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Abstract 

Influence of Effective Modulus on Period-Doubling Bifurcation in 

Atomic Force Microscopy: Investigation and Implementation for 

Sample Characterization 

by 

Wei Huang 

Atomic force microscope (AFM) is an important tool for measuring the topographical 

and other properties of a sample with nanometer resolution. The cantilever probe of the 

AFM is influenced by nonlinear interaction forces which act between the probe and the 

sample. For certain non-standard excitation conditions, this can result in bifurcations in 

the probe's response. This work numerically examines a period-doubling bifurcation 

observed to occur for interactions with soft materials. The influence of the sample 

properties and other conditions on the bifurcation is studied and a method is proposed for 

sample material characterization. The identified values from simulated 1-D and 2-D scans 

agree well with the true values. The proposed method does not require the use of special 

probes and it uses the control algorithm for traditional tapping mode AFM with minor 

modification. This proposed method could also achieve high scan speeds and prevent 

strong, destructive interaction forces. 
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Chapter 1 Introduction 

1.1 Motivation 

There are rich nonlinear phenomena in atomic force microscope (AFM) and they are 

generally avoided and not used in enhancing the capacity of the device. In the dynamic 

modes of AFM the probe in the device is driven to oscillate. Traditionally the driving 

frequency is near the fundamental frequency of the cantilever. The bi-stabilities and 

bifurcation sets are found when the probe tip on the cantilever 'feels' interaction force 

between it and the sample e.g. (Lee, Howell, & Raman, 2003). However, these nonlinear 

behaviors are not desirable since they cause unstable image conditions and artifacts in the 

measurement result. The nonlinearities are intrinsic in AFM. They are a popular topic in 

the area and a lot of work is done to improve the understanding of the nonlinearities. A 

recent review is available (Stark R. W., 2010). 

Though the nanometer resolution of the topographical measurement has been achieved, 

the AFM has potential to provide more information. This includes quantitative 

reconstruction of interaction forces in liquid environment and scan on delicate and soft 

material. These applications are important since the interaction force can be used to 

identify constitutive properties, chemical properties and the nano-structure of the sample. 

Many research efforts study intrinsically soft biomaterials. 

This work studies the period-doubling bifurcation in atomic force microscope (AFM) 

numerically and proposes a scan method of measuring the effective modulus of the soft 

samples based on the bifurcation. 
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1.2 Thesis Overview 

Some of the work in the thesis has been presented in 2009 ASME International Design 

Engineering Technical Conferences and Computers and Information in Engineering 

Conference (DETC2009) (Dick & Huang, 2010) and 2010 ASME International Design 

Engineering Technical Conferences and Computers and Information in Engineering 

Conference (DETC2010) (Huang & Dick, 2010). A paper based on the work in this thesis 

is going to be published in the Journal of Computational and Nonlinear Dynamics. 

The thesis is organized in the following manner. Chapter 2 provides a background on 

AFM and explores other methods to characterize materials. The system, modeling and 

simulation tools are described in Chapter 3. In Chapter 4, the reproduction of 

experimental data and investigation of the bifurcation relationship is presented. In 

Chapter 5, the robustness of the relationship is explored through parametric studies with 

several parameters. The proposed scan process is presented in Chapter 6. The concluding 

remarks are presented in Chapter 7. 
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Chapter 2 Background and Literature Review 

Atomic Force Microscope (AFM) was introduced in 1986 (Binning, Quate, & Gerber, 

1986). It has become an important tool in research at the nanometer scale. Unlike the 

traditional optical microscope or electron microscopes, the key component in AFM is a 

cantilever beam-style probe with a sharp tip at the free end, which gives this device 

superb lateral resolution, quantitative vertical resolution and measurable rich interaction 

between the tip and the sample. The research on mechanical properties and particularly 

dynamical behavior of the probe plays a significant role in AFM's development. 

Key components of the atomic force microscope system are illustrated in Figure 2-1. The 

tip at the end of the cantilever is placed close to the sample to allow for interactions 

data processor 
& feedback 
electronics 

Probe tip 

Sample surface 

Piezotube 

Figure 2-1. Diagram of AFM system 
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between the atoms at the end of the tip and the atoms of the sample surface. At the same 

time, the lateral and vertical position of the sample relative to the cantilever is adjustable 

by feedback controller. This allows the cantilever to "feel" the topography and other 

properties over an area of the sample. A laser beam is reflected off of the backside of the 

cantilever near the free end. The deflection of the cantilever changes the slope at the 

reflection point and the direction of the reflected laser beam. A photo diode element 

measures the movement of the reflected laser beam. The output of the photo diode is used 

to calculate the deflection of the probe through a calibration process. 

The interaction between the tip and the sample has important influence on the dynamics 

of the probe and it is a function of the separation distance between the tip and the sample 

in a nonlinear manner. If the separation distance between the tip and the sample is large, 

the interaction is negligible. If this distance is small, the interaction is attractive. There is 

also a repulsive force component if the distance is decreased further and its magnitude 

increases as the distance continues decreasing. At a certain point the value of the 

repulsive part is equal to the value of the attractive part and the interaction is neutral. This 

position is defined as the effective surface of the sample. If the separation distance 

continuous to decrease, the tip starts to compress the sample and the interaction becomes 

repulsive. Several models quantify the interaction and can be used in analysis and 

numerical simulation. Some popular models are the Derjagin-Miiller-Toporov (DMT) 

model (Derjaguin, Muller, & Toporov, 1975), the Johnson-Kendall-Roberts (JRK) model 

(Johnson, Kendall, & Roberts, 1971) and the Maugis model (Maugis, 1992). The DMT 

model works well for samples with low adhesion, and the JRK model works well for 

samples with high adhesion. The Maugis model combines both the conditions with an 
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adhesion parameter, and is identical to the DMT model or the JRK model at extreme 

values of the adhesion parameter. 

There are several operation modes, including the contact mode, the non-contact mode and 

the intermittent contact mode (which is also called the tapping mode). The latter two 

modes are dynamic operation modes. The most important implementations of the non

contact mode and the tapping mode are the frequency modulation mode AFM (FM-AFM) 

and the amplitude modulation mode AFM (AM-AFM), respectively. Under the contact 

mode, the tip is placed close to the sample surface to maintain constant influence of 

repulsive interaction force. The force may change due to the topography in the height of 

the sample. A feedback loop is used to adjust the position of the probe in order to 

maintain the level of interaction. The changes in the topography of the sample surface are 

then directly related to the adjustment in the position of the probe. This constant contact 

can have multiple drawbacks, such as limitation of scan speed, inelastic deformation of 

the sample and the wear of the tip. The non-contact mode and the intermittent contact 

mode can provide improved performance over the contact mode of operation. In FM

AFM and AM-AFM, the cantilever is excited to oscillate and the distance between the tip 

and the sample surface varies between small or negative values to large values. Only 

during a small fraction of the operation time is the separation distance small enough to 

allow significant interaction. In AM-AFM, the interaction force is repulsive at the closest 

separation distance. In FM-AFM, only attractive interaction forces are experienced. 

These methods can significantly reduce the extent of contact. Instead of static deflection 

as in contact mode, the oscillation amplitude is maintained for topographical 
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measurement in amplitude modulation mode and in frequency modulation mode, the 

resonance frequency is maintained. 

From another point of view, different modes select different quantities as the sources of 

contrast. The source of contrast must have a strong correlation with the quantity being 

measured, thus the operation mode monitors the source of contrast in order to measure 

the desired quantity. For topographical measurement, in which the height of the sample is 

of interest, the static deflection, the response amplitude and the resonance frequency 

serve as great sources of contrast in contact mode, amplitude modulation mode and 

frequency modulation mode, respectively. 

In addition to topographical measurement, high resolution mapping of other properties of 

the sample are of interest and importance to researchers. For example, if the local 

interaction between the tip and the sample can be measured, the composition and form of 

the sample may be better understood. Some measurable quantities in the previously 

mentioned modes are relevant to the interaction, as the phase difference between the 

driving force and response in amplitude modulation mode and the resonance frequency 

shift in frequency modulation mode. Some other new methods have been developed and 

studied. The most common material characterization methods using the atomic force 

microscope are introduced here. 

Frequency-modulation atomic force microscopy is used to measure interaction forces 

at one point on a sample (Giessibl, 2001). The connection between the resonance 

frequency and the tip-sample interaction can be elementary and linear if the gradient of 

the interaction force is constant, as the interaction acts as a linear spring (in the attractive 

region the spring constant is negative). If the gradient varies during the motion of the 
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oscillating tip, perturbation method shows the change of the resonance frequency can be 

approximated as shown in Equation (2.1) which was taken from Giessibl's paper. 

(2.1) 

In the equation, zb is the vertical base position of the cantilever, fo and k are the 

eigenfrequency and the spring constant of the cantilever, respectively, and Fts is the tip-

sample interaction. The approximation is accurate when the energy of the cantilever's 

oscillations is much larger than the tip-sample potential, which holds well in the 

operation environment of FM-AFM. In these modes, soft cantilevers are associated with 

large oscillation amplitude and small oscillation amplitude is associated with very stiff 

cantilevers, while the interaction is usually in the attractive region, where the force is 

weak. The frequency shift is measured for a range of separation distance values between 

the tip and the sample, and then a deconvolution process is used to calculate the 

interaction force. Experimental results indicate that with a smoothing process, the method 

can be implemented and give reasonable result which includes the complete attractive 

region and a portion of the repulsive region. This method requires high-vacuum 

environment. 

Atomic force acoustic microscopy can provide nanometer scale elastic-property 

mapping (Hurley, Kopycinska-Muller, Kos, & Geiss, 2005). This method operates with 

repulsive interaction between the probe tip and the sample, and measures the indentation 

modulus, which is a characteristic of the interaction in the repulsive region. This method 

also uses the shift of the resonant frequency as the source of contrast. The use of a 

dynamic implementation allows the method to measure thin films with the thickness 
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above 50 nm, which is an improvement since the traditional contact nanoindentation 

method requires thicker samples. Unlike in the FM-AFM, a wide sweep of the excitation 

frequency at a single point on the sample is necessary to determine the resonance 

frequency, and this limits the speed of the method. Since the oscillations in this method is 

purely in the repulsive region and the amplitude is very small, the local indentation 

modulus instead of a force curve is calculated from the frequency shift. Its lateral 

resolution is on the order of tens of nanometers, which is good enough to measure the 

mechanical properties of relatively large nano-scale structures, but is limited in 

investigating mechanical behavior at smaller scales. 

Scanning probe acceleration microscopy (SPAM) is used to measure the tip-sample 

interaction force simultaneously with topographical information in fluid environments 

(Legleiter, Park, Cusick, & Kowalewski, 2006). A single degree of freedom, driven, 

damped oscillator model is used, as shown in Equation (2.2). 

mett[ji - aow2 sin(wt)] + b[y + aow cos(wt)] + ky = Fext (2.2) 

In the equation, y is the deflection of the cantilever, mett is the effective mass of a 

cantilever, b is the damping coefficient, k is the cantilever spring constant, ao is the 

driving amplitude, w is the driving frequency, and Fext is the tip-sample force. It should 

to be noted that the difference between the position of the probe and the deflection of the 

cantilever is considered in the model. This is necessary since in a fluid environment the 

excitation amplitude can be on the same scale as the cantilever deflection due to high 

damping. This is also true for off-resonance excitation. The equation is solved for the 

second order derivative term (i.e. probe acceleration), as shown in Equation (2.3). 
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1 
ji = ;n- [Fext - by - ky + m eff w2ao sin(wt) - baow cos(wt)] (2.3) 

eff 

The method uses the pulse-like component of the second order derivative of the 

cantilever deflection as the source of contrast for the interaction force, utilizing the fact 

that the changing rate for the interaction force is much faster than the other terms in the 

right hand side of Equation (2.3). The configuration and control method in its operation 

are based on tapping-mode AFM, and the significant influence between the probe and the 

sample is very short in time. The higher harmonic components in the response are 

strengthened in the liquid environment, which makes the denoise filter more efficient. 

Meanwhile, the filter is necessary since the liquid environment also causes a low signal to 

noise level. Since the second order numerical derivative is used, the result is still not 

smooth. This method does not measure a force curve but is most interested in the 

maximum interaction force. Legleiter et al. demonstrated a scan rate of 5 Hz 

corresponding to a 2.5-Jlm line. The problem is that the high level of the higher harmonic 

components may require the use of a multiple mode modeling method. The limitations 

from the noisy liquid environment and the signal lost through a strong filter reduce the 

sensitivity considerably and limit the ability of quantitative measurement for this method. 

It should be noted that these limitations affect other methods in liquid environments, as 

well. 

A specially designed torsional harmonic cantilever can be used to map the interaction 

force curve while obtaining topographical information through a scan process (Sahin, 

Magonov, Su, Quate, & Solgaard, 2007). The tip is not placed on the long axis of the 

cantilever. Instead, an offset is added. The tip-sample interaction then will excite both 

flexural modes and torsional modes. The flexural oscillations are still used to collect 
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topographic information. The torsional mode is used to calculate the tip-sample 

interaction force by using the transfer function approach (Stark, Guckenberger, Stemmer, 

& Stark, 2005). The input includes the excitation and the tip-sample interaction. The 

output is the photodiode readout. The transfer function between the readout and the 

interaction is modeled and calibrated prior to the scan. Then it is used to calculate the 

interaction from the actual measurement. The torsional mode is superior to the flexural 

mode because a higher signal-to-noise ratio can be achieved. The coexistence of two 

modes helps in collecting more information. 

This thesis examines the period-doubling bifurcation III the tapping-mode AFM and 

discovered its potential as a new source of contrast for the measurement of the effective 

modulus of the interaction. The effective modulus is a localized property which depends 

on the Young's modulus and Poisson's ratio of the tip and the sample. The relation 

between the characteristics of the bifurcation and the effective modulus is modeled. A 

measurement scheme based on the relation is proposed and numerically studied. 
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Chapter 3 Materials and Method 

This thesis studies the period-doubling bifurcation, which is inspired by some 

experimental work. Here the previous experimental observation is introduced. The model 

and simulation tools are also introduced. 

3.1 Acquisition of Experimental Data 

Professor Dick and his co-researchers in Japan collected the experimental data with a 

commercial atomic force microscope (Dick, et aI., 2009). The cantilever in the AFM is 

made of silicon and the shape of the cross-sections for most of its length is uniform 

rectangular. There is a probe tip at the free end of the cantilever and its mass is 

considered in the model. The image of the cantilever is shown in Figure 3-1. 

The sample is one layer of silicone rubber mounted on the glass substrate. The operation 

frequency of the AFM is set to be 2.5 times the probe's fundamental frequency. 

Figure 3-1. The image of the cantilever. 
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Supplemental data acquisition devices are added to record the voltage of the photodiode 

sensors. From the voltage, the position of the tip was calculated. Then the data went 

through a denoise process, which includes applying fast Fourier transform (FFT) on the 

data, retaining only significant frequency components and applying an inverse FFT. The 

separation distance between the rest position of probe and the sample is set to decrease in 

the experiment and the responses of the probe at four different separation distances are 

illustrated in Figure 3-2. 
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Figure 3-2. Time series plots (A) - (D) and corresponding phase 
portrait plots (E) - (H) depicting experimental response transition for 

AFM cantilever probe. 
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In the set of data, the ordinary sinusoid response undergoes a qualitative change as the 

cantilever compresses the sample to a greater extent. The most significant characteristic 

of this process is that the two neighboring local maxima in the response differ in value 

and the period of the response doubles. In the field of nonlinear dynamics, this is 

identified as a period-doubling bifurcation. Initial simulations are performed following 

the experimental procedure to confirm the period-doubling bifurcation. The transition 

from the physical model to the simulation model involves proper determination of the 

equations of motion and parameter values. 

3.2 Modeling of AFM 

Since the parametric study is conducted in this work, several sets of values of the 

parameters are used. In the description of the modeling, unless otherwise stated, the 

values are corresponding to the simulation which would confirm the experimental 

observation. 

Not all the specifications of the cantilever used in the experiment are available. In the 

modeling, the specifications for another cantilever are used and the values are listed in 

Table 3-1. This cantilever has a similar stiffness and is also suitable for the measurement 

of soft material. 

In the experimental data the free off-resonance oscillation amplitude is around 7 nm. 

Thus the ratio between the oscillation amplitude and the length of the cantilever is about 

1.56 X 10-5 . The linear Euler-Bernoulli beam equation is used to represent the system. 

The dimensional form is shown in Equation (3.1). 

P;A a4 .7T A A ~ A a2 ~ (A A) 
r,/ a§4 VV (S, t) + pA af2 W s, t = 0 (3.1) 



14 

In the equation, W is the total displacement of the cantilever, and it is dependent on the 

coordinate along the cantilever s and the time f. The values of the cantilever parameters 

E, i, fj and A can be obtained from Table 3-1. 

Table 3-1. List of Dimensional Parameters for the cantilever. 

Parameter Symbol (Units) Value 

Cantilever Young's modulus E (GPa) 118.92 

Cantilever material density fJ (kg/m3 ) 2.1539 x 103 

Cantilever length L (m) 4.50 x 10-4 

Cantilever width fj (m) 4.00 X 10-5 

Cantilever thickness Ii (m) 5.00 x 10-6 

Force constant k(N/m) 2 

Cantilever fundamental resonance frequency wo (kHz) 28 

Ratio of probe tip mass to cantilever mass y 0.03 

In this work, the moving base of the cantilever is modeled as a moving reference frame. 

In order to derive the equation in the moving frame, the total beam displacement is 

defined in Equation (3.2). 

W(s, t) = w(s, t) + X(t) (3.2) 

In the equation, W the relative deflection of the cantilever, and X is the displacement of 

the base of the cantilever. 

In this configuration, the base excitation produces an inertial force and the relative 

deflection of the cantilever is separated from the base motion. The base motion is the 

input and a known term as xet) = Xo cos(2.5 WQ f), where Xo is the excitation amplitude. 
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The deflection is also the measured quantity. The new equation is shown in Equation 

(3.3). 

(3.3) 

Its dimensionless form is shown in Equation (3.4). The relations between the dimensional 

terms and dimensionless terms are shown in Equation (3.5) through Equation (3.8). 

(3.4) 

W=wL (3.5) 

s = s L (3.6) 

(3.7) 

(3.8) 

In the equations, L is the length of the cantilever and the symbols without the "hat" (A) 

are the dimensionless forms of corresponding parameters. The cantilever is part of a 

much bigger material which is used to mount the probe in the AFM. In the moving frame, 

the deflection and slope at the excitation end are assumed to be zero. At the other end 

with the tip, the moment is zero and the shear force is equal to the sum of the tip-sample 

interaction force and the inertial force due to the moving frame and the tip mass. Finally, 

the boundary conditions for the equation are shown in Equation (3.9) through (3.12). 

w(s, t) 15=0 = 0 (3.9) 

: W(S,t)1 =0 
uS 5=0 

(3.10) 
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8
2 I 8s 2 W(S, t) = 0 

s=l 
(3.11) 

83 I [82 I d2 
] 8s 3 W(S, t) s=l = Y 8t2 W(S, t) s=l + dt2 X(t) + Fts ( w(l, t)) (3.12) 

In Equation (3.12), y is the ratio between the probe tip mass and the cantilever mass, 

wei, t) is the dimensionless deflection of the free end of the cantilever probe, and Fts is 

the dimensionless interaction force between the probe tip and the sample. The relation 

between the dimensional force term and the dimensionless force term is defined in 

Equation (3.13). 

(3.13) 

Two different interaction force models are used in this work. The DMT model has the 

form in Equation (3.14) and Equation (3.15). 

{
Hi? 8 <-d 

Fts(wttp) = ~~ 682 

HR 4_ ~(A)3/2 A 
- -A- + - E*y R 8 + d 8 ~ -d 

6d 2 3 

(3.14) 

2 

~ A A A ( Hfo)3 A 
8 = Wttp + X(t) - oCt) + 8E*d2 - d 

(3.15) 

In the equations, WhP = wei, t), which is the deflection of the probe tip, 8 is the vertical 

distance between the rest position of the cantilever base and the sample which is defined 

as the nominal separation distance in the rest of the thesis, fj is the Hamaker constant, R 

is the AFM probe tip radius, a is the interatomic spacing and E* is the effective modulus 

of the interaction between the probe tip and the sample. The form of Equation (3.15) is 
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chosen in order to satisfy that the interaction force is zero at the effective surface, where 

the distance between the tip and the sample 8Ci) - (wt';p + XCi)) is equal to zero. The 

effective modulus of the interaction E* is given in Equation (3.16). 

1 
E* - (3.16) 

In the equations, V/:, E,;, Vs and E; are the Poisson's ratio and Young's modulus of the tip 

and the sample, respectively. 

The values of the parameters in the DMT model are listed in Table 3-2. They correspond 

to the interaction between a silicon probe tip and silicone rubber sample and the 

interaction between a silicon probe tip and glass sample, respectively. 

Table 3-2. Dimensional Parameter values for DMT atomic interaction 
force model 

Parameter (Units) Silicone Rubber Sample Glass Sample 

R(Nm) 4.5 x 10-20 6.6 x 10 20 

R (m) 10 x 10-9 10 x 10 9 

a (m) 0.165 x 10-9 0.170 x 10 9 

E* (CPa) 4.50 x 10 3 3.00 X 10+1 

The curves of the interaction force values versus the separation distances between the 

probe tip and the sample are illustrated in Figure 3-3. 

The slope of the force curve at the effective surface of the sample is defined as the 

effective stiffness of the sample. When the two sample materials are compared, large 

differences between the values of the effective modulus E* in Table 3-2 and the values of 
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the effective stiffness in Figure 3-3 are noticed. Since the sample in the previously 

mentioned experiment consists of a layer of silicone rubber on glass substrate, the 

effective modulus is believed to be between 4.50 X 10-3 GPa and 30 GPa. In the 

simulation, which is firstly aimed at numerically reproducing the experimental 

observation, the effective modulus E* is tuned, while the values of the other parameters 

corresponding to the silicone rubber sample are used. 

Another interaction force model is used in the work for the purpose of the parametric 

study. This model is identified as the empirical model in this thesis. It is used to fit the 

force-versus-distance data from molecular dynamic (Solares & Crone, 2007). The 

empirical interaction force model has the form in Equation (3.17) and Equation (3.18). 

8<0 (3.17) 

82::0 

(3.18) 
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In the equations, W, S, and A are parameters associated with the empirical model. Similar 

to Equation (3.15), the form of Equation (3.18) is chosen in order to satisfy the zero 

interaction condition at the effective surface. It should be noted that this empirical model 

and the DMT model have different hardening behaviors while both of them consist the 

attractive part and the repulsive part and are defined in a piece-wisely fashion. In this 

work, the values of the parameters in the empirical model are calculated from the ones in 

the DMT model by using Equation (3.19) and Equation (3.20). 

~ HR 
W=-A 

6 d2 
(3.19) 

(3.20) 

These equations are calculated to match the effective stiffness and the maximum 

attractive force of the empirical model to the corresponding values of the DMT model. 

The value of the other parameter A is manually selected to match the shape of the 

interaction force curve in the attractive region, and is set to a fixed value 1 X 1020 m-2 • 

In order to solve Equation (3.4) numerically, a multimode approximation and the 

Galerkin method are used. The Galerkin method is used with a multimode approximation 

in order to discretize the partial differential equation into several ordinary differential 

equations. It is assumed that the response is the superposition of the products of its 

normal modes and corresponding general modal coordinates. If the excitation frequency 

is close to one of the eigenfrequency, only that corresponding mode is significant. In this 

work, the off-resonance excitation requires the use of multiple modes. Previous work has 

shown that three modes are sufficient for the off-resonance condition near two-and-a-half 
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times the fundamental frequency (Dick, et aI., 2009). Thus the dimensionless deflection 

of the cantilever is expressed as Eqn. (3.21). 

3 

w(s, t) = I ¢m(s)qm(t) (3.21) 
m=1 

The functions qn (t) are general modal coordinates. The functions cfJn (s) are mode shapes. 

In order to calculate the mode shapes, the conservative and un-excited forms of Equation 

(3.4) and Equation (3.9) through Equation (3.12), as shown in Equation (3.22) through 

Equation (3.26), are used 

04 02 

Os4 w(s, t) + ot2 w(s, t) = 0 
(3.22) 

w(s, t)ls=o = 0 (3.23) 

: w(s, t)\ = 0 
uS s=o 

(3.24) 

0
2 I OS2 w(s, t) s=1 = 0 

(3.25) 

03 I 0
2 I OS3 w(s, t) s=1 = y ot2 w(s, t) s=1 

(3.26) 

The solution is assumed to be periodic in the form shown in Equation (3.27). 

w(s, t) = ¢(s)e iwt (3.27) 

In the equation, cfJ(s) is the mode shape function and w is the eigenfrequency. Equation 

(3.27) is substituted into Equation (3.22) through Equation (3.26). The equations for the 

mode shape function are shown in Equation (3.28) through Equation (3.32). 
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¢""(s) - [J2¢(S) = 0 (3.28) 

¢(O) = 0 (3.29) 

¢'(O) = 0 (3.30) 

¢"(1) = 0 (3.31) 

¢"'(1) + y[J4¢(1) = 0 (3.32) 

In these equations, f32 = w. The form of the solution to Equation (3.28) through Equation 

(3.30) is given by Equation (3.33). 

¢(s) = C1 (sin([Js) - sinh([Js)) + C2(cos([Js) - cosh([Js)) (3.33) 

In this equation, C1 and C2 are constants. When Equation (3.33) is substituted into 

Equation (3.31) and Equation (3.32), the equation to determine f3, C1 and C2, is obtained, 

as shown in Equation (3.34) . 

_ p 2 sin(p) _ p 2 sinhCP) 

[_ p3 cosCP) - p3 coshCP) ] 

+ p4ysinCP) - p4ysinCP) 

_ p2 cos(P) _ p2 coshCP) 

[P
4 y cosCP) - p4 Y COShCP)] [~J a 

+ p3 sinCP) _ p3 sinhCP) 

(3.34) 

The determinant of the coefficient matrix needs to be zero for the existence of non-zero 

values of C1 and C2. The three smallest roots are listed as f3v f32 and f33' They give the 

three eigenfrequencies Wv W2 and W3' The values of C1 and C2 are calculated for each 

value of f3, and their values are scaled to satisfy the normalization condition shown in 

Equation (3.35). 

n = 1,2,3 (3.35) 
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Since a finite number of modes are used, Equation (3.4) may no longer hold. The error or 

residual is shown in Equation (3.36). 

(3.36) 

In the Galerkin method, the approximation in Equation (3.21) is used, the product of the 

residual and the shape function is integrated over the length of the cantilever, and the 

weighted integral is set to zero. This is shown in Equation (3.37). 

(3.37) 

n = 1,2,3 

Integration by parts and the boundary conditions in Equation (3.9) through Equation 

(3.12) are used to derive the ordinary differential equations for the general modal 

coordinates. As a result of the normalization of the modes shapes, the resulting equations 

are of the form presented in Equation (3.38). 

(3.38) 

Several things should be noted. Due to the orthogonality of the mode shapes, the left 

parts of the equations are uncoupled. However, the three modal responses are still 

coupled by the tip-sample interaction force term, which depends on the total probe 

deflection and thus every modal response. The interaction force and inertial force are 
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transferred from the boundary conditions into the ordinary differential equations. The 

modal forces are defined in Equation (3.39) and Equation (3.40)(3.40), respectively. 

(3.39) 

(3.40) 

A viscous damping term is also added to account for the energy dissipation, and Qn are 

the quality factors. The values of Qn are set to 10 in the simulation. The damping level 

corresponding to this value is higher than the normal damping level in the air 

environment, and the reasons will be explained later in the parametric study. 

3.3 Floquet Theory 

Within this work, a bifurcation m dynamic response of an AFM is studied. The 

bifurcation results in a change in the stability of the existing periodic solutions and the 

creation of a new solution. Floquet theory is an important tool used to study the stability 

of periodic solutions (Nayfeh & Balachandran, 1995). 

Here the summary of the procedure for applying Floquet theory is presented. In the 

pursuit of simplicity, the state space form of the equation is used without the explicitly 

expressed dependence on all variables. The system is shown as Equation (3.41). 

x(t) = F(x(t), t; M) (3.41) 

In the equation, x(t) = [ql(t) qz(t) q3(t) fh(t) qz(t) q3(t)F is the six-dimensional 

state vector for the model used in this study and M is the parameter vector, which 

includes the parameters for the cantilever, the excitation and the tip-sample interaction. 
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In order to study the stability of a periodic solution of this system, x(t) is assumed to 

have the form in Equation (3.42) 

x(t) = Xo(t) + z(t) (3.42) 

In the equation, Xo(t) is a known periodic solution to Equation (3.41) and z(t)is a small 

disturbance. Equation (3.41) is expanded into a Taylor series and only linear term of z(t) 

is kept based upon the assumption of small disturbances. This yields Equation (3.43). 

z(t) = DxF(Xo, t; Mo) z(t) + O(lIz(t)1I2) or z(t) = A(t, Mo)z(t) (3.43) 

In this equation, A(t, Mo) = DxF(Xo, t; Mo) is the matrix of first partial derivatives of F 

with respect to the state variables. It is evaluated with the periodic solution Xo. The 

matrix is shown in Equation (3.44). 

DxF(Xo, t; Mo) = 

0 0 0 0 0 

0 0 0 0 1 0 

0 0 0 0 0 
J};,,1(wtiP ) ~(1)-wI2 a};"I(W"p) ~(l) a};s,l(w"p) ¢J(l) -~ 0 0 (3.44) 

aw"p aw"p aw"p QI 

a};s,2 (w"p) ~ (l) a};,,2 ( w"p) ¢2 (1) - wi a};"2(w,,P) ¢J(l) 0 
_ W2 

0 
aw'iP aw"p aw'iP Q2 

a};"3(W,,P) ~(l) a};"3(W,,P) ¢2(1) a};"3(W,,P) ¢J(l)-W; 0 0 -~ 
aw'iP aw'iP aw'iP Q3 

Six solutions of Equation (3.43) form a matrix solution as shown in Equation (3.45). 

(3.45) 

Every column of Z(t) is a six-dimensional vector corresponding to one solution. If 

Z(O) = I, where I is a 6x6 identity matrix, after the integration over one period, Z(T) 

satisfies Z(T) = Z(O) Z(T). This results in the monodromy matrix being defined by 
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<t> = Z (T). The eigenvalues of the monodromy matrix are known as the Floquet 

multipliers. The values of the Floquet multipliers offer a method to verify the stability of 

the periodic solution. The values can be complex numbers. If the norm of none of the 

values is equal to one (none of the Ploquet multipliers lies on the unit circle on the 

complex plane), the periodic solution is called hyperbolic. The periodic solution is 

asymptotically stable if all of the Ploquet multipliers are inside the unit circle. If at least 

one of the Ploquet multipliers is outside the unit circle, the periodic solution is unstable. 

If at least one of the Ploquet multipliers is on the unit circle for a nonautonomous system, 

the periodic solution is called non-hyperbolic and a nonlinear analysis is required to 

verify its stability. 

Particularly, during the change of the values of several parameters of the system, if 

Ploquet multipliers leave the unit circle, a bifurcation has occurred. The manner by which 

they leave the unit circle indicates what type of bifurcation has occurred. 

3.4 Computational Tools 

Mathematica is used to derive the model. Matlab and AUTO (Doedel, 1981) are used to 

perform the simulations, including the modeling, numerical integration and post-analysis. 

Matlab is used to begin the research, simulate and analyze the nominal case, and conduct 

the scan simulation. AUTO is able to perform a bifurcation analysis quickly and is used 

for the parametric study. 
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Chapter 4 Identification of Nonlinear Relationship and 

Bifurcation Phenomena 

The procedure to reproduce the experimental observation is described in this section. 

After the model is verified, it is used to generate more data in order to build bifurcation 

diagrams, which is an essential tool in studying the nonlinear behavior. A stability 

analysis is used to prove that the bifurcation is a period-doubling bifurcation. 

4.1 The Bifurcation Process 

The frequency of the excitation is 2.5 times the fundamental frequency of the cantilever. 

The excitation amplitude is tuned in order to match the free off-resonance oscillation 

amplitude to the value of 7 nm from the experiment, resulting Xo = 7.55 nm. 

During the writing of the thesis, one fact is noted that the laser system measures the 

deflection of the cantilever in the experiment rather than the total displacement. In the 

finished work the experimental values are matched as the total displacement. In the off

resonance case, the deflection and the base displacement are in the same scale, and re

calibration shows the value of Xo should be 3.63 nm. However, the parametric study 

shows that the behavior is insensitive to small changes of the excitation amplitude and it 

is believed that this discrepancy does not affect the discussions and conclusions regarding 

to the period-doubling bifurcation. 

The effective modulus in the DMT model is tuned in the simulation. This is done because 

in the experiment, the accurate value of the separation distance between the probe tip and 

the sample surface, which is related to the compression, is unknown. The value of the 
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effective modulus for the interaction between the silicon tip and silicone rubber material 

is only valid for small compressions. If the compression is large, the contact area will 

increase, and the thickness of the layer between the tip and the much stiffer glass 

substrate is decreased. Both factors will increase the effective stiffness of the silicone 

rubber material. In the simulation, it is discovered that the value of the effective modulus 

corresponding to the interaction between the silicon tip and the silicone rubber material is 

too small, and the period-doubling bifurcation is not observed in a reasonable range of 

compression. It is also discovered that the value of the effective modulus corresponding 

to the interaction between the silicon tip and the glass material is too large, and a 

discontinuous secondary Hopf bifurcation is observed. The effective modulus values in a 

middle range can be used to reproduce the experimental observation. The value E* = 

0.08518 CPa is used to simulate these conditions. 

The simulation is started with the probe far away from the sample and responding to the 

harmonic excitation. When the distance between the probe and the sample is sufficiently 

large, the tip-sample interaction is negligible and the base movement is the only source of 

excitation. The responses of the three modes are simulated and added together, as shown 

in Figure 4-1. 

As shown in these figures, the frequency of the response is the same as the frequency of 

the excitation. Under off-resonance excitation, the response of first mode is still the most 

significant component. The amplitudes of the oscillation corresponding to the second and 

third mode shapes are 8.7% and 0.55% of the amplitude corresponding to the first mode 

shape, respectively. Because of the phase difference between the relative deflection and 
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the base displacement, the amplitude of total displacement is smaller than the amplitude 

of the relative deflection. 

Then the distance between the rest position of the probe and the sample, i.e., the nominal 

separation distance 8, is decreased incrementally with a step length of 0.1 nm. The 

steady-state responses at every step are recorded for analysis. As the distance is decreased, 

the probe can experience the tip-sample interaction during its oscillation. The responses 

at 8 = 7 nm are shown in Figure 4-2. 
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The frequency of the response is still the same as the frequency of the excitation. The tip-

sample force curve shows that the tip experiences all three regions of the interaction. The 

maximum repulsive force is still very small. 

As 8 continues to decrease, the interaction force level continues to increase. After the 

repulsive interaction forces have increased sufficiently, a period-two motion is observed. 

The responses where 8 = 2 nm are shown in Figure 4-3. 

In this figure, there are two significant peaks in the spectrum at non-zero frequencies, and 

the magnitude of the sub-harmonic peak is 1.48 nm. This provides the means to identify 
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the period-doubling behavior experimentally by monitoring this sub-harmonic frequency 

component. The maximum repulsive force in Figure 4-3 (C) is 8.36 nN. 

As the nominal separation distance continues decreasing, the sub-harmonic component 

grows and the total response deviates more from the period-one motion. The time series 

plots and phase portraits corresponding to four different values of the nominal separation 

distances are illustrated in Figure 4-4. The comparison between the phase portraits of 

experimental data and simulated data is illustrated in Figure 4-5. 
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The responses are obtained for the nominal separation distance values of 2.6 nm, 1.5 nm, 

-0.1 nm, and -2.7 nm. The experimental results and the simulation results in Figure 4-5 

are qualitatively similar. The model is verified to be capable of reproducing and studying 

the bifurcation phenomenon. At the same time, two discrepancies exist. One of them is 

the change in the mean value of the response. In the experimental results the mean value 



5 

! 0 G) 
> .. I' . ~E ) - 5 L--~~_---;'~--J 

- 30 - 20 - 10 ! 0 
Disp. (nlTI) \ 

~ 
5 .. . . 1";' . 

S- O ..... 

<ii 
> 

- 5 
- 30 - 20 - 1d 0 

Disp. (n~') 

V; 5 

E 
S- O 

<ii 
.. (G) > - 5 ' I .... .. .. .. ,. ..... 

- 30 - 0 1' - 10 0 
DiS~. (nm) 

~ 50" ';: ':"': 
S- 0 . J: . 

a:i :: 
> - 5 ,, (.H) 

- 30 - 20 - 10 0 
Disp. (nm) 

5 - -- --: .. - -- ~ -- -- - -~ - -- - ,~-- ---. , . . 

!o ."G[), . 
-5 _____ ; _____ ~-- .. )- -- --~L -

-30 -20 -10 P 10 20 
DlSp (nr) 

I:!::~: 
~ ~ ~ 

-5 -----;------~------ t -----f-L-
-30 -20 -10 ~ 10 20 

DlSP (ni) 

-30 -20 -10 0 10 20 
Disp (nt) 

-30 -20 -10 0 10 20 
DlSp (nm) 

Figure 4-5. The comparison between (left) experimental and (right) 
simulated data. 

32 

moves to more negative values as the nominal separation distance between the probe tip 

and the sample decreases. The change is not as obvious in the simulation results as in the 

experimental results. The difference is believed to be caused by potentially larger 

repulsive force values in the experiment. Since the actual compression is not available in 

the experiment, the accurate force levels are not possible to be recreated. 

The second difference is the orientation of the phase portraits. In the experiment results , 

the crossing part of the curve is in the lower-left part of the plot. In the simulation results, 

the crossing part is in the upper-left part of the plot. This implies that the phase 

differences between the sub-harmonic response and the other significant component are 
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different in the experimental results and simulation results. This is believed to be caused 

by the presence of non-conservative tip-sample interactions in the experiment which were 

not represented in the model. This additional energy dissipation mechanism is believed to 

significantly affect the phase of the sub-harmonic response and subsequently, the 

effective orientation of the phase portrait plots. 

4.2 The Bifurcation Diagram 

This is a bifurcation process and can be visualized more clearly in the bifurcation 

diagram. In this nonautonomous system, the period of base excitation is used to prepare 

Poincare sections. Namely, the value of the deflection is captured when t - to = 

o (mod T), in which to is set to correspond to a local maximum total displacement with 

zero relative velocity. The sampled values are Wo. Wv Wz ... Wm , where m + 1 is the 

number of sampled values. Due to the periodicity of the excitation, ifwo ~ WI, all of the 

captured values are the same. If Wo ~ Wz and WI =1= wo, the response of which the 

Poincare section is collected has a period oftwo. For each separation distance and steady

state response, a Poincare section is collected. By plotting this data versus the separation 

distances, the bifurcation diagram is produced. It is illustrated in Figure 4-6. 

Where 8 is larger than 2.1 nm, the Poincare section has only one point corresponding the 

local maximum value of the total displacement of the period-one motion. The value 

decreases slowly as 8 decreases. After the sub-harmonic component appears, the 

Poincare section has two points, indicating the period-two motion. The value of one of 

them increases as 8 decreases, and the value of the other one decreases. The bifurcation 

point is at around 2.1 nm, which is defined as the critical separation distance. The four 
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dashed vertical lines and labels correspond to four different separation distance values of 

the response data presented in Figure 4-4. 

For material with different effective modulus, the bifurcation position changes. Several 

effective modulus values around 0.08518 CPa are used in the simulation and multiple 

diagrams are produced. The results are presented in Figure 4-7. 

The critical separation distance at the bifurcation point is the most significant 

characteristic of the bifurcation diagram which changes for interaction conditions with 

different values of the effective modulus. This is related to the interaction level required 

for the bifurcation to occur. The critical separation distance is lower for smaller effective 

modulus. This means, using the same probe, more compressions are needed to generate 

the sub-harmonic component for softer samples. The relation between the critical 

separation distance and the effective modulus is illustrated in Figure 4-8. 
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The curve in Figure 4-8 is referred to as the nominal case in this thesis, as some other 

curves are produced and discussed in the parametric study. This behavior is explored as a 

new source of contrast for mapping the effective modulus of the sample. A method is 

developed to utilize the critical separation distance of the bifurcation point in order to 

calculate the effective modulus. 

4.3 Floquet Analysis 

In order to verify the type of the bifurcation, Floquet multipliers are calculated at each 

step in the approaching process before the bifurcation. The trends are illustrated in Figure 

4-9. 

Since three modes are used in the simulation, there are six Floquet multipliers. As shown 

in the figure, the positions of four of them do not change significantly. The other pairs of 

Floquet multipliers first approach the real axis, then move away from each other along 

the real axis. One multiplier is moving to leave the unit circle at -1 before the bifurcation 
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occurs. According to Floquet theory, this behavior confirms that the bifurcation is a 

period-doubling bifurcation. 
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Chapter 5 Parametric Study and the Robustness of the 

Relations 

In the previous chapter, a strong relationship is observed between the critical separation 

distance and the effective modulus of the tip-sample interaction. However, the influence 

of other properties of the system on this value must also be investigated. These properties 

are represented by the excitation amplitude, the environmental damping level, the 

stiffness of the cantilever and the interaction force model. The excitation amplitude 

corresponds to the magnitude of the base excitation term. The quality factor characterizes 

the damping of the operation environment. The cantilever stiffness is determined for a 

number of commercially available cantilevers. Most interaction force models are only 

good for certain circumstances and uncertainty surely exists in real measurement. 

Parametric study is performed in order to investigate the influence of these conditions on 

probe response behavior. The goal of this study is to determine that if the period-doubling 

bifurcations occur for a larger range of parameter values and to determine how the critical 

separation distance is affected. Some of the work in this part is done in dimensionless 

forms. 

5.1 Varying the Excitation Amplitude 

The free oscillation amplitude in AFM changes in different modes and for different 

purposes. A typical free oscillation amplitude in tapping-model atomic force microscope 

is between 1 nm and 100 nm (Garcia & Ruben, 2002). The value is controlled by the 

driving signal to the excitation devices, which usually makes use of piezoelectric material. 
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The actual value may vary due to different components used in different AFM systems, 

or the capabilities of the actuator. For traditional topographical measurement, the set

point value is set to be smaller than the free oscillation value (50%-95%) to ensure 

successful intermittent contact. Then the controller adjusts the vertical position of the 

cantilever base or the sample to maintain the oscillation amplitude at the set-point value 

during the scan. Since the principle is to maintain the same level of interaction, a perfect 

controller will make the same amount of adjustment for different levels of excitation 

amplitude. The measurement value is calculated from the adjustment. Thus it can be 

insensitive to the changes in excitation amplitudes. For a proposed sample modulus 

measurement, the quantitative results can be calculated from the ratio between the 

dimensional critical separation distance and the free oscillation amplitude. If the ratio is 

insensitive to variations in the excitation amplitude, the calibration work can be reduced. 

This ratio is identified as the normalized critical separation distance in this thesis. In the 

nominal case, the free oscillation amplitude is 7 nm. Two different excitation levels 

resulting in free oscillation amplitudes of 5 nm and 10 nm are tested in this part of 

parametric study. The results are illustrated in Figure 5-l. 

These three curves display the same qualitative behavior. Only a small deviation is found 

for small effective modulus values. The curve for Fa = 10 nm has the largest deviation, 

suggesting that responses to larger excitation levels are expected to generate greater 

deviation. Some work on a one-side constraint impact oscillator also indicated that large 

changes in the forcing amplitude can change the bifurcation scenario (lng, Pavlovskaia, 

Wiercigroch, & Banerjee, 2010). For larger effective modulus values, small deviation 

exists between the smallest excitation amplitude case and the other cases. For the 
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conditions studied, the best measurement range is identified as 0.1 CPa to 0.25 CPa. The 

range can be shifted, however. This will be discussed in the parametric study for varying 

cantilever stiffness. 

5.2 Varying the Quality Factor 

The damping in the system can come from the ambient medium, the cantilever itself and 

the tip-sample interaction. The first two sources are represented by the quality factor Q. 

Tapping-mode AFM usually operates in an air or liquid environment, the quality factor 

being SO - 100 and about 10, respectively. The experimental work which is mentioned 

in the beginning of Chapter 3 is conducted in air. However, in the simulation, a high 

quality factor of SO will result in the occurrence of the Neimark bifurcations. This 

behavior is also observed for Q = 100. The choice of Q = 10 in the simulation is partly 
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justified since the DMT force model does not include energy dissipation. The lower value 

of Q is used to compensate for the energy dissipation at the tip-sample interaction 

between the silicon tip and silicone rubber sample. 

5.3 Varying the Cantilever Stiffness 

In the tapping mode AFM a standard practice is to select a cantilever based upon the 

stiffness of the sample. This idea is applicable in this work. Also, different bifurcation 

behavior is predicted for a much larger ratio of material effective stiffness to the 

cantilever stiffness (Dick, et aI., 2009). Thus it is important to investigate how the 

cantilever stiffness affects the bifurcation position and within what range the response 

behavior includes a period-doubling bifurcation. 

Three other cantilevers from Bruker Corporation (HMXS-10, DDESP-FM-10 and HMX-

10) (Bruker AFM Probes, 2010) are tested. The force constants for them are 1 N 1m, 
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2.8 N 1m and 4 N 1m, respectively. The results of the simulations are plotted in Figure 

5-2. The bifurcations have qualitatively similar characteristic for all four cantilevers. For 

stiffer cantilever, larger compression is needed for the bifurcation to occur. Since the best 

range is the middle of the curve where the compression is small and the slope is moderate, 

stiffer cantilever works better for stiffer materials. Similarly, softer cantilever works 

better for softer materials. 

5.4 Varying the Interaction Model 

DMT interaction model is used in this work. However, it is best for stiff material with 

little adhesion force. The best force model for a particular material is usually unknown 

and is one property to be measured. In order to study the influence of the form of the 

model on the bifurcation behavior, the empirical model is also used. The values of the 

parameters for the empirical model are calculated in the manner presented in Chapter 3. 

The comparison of the two interaction force models are illustrated in Figure 5-3. The 

different hardening behavior in the repulsive region should be noted. 

The critical separation distance versus the effective modulus curves are illustrated in 

Figure 5-4. The qualitative trends of the data sets are similar. But the compression for 

materials with lower effective modulus is considerably larger with the DMT model. This 

is due to the different hardening behavior. This suggests that the application should be 

limited in small compression region, and some knowledge of the appropriate interaction 

force model is desired before the measurement. 
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Chapter 6 Fast Scan Scheme 

Based on the relationship between the critical separation distance and the effective 

modulus, a scanning scheme is proposed to measure the localized effective modulus with 

nano-scale resolution. The method is described in this part and some simulated results are 

presented. The performance of the controller is discussed as well. A step by step 

description of the proposed implementation of the scan scheme is presented at the end of 

the chapter. 

6.1 Control Algorithm 

The control algorithm focuses on keeping the response at the early stage of the period

doubling bifurcation. This is characterized by a small amplitude value of the sub

harmonic component of the response, the frequency of which is one-half of the excitation 

frequency. This quantity can be measured experimentally by using a lock-in amplifier or 

with a fast Fourier transform technique. A PID or PI controller is usually used in the 

tapping mode AFM. In this work, the form of the controller from another work in the 

tapping mode AFM is used (Solares & Chawla, 2008). During the preparation process 

before the scan process, the sample is moved towards the excited probe to enable 

intermittent contact. The nominal separation distance is further reduced to enable the 

period-doubling bifurcation with the sub-harmonic amplitude equal to a selected set point 

value Asp. During the scan process, the control algorithm adjusts the nominal separation 

distance between the tip and the sample surface, i. e. the distance between the rest position 

of the cantilever base and the sample surface, in order to maintain the sub-harmonic 
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amplitude at the set-point value. In the simulation the control command is assumed to be 

calculated and applied at discrete time moments, the separation of which is twice the 

period of excitation. The algorithm is defined by Equation (6.1) through Equation (6.3). 

{6.1} 

N 

pen) = K[ 2)A1/2(n - i) - Asp] {6.2} 

i=l 

8(n) = 8(n - 1) + {en) + pen) {6.3} 

In these equations, A1/2 is the sub-harmonic amplitude, 8 is the nominal separation 

distance between the probe and the sample surface (very close to the critical separation 

distance for the bifurcation in this case), and n is the index of the discrete time moments. 

The adjustment contains two parts €(n) and p(n).The term €(n) is proportional to the 

error between the current sub-harmonic amplitude and the set-point value. The term pen) 

is a function of the summation of the past N errors. In this study, Asp is set to 1 nm, 

which causes a maximum repulsive interaction force of less than 8.36 nN for E* = 

0.08518 CPa, according to Figure 4-3. The parameter N is set to 10. The gains Kp and 

K[ are tuned for better performance in I-D scan, which is described later. Their values are 

set to 0.005 and 0.0001, respectively. 

The middle part of the curve in Figure 4-8 is selected as the best measurement range of 

the cantilever in the test. The curve can be well fitted into an exponential relation. For 

simplicity, a linear approximation for five points with effective modulus from 0.06 CPa 

to 0.1 CPa is used. The curve fitting result is Equation (6.4) . 

E* = 1.56 X 1078;; + 0.0529 {6.4} 
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In this equation, lfc is the dimensional critical separation distance in m and E* is the 

dimensional effective modulus of the sample in GPa. It should be noted that in the 

practice, the normalized critical separation distance, which is dimensionless and defined 

by lfc/Ao, can be used instead of 8c in Equation (6.4). 

6.2 1-D Scan 

In order to test the effectiveness of the control algorithm, a number of sample conditions 

are tested. They are atomic flat with varying effective modulus values. The condition of 

being atomic flat is used here to simplify the calculation and illustration of the results. In 

this case, the nominal separation distances during the scan are close to the critical 

separation distances. If the sample is not flat, the topography should be scanned before, 

and the critical separation distance is given by subtracting the height of the sample from 

the nominal separation distance. 

The size of the sample is 10 nm and the scan speed is 100 nm/s. Three types of 

variation of the effective modulus are selected to both account for common real variation 

and testing of the control algorithm. The varying range in all three cases is from 

0.8519 GPa to 1 GPa. The results are illustrated in Figure 6-1. 

The identified value oscillates around the true value and the deviations are small. The 

sub-harmonic amplitude is also well controlled. A steady-state error exists in these plots, 

particularly in Figure 6-1 (C). In order to explain this, the relationship between the sub

harmonic amplitude and the nominal separation distance is investigated. This relationship 

is illustrated in Figure 6-2. The small sub-harmonic amplitude is necessary for the 

controller and at the critical separation distance the sub-harmonic amplitude 
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should be zero. Thus the controlled separation distance corresponds to the vertical dashed 

line and is less than the critical separation distance, which is used in Equation (6.4). 

This error can be reduced by using a smaller set-point value for the sub-harmonic 

amplitude. The smallest value will depend on the resolution of the data acquisition and 

analysis module in the AFM, in practice. This error can also be reduced by identifying 

the relationship between the sub-harmonic amplitude and the separation distance and 

using it to calculate the effective modulus values. 
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Two conditions with significant oscillations are noted. One is in Figure 6-1 (E), the 

oscillation is larger in the second half part of the scan, indicating that the controller 

performs well to follow the increasing effective modulus, and the performance is not as 

well when the effective modulus decreases along the scan direction. The two additional 

dashed curves in Figure 6-2 provide the explanation. The relationship between the sub

harmonic amplitude and the nominal separation distance can be divided into two parts, 

and the boundary is at the critical separation distance. If the effective modulus of the 

sample increases, the curve in Figure 6-2 shifts to the right side along the x axis and the 

monitored sub-harmonic amplitude increases from point A towards point C. These two 

points are in the same part of the curves. However, if the effective modulus of the sample 

decreases, the relationship shifts to the left side and the monitored sub-harmonic 

amplitude decreases from point A towards point B. These two points are in different parts 

of the curves. In the part where point B is located, the sub-harmonic amplitude does not 

change as the nominal separation distance changes. The controller is not designed to take 

this into account. Significant oscillations are also noted at and after the position of 

discontinuity of the effective modulus, as in Figure 6-1 (C) and (F). The oscillation is 

believed to be caused by the nonlinearity in the relationship between the sub-harmonic 

amplitude and the separation distance, and the controller in the tapping mode AFM is 

designed for a locally linear relationship between the oscillation amplitude and the 

separation distance. Implementing a nonlinear model for the relationship between the 

effective modulus and the critical separation distance into the control laws should 

improve the accuracy of the effective modulus values, which are calculated from the 

critical separation distances. 
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6.3 Raster Scan 

In this part, the control algorithm is tested in a surface scan. The size of the sample 

surface is 10 nm x 10 nm. The sample stage is driven to move in the x - y plan, causing 

a relative movement of the probe tip with respect to the sample surface. The probe scans 

back and forth along x axis, and proceeds along y axis when it reaches the edges of the 

scan area. The scan path is illustrated in Figure 6-3. 
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Figure 6-3. The illustration of the relative movement of the probe tip 
with respect to the sample in the raster scan 

Two samples with atomic flat surfaces are simulated. The effective modulus of the first 

sample varies harmonically along the x axis, and stays constant along the y axis. The 

distribution is given by Equation (6.5). 

E*(x,y) = 0.08518 + 0.01 x (1 + Sin(5
1

x

O 
IT)) {6.5} 

In this equation, x and yare the dimensional coordinates in nm and E* IS the 

dimensional effective modulus of the sample in CPa. 
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This distribution favors the proposed raster scan, since the resolution along the x axis is 

much higher than the resolution along the y axis, and for this distribution, only the 

information along the x axis is important. The results are illustrated in Figure 6-4 as a 3D 

surface plot and in Figure 6-5 as contour plots. The contour plot of the identified values is 

produced by the interpolation of the curve in the 3D surface plot. 
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The identified values agree well with the true distribution. Two discrepancies are 

observed. One is that the identified values are lower than the true value, the reason of 

which is that the nonzero sub-harmonic amplitude corresponds to a smaller separation 

distance than the critical separation distance. The second one is the "saw-tooth" along the 

edge of the stripes in the contour plot. This is caused by the two opposite scan directions 

along the x axis and the delay in the response of the control algorithm to the variances of 

sample properties. It is noted that the delay is more significant than the delay in Figure 

6-1 (B). This is because the rate of variance of the effective modulus here is faster than 

the one in the 1-D scan. 

The effective modulus of the second sample varies along both the x axis and the y axis. 

The distribution is given by Equation (6.6). 

E* (x, Y) = 0.08518 + 0.01 sin (;0 1[ ) sin ({orr) (6.6) 

In this equation, x and y are the dimensional coordinates in nm and E* is the 

dimensional effective modulus of the sample in CPa. 

The results are illustrated in Figure 6-6 as the 3D surface plot and in Figure 6-7 as 

contour plots. 

The identified values agree with the true distribution, but the agreement is not as good as 

the previous simulation. The identified values are again lower than the true values. 

Another discrepancy is that a significant amount of oscillations are generated in the 

identified value. These oscillations are more significant in the part where the effective 

modulus is decreasing. This implies that the control algorithm follows increasing 

effective modulus values better than decreasing effective modulus values. This is 
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believed to be caused by the nonlinearities in the relationship between the sub-harmonic 

amplitude and the compression, and the use of a linear control algorithm. 
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6.4 Summary of the Scan Scheme 

As a summary, the proposed scan is to be conducted through these steps: 

1) The AFM is operated in tapping-mode and used to measure the topography of the 

sample. This function is available in tapping-mode AFM equipment already. The 

determination of the exact location of the effective surface of the sample is being 

improved for better accuracy by new methods (Dick, et aI., 2009). 

2) At the starting position of the scan, the separation distance between the tip and the 

sample is set to a large value to avoid significant interaction. The driving 

frequency is set to two-and-a-half times the fundamental frequency of the 

cantilever probe. The level of the excitation is tuned to generate moderate 

oscillation amplitude. 

3) Based on the knowledge of the location of the effective surface of the sample, the 

nominal separation distance between the rest position of the tip and the sample 

surface can be determined. The nominal separation distance between the tip and 

the sample is decreased while the amplitude of the sub-harmonic component at 

half of the excitation frequency in the response is monitored. This process stops 

when the amplitude reaches a small set-point value. At this moment, the nominal 

separation distance corresponds to a value close to the critical separation distance. 

4) The tip is moved laterally on the sample surface along pre-defined scan path (e.g. 

ruster scanning path), while the controller is adjusting the nominal separation 

distance to maintain the sub-harmonic amplitude at the set-point value. The values 

of the nominal separation distance and the topographical information are used to 
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calculate the critical separation distance or normalized critical separation distance 

along the scan path. 

5) The relationship between the effective modulus of the sample and the critical 

separation distance or the critical separation distance is used to calculate the 

effective modulus of the sample. In the simulation, Equation (6.4) is used as the 

relationship. However, in the practice, the reconfirmation or calibration of this 

relationship should be done through the measurement on samples with known 

values of the effective modulus. 
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Chapter 7 Concluding Remarks 

7.1 Summary 

This work is focused on the period-doubling bifurcation in atomic force microscopy. This 

nonlinear phenomenon has been observed in the constrained oscillation systems before, 

but its potential application is not previously identified and studied. In this work, one 

significant characteristic of the period-doubling bifurcation, i. e. the critical separation 

distance, is related to the effective modulus of the tip-sample interaction in tapping mode 

AFM. The relationship can be combined with a scan scheme to form a fast mapping 

method for localized material properties. This method does not require special 

fabrications and can avoid strong destructive interaction forces. 

The multi-mode approximation and the Galerkin method are used in order to prepare a 

model to simulate the behavior of the AFM probe. The model is capable of capturing the 

nonlinear behavior in the approaching process. The model can be improved if the energy 

dissipation can be modeled more accurately, but the identified relationship between the 

effective modulus and the critical separation distance at the period-doubling bifurcation 

point is believed to be relevant to AFM dynamics. 

Through the parametric study, the qualitative bifurcation behavior is confirmed to be 

robust in a range of parameter values. The quantitative differences can be reduced by 

choosing ideal operating conditions. In this work the preferred environment requires high 

damping levels either within the operating environment or at the tip-sample interface. 

Simple designs of the controller and scan scheme verifies that the study of the period

doubling bifurcation is promising in developing a new fast mapping method for the 
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effective modulus. The controller in this work is linear, and it is believed that the use of a 

nonlinear controller will improve the performance of the material characterization 

scheme. 

7.2 Future Work 

In order to improve performance, an improved model of the interaction force, more 

parametric studies, and the development of a nonlinear control can be explored. A 

bifurcation analysis, which uses analytical or semi-analytical method to reproduce and 

study the bifurcation, is desired as well in order to understand the causes of this 

bifurcation and to improve the efficiency of the implementation and accuracy of the 

control algorithm. Finally, the experimental verification should be done. 
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