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ABSTRACT 

Efficient Radiometric Signature Methods for Cognitive Radio Devices 

by 

Oviin<; Kocaba§ 

This thesis presents the first comprehensive study and new methods for radiomet­

ric fingerprinting of the Cognitive Radio (CR) devices. The scope of the currently 

available radio identification techniques is limited to a single radio adjustment. Yet, 

the variable nature of the CR with multiple levels of parameters and adjustments ren­

ders the radiometric fingerprinting much more complex. We introduce a new method 

for radiometric fingerprinting that detects the unique variations in the hardware of 

the reconfigurable radio by passively monitoring the radio packets. Several individ­

ual identifiers are used for extracting the unique physical characteristics of the radio, 

including the frequency offset, modulated phase offset, in-phasejquadrature-phase 

offset from the origin, and magnitude. Our method provides stable and robust iden­

tification by developing individual identifiers (classifiers) that may each be weak (i.e., 

incurring a high prediction error) but their committee can provide a strong classifi­

cation technique. Weighted voting method is used for combining the classifiers. Our 

hardware implementation and experimental evaluations over multiple radios demon­

strate that our weighted voting approach can identify the radios with an average of 

97.7% detection probability and an average of 2.3% probability of false alarm after 

testing only 5 frames. The probability of detection and probability of false alarms 

both rapidly improve by increasing the number of test frames. 
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Chapter 1 

Introduction 

Rapid technological advances in wireless communication has enabled the transition 

from low content rate voice and telephony usage to high data rate seamless multi­

media and interactive Internet applications. Proliferation of embedded tether-less 

appliances and the growing number of users demand new methods for identification, 

coexistence, and management of radio devices. Wireless radio identification is typ­

ically performed using the digital identifiers or keys. For example, cryptographic 

methods actively control accessing the device using the key-exchange protocols, or IP 

addresses are used for passively tracking the user access. While such methods pro­

vide the required level protection for many applications, they may be vulnerable for a 

number of applications, in particular when users have physical access to the devices. 

Vulnerabilities include extraction of digital keys by side-channel attacks, or replaying 

the IPs. To ensure identification certainty, a suit of radiometric fingerprinting meth­

ods that rely on unclonable minute variations of the physical radio were proposed 

in [4-12]. 

To manage the multiplicity of devices and address the growing application demand 

for higher bandwidth, innovative and complex radio technologies that can more effi­

ciently use the available radio spectrum are being developed. The emerging cognitive 

radio (CR) engines sense the bandwidth and other physical layer properties and then 

use the sensed data to make intelligent situation-aware decisions about their opera­

tion. The CR is able to adaptively adjust its physical and link layer parameters thus, 
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is typically more complex than most of the radios presently in operation and use. 

This thesis presents the first comprehensive study and llew methods for radio­

metric fingerprinting of the CR devices. Radiometric fingerprinting based on tran­

sient signal analysis has been widely studied for electromagnetic characteristics and 

antenna-level correlation and properties. Recent work has demonstrated that radio­

metric identification can be done more accurately by differentiating the characteristics 

of the individual wireless frames in the modulation domain [11]. It is possible to fur­

ther ameliorate the radio identification accuracy by employing symbol-based frame 

analysis and improved statistical classification methods [12]. 

The scope of the currently available radio identification techniques is limited to a 

single radio adjustment. The variable nature of the cognitive radio with multiple levels 

of parameters and adjustments renders the radiometric fingerprinting much more 

complex. For example, the error magnitude of the transmitted signal is commonly 

used as a metric for device identification. However, it is not clear if this value remains 

the same for different transmission power levels and various frequencies. While we 

initially study the modulation domain properties in the channel emulator environment 

where the channel impact is masked, our analysis also includes validation of the 

identifiers in indoor office environment. 
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Chapter 2 

Related Work 

In this chapter, a brief survey of related literature is provided which has influenced and 

inspired this work. Signal detection and identification source of an emitted signal is 

one the most challenging problems in wireless communication due to the broadcasting 

nature of the wireless communication which poses critical security threats. 

The early research in signal detection and identification of an emitted signal goes 

back to 1960's where finding the source of a radar signal in military has been of the 

utmost importance. Several methods such as Special Emitter Identification (SEI) 

and Special Emitter Verification (SEV) techniques are developed for identifying and 

verifying the source of a received signaL While SEI technique [13,14] identifies source 

of a signal by matching the received waveform to unique emitter, SEV technique 

[13, 14] is used for verification of the transmitter by looking at the external features 

of the signal where there is a priori knowledge of the transmitter. In these methods, 

identification is performed by measuring the unique features of the received signal, 

then these unique features are compared and mapped to existing clusters. Similar 

techniques are employed for also combating against fraud in cellular network [15,16]. 

The importance of identifying source of a signal has been amplified with the 

emergence of wireless communication. During the past decade, with the help of vast 

advances in Integrated Circuit (IC) technology, the use of wireless devices in daily life 

has increased dramatically. Pervasive use of wireless devices and broadcasting nature 

of the wireless communication necessitate a secure medium for communication. In [17] 
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a risk analysis of threats for wireless communication is provided according to their 

implemcntation difficulty and potcntial impact on wireless network. Among these 

threats, impersonation attack is listed as one of the most critical attacks due to 

its ease of implementation by using off-the-shelf equipment. Various forms of this 

attack exist such as device cloning, address spoofing, unauthorized access and replay 

attacks. For instance, an attacker could spoof one of the device identities in wireless 

communication, MAC (Media Access Control) address, and use MAC address to 

access a network. This attack could be prevented by using cryptographic protocols, 

namely public-key cryptography. Public-key cryptography algorithms are effectively 

used for providing security and authentication mechanisms for wired networks. Yet 

implementation of this method has severe disadvantages for wireless networks. Public­

key algorithms perform computationally heavy operations which will consume a lot 

of power and require considerable processing power. But most of the wireless devices 

are operating on battery power which makes battery life a critical issue for these 

devices. Also public-key algorithms require a key management infrastructure which 

incurs an overhead. For these reasons, lightweight and passive security mechanisms 

are needed for device identification in wireless networks. 

A large body of work exists for identifying devices in wireless networks and these 

methods can be grouped into two classes based on their identification mechanism: 

location based identification, radio-frequency (RF) fingerprinting. 

2.1 Location Based Identification 

The wireless link between a transmitter and receiver depends on frequency, time and 

space therefore it is unique for a communication pair. Location based identification 

mechanisms [18-22] utilize the properties of this unique connection to identify devices. 
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Faria et a1. [18] employ the received signal strength (RSS) for identification of 

devices. RSS is the measure for signal strength of received frame and depends on the 

power of the signal, wireless channel and distance between devices. Therefore, RSS 

values are unique for each transmitter and they cannot be forged by the attacker. 

Authors generate signalprints by using RSS values to identify devices and implement 

several attacks for IEEE 802.11 networks. Finally, they show that proposed signal­

prints can detect intruders with high probability. 

In [20], authors use off-the-shelf air monitors (AM) to detect spoofing attacks. RSS 

of frames are captured via AMs and modeled as Gaussian Mixture Model (GMM). 

GMM is proposed to distinguish between two signals from different transmitters which 

have frequency and spatial variation of multipath channel at the receiver. Authors 

propose an expectation-maximization algorithm based on RSS profiles. They test 

their algorithm with 20 AMs and report 3% false positive and up to 98.7% detection 

rate. 

Li et a1. [22] analyze multi-path effects of the wireless channel for identification. 

Their method relies on the fact that the channel between transmitter and receiver will 

show unique properties. Authors propose authentication and confidentiality schemes 

on USRP /GNURadio SNR platform and show that they can detect spoofing attacks. 

In [19], a robust location distinction mechanism is proposed by exploiting physical 

layer characteristic of the radio channel between a transmitter and a receiver. A 

temporal link signature, which is the sum of the effects of the multiple paths from 

the transmitter to the receiver, each with its own time delay and complex amplitude, 

is generated. Authors show that the signature changes with the device location and 

can be used to identify transmitters. 

Chen et a1. [21] propose a method which relies on an attack detector based on 
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statistical testing of RSS values. An attack is detected by looking at the distances 

between centroids obtained via K-means cluster of RSS data. Authors evaluate their 

method both on Wi-Fi and 802.15.4 (Zigbee) networks and show that their method 

can achieve 95% of detection rate and less than 5% false positive rate. 

Although location based identification methods provide a mechanism for identify­

ing different transmitters, the major shortcomings of these methods are that devices 

are assumed stable at one location and the probability of detection is highly dependent 

on distance of the devices. 

2.2 Radio-frequency Fingerprinting 

RF fingerprinting methods are based on physical properties of the devices for iden­

tification. Device identification by the unique variations in the physical properties 

has been subject of research in integrated circuits. The work in [23J uses the delay 

variation of CMOS logic components to extract a digital secret. The properties of 

reconfigurable platforms are used in [24] to build a secure and robust authentica­

tion system based on the present delay variations. A post-fabrication nondestructive 

gate-level characterization for Ie identification is also presented in [25J. Similarly, 

RF fingerprinting methods rely on the hardware imperfections inherited during the 

fabrication to uniquely identify wireless devices. Due to the manufacturing variabil­

ity, devices have minute imperfections which will cause deviations in the transmitted 

signals. These deviations are hard to model and forge therefore they can be used for 

device identification. 

In one of the early works [4], the electromagnetic (EM) signal transmitted by 

different WLAN (wireless local area network) cards is analyzed and shown that they 

have distinct properties due to manufacturing variability and antenna topology. The 
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authors investigate EN! signals from 6 different card and able to generate a unique 

signature for each card. 

Gerdes et al. [5] use a different approach and utilize matched filter to generate 

profiles based on signal to noise ratio (SNR) with the Gaussian noise presence. They 

show that by using a conventional matched filter, transmitters can be uniquely iden­

tified. 

A large body of work exists in the literature [6-10] which utilizes the transient 

behavior of the wireless devices. A transient behavior is the anomaly observed when a 

device changes its state, such as activation or turn-on. This behavior is characteristic 

to each device and related with the components (Le. phase-Iock-Ioop (PLL), modula­

tors, amplifiers, antennas) of the device. An RF fingerprint is generated by detecting 

and extracting the transient signal. First, signal is captured and initial point of the 

transient is detected. Then a fingerprint is generated by extracting the features of 

the transient signal. Features of the transient signal can be extracted by investigat­

ing instantaneous phase and amplitude of the received signal. The key part of this 

method relies on detecting the transient which is challenging due to noise present 

in the received signal. Therefore, transition point from noise to transient should be 

corrpetly identifipd for llniqup idpntification of devices. In [6,7], a Bayesian detector 

is used for estimating the starting point of the transient. Received signal is assumed 

to have two different gaussian distribution, one for noise and the other for transient 

signal. The transition from noise to transient then estimated by looking at the drastic 

changes in mean and the variance which can be detected by using Bayesian detector. 

In [10], authors use the variance trajectory of instantaneous amplitude and phase for 

transient detection. They extract power spectral density fingerprints and use spec­

tral correlation for classification. Finally they report 80% detection accuracy of their 
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experiments with 3 devices by collecting 802.11a OFDM signals. Tekbas et al. [9] 

investigate the effects of environmental conditions (i.e. power and temperature) on 

RF fingerprinting methods. Authors use variance dimensions for detecting transient 

signal, then probabilistic neural network (PNN) method is used for classification. 10 

difl"erent VHF radio transmitters are tested by varying the power and temperature. 

Results show that fingerprints are susceptible to change of environment. 

A different and recent met hod is proposed which uses modulation domain features 

by Brik et al. [11] instead of using transients for radio-frequency fingerprinting. Au­

thors claim that transmitters can be uniquely identified by looking at deviations of 

emitted signal from ideal I/Q plane. The main reasons for the deviations from ideal 

I/Q domain are channel effect, noise at the receiver and hardware imperfections. 

Hardware imperfections are related with the manufacturing variability of devices and 

can be used for identifying transmitters uniquely. Authors propose using five ra­

diometric identity metrics based on deviations for identification. The metrics for 

identification process are as follows: frequency error, SYNC correlation, I/Q offset, 

magnitude error and phase error. Finally authors use machine learning algorithms for 

classification of transmitters according to these metrics. K-nearest neighbor (kNN) 

and supporting vector machines (SVM) are implemented for classification. Authors 

perform experiments with identical 130 NIC (network interface card) cards and show 

that their method can differentiate transmitters with 99% accuracy. 
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Chapter 3 

Preliminaries 

In this chapter, first a background information will be provided about cognitive radios. 

Then our experiment platform, Wireless Open-Access Research Platform (WARP), 

will be introduced briefly. 

3.1 Cognitive Radios 

Ever increasing usage of mobile wireless devices and temporal-spatial inefficieny of us­

ing licensed spectrum necessitate a paradigm shift for wireless communication. Cur­

rently, wireless spectrum is controlled via fixed spectrum assignment policy, which 

assigns the portions of the spectrum to licensed users. Yet, Federal Communications 

Commission (FCC) reports [1] show that fixed assignment policy is inefficient due to 

temperal and spatial variations which is also depicted in Figure 3.1. A dynamic access 

of spectrum is required as the spectrum, which is the lifeline for wireless communi­

catioll, is utilized inefficiently. Initiatives have been taken such as, next generation 

networks which is also called Dynamic Spectrum Access network for implementing 

policy based intelligent radios is proposed by DARPA [26, 27]. Most recently, FCC 

announces [28] opening up TV white spaces for mobile devices on unlicensed basis. 

The key enabling technology for the initiatives is cognitive radio (CR), which is 

capable of sharing the spectrum in an opportunistic manner. CR concept is first 

proposed by J. Mitola [29] where it is defined as a software-defined radio which can 
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Figure 3.1 : Spectrum Utilization [1] 

adjust its parameters depending on the spectrum status. The ultimate goal of CR is 

to determine best available spectrum without interfering the licensed users. Sharing 

the spectrum with the primary users poses a challenge which requires CR to be always 

aware of its environment and to find the temporarily unused portions of the spectrum, 

which is called spectrum hole or white spaces [2] as shown in Figure 3.2. Thus, main 

functionalities of CR can be listed as follows [30]: 

• Finding white spaces and sharing it without interfering with primary users 

(Spectrum sensing) 

• Determining the best available spectrum to meet communication requirements 

(Spectrum management) 

• Continuation of seamless communication during a transition to another white 

space (Spectrum mobility) 

• Sharing the available white space with other CR users (Spectrum sharing) 
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Figure 3.2 : Spectrum hole [2] 

As of today, a number of different CR hardware platforms have been proposed. 

Most of the case, architectures rely on an versatility of an FPGA device to enable 

reconfigurability and flexibility of the platform. A rnulti-FPGA testbed for physical 

and network layers of CR is proposed in [31,32]. A multiprocessor system-on-chip 

(MPSoC) design is introduced in [33], in which a system level design methodology is 

adopted to map a CR on a platform. 

3.2 Wireless Open-Access Research Platform (WARP) 

Wireless Open-Access Research Platform (WARP) [3] is a scalable and extensible 

programmable platform designed for prototyping and implementing wireless networks. 

WARP is an open-access research platform which enables sharing and exchanging 

wireless network architectures for developing next-generation wireless networks. As 

of today, WARP has been adopted in more than 50 research groups and is one of the 

most widely used platform in wireless network research [3]. 

The WARP Platform is composed of four parts: platform support packages, open-
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access repository, research applications and custom hardware [34]. Platform support 

packages contain design tools for hardware/software design and open-access repository 

is a collection of the source codes and hardware design files. Algorithm implementa­

tions via WARP Platform are shared via research applications. 

The custom hardware consists of 3 main components: an FPGA Board, Radio 

Boards and Clock Board. A fully equipped WARP hardware kit is presented in Fig­

ure 3.3. Hardware platform is centered around Virtex-II Pro FPGA Board which is 

depicted on Figure 3.4. The FPGA board has both configurable logic blocks (CLB) 

and PowerPC cores. While real-time Digital Signal Processing (DSP) applications 

which require high-speed communication are implemented by CLB's, PowerPC cores 

are used for executing network layer protocols developed in C and providing flexible 

interface between physical (PHY) and Media Access Control (MAC) layer. Radio 

Board are integrated to FPGA Board via daughtercard slots. The Radio Board 

supports 2.4 and 5 GHz ISM/UNII bands and capable of performing wideband appli­

cations such as OFDM. Clock Board provides clock signal to all boards and contains 

2 parts. First part generates signal for radio boards, while second part supplies the 

signal for FPGA logic and analog converters. 

3.2.1 WARPLab 

Our experiments are performed with WARP FPGA Boards and WARP Lab frame­

work. WARPLab is a non-real time communication framework designed for rapid 

physical layer prototyping [3]. The framework uses MATLAB and WARP FPGA 

Board interactively. WARP boards are controlled via MATLAB workspace where 

user can generate signals, then these signals are transmitted by WARP boards. While 

wireless communication is done in real time by transmitting signal on the air, all 



Figure 3.3 : WARP Kit 
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Figure 3.4 : WARP Hardware Platform 
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the data processing is perforrned off-line with NIATLAB. The de ign flow for the 

WARPLab is shown in Figure 3.5. First , signal is generated in the MATLAB by user, 
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then generated signal is sent to WARP board via Ethernet. WARP board downloads 

thc signal and storcs in its buffcr. Once trigger signal is sent, WARP board sends the 

signal in the air and receiver board captures the signal in real time and stores in the 

buffer. Finally, captured signal is sent to 1VIATLAB for processing via Ethernet. 

WARP node 

Figure 3.5 : WARPLab Design Flow [3] 

The hardware architecture of the WARPLab is composed of two parts, transmit­

ter and receiver, which is presented in Figure 3.6. In the transmitter part , signal 

is received via Ethernet and stored in Tx J/Q buffers. Then signal is converted to 

analog by Digital to Analog J/Q Converters (DAC) , and analog signal is amplified 

with Transmitter Base-I3and Amplifiers. Baseband signal is up converted to RF sig­

nal through Phase-Locked Loop (PLL). Finally, up converted signal is arnplified with 

Transmitter RF amplifiers. All the parameters for Base-Band Amplifier, PLL and RF 

~:tInplifiers are aujustable anu can bc sct by USCI' within 1VIATLAB. For the receiver 

part, first signal is captured on the air, then it goes through Receiver RF arnplifier. 

The RF signal is downconverted to baseband signal via PLL, then the signal strength 

is adjusted with Receiver Base-Band Amplifiers. Finally, analog signal is converted 

to digital by Analog to Digital J/Q (ADC) converters and stored in the Receiver 

J/Q Buffers. The values then send to MATLAB via Ethernet for fnrther processing. 
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Like transmitter part, all the parameters for Receiver Base-Band Amplifier , PLL and 

Rcccivcr RF aInplificr can bc controlled by user. Rcceiver part also has a Received 

Signal Strength Indicator (RSSI), which measures the signal strength of the signal. 

Radio Board 
FPGA 

WARPLab Sysgen Core 

Figure 3.6 : WARPLab Architecture [3] 
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Chapter 4 

Classifying Variables 

In this chapter, we introduce our classifiers first which will be integral part of our 

fingerprinting mechanism. These classifiers will be used later in Chapter 5 to gen­

erate signatures for cognitive radio devices. Experiment setup which is used during 

classifier extraction will be explained next. Finally the response of classifiers for dif­

ferent cognitive radio configurations (i.e. modulation, power and frequency) will be 

analyzed. 

4.1 Classifiers 

To authenticate a wireless device in a network, a signature that can uniquely identify 

each device is needed. Various signature extraction methods are proposed and used 

for network security but we are interested in a signature scheme based on the unique 

RF signal characteristics of a device. A signature can be generated for each device 

by extracting its specific information from the transmitted signal via processing the 

received signal in the modulation domain. The extracted information will be defined 

as our classifiers and for the rest of this work, the terms classifiers and identifiers will 

be used interchangeably. 

Our classifiers will be based on the deviation of the signals from the ideal signal 

on modulation domain. Due to manufacturing variability of the hardware and com­

munication channel, received signals in the receiver end will be different than ideal 
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signal. Figure 4.1 demonstrates the variation of received signal from different boards. 

Signals frorn different radios behave differently and fonn a distinctively different clus-

ters . Even the very same board acts differently with the changing power which is 

presented in Figure 4.2 and 4.3. 

RX SIGNAL RADIO 3 
90 4 

270 

RX SIGNAL RAD IO 7 
90 2 

.. 0 

RX SIGNAL RADIO 5 
90 1 

.. 0 

270 

RX SIGNAL RADIO 9 
90 0.5 

o 

o 

270 

Figure 4.1 : Received signal from different boards 

Thus, to extract the hidden information related to hardware variability, we will 

define our classifiers based on Error Vector Measurements (EVM) , I/Q offset and 

frequency offset. EVM is widdy used rnethod for testing the quality of the communi-

cation systems [35]. The method analyzes deviations in the received signal to identify 

source of these distortions such as communication medium, noise and hardware im-

perfections of devices for troubleshooting. 

EVM measurements are performed in the modulation domain. Received and ideal 

signal are defined as a phasor in I/Q domain. Error vector is then defined as the 
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Figure 4.2 Received signal for different power levels (BPSK) 
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Figure 4. 3 Received signal for different power levels (QPSK) 
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magnitude of the distance vector between received signal and ideal signal vector 

which is also shown in Figure 4.4. Other metrics based on error vector can be defined 

as follows: 

• Magnitude Error: Magnitude difference between received signal and ideal 

signal phasor. 

• Phase Error: Angular difference between received signal and ideal signal pha-

SOL 
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• Error Vector Magnitude: Scalar distance between received and ideal signal 

phasor. 

Q 

Received Symbol 

Ideal Symbol 

I 

Figure 4.4 : Error vector magnitude (EVM) 

These metrics will be used as our identifiers along with J/Q offset and frequency 

offset to generate fingerprints for WARP boards. 

• I/Q Offset: The distance between the origin of the J/Q domain (0 ) and origin 

of the received signal (0') which is shown in Figure 4.5. 

• Frequency Offset: Frequency difference between transmitted carrier signal 

and ideal carrier signal. 

We choose two different modulation types in our experiments, differential BPSK 

and QPSK, to analyze the effects of Illodulation. Since EV1!l related classifiers are 

defined per symbol, two modulations will have different number of classifiers . 
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o 

• BPSK: Total of 8 classifiers: 2 Phase Error, 2 NIagnitude Error, 2 Error Vector 

Magnitude, 1 I/Q Offset , 1 Frequency Offset 

• QPSK: Total of 14 classifiers: 4 Phase Error, 4 ~Iagnitude Error, 4 Error Vector 

Magnitude, 1 I/Q Offset, 1 Frequency Offset 

4 .2 Experiment Setup 

Our signature scheme is based on the deviations of the transmitted signal due to 

hardware imperfections of transmitters. Therefore, channel effects and environment 

noise in the translnitted signal should be elinlinated first to ob erve only hardware 

effect. For this purpose, Spirent SR5500 Wireless Channel Emulator is employed in 

the experiments and wireless link between transmitter and receiver is set to static 

channel to eliminate possible channel effects. WARPLab reference design [3], which 

is used for prototyping physical layer algorithms, handles the communication. While 

WARP boards are employed for real time communication, MATLAB is used for off-
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line signal processing. 

Our experiment setup is presented in Figure 4.6. Transmitter and receiver nodes 

are connected to each other via channel emulator 's input and output connections. The 

Ethernet switch is used to connect WARP boards and PC. We use 12 WARP boards 

to simulate different CR transmitter nodes trying to communicate with a common 

receiver node. 

. ........................................ . . ::.; ...... ' .... ~ .... -;;;;.:::::::::: 

Figure 4.6 : Experiment Setup 

To simulate a cognitive radio device, we choose different channel , power and mod-

ulation configurations which are listed as follows: 

• Channel: 4 WLAN channels (1, 2 ,4 and 8) 

• Power: 3 power settings (low, medium and high) 
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• Modulation: BPSK and QPSK 

In each configuration, 200 frames each of which contains 2002 random symbols are 

generated and processed in MATLAB. Processed data is transferred to transmitter 

node via the Ethernet and then transmitted through the communication medium via 

WARP board. Receiver node captures the transmitted signal and sends back captured 

data to PC via the Ethernet for further processing in MATLAB. In addition, carrier 

frequencies of the signal is monitored via Agilent ESA series spectrum analyzer to 

compute frequency offset. 

4.3 Classifier Analysis 

In the following chapter we will propose a signature scheme for a cognitive radio device 

operating on over a range of frequencies, power levels, and modulation parameters 

based on aforementioned classifiers. Therefore, the relationship between parameters 

and classifiers should be investigated first. 

Before going into further discussions, we illustrate a few samples of our visual 

data analysis. The significance of this phase is that no pattern recognition software 

has been so far able to match the human pattern recognition ability [36]. The visual 

trends typically provide a sound guideline on how to organize the experiments and 

the classifier sensitivity. Boxplots and histograms will be used for identifying visual 

trends. 

A boxplot is a convenient way of graphically depicting groups of numerical data 

through their five-number summaries (the smallest observation, lower quartile, me­

dian, upper quartile, and the largest observation). Boxplot also indicates which ob­

servations, if any, might be considered as outliers. It provides a fast method for visual 

comparison of the density functions and outlier detection. 
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A histogram on the other hand, approximates the probability density function 

(pdf), assuming that we normalize the number of values in each bin to the total num­

ber of elements (assuming equidistance bins). Figure 4.7 illustrates estimated the 

probability distribution of different classifiers via histograms. In addition, gamma 

and normal distribution fittings of histograms are displayed in the figure. We opt to 

use these fitting functions instead of histogranls since all the histogram data could 

be stored 8."l distribution fitting parameters (Le. mean and median for normal dis­

tribution). We choose gamma distribution to represent pdf of the classifiers since it 

provides a better fit than normal distribution for all the classifiers. 

For the following subsections we will look at trends of each classifier with 3 sets 

of plots. First set will be boxplots to observe the difference between boards. Second 

and third sets will be histograms for different power levels and channels to analyze 

the corresponding effect on each board. 

4.3.1 Phase Error 

Figure 4.8 presents boxplot diagrams of Phase Error (PE) for different configurations. 

It can be seen that with the exception of board 12, all boards tend to show similar 

behavior which makes PE our 'weakest' classifier. The frequency response of the PE 

is shown in Figure 4.9 via probability distribution functions (pdf) estimated by the 

gamma probability distribution. For different channels, PE shows little variation. 

Yet for different power levels, PE acts differently. Figure 4.10 shows the difference of 

pdfs with different power levels. As the power increases, the pdf tends to spread out 

which is closely related to the behavior of the boards represented in Figure 4.2 and 

4.3. In these figures, it can be seen that with the increase in the power more symbols 

deviate from the cluster center, which explains the spread in pdfs for different power 
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levels. 

4.3.2 Magnitude Error 

Magnitude Error (ME) classifier performs better than PE which can be observed 

from boxplots in Figure 4.11. vVe can see slight difIerence between the boards yet 

the patterns are similar. The frequency response of ME difIers for each channel but 

the difIerence is very small as can he ohserv(xl in Figure 4.12. With difIerent power 

levels, ME shows similar behavior with PE which is presented in Figure 4.13. As 

the power increases more symbols deviate from cluster center thus magnitude error 

increases which causes the spread out in the pdfs. 

4.3.3 Error Vector Magnitude 

Error Vector Magnitude (EVM) classifier shows similar characteristics with ME. Box­

plots in Figure 4.14 illustrates the same trend as in ME. Frequency response of EVM 

is quite stable for difIerent channels which is presented in Figure 4.1S. With the in­

creasing power, deviation of the symbols from the cluster center increases the EVM 

value, so same spread out in the EVM pdfs can be observed in Figure 4.16. 

4.3.4 I/Q Offset 

I/Q OfIset values for each board presented III Figure 4.17. Like other classifiers, 

I/Q OfIset pdfs for difIerent frequencies behave similarly as can be seen from Figure 

4.18. I/Q OfIset values increase with high transmission power which can be seen from 

Figure 4.19. Increase in the power causes more symbols to spread out, which in turn 

increases the distance between origins of the received symbols. 
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4.3.5 Frequency Offset 

Frequency offset, which can be inferred from Figure 4.20, is the best performing 

classifier among all the classifiers. The boxplots of the boards show variations in 

terms of shape and magnitude which are completely different from other classifiers. 

For different channels, frequency offset tends to be constant as in Figure 4.21. Unlike 

other classifiers, frequency offset is immune to change in power and stays almost 

constant as illustrated in Figure 4.22. 
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Chapter 5 

Classification 

In this chapter, we will introduce our fingerprinting mechanism for cognitive radios. 

First, flow of the mechanism will be explained. Then a new classification method will 

be proposed for signature generation. Finally the performance of the classification 

method will be analyzed for both static channel and in-door office environment. 

5.1 Fingerprinting Mechanism 

In this section, we will use the classifying variables described in Chapter 4 to build 

a statistical model for each of the classifiers. Figure 5.1 shows the overall flow of 

our signature extraction (learning phase) and signature matching (testing phase) 

method. Signature extraction process (demonstrated on the upper row on Figure 

5.1) for each radio can be defined as follows. First, a predefined number of training 

message frames are generated then transmitted by each radio card. Next, we define 

the single characteristics (Gm ) that can be used to identify source of the messages. 

We use data-driven density formation and pdf distance metrics for representing and 

computing each Gm . As we mentioned earlier, each of the characteristics would be a 

weak classifier in the sense that we may get a high prediction error. The last step in 

signature extraction is to combine the results of the M classifiers. We select weighted 

voting as the committee formation method. Our reason for this choice is the simplicity 

and good performance of this method compared to other alternatives [37]. 
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The signature matching phase (shown on the lower row on Figure 5.1) is much 

simpler. Upon arrival of a batch of F frames , the characteristics of the frames are 

evaluated against the M single classifier 's extracted signatures. Next we combine the 

results of the M classifiers. T he result would be identification of the radio source of 

the incoming batch of signals. 

Learning phase 
or signature 
extraction 

phase 

Testing 
phase or 
signature 

matching phase 

Data 
gathering 

overK 
radios 

Testing F 
frames 

from one 
radio 

--

... 

1 
1 

I 

1 

1 

I 

Learning M single classifiers 
Smgle classifier Gj 1 Build a 
Smgle classifier G, 1-----. committee 

• ofM • • classifiers • Single classifier GM I 

Test the M classifiers --.cRadio 1? 
Classifier Gj I Test the 

~Radi02? Classifier G2 I~ committee 
I-• ofM • • • classifiers • • .... 

Classifier GM I --.cRadio K? 

Figurr, 5.1 The flow of signature extraction and signature matching approach. 

5.1.1 Signature Extraction 

For the signature extraction phase (learning phase) we choose random 100 frames 

for the training set among the 200 frames transmitted which is explained in Section 

4.2 (Remaining frames will be used later for testing phase). For each classifier, first 

histogram data is generated, then the data is used to estimate probability density 

function (pdf) with gamma distribution parameters, namely scale and shape param-

eters . After fon ning the training set, we look at the weak classification using a single 

classifier. Randomly chosen frames are tested wit h t he training set to find probability 

detection (PD ) and probability of false alarm (PFA ) fo r each classifier. The pdf of 
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the test frame and training set is compared to identify the source of the signal. We 

perform the comparison via distance/similarity measures between two pdfs, namely 

test frame and training set. Kullback-Leibner (KL) divergence (Equation 5.1) is cho­

sen as our metric for measuring the distance between two pdfs. Since KL divergence 

is non-symmetric we will use dKL = dKL(PIIQ) + dKL(QIIP) as our distance metric 

which is symmetric. 

(5.1) 

PD and PF A of each classifier are then computed as follows: first we choose a 

random frame transmitted from one board as test frame, then distance between the 

test frame and training set is evaluated via KL divergence. Figure 5.2 presents a 

simple scenario for the distance computation for the frequency offset classifier. Board 

8 is selected as the target device and a sample frame is chosen from corresponding 

training set. Sample frame is then compared with the training set of several boards. 

Only four training sets are displayed for brevity. It is trivial to identify visually the 

source of the signal as board 8. Also, the distance measurements from each training 

set which are given in Table 5.1 confirms the source of the signal as board 8, since it 

has the minimum distance to sample among all boards. 

Based on KL distance metric we define PD and PF A as follows: 

• PDi = P[DiIHi], given a test frame is transmitted from board i (Hi)' training 

set of board i has the minimum distance (Di) with the test frame . 

• PFAi = P[DiIHk], given a test frame is transmitted from board k (Hk), training 

set of board i has the minimum distance (Di) with test frame where i =f:. k. 
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KL dist 0.005 0.401 0.856 0.163 

Table 5.1 : KL distance of boards 
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We evaluate the PD and PFA values of each classifier for each configuration by 

choosing random frames from the test set and comparing with the training set. Table 

5.2 presents PD and PF A values for BPSK modulation. Each column represents BPSK 

classifiers which are listed from column 2 to 9 as : Phase Error over symbol 0 and 1, 

Magnitude Error over symbol 0 and 1, Error Vector Magnitude over symbol 0 and 1, 

I/Q Offset and Frequency Off et . We note that all classifiers excep t frequency offset 

have low PD and high PFA values which provides a weak means of prediction. This is 

an expected result since in Chapter 4 we show that boards have similar distribution 
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for PE, ME, EVM and J/Q Offset. vVe also note that values in these tables are 

average values for all power and frequency configurations. 

PEo PEl MEo MEl EVMo EVMl I/Q FREQ 

PD 57.1 58.9 68.6 68.7 63.6 63.8 63.7 94.3 

PPA 42.9 41.1 31.4 31.3 36.4 36.3 36.3 5.7 

Table 5.2 : PD and PF A for BPSK identifiers 

PD and Pp A values for QPSK modulation are also presented in Table 5.3. Table 

format is similar to BPSK tables but PE, ME and EVM are defined over four symbols 

instead of two. PD values of frequency offset is still better than rest of the classi­

fiers and also it has low PF A values compared to the rest of classifiers. Both tables 

demonstrate that frequency offset is the best single classifier among all the classifiers. 

PEo PEl PE2 PE3 MEo MEl ME2 ME3 EVMo EVMl EVM2 EVM3 I/Q FREQ 

PD 33.7 34.4 34.4 33.8 66.6 66.3 66.0 66.8 67.4 66.9 66.8 67.8 63.1 93.8 

PFA 66.3 65.6 65.6 66.2 33.4 33.7 34.0 33.3 32.6 33.1 33.2 32.3 36.9 6.3 

Table 5.3 : PD and PF A for QPSK identifiers 

5.1.2 Combining Classifiers 

The last step of our procedure is to combine the several weak classifiers computed 

earlier to form one stronger committee of the classifiers. To make the committee, 

our first method is to perform a weighted voting. In weighted voting, we find the 

probability of detection for each of the classifiers Gm , m = 1, ... , M. Next, we 

assign normalized weights am to each weak classifier Gm based on its probability of 
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detection that can be learned by using standard statistical validation methods. In 

such validation methods, the probability of detection can be found during the learning 

phase by setting aside a part of the learn data and then testing the prediction ability 

of the built signature from the first part of the data on the second part of the data (the 

set aside part) [36J. The normalization is such that the sum of the weights is 1, Le., 

E;';;=l am = 1. In our evaluations, we find the non-normalized value of am, denoted 

by a~ using the following formula for each of our weak classifiers Gm , m = 1, ... , M: 

(5.2) 

where PD(Gm (.)) is the average probability of detection (derived using the statistical 

validation methods) for the weak classifier Gm over all the radios and PFA(Gm (.)) 

is the average probability of false alarm computed like PD(Gm (.)). am can be easily 

found by normalizing the a~s. 

We will have total of 24 set of um's, one for each power, frequency and modulation 

configuration. Table 5.4 and 5.5 shows the effects of varying frequency and power on a 

values for BPSK and QPSK modulation. Rows of the tables represent the classifiers 

for each modulation. Columns 2 to 4 show the a values for different power levels 

for channell, while columns 4 to 7 represent the a values for different channels on 

high power setting. It can be observed from these tables that changing power on the 

same channel changes the a values dramatically. The weights of frequency offset and 

J/Q Offset start decreasing with increasing power level. This behavior is related the 

observations made in Chapter 4 where we show the signal characteristics of boards in 

Figure 4.2 and 4.3. Signals transmitted with low power form more uniform clusters 

which decreases the contribution of EVM related classifiers, yet with the increasing 

power levels, clusters change its shape and form rather unique formation. Thus, 

increasing power results in different EVM results which in turn decrease the weights 
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of frequency offset and I/Q Offset. This behavior is discussed also in Section 4.3, 

where each board acts different for power levels shown from their pdfs. Changing the 

channel for same power setting on the other hand, does not result in critical change on 

a values which confirms the observations made in Section 4.3 where pdf's of classifiers 

tend to stay same with changing frequency for the same power level. 

To form the committee, we also map the classification results from each weak 

classifier to a value in the set {-I, I}. If the weak classifier Gm identifies the radio Rl 

as the transmitter, then Gm(Rl) = 1, otherwise, Gm(Rl) = -1. Let Gvote denote the 

final voting function for a radio. The following voting function is used for weighting 

the votes of the different classifiers for one radio Rk : 

(5.3) 

The radio with the highest Gvote would be selected to be the target radio. In our 

experimental results, we compare the performance of our classifier against combining 

the results of the M classifiers by summing up their KL distances (Equation 5.4). 

This time, the radio Rk with the minimum KL distance (G M D) would be the target 

radio. 

(5.4) 

We present a simple case for voting and MD classifier for BPSK modulation in 

Table 5.6. Columns of the table represents weak classifiers identification for corre­

sponding board's test frame. Weak classifiers are listed between row 2 and 9, the 

final two rows correspond to decision of voting and lVID classifier. For boards 1, 3, 5 

and 6 hoth classifiers identify boards correctly as expected since majority of the weak 

classifiers detect the boards correctly. The results for boards 2, 4 and 7 are interesting 
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Cl,PL Cl,PM Cl,PH C2,PH C4,PH CS,PH 

PEo 0 0.083 0.105 0.090 0.088 0.027 

PEl 0 0.11 0.100 0.105 0.073 0.098 

MEo 0.077 0.141 0.160 0.138 0.177 0.192 

MEl 0.083 0.142 0.154 0.160 0.185 0.199 

EVMo 0.062 0.031 0.119 0.143 0.103 0.105 

EVMl 0.071 0.030 0.118 0.130 0.106 0.123 

[/Q 0.172 0.136 0.060 0.015 0.051 0.007 

FREQ 0.536 0.327 0.183 0.220 0.217 0.249 

Table 5.4 : a values for different configurations (BPSK) 

Cl'pL Cl'pM Cl,PH C2,PH C4,PH CS,PH 

PEo 0 0 0 0 0 0 

PEl 0 0 0 0.003 0 0 

PE2 0 0 0 0 0 0 

PE3 0 0 0 0 0 0 

MEo 0.022 0.064 0.112 0.106 0.109 0.114 

MEl 0.034 0.066 0.101 0.112 0.108 0.104 

ME2 0.051 0.054 0.107 0.108 0.112 0.106 

ME3 0.032 0.065 0.110 0.102 0.111 0.107 

EVMo 0.013 0.096 0.110 0.097 0.096 0.102 

EVMl 0.034 0.091 0.090 0.100 0.101 0.096 

EVM2 0.013 0.079 0.098 0.101 0.103 0.098 

EVM3 0.019 0.092 0.101 0.098 0.103 0.098 

[/Q 0.096 0.111 0.034 0.054 0.025 0.036 

FREQ 0.686 0.282 0.136 0.119 0.133 0.140 

Table 5.5 : a values for different configurations (QPSK) 
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to demonstrate the importance of voting-based classification. Majority of the weak 

classifiers produce false alarm for these boards. Yet, frequency offset and I/Q offset 

classifier identifies the boards correctly as they have a greater weight than rest of the 

classifiers. For this reason, voting based classifier could identify the boards correctly 

while MD based classifier fails to detect actual board. 

Bl B2 B3 B4 B5 B6 B7 

PEo 1 2 3 6 7 4 7 

PEl 4 4 3 6 2 4 7 

MEo 1 1 5 12 4 6 12 

MEl 1 1 5 12 5 6 12 

EVMo 1 1 5 12 5 9 12 

EVMl 1 1 2 12 5 6 12 

I/Q 1 2 3 4 9 5 7 

FREQ 1 2 3 4 5 6 7 

Gvote 1 2 3 4 5 6 7 

GMD 1 1 3 12 5 6 12 

Table 5.6 : Voting Example for BPSK 

5.2 Performance of Classifiers 

We evaluate the performance of the classifiers by choosing 5 random frames from each 

board's test set and looking at the classifiers response. This procedure is repeated 

for 100 times to compute PD and PF A values for each configuration. Table 5.7 and 

5.8 present average PD and PF A values of two classifiers for all configurations with 

BPSK and QPSK modulation. 
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The results are really promising and clearly show the superior performance of the 

voting-based classifier. We have an average PD of 97.7% and 96.8% for BPSK and 

QPSK respectively; while average PFA is very low, only 2.3% and 3.1% for BPSK and 

QPSK. The results of the voting-based method clearly benefit from the frequency 

offset classifier which has much better prediction rate compared to other classifiers. 

As a result, this classifier gets a higher value for its weight CYm , providing accurate 

prediction. 

MD classifier on the other hand has 75.9% PD and 24.1% PFA for BPSK and 76.1% 

PD and 23.9% PFA for QPSK. These results confirm the effectiveness of weighting for 

generating stronger classifier. 

Bl B2 B3 B4 B5 B6 B7 B8 B9 BlO B11 B12 

Gvote(PD) 100 90.3 95.1 94.8 99.2 97.3 97.2 100 99.8 99.9 98.5 100 

GMD(PD) 79.5 65 76.5 66.5 74.5 73 90 89.5 76.5 62.5 57.5 100 

Gvote(PFA) 0.1 4.5 1.3 5.2 6.9 6.7 1.1 0 1.3 0 0.8 0 

GMD(PFA) 25.1 23.7 15.8 16.3 43.7 21.1 19.5 17.6 27.7 39.8 29.8 12.5 

Table 5.7 : Combining classifiers: Voting and ML (BPSK) 

Bl B2 B3 B4 B5 B6 B7 B8 B9 BlO B11 B12 

Gvote(PD) 99.3 92.5 96.7 96.8 87.1 96.2 99.3 100 96.3 100 98.5 100 

GMD(PD) 77.5 54 76 87.5 86 84.5 57 56 94.5 72.5 67.5 100 

Gvote(PFA) 0.8 4.8 10.6 3.8 1.8 7.8 2.7 0.5 2.5 0 2.2 0 

GMD(PFA) 19.3 16.3 26.7 16.4 20.5 14.1 29.5 21.7 10.2 21.8 31.4 6.4 

Tahle 5.8 : Comhining classifiers: Voting and NIL (QPSK) 
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5.2.1 Results with Office Environment 

To analyze the impact of the channel on our classification method, we perform same 

set of experiments with indoor office environment setting of the Channel Emulator. 

Unlike a static channel, indoor office environment will have big impact on transmitted 

signals. Fading and multi-path effects will be observed in the received signal which 

will cause further deviation from the ideal signal. Table 5.9 and 5.10 show the PD and 

PF A values of the classifiers in office environment for BPSK and QPSK modulation. 

As expected, EVM related classifiers, already weak in the static channel, are severely 

affected by the office environment. We observe low PD and high PF A rates compared 

to static channel for these classifiers. While I/Q Offset and frequency offset is resistant 

to channel impact and provide similar detection probability with static channel. 

PEo PEl MEo MEl EVMo EVMl I/Q FO 

PD 16.6 16.5 8.5 8.5 9.6 9.8 54.7 94.9 

PFA 83.4 83.5 91.5 91.5 90.4 90.2 45.3 5.1 

Table 5.9 : PD and PFA for BPSK identifiers 

PEo PEl PE2 PE3 MEo MEl ME2 ME3 EVMo EVMl EVM2 EVM3 I/Q FREQ 

PD 18.8 19 19 18.9 9.2 9.3 9.2 9.2 11.9 12.1 11.8 12 49.1 94.5 

PFA 81.3 81 81 81.1 90.8 90.8 90.8 90.8 88.1 87.9 88.2 88.0 50.9 5.5 

Table 5.10 : PD and PFA for QPSK identifiers 

The effect of the channel is manifested clearly all the EVM based classifiers which 

results low PD and high PFA for these classifiers. The weights of these classifiers (0: 
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values) will be lower than static channel weights, while weights of the I/Q Offset and 

frequency offset will increase compared to their static channel counterpart. 

Even with the indoor office environment weighted voting mechanism will be im­

mune to channel impacts. Table 5.7 and 5.12 present average PD and PF A values for 

the two classifiers. We have 96.6% and 95.9% detection rate for BPSK and QPSK 

respectively. Also PFA values are still low, only 3.4% and 4.1%. The identification 

rate slightly decreased with the channel presence, yet still we have a high PD values 

due to frequency offset classifier. The performance of the MD classification degrades 

with the channel presence. PD has dropped to 58.1% and 51.1% while PFA increased 

to 41.9% and 48.9% for BPSK and QPSK respectively, which further encourages us 

to use weighted-voting mechanism. 

Bl B2 B3 B4 B5 B6 B7 Bs Bg BlO Bn B12 

Gvote(PD) 93.1 100 95.8 96.9 96 90.9 100 98 95.8 96.5 97.5 99 

GMD(PD) 59.7 59.8 62.2 45.9 65.5 53.5 56.9 48.8 40.1 41.9 62.3 100 

Gvote(PFA) 2.5 8.7 1.7 1.3 8.5 7.1 2.5 3.3 0.2 2.3 1.7 0.7 

GMD(PFA) 52.6 43.3 37.3 44.1 45.6 46.8 38.2 40.4 45.2 39.4 40.3 30.3 

Table 5.11 : Combining classifiers: Voting and ML (BPSK) 
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Bl B2 B3 B4 B5 B6 B7 Bs Bg BlO Bl1 B12 

Gvote(PD) 93.3 94.1 98.5 96.4 94.8 95.2 97.4 94.2 97.2 98.3 94.7 97.6 

GMD(PD) 45.3 39.4 37.9 42.7 50.7 50.1 52.2 47.3 38.4 45.5 64.3 99.7 

Gvote(PPA) 3.9 4.3 4.1 5.3 4.4 3.7 4.1 2.9 1.7 5.5 4.2 5.1 

GMD(PPA) 54.2 57.2 44.6 59.1 51.1 45.5 50.8 61.8 30.5 33.7 62.1 34.2 

Table 5.12 : Combining classifiers: Voting and ML (QPSK) 
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Chapter 6 

Conclusion 

Ever increasing usage of wireless devices and inefficient utilization of wireless spec­

trum necessitate a paradigm shift in wireless communication. New technologies are 

emerging to use wireless spectrum more efficiently. Cognitive radio (CR) is one of 

the novel technologies that can adjust its parameters adaptively based on communi­

cation environment. Still broadcasting nature of wireless communication poses great 

threat for communication parties independent of the technologies. Many attacks has 

been listed in the past and impersonation (identity based) attacks is noted as one 

of the most critical ones due to its ease of implementation. Thus identification of a 

transmitted signal is one of the most challenging problems for securing wireless com­

munication. Previous research addressed identity based attacks and proposed counter 

measurement techniques to prevent these type of attacks. However, these techniques 

are hased on single radio adjnstment and will no longer he sufficient for CR devices 

due to its ability to reconfigure parameters based on the environment. To the best 

of our knowledge, there is no previous work on addressing the security issues for CR. 

This thesis provides first attempt to generate a robust fingerprinting mechanism for 

different environment settings and radio configurations to secure CR communication. 

We propose a signature scheme for identifying cognitive radio for different config­

urations (power, channel, modulation). Our signature scheme is based on the effects 

of the hardware imperfection on the transmitted signal. Due to manufacturing vari­

ability, devices have minute imperfections which cause deviations on the transmitted 
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signal. We analyze these deviations on the modulation domain to generate unique 

signatures for each device. We defiue classifying variables based on the characteristics 

of a signal in modulation domain which are listed as follows: Error Vector Magnitude 

(EVM) measurements based classifiers (phase error, magnitude error and EVM), I/Q 

Offset and frequency offset. 

We perform experiments with WARP platform and Channel Emulator. Reconfig­

urable WARP boards are employed to emulate CR and channel emulator is used to 

cancel out channel effects to observe only the hardware imperfections on the trans­

mitted signal. To simulate a possible CR activity, we choose different power, channel 

and modulation configurations. A predefined number of frames are transmitted from 

12 WARP boards for each configuration. Based on the transmitted frames, we look 

at the effects of changing parameters on our classifiers. Our analysis show that indi­

vidual classifiers are weak due to their high prediction error. 

Next, we propose a signature scheme to combine our weak classifiers to form a 

strong classification method. We choose weighted voting to form a committee. Each 

classifier assigned a weight based on its probability of detection (PD ) and probability 

of false alarm (PF A). Then we tested our method with random frames chosen from 

each board. The results are encouraging and we have average 97.7% and 96.8% of 

PD for BPSK and QPSK modulation respectively. Also the PFA rates are very low, 

only 2.3% and 3.2% for each modulation. 

Finally, to analyze the impact of the channel on our signature scheme, we perform 

same set of experiments with indoor office setting of the Channel Emulator. Due to 

fading and multi-path effects, transmitted signals further deviate from the original 

signal. The presence of the channel also degrades the prediction rate of EVM based 

classifiers. However, I/Q offset and frequency offset classifiers are immune to channel 
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effect and due to weighted voting mechanism we still able to get high prediction rates. 

With the channel effect, we have an average of 96.6% and 95.9% PD for BPSK and 

QPSK modulations. Average PFA rate is only 3.4% for BPSK and 4.1% for QPSK. 

Our results are promising and clearly show the superior performance of our clas­

sification method. We have high PD values with low PF A rate for both static channel 

and indoor office environment. These values are calculated based on observation of 5 

frames and prediction rate will improve with the increase of sample set. 
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