0 0 116 116 -29 -116 (5.23) 

15 3 15 _§_ 5-t 0 0 -116 -116 29 29 

9 21 9 51 0 t-3 -1/2 -116 116 116 -116 

15 39 15 3 0 5-t 1/2 116 -116 -116 4 

C = [ 0 0 0 ololo 1 ] (5.24) 

B = [ 0 -1/2 1/21 0 olo or (5.25) 

5.4 Generalized state-space realizations for MIMO 

systems 

The goal is to generalize the realizations presented in Sect. 5.2 to MIMO systems. 

In the following, we consider matrix transfer functions, in other words, systems with 

more than one input and output, rather than scalar (SISO) transfer functions. 

5 .4. 1 One variable case 

We assume the same number of input and output ports, p. We use the MIMO 

Loewner matrix IL(M) built from matrix data IL;MJ.) = vi_-_v:'_j (instead of Eq.(4.8)) 
' J.L~ /\J 

where v i, w j E CPXP and H (.Aj) = w j, as well as H (Mi) = v i, i,j = 0, ... 'k [75]. 

Consequently, there are p vectors in the null space: a= [ a 0 a 1 . . . ak ] EJR.PX (k+l )v, 

h fr4PXP . - 0 k d b - [ {3 {3 ] mpx(k+l)p "th {3 - W · . w ere ai E ~L- , z - , ... , an - f3o 1 . . . k E lN.. , w1 i - z az, 

i = 0, ... , k. We define the MIMO analogue of Eq. (5.11): 
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(s->.o)Ip (>.1-s)IP 

J(s; >.i, k)= 
(s->.0 )1p (>.2-s)Ip 

(5.26) 

(s->.o)Ip 

Theorem 5.4.1. The following is a descriptor realization ofH of dimension (k+1)p: 

~ ~ [ J(s;>.i,k)] ~ [ Okpxp] C = b, 4>(s) = , B = . 
a Ip 

(5.27) 

Proof. Interpolation conditions H(>.i) =Ci-1(>.i)B= wi and H(tti)=ci-1(tti)B= 

vi should be satisfied. For the first, we denote 4)-1(>.i)B by x, so 4>(>.i)x = B: 

( >.i - >.l)Ip (>.2- >.i)Ip 
xl Op 

( >.i - >.l)Ip (>.i - >.i)Ip ....__,_.., Xi-1 Op 
Op -

(>.i - >.l)IP (>.k+l - >.i)Ip Xk Op 

ao al ai ak Xk+l Ip 

(>.i - >.1)x1 = (>.i - >.2)x2 

Xk+l = 0 

fori =f. 1, where each Xi is of dimension p x p and ai-l invertible. Similarly, fori= 1, 

x1 = a0\ so Xi= a;!1, Vi= 1, ... , k + 1. Therefore, 
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0 

0 

This part of the proof holds for any invertible ai. 

For the second condition, let us denote <P-1(p,i)B as y, so <P(p,i)Y = B: 

Yo Op 

Y1 Op 
(5.28) 

( Ak+1 - /-li)IP 

ak Yk IP 

(5.29) 

Since the column vector [ a 0 . . . ak ] T is in the nullspace of the MIM 0 Loewner 

matrix rr_.CM), by multiplying each row of rr_.CM) with this vector , we get 0. Therefore, 

v i - W1 v i - W2 v i - wk+1 
, ao+ A a1 ... + A ak=OJ·(p,i -A1)Yo~ 

/-li - /\1 /-li - 2 J-li - k+1 
(5.30) 

~ J-li - A 1 /-li - A 1 ~ 
V i aoYo+a1 A Yo+ .. . +ak A Yo 

/-li - 2 /-li - k+1 
(5.31) 

Ip from Eq.(5.29) 

/-l i - A1 /-li - A1 
=W1aoYo+W2a1 A Yo+ .. . +Wk+1ak A Yo· 

/-li - 2 /-li - k+1 

After performing obvious simplifications, we arrive at 
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Yl 

V i= [ W1ao W2a1 ... Wk+lak ] 

a 

87 

Yk 

Yo 

Yk 

so, indeed, H(f.li) = c~-1 (f.li)B =Vi. This proof also holds for Lemma 5.2.2 which 

is a special case of Theorem 5.4.1 for one input and one output (p = 1). D 

Remark 5.4.1. The dimension of this realization should be close to the order of 

the minimum realization with D = 0 , which is n + p, with n, the McMillan degree, 

and p, the number of ports (for the general case of an invertible non-zero D-term). 

We choose k such that the size of our realization is as close as possible to n + p: 

n + p < ( k + 1) p. Thus, k is I~ l· 
Example 5.4.1. Consider the transfer function 

[ 

2+5s 3+7s l H( 8 ) = 1+2s 1+2s 

1+6s 4+9s 
1+2s 1+2s 

and samples at .A0=1 , .A1 =2, f.Lo=3, /-ll =4. The MIMO Loewner matrix is 

II)M) = 

1/21 1/21 1/35 1/35 

4/21 1/21 4/35 1/35 

1/27 1/27 1/45 1/45 

4/27 1/27 4/45 1/45 

It has dimension 4 and its nullspace is of dimension 2: 
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-3/5 0 

0 -3/5 
C= 

1 0 

0 1 

thus, a 0 = -3/512 and a 1 = 12. In fact, ai can be chosen as any matrices such that 

[a0 a 1]T is in the right nullspace ofJI)M). In this case, the McMillan degree n = 2, so 

k = 1, and the minimal realization with D = 0 is of order n + p = 2 + 2 = 4. This is 

the same as the dimension of the realization we can construct using Theorem 5.4.1 : 

c = [ -7/5 -2 12/5 17 /5] 

-7/5 -13/5 13/5 22/5 

<P(s)= [(s-1)12 (2-s)I2]' B= [0
12
2]' 

-3/512 12 

recovers the original MIMO transfer function. 

5.4.2 Two variable case 

Assuming the same number of inputs and outputs, p, we are now using the 2D 

MIMO Loewner matrix JL(M) built using MIMO data f71'~ = ( vk~0'("~j ·) (instead of ' J..Lk- t V! 1f3 

e7,j = (J..Lkv_:~i)(:;~1rj) in the scalar case) where Vk,z, Wi,j E cpxp and H(.Ai , 1rj) = W i,j, 

as well as H(J.Lk, vz) = V k,z, i, k = 0, ... , k1, j, l = 0, ... , k2. 

We need q EC(k2+l)pxp such that [J* ( t; 'lrj, k2), q] is unimodular in t. We choose 

1 
qi = k2 ( ) ' 

rrj=O,j#i 1ri - 'lrj 

so q = [ qo. lp . . . qk, . lp r, in which case det [J(t; 1I"j, k2), q] = ( -l)k'. 

The right null space of the two variable Loewner matrix JL(M) from MIMO data is 

f d . . JLM I MO [ ] T 0 h h o 1menswn p, so a 00 . . . aok
2 

• • • ak
1
o . . . ak1 k2 = , w ere eac 
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ai ,j is of dimension p x p. We arrange the entries from the nullspace into the matrix 

aoo aw O'.k10 

A:= (5.32) 

aok2 O'.lk2 O'.klk2 

and 

f3oo f3w f3k10 

lE:= h f3(1:p,l:p) w 
, w ere i,j = i,jai,j. (5.33) 

f3ok2 f3lk2 f3klk2 

Theorem 5.4.2. The following is a descriptor realization of the MIMO two-variable 

rational function H(s, t) 

C = - [ 0 I 0 I ef,+l · Ip], B = [ 0 I q I 0 ] (5.34) 

r-

J(s; Ai, k1) 0 0 

-P(s, t)= A J * ( t; 7r j ' k2) 0 (5.35) 

JE 0 [J * ( t; 7r j ' k2) ' q] 

Proof. See Appendix A.l. D 

Remark 5.4.2. Similarly to the one variable case, k 1 can be chosen as I~ l, while k2 

can be chosen as I r;l· 
Example 5.4.2. Consider the transfer function of order n = 2 ins and m = 2 in t, 

[ 

s+5t+9st-1 2s+6t+10st-2] 
H ( S) = 2s+3t+st-1 2s+3t+st-1 

3s+7t+llst-3 4s+8t+12st-4 
2s+3t+st-1 2s+3t+st-1 

as well as the measurement points Ao = 2, A1 = 1/2, f-Lo = 3/2, /-LI = 3, 7ro = -1/2, 

1r1 = -3/2, v0 = -1 , v1 = -2. Note that, indeed, we have 2 = k1 + 1 = I~ l + 1 

and similarly, 2 = k2 + 1 = l r;l + 1. We build the 2D MIMO Loewner matrix of 

dimension 8=2 · 2 · 2=(k1+1)(k2+1)p with nullspace of dimension 2: 
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c ~ n -2/21 0 -6/7 0 -1/3 0 1 o r. 
[ 0 -2/21 0 -6/7 0 -1/3 0 1 r}. 

so, after a reasonable scaling, a00 = -212, am = -1812, a10 = -712 and au = 2112. 

The matrix lB is 

42 44 -21 -26 

[ ~ plO] 46 48 -31 -36 
-

f3m f3n -134 -148 59 70 

-162 -176 81 92 

Using the previous formulas we have the realization 

c = [ 02 02 02 02 -l2], B = [ 02 -12 12 02 02 ]T' 
(s-2)12 (1/2-s)12 02 02 02 

aoo alO (t+1/2)12 02 02 

Cl>(s, t)= alO au ( -t-3/2)12 02 02 ' 
f3oo !310 02 (t+1/2)12 -12 

f3m f3u 02 ( -t-3/2)12 12 

which recovers the original MIMO transfer function. 

5.5 Numerical examples 

5.5.1 RLC Circuit 

In the circuit below, all elements have unit value except for the inductor L2 which is 

taken as the parameter p. 
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Figure 5.2: Electrical Circuit 

Using the voltages across the capacitors and the currents through the inductors 

as state variables, the descriptor representation Ex(t)=Ax(t)+Bu(t) , y(t)=Cx(t) is 

-1 0 -1 -1 1 0 0 0 1 

0 0 1 1 0 p 0 0 0 
' C=BT. A= E= B= 

' ' 1 -1 0 0 0 0 1 0 0 

1 -1 0 -1 0 0 0 1 0 

The transfer function depends on two variables, namely the Laplace variable s, and 

the value of the inductor L2 , denoted by p: 

We reconstruct this system using measurements at the following frequencies and 

values of the parameter: 

[ At, .\2, .\3, .\4, .\5 , 7fl' n2] [ 0, 
1 1, 3 2, 0, -! l' 2' 2' 

[ ~1, f.L2' f.L3' f.L4, f.L5' VI' v2] = [ -~, 1 -1, 3 -2, 1, ! l· -2, -2, 

The resulting Loewner matrix is of dimension 10 x 10, has rank 9 and the following 

vector is in its nulls pace cT = [ .!. _.!. _ ~ n ~ _ 15 
8 8 2 64 2 8 -5 - 6~ ': ll· 

The realization given in Theorem 5.2.2 leads to 



CHAPTER 5. PARAMETRIC MODELS 

r-

s l_s 
2 0 0 0 · 0 0 

s 0 1-s 0 0 0 0 

s 0 0 ~-s 
2 0 0 0 

s 0 0 0 2-s 0 0 
<P(s,p)= 

1 3 9 -5 15 p 0 8 2 2 8 

1 71 15 1 1 1 0 -8 64 -8 -64 -p-2 

1 -1 ~ -2 .§. 0 p 8 4 8 

1 29 3 19 1 0 1 
8 32 -2 32 8 -p-2 

BT = [ 0 0 0 0 11 -1 I 0 0] ' 

c=[o o o ojo ojo 1]. 
5.5.2 Measured S-parameters 

92 

0 

0 

0 

0 

0 

0 

-1 

1 

We analyze an example from [76] consisting of two microstrip lines and a resistor-

capacitor pair, which idealizes a 5cm interconnect link loaded by a device. The design 

parameter, the microstrip's width w, was considered for 15 values between 60 and 

130p,m in steps of 5p,m. For each parameter value, the 2 port scattering matrix was 

computed for 100 frequencies between 10MHz and 10GHz. To avoid running into 

numerical difficulties, we scaled frequencies by 10-6 . Also, to ensure a real system, 

we assumed the value of the transfer function evaluated at -j21r fi to be the complex 

conjugate of the measurement provided at j21r fi· Therefore, for each of the total 200 

values for sand 15 values for w, we are provided with a 2 x 2 matrix that represents 

the S-parameters measured for that particular frequency and width parameter. The 

goal is to construct a low order model that incorporates the dependence on both 

frequency and parameter and matches all measurements to a reasonable extent. We 

consider only the 8 1,1 entry for now. 
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10 -20....___ _________ ___, 

0 50 100 
index 

(a) For all parameters 

2 4 
index 

(b) For all frequencies 

Figure 5.3: Singular value drop of the Loewner pencil 

93 

6 

First, we compute the orders m and n of the two-variable rational model. When 

constructing the Loewner matrix pencil ([43, 44]) for each w and varying wi= j21f fi, 

we obtain the singular value drop in Fig. 5.3(a) . Due to the noise in the data, the 

rank of the matrix, and consequently, the order n, is not obvious, but we decide to 

truncate at n = 17. Similarly, for the order m, we decide to use m = 3 [73]. 

Fig. 5.4(a) shows the singular value drop of the two variable Loewner matrix of 

dimension ( n + 1) ( m + 1) = 18 · 4 = 72. The last singular value is close to machine 

precision (it is not precisely 0 due to the noise in the data), so we consider the right 

null space to be the last right singular vector. 

SVD drop of 20 Loewner matrix ~ 100 

10° >< 

0 20 40 60 
index 

C1) 80 
"C 

c: 60 
~ 
0 
c: 
C1) 
:::s 

40 

C" 
2:! 20 
~ 

5 10 15 
parameter index i 

(a) SVD drop of the 2 variable Loewner matrix (b) Errors for all frequencies and parameters 

Figure 5.4: Plots for the 81,1 entry 

Fig. 5.4(b) shows log10 (JJs(k,i)- S(k,i)JJ), namely the absolute errors on a logarith-
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mic scale , with S (k,i), the value of the rational model evaluated for frequency wk and 

parameter w i and S(k ,i) , the corresponding measurement. Errors are below 5.9·10- 3 . 

al 

Magnitude for w = 60 ~m 

o.-------------~--· X: 8.89e+009 

-100 Y: -44.54 

Magnitude for w = 80 J..Lm 

0~~--~--.-----~-

al 
"'C "'C -200 

-300 

0 

(a) 

5 
f 

- data -200 - data 

o model o model 

- error - error 
-300 

X 10
9 0 

Figure 5.5: Magnitude plots 

5 
f 

(b) 

10 

X 10
9 

Fig. 5.5 shows the magnitude of 8 1,1 for parameters w1 = 60J..Lm and w5 = 80J..Lm 

which show large errors in Fig. 5.4(b ). We plot the data, the model , as well as the 

absolute error on a dB scale. Indeed, the errors are below -40dB , as expected. 

By employing the theory developed in Sect. 5.4.2, we are ready to consider the 

two-port matrix measurements of the S-parameters [75]. The computation consists 

of the following steps: 

• Using all measurements in the real alternative approach (Sect. 4.2.3) , we con­

struct the Loewner matrix for each w and varying w i = j27r f i , to determine the 

order n. We compute the singular values of each Loewner matrix (shown in Fig. 

5.6(a)). Due to the noise in the data, the rank of the matrix, and consequently, 

the degree n , is not obvious, but we decide to truncate at 24 = n + p , where 

p = 2, so n = 22 and k1 = I~ l = 11. 

• After deciding to build models of order n + p with respect to the frequency 

s , we need to select the k1 + 1 frequency samples together with their complex 

conjugates adaptively (see Sect. 4.2.5), for each parameter value. At this point , 
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10° 
SVD drop for all parameters SVD drop for all frequencies 

10° ~----~----------~ 

10 -20....__ ____ ___._ ____ __, 

0 100 200 2 4 6 8 10 12 14 
index index 

(a) For all parameters (b) For all frequencies 

Figure 5.6: Singular value drop of the Loewner pencil 

all systems constructed are stable as seen from Fig. 5. 7 and the highest modeling 

errors are in the range 10-4 for all parameter values. 

X 10
5 

1 • 
0.5 

C) 
«S m CXXJ:m G) 

E 
-0.5 

-1 • 
-5 -4 -3 -2 -1 

real 
X 10

5 

Figure 5.7: Poles after modeling 

• We decide on the truncation order 8 = m + p, where p = 2 (so m = 6 and 

k2 = J ~ l = 3) after computing the Loewner matrix from all parameter values, 

for each frequency (see the singular value drop of these various matrices in Fig. 

5.6(b) ). The resulting errors are in the range 10-4
. Next, we select the k2 + 1 

parameter samples adaptively for each frequency and, in the end, use the ones 

that appear most often. 
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• Fig. 5.8 shows the singular value drop of the 2D MIMO Loewner matrix of 

dimension (k1 + 1)(k2 + 1)p = 12 · 4 · 2 = 96. The last singular values are small 

(not precisely 0 due to the noise in the data), so we consider the null space as 

the last 2 right singular vectors. 

0 50 
index 

100 

Figure 5.8: SVD drop of the two variable MIMO Loewner matrix 

• We construct the realization following Sect . 5.4.2. 

To check the accuracy, we computed the errors for all parameter and frequency 

values (displayed in Fig. 5.9). Fig. 5.9(a) shows the absolute value of the errors on a 

logarithmic scale, namely logw(llst/)- si~/) II), where stii) is the value of the Sl ,l 

entry of the rational model evaluated for frequency j27r fk (shown on they-axis) and 

parameter wi (shown on the x-axis) , while si\i) is the corresponding measured 81,1 . 

Similarly, the errors in the other entries are shown in Fig. 5.9(b) , 5.9(c) and 5.9(d) . 

The color bar shown on the right of each figure suggests that in the areas with dark 

red, the errors are in the 10-4 range, while in those with orange, the errors are in 

the 10-6 range. Nevertheless, all errors are below 50dB (the largest error is in fact 

2.4e- 3, while the largest relative error is 9.3e- 3). 

Remark 5.5.1. The dimension of the model is (k1 +2k2 +2)p = 2(11+2·3+2) = 38, 

and it incorporates information about the frequency, as well as the width parameter. 
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Figure 5.9: Errors for all frequencies and parameters 
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This reduced model is able to predict the behavior of the 2-port S-parameters within 

an error of 50dB for all 200 measurements of s and 15 values of the parameter w. 

X 10
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ca 0 * CDJEj CDIIl aD 
E 
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(a) Original figure 
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• 
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C) 
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E 
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(b) Zoom 

Figure 5.10: Poles after modeling vs. recovered poles- 'o' : original , '+': recovered 

We also compared the poles with respect to the frequency, obtained by substituting 

each parameter value in our realization, to those obtained after the modeling step 

(shown initially in Fig. 5.7). After removing poles with large magnitude which are, 

in fact , poles at infinity, but due to numerical issues appear as 5 orders of magnitude 

higher than the rest, we obtain the plot in F ig. 5.10. We notice that all recovered poles 

(obtained from the final realization) are stable, even though they are not precisely in 

the same location as the original ones (obtained after the modeling step) . This is due 

to the fact that we are dealing with measurement noise and the two variable MIMO 

Loewner matrix is not precisely singular. 

Fig. 5.11 shows the magnitude of all entries for parameter value w1 = 60J.Lm. We 

plot the measured data, as well as the model on a dB scale. 

Instead of looking at each entry, an alternative way to checking the accuracy of 

the model is to look at the sigma plot. F ig. 5.12 shows the 2 singular values of each 

measured S-parameter, as well as the 2 singular values of the matrix we obtain by 

evaluating our model at j21f f for each frequency (this is the same as one would obtain 
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Figure 5.11: Magnitude plots 
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by using the function sigma in Matlab and focus on the desired frequency range) . 

We are only presenting the plots for parameter values WI = 60f.-lm and wi5 = 130f.-tm 

since they yield the largest errors. 

Sigma Plot for w = 60 J.lm Sigma Plot for w = 130 J..Lm 
0~--------------------~ 0~------------------~ 

-0.2 

-1 - Data 
o Model 

-0.80 
0 5 10 

f 
X 10

9 

(a) (b) 

Figure 5.12: Frequency response plots 

Fig. 5.13 shows the errors in each entry for parameter value WI = 60f.-tm on a 

dB scale. Indeed, errors are below -50dB , as expected. Alternatively, a compressed 

way to obtain information about the errors is through the 2 singular values of the 

matrix obtained by subtracting t he measured S-parameter from the S-parameter es­

timated with our model. Fig. 5.14 shows the singular values of the error matrices, 

for parameter values WI = 60f.-lm and wi5 = 130f.-tm, which yield the largest errors. 
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Figure 5.13: Error plots 
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Figure 5.14: Compressed error plots 
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5.5.3 Convection-Diffusion Equation 

Consider the 2-dimensional convection-diffusion equation in the domain n = (0, 1 )2 

ax 
at (t, ~) = 11x(t, ~) + p · \lx(t, ~) + b(~)u(t) , ~ E 0, 

x( t, ~) = 0, ~ E an, 

which models one-dimensional convective transport. The parameter p E [0, 10] is 

time-invariant. A finite-difference discretization with 30 points in each spatial coor-

dinate leads to an order n = 900 parametric system: 

x(t) = Ax(t) + pA1x(t) + Bu(t), y(t) = Cx(t) , x(O) = 0, 

where the input matrix is B = [ 1 0 . . . 0 ] T and the output matrix is C 

[ 1 . . . 1 ] . The resulting transfer function is 

which shows that the complexity in the parameter, m is also 900. We first select 

50 measurements in the Laplace variable s logarithmically distributed on the imagi­

nary axis · between j 10-2 and j 106 and 30 measurements in the parameter p linearly 

distributed between 0 and 10. Using only 8 of these measurements with respect to 

the frequency, as well as 8 measurements with respect to the parameter, we are able 

to construct a reduced system of order n = m = 7. Using these measurements, the 

singular value drop of the 2D Loewner matrix is shown in Fig. 5.15 (we notice that 

the matrix is indeed singular, so using the vector in its right nullspace, we are able 

to construct a realization). 

When evaluating the reduced model on the initial grid of 50 frequencies and 30 
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Figure 5.15: Singular value drop of the 2D Loewner matrix 

parameter values and computing the difference with respect to the original measure-

ments, we obtain a maximum relative error of 1.3e- 3 (Fig. 5.16(b)). Fig. 5.16(a) 

shows the relative error for a reduced system of order n = m = 8 obtained with the 

method proposed in [77], for which the maximum error on the grid is 3.1e - 3. 
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Figure 5.16: Relative errors 
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CHAPTER 6 

Convergence of vector fitting 

This chapter investigates the convergence behavior of vector fitting. The analysis 

starts with a summary of the main steps of the vector fitting (VF) [18] algorithm. 

It is recognized that the pole relocation iteration is, in fact, finding the roots of a 

set of coupled multivariable rational equations. For noise-free measurements, it is 

shown that there is no iteration involved, assuming that the number of starting poles 

is chosen greater or equal to the order of the underlying system. For high noise 

ratios, the vector fitting iteration may not find any solution due to the fact that all 

fixed points of the iteration are repelling. Therefore, we propose to incorporate the 

Newton step in the VF iteration in case the iteration does not converge, to guarantee 

its convergence. The main contribution of this chapter is the convergence analysis of 

the pole relocation process of the vector fitting procedure. 

6 .1 Review of vector fitting 

In the sequel we provide a short review of the basic ideas behind vector fitting (VF) 

[18], [19], [22], [21], [23]. We assume that the measurements are generated by a 

linear time-invariant dynamical system with transfer function H(s). When modeling 

a single input single output (SISO) system, VF aims at finding an approximation 
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f ( s) of its transfer function expressed in pole residue form 

k 

H(s) ~ f(s) , f(s) = L ___!}__+d. 
i=l s - Pi 

(6.1) 

The finite residues ri and poles Pi are either real quantities or come in complex 

conjugate pairs, while d is real. In the case of noise-free measurements, the goal is 

to identify the underlying system, meaning that the poles and residues of the model 

f(s) should match the ones of the original system H(s). The problem expressed in 

Eq. (6.1 ) is nonlinear in the poles Pi· Vector fitting solves it iteratively as a sequence 

of linear problems in two stages. 

Stage 0: order selection 

Decide a priori on an approximation order n. 

Stage 1: pole identification 

Assume the usual pole-residue representation for the numerator n( s) and denom-

inator d(s) of the unknown function f(s): 

[ 
n( 8 ) l = [ ~ s ~a, + d ] 

d(s) L s~ia · +1 
i=l ?, 

(6.2) 

Note that n(s) and d(s) share the same poles. Multiplying the second row in Eq. 

(6.2) by f(s) yields the usual linearization: 

n(s) d(s) 

Eq. (6.3) is linear in its unknowns ci, d, ci, but nonlinear in the quantities ai. By 

specifying a set of poles ai, this equation becomes linear. Next, the fact that f(s) 

interpolates the original transfer function H ( s) at the measurement samples is used 
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to write Eq. (6.3) for the sample points at which the measurements are provided. 

This leads to an overdetermined linear system 

A(si, N; ai, n) x(ci, n; d; ~' n) = b , where (6.4) 

A(si, N; ai, n )= [ 1>( Si, N; ai, n) 1 -diag(b )<I>( Si, N; ai, n )]E cNx(
2
n+l)' with (6.5) 

1 _1_ HI 
s1-a1 Sl-an 

ci>( si, N; ai, n )= 
' 

b= E cNxl (6.6) 

_1_ _1_ HN 
SN-al SN-an 

c 

x(~,n;d;~,n)= d E C(2n+l)xl where c = 
' 

C= (6.7) 

c 

with si E C and Hi = H(si) E C, for i = 1, ... , N. The matrix ci>(si, N; ai, n) is a 

Cauchy matrix. By fixing ai, the unknowns are solely in the solution vector x , which 

is found by solving the overdetermined linear system in Eq. ( 6.4) as a least squares 

problem. 

Rewriting Eq. ( 6.2) as a pole-zero expansion, we obtain: 

n(s) (6.8) 

i=l 

d(s) i=l (6.9) 
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so f(s), the approximation of the underlying H(s), can be computed as 

n 

(6.10) 

This shows that the zeros of the expression in the denominator d( s) become the 

poles of f(s). The zeros zi are found by solving an eigenvalue problem: 

Mvi = Ziv i, where M = diag(a)- li':T , with aT= [ a1 . . . an ] . (6.11) 

The vector a contains the current set of poles, while c is found from the least squares 

solution in Eq. (6.7). Now, using the zeros Zi as the new poles ai, a new linear 

system like in Eq. ( 6.4) is set up and the vector fitting iteration repeats the procedure 

described up to this point for a certain number of steps, a number on which the user 

decides. This is referred to as the pole relocation process. 

Stage 2: residue identification 

One can solve for the residues ri and the asymptotic term d using the original 

problem in Eq. (6.1 ) using the already determined poles of f(s) (Pi= ai)· This leads 

to another overdetermined linear system P ( si, N ; Pi, n) y ( r i, n; d) = b: 

P(s;,N;p;,n) = [ <f>(s;,N;p;,n) 1] E ICNx(n+l), (6 .12) 

y(ri, n; d)= [: l E cCn+t)x~ r= [ r 1 ... rn r (6.13) 

which is also solved as a least squares problem. 
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6.1.1 Vector fitting for MIMO systems 

First , we review the case of single-input multiple-output systems. When fitting a 

vector-valued function for which measurements Hi E CCP xl, for i = 1 .. . , N , are 

provided, the matrices in Eq. ( 6.5) - ( 6. 7) change to: 

A(si, N; ai, n) = [ ~v l v -diag(bv)~v ] ' where (6.14) 

~ ___!E._ Ip H1 
s1-a1 Sl-an 

<l>v = ' l v = , bv = (6.15) 

___!L_ _Ip_ Ip HN 
SN-al SN-an 

with si E CC , H i = H(si) E CC, for i = 1, ... , N, and Ip, the identity matrix of 

dimension p. For vector valued functions, the residues of the numerator, namely ci , 

are of dimension p x 1, while the ones in the denominator, namely ~ are scalars. 

The dimensions of the matrices in Eq.(6.14)-(6.15) are A E CC(Np)x(n(p+l )+p) and 

b v E cc(Np)x l, while the solution vector X E cc(n(p+l)+p)xl_ After performing row 

permutations (which correspond to changing the order of the equations) , we obtain 

(assuming d = 0) [ 25] 

c1 
<I> -diag(H1)<P 

(6.16) 

-diag(Hp)<I> 
Cp 

<I> 
c 

where 

'i = 1, ... ,p, 

CN,i 
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and H;(s) is the i'h entry ofthe vector valued transfer function H(s)= [ H,(s) 

This expression is the one implemented in the vector fitting software. 

109 

The linear system presented in Eq. (6.12)-(6.13) changes accordingly and can be 

rewritten similarly to Eq. ( 6.16) after appropriate row permutations. 

The theory presented up to now assumes a single-input single-output or a single-

input multiple-output system. In the case of mult iple-input multiple-output systems, 

fitting can be performed matrix-wise, column-wise or element-wise. 

1. Since vector fitting works for scalar or vector-valued rational functions, matrix-

wise fitting stacks all the columns into a column vector vec(H( s)) and fits this 

with the measurements vee( H) [46]. As detailed in [23], for matrix-wise fitting, 

all entries of the transfer function share the same poles and the resulting state-

space realization is of dimension n · p, where n is the number of starting poles, 

when noD term is required. 

2. For column-wise fitting, each column of the transfer function is fitted by a com-

mon set of poles and the resulting state-space realization is, again, of dimension 

n · p (the same starting poles are used for all columns). 

3. For element-wise fitting, different sets of poles are obtained for each entry of 

the transfer function, and the resulting state-space realization is of dimension 

n · p2 (the same starting poles are used for all entries). 

For all the numerical examples presented in Sect. 4.4, vector fitting was used to fit 

MIMO systems with column-wise fitting. Even though [23] has shown experimentally 

that element-wise fitting is faster and yields smaller errors, the order of the resulting 

models will be too large, as they are multiples of the second power of the number 

of ports p. Therefore, for a data set obtained from a device with p = 50 ports , the 

smallest dimension of the resulting model built wit h the element-wise implementation 

of VF is p2 = 2500 (when using only one pole to fit each entry). The main goal in 
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model reduction is constructing models of the least possible order which approximate 

the frequency response in a certain frequency band. Since models of large dimensions 

are expensive to use in future simulations, we decided to use column-wise fitting 

instead of element-wise fitting [46]. 

6.1.2 Issues with vector fitting 

1. As pointed out in [21], there is no proof on when or how fast vector fitting 

converges. The goal of Sect. 6.3 is to elucidate this problem and provide insight 

into the convergence properties of the vector fitting iteration. 

2. The convergence rate of the pole relocation process strongly depends on the 

starting poles. Experimentally, it has been shown in [18] that choosing the 

starting poles as either real numbers linearly distributed in the desired frequency 

range, or as complex conjugate pairs with the imaginary part linearly distributed 

in the desired frequency range and the real part as 1% of the imaginary part 

is a heuristic which yields good results for resonant systems. Sect. 6. 7 shows 

that one might choose them as some of the measurements due to the fact that 

interpolation is exact at the points ai. 

3. Unstable poles may result during the iterative process due to the fact that , at 

iteration step k, the poles of the approximating rational function are the zeros 

computed at iteration step k- 1 and the zeros of a function may be anywhere in 

the complex plane. To avoid having models which are unstable, it was proposed 

in [18] to either remove the unstable poles or flip the sign of their real part to 

move them in the left-half plane. 

4. The residue identification stage is not needed when no pole flipping is involved, 

due to Lemma 6.1.1. 
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Lemma 6.1.1. The following descriptor realization of f(s) can be obtained/rom 

the quantities found in the pole identification stage: f ( s) = C<P( s) -l B, where 

1 a1- s 

C= [ d Cj ... Cn], <I>(s)= B= [ On
1
xl l 

1 an- s 

1 c1 C2 Cn 

(6.17) 

where d, c1 , ... 'Cn E CPX
1 are found by solving Eq. (6.14)-(6.15). This formula 

is given for the general case of vector transfer functions (1 input, p outputs). 

Proof. Let us denote ci>-1 ( s )B as x, so ci>( s )x = B: 

1 

1 

1 

1 X 
s-a1 o, 

a1- s 

cl 

Xn s-
1
an Xo, if S -=/=- an , 

an- s 

C2 

Xo 0 

x1 0 

Cn Xn 1 

Xo + clxl + ... + CnXn = 1 ==? (1 + cl-
1
- + ... + Cn-1-) Xo = 1. s-a1 s-an 

Since 

X 

n(s) 
d(s)' 

which is precisely as expected from Eq.(6.3). 

(6.18) 

(6.19) 

0 
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5. The denominator d( s) is forced to approach unity at high frequencies in [18], 

while in (19] this condition has been eliminated, leading to the variant called 

Relaxed Vector Fitting. 

6.1.3 Vector fitting as a Sanathanan-Koerner iteration 

Vector fitting was recognized as a Sanathanan-Koerner (SK) iteration [28]. The goal 

of SKis to solve the nonlinear minimization problem [78] 

. II N(s) II m1n D(s) - H (s) , (6.20) 

with N(s) , the numerator, and D (s), the denominator polynomial of the transfer 

function. After linearization and multiplication by a weighting factor D (k!l )(s ) , we 

obtain the following expression 

. II N (k)(s) D(k)(s) II 
mln D(k-l)(s)- D(k-l)(s) H (s) ' (6.21) 

which is solved via an iteration. The superscript (k) denotes the quantity at iteration 

k. By introducing the notation ~~:~ ~;j D~~~)1)(~) = n (k)(s) and J~~)1~(~) = d (k)(s) , we 

obtain the relationship 

(6.22) 

which is precisely Eq. (6.3). The weighting factor n(k!l)(s) is in fact 

1 _ rr:l ( s - zi) 
D(k-l)(s)- IT~= 1 (s-ai )' 

where ai are the current starting poles and Zi are the poles at the new iteration 

computed from the eigenvalue problem in Eq. (6.11). At convergence, these quantities 

will be equal, so the weighting will be 1. 
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6.2 Solution to vector fitting using VARPRO 

As we shall see in Sect. 6.3, the vector fitting iteration may fail to converge for 

noisy data, therefore this section proposes a solution to VF using VARPRO. Variable 

projection (VARPRO) [29, 30] is a method for solving the separable non-linear least 

squares problems. In particular, it can be used to solve our problem when regarded 

as a minimization problem: 

(6.23) 

Since there is no linearization involved (as it is the case in VF, as one can see from Eq. 

(6.3)), VARPRO is expected to yield better results in the case of noisy measurements 

since the original minimization problem is solved without introducing any bias. 

The goal is to minimize the sum of the norm of the deviation between the ith 

measurement and the model evaluated at the ith sample point: 

(6.24) 

The problem consists in determining the linear coefficients rj (the residues) and the 

nonlinear parameters pj (the poles) to minimize the norm of the error vector: 

(6.25) 

where 'P(si, N;pi, n) is the Cauchy matrix defined in Eq. (6.6). Clearly, if the non­

linear parameters Pi were known, the linear parameters rj would be determined by 

solving Eq. ( 6.25) as a linear least squares problem: 



CHAPTER 6. CONVERGENCE OF VECTOR FITTING 114 

where <I>(si, N;pi, n)+ is the Moore-Penrose generalized inverse of <I> (for simplicity, 

<I>, instead of <I> ( si, N; Pi, n) will be used in the sequel). Replacing this expression of 

r into Eq. (6.25) leads to the following minimization problem, which is only in terms 

of the nonlinear parameters, as the linear ones have been eliminated: 

The quantity e2 (p) = (I- <t><t>+)b is referred to as the variable projection residual. 

The reason for the terminology is the fact that the matrix I - q>q>+ represents the 

projector on the orthogonal complement of the column space of <I> [30]. 

Theorem 6.2.1. {29} Assuming that in the open set n c IR, the matrix <I> has constant 

rank r :s; min(N, n), then 

1. iff> is a critical point (or global minimizer) for e2 (p) and r satisfies r = <t>+b, 

then f> is a critical point of e(r, p) and e(r, p) = e2(p); 

2. if (i\ f>) is a global minimizer of e(r, p) then f> is a global minimizer of e2(p) 

and e2 (p) = e(r, p). Furthermore, if there is an unique r among the minimizing 

pairs of e(r, p), then r must satisfy r = <t>+b. 

Solving min~ \\e2 (p)\\; is achieved by considering its gradient, which is expressed 
p 2 

in terms of the Jacobian Je
2
(p)· The Jacobian is the matrix obtained by taking partial 

derivatives of the vector e2 (p) with respect to each unknown in the vector p. The 

gradient is 

and the lh column of the Jacobian can be written as 
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where <I>- is a symmetric generalized inverse satisfying <I> <I> -<I> = <I> and ( <I><I>- )T = 

<I><I>- (the full Moore-Penrose pseudoinverse is not necessary) and Pi = I- <I><I>-. 

The Gauss-Newton iteration with step control which solves the non-linear least 

squares problem 

is 

where tk > 0 is a parameter controlling the size of the step. If e2(Pk+I) < e2(pk), 

then tk = 1, otherwise tk is chosen such that e2(Pk+I) < e2(p k) (steepest descent). 

To ensure convergence, it is necessary to adjust the size of the step. 

For MIMO systems, Eq. (6.25) needs to be solved for each input-output pair, 

therefore leading to a least squares problem with multiple right-hand sides [79]. 

6.3 Analysis of the pole relocation iteration in vee-

tor fitting 

In this section we consider the original vector fitting formulation with the denominator 

of the form d( s) = 'L:~1 s~ai + 1. We denote the starting poles ai at iteration k as 

a~k). Convergence is achieved when the poles ai stay unchanged (a~k) = a~k+I)). 

Theorem 6.3. 1 . Vector fitting seeks to find the roots of a system of coupled rational 

equations c(a) = 0, where c and a are vectors of dimension n, the approximation 

order of the model. Therefore, the VF iteration converges when ci = 0, i = 1, ... , n. 

Remark 6.3.1. At convergence, the denominator d (s) becomes 1 and the numerator 

n( s) provides the pole-residue expansion we are seeking, so the second step, namely 

the residue identification stage, is not needed. 
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Remark 6.3.2. Solutions of a system of coupled multivariable rational equations 

can be computed approximately through iterative methods, like the Newton fixed point 

iteration. The latter has the advantage of converging if the initial guess is close enough 

to the solution. 

Corollary 6.3.1. Provided that the measurements are noise-free, the number of mea­

surements is sufficient, and the number of starting poles is greater than the order of 

the underlying system, convergence occurs at step 2. 

Proof of Corollary 6. 3.1 . When using at least as many starting poles as the 

order of the underlying system, the number of measurements is sufficient and the 

measurements are noise-free, the following relationship holds with equality (for noisy 

measurements is it only an approximation): 

f(s) = nd((s)) ==> t ____s_ + d = (t __§___ + 1) f(s). 
s i=1 s - ai i=1 s - ai 

(6.26) 

n(s) d(s) 

At the first step, the coefficients ci, d, ci are found from the linear system in Eq.(6.4) 

and they are simply the residues of the numerator and denominator expressed in the 

rational basis {-1-, ... , -
1
-}. At step 2, the quantities ai are considered as the s-a1 s-an 

zeros of the denominator d( s) at the current step. Therefore, a?) are the poles of the 

underlying system (recall that the poles of a system are defined as the zeros of the 

polynomial in the denominator). • 
Proof of Theorem 6.3.1 . At convergence, we have that a~k) = a~k+1 ), where a~k) are 

the poles at the current iteration and a~k+1 ) are the zeros of the denominator d( s): 

n IJ (s- a~k+1)) 

d(s) = _i=-~----­
IJ (s- a~k)) 
i=1 
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Therefore, at convergence, we have pole-zero cancellations, so d( s) = 1 and, conse­

quently, ci = 0, i = 1, ... , n. 
n 

Multiplying Eq. ( 6.26) by IJ ( s- ai) yields 
j=l 

Evaluating this expression at s = ai gives 

Therefore, 

ci n(ai) 
ci d(ai)' 

(6.27) 

(6.28) 

(6.29) 

(6.30) 

so Ci = ~~~:)). This shows that indeed, for noise-free measurements, at convergence, 

when Ci = 0, then ai are precisely the system poles, since they are the roots of the 

denominator d( s) = 0. 

For noisy measurements, the solution xis found from the least squares problem, 

which can be solved, for instance, via the normal equations: A* Ax = A *b. In this 

case, ci will be a rational expression involving all ai. Since vector fitting converges 

when c = 0, this implies that the convergence points are the roots of the coupled 

multivariable equations c1 (a1 , ... , an)= 0, ... , cn(ai, ... , an)= 0. • 

6.4 Least squares solutions 

The least squares solution of the linear system in Eq. ( 6.4) can be found by using 

the normal equations, the QR decomposition or the SVD decomposition. 
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1. With the normal equations, the solution is given as x = (A* A)-1 A *b. 

2. On the other hand, we can write A as QR, where Q is unitary ( QQ* = Q *Q = 

I) and R is upper triangular. The solution is then given as Rx = Q*b, which 

can be solved by back substitution. 

3. In terms of the singular value decomposition, A is written as UI:V* and, con­

sequently, the solution is X = vz::+U*b, where the pseudoinverse z::+ of I: is 

obtained by inverting its non-zero diagonal elements. 

These three approaches yield the same result in case the matrix A has full column 

rank. In case A has a right nullspace, the solution xis not unique, so each of the above 

methods will return a different solution. Mathematically, the matrix A involved in 

the least problem is full rank if the number of starting poles is chosen less or equal 

to the order of the underlying system. If the number of staring poles is n and the 

order of the underlying system is m and n > m, then the number of vectors in the 

nullspace of A is precisely n- m (see Example 6.7.2.1). In practice, a bad choice of 

starting poles will lead to more vectors in the nullspace, as shown in Fig.6.1 (which is 

taken from [18]). The underlying system is of order 18 with poles coming in complex 

conjugate pairs. When modeling it using 20 complex conjugate starting poles, there 

are 2 singular values which are below machine precision (dotted line 1) in Fig.6.1 ). 

When using 20 real starting poles instead (dotted line 2) in the figure), there are 

more singular values which are small, indicating that this is a bad choice of starting 

poles. Dotted lines 3) and 4) show the singular values of A obtained when modeling 

a system with real starting poles using complex and real starting poles, respectively. 

In this case, more singular values are below machine precision than expected. 
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Figure 6.1: Singular values of A (from [18]) 
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6.5 Convergence of the pole relocation iteration in 

vector fitting 

We start our analysis from an order 2 strictly proper underlying system, of the form 

H( ) 
_ r1 r2 

s ---+--. 
s- P1 s- P2 

We model using two starting poles, a1 , a2 , so the expression we obtain is 

__fl._+~ 
J ( S) = _ s - a1 _ s-a2 

~+~+1 s - a1 s-a2 

_ s( c1 + c2) - c1a2 - c2a1 
- s2 + s(cl + c2- al - a2) + (ala2 - cla2- c2al). 

(6.31) 

(6.32) 

(6.33) 

The poles at the new VF iteration are given by the 2 roots of the polynomial in the 

denominator 

(6.34) 
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Eq. (6.31) contains 4 unknowns, namely r 1 , r 2 , p1 , p2 , so a minimum of 4 conditions 

are needed to determine them. Therefore, at least 4 samples and their corresponding 

measurements are needed. In case only 4 measurements are provided, Eq. (6.4) leads 

to the solution A - 1b, since the matrix A is square. 

Suppose we have 5 measurements available of H(s) at s 1 , s2 , s3, s4 and s5 , namely 

H1, H2, H3 , H 4 and H5 . The resulting linear system which is to be solved is overde­

termined: A(si, 5; ai, 2)x(ci, 2; ci, 2) = b, so the solution X is found via least squares. 

The poles at the next iteration are given by the solutions of the 2nd order polyno­

mial in Eq. (6.34). When convergence is reached, c1 = c2 = 0. Using the normal 

equations, the least squares solution is given as x =(AT A)-1ATb. It turns out that 

ai( "Y1a~+--y2a2+--y3)+ar( --y4a~+--y5a2+"Y6)+ . . . f1 ( a1, a2) cl = ~.:....____....:.... 

a~(81a§+82a2+83)+ai(84a~+85a2+86)+... g(a1, a2) ' 
(6.35) 

- a~( "Ylar+--r2al +--r3)+a~( "Y4ar+--r5al +--r6)+ . . . !2( al' a2) 
c
2 
=- af(81a~+82a2+83)+ai(84a~+85a2+86)+ ... = g(a1, a2) ' 

(6.36) 

where ... stand for the rest of the terms in the expressions, which contain powers of 

a1 and a2 lower than the ones listed above and 8i, "Yi are complicated expressions in 

We want c1 and c2 to be 0 when convergence is reached, so we are looking for the 

roots of the coupled multivariate polynomials in the numerator: f 1 ( a1 , a2 ) = 0 and 

Remark 6.5.1. A sequence defined as a fixed point iteration 

converges to the fixed point a (which satisfies f (a) = 0) if I h' (a) I < 1. In fact, based 

on the magnitude of h' (a), fixed points can be categorized as attractive, repelling, 

or indifferent if I h' (a) I < 1, I h' (a) I > 1 or I h' (a) I = 1, respectively. This property 
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also holds when the iterate is a (k) E en (for n starting poles), in which case h' is 

the Jacobian matrix, while the absolute value is substituted by the spectral radius {the 

spectral radius of a matrix M is defined as the largest eigenvalue of M in absolute 

value). Clearly, if all fixed points are repelling, the iteration will not find any of these 

solutions and, consequently, will not converge. Also, if there are several attractive fixed 

points, the iteration will converge to a different solution depending on the location of 

the initial guess. Ideally, the iteration should have only one attractive fixed point so 

that it converges to the same solution, irrespective of the initial guess. 

One can incorporate a Newton step into the vector fitting iteration to improve the 

convergence properties of vector fitting in terms of the number of iterations needed 

to reach convergence, but also, to ensure that the iteration will converge, given a 

sufficiently good initial guess. In this case, the iteration is of the form 

a(k+ l) = a(k) - J:::-1 c(a(k)) 
c(aCk)) ' 

(6.37) 

where Jc(a Ck)) is the Jacobian matrix. The element on its ith row and lh column 

d fi d ac~ (aCk)) 
e ne as aai 

Example 6.5.1. We consider the underlying transfer function H(s) = s!5 + 8 ; 10 

and samples at s = 1, s = 2, s = 3, s = 4 and s = 5. We corrupt them with additive 

noise generated using the following line of code in Matlab: 

H.*(10-(-3)*randn(size(H))), 

so the added noise is 10-3 relative to the magnitude of each entry. The coupled 

multivariate polynomials that VF is trying to find the roots of are 
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afa~- 4.73afa2 + 6.12af- 0.59aia~ + 5.05aia2 + 10.42ai- 31.54aia~ + 148.52aia2 

- 188.99ai + 110.44ala~- 589.56ala2 + 883.28a1 - 115.46a~ + 706.87a2 - 1231.72 = 0 

- 589.56a1a2 + 706.87a1 + 6.12a~- 10.42a~- 188.99a~ + 883.28a2 - 1231.72 = 0. 

(6.38) 

The two expressions are symmetric in the variables a1 and a2 . The roots are listed 

in Table 6.1 , together with the spectral radius of the Jacobian matrix evaluated at 

each root. Clearly, there are no attractive solutions, since the spectral radius of the 

Jacobian for all fixed points is larger than 1 {in fact, for the pair (3.25, -6.79) , the 

value is slightly above 1). The results in the last 4 rows make sense since having the 

two poles equal to each other leads to a Jacobian matrix with 2 linearly dependent 

columns. We predict that the VF iteration will not converge. 

IIJII 
3.25 -6.79 1.0004 
-6.79 3.25 1.0004 

-6.76 ± .26i 2.19±1.14i 2.99 
2.19 ±1.14i -6.76±.26i 2.99 
2.22±.49i 5. 71=f2.35i 7.26 

5. 71=f2.35i 2.22±.49i 7.26e+2 
3.97±.27i 1.98±.61i 1.26e+3 
1.98±.61i 3.97±.27i 1.26e+3 

3.25 3.25 2.77e+14 
2.91±.9i 2.91±.9i 4.56e+14 

-6.78 -6.78 1.19e+l6 
1.51±1.93i 1.51±1.93i 1.22e+l6 

Table 6.1: Convergence points and corresponding spectral radius of the Jacobian 
evaluated at those points 

Fig. 6.2{a) and 6.2{b) show the errors at each iteration for the vector fitting 

algorithm. The iteration process does not converge, but rather oscillates between -6.77 
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and -6.79 for the first pole and 3.15 and 3.36 for the second pole. Note that the 

solution ( -6. 79, 3.25) 7 which is barely repelling7 is close to these values found after 

100 steps of vector fitting. On the other hand7 Fig. 6.2{c) and 6.2{d) show the errors 

at each iteration when the Newton step is incorporated into the vector fitting iteration
7 

which indicate that the solution is found. Last7 Fig. 6.2{e) and 6.2{f) show the iterates 

at each step when applying VARP RO with the trust-region approach in the nonlinear 

least squares solver. Using the trust-region-reflective algorithm in Matlab 7s 

lsqnonlin function yields the following output )) Optimization stopped because the 

relative sum of squares {r) is changing by less than options. TolFun = 2.220446e-016n 

after 33 steps and the answer returned is -4.31 and -3086.51. Generally) VARPRO 

yields poles which are closer to the location of the underlying ones. The reason for 

the poor performance for this example is the low number of measurements considered 

{only 5). All methods used an initial set of poles located at -15 and -207 respectively. 

Remark 6.5.2. If the solution contains poles in the right-half plane7 by flipping 

the unstable poles in the left-half plane at each step7 the vector fitting iteration will 

obviously not find the true solution and will7 consequently7 not converge. 

We turn now to analyze modeling a strictly proper underlying system of order 1: 

r 
H(s) = -. 

s-p 

We use one starting pole a 1 , so the expression we obtain is 

(6.39) 

(6.40) 

At the next iteration, the pole is given by the zero of the polynomial in the denomi-

nator, namely a1 - c1 , where c1 is found by solving the least squares problem in Eq. 
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Figure 6.2: Errors or iterates for the various methods co'nsidered 
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( 6.4), yielding the following iteration 

Example 6.5.2. Assume that we are provided with 3 measurements at s = 2, s = 6 

and s = 7 with the following values H1 = 8, H 2 = 7, H3 = 1. The least squares 

problem becomes: 
1 __ 8_ 

[ :: l = 

8 2-a 2-a 

_ 1_ __ 7 _ 7 ( 6.41) 
6-a 6-a 

1 1 1 7-a -7-a ~ 
X "--..--" 

A b 

The solution x, obtained via the normal equations, leads to the following VF iteration 

{we change the notation of aik) to ak to avoid double superscripts): 

(6.42) 

(6.43) 

so the polynomial VF is trying to find the roots of is 86a3 - 993a2 + 3189a - 1834. 

The 3 roots computed in Matlab using the command roots are 5.67, 5.14 and .73. 

When computing h' (a), to check which of the fixed points are attractive, repelling, or 

indifferent , we obtain: h'(5.67) = .54, h'(5.14) = 1.5, h'(.73) = -.28. In this case, 

" 
there are two roots which are attractive, namely 5.67 and .73, so VF may converge 

to either of the two solutions depending on the location of the initial guess, situation 

which is not desirable. Fig. 6. 3 shows the ((basins of attraction" associated to the VF 

iteration in this example. The two colors correspond to areas in the complex plane 

which, when used as an initial guess for the VF iteration, converge to one of the two 

attractive solutions; no initial guess will lead to convergence to the repelling solution, 

hence only the two areas. The three points on the real axis are the 3 roots {the black 
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and the blue points are the attractive solutions, while the red one is the repelling root). 

VARPRO converges to a stable pole located at -2.32 (while VF converges to .73) when 

-5 

0 

5 
real 

10 

Figure 6.3: "Basins of attraction" for the VF iteration 

using an initial guess located at -100 . When using a starting pole a located at 5.9, 

VF converges to 5.67, while VA RPRO yields 6.08, which is unstable (due to the fact 

that the initial guess was located in the right-half plane). 

6.6 Incorporating the Newton step in the vector 

fitting iteration 

Incorporating the Newton step in the vector fitting iteration offers several advantages. 

The most important advantage is that, even though the vector fitting iteration may 

not converge for a certain data set, by making use of the Newton step, convergence 

is guaranteed for an initial guess located close to the solution. Also, the Newton 

step may improve the convergence properties in terms of the number of iterations 

needed for convergence, as the vector fitting iteration by itself may converge slower 

than when the Newton step is included. In the sequel, details about the addition of 
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the Newton step to the VF iteration are provided. 

As mentioned previously, at convergence, c = 0, so vector fitting is essentially 

solving for the zeros of a set of multivariate functions c( a), where c are found from 

the least squares system A(si, N; ai, n)x(ci, n; d; ~' n) = b detailed in Eq. (6.4). This 

problem can also be solved by the Newton iteration: 

(6.44) 

where Jc is the Jacobian matrix obtained by taking partial derivatives of the vector c 

with respect to the vector of unknowns a. Its ith column is Jc(:, i) = aac. To ensure 
ai 

convergence, a steepest descent method can be employed, in which case the iteration 

is aCk+I) +- aCk)- tkJ~Ic(aCk)), where tk is 1, if the residue c(aCk)) at the current step 

is smaller than the residue c(aCk-I)) at the previous step, otherwise the step size tk is 

chosen to ensure that the residue always decreases. 

6.6.0.1 Recursive Implementation 

Computing the partial derivative with respect to ai of the least squares problem 

I . h aA . . b t Is easy to see t at -a Is given y 

aA(si, N; ai, n) 

aai 

so 

ai 

0 

a~] a~ -diag(b)- , -= ; 
aai aai 

0 

leading to Algorithm 3, included in Appendix B.3. 

I 0 

' ( 6.45) 

I 0 

(6.46) 
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6.6.0.2 Implementation with normal equations 

Using the normal equations to solve the least squares problem, we have (A* A) x=A *b. 

Taking partial derivatives with respect to ai, we obtain 

8(A*A)x+ (A*A) 8x = (8A)* b , 
aai aai aai 

(6.47) 

so, solving for ax' we have that 
ai 

(A*A) 8x = (8A) * b- [(8A)* A+ A*8Al x , 
aai aai aai aai 

(6.48) 

where ~A is the same as in Eq.(6.46). 
uai 

This development yields Algorithm 4 in Appendix B.4. 

6.6.0.3 Implementation employing the pseudoinverse 

Using the pseudoinverse to express the solution x , we have x = A +b. The pseu­

doinverse A+ can be computed in Matlab using the command pinv, which uses an 

implementation via SVD. Taking partial derivatives of this expression, we get 

(6.49) 

The partial derivative of the pseudoinverse is computed as [29] 

( 8A +) =-A+ (8A) A++ A+ (A+)* (8A) *Pi +A p j_ (8A) *(A+) * A+, 
aai aai aai aai 

(6.50) 
where Pi= I- AA + and Apj_ =I- A+ A. This development yields Algorithm 5 

in Appendix B.5. 
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6. 7 Proposed reformulation of vector fitting 

We aim at finding the transfer function of the underlying system, which is a rational 

expression, equal to a ratio of two polynomials: 

f(s) = N(s) = ao + a1s + a2s2 + ... + ansn. 
D(s) bo + b1s + b2s2 + ... + bnsn 

(6.51) 

One can express polynomials in various bases. Above, the expressions N(s) and D(s) 

are in the monomial basis, which is known to be ill-conditioned for a high degree n 

(as in real applications). A better suited basis is that of Lagrange polynomials: 

qi ( s) = II s - a i ' 
a·-a· o:::;j::c;n ~ J 

jf.i 

for aj chosen a-priori. A polynomial N(s) can be expressed in the Lagrange basis as 

n 

N(s) = L J3iqi(s). 
i=O 

It is easy to see that the following interpolation conditions hold: N(ai) = J3i, i = 

0, ... , n. Changing notation, we can express the transfer function as 

f( ) = N(s) = coqo(s) + c1q1(s) + c2q2(s) + ... + Cntln(s) 
8 D(s) cot:lo(s) + c1q1(s) + c2q2(s) + ... + cnt1n(s). 

with the numerator and denominator in the Lagrange basis, where 

tli(s) = II (s- aj) 
o::c;j::c;n 

jf.i 

(6.52) 

and the constant factor II ( 1 ) is incorporated in ci and Ci, respectively. One 
ai- aj o:::;j::c;n 

jf.i 

can divide the numerator and denominator by II ( s - aj) to obtain: 
o:::;j::c;n 

(6.53) 
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Remark 6.7.1. Note that the above is an expression of the transfer function in the 

Lagrange basis, rather than the rational basis (or a partial fraction), since polynomials 

cannot be expressed in a rational basis. 

The expression in Eq. ( 6.53) is similar to the one in Eq. ( 6.2), repeated below for 

convenience: 

Suppose the underlying transfer function is of order n, as expressed in Eq. (6.51), so 

it is clear from Eq. ( 6.53), that the number of required starting poles ai is n + 1. The 

following remark is in place. 

Remark 6.7.2. The number of starting poles in the original vector fitting procedure 

is the same as the order n of the underlying system. The restriction set on the 

denominator to approach 1 for high frequencies can be removed by introducing an 

additional starting pole. 

Next, we discuss the issue of convergence for the proposed reformulation. At 

iteration k, the denominator is 

k rrn ( (k+l)) 
D( ) = 1 i=l s- ai 

s ( ) rrn ( (k))) k2 s - ao i=l s - ai 

so when convergence occurs at iteration k + 1, then a~k+I) = a~k), therefore, D(s) = 

kz(:~ao) = s5?ao . In the proposed reformulation, convergence occurs when ci = 0, 

i = 1, ... , n (like in the original VF formulation). 

Remark 6. 7.3. Note that interpolation at s = ai is exact both in the case of the 

regular Lagrange expansion, as well as in the one employed by vector fitting (see 

Eq.(6.30)). This is due to the fact that, when evaluating f(s) at s = ai, the result is 

f(ai) = ~· 
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Interpolation is exact at s = ai, so we investigate the issue of choosing a0 , a 1 , ... , an 

at the first iteration. To enforce interpolation at DC or high frequencies, one can use 

the extra starting pole at 0, namely a0 = 0, or some high value. As for the other 

starting poles, currently VF uses a heuristic to select the starting poles, as complex 

conjugate pairs ai = -a + f3 j, ai+ 1 = -a - f3 j, with the imaginary part f3 linearly 

distributed over the frequency range of interest, and a= 1~0 . The following remark 

is in place. 

Remark 6. 7 .4. Since interpolation is exact at the starting poles ai, the best choice 

is to choose them as purely imaginary quantities, namely jwi = j · 21r fi, where fi are 

some of the frequencies where measurements are provided. This change implies that, 

when setting up the least squares problem Ax = b in the pole identification stage, one 

should use the remaining measurements to set up Eq. (6.4). 

Multiplying Eq. (6.53) with the denominator yields: 

t __S_- (t _l;__) f(s) = 0. 
i=O s - ai i=O s - ai 

(6.54) 

Vector fitting uses the fact that f(s) interpolates the underlying transfer function 

at the samples to obtain an overdetermined least squares problem Ax = 0 where 

the unknowns are in the solution vector x like in Eq. (6.4), except that in this 

reformulation, the right hand side is 0: 

A(si,N;ai,n) ~ = ~ , where 
( E 

rrN xl 
E (:Nx 2(n+l)) E (:(2(n+l))xl \l.; 

(6.55) 
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A( s,, N; a,, n )= [ <i>( s,, N; a,, n) -diag(b )<i>( s,, N; a,, n )], 

_1_ 
81-ao 

_1_ 
81 - an 

8N-an 

X(e;, n; C;, n)= [:] , where C = C= 

132 

(6.56) 

(6.57) 

(6.58) 

Eq. ( 6.55) can solved by selecting the right singular vector corresponding to the 

smallest singular value of A (in case the matrix A does not have a right nullspace, 

which may occur when noise is added to the measurements, like in the example in 

Sect. 6.7.2.2). 

Once the quantities ci , Ci, i = 0, ... , n are found, we have recovered the transfer 

function of the original system with the numerator and denominator polynomials ex-

pressed in a Lagrange basis and we can write down a realization immediately (similar 

to Lemma 6.1.1 , so the proof is omitted this time): 

Lemma 6.7.1. {51} The following is a descriptor realization of f(s) expressed as in 



CHAPTER 6. CONVERGENCE OF VECTOR FITTING 

Eq. {6.53): f(s) = Cq>(s) - 1B , where 

c = [ Co c, . . . Cn ] , 

(s-ao) (a1-s) 

(s-ao) 0 (a2-s) 

q>(s)= 

(s-ao) 

Co cl c2 

B= [ O~x'] 

0 (an-s) 

Cn 

133 

(6.59) 

(6.60) 

(6.61) 

Remark 6.7.5. At this point, in case of noise-free measurements, we have recovered 

the original system. Otherwise, for noisy measurements, an approximate is obtained. 

For a better approximation, one can employ an iteration, like the pole relocation 

iteration. Inspired by the ideas of VF, one can use the n poles of the present model 

as the new starting poles ai, together with the additional starting pole a0 . 

Remark 6. 7.6. If the starting poles are selected as some of the measurements, the 

unknowns ci and Ci are related by 

(6.62) 

so the least squares Ax = 0 can be set up with only half of the unknowns. 

Remark 6.7.7. Connection to the Loewner framework. Select ai, i = 0, ... , n 

as some of the measurements, denoted as Ai. Thus, as discussed previously, H( .Ai), 

which we denote as w i can be expressed as wi = ~. Since the Lagrange basis formu­

lation of f(s) can be rewritten as f(s) = :L~=o ~, then f(s) satisfies the equation 
Li=O S- Ai 
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~ _ f(s)- wi _ 
~ Ci A = 0, Ci =!= 0. 
i=O S- i 

(6.63) 

To determine ci (and consequently, ci, from ci = wici), consider the rest of the inter­

polation conditions: we write Eq. (6.63) for the rest of theN- (n+ 1) measurements: 

H(JLi) = vj , j = 0, ... , N- (n + 1)- 1, (6.64) 

where /Lj satisfy /Li=/=/Lj, i=/=j, .Ai=/=/Lj, V i,j . Substituting Eq. (6.64) in Eq. (6.63) we 

obtain the following condition for ci: JLc = 0, where 

lL= 

Vm-WQ 

J.Lm->.o 
V m-W n 

J.Lm-An 

E C(m+l)x(n+l) c = 
' 

E cn+l 
' 

(6.65) 

with m = N -(n+1)-1. The matrix JL is the Loewner matrix {52, 53, 44, 2} associated 

with the row array (JLj, v j), and the column array (.Ai, w i)· Thus f(s) is determined if 

c is in the right kernel ofJL (and~ =/= 0). A key fact is that the degree of the underlying 

rational function, defined as the maximum between the degrees of the polynomials in 

the numerator and denominator, is equal to the rank of JL. 

Lemma 6. 7.2. As a consequence of the fact that the matrix A in Eq. (6.56) is a 

variant of the Loewner matrix, its rank is also related to the McMillan degree of the 

underlying system. Its nullspace contains k vectors if the number of starting poles is 

n + k, where n is the McMillan degree of the underlying system. 
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6.7.1 Lagrange basis in VF 

Vector fitting uses the rational basis instead of the Lagrange basis, so the solution 

obtained is different. Eq. ( 6.5) - ( 6. 7) using the Lagrange basis are 

n 

qn(sl) IT(sl-ai) -H1q1(s1) 
i=l 

A= 
n 

ql(sN) ... qn(sN) IT(sl-ai) -Hlql(sN) ... -Hlqn(sN) 
i=l 

DAvp 

X= [ c1 . . . C, d C1 c,r 
b= [ H, g (s1-a,) HN g(sra;) r (6.66) 

Dbvp 

n n 

where D = diag(IT (s 1 -ai), ... , IT (sN-ai)) and Avp and bvp are the ones in Eq. 
i=l i=l 

(6.5) and (6.6). Naturally, if the number of equations is the same as the number 

of unknowns (that is, the number of initial starting poles n is selected equal to the 

number of samples N), the solution using the Lagrange basis is the same as the one 

obtained in VF: 

However , if one needs to solve the linear system as a least squares problem, the 

solutions obtained via the two approaches will differ. The solution using the normal 

equations is given as 
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in the vector fitting case, as opposed to 

in the Lagrange case. Clearly, xvF =f. x. 

6.7.2 Numerical example 

The accuracy of the models is assessed using two error measures: 

• the normalized 9-C00-norm of the error system, which is the absolute value of 

the largest deviation between the model and the measurements divided by the 

absolute value of the largest value of all measurements: 

9-C00 error 

• the normalized 9-C2-norm of the error system, which is the sum of the square of 

the magnitude of the deviation between the model and the measurements at all 

samples, divided by the sum of the square of the magnitude of all measurements: 

L:7=l Jf(jwi)- Hil 2 

L:7=1 JHiJ 2 

The first error measure evaluates the maximum deviation between the model and 

the measurements, while the second one evaluates the deviation at all points, proving 

to be a good estimate of the overall performance of the model. 
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6. 7.2.1 Noise-free measurements 

Let us consider the following transfer function: 

H 8 _ 2 30+j40 30-j40 
( ) - s+5 + s- ( -100+ j500) + s- ( -100- j500) + O.S, 

which we sample at N 8 = 101 points distributed as s=2*pi*j*logspace(0,4,Ns). 

We also append the complex conjugates of these data as the information at -jwi. 

We compare the original formulation of VF to the proposed reformulation in 

terms of the resulting errors. The starting poles were chosen real, for simplicity, more 

precisely as poles=-2*pi*logspace (0, 4 ,n), in all cases, where n, the approximation 

order, was chosen 3. 

The errors in our proposed reformulation depend on whether we choose the extra 

starting pole to be 0 or at some large value. We discuss both cases. Tables 6.2 and 

6.3 present the JC00 and JC2 errors at the first 2 iterations, with all the original, as 

well as the proposed reformulation. The proposed reformulation with an extra pole 

located at 0 yields errors in the same range as those with the original VF formulation, 

while those obtained with the extra pole located at 106 are slightly larger. 

Iteration Original VF New VF with New VF with 
extra pole at 0 extra pole at 106 

1 3.5399e-012 2.3275e-014 1.1669e-0 11 
2 2.9933e-015 1.5174e-015 8.1688e-013 

Table 6.2: JC00 error 

Iteration Original VF New VF with New VF with 
extra pole at 0 extra pole at 106 

1 1.6864e-012 1.1000e-014 4.8523e-012 
2 1.3394e-015 1.1515e-015 3. 7602e-013 

Table 6.3: JC2 error 

Next, we show on this numerical example that the dimension of the underlying 
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system can be deduced from the nullspace of matrix A (used in solving the least 

squares problem) . Fig 6.4 shows the decay of the normalized singular values of the 

matrices A at the first iteration for all approaches. Note that, while the matrix 

resulting from Relaxed VF is full rank, the ones resulting from our proposed approach 

have one vector in the nullspace. 

Normalized Singular Values of A 
10° ~------------------~ 

10-3~~----------------~ 
2 4 6 8 

index 
(a) Original VF 

10° 
Normalized Singular Values of A Normalized Singular Values of A 

10° 

10 - 20L....-__________________ __. 

0 2 4 6 8 
1 0 -20L....-__________________ __. 

0 2 4 6 8 
index index 

(b) New VF with pole at 0 (c) New VF with pole at 106 

Figure 6.4: Normalized singular values of A when the model order is chosen 3 

Fig 6.5 shows the decay of the normalized singular values of the matrices A at 

the first 3 iterations for all cases, when considering n = 5 starting poles (i .e., 2 more 

than actually needed). The matrix A resulting from the original VF formulation is 

no longer full rank, but rather has a nullspace of dimension 2, indicating that the 

least squares solution to the linear system Ax = b is not unique, since one can add 
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any linear combination of vectors in the null space to the solution x . On the other 

hand, the matrices A resulting from our proposed reformulation no longer contain a 

single vector in the null-space, but rather 3 (i.e., 2 more than needed) . 

Normalized Singular Values of A 
10° 

10 -2o .......... ___ _.... ________ .....J 

2 4 6 8 10 12 
index 

(a) Original VF 

Normalized Singular Values of A 
10° 

Normalized Singular Values of A 
10° 

2 4 6 8 10 12 2 4 6 8 10 12 
index index 

(b) New VF with pole at 0 (c) New VF with pole at 106 

Figure 6.5: Normalized singular values of A when the model order is chosen 5 

6.7.2.2 Noisy measurements 

We consider the same transfer function, to which we add noise as 

Ni = H (si) · (10 - 2 (randn + j * randn)) . 

For comparison, we compute the 9-C00 and 9-C2-norms of the noise: 
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• the 9-C00-norm of the noise we introduced: 9-C00 norm = maxi=l...k !Nil, 

Recall that at convergence, the vector cis 0, so we compare all methods discussed 

previously in terms of errors obtained when convergence is achieved. For the original 

VF formulation, the norm of c after 11 iterations is 8.1556e - 014 (and will not 

decrease when increasing the number of iterations). For the proposed reformulation 

with an extra pole at 0 and 106
, the errors are 6.8791e- 016 and 1.1286e- 016 after 

20 and 7 iterations, respectively. VARPRO stops after 52 iterations returning the 

message "lsqnonlin stopped because the problem appears to be locally singular". 

Tables 6.4 presents the 9-C00 and 9-C2 errors obtained with all methods. The smallest 

9-C00 errors are obtained using the proposed method with the extra pole at 106
, while 

the smallest 9-C2 error is obtained with VARPRO. Still, the errors obtained with 

original VF, proposed VF with extra pole at 106 and VARPRO are very close to each 

other. 

For comparison, the 9-C00 and 9-C2 norms of the error vector are 1.8627e-002 and 

1.4010e-002, respectively, so the errors obtained with the proposed reformulation with 

the extra pole at 0 are larger than that, but the rest of the methods yield errors slightly 

below the noise values. 

Original VF New VF with New VF with VARPRO 
extra pole at 0 extra pole at 106 

9-C00 error 1. 6985e-002 2.6649e-002 1. 6983e-002 1. 6988e-002 
9-C2 error 1.3411e-002 1.6112e-002 1.3411e-002 1.3408e-002 

Table 6.4: Errors with the different algorithms 

Next, we show the decay of the singular values of the matrix A (used in solving 

the linear system). Fig 6.6 show the decay of the normalized singular values of the 

matrices A at the first iteration for all the methods we are comparing. Note that, 

while the matrix resulting from Relaxed VF is still full rank, the ones resulting from 



CHAPTER 6. CONVERGENCE OF VECTOR FITTING 141 

our proposed approach should be singular but, due to the added noise, the last singular 

value is no longer below machine precision. 

--t:) -~--0 -C) 
0 

Normalized Singular Values of A 
10° ~------------------~ 

10-3~--------------~--~ 
2 4 6 8 

index 
(a) Original VF 

Normalized Singular Values of A 
10° .........-------------------

Normalized Singular Values of A 
10° ~------------------~ 

2 4 6 8 2 4 6 8 
index index 

(b) New VF with pole at 0 (c) New VF with pole at 106 

Figure 6.6: Normalized singular values of A when the model order is chosen 3 and 
noise is added to the measurements 

Tables 6.5, 6.6, 6.7, 6.8 and 6.9 show the poles, residues and the D -term, respec-

tively, which were recovered with each method. The poles and D -term closest to 

the original ones were obtained with VARPRO. The closest residue to the original 

residue located at 2 is obtained with the proposed reformulation with an extra pole 

at 0, while the closest residues to the original ones located at 30 ± 40j were obtained 

with VARPRO. 
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Original VF New VF with New VF with VARPRO 
extra pole at 0 extra pole at 106 

-4.9303 -4.7609 -4.9297 -4.9376 

Table 6.5: Pole at -5 

Original VF New VF with New VF with VARPRO 
extra pole at 0 extra pole at 106 

1 -98.647±497.96J 1 -98.627±49L95J 1 -98.645±497.94J 1 -9s.s43±498.o6J 1 

Table 6.6: Poles at -100 ± 500j 

Original VF New VF with New VF with VARPRO 
extra pole at 0 extra pole at 106 

2.0340 2.0229 2.0340 2.0351 

Table 6. 7: Residue at 2 

Original VF New VF with New VF with VARPRO 
extra pole at 0 extra pole at 106 

1 29.34±39.864J 1 21. 759±4o.o49J 1 29.337±39.s64J 1 29.4o4±39.904J 1 

Table 6.8: Residues at 30 ± 40j 

Original VF New VF with New VF with VARPRO 
extra pole at 0 extra pole at 106 

.50031 .50257 .50031 .50027 

Table 6.9: D-term at .5 

142 



CHAPTER 7 

Conclusion 

This thesis started with an introduction in chapter 1, which discussed the problem 

of modeling systems from measurements of their frequency response from the point 

of view of electrical, as well as mechanical engineers. Next, chapter 2.1 presented a 

literature review summarizing the main directions considered to tackle this problem. 

Chapter 2.2 explained the three main contributions of this thesis: 

1. addressing the issue of a large number of ports by employing tangential instead 

of matrix interpolation in the Loewner framework, 

2. addressing the issue of parametric macromodeling by generalizing the Loewner 

matrix to two-variable transfer functions , 

3. providing a convergence analysis of the already existing vector fitting algorithm, 

as well as several possible reformulations. 

Before providing details about each contribution, chapter 3 consisted of a review 

of system theoretic definitions and basic concepts used in the next chapters. 

The first main contribution is discussed in chapter 4. After a short review treating 

the derivation of the Loewner matrix for the scalar case based on Lagrange polyno­

mials, followed by the introduction of the concept of tangential interpolation, and 
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the corresponding Loewner matrix for this case, the Loewner framework is completed 

with the introduction of the shifted Loewner matrix. As a minor contribution of this 

thesis, in Sect. 4.1.4, the concept of the Loewner matrix pencil constructed in the 

framework of tangential interpolation is analyzed from a theoretical point of view, by 

showing that a system can be recovered from tangential interpolation data given that 

the right amount of measurements are available and that the sampling directions are 

chosen appropriately. Sect. 4.2 shows various implementation approaches possible 

for the Loewner framework derived from the theoretical concepts described earlier. 

These proposed implementations are validated in Sect. 4.4 using numerical examples 

spanning various application areas. These approaches are especially suited for model­

ing devices with a large number of ports. We use no heuristics, but only the available 

data, and we are able to identify the order of the system. When the provided mea­

surements are noisy and the noise level is high, we notice that the resulting models 

are poor, so Sect. 4.3.2 proposes an improvement. The main idea is to overmodel 

and apply a reduction step, in which the necessary information is extracted from the 

most dominant poles. 

Chapter 5 discusses the second main contribution. Our approach to solving the 

parametric macromodeling problem is to generalize the Loewner matrix to the two 

variable case in Sect. 5.1 - 5.5. Using the frequency response measurements obtained 

for several parameter values, we generalize the Loewner matrix to the two variable 

case to construct models which are reduced both with respect to frequency and to the 

parameter. This generalization is valid for SISO, as well as MIMO systems and it was 

validated on academic, as well as practical examples consisting of real measurements. 

Last, but not least, the third contribution of the thesis is presented in chapter 6: 

the first ever analysis of the convergence properties of the pole relocation iteration of 

the vector fitting algorithm. We found that for noise-free measurements and provided 

that the number of measurements is sufficient and the order of the model is chosen 
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equal to or higher than the order of the underlying system, vector fitting converges in 2 

steps. For noisy measurements, the iteration may exhibit no convergence or more than 

one convergence points, situations which are clearly undesirable. To ensure that the 

iteration always converges, we propose to incorporate the Newton step in the vector 

fitting iteration. To save computational time by omitting the residue identification 

stage of vector fitting, we present a realization of the model that can be determined 

using the quantities found in the pole identification step (irrespective of whether 

convergence was achieved, or not). Based on insights from the Loewner framework , a 

reformulation presented in Sect. 6. 7 proposes using an additional starting pole and, 

moreover , provides an educated guess for the starting poles at the first step of the 

pole relocation iteration. 

By using polyharmonic distortion, nonlinear systems are characterized by X­

parameters, which represent a generalization of S-parameters [80]. The X-parameters 

are measured by nonlinear vector network analyzers, and the problem amounts now 

to constructing a nonlinear model from the tabulated X-parameters. Future work 

includes extending the Loewner framework to modeling nonlinear systems described 

by X-parameters. 

In terms of our solution to parametric macromodeling, future work is needed to 

generalize the shifted Loewner matrix to the case when the available data depends 

on more than one parameter. Moreover, this thesis only treated the two-variable 

generalization of the Loewner matrix, so our goal is to extend it to more than two 

variables (i.e., more than one design parameter). 
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APPENDIX A 

Proofs 

A. l Proof of Theorem 5.4.2 

Proof. We need to show that H ( Ai, 1rj) = w i,j and H (f.Lk, Vz) = v kl· We begin with 

the condition H (>.i, ni) = C<P- 1(>-i, ni)B = W i,j, Vi= 0, ... , k1, Vj = 0, ... , k2. Let 

us denote <P- 1 (>-i, 1rj)B as v , so <P (>.i, 1rj)v = B : 

(>.i-.Ao) Ip (>. 1->.i) Ip 

xo Op 

(>.i->.o)Ip (>.k1-Ai) Ip 

aoo ... ak1o 
1

,7rj-7ro) Ip ... (7rj-7ro)Ip Xkl Op 

ao1 ... ak1l 7rl-7rj)Ip Y1 qolp 

aok2 ... ak1k2 (7rk2-7rJ)Ip Yk2 qk2IP 

f3oo ... f3k10 7rj-7ro)Ip .. . (7rj-7ro)Ip qolp zo Op 

f3o1 ... f3k11 1'7rl-7rj)Ip qllp 

Zk2 Op 

/3o,k2 ... f3kl ,k2 (1rk2-1rj) l p qk2 IP 

(A.l) 
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Therefore, 

(.Xi - >-o)Xo = (.Xi - .Xl)x1 => x1 = ~i=~~x0 , unless i=l 

(.Xi- .Xo)Xo = (.Xi- .X2)x2 => x2 = ~:=~~xo, unless i=2 

(.Xi- >-o)Xo = (.Xi- >.kJXk1 => Xk1 = ~i~;..~01 Xo, unless i = k1 

aoo:xo+awx1+ ... +ak1oXk1 +(7rj- 7ro)(Yl + ... + Yk2)=qolp 

am:xo+auxl + ... +akl1Xk1 +( 1r1 - 7rj )Yl =qolp 

.Boo:xo+.Bwx1 + ... +,BkloXk1 +(7rj- 7ro)(zo + ... + Zk2-l)+qozk2 = 0 

.Bmxo+.Buxl + ... +.Bk11Xk1 +( 1r1 - 7rj )zo+qlzb = 0 

Thus x0, x1, ... , Xk1 = 0 and xi =/= 0. This implies 
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(A.2) 
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aioxi+(nj- no)(YI + ... + Yk2)=qolp 

ailxi+(nl - nJ)YI =qolp 

aik2Xi+( 1l"k2 - 1l"J )YI =qk2IP 

,BiOxi+(nJ- no)(zo + ... + Zk2-I)+qoZk2 = 0 

,Bilxi+(nl- nJ)zo+q1Zk2 = 0 
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(A.3) 

Note that this part of the proof holds for any aiJ invertible as we made use of no 

other properties of the matrices aij. To show that the second condition also holds, 

namely H(J-Lk,vt) = ci-1(J-Lk,vt)B = Vkt, Vk = O, ... ,k1, Vl = O, ... ,k2, let us 

denote il!-1 (J-Lk, v1)B as v, so il!(J-Lk, llt)v = B: 

Vtk-.Ao)Ip (.A1-Jtk)Ip 

xo 

Vtk-.Ao)Ip (.Ak1-M)I~ 

aoo ... ak10 vz-7ro)Ip ... (vz-7ro)Ip Xk1 
-

am ... ak11 71"1-vz)lp Y1 

aok2 ... ak1k2 (7rk,-vz)Ip Yk2 
-

f3oo ... f3k10 vz-7ro)Ip ... (vz-7ro)Ip qolp zo 

!3m ... !3k11 1r1-vz)lp q11p 

Zk2 

!3o,k, ... f3kl ,k, (7rk2-vz)Ip qk,Ip 

(A.4) 
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Recall that the vector [ a 00 . . . aok, . . . ak,o . . . ak,k, ] T is in the nullspace 

of the matrix JI)M) so multiplying each row of JL(M) by this vector yields 

kl k2 v 
~~ kz-Wij 
~ ~ ( _ A·)(v _ ·) aij = 0, Vk = 0, ... , k1 , Vl = 0, ... , k2 . 
i=O j=O Mk ~ l 1r] 

Therefore, 

Summing up the expressions in a and /3, respectively, from Eq.(A.4), we obtain 

0 

(A.6) 

0 

(A.7) 

Substituting Eq.(A.5) and Eq.(A.6) into Eq.(A.7), we obtain 

(A.8) 

(A.9) 

Thus , V kl = -Zk2 = C~-l (Mk, vz)B. D 
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Pseudocodes 

B.l SVD implementation in the Loewner frame-

work 

Algorit hm 1 (E , A , B , C)= SVDapproach(lL, a lL, V , W , w) 
G iven: JL, alL, V , W constructed as in Sect .4.2.1 , 4.2.2 or 4.2.3 and w, the vector of mea­

sured frequencies scaled by 21r . 
Outp ut : E , A , B , C such that H (jwi) ~ H (i), i = 1, . . . , k . 

1: x f- jw1 (if Sect .4.2.1 was followed) or x f- w1 (if Sect.4.2.2 or 4.2.3 was followed). 
2: [Y , ~' X]= svd(xlL- a lL). 
3: Plot log10 (~ ), where~= diag(a 1, .. . , ak), a1 ~ .. . ~ ak. 

4: Choose n such that loglO(an+l )>>log10(an+2 
), loglO(an+l )>>loglO(~ ), an+l ~ 

an an+ l an vn- l 

Noise · .JN. 
5: Set Y 1 f- Y (:, 1 : n), X 1 f- X (:, 1 : n). 
6: E f- - Y ilLX 1, A f- - Y ialLX l, B f- Y i V , C f- WX1. 

B.2 Adaptive implementation in the Loewner frame-

work 
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Algorithm 2 (E, A , B , C) = ADAPTIVEapproach(H, w) 
Given: H , w where H (i) is the measured frequency response at fi = ~· 
Output: E , A , B , C such that H(jwi) ~ H (i), i = 1, ... , N. 

1: Generate k, a set of p linearly distributed numbers between 1 and N, set m f- p. 

159 

2: Construct A, M, L , R , V , W , 1L, o-1L as described in Sect.4.2.1 , using wk(l)' ... , wk(p) 

and H (k(l)), ... , H (k(p)), set E f- -1L, A f- - o-1L, B f- V , C f- W. 
3: for i = 1, ... , N do 
4: H i f- C (j . WiE- A) - 1B. 
5: [Y , :E, X]= svd(Hi- H (i)), :E = diag(o-1, ... , o-p) , erri f- o-1. 
6: end for 
7: Sort err descendingly: [vmax, imax] = sort( err), where vmax are the sorted values 

and imax are the sorted indices. 
8: while vmax(1) > th, where th =Noise · VN do 
9: Update A, Musing Wimax(l)' ... 'Wimax(p) . 

10: for i = 1, ... , p do 
11: [Y , :E, X ]=svd(H imax(i)-H(imax(i))), r i+m=X(: , i), Wi+m=H (imax(i)) r i+m, fi+m= 

Y (:, i)T' Vi+p=fi+pH(i~ax(i)) . 
12: end for 
13: Update 1L, a-1L using Eq.(4.21) and (4.23), set E f- -1L, A f- -o-1L, B f- V , 

C f- W , as well as m f- m + p. 
14: Repeat Steps 3-7. 
15: end while 
16: Repeat Steps 9-13. 
17: x f- jw1 and [Y , :E, X] = svd(x1L- o-1L) . 
18: Plot log10 (~ ), where :E = diag(o-1, ... , o-m) · 
19: Choose n such that log10 (o-nt l) >> log10 (o-n+2), log10 (o-n±l) >> logw(__Qn._), O"n+l ~ 

O"n O"n± l O"n O"n-1 

Noise· VN. 
20: Set Y 1 f- Y (:, 1 : n), X1 f- X(:, 1 : n). 
21: E f--Y ilLX1 , A f--Y io-1LX 1, B f- Y i V , C *-- WX1. 
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B.3 Recursive Implementation of the Newton step 

in the VF iteration 

Algorithm 3 a= NEWTONonVF_Recursive(H, w, a) 
Given: H , w, a where Hi is the measured frequency response at fi = ~'and a , the 

initial set of starting poles. 
Output: a , the set of starting poles at the final step. 

1: Solve A(si, N; ai, n)x ~ b for x , soc= x((n + 2) : (2n + 1)). 
2: for i= 1, ... , n do 

3: 
fJA . 

Compute fJai using Eq.(6.45). 

fJx fJx 
Solve Eq.(6.46) for fJai, so Jc(: , i) = fJai ((n + 2) : (2n + 1)). 4: 

5: end for 
6: Update a: a~ a- tJcc, where t is the step size chosen such that the norm of 

the residual c at the current step is smaller than the value at the previous step. 

B.4 Implementation of the Newton step in the VF 

iteration employing the normal equations 

Algorithm 4 a=NEWTONonVF_Normal(H, w, a) 
Given: H , w, a where H i is the measured frequency response at fi =~'and a , the initial 

set of starting poles. 
Output: a , the set of starting poles at the final step. 

1: Solve (A* A) x = A *b for x. 
2: for i= 1, ... , n do 

8A . 
3: Compute -

0 
using Eq.(6.45). 

ai 

4: Compute RHS(:,i) = (~!)*b- ( (~~)' A + A*~~) x. 

5: end for 
6: Solve (A * A)J = RHS for J and set Jc = J((n + 2) : (2n + 1), :). 
7: Update a: a~ a- tJcc, where c = x((n + 2) : (2n + 1)) and tis the step size chosen 

such that the norm of the residual cat the current step is smaller than the value at the 
previous step. 
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B.5 Implementation of the Newton step in the VF 

iteration employing the pseudoinverse 

Algorithm 5 a= NEWTONonVF_pinv(H , w, a ) 
Given: H , w, a where Hi is the measured frequency response at /i =~'and a , the initial 

set of starting poles. 
Out put : a , the set of starting poles at the final step . 

1: Find x using x = A +b . 
2: for i = 1, . . . , n do 

8A . 
3: Compute -

8 
us1ng Eq.(6.45). 

ai 
4: Compute ~ using Eq.(6.50). Set Jc (:, i) as ~((n + 2) : (2n + 1)). 
5: en d for 
6: Update a : a {--- a - tJcc, where c = x ((n + 2) : (2n + 1)) and t is the step size chosen 

such that the norm of the residual c at the current step is smaller than the value at the 
previous step. 

B.6 Obtaining real quantities in the least squares 

problem in vector fitting 

To obtain real quantities in the least squares problem set up in Eq.(6.5) - (6.7), we 

assume that if a starting pole ai is complex, then ai+l is the complex conjugate of ai, 

namely ai. Thus, the corresponding residues, ci and ci+l, as well as ci and ci+l share 

the same complex conjugate property. Moreover, since measurements are provided 

on the imaginary axis, we assume that, if si = j 2n fi and the corresponding measure­

ment is H1, then si+l = -j2n fi with an associated measurement Hi. Suppose, for 

simplicity, that we are trying to identify an order 3 system using one starting pole 

which is real, a1, and two which are complex conjugates of each other, a2 and a2. 
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This leads to the following linear system: 

c1 
_1_ _ 1_ _1 _ 1 . ____fu_ ____fu_ ____fu_ c2 H1 81-a1 81-a2 81-ii2 81-a1 81-a2 81-a2 

__ 1 _ __ 1_ __ 1_ 1 ~ ~ ~ c2 fl1 -81-a1 -81-a2 -81-ii2 -81-a1 -81-a2 -81-a2 

'" d ~ (B.1) 

_ 1_ _1 _ _1_ 1 ___llli_ JlJL ___llli_ c1 HN 8N-a1 8N-a2 8N-ii2 8N-a1 8N-a2 8N-ii2 

1 1 1 1 iii::{. iit:l. iirt. c2 fiN -8N-a1 -8N-a2 -8N-a2 -8N-a1 -8N-a2 -8N-a2 -...........-
A c2 b ---X 

Post-multiplying A by IIa and pre-multiplying x by II;1 , where IIa = blkdiag(1, II, 1, 1, II), 

with II= [: !~ ] , leads to An= All.: 

_1_ 1(_1 +-1 ) t(_1 __ 1 ) 1 _fu_ l ( ____fu_ + ____fu_) i ( ____fu_- ____fu_) 81-a1 2 81 -a2 81 -a2 2 81 -a2 81 -a2 81-a1 2 81 -a2 81 -a2 2 81 -a2 81 -a2 

__ 1_ 1(_1 +-1 ) t(_1 __ 1 ) 1 ~ l(~+~) t(~-~) -81-a1 2 -81 -a2 -81 -a2 2 -81 -a2 -81 -a2 -81-a1 2 -s1 -a2 -s1 -a2 2 -81 -a2 -81 -a2 

An= 

_1_ 1(_1 +-1) t(_1 __ 1) 1 .J!..rL l ( .J!..rL + ___llli_) i ( .J!..rL- .J!..rL) 
8N-a1 2 SN-a2 8N-ii2 2 8N-a2 SN-ii2 8N-a1 2 8N-a2 8N-ii2 2 SN-a2 SN-ii2 

1 ~ (-s:-a2 + -8:-a;) 
"( 1 

-8:-:a2) 
1 iirt. l( iirt. + iii::{. ) t( iirt. iirt. ). 

-8N-a1 ~ -8N-a2 -8N-a1 2 -SN-a2 -8N-a2 2 -8N-a2 -8N-a2 

(B.2) 

and Xn=II;1x= [c1 c2+c2 -j(c2-c2) d c1 c2+c2 -j(c2-c2)] T. We simplify these 

expressions in terms of the real and imaginary parts of the quantities involved: 

. 
_1_ 81 -!R(a2~ -~(a2~ ____fu_ H1 (81-!R(a2~~ -H1~(a2~ 1 81-a1 (81-!R(a2))2 +~(a2)2 (s1-!R(a2))2 +~(a2)2 81-a1 (81-!R(a2))2 +~(a2)2 (81-!R(a2))2 +~(a2)2 

---=L -81-!R(a2) -~(a2~ 1 -ii1 -ii1 (s1 +!R(a2)~ -ii1~Ja2~ 
s1+a1 (s1 +!R(a2))2 +~(a2)2 (81 +!R(a2))2+~(a2)2 81+a1 (81 +!R(a2))2+~(a2)2 (s1 +!R(a2)) +~(a2)2 

An= 

_1_ (8N-!R~a2~~ -~(a2) 1 .J!..rL HN(BN-!R(a2~~ -HN~Ja2~ 
SN-a1 (sN-!R(a2)) +~(a2)2 (sN-!R(a2))2+~(a2)2 SN-a1 (sN-!R(a2))2+~(a2)2 (sN-!R(a2)) +~(a2)2 

----=L -8N-!R(a2~ -~(a2~ 1 -iili. -iiN(sN+!R(a22} -iiN~Ja2} 
N+a1 (sN+!R(a2))2+~(a2)2 (sN+!R(a2))2+~(a2)2 8N+a1 (8N+!R(a2))2+~(a2)2 (8N+!R(a2)) +~(a2)2 

(B.3) 
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and x~ = [ c1 2~(0.!) 2'J(c2 ) d C1 2~(C2) 2'J(D,) ] . To obtain real quan­

tities in terms of the measurements, we pre-multiply both An and b by lis = 

blkdiag(IT, ... , II)*. This leads to A r = rr;An = II* Alia and br = rr;h: 

(B.4) 

Note that the pre-multiplication by lis does not affect the solution Xr· Therefore, we 

now have a least squares problem with real quantities to solve: Arxr ~hr. 
. 8A 

The next step IS .to make ~ real. First, we discuss the case in which ai is a real 
uai 

starting pole, so the only non-zero quantity of Z! is its ith column: 

0 1 0 
[)cp 

(sl-ai)2 

(B.5) 
8ai 

0 l 0 (sN-ai)2 

If ai is complex, then we need to take the derivative with respect to its real and 

imaginary parts. Assuming that ai+l is the complex conjugate of ai, we have that 

0 (sl-~(ai))2-~(ai)2 -2(sl-~(ai))~(ai) 

[)cp 
[(sl-~(ai))2+~(ai)2]2 [(sl-~(ai))2+~(ai)2]2 

a~(ai) 

0 

(B.6) 

0 (sN -~(ai)) 2 -~(ai) 2 -2(sN-~(ai))~(ai) 
[(sN-~(ai)) 2 +~(ai) 2 ] 2 [(sN-~(ai)) 2 +~(ai) 2 ]2 0 

and 

0 -2(sl-~(ai))~(ai) -(sl-~(ai)) 2 +~(ai) 2 

[)cp 
[(sl-~(ai))2+~(ai)2]2 [(s1 -~(ai)) 2 +~(ai) 2]2 

ac;s( ai) 

0 

(B.7) 

0 -2(sN-~(ai~)~~ai~ -~SN-~(ai))2 +~~ai)2 

[(sN-~(ai )) 2 +~(ai) 2]2 [(sN -~(ai ))2+~(ai)2]2 0 

8A 
To obtain real quantities in terms of the measurements, we pre-multiply -

8 
by lis. 

ai 

It is straightforward to implement these changes in Algorithms 3 - 5. 



C.l 

APPENDIX C 

Additional numerical examples in the Loewner 

framework 

200 S-parameter measurements from a device 

with 26 ports 

This set contains N = 200 S-parameter measurements for frequency samples between 

5MHz and lGHz. For better conditioning, all frequencies were scaled by 10- 6 . 

Fig. C.l(a) shows the normalized singular values of the Loewner and shifted 

Loewner matrices constructed using all samples, in the complex and real approaches. 

We notice the same behavior as before. The singular values of the Loewner matrices 

show a decay between the 48th and 49th, while for the shifted Loewner matrices, 

it is between the 74th and 75th. The singular value drop suggests that there is an 

underlying D-term and, moreover, allows to identify the system order. 

Table C.l presents results for stable models obtained with our approaches. VF 

was required to produce a D matrix, but the lowest order model we could construct 

was n=52. All proposed algorithms yield better fits than VF. 

For comparable errors, VF needs to build a model of order n=780. Fig. C.l(b) 
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Normalized Singular Values Hankel SVs of the VF model 

- 10-5 

'0 .... 
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~ 10-10 -e-LL complex 

- • - sLL complex 
-e- LL real 
- • - sLL real 
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1 0 -5
c_____---'-------'------'--------' 
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i i 

(a) SVD drop (b) HSV s of the VF model 

Figure C.l: Singular value drop of the Loewner matrix pencil and Hankel singular 
value drop of the VF model 

Algorithm CPU time (s) J{oo error J{2 error 
VF (n=52) 1.12 1.1554 2.9983e-001 

SVD Complex (n=48) 0.39 1.1073e-001 1.0167e-002 
SVD Real (n=48) 0.42 5. 7958e-002 6.5341e-003 

Adaptive Complex (n=48) 1.74 1. 7622e-001 2.2432e-002 
Adaptive Real (n=48) 1.77 7. 7 407 e-002 1.0332e-002 

VF (n= 780) 18.17 3.8320e-002 5.8102e-003 
VF & BT (n=48) 40.87 5.3897e-001 2.0251e-001 

Table C.l: Results for a device with p = 26 ports 
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shows a slow decay in the Hankel singular values of this VF model, so the balanced 

truncation (BT) reduced model of order n=48 is poor, as seen from Table C.l. 

The model obtained with the real SVD approach is shown in Fig. C.2(a) , while 

the VF model of order 52 is shown in Fig. C.2(b) . The plots in Fig. C.3(a) and 

C.3(b) show the singular values of the error matrices. 

Fig. C.4 compares the measured 8 1,2 and 8 1,26 entries to the model obtained with 

the SVD approach and with VF. 

m-, 
";' 
"C 
.a ·c: 
C) 

Singular Value Plot 

200 400 600 800 1000 
Frequency (MHz) 

(a) SVD Approach 

Singular Value Plot 

200 400 600 800 1000 
Frequency (MHz) 

(b) VF (n =52) 

Figure C.2: Models for a device with p = 26 ports 

Singular Value Plot of the Error 
Or---~--~----~--~--~ 

Singular Value Plot of the Error 

~ -100 

-1 50~--~~~----~--~--~ 
0 200 400 600 800 1 000 
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-150~--~--~~--~--~~--~ 
0 200 400 600 800 1000 

Frequency (MHz) 

(a) SVD Approach (b) VF (n =52) 

Figure C.3: Error plots for a device with p = 26 ports 
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Figure C.4: Modeling S-parameter entries for a device with p = 26 ports 



APPENDIX C. ADDITIONAL NUMERICAL EXAMPLES IN THE 
LOEWNER FRAMEWORK 168 

C.2 Delay System 

Electrical circuits with transmission lines can be described by differential equations 

containing delays. These expressions are obtained from the d' Alembert solution to 

the telegrapher's equations [81]. The delay factor turns out to be VIZJ. 

In the following, we consider the system: 

Ex(t) = A 0x(t) + A 1x(t- T) + bu(t), y(t) = cx(t), (C.1) 

withE, A 0 , A 1 E JR500 xsoo and T = 1. The associated transfer function is given by 

(C.2) 

The matrices E, A 0 and A 1 are symmetric [50]. Moreover, E is positive definite , 

while A 0 and A 1 are negative definite. Due to the time delay, this is an infinite-

dimensional system. However, as the matrices E, A 0 and A 1 are diagonalized by the 

same transformation, the system can be decoupled into 500 independent equations 

and the poles of the system can be found by solving nonlinear equations of the type: 

(C.3) 

where AE is an eigenvalue of E, and AAo and AA1 are eigenvalues of A 0 and A 1 , 

respectively.· Setting s as x + j · y allows us to write Eq. ( C.3) as a system of 2 

nonlinear equations corresponding to the real and imaginary part: 

Figure C.5( a) shows poles with imaginary part between ±130. Each of the 500 systems 

of equations of the form (C.4) were solved using MATLAB's fsolve with initial guess 

0 for x and different guesses for y, between -130 and 130. Thus, for each value on 

the imaginary axis, there is one pole obtained from solving one of the systems of 
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nonlinear equations. Even though Fig. C.5(a) shows only poles with imaginary part 

between -130 and 130, they extend well above that value. 

-sof =~ _,,~ 

-1 .2 -1 -0.8 -0.6 -0.4 -0.2 

(a) Poles (b) Frequency Response 

Figure C.5: Poles and frequency response of the delay system 

We are looking for a low-order finite-dimensional model as in Eq. (3.1) to ap-

proximate this infinite-dimensional system. We consider 1000 measurements of the 

frequency response logarithmically distributed between 10-0·6 and 103·2 and use this 

information together with the theoretical concepts described in Sect. 4.1.3 and the 

numerical implementation presented in Sect. 4.2 to construct such a reduced model. 

We employ state-of-the-art vector fitting (see Chapter 6) in our comparison. 

Let us begin our discussion with the analysis of the singular value drop of the ma­

trix pencil (alL, JL) constructed using all measurements. This is shown in Figure C.6. 

We notice that the rank of the pencil (alL, JL) constructed using these measurements 

is about 700. Since the system is infinite-dimensional, one may expect the matrix 

pencil to be full rank. The fact that it has a numerical rank of 700, instead of 1000, 

is because of the small magnitude of the response and small oscillation peaks at high 

frequencies, which can essentially be approximated by a line (see Fig. C.5(b)). 

We build models of order n = 41. Results of the comparison of our approach 

against vector fitting are shown in Table C.2, while Fig. C. 7 presents plots of the 
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Normalized Singular Values 
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Figure C.6: Singular value drop of the Loewner matrix pencil 

errors in absolute value between the original system and the different reduced models. 

Algorithm I Iterations I J-C00 error I J-C2 error I 
SVD Approach N/A 1.4995e-002 3.5498e-002 
Vector Fitting 50 3.4159e-002 5.4146e-002 

Table C.2: Results for models of order n = 41 for an infinite-dimensional delay syst em 

(a) SVD Approach (b) VF (50 iterations) 

Figure C. 7: Models obtained with our approach and with vector fitting 

Figure C.8(a) compares the J-C00 error between all our models with orders between 

n = 1 and n =50 and the same order model built with vector fitting (in 50 iterations). 

Similarly, Fig. C.8(b) shows the corresponding J-C2 errors. We notice that, in most 

cases , the errors for our models are lower than the VF models. Moreover, in Fig. 
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C.8(a) , we observe that VF reaches a plateau, in the sense that the errors stay almost 

constant with increasing the model order. The opposite behaviour happens for our 

models, as they become better when we increase the desired dimension. 
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Figure C.8: J-£00 and J-£2 errors for our approach compared to vector fitting 

Since vector fitting solves an optimization problem, its performance greatly de-

pends on the number of iterations. Fig. C.9 shows the decay of the J-£00 and J-£2 

errors as a function of the number of iterations performed (between 1 and 50) when 

the procedure uses 41 starting poles. The errors stagnate after about 20 iterations. 
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Figure C.9: J-£00 and J-£2 errors for VF as a function of the number of iterations 
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C.3 Circuit with p == 70 ports 

We consider a dynamical system which describes a linear subcircuit of a large post­

layout circuit (i.e. with parasitics due to layout). It was provided by Qimonda AG 

under the name rc549 and has previously been investigated in [82] from the point 

of view of terminal reduction [50], an approach used for model reduction of systems 

with a large number of terminals [83, 84]. This system has 141 poles: 84 infinite, 56 

real between -1.9 · 1015 and -1.1· 1013 and one at -2 · 10- 1 . The poles are depicted 

in Fig. C.lO(b) and the frequency response of this system is shown in Fig. C.10(a) . 
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Figure C.10: Frequency response and finite poles of the original system 

Our goal is to compare the tangential approach to the matrix interpolation ap­

proach on this example arising in circuit simulation. Authors in [85] suggested to 

use matrix interpolation instead of tangential interpolation, as the resulting model 

is of the same quality, but the number of measurements needed is much smaller , 

especially when the number of ports is large. For tangential interpolation, we take 

N = 400 measurements of the transfer function logarithmically distributed between 

109 and 1020 and, for each measurement, we select one sampling direction as one of 

the unit vectors of dimension p. Thus, for each frequency measurement , we use either 

a column (as right data) or a row (as left data) of the matrix measurement. The 
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Figure C.11: Singular values of the Loewner matrix pencil and poles of the original 
and reduced systems 

resulting Loewner and shifted Loewner matrices are of dimension 400 and a plot of 

their normalized singular values is shown in Fig. C.11(a) . For matrix interpolation, 

we take N = 6 measurements of the transfer function logarithmically distributed 

between 109 and 1020 and, for each measurement, we select p sampling directions as 

p unit vectors (all columns and rows of the identity matrix of dimension p x p are 

used as right directions and left directions, respectively). Thus, for each frequency 

measurement , we use the entire p x p matrix measurement. The resulting Loewner 

and shifted Loewner matrices are of dimension 6 x 70 = 420 and a plot of their nor­

malized singular values is also shown in Fig. C.11(a) . We notice that both methods 

yield Loewner and shifted Loewner matrices of the same rank, which suggest that the 

underlying system can be reduced to order n = 127. 

Figure C.11 (b) shows the finite poles of the original system, together with the poles 

of the reduced systems obtained with the tangential and the matrix interpolation 

approaches. We notice that all poles were recovered. In particular, we notice that 

the reduced systems of order n = 127 with D = 0 contain 57 finite poles (the same 

as the original one), and 70 infinite poles which hide an underlying non-zero D -term, 
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as in Eq. ( 4.36). Hence, all redundant poles have been eliminated. 

Table C.3 shows that both approaches yield small errors, with the tangential 

interpolation approach yielding slightly smaller errors than matrix interpolation. 

Approach I Jf(X) error I Jf2 error 

Tangential Interpolation 3.3422e-010 3.3589e-010 
Matrix Interpolation 6.9040e-009 6.9056e-009 

Table C.3: Results for the tangential and matrix interpolation approaches 

Figure C.12 shows the frequency response (sigma plot) of the top left and bottom 

right 10 x 10 entries of the original system, together with the reduced systems obtained 

via the two approaches: tangential and matrix interpolation. 

(11 :20,11 :20)Enlries (61 :70,61 :70)Entries 

120r---.,-----;::======i1 
-original 
o oreduced tangential 
o oreduced matrix 

-original 
o oreduced tangential 
o creduced matrix 

100 

f 60 1-611-....:--"""''ii!i 

! 40~=:::::=!~~ 

80 
i 
J 60 ~ 

i 
20 40 

20 

-20 1010 
Frequency(radlaec) 

1020 10
10 

Frequency(redlaec) 

(a) (11: 20, 11 : 20) entries of the transfer (b) Bottomright10x10entriesofthetransfer 
function function 

Figure C.12: Entries of the original transfer function plotted against those of the 
reduced systems 

The purpose of this example is to show that tangential interpolation yields compa­

rable results to matrix interpolation provided that the sampling directions are chosen 

as outlined in Sect. 4.1.4. Moreover, both methods are able to eliminate the redun­

dancy and produce reduced models which are very close to the original. 



APPENDIX C. ADDITIONAL NUMERICAL EXAMPLES IN THE 
LOEWNER FRAMEWORK 175 

C.4 Example from Sect. C.l revisited 

S-parameter data were provided in magnitude-angle format (with at most 9 significant 

digits for the magnitude and at most 6 significant digits for the angle). This data set 

contains k = 200 samples between 5MHz and lGHz of a device with 26 ports [50]. 

Normalized Singular Values 
10° ------.-------.----------,----, 

10-
8 ~ 

1 0-10'-=~===......._ __ __.__ __ ___.__ __ _J. 

0 50 100 
index 

150 200 

(a) SVD drop of the Loewner matrix pencil 

0 0.5 1 1.5 2 

X 10
10 

(b) Stabilization diagram 

Figure C.l3: Plots for the data set obtained from a device with 26 ports 

We build the Loewner matrix pencil using the real alternative approach (thus, the 

results are slightly smaller than those presented in Sect. C.l). The singular value 

drop of xiL- O"lL (shown in Fig. C.13(a) ), where x = 21rj1 , reveals a drop in the 

singular values of the Loewner matrices between indices 49 and 50, but the drop in 

the singular values of the shifted Loewner matrix is not very clear. Thus, we believe 

the order of the underlying system is 49, together with a full rank D-term, leading 

to a realization of order 49 + 26 = 75. 

We proceed with building the stabilization diagram (see Fig. C.l3(b) ). This 

shows that, by order 75, all poles are approximated, but as the order is increased, 

the estimates start converging. The order 79 model is the lowest order model which 

provides good approximations of the poles, so we apply the largest residues and largest 

dominance criteria to trim the 75 physical poles from the rest. Both indicate that 

the underlying system is of order 75 (Table C.4). The first 26 poles, some of which 
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are unstable, correspond to poles at infinity. The black circles in Fig. C.13(b) are 

the poles at order 75, while the green circles are the 75 most dominant poles of the 

order 79 system. The 75 dominant poles obtained from the order 79 model are better 

approximations of the true poles than the ones obtained from the order 75 model. 

1 .Ai IIRill2 Qi 

1 1.86e+13 1.02e+14 5.47e+O 
2 5.58e+12 1.01e+14 1.80e+1 

3-4 3.85e+ 12±1. 7 4e+ 12i 4.60e+13 1.19e+1 

72-73 -1.88e±8 +2.91e+9i 2.56e+8 1.35e+O 
74-75 -1.65e+8±7.89e+8i 2.18e+8 1.32e+O 
76-77 2.54e+ 7±3.89e+9i 1.34e+6 5.31e-2 
78-79 -3.19e+6±3.40e+9i 9.68e+5 3.03e-1 

Table C.4: Dominance quantities 

Model 9i00 error 9i2 error 
Order 75 1.95e-2 1.98e-3 
Order 79 9.87e-3 8.75e-4 

Dominant 75 7.25e-3 8.59e-4 

Table C.5: Error norm results 

Table C.5 shows the error norms of the various systems we considered. Clearly, the 

smallest errors are obtained by considering the order 75 model obtained by selecting 

the most dominant poles of the order 79 system. 

We plot the response of the system obtained with the proposed procedure in Fig. 

C.14. It is hardly distinguishable from the data. 
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Figure C.14: Frequency response 



APPENDIX D 

Additional numerical examples analyzing the 

convergence properties of vector fitting 

In the following sections, we discuss additional numerical examples in which we in-

vestigate the convergence properties of the pole relocation iteration in vector fitting. 

D. l Order 1 strictly proper system 

The underlying system that we are modeling is of the form 

r 
H(s) = -. 

s-p 

We use one starting pole a1 , so the expression we obtain is 

(D.l) 

(D.2) 

At the next iteration, the starting pole is given by the zero of the polynomial 

in the denominator, namely al - cl, where cl is found by solving the least squares 

problem in Eq.(6.4). 
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D .1.1 2 measurements 

Suppose we have 2 measurements available of H(s) at s 1 and s2 , namely H 1 and H2 . In 

this case, we have two pieces of information given (H1 and H2 ) and two unknowns (a 

and b), so a and b can be found in one step, without any iteration involved. The linear 

system we are solving is A(si, 2; ai, 1)x(ci, 1; ci, 1) = b with A(si, 2; ai, 1) E C2 x 2 , 

x(ci, 1; ~' 1), b E C2 x 1 . The solution can be found exactly, since the system is not 

overdetermined and we are not solving a least squares problem: 

(D.3) 

so the new starting pole is a1 - c1 = H~~=~;82 . Note that this quantity does not 

depend on the initial starting pole, but rather, only on measurements. This implies 

that there is no iteration, or that the iteration stagnates after the first step. 

D.1.2 N > 2 noise-free measurements 

The underlying system is of the form H(s) = s:p, with r, the residue, and p, the 

Pole, so H 1 = 81r_P, H2 = _r_, •.. , HN = _r __ Therefore, the matrix A is 
82-P 8N-P 

_ 1_ _ ____&__ _1 _ r 

81-al 81-al 81-al (81-P)(81-al) 

A(si, N; ai, 1) = - (D.4) 

_ 1_ _ _lhi_ _1 _ r 

8N-al 8N-al 8N-al (8N-p)(sN-al) 

while the right hand side vector b is 

H1 
_r_ 
81-P 

b= - (D.5) 

HN _r_ 
SN-P 
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so the least squares problem we are solving is 

r 

[ :: l = 
r 
~ 

X 

A 

By inspection, we recognize that the solution is 

_r_ 
s1-p 

and one can verify this using any equation of the linear system: 

cl rc1 r 

Si- a1 (si- p)(si- a1) Si-p 
r r(a1 - p) r 

::::} 

(si- p)(si- a1) si- a1 Si-p 

{=} 
( si - p) - ( a1 - p) r 

r =--
(si- p)(si- a1) si-p 

{=} 
(si- a1) r 

r =--
( Si - p) ( Si - a1) Si - p. 

(D.6) 

(D.7) 

(D.8) 

(D.9) 

(D.lO) 

(D.ll) 

The last equation indeed holds for any si, so the solution vector in Eq.(D.7) is the 

right one. Therefore, the model found by Vector Fitting is (see Eq.( D.2)) 

r r 
-----=- = H(s) 
s - ( a1 - a1 + p) s - p 

(D.l2) 

so the original system has been recovered. At the second step, a1 is taken as the zero 

of the denominator, which is p. Thus, c1 = a1 - p = 0, so convergence is reached at 

the second step. 
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D.1.3 3 noisy measurements 

The underlying system is of the form H(8) = s::_p, with r, the residue, and p, the 

pole, but instead of noise-free measurements, we are provided with H 1 = _r_ + 
81-P 

n1, H2 = _r_ + n2 and H3 = _r_ + n3, where n., i = 1, ... , 3 are values of the 
82-P 83-p • 

measurement noise. At this point we make no assumptions on the distribution of the 

noise or its magnitude. Suppose the frequencies where measurements are provided 

are distinct, therefore the measurements available are also distinct: 8 1 =/= 82, 82 =/= 83, 

are solving is A(8i, N; ai, 1)x(ci, 1; ci, 1) = b. The system is overdetermined, so the 

solution x is found via least squares. The starting pole at the next iteration is simply 

a1 - c1 . Since this analysis is geared towards finding the convergence points, we use 

the convergence condition that the starting pole stays constant to write a~k) = a~k+1 ), 

yielding a~k) = a~k) - c~k)' so c1 = 0. 

We first use the normal equations to write the solution x = (AT A)- 1 Arb, so 

(D.13) 

a2 = (81 + 82 + 83)(H1H2 + H1H3 + H2H3) 

-~ [81(H2- H3? + 82(H3- H1? + 83(H1- H2?] 

a1 = 8i(H2- H3) 2 + 8~(H1- H3) 2 + 8~(H1 - H2) 2 

-281(H2-H3)(82H3-83H2)-282(H3-H1)(83H1-81H3)-283(H1-H2)(81H2-82H1) 

ao = 8182(81H2H3+82H1H3-81H~-82HD+8283(82H1H3+83H1H2-82H?-83Hi) 

+8183(81H2H3+83H1H2-81Hi-83Hi) 

/J1 = -81(H2- H3?- 82(H1- H3) 2 - 83(H1- H2) 2 

f3o = 8i(H2- H3? + 8~(H1- H3) 2 + 8~(H1- H2)2. (D.14) 



APPENDIX D. ADDITIONAL NUMERICAL EXAMPLES 
ANALYZING THE CONVERGENCE PROPERTIES OF VECTOR 
FITTING 182 

Clearly, if H 1 =/= H2 =/= H3 (which is implied by our assumption that measurements 

are distinct), then a 3 =I= 0. Also, since we assume that measurements are noisy, c1 will 

be an order 3 polynomial in the numerator, divided by an order 2 polynomial in the 

denominator. We have reached convergence when c1 is 0, so we are essentially looking 

for the roots of the polynomial in the numerator, namely a3a~ + a 2ai + a 1a1 + a0. 

These will be possible convergence points of the iteration. The VF iteration is (for 

better layout, we change the notation a~k) to ak) 

(D.15) 

Recall that the Newton iteration is of the form 

(D.16) 

where f' ( ak) is the derivative of the polynomial f ( a1) evaluated at the current iterate 

ak, so for our case, this would be 

(D.17) 

On the other hand, we can also have a Newton iteration of the form 

For the Vector Fitting iteration, h(a) =a- ~~:~, therefore, 

h'( ) = 1 _ f'(a)g(a)- f(a)g'(a) 
a g2(~ ' 

(D.19) 

which, when evaluated at those a which make f(a) = 0 leads to 

h'(a)= 1_f'(a) = 1- 3a3a2+2a2a+al = -2a3a2 + (/31- 2a2)a + (f3o- a1). (D.20) 
g(a) a3a2+f31a+f3o a3a2 + f31a + f3o 
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Note that in the case of the Newton iteration, h(a) =a- J~~~), so 

h' (a) = 1 _ f' (a) f' (a) - f (a) f" (a) = 
(f'(a))2 

f(a)f"(a) 
(f'(a))2 ' 

(D.21) 

which, when evaluated at those a which make f(a) = 0 leads to h'(a) = 0, so all 

solutions of f(a) = 0 are attractive solutions and, thus , possible convergence points. 

Therefore, the Newton iteration can converge to any of these solutions, depending on 

the initial guess for the starting pole. 

Fig. D.1 shows the "basins of attraction" associated to the Newton iterations in 

the numerical examples D.l.1 and D.l.2. Each plot shows the 3 possible solutions (the 

roots of the polynomial f). Also, the regions of the complex plane which, when used 

as a starting guess for the Newton iteration, converge to the corresponding solution, 

are color coded. For example, starting from a region where the color code is green 

leads to the real solution in each plot in Fig. D.l. 

Example D .1.1. The underlying transfer function is H ( s) - 2- and we take 3 
s+5 

measurements at s = 1, s = 2 and s = 3, to which we add . 01 for the odd mea-

surements and -.01 for the second measurement. Therefore, the measurements are 

H 2 1 1o3 H 2 1 193 H 2 + 1 13 Th · l d t th 
1 = 6 + 100 = 300 ' 2 = 7 - 100 = 100 ' 3 = 8 100 = so · zs ea s 0 e 

following VF iteration: 

51878a%- 7293a~- 740839ak + 1216226 
ak+

1 = ak- 51878a~- 245662ak + 305065 ' 
(D.22) 

so the polynomial we are trying to find the roots of is 51878a3
- 7293a2

- 740839a + 

1216226. The 3 roots computed in Matlab using the command roots are -4.36 and 

2.25 ± 0.55i. On the other hand, the 2 roots of the polynomial in the denominator 

(namely 51878a2 
- 245662a + 305065) are 2.36 ± 0.52i. Recall that in the case of 
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Figure D.3: Errors for the various methods considered 
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Newton iteration converges slower than the Newton step applied to the VF iteration. 

VARPRO exhibits a linear convergence rate after iteration 10. 

Based on these numerical examples, we are ready to provide an analysis of the con-

ditions which make the vector fitting iteration exhibit a single attractive fixed point. 

Suppose the fixed points of the VF iteration, namely the roots of f(a) (see Eq.(D.15)) , 

are q, PI+ ~PI and P2 +~PI, so f(a) =(a- q) [a- (PI+ ~PI) ] [a- (p2 + ~p2)]. The 

root q can be thought of as the attractive root, while PI + ~PI and P2 + ~P2 as 

the repelling ones. Recall that in Example D.1.1 the roots of the denominator g(a) 

were close to the two repelling fixed points. Thus , we choose to express g(a) as 

(a- PI) (a - P2). Clearly, if there is no noise in the data, then PI + ~PI = P2 + ~P2 = 0 

and CI = ~t~~ = a- q leading to h(a) = a- CI = a- (a- q) = q which turns out 

to be the pole of the underlying system. When PI+ ~PI -::j:. 0 and P2 + ~P2 -::j:. 0, we 

compute h'(a) and evaluate it at each root of f(a) (namely, q, PI+ ~PI or PI+ ~PI , 

but for now we still use the notation a). Substituting into Eq.(D.20) we obtain 

h'(a) = 1- f'(a) 
g(a) 

= 
1

_ [a-(pi+~PI)] [a-(p2+~P2)]+(a-q) [a-(pi+~PI)]+(a-q) [a-(p2+~p2)]. 
(a - PI) (a - P2) 

We are now ready to evaluate h'(q), h'(PI +~PI) and h'(P2 + ~P2)· 

h'(q) 

Recall that q was the notation for the attractive solution, so we would like for ih' (q) l 

to be less than 1. This can be achieved if .6.p1 and .6.p2 have magnitude smaller than 
q- pl q-p2 

v'2 - 1. Therefore, if the noise in the data is small, then the roots of f (a) will be 

very close to those of g(a) and, consequently, ~PI and ~p2 will be several orders of 
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noise-free measurements, the pole at the first iteration is given by 

(D.23) 

so the polynomial in the denominator of c1 is 1 (which is an order 0 polynomial, as 

opposed to order 2 for noisy measurements as in Eq. (D.13)). For noisy measurements, 

we expect that the roots of the polynomial in the denominator are close to those of the 

polynomial in the numerator. The difference in these quantities is -0.11 ± 0.03i . 

Clearly, the solution we would like VF to converge to is -4.36, since this will be 

the recovered pole at the end of the iteration (recall that the pole of the underlying 

system is -5, but due to the noise we are adding, we expect to recover something in 

the neighborhood of -5). 

We can check whether each of the above solutions are attractive, repelling, or 

indifferent fixed points based on the criterion I h' (a) I < 1, I h' (a) I > 1 or I h' (a) I = 1, 

respectively, where h(a) = a - 51878a
3

-
7293a

2
-

740839a+1216226 In our case the values 
51878a2 -245662a+305065 · ' 

are 0.03, 57.1 ± 10.6i, so, as expected, the fixed point -4.36 is attractive, while the 

other two, namely 2.25 ± 0.55i, are repelling. Therefore, irrespective of the initial 

guess we use for the starting pole, the VF iteration will converge to the attractive 

solution, unless the initial starting pole, namely the first guess, coincides with one of 

the repelling solutions, in which case the iterates will not change. 

Interestingly, Eq. (D.22) can be rewritten as 

-238369a~ + 1045904ak- 1216226 
ak+1 = _5_1_8_7_8_a~;;:--_-2_4_5_6-62_a_k_+_3_0_50_6_5_ (D.24) 

and, when dividing the coefficients of the same powers of ak, we obtain - 2
5
3
1
8:

7
6i = 

-4.59, - 1~4~5:6°24 = -4.26 and - 1i0
1
5
6c?6

2
5
6 = -3.99, which are all in the neighborhood of 

the attractive fixed point located at -4.36. 
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magnitude smaller than q - PI and q - p2 . On the other hand, 

Recall that PI+~PI was the notation for one of the repelling solutions , so we would like 

for lh'(PI+~PI)I to be larger than 1. This can be achieved if PI-q has magnitude larger 
L.>.Pl 

than J2 + 1 and .6.~.6. has magnitude smaller than J2- 1, which is consistent 
Pl-P2 Pl 

with the condition obtained from h'(q) < 1. 

Therefore, if the noise in the data is small, then the roots of the numerator f (a) 

will be very close to those of the denominator g( a) and, consequently, ~PI and ~p2 

will be several orders of magnitude smaller than PI - q and PI - p2. One can derive 

a similar expression for h'(p2 + ~p2 ) since the expression for h'(a) is symmetric in 

Next , we derive the solution one obtains when solving the least squares system 

set up using the Lagrange basis (see Eq.(6.66)). This time, (\ = ai- fa , where a0 , 

(30 are expressions in terms of si, s2, s3 , HI, H2, H 3 . Since we want ci to be 0, we 

are looking for the solution of ai - fa = 0, which is ai = ~~. Therefore, in this case, 

there is no iteration, and irrespective of the starting pole chosen as an initial guess , 

the recovered pole is found as 

(H2 + H3- 2HI)Hisi +(HI+ H3- 2H2)H2s2 +(HI+ H2- 2H3)H3s3 
ai = -2H'f - 2Hi - 2H'#, + 2HIH2 + 2HIH3 + 2H2H3 ' 

(D.28) 

which is determined entirely from the available measurements and does not depend 

on the initial starting pole. 

Example D.l.3. We consider the same example as before. The value of the pole 

obtained using the Lagrange basis (using Eq. (D.28)) is - 4.59. This is closer to the 
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Table D.l summarizes the iterates at each step using a starting pole located at 

-100 as initial guess and the following methods: vector fitting, the Newton iteration 

considering the derivative of the polynomial in the numerator j, the Newton iteration 

considering the derivative of the fraction 1 (referred to as "Newton on VF" in the 
g 

table) and, lastly, VARPRO, with an implementation provided by Jeff Hokanson {86}. 

I Iteration II VF I Newton I Newton on VF I VARPRO I 
1 -4.5792 -66.6836 -4.5647 -99.9998 
2 -4.3704 -44.4894 -4.3636 -99.9976 
3 -4.3637 -29.7193 -4.3635 -99.9756 
4 -4.3635 -19.9131 -4.3635 -99.7559 
5 -4.3635 -13.4400 -4.3635 -97.5526 
6 -4.3635 -9.2290 -4.3635 -74.9322 
7 -4.3635 -6.5928 -4.3635 -38.9679 
8 -4.3635 -5.1087 -4.3635 -27.4569 
9 -4.3635 -4.4884 -4.3635 -9.6986 
10 -4.3635 -4.3679 -4.3635 -5.7283 
11 -4.3635 -4.3635 -4.3635 -4.8537 
12 -4.3635 -4.3635 -4.3635 -4.7750 
13 -4.3635 -4.3635 -4.3635 -4.7717 
14 -4.3635 -4.3635 -4.3635 -4.7716 
15 -4.3635 -4.3635 -4.3635 -4.7716 

Table D.1: Poles at each iteration 

The first three columns are all solving the same problem, but in different ways. 

The vector fitting iteration converges to the solution in 4 iterations, as opposed to the 

Newton iteration, which converges in 11 iterations and the Newton step applied to the 

vector fitting iteration, which converges in 3 steps. The last column shows the results 

obtained with VARPRO, the method explained in Sect. 6.2. This converges in 14 steps 

(because the step size is adjusted at each iteration) and the recovered pole is closer to 

the true pole (located at -5). 

Fig. D.2 presents the absolute error at each step, between the current iterate and 

the final iterate, on a logarithmic scale, for all 4 methods considered. Vector fitting 

exhibits linear convergence. The traditional Newton iteration converges very slow 
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original pole located at -5 than -4.36, the value found at the end of the VF iteration. 

D.2 Order 2 strictly proper system 

Next, we discuss the case of an order 2 strictly proper system. The underlying system 

is of the form 

H( ) 
_ r1 r2 

s ---+--. 
s- P1 s- P2 

(D.29) 

We use two starting poles for the model, a1 , a 2 , so the expression we obtain is 

The poles at the new VF iteration are given by the 2 solutions of the polynomial 

equation s2 + s(c1 + c2 - a1 - a2) + (a1a2 - c1a2 - c2a1) = 0. Changing the notation 

to introduce the iteration count, the poles at iteration k + 1, namely aik+l) and a2 , 

are given as 

(k+l) - _-_(_cl_+_c_2_-_a_ik_) _-_a_~_k )_)_±_____..:_( c_l_+_c2_-_a_ik_) ___ a_~k-) )_2_-_4_( a_i_k)_a_~k_) ___ c_l a_~_k ) ___ c_2a_i_k )_) 
a1,2 - 2 

(D.31) 

where c1 , c2 are found by solving the least squares problem in Eq.(6.4), which is set 

up using the measurements, as well as the kth iterates aik) and a~k). 

Eq.(D.29) contains 4 unknowns, namely r 1 , r2 , p1, P2, so a minimum of 4 condi-

tions are required to completely determine them. Therefore, at least 4 samples and 

their corresponding measurements are needed. In case we only have 4 measurements, 

Eq.(6.4) lead to the solution A - 1b, since the matrix A is square. 
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Figure D. 2: Errors for the various methods considered 
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D.2.1 5 measurements 

Suppose we have 5 measurements available of H(s) at s1 , s2,s3, s4 and s5, namely H 1 , 

H2,H3 , H4 and H5. The linear system we are solving is A(si, 5; ai, 2)x(ci , 2; ~ ' 2) =b. 

The system is overdetermined, so the solution xis found via least squares. Next , the 

starting poles at the next iteration are given by Eq.(D.31). When convergence is 

reached, c1 = c2 = 0. Using the fact that c1, c2 are rational expressions in a1, a2, we 

are looking for all pairs of solutions (ais)' a~s)) which make cl = c2 = 0. 

Using the normal equations , the least squares solution is given as x = (AT A)-1 Arb. 

It turns out that 

- af( 'Y1 a§+ry2a2+ry3)+af( ry4a§+ry5a2+'Y6)+ . . . !1 ( a1 , a2) 
c
1 = af((ha§+52a2+53)+ai(54a~+55a2+56)+ ... = g(a1, a2) ' 

(D.32) 

_ ai(ryiai+ry2ai+'Y3)+a~(ry4ai+ry5ai+'Y6)+... !2(a1 , a2) 
c2 

=- af(51 a§+52a2+53)+ai(54a~+55a2+56)+ ... = g(a1, a2) ' 
(D.33) 

where ... stand for the rest of the terms in the expressions, which contain powers of 

a1 and a2 lower than the ones listed above and 5i, 'Yi are complicated expressions in 

We want c1 and c2 to be 0 when convergence is reached, so we are looking for the 

roots of the coupled multivariate polynomials in the numerator: f 1 (a1 , a2 ) = 0 and 

f 2 (a1 , a2 ) = 0. One can use a Newton step on the vector fitting iteration to improve 

the convergence properties of vector fitting in terms of the number of iterations needed 

to reach convergence, but also, to ensure that the iteration will always converge. In 

this case, the iteration is of the form 

(D.34) 

with J 119 (ak) , the Jacobian matrix, defined as J f/g,i ,j = 8~c::~i ). 

Example D.2.1. Let us analyze the following numerical example. The underlying 
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because the initial guess is far away from the solution, but once in the neighborhood 

of the convergence point, it converges quadratically. The Newton step applied to the 

VF iteration also shows quadratic convergence, even though the initial guess is poor. 

Lastly, VARPRO shows linear convergence between iterations 10 and 15. 

Recall that the original Newton iteration converges to any of the 3 possible solutions 

(computed as the roots of the polynomial in the numerator), depending on the initial 

guess of the starting pole. Clearly, since the other two possible convergence points 

are complex, the iteration will converge to the real solution for any real starting pole. 

Table D.2 lists the iterates when a starting pole located at 10j is used as initial guess. 

I Iteration II Iterate VF I Iterate Newton I Iterate Newton on VF I Iterate VARPRO I 
1 -4.55+ 0.15i 0.08+ 6.36i -4.42+ 0.24i -0.02+ 10.007i 
2 -4.36 + 4e-3i 0.24+ 3.79i -4.36+ 1e-4i -0.26+ 10.07i 
3 -4.36+ 1e-4i 0.58+ 1.93i -4.36- 4e-10i -2.37 + 10.59i 
4 -4.36+ 5e-6i 1.25+.75i -4.36-9e-22i -11.36+9.43i 
5 -4.36+ 1e-7i 1.88+.37i -4.36+3e-37i -11.54+4.15i 
6 -4.36+5e-9i 2.29+.39i -4.36-1e-52i -8.41 +0.43i 
7 -4.36+ 1e-10i 2.22+.57i -4.36+ 7e-68i -3.39-0.41i 
8 -4.36+6e-12i 2.25+.54i -4.36-3e-83i -4.4 7-0.14i 
9 -4.36+2e-13i 2.25+.54i -4.36+ 1e-98i -4.7 4-6e-3i 
10 -4.36+ 7e-15i 2.25+.54i -4.36-6e-114i -4. 77 + 2e-4i 
11 -4.36+2e-16i 2.25+.54i -4.36+2e-129i -4. 77-9e-6i 
12 -4.36+7e-18i 2.25+.54i -4.36-1e-144i -4.77 +4e-7i 

Table D.2: Poles at each iteration 

The vector fitting iteration converges to the desired solution in 10 iterations, as 

opposed to the original Newton iteration, which converges one of the other two fixed 

points. However, the Newton step applied to the vector fitting iteration converges in 

4 steps to the desired solution, located at -4.36. This table supports the fractals in 

Fig. D .1 (a) - D .1 (a) , namely that, when applying the Newton iteration to the vector 

fitting expression, which only has one attractive point located at -4.36, the areas in 

the complex plane which converge to one of the other two possible solutions (which 

are repelling for VF) shrink. 
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transfer function is 
. 2 3 

H(s) = s+5 + s+ 10· 

We take 5 measurements at s = 17 s = 27 s = 37 s = 4 and s =57 and corrupt them 

with additive noise generated with the following line of code in Matlab: 

H.*(10~(-4)*randn(size(H))), 

so the added noise is 10-4 relative to the magnitude of each entry7 yielding an iteration 

as in Eq. (D.31). At convergence we have that c1 = c2 = 07 so we aim at finding the 

roots of the coupled multivariate polynomials in the numerator7 namely 

afa~- 7.65afa2 + 15.34af + 5.82afa~- 47.39afa2 + 91.68af- 53.24aia~ + 403.1aia2 

- 809.34ai- 125.4a1 a~ + 999.21a1a2 - 1872.2a1 + 691.92a~- 5501.02a2 + 10987.04 = 0 

(D.35) 

+ 999.21a1a2 - 5501.02a1 + 15.34a~ + 91.68a~- 809.34a~- 1872.22a2 + 10987.04 = 0. 

(D.36) 

The two expressions are symmetric in the variables a 1 and a2 . The roots are listed 

in Table D.47 together with the spectral radius of the Jacobian matrix evaluated at 

each solution. Clearly7 the first two pairs are attractive solutions7 since the norm of 

the Jacobian is less than 17 while the rest are repelling solutions since the norm of 

the Jacobian is larger than 1. The results in the last 5 rows make sense since having 

the two starting poles equal to each other leads to a Jacobian matrix with 2 linearly 

dependent columns. We conclude that the poles of the model found at the end of the 

VF iteration are going to be -4.69 and -9.36 (note that their order is not important). 

Therefore7 irrespective of the initial guess we use for the starting poles7 we converge to 

the attractive solution7 unless we start the iteration with one of the repelling solutions 

as our guess7 in which case the iterates will not change. Also7 note that the attractive 
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Exa m p le D.1.2. We assume a system with an underlying transfer function given by 

H(s) = -2
- and consider 3 measurements at s = 1, s = 2 and s = 3, to which we add s+5 

noise generated using the following line of code in Matlab 

H+abs (H) . *rand(1 ,Ns)*10~1 , 

that is, we add random noise normally distributed with zero mean and standard de-

viation 10 relative to the magnitude of each measurement. The measurements are 

H 1 = 1.64, H 2 = 2.16, H 3 = .68. This leads to the following VF iteration: 

(D.25) 

so the polynomial we are trying to find the roots of is a3 -4.16a2 +6.46a-4.23. The 3 

roots computed in Matlab using the command roots are 1.97 and 1.09 ± .97i. On the 

other hand, the 2 roots of the polynomial in the denominator (namely a2 -2.86a+2.45) 

are 1.43 ± .63i and the difference between these and the roots of the numerator is 

-.34 ± .34i (with respect to 1.09 ± .97i) and .54± .63i (with respect to 1.97). 

When computing h'(a) where h(a) = a - a
3

-
4 ·16a

2
+ 6·46a - 4 ·23 to check which of 

7 a2-2.86a+2.45 7 

the fixed points are attractive, repelling, or indifferent, we obtain: h' (1.97) = -1.48, 

h'(1.09 ± .97i) = -2.14 ± .83i, therefore, in this case, all roots are repelling, so 

irrespective of the initial starting pole, the vector fitting iteration will not converge. 

The original Newton iteration in this case is 

a~- 4. 1 6a~ + 6.46ak- 4.23 f(ak) 
ak+I = ak- 3a~- 8.32ak + 6.46 = ak- f'(ak)' (D.26) 

while the one applied to the VF iteration is 

Table D.3 lists the iterates using the same initial guess located at - 100. 

As expected from our previous observation that all solutions are repelling, the 
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roots we found are relatively close to the poles of the underlying system, which are 

located at -5 and -10. 

IIJII 
-9.36 -4.69 7.4e-3 
-4.69 -9.36 7.4e-3 
4.28 -6.75 7.5 
-6.75 4.28 7.5 
3.76 -6.74 9.99 
-6.74 3.76 9.99 

4.1±.49i . 77=fl.01i 1.04e+4 
. 77±1.01i 4.1=f.49i 1.04e+4 
4.22±.58i 2.12±.28i 2.15e+4 
2.12±.28i 4.22±.58i 2.15e+4 

5.96 5.96 7.36e+14 
3.28 3.28 7.96e+14 

3.31±1.34i 3.31±1.34i 1.06e+15 
-4.71 -4.71 1.64e+16 
-9.33 -9.33 1.7e+16 

Table D.4: Convergence points and corresponding spectral radius of the Jacobian 
evaluated at those points 

Fig. D.4 (a) and D.4 (b) show the errors at each iteration for the vector fitting 

algorithm. The poles at the end of the iteration process are -9.36 and -4.69 . Fig. 

D.4(c) and D.4(c) show the errors at each iteration for the Newton iteration applied 

to the vector fitting expression. This approach finds the same solution as VF. Last, 

Fig. D.4(e) and D.4(f) show the iterates at each step when applying VARPRO to the 

same data set. Note that the solution found is 2.57 and -6.21, with an unstable pole. 

Generally, VARPRO yields poles which are closer to the location of the underlying 

ones. The reason for the poor performance for this example is the low number of 

measurements considered (only 5) , as adding the same relative noise to more mea-

surements leads to poles closer to the expected ones. All methods used an initial set 

of poles located at -15 and -20, respectively. 

Appendix D.3 discusses scalar numerical examples in which the performance of the 
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I Iteration II Iterate VF I Iterate Newton I Iterate Newton on VF I VARPRO I 

1 1.29 -66.2 1.30 -99.9 
2 2.89 -43.6 3.55 -99.8 
3 1.37 -28.6 1.42 -98.5 
4 2.89 -18.6 2.27 -84.9 
5 1.37 -11.9 1.92 -67.1 
6 2.89 -7.49 1.97 -39.4 
7 1.37 -4.51 1.97 -32.01 
8 2.89 -2.51 1.97 -21.5 
9 1.37 -1.16 1.97 -3.19 
10 2.89 -.22 1.97 -2.29 
11 1.37 .47 1.97 -2.73 
12 2.89 1.09 1.97 -2.58 
13 1.37 1.98 1.97 -2.65 
14 2.89 1.97 1.97 -2.62 

Table D.3: Poles at each iteration 

vector fitting iteration does not converge (in fact, it oscillates between two values). 

The original Newton iteration converges in 15 steps, while the Newton step applied 

to the VF iteration converges in 7 steps. Note that the recovered pole in this case is 

unstable. On the other hand, VARPRO converges to a value which is located in the 

left half plane and is closer to the pole of the underlying system (located at -5 ). 

Fig. D.3(a)-D.3(d) present the residuals at each step, computed as the error be-

tween the current iterate and the final iterate, on a logarithmic scale, for all 4 methods 

considered. Fig. D.3(e) and D.3(f) present the residuals when considering different 

step sizes in the Newton step applied to the VF iteration. Note that the first few iter­

ates of the Newton step applied to VF show some oscillation (see Table D.3), so by 

not considering the full Newton step in the first few iterations (see Sect. 6. 6 for details 

on the length of the Newton step), Fig. D.3(f) shows no oscillation. On the other 

hand, in Fig. D.3(e), there is still an oscillation, while the iterates converge slower to 

the solution than in Fig. D.3(c), where the step length was always 1. This shows that 

nso ld. m only shrinks the step size when the iterate is close to the solution. Note that 

the vector fitting iteration is the only one which does not converge. The traditional 
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Figure D.4: Errors or iterates for the various methods considered 
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three methods: the Loewner framework, vector fitting and VARPRO, is compared. 

D.3 Numerical example from S-parameter mea-

surements 

We discuss a scalar example obtained from real measurements and compare the three 

algorithms (Loewner approach in the real alternative implementation (Sect .4.2.3) , 

vector fitting and VARPRO) in terms of the modeling errors and recovered poles. 

We consider the measurements of the 8 1,1-entry of the 50-port example discussed in 

Sect.4.4.2. Originally, we are provided with 100 measurements, to which we append 

the measurements at -jwi as the complex conjugate values of the original ones. Using 

the real alternative implementation (Sect .4.2.3) of the Loewner framewrok, we obtain 

a Loewner matrix pencil for which the decay is shown in Fig. D.5. The Loewner 

matrix shows a drop after the 4th singular value, while the shifted Loewner matrix 

shows a drop after the 5th, indicating that the underlying syst em is of order 4 with 

a non-zero D-term. The Loewner framework is t he only one able to determine the 

underlying model order out of the three algorithms chosen for comparison. 

Truncating to order 5 using the SVD of the Loewner matrix pencil leads to a 

model which yields the fit shown in Fig. D.7(a) . We also compute models of order 5 

(with D = 0) with vector fitting (shown in Fig. D.7(b) ) and VARPRO (Fig. D.7(c) ). 

All models have a real pole which is far in the left-half plane (Fig. D.6(a) ) , so we 

provide a zoom in Fig. D.6(b ). 

While the model obtained with VARPRO is close to the model obtained with the 

Loewner framework both in terms of errors (Table D.5), as well as in terms of poles 

(Fig. D.6) , the one obtained with vector fitting has 3 real poles (as opposed to only 

1 with the other methods) and the errors are also larger. 

Next , we extract the D-term from the order 5 model obtained with the Loewner 
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Figure D.6: Poles for models of order 5 with D = 0 

Algorithm I :J-C2 error I :J-C00 error I 

Loewner 4.39e-4 6.83e-4 
Vector Fitting 8.98e-4 1.54e-3 

VARPRO 4.26e-4 6.89e-4 

Table D.5: Errors for models of order 5 with D = 0 
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framework and compare this order 4 model to the ones obtained with vector fitting 

and VARPRO, which are now computing models of order 4 with a non-zero D-term. 

The errors are shown in Table D.6 and the poles are shown in Fig. D.8. The poles 

recovered with vector fitting and VARPRO are at the same location (Fig. D.8) , which 

is also indicated by the similar errors obtained with the two methods. However, these 

errors are larger than the ones obtained with the Loewner framework and VARPRO 

for order 5 models with D = 0. Therefore, it is preferable for this data set to construct 

models of order 5 with D = 0 than models of order 4 with D =1- 0. 

Algorithm I 9-C2 error I 9-Coo error I 
Loewner 2.19e-3 2.64e-3 

Vector Fitting 4.85e-4 8.5e-4 
VARPRO 4.85e-4 8.44e-4 

Table D.6: Errors for models of order 4 with D =1- 0 
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Figure D.8: Poles for models of order 4 with D =1- 0 

We also investigate over-fitting, by constructing models of order 6 with all three 

algorithms. We check whether the models exhibit poles and zeros which are close to 

each other, leading to almost pole/zero cancellations, or have Hankel singular values 
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which are several orders of magnitude smaller than the rest , indicating the presence 

of almos.t uncontrollable/unobservable states. 

Fig. D.9(a) shows the 6 poles along with the 5 zeros of the model obtained by 

truncating the Loewner matrix pencil to order 6. We notice that the only real zero 

is close to one of the real poles. Fig. D.9(b) shows the normalized Hankel singular 

values of this model. Contrary to what we expected , there is no large drop between 

the last two singular values . 
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Figure D.9: Results for models of order 6 built with the Loewner framework 

Fig. D.10(a) shows the 6 poles along with the 5 zeros of the model obtained 

with VARPRO. We notice that there is no almost pole-zero cancellation in the real 

quantities , but rather in two quantities which come in complex conjugate pairs (Fig. 

D.10(b) ). Fig. D.10(c) shows the normalized Hankel singular values of this model , 

which exhibits no large drop between the last singular values. 

Fig. D.11(a) shows the 6 poles along with the 5 zeros of the model obtained with 

vector fitting. We notice that there is almost pole-zero cancellation in the unstable 

pole and zero (Fig. D .11 (b) ). Fig. D .11 (c) shows the Hankel singular values of this 

model normalized with respect to the 2 nd singular value, since t he first one is infinite 

as it corresponds to the unstable pole, which exhibits no large drop between the last 

singular values. 
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Fi2'ure D.10: Results for models of order 6 built with VARPRO 
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Figure D.11: Results for models of order 6 built with vector fitting 

The modeling errors for all three algorithms considered are listed in Table D. 7. 

Except VARPRO, the other two algorithms yield larger errors for this modeling order 

than for order 5, which was identified as the true model order. 

Algorithm I 9-C2 error I 9-C00 error J 

Loewner 6.04e-4 9.2e-4 
Vector Fitting 9.27e-4 1.6e-3 

VARPRO 4.27e-4 6.88e-4 

Table D.7: Errors for models of order 6 with D = 0 

We also investigate over-fitting when constructing models of order 15 with all 

three algorithms. 

Fig. D.12(a) shows the 15 poles along with the 14 zeros of the model obtained 

by truncating the Loewner matrix pencil to order 15. We notice that there are 5 

complex poles , together with their complex conjugates, which are located very close 

to some zeros. Also, these almost pole-zero cancellations occur for poles which are 
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close to the imaginary axis (in other words, they are low-frequency). Fig. D.12(c) 

shows the normalized Hankel singular values of this model, which show a large drop 

between the 5th and 6th singular values. 
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Figure D.12: Results for models of order 15 built with the Loewner framework 

Fig. D.13(a) shows the 15 poles along with the 14 zeros of the model obtained 

with VARPRO. We notice that there is no almost pole-zero cancellation in the real 

quantities, but rather in two quantities which come in complex conjugate pairs (Fig. 

D.10(b) ). Fig. D.13(c) shows the normalized Hankel singular values of this model, 

which exhibit a large drop between the 4th and 5th finite singular values. The first 4 

Hankel singular values are infinite due to the 4 unstable poles, so the plot normalizes 

the finite ones with respect to the largest. 
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Figure D.13: Results for models of order 15 built with VARPRO 

Fig. D.14(a) shows the 15 poles along with the 14 zeros of the model obtained 

with vector fitting. We notice that there are 10 almost pole-zero cancellations (Fig. 

D.14(b) ). Fig. D.14(c) shows the Hankel singular values of this model normalized 
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with respect to the 3rd singular value, since the first two are infinite as they correspond 

to the unstable poles. There is a significant drop between the 2nd and 3rd singular 

values, as well as between the gth and lOth. 
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Figure D.14: Results for models of order 15 built with vector fitting 

The modeling errors for all three algorithms considered are listed in Table D.8. 

All algorithms yield smaller errors for this modeling order than for order 5, which 

was identified as the true model order. 

Algorithm j1f2 error j1foo error j 
Loewner 1.66e-4 4.44e-4 

Vector Fitting 2.2e-4 3.99e-4 
Varpro 1.43e-4 4.02e-4 

Table D.8: Errors for models of order 15 with D = 0 


