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ABSTRACT 

Spatial and Temporal Image Prediction with Magnitude and Phase 
Representations 

by 

GangHua 

In this dissertation, I develop the theory and techniques for spatial and temporal image 

prediction with the magnitude and phase representation of the Complex Wavelet Transform 

(CWT) or the over-complete DCT to solve the problems of image inpainting and motion 

compensated inter-picture prediction. 

First, I develop the theory and algorithms of image reconstruction from the analytic 

magnitude or phase of the CWT. I prove the conditions under which a signal is uniquely 

specified by its analytic magnitude or phase, propose iterative algorithms for the reconstruc-

tion of a signal from its analytic CWT magnitude or phase, and analyze the convergence of 

the proposed algorithms. Image reconstruction from the magnitude and pseudo-phase of 

the over-complete DCT is also discussed and demonstrated. 

Second, I propose simple geometrical models of the CWT magnitude and phase to de-

scribe edges and structured textures and develop a spatial image prediction (inpainting) 

algorithm based on those models and the iterative image reconstruction mentioned above. 

Piecewise smooth signals, structured textures and their mixtures can be predicted success-

fully with the proposed algorithm. Simulation results show that the proposed algorithm 



achieves appealing visual quality with low computational complexity. 

Finally, I propose a novel temporal (inter-picture) image predictor for hybrid video 

coding. The proposed predictor enables successful predictive coding during fades, blended 

scenes, temporally decorrelated noise, and many other temporal evolutions that are beyond 

the capability of the traditional motion compensated prediction methods. The proposed 

predictor estimates the transform magnitude and phase of the desired motion compensated 

prediction by exploiting the temporal and spatial correlations of the transform coefficients. 

For the ease of implementation in standard hybrid video codecs, the over-complete DCT 

is chosen over the CWT. Better coding performance is achieved with the state-of-the-art 

H.264/AVC video encoder equipped with the proposed predictor. The proposed predictor 

is also successfully applied to image registration. 
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Chapter 1 

Introduction 

In this dissertation, I solve the problems of in painting and motion compensated inter-picture 

prediction with novel spatial and temporal image prediction techniques that benefit from 

the new perspective provided by the magnitude and phase representations of the Complex 

Wavelet Transform (CWT) and the over-complete DCT. Under those magnitude and phase 

representations, the formulation and modeling of complicated spatial and temporal image 

evolutions with the presence of edges, patterned textures, linear temporal distortion, and 

structured temporal interference are greatly simplified. First, I develop the theory and algo­

rithms about image reconstruction from those magnitude and phase. Then, I propose simple 

models under those representations for describing the spatial and temporal image evolu­

tions involved in the targeted inpainting and inter-picture prediction problems. Finally, I 

apply the developed image reconstruction algorithms to construct the desired prediction 

results. 

1.1 Magnitude and Phase Representations for Image Prediction 

The magnitude and phase ofthe CWT or the over-complete DCT are local measurements of 

signal energy amplitude and location respectively. For example, around an edge, the mag­

nitude indicates the edge sharpness within a nearby region with non-zero signal energy; the 

phase is only significant in that region with non-zero magnitude and represents the informa-
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tion about the exact edge location. It follows that the magnitude is a smooth function along 

edges with unifonn sharpness and the phase is close to linear around edges and within 

patterned textures under certain conditions. For spatial prediction, therefore, simple 2D 

geometrical models and 2D linear functions can closely approximate the CWT magnitude 

along edges and the CWT phase within patterned textures respectively. Those simple (lin­

ear) models while applied on the nonlinear magnitude and phase result in simple, fast, and 

nonlinear spatial predictors. For temporal (inter-picture)prediction, important infonnation 

for rejecting temporal interference and correcting temporal distortion can be easily inferred 

from the involved spatial neighborhoods of the magnitude and phase. Equipped with the 

inferred infonnation, a simple linear predictor in the CWT or over-complete DCT domain 

achieves successful nonlinear temporal prediction. 

The magnitude and phase of the CWT or the over-complete DCT represent an image in 

"dual" ways in the sense that they both can represent an image alone, being complimentary 

measurements of local signal amplitude and location. . It can be shown mathematically 

that an image is unique given its CWT magnitude or phase under certain conditions and 

the image can be reconstructed from the CWT magnitude or phase with some iterative 

algorithms. Similarly, the magnitude and pseudo-phase of the over-complete DCT can also 

reconstruct an image alone, although no mathematical proof is available. Therefore, an 

image can be predicted successfully if either its magnitude or phase is predicted correctly 

with the simple models mentioned above. It has to be noted though that, whenever possible, 

drawing infonnation from both magnitude and phase is beneficial and desirable for the 

targeted image prediction problems. 

Moreover, those magnitude and phase representations are known to match closely how 
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the human visual system encodes visual infonnation. There are psycho-physical and phys­

iological experiments and findings showing that the human visual system is sensitive to 

localized 2D spatial phases and suggesting that the human visual system might be using 

localized 2D phases for encoding visual infonnation internally ([1,2, 3]). The CWT pro­

vides such a type of localized 2D spatial phase via the wavelet and filter design techniques 

and the CWT magnitude encodes image infonnation in a "dual" way to the CWT phase. 

Therefore, perfonning prediction properly with those magnitude and phase may give results 

with high visual quality. The over-complete DCT and may be employed as an alternative 

when the CWT is not applicable (e.g., video encoding with block based coding and motion 

compensation scheme). 

1.2 The Spatial and Temporal Image Prediction Problems 

The spatial image prediction considered in this dissertation is the problem of predicting a 

certain (missing) region in an image from the neighboring known regions (Figure l.I (a)). 

The problem is also known as image inpainting [4, 5,6] and it may occur under the situation 

of recovery of image and video from damages as well as spatial predictive image and video 

coding. As shown by the example in Figure 1.1, to predict the missing region successfully, 

smooth functions, edges and patterned textures all have to be interpolated correctly from 

the neighboring known regions. 

Most existing inpainting works fall into the following 3 categories. First, diffusion 

based methods fonnulate inpainting as a variational problem in the pixel domain and solve 

it with partial differential equations [7, 8,4, 9, 5, 10]. These methods propagate the pixel 
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, J -+ 
16 x 16 
(a) Spatial prediction 

-+ 

Reference frame Frame to be coded Prediction 

(b) Temporal prediction 

Figure 1.1 : The considered spatial and temporal image prediction problems: (a) The spatial 
prediction recovers the missing 16x16 pixels from the available neighboring pixels (note 
that the missing block contains both edges and textures ); (b) Temporal prediction estimates 
a 16x 16 pixels block from the past frame image and the available causal blocks in the 
current frame (note that the past frame is a blended scene). 

values in the surrounding regions into the missing region. Second, texture synthesis and 

examplar-based methods propagates the image information from know regions into the 

missing region at the patch level in the pixel domain [11, 12, 13]. Third, sparse coding 

based methods define inpainting as a non-linear minimization problem seeking a sparse 

solution under some fixed or learned dictionaries [14, 15, 16, 17]. Different from the ex-

isting methods, the proposed method in this dissertation interpolates the CWT magnitude 

and phase in the missing region from the magnitude and phase in the surrounding regions 

respectively. 
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The temporal prediction problem considered in this dissertation is aimed at the motion 

compensated inter-picture prediction for hybrid video coding (Figure 1.1 (b)). Traditional 

motion compensated prediction relies on translated blocks (may be low-pass filtered) from 

reference frames to directly match blocks in the frame to be coded. However, during fades, 

focus change, blended scenes, temporally decorrelated noise, and many other temporal evo­

lutions, the traditional predictors will fail in finding a reasonably good temporal prediction 

from the reference frames, because the reference frames contain both a prediction relevant 

part and significant interference. The relevant part in a reference frame may be distorted 

(linearly scaled or filtered) from the frame to be coded and the interference may be noise, 

clutter, or another blending image. Therefore, to achieve successful inter-picture predic­

tion, the temporal interference has to be rejected and the distortion in the relevant part has 

to be corrected. In this dissertation, I am interested in the temporal prediction problem 

under the above difficult conditions. This dissertation proposes a new inter-picture predic­

tion method which estimates the over-complete DCT magnitude and pseudo-phase of the 

desired temporal prediction by exploiting their temporal and spatial correlations. This tem­

poral prediction problem for motion compensated prediction is new and there is no directly 

related previous result reported. 

1.3 The Proposed Work of the Dissertation 

The spatial and temporal image prediction problems described above are very challeng­

ing interpolation or extrapolation problems, when the involved image signals exhibit some 

complicated patterns and evolutions in the spatial and temporal domain as shown in the 
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Figure 1.1. To successfully address these difficult problems, this dissertation exploits one 

simple idea: complicated spatial and temporal image patterns and evolutions become easy 

to model and predict under the magnitude and phase representations of the CWT or the 

over-complete DCT. Simple and straightforward modeling techniques while applied prop­

erly under those representations achieve high quality prediction results. 

In this dissertation, I consider the spatial and temporal prediction problems by exploring 

the new perspective of magnitude and phase image representations. 

First, to develop understanding and insights about this new perspective, I investigate 

the theory and algorithms about image reconstruction from the analytic magnitude and 

phase provided by the CWT. The conditions under which a signal is uniquely specified 

by its analytic magnitude or phase are presented. Iterative algorithms for reconstructing 

an image from its analytic magnitude or phase are proposed and the convergence of the 

proposed algorithms is analyzed. The extension of the results about the analytic magnitude 

and phase to the CWT and the over-complete DCT is also discussed and demonstrated. 

Second, for the spatial prediction problem, I propose a simple inpainting method fol­

lowing the iterative algorithms for image reconstruction from the CWT magnitude and 

phase. The proposed method predicts the CWT magnitude and phase in the missing re­

gion band by band in the order of decreasing band energy with simple geometrical models 

(2D directional model for magnitude around edges and 2D linear model for phase within 

structured textures). Then, the proposed method constructs an estimate of the missing 

region through iterated image reconstruction from the predicted CWT magnitude and/or 

phase. Different from existing methods in the aforementioned 3 categories, the proposed 

method only estimate a few simple linear model parameters under the nonlinear magnitude 
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and phase representation and does not need to solve complicated nonlinear optimization 

problems. Simulation results show that the proposed algorithm achieves appealing visual 

quality and competitive PSNR with low computational complexity. 

Finally, for the temporal prediction problem, I propose a new inter-picture prediction 

technique that looks at the over-complete DCT magnitude and pseudo-phase of the refer­

ence frame and the frame to be coded, infers the information about the temporal interfer­

ence and distortion from the spatial neighborhoods, and constructs a simple linear temporal 

filter in the over-complete DCT domain to reject the interference and correct the distortion. 

Better coding performance is achieved with the state-of-the-art H.264/AVC video coder 

equipped with the proposed predictor. The proposed temporal predictor is also success­

fully applied for image registration. 

1.4 Organization of this Dissertation 

This dissertation is organized as follows. Chapter 2 reviews the background information 

about a few related forms of magnitude and phase image representations for image pre­

diction: the Fourier spectral representation, the analytic representation, the CWT, and the 

over-complete DCT. Chapter 3 develops the theory and algorithms for image reconstruction 

from the analytic magnitude or phase of the CWT. Chapter 4 and 5 describe the proposed 

spatial and temporal image prediction algorithms respectively. Chapter 6 concludes the 

dissertation. 
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Chapter 2 

Image Representations with Magnitude and Phase 

Appropriate representation and modeling of edge energy and location are critical to the 

successful prediction of the spatial and temporal image evolutions discussed in the previous 

chapter. For example, image inpainting around an edge or within patterned textures is 

essentially a task of predicting or modeling the spatial location of the edge or the regularly 

patterned group of edges in the missing image region. Temporal prediction consists of 

separating the energy of relevant and irrelevant image features (mostly edges), and learning 

and inverting of the temporal distortion (basically the sharpness and brightness changes of 

edges). 

The magnitude and phase representation of the CWT is a suitable tool for describing 

and modeling edge energy and location. Edge energy and location are represented hier­

archically by the CWT magnitude and phase respectively in an un-aliased, localized and 

multi-resolution fashion. The energy of edges and patterned textures is decomposed into 

different frequency and orientation bands almost alias-free. Within each band, the mag­

nitude is a smooth function along edges with uniform sharpness and the phase is close to 

linear around edges and within patterned textures under certain conditions. Roughly speak­

ing, the magnitude indicates the vicinity and sharpness of the edge, and the phase contains 

detailed information about edge location and edge profile. For the spatial and temporal 

image prediction problems, those magnitude and phase are suitable for local spatial inter-
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polation and local modeling of temporal interference and distortion. 

The mathematical basis of the magnitude and phase representation of the CWT is the 

analytic representation of real signals. Later in this dissertation, the theory and algorithms 

about image reconstruction from the analytic magnitude and phase of the CWT will be 

investigated and applied. The analytic representation is rooted in the Fourier spectral rep­

resentation which is also a form of magnitude and phase representation of real signals, and 

image reconstruction from the Fourier magnitude and phase has already been researched 

extensively. This chapter first reviews the background information about these two ba­

sic types of magnitude and phase representations: the Fourier spectral representation and 

the analytic representation (including the CWT). Then, the over-complete DCT and other 

related representations are also briefly reviewed. The idea of modeling and estimating lo­

cal image features with the magnitude and phase representations for the image prediction 

problems is also motivated and illustrated. 

2.1 Introduction 

A complex number e can be represented by its magnitude lei and phase Le, where lei 

measures the energy of e and Le indicates the relative energy of the real and imaginary 

parts. Similarly, a real-valued signal can be represented by the magnitude and phase of a 

complex-valued function linearly derived from that real signal. Generally, the magnitude 

in those representations is some type of signal energy measurement and the phase contains 

detailed information about the signal structure. 

The Fourier spectral representation and the analytic representation are probably the 
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most widely used fonns of magnitude and phase representations for real signals. The 

Fourier spectral magnitude and phase measure the strength and relative shift of global si­

nusoidal signal components respectively. It is well known that the Fourier phase carries 

important infonnation about edge locations and the theory of image reconstruction from 

the Fourier magnitude or phase has been extensively researched. Those results on the 

Fourier representation will be reviewed briefly in Section 2.2, since they are deeply related 

to the analytic representation used in the CWT. 

The analytic representation of a real signal is fonned by discarding all the negative 

frequency components of the real signal (without loss of any infonnation due to the spectral 

symmetry of real signals). The analytic magnitude indicates local signal energy amplitude 

and phase contains detailed infonnation about signal structure. The CWT represents an 

image with a set of un-alias ed, multi-resolution and localized analytic magnitude and phase 

that are suitable for modeling and predicting local image features within a small spatial and 

temporal neighborhood. The over-complete DCT represents an image with a similar set 

of DCT magnitude and pseudo-phase, which is a special case of magnitude and phase 

representation with the imaginary part of the complex-valued function being zero. The 

analytic representation and the CWT will be introduced in Section 2.3. The over-complete 

DCT and other related representations will be discussed in Section 2.4 and 2.5 . 

2.2 Image Representation with the Fourier Magnitude and Phase 

The Fourier transfonn provides a way of representing an image with its spectral magnitude 

and phase. In the discrete case, the Discrete Time Fourier Transfonn (DTFT) X(w) E (C of 
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a signal x E IR N is given below: 

N-l 

X(w) = L x(n)e-i wn 

n=O 

The Fourier magnitude Px(w) = IX(w)1 and phase ex(w) = LX(w) measure the strength 

and relative shift of the global sinusoidal signal components ei wn = cos( wn) + j sin( wn) 

respectively. The extension of the Fourier transform to 2D (and higher dimensions) is 

straightforward. 

N-l M-l 

X(u, v) = L L x(n, m)e-i (un+vm) 

n=O m=O 

The Fourier magnitude and phase of a given image (a 128 by 128 block cropped from 

the standard Lena image) are shown in Figure 2.1. The importance of the Fourier phase for 

signal and image representation has been investigated in [18]. The authors demonstrated 

that most of the information about the edges is contained in the Fourier phase, but not in 

the Fourier magnitude by an experiment similar to Figure 2.2. 

(a) an image (b) the Fourier magnitude (c) the Fourier phase 

Figure 2.1 : The Fourier magnitude (in log scale and darker colors show smaller values) 
and phase (in linear scale from -1r to 1r and dark colors show smaller values) of an image 
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(a) (b) (c) (d) 

Figure 2.2 : The Fourier magnitude and phase experiment: (a) a block from Lena; (b) a 
block from Barbara; (c) inverse Fourier transform with, Lena's magnitude and Barbara's 
phase (looks like Barbara); (d) inverse Fourier transform with Lena's phase and Barbara's 
magnitude (looks like Lena). 

Furthermore, the authors of [18] proved that a sequence is unique given its Fourier phase 

under the following conditions and proposed iterative algorithms for image reconstruction 

from the Fourier phase. 

Theorem 1 (The uniqueness given Fourier phase [18]). A sequence which is known to 

be zero outside the interval 0 :s; n :s; N - 1 is uniquely specined to within a scale factor 

by (N - 1) distinct samples of its Fourier phase (or tangent of its phase) in the interval 

o < W < 7r, if the sequence has a z-transform with no zeros on the unit circle or in 

conjugate reciprocal pairs. 

The uniqueness of a sequence with specified Fourier magnitude was considered in [19] and 

the following theorem was proposed. 

Theorem 2 (The uniqueness given Fourier magnitude [19]). A sequence which is known 

to be zero outside the interval 0 :s; n :s; N - 1 is uniquely specined to within a sign and/or 

a time shift by (N - 1) distinct samples of its Fourier magnitude in the interval 0 < W < 7r, 

if it has a z-transform with all zeros outside (or inside) the unit circle. 
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Given the above uniqueness conditions, a signal can be predicted successfully, as long as 

its Fourier magnitude or phase can be estimated correctly. 

The above theorems about the Fourier magnitude and phase were extended to 2D and 

higher dimensions in [20, 21]. The image reconstruction results from the Fourier magnitude 

or phase are shown in Figure 2.3. It can be seen that the reconstruction result from only the 

magnitude is so poor that it cannot be used in real life applications like image and video 

coding. It has been shown in [21] that to obtain good reconstruction quality, the signs of all 

the Fourier phase variables may be required. The signal representation and reconstruction 

from the short time Fourier transform were also considered in [22, 23, 24]. 

(a) original image (b) from magnitude ( c) from phase 

Figure 2.3 : The reconstruction results from the Fourier magnitude or phase: (a) the orig­
inal image; (b) image reconstructed from magnitude (PSNR = 20.17dB); (c) image recon­
structed from phase (perfect reconstruction). 

For the inpainting and motion compensated inter-picture prediction problems discussed 

in the previous chapter, image prediction has to be done within a small local neighbor-

hood. However, predicting local image features with the Fourier magnitude and phase is 

a very difficult task, because the Fourier magnitude and phase are global measurements 

of sinusoidal signal components. Any significant change in one local area of a signal re-
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(a) (b) (c) 

I ............ .. .... .. 

1- magnitudel I--- phasel I- magnitude l 
~~==~ ______ ~~=d 1---phasel 

(d) (e) (f) 

Figure 2.4 : The influence of local features on the Fourier magnitude and phase: (a) signal 
one; (b) signal two; (c) the sum of the two signals; (d, e, f) the Fourier magnitude and phase 
of (a, b, c), respectively. 

sults in significant changes to almost all the Fourier magnitudes and phases. This effect is 

demonstrated in Figure 2.4. The Fourier magnitude and phase of two localized signals in 

(a) and (b) are shown in (d) and (e) respectively. The third signal (c) which is the sum of 

the two localized signals has Fourier magnitude and phase much more complicated than 

the two localized signal components. In reality, a signal or image is composed of a lot of 

local features and its Fourier magnitude and phase become very complex (e.g., Figure 2.1 

(b) and (c)). Therefore, modeling and estimation of local image features with the Fourier 

magnitude and phase are difficult. 
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2.3 Image Representation with the Analytic Magnitude and Phase 

The analytic magnitude and phase are suitable for representing oscillatory signals and have 

been widely used for characterizing band-pass signals and systems in communication the­

ory [25]. The magnitude and phase indicate the envelop and oscillation of a signal respec­

tively. The CWT uses the analytic magnitude and phase for representing the oscillatory 

real wavelet coefficients. 

2.3.1 Analytic Magnitude and Phase 

A real-valued signal x( n) can be viewed as the real part of a complex-valued analytic signal 

c(n) = x(n) + j x(n), where x(n) denotes the Hilbert transform of x(n). The analytic 

magnitude and phase of x(n) are Ic(n) I and Lc(n) respectively. 

In the Fourier frequency domain, 

C(w) = X(w) Fa(w) = 

2S(w), w > 0 

S(O), w = 0 

0, w < 0 

where Fa(w) is the frequency response of an ideal analytic filter fa(n) which suppresses 

all the negative frequencies (Fa(w) = 0 if and only if w < 0). In the time domain, the 

impulse response of the ideal analytic filter is fa(n) = b(n) + j h(n), where h(n) is the 

impulse response of the Hilbert transform. Since the Fourier transform of real signals has 

the complex conjugate symmetry, removing the negative frequency components does not 

loose any information about x(n). 

The analytic magnitude and phase of an oscillatory signal and the impulse response of 

the Hilbert transform (approximately implemented with the Fast Fourier Transform (FFT)) 
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are shown in Figure 2.5 1. As shown in the figure, the magnitude is the envelop of the 

signal and the phase indicates the oscillation cycle. In general, the analytic magnitude and 

phase reveal fundamental signal characteristics [26]: the magnitude defines the amplitude 

of local sinusoid and the phase relates to small local shifts. 

Magnitude ~ 

(a) (b) (c) 

Figure 2.5 : The analytic magnitude and phase representation approximately implemented 
with the FFT: (a) one real oscillatory signal; (b) its analytic magnitude and phase; (c) the 
impulse response of the Hilbert transform. 

The analytic representation can be easily extended to 2D and higher dimensions by 

following [26, 27, 28]. For the 2D case, half of the 2D frequency plane can be discarded 

by analytic filters due to the symmetry of the 2D Fourier transform of real signals. In this 

dissertation, I use two complex signals Cl (n, m) and C2 (n , m) with non-zero response in 

the first and fourth quadrant of the 2D Fourier frequency plane respectively to represent 

a 2D real signal x (n , m). The frequency response of the two corresponding 2D analytic 

1 In real applications, the analytic filter is typically designed to have compact support to achieve time and 

spatial localization. 



17 

filters (FI (u , v) and F2 (u, v)) have the following properties: 

FI (u, v) i= 0, if and only if u 2: ° and v 2: ° 
F2 (u , v) i= 0, if and only ifu 2: ° and v ::; ° 

The ideal frequency responses of 1D and 2D analytic filters are depicted in Figure 2.6. 

v v 
h h 

rr rr 

2 <D---- ... 
-rr rr .. u 

-rr rr -... u 
1 

-rr -rr 

-rr rr 

Figure 2.6 : The frequency response of 1D and 2D an~lytic filters: (a) ideal 1D analytic 
filter; (b, c) ideal 2D analytic filters. 

The analytic magnitude and phase of the signals in Figure 2.4 are shown in Figure 

2.7. The original signal structure can be clearly seen in the analytic magnitude and phase: 

the magnitude indicates where the oscillatory signal components are located and the phase 

shows the speed of signal oscillation. In contrast to the Fourier case, the analytic represen-

tation is so well localized that the two spatially separated signal components do not interfere 

with the analytic magnitude and phase of each other, wh,ich is important for modeling and 

predicting local image features. 
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(a) (b) (c) 

" 
" 

" 
" ,,' 

" 
I- magnitudel I--- phasel rr=-I ~":""::--'::""::'~-a.::....::.-~c.::..:~it:...=..c~d:..::.;~ r 
~====~------~==~ 

1---phasel I- magnitudel I--- phasel 

(d) (e) (f) 

Figure 2.7 : The influence of local features on the analytic magnitude and phase: (a) signal 
one; (b) signal two; (c) the sum of the two signals; (d,e,f) the Fourier magnitude and phase 
of (a,b,c). 

2.3.2 The Complex Wavelet Transform 

The Complex Wavelet Transform (CWT) provides a multi-scale set of analytic magnitude 

and phase for representing signals. For example, the dual-tree complex wavelet transform 

[30, 31, 32] represents an image with a redundant collection of complex coefficients gener-

ated by a bank of bandpass, analytic filters. The filters are selected so that, with redundancy 

of two in each direction, each band offers an un-aliased representation of signal components 

in a particular frequency range. Following the quatemionic Fourier transform formulated 

in [26], other complexlquatemion wavelet transform variants have also been proposed in 

[27, 33] for image coding and in [34, 35] for edges geometry and image disparity estima-

tion. 
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As shown in Figure 2.8, the CWT can be considered as the analytic representation of 

some real wavelet coefficients, where Ho and HI are the wavelet analysis filters, Go and 

G I are the wavelet synthesis filters, and FA and RA are the analytic filter and its inverse 

respectively [36, 29]. 

(a) The real wavelet (b) The complex wavelet 

Figure 2.8 : The filter bank structure of the real and complex wavelet. 

The CWT inherits the advantages of the wavelet transform for image processing appli­

cations and introduces the new nonlinear magnitude and phase representation for images. 

The CWT magnitude has been exploited in some image denoising algorithms [37, 38, 39, 

28] and the CWT phase has been used for edges geometry and image disparity estima­

tion [34, 35, 40, 41]. However, this magnitude and phase representation still has not been 

thoroughly researched and its applications are very limited. 

In my earlier work on inpainting [36], I observed the following interesting properties 

about the analytic magnitude and phase ofthe CWT. An image can usually be reconstructed 

perfectly or with very high visual quality from only its CWT magnitude or phase with 

POCS (Project Onto Convex Sets) type of iterative algorithms. Typically, the image re­

constructed from the CWT phase is perfect. Sometimes, the image reconstructed from the 

CWT magnitude has very high visual quality, but has some very subtle position shift in 
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(a) original image (b) from magnitude ( c) from phase 

Figure 2.9 : The reconstruction results from the CWT magnitude or phase: (a) the origi­
nal image; (b) image reconstructed from magnitude (PSNR = 44.1 OdB); (c) image recon­
structed from phase (perfect reconstruction). 

some local areas. In contrast to the Fourier spectral representation, successful reconstruc-

tion from the CWT magnitude without additional phase information is usually observed 

(please see Figure 2.9 and 2.3 for comparison). 

In the next chapter, I will develop the conditions under which a signal is unique given 

its analytic magnitude or phase, and then extend the results to the CWT magnitude and 

phase. The algorithms for reconstructing an image from its CWT magnitude or phase will 

also be investigated. Those results will be applied to solve the spatial and temporal image 

prediction problems later in chapter 4 and 5. 

2.4 The Over-complete neT 

The over-complete DCT is a translation invariant version of the block based DCT widely 

used in image and video coding. In ID, a K -point over-complete DCT is a tight frame 

consisting of all the K possible K -point block based orthogonal neT. Let H i E lRN x N be 

the orthogonal transform of the i-th block based DCT (0 :S; i < K) of K points, then the K-
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point over-complete DCT forward transform is H = [H'l , Hi, ... ,H'kJ T
. Therefore, the 

K-point ID over-complete DCT is K times redundant. The inverse over-complete DCT is 

G = k [H'l, Hi, .. . ,H'kJ, which is the average of all the K orthogonal block based mCT. 

Equivalently, the over-complete DCT can also be considered as a K -channel un-decimated 

filter banle The extension to 2D is straightforward and the K x K 2D over-complete DCT 

is K 2 times redundant. 

Similar to the CWT, the over-complete DCT also offers an un-aliased representation 

of signal components in several (K for 1D and K2 for 2D) frequency ranges. In addition, 

I observed that the magnitude and pseudo-phase (also called DCT-phase by some authors 

[42]) of the over-complete DCT can also be used to reconstruct an image. As shown in 

Figure 2.10, an image can also be reconstructed very well from the 4 x 4 over-complete DCT 

magnitude. The reconstruction from the pseudo-phase has low PSNR, but all the image 

details are recovered and only the local signal energy distribution is wrong. With some side 

information about the local signal energy, the image can also be correctly reconstructed 

from the over-complete DCT pseudo-phase. 

Figure 2.1 ° : The reconstruction results from the 4 x 4 over-complete DCT magnitude 
or pseudo-phase: (left) the original image; (middle) image reconstructed from magnitude 
(PSNR = 45.07dB); (right) image reconstructed from pseudo-phase (PSNR = 15.39dB). 
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The over-complete DCT is preferred over the CWT for solving the temporal predic­

tion problem for video coding, because most standard video encoders employ the block 

based coding and motion compensated prediction scheme. Therefore, in this dissertation, 

the over-complete DCT will be employed for the temporal image prediction problem in 

Chapter 5. 

2.5 Other Related Representations 

Image representations with Gabor-like localized phase was proposed and analyzed in [43, 

3,44]. These schemes are partly motivated by the research on the biological representation 

of visual information at the level of the visual cortex. In [33], the author attempted in sev­

eral ways to construct image representations separating local signal energy and local signal 

structure (similar to the localized magnitude and phase) for image coding. The spheri­

cal coder proposed in [33] may be considered as treating the absolute values of wavelet 

coefficients as magnitude and the signs as phase. Then, the absolute values of wavelet 

coefficients in each band are again encoded by the tota1 energy of the band and a set of 

phase variables indicating the spatial energy distribution. The uniqueness of a signal with 

specified magnitude of "general" real or complex frame coefficients are considered in [45]. 

However, the "general" frames cannot be localized in time, frequency or scale in any way. 

2.6 Summary 

This chapter reviewed the background information about several types of magnitude and 

phase representations: the Fourier spectral representation, the analytic representation, the 
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CWT, and the over-complete DCT. In general, those magnitude and phase contain impor­

tant information about edge energy and location and can be used for modeling spatial and 

temporal image evolutions discussed in the previous chapter. In addition, an image can be 

reconstructed accurately given only those magnitude or phase under certain conditions. 

In the next chapter, I develop the theory of image reconstruction from the analytic 

magnitude and phase of the CWT. I relate the analytic magnitude and phase to the Fourier 

magnitude and phase, develop the conditions under which a signal is uniquely specified by 

its analytic magnitude and phase, and discuss the extension to multi-resolution and higher 

dimensions to match the situation of the CWT. The over-complete DCT is also discussed 

and it may be employed when the application of the CWT is not allowed (e.g., for the 

temporal prediction problem for video coding). 
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Chapter 3 

Image Reconstruction from the CWT Magnitude or Phase 

In this chapter, I consider image reconstruction from the analytic CWT magnitude or phase. 

As discussed in the previous chapter, the theory of image reconstruction from the Fourier 

spectral magnitude or phase has been extensively researched. It is well known that under 

certain conditions, a signal is uniquely specified by its Fourier magnitude or phase and 

may be reconstructed with some iterative algorithms [18, 19,20,21,46]. However, image 

reconstruction from the analytic CWT magnitude or phase used in this dissertation is still 

not well understood. This chapter develops the following fundamental results: (1) the 

conditions under which a signal is unique given its CWT magnitude or phase; (2) the 

algorithms for reconstructing an image from its CWT magnitude or phase. 

This chapter is organized as follows. Section 3.1 develops the conditions under which 

aiD signal is uniquely specified by its analytic magnitude or phase. Section 3.2 pro­

poses iterative algorithms for reconstructing a signal from its analytic magnitude or phase 

and shows the results about the convergence of the proposed algorithms. Section 3.3 dis­

cusses the extension of the uniqueness conditions and reconstruction algorithms to the 

multi-resolution 2D CWT. The section also provides some insights about the difference 

between magnitude and phase, the quality of the reconstructed image, and the geometrical 

structure ofthe magnitude or phase representation. Section 3.4 discusses image reconstruc­

tion from the magnitude or pseudo-phase ofthe over-complete DCT. To solve the temporal 
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image prediction problem for video coding, the DCT is preferred over the CWT because 

most standard video encoders employ the block based DCT and motion compensated pre­

diction scheme. Section 3.5 is a short summary of this chapter. In Section 3.6, some basic 

properties of the analytic representation and the CWT are listed. 

3.1 The Uniqueness in Terms of Analytic Magnitude or Phase 

In this dissertation, for a signal x E (fjN with magnitude p = Ixl E JRN and phase e = 

Lx E JRN, I use a simple notation of pej e (= x) to indicate the magnitude and phase form 

of x even if N > 1. It is clear from the context that x, p, and e are all vectors. 

3.1.1 Uniqueness Given ID Analytic Magnitude or Phase 

In this subsection, I consider the uniqueness of a ID discrete signal x E JRN given its 

analytic magnitude or phase. Suppose a discrete analytic filter F E (fjNxN is used to con­

struct the analytic magnitude p( x) = IF x I and phase e (x) = L (F x). If circular boundary 

extension is used, F is circulant and diagonalizable by the DFT matrix W: 

where the diagonal matrix Ap contains the frequency response of the analytic filter. There­

fore, the analytic magnitude and phase are the Fourier magnitude and phase of the filtered 

spectrum sequence ApWx (please ignore the difference between Wand W- 1). Note that 

there is a very important difference from the normal Fow-ier magnitude and phase of real 

time domain signal: the filtered spectrum Ap W x is always single sided by the definition of 

the analytic filter. 
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After recognizing the connection to the Fourier transform, we know the theory for 

Fourier magnitude and phase [18, 19,20,21] applies to the sequence AFWx instead of 

x for analytic magnitude and phase. However, the global uniqueness conditions for Fourier 

magnitude differ significantly from the observation in the previous chapter: reconstruction 

from the CWT magnitude is much more common than the reconstruction from Fourier 

magnitude. Therefore, in this section, I use a new method to develop the local uniqueness 

conditions for the analytic magnitude and phase. With the new method, I show that the an­

alytic magnitude and phase have about the same uniqueness conditions. That is, if a signal 

is unique given is analytic phase, it is also unique (locally) given its analytic magnitude. 

In order to be general for both the redundant transforms and critically down-sampled 

transforms, I assume that x is a bandpass signal living in a known frequency band of 

[Kl' K2J (0 :::; Kl :::; K2 < Z¥-). Again for generality, I only assume that the analytic 

filter F = A + j B (A, B E lRNXN) is circulant and suppresses all the negative frequency 

components. 

The local uniqueness of magnitude p(x) = IFxl and analytic phase B(x) = L(Fx) 

can be determined by the Jacobians of B(x) and p(x) with respect to x, namely Jp(x) and 

JO(x)' Following the geometrical definition of the Jacobians, we have !:1p = Jp(x)!:1x, 

!:1B = JO(x)!:1x, and!:1p + j Dp(x)!:1B = De - i 8(x) F!:1x for all !:1x E lRN, where Dx denotes 

the diagonal matrix with vector x on its main diagonal. Let Jc(x) = Jp(x) + j D p(x) JO(x) and 

cancel the !:1x terms on both sides, we have the following proposition which gives a simple 

relationship between Jc(x) and the analytic filter matrix F. 

Proposition 3.1 (The Jacobians of the magnitude and phase). Let F E (CNxN be an an-
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alytic filter and the magnitude p( x) and phase e (x) of a signal x ERN are defined by 

p(x)ejO(x) = Fx (wherep(x) E R~,e(x) ERN), then. 

Jp(x) = ~{De-je F} 

JO(x) = D;;(~)8'{De-je F} 

where ~{v} and 8'{ v} denote the real and imaginary parts of a complex vector v respec­

tively, and Dv denotes the diagonal matrix with v on its main diagona1. 

Note that, when an element of p(x) is zero, the corresponding element of e(x) can be 

arbitrarily defined. Since we are mostly interested in D p(x) ~e (x) rather than ~e (x), zeros 

elements in p(x) do not cause any real definition problem. 

Alternatively, Jp(x) and JO(x) can be derived as in the following proposition which is 

another format of the proposition above. 

Proposition 3.2 (The Jacobians of the magnitude and phase). Let F = A + j B be an 

analytic filter with A, B E RNXN. The the magnitude p(x) and phase e(x) ofx are defined 

byp(x)ejO(x) = Fx (wherep(x) E R~,e(x) E R). TheJacobiansofe(x) andp(x) are 

Jp(x) = D;;(~) (D AxA + DBxB) 

JO(x) = D;;(!) (D AxB - DBxA) 

if and only if p( x) has no zero elements, where Dv denotes the square matrix with vector v 

on its diagona1. 
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Proof: The analytic phase 8(x) and magnitude p(x) of the transform coefficients of a sig-

nal x E IRN are given below 

where 

arctan(~), if x > 0 

arctan(y,x) = arctan(~) +7r, if x < 0 

~ sgn(y), if x = 0 

Note that the following partial derivatives exist and are continuous except at x = y = o. 

aarctan(y, x) -y . 

ax x2 + y2 

aarctan(y, x) x 
ay x2 + y2 

Then the partial derivatives of p(x) and 8(x) are 

a8k(x) 
axz 

apk(X) 
axz 

In matrix form, we have 
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From the above, we have that the lacobians exist, if and only if p( x) has no zero element 

(i.e., p(x) > 0), However, following Proposition 3.1, this non-zero magnitude requirement 

is not really necessary. D 

The uniqueness given the magnitude or phase can be determined by examining the rank 

of the lacobians (JO(x) and Jp(x»), since they specify the tangent plane of e(x) and p(x) at 

x. Given the frequency band [Kl' K2] and e(x) or p(x), if for all non-zero v E IRN in band 

[Kl' K 2], Jp(x)V =I- 0 or J()(x)V =I- 0, then x is locally unique within a small neighborhood 

of x. For phase, local uniqueness implies global uniqueness, because if e(x) = e(y), then 

e(ax + by) = e(x) for all a, b 2::: 0 and a + b = 1. 

Theorem 3 (Uniqueness given ID analytic magnitude or phase). Suppose F E (£NxN 

is a circulant analytic filter which removes all the negative frequencies and W E (£NxN is 

the DFT transform matrix. Let Sx(z) be the z transform ofW Fx and Sx(z) is know to be 

zero outside the range between Z-KI and Z- K2 (0 ::; Kl ::; K2 < Z¥-). 

K2 
Sx(z) = L ak z - k 

k=KI 

Ifand only ifat least one ofaKI and aK2 is non-zero and Sx(z) has no zeros on the unit 

circle or in complex conjugate reciprocal pairs, within frequency band [Kl' K 2], (1) given 

the analytic phase e(x), x is globally unique up to a scale factor; (2) given the analytic 

magnitude p( x), x is locally unique when ao =I- 0 or locally unique up to a phase shift when 

ao = o. 

Proof: First, following Proposition 3.1, we have fj,p 
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(Fx)* 0 (Fv) = (Dp(x)De-i9(x))(Fv) 

= Dp(x)(~p + j Dp(x)~e) 

= Dp(x) (Jp(x) + j Dp(x) JO(x»)v (3.1) 

where 0 and * denote element-wise multiplication and complex conjugation respectively 

1. Therefore, JO(x)V = 0 or Jp(x)V = 0 is equivalent to (Fx)* 0 (Fv) being pure real or 

pure imaginary respectively. 

Second, let the z transform of W Fv be Sv(z) (in the same way as Sx(z)), then the 

z transform ofW((Fx)* 0 (Fv)) is the polynomial S(z) = S;(l/z*)Sv(z). Therefore, 

(F x) * 0 (Fv) being pure real or pure imaginary is equivalent to S (z) has complex conjugate 

symmetry or anti-symmetry about ZO respectively. According to the following lemma, the 

zeros of S;(l/ z*)Sv(z) are on the unit circle or in complex conjugate reciprocal pairs. 

Lemma: Generalized Complex Conjugate Symmetry. A FIR sequence S(z) has gener­

alized complex conjugate symmetry (i.e., S*(l/ z*) = ej G.ZM S(z) for some 0: E IR and 

M E 7l.), if and only if the zeros of S (z) are on the unit circle or in complex conjugate 

reciprocal pairs. 

Finally, if and only if Sx(z) have no zeros on the unit circle or in complex conjugate 

reciprocal pairs, the symmetry of S(z) about ZO requires that Sv(z) = rei¢Sx(z) (r, ¢ E 

IR). Combined with the fact x, v E IRN , we conclude that, for v =I- 0 in band [Kl' K 2], 

(1) JO(x)v = 0 if and only if v = rx; (2) Jp(x)V = 0 if and only if ao = 0 and v = rx 

INote that the D;;I(x) tenus on in Jp(x) and JIJ(x) are all canceled out in the last line. 
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(where x = SJ'{ Fx} is the Hilbert transfonn of x). It is easy to show that if ao = 0 

and y = x coso: + xsino: (i.e., Sy(z) = ejuSx(z)) for any 0: E JR, p(y) = p(x) and 

e(y) = e(x) +0:. 

Therefore, under the conditions stated in the theorem, x is globally unique up to a scale 

factor given e (x) and x is locally unique up to at most a phase shift given p( x ). 

o 

In plain language, a signal is locally unique up to an analytic phase shift given its ana­

lytic magnitude and is globally unique up to a linear scaling factor given its analytic phase, 

if the analytically filtered spectrum (AFW x) is not symmetric and the infonnation about 

the frequency band [Kll K2J of the signal is known. Note that the uniqueness conditions 

are about the same for magnitude and phase. 

3.1.2 Signal Space Geometry Specified by the Analytic Magnitude or Phase 

The uniqueness theorem reveals that the signal space geometry specified by the analytic 

magnitude or phase is very similar to 2D concentric circles (see Figure 3.1). For any zero 

mean x E JR N satisfying the uniqueness conditions, any y E {rx : r > O} has the same 

phase as x; any y E {x cos 0: + x sin 0: : 0: E JR} has the same magnitude as x (x = SJ'{ F x} 

is the Hilbert transfonn of x). Starting from x, by continuously changing the phases 0:, we 

can keep the magnitude unchanged and travel all the way through x, -x and x, and then 

back to x again (just like traveling on a circle); or, we may continuously change the scaling 

factor r to reach bigger or smaller circles. 

In summary, the signals with the same analytic phase lies in a ID linear subspace and 
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Figure 3.1 : The signal space geometry specified by the analytic magnitude and phase. 

the signals with the same analytic magnitude lies on a ID circle in a local neighborhood. 

This result seems suggesting that the magnitude encodes visual in a dual way to the phase, 

since a signal is unique given either its magnitude or phase. The above geometry gives 

some intuition about the reconstruction of a signal from its analytic magnitude or phase 

with Projection Onto Convex Sets (POCS [47]) type of iterative algorithms. Since the ID 

subspace is a convex set, POCS algorithm for reconstruction from phase is guaranteed to 

converge to the 1 D subspace. A circle at any small local neighborhood is very close to 

a convex affine space. So, POCS type of algorithm for reconstruction from magnitude is 

likely to converge to a nearby point on the circle, if the starting point is close enough to the 

circle. 

3.1.3 Frequency Band Information [K l' K 2] 

In the uniqueness theorem, the frequency band [K l' K 2] is assumed to be known exactly 

(at least one of aKl and aK2 is non-zero). If the signal x is allowed to go beyond the band 
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[Kl' K 2] to [Kl - 1, K2 + 1], there are two other interesting situations. 

First, a signal y not limited in band [K 1, K 2] (but in [K 1 -1, K2 + 1]) may have the same 

analytic magnitude or phase as x. As in the uniqueness theorem above, Sv (z) may have one 

more pair of symmetric zeros than Sx (z) and still keep S; (1/ z*) Sv (z) generalized com­

plex conjugate symmetric about zO. Theoretically, those symmetric factors in the filtered 

spectrum can be eliminated if the signal is known to satisfy the uniqueness condition. In 

real applications, however, that information may be unavailable. 

Second, shift in frequency of Sx(z) (equivalently, modulation in time) keeps the mag­

nitude unchanged. For example, Sx(z) = Z-Kl and Sy(z) = Z-Kl-l both have the same 

constant analytic magnitude. The shift of Sx (z) does not show up in Theorem 3 about 

magnitude, because it is not a local variation of signal x for discrete signals. 

With unknown frequency band, the uniqueness given analytic magnitude or phase may 

break. Fortunately, when the analytic magnitude and phase of the CWT is concerned in 

practice, information about the signal components around band boundary can typically 

be obtained from the previous band (lower frequency band). The cross band information 

helps to fix the signal frequency band boundary as well as to resolve the ambiguity of same 

magnitude circle in Figure 3.1 (see more discussion in Section 3.3). 

3.1.4 Singular Values of the Jacobians 

Previously, we have looked at the rank of the Jacobians to determine the uniqueness of the 

analytic magnitude and phase representation. The Singular Values Decompositions (SVD) 

ofthe Jacobians, Jp(x) and D p(x) JO(x) , provide more detailed information about the analytic 

magnitude and phase representation. 
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The magnitude p( x) and phase e (x) together form a locally orthogonal coordinate. So, 

if we let Jc(x) = Jp(x) + j Dp(x) J(}(x) , then, we have the following proposition about the 

SVD of Jc(x). 

Proposition 3.3 (SVD of Jp(m) + j Dp(m)J(J(m)). Suppose the analytic filter F is circu­

lant (AF = W FW- l is diagonal). For all x E JR, the singular value decomposition of 

Jc(x) = Jp(x) + j Dp(x)J(}(x) is given below: 

Proof: Similar to the uniqueness theorem, we have 

Jc(x) = Jp(x) + j Dp(x)J(}(x) 

= Di l F 

= Di l W- l AF W 

= (DiIW-I) ~ (SpW) 

Let U = DiIW-I and V = W-IS;, then we know that they are both unitary. Since ~ is a 

non-negative diagonal matrix, we have the SVD: Jc(x) = U~VH. D 

By definition, for a standard analytic filter F E (J,jN x N, we should have, for all x E JR N, 

IIFxl12 = Ilx + j xl12 = Ilxll~ + Ilxll~ 

= vhllxll~ = V2 IIxl12 
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In practice, F is also designed by some filter design technique to satisfy this norm preserv-

ing property. Then, we have the following property about the maximum singular values of 

the Jacobians. 

Proposition 3.4 (Maximum Singular Values of Jp(aJ) and Dp(aJ)J(J(aJ». Letthe maximum 

singular values of Jp(x) and Dp(x) JO(x) be (J"p(x) and (J"O(x) respectively. lfthe analytic filter 

F satisfies that IIF xl12 = J2 IIxl12 , then 

(J"max < J2 
p(x) -

(J"max < J2 
O(x) -

Proof: Let v be the right singular vector of Jp(x) associated with the maximum singular 

value (J"max . 
p(x) 

Therefore, we have (J"~~i S J2. 

The other inequality, (J"~~ S J2, can be derived similarly. D 

Combining Proposition 3.3 and the uniqueness theorem (Theorem 3), we have the fol-

lowing conclusions about the SVD of Dp(x) JO(x) and Jp(x). First, the largest singular val-

ues of Dp(x) JO(x) and Jp(x) are both J2 and the associated right singular vectors are x 
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and x respectively (1IDp(x)~e(x)11 ::; J211~xll and lI~p(x)1I ::; J211~xll). That is, the 

largest changes in D p(x) e (x) and p( x) come from the changes of x in the direction of x 

and x respectively. Therefore, the phase is most effective in encoding the local shift (a in 

{ x cos a + x sin a : a E lR}) and magnitude is most effective in encoding the local signal 

energy (r in y E {rx : r > O}). 

Second, the smallest singular value of Dp(x)J(}(x) is 0 and the corresponding singular 

vector is x (i.e., IIxll is arbitrary). The smallest singular value of Jp(x) is 0 or very close to 

o and the corresponding singular vector is x, unless x has very big DC components. That 

is, x + rx has exactly or almost the same magnitude as x for small r > 0 (i.e., in a very 

small neighborhood, a small piece of a circle is very close to the tangent of the circle there). 

Therefore, the reconstruction from magnitude without any information of phase is may be 

less accurate than the reconstruction from phase for very detailed structures. 

3.2 Iterative Reconstruction from Analytic Magnitude or Phase 

In this section, I present iterative algorithms for signal reconstruction from the specified 

analytic magnitude or phase. Then, I show the theoretical results on the convergence of the 

iterative algorithms. 

3.2.1 An Algorithm for Reconstruction from Analytic Magnitude 

The following simple iterative algorithm can be used to reconstruct a signal x E lRN from 

its analytic magnitude p E lR N. In the reconstruction algorithm below, F is the analytic 

filter as defined previously; G is the "inverse" of Fin £'2 sense, i.e., y = ~{Gpej(}} E IRN 

minimizes the norm II Fy - pej () 112. 
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Iterative Reconstruction from the analytic magnitude 

Given initial signal estimate Xo and the magnitude P 

(1) Let k = 1 

(2) Compute the magnitude and phase: 

(3) Update signal estimate: Xk = lR{GpeiOk } 

(4) Let k = k + 1 and go to (2). 

In the above algorithm, the frequency band information ([KI' K 2]) required by The-

orem 3 is not considered at all. In real applications, the analytical magnitude and phase 

of the CWT will be actually employed and the filter bank structure of the CWT will take 

care of the frequency band information automatically (discussed later in Section 3.3). The 

influence of this lack of band information is illustrated in Figure 3.2 later on. 

Proposition 3.5 (The monotonic decreasing of magnitude error). The reconstruction al-

gorithm described above monotonically decreases the error in magnitude before it reaches 

a fixed point, i.e., 

where equality holds ifand only ifxk = Xk-I. 

Then, in vector form, we have 

By the definition of G, PHI ei Ok+l = FXk is the unique nearest point to pei Ok in the 
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valid signal space, i. e. , 

where equality holds if and only if Xk = Xk-l. 

Combine the above two, 

where equality holds if and only ifxk = Xk-l. D 

In the algorithm and proposition above, the given magnitude p E JR N is not required to 

be the magnitude of any signal x E JRN 

Theorem 4 (The convergence of the algorithm for reconstruction from magnitude). The 

reconstruction algorithm above gives a bounded sequence {Xk}~o. The limit x of any con­

vergent subsequence (which must exist) of {xd~o is a fixed point of the algorithm. 

Proof: For the convergence, we apply the Global Convergence Theorem in [48] which is 

cited below: 

Let A be an algorithm on X, and suppose that, given xo, the 

sequence {xd~o is generated satisfying Xk+l E A(Xk). 

Let a solution set reX be given, and suppose 

1. all points Xk are contained in a compact set SeX. 

2. there is a continuous function Z on X such that 

(a) if x ~ r, then Z(y) < Z(x) for all y E A(x) 
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(b) if x E r, then Z(y):::; Z(x) for all y E A(x) 

3. the mapping A is closed at points outside r 

Then the limit of any convergent subsequence of {Xk} is in r. 

Follow the notation of the global convergence theorem, we define the solution set as the 

fixed point set r = {x E lRN : A(x) = x}. All the signals with the specified magnitude, 

if they exist, are in r, since they satisfy A (x) = x. 

First, all Xk are bounded in RN with the specified magnitude p. So, they are in a 

compact set. 

Second, we define function Z(x) = IIp(x) - pl12 as the error measure in magnitude as 

in the previous Proposition 3.5. Then, for y = A(x), we have (a) Z(x) = Z(y) for all 

x E r; (b) Z(y) < Z(x) for all x tJ. r. 

Third, the algorithm is a continuous map on a compact set of RN. So, it is a closed 

map. 

Therefore, the limit of any convergent subsequence of {Xk} kEZ is a fixed point of A. 

D 

With Proposition 3.5 and Theorem 4, I established that the reconstruction algorithm 

generates a convergent sequence or subsequence with a limit of a fixed point of the algo­

rithm and the error in magnitude always drops down before convergence. 

In practice, the proposed iterative reconstruction algorithm usually is able to converge 

to the desired signal when a good initial estimate is supplied and additional frequency 

band infonnation is enforced (will be discussed in more details in Section 3.3.3). Some 

simulation examples are given in the following section. 
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3.2.2 Simulation Examples for Iterative Reconstruction from Analytic Magnitude 

As discussed previously, when the uniqueness theorem (Theorem 3) holds, the signals with 

the same magnitude are isolated points or isolated ID circles in the given frequency band 

First, if a signal x has non-zero positive mean (e.g., the lowpass band of the CWT of an 

image), the iterative algorithm is observed to converge to x starting from a positive constant 

signal, or converge to -x starting form a negative constant signal. Figure 3.2 (a) and (c) 

show such an example of perfect reconstruction from the analytic magnitude. In this case, 

the non-zero mean condition implies the local uniqueness, the frequency band knowledge 

of Kl = 0 and ao =1= 0, and a good starting point of a constant signal (DC signal) which 

falls into the desired frequency band. 

Second, if ao = 0 (e.g., for the highpass bands of the CWT, ao ~ 0), the iterative 

reconstruction algorithm is observed to converge to some signal with very close magni­

tude if starting from some white Gaussian random signal Xo. Figure 3.2 (b) and (d) are 

such a simulation example. The signal x is the same signal in Figure 3.2 (a) with mean 

removed. The starting signal Xo is a white Gaussian random vector. In this case, the recon­

struction algorithm converges to a wide band signal y with a very close analytic magnitude 

(SNR=37.1dB in Figure 3.2 (d)). As discussed previously, the signal y is a fixed point of 

the iterative algorithm and the reconstruction y is wide band since the starting point Xo 

is wide band. This wrong convergence problem can be avoided by choosing better initial 

estimate Xo as shown in Figure 3.3. 

Figure 3.3 shows simulation examples with more reasonable initial estimate for the 
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Figure 3.2 : The signals reconstructed from analytic magnitude: ( a) reconstruction of a non­
zero mean signal (perfect reconstruction); (b) reconstruction of a zero mean signal (signal 
in (a) with mean removed); (c) the analytic magnitude of (a); (d) the analytic magnitude of 
(b) (the relative magnitude difference is 37.1dB). 

iterative reconstruction algorithm. In (a) and (c), the initial estimate is chosen to be a 

lowpass filtered version of the original signal with additive white Gaussian noise. The 

reconstructed signal has exactly the same analytic magnitude as the original signal and a 

constant phase shift. In (b) and (d), the initial estimate is a sinusoid and the result is the 

same as in (a) and (c). These simulation results match exactly the uniqueness theorem 

(Theorem 3). 

As shown by the above examples and the uniqueness theorem, some extra information 

is required to resolve the ambiguity of the phase shift. In real applications, reconstruc-
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Figure 3.3 : The signals reconstructed from the analytic magnitude (same signal as in 
Figure 3.2 (b)): (a) reconstruction starting with an initial estimate oflowpass filtered orig­
inal signal plus additive white Gaussian noise (reconstructed signal has exactly the same 
magnitude as the original); (b) reconstruction starting with an initial estimate of a sinusoid 
(reconstructed signal has exactly the same magnitude as the original); (c) the analytic phase 
of the original and reconstructed signal in (a) (note that the phase difference is constant); 
(d) the analytic phase of the original and reconstructed signal in (b) (note that the phase 
difference is constant) 

tion from analytic magnitude of the CWT can typically make use of the lower pass band 

information to decide the unknown phase shift (will be discussed later in Section 3.3). 

3.2.3 An Algorithm for Reconstruction from Analytic Phase 

The following simple iterative algorithm can be used to reconstruct a signal x E lRN from 

its analytic phase e E lRN. In the reconstruction algorithm below, F and G are defined as 
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previously in Section 3.2.1. 

Iterative Reconstruction from the analytic phase 

Given initial signal estimate Xo and the phase 0 

(1) Let k = 1 

(2) Compute the magnitude and phase: 

(3) Update signal estimate: Xk = R{G Pk eiO } 

(4) Let k=k+1 and go to (2). 

The algorithm above is exactly the same as the iterative reconstruction algorithm from 

the Fourier phase proposed in [19], except being applied on the analytic phase. Its conver-

gence has also been proved [19, 49] as a form of iterative non-expensive signal reconstruc-

tion. The main result is cited as in the below theorem. 

Theorem 5 (The convergence of the iterative reconstruction from phase [19, 49]). In the 

above algorithm, the squared error Ilxk - xI12 is non-increasing with each iteration. If the 

signal is unique (up to a scale factor) with the specified phase, the algorithm will converge 

to the desired signal. 

Alternatively, the step 3 in the iterative algorithm can be modified slightly from replac-

ing the phase Ok with 0 to projection to the linear subspace with phase O. Then, the iterative 

algorithm becomes a POCS algorithm when viewed from the transform domain and the 

convergence can also be derived as a direct result ofPOCS [47]. Practically, both replacing 

phase and projection work for reconstruction, although replacing phase is much simpler 

computationally. Conceptually, the perspective of POCS is a better interpretation when 

estimation and other constraints are involved in real applications (e.g., when some models 



are employed to describe the phase or the signal as in Chapter 4). 

3.2.4 Simulation Examples for Iterative Reconstruction from Analytic Phase 
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Figure 3.4 : The signals reconstructed from the analytic phase: (a) perfect reconstruction 
of a non-zero mean signal; (b) perfect reconstruction of a zero mean signal; (c) the analytic 
phase of (a); (d) the analytic phase of (b). 

In Figure 3.4, the same signals in Figure 3.2 are used to show the results of the iterative 

reconstruction from the analytic phase. For both zero mean and non-zero mean signals, the 

iterative algorithm can perfectly reconstruct the desired signal. 
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3.3 Uniqueness and Reconstruction from the CWT Magnitude or Phase 

3.3.1 The Analytic Magnitude and Phase of the CWT 

The CWT magnitude and phase of a signal can be considered as the analytic magnitude and 

phase of some real wavelet transform coefficients of that signal. Therefore, the extension of 

the uniqueness theorem (Theorem 3) to the multi-resolution CWT seems straightforward. 

First, a real wavelet filter bank is applied to decompose a signal s(n) into real wavelet 

coefficients {x( n; k) : k E <l>} and then the analytic filter F is applied to transform x( n; k) 

to the analytic magnitude and phase representation {p(n; k), (}(n; k)}. If the wavelet coef­

ficients x(n; k) in each band satisfies the uniqueness conditions, x(n; k) can be uniquely 

specified by p(n; k) or (}(n; k). Since the signal x can be determined by the wavelet coeffi­

cients in all the bands {x( n; k) : k E <l>}, x must be uniquely specified by {p( n; k) : k E <l>} 

or {(}(n; k) : k E <l>}. 

However, the above extension formulation holds strictly true only for the DC band 

(x(n; k), k = 0) of the wavelet coefficients (assuming that the image pixels take non­

negative values). Two details required by the uniqueness theorem have to be considered 

carefully for the AC bands (x( n; k), k =I- 0). 

First, an AC band typically has large portions of zeros in the smooth regions of an 

image, which leads to a lot of zeros in the analytic magnitude p(n; k). The uniqueness 

theorem assumes an ideal analytic filter which has an infinite filter length (2.5 (c)). When a 

large consecutive set of the magnitude is zero, the lacobians become ill conditioned (very 

small singular values). In real implementation, the analytic filter will typically be designed 

to have compact support and those very small singular values become zeros. Effectively, 
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the separated parts become independent (the magnitude and phase of each part has no 

information about other parts). In the following, I will discuss how to extend the uniqueness 

theorem in incorporate information about the zero elements in the magnitude. 

Second, an AC band x(n; k) usually has zero mean, because the wavelet AC band 

filters are high pass filters which suppress the DC component. Therefore, an AC band 

typically is only locally unique up to a phase shift given the analytic magnitude according 

to the uniqueness theorem. It is not clear at this point how the set of multi-resolution 

magnitude p( n; k) together can resolve the unknown phase shift in every AC band. Later in 

this section, I will also explain by some examples how the multi-resolution reconstruction 

algorithm find out the local neighborhood of uniqueness and determine the unknown phase 

shift. 

A. Localized signal with zero elements in the magnitude 

For real life signals (wavelet with compact support), the magnitude is typically zero 

within smooth areas in an image and is non-zero around edges. The uniqueness theorem 

may be extended in the following way to incorporate the information about zero elements. 

Suppose the locations of zero magnitude are known and only signals with the same set of 

zero magnitude are interested (similar to the known frequency band in Theorem 3). The 

following proposition gives the condition on the existence of zero magnitude. 

Proposition 3.6 (Zero magnitude condition). The k-th element of the magnitude p(x) = 

!pxl is zero (i.e., Pk(X) = 0), if and only if Sx(z) has a zero at e-i 2';.;', where Sx(z) is the 

z transform ofW Fx (same as in Theorem 3). 

Proof: Since Pk(X) = 0 is equivalent to the k-th element of Fx being 0, the IDFT of the 
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. 2k" 
sequence Sx(z) has a zero at the k-th location. Therefore, Sx(z) has a zero at e-] -rr. 0 

The k-th element of the magnitude is zero (Pk (x) = 0) if and only if Sx (z) has a zero 

at e- j 2Jv". Then, Sv(z) in the proof of Theorem 3 has to have the same zero to maintain 

Pk ( v) = 0, since we are only interested in v with the same zero at its k-th element. 

In this situation, given the analytic phase or magnitude, each segment of the signal 

with non-zero magnitude is unique up to a scale factor or phase shift respectively. The 

information about the unknown scale factor or phase shift for each segment can typically 

be derived from the lowpass bands because of the filter bank structure of the CWT. With 

given magnitude, the information about the locations of the zero magnitude elements is 

available and used in the reconstruction algorithm. With given phase, that information may 

also be inferred from the lower pass bands of the CWT. 

B. Uniqueness given multi-resolution magnitude or phase for signals with zero mean AC 

bands 

For a signal s(n) with zero mean AC bands x(n; k), the uniqueness theorem states that 

x( n; k) is only locally unique up to a phase shift given the magnitude p( n; k) and that 

x (n : k) is globally unique up to scaling factor. So, for magnitude, a good initial estimate 

is needed and the unknown phase shift has to be decided. For phase, the unknown scaling 

factor has to be obtained. 

The multi-resolution decomposition greatly helps the reconstruction from magnitude 

or phase in this situation. Conceptually, a lowpass band typically can be recovered first 

which gives a good initial estimate for the highpass band through the inter-band dependency 

and redundancy of the CWT. The overlapping of adjacent bands in the CWT gives very 
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accurate infonnation about the frequency components around the band boundary. With 

this infonnation, the ambiguity of the unknown phase shift and the unknown scaling factor 

in highpass band can both be resolved. When all theCWT bands are reconstructed in 

parallel, the forward and inverse CWT transfonn will impose the cross-band relationship 

automatically. Therefore, the ambiguous phase shift of AC band can be fixed automatically 

(will be demonstrated by simulation examples in Section 3.3.3). 

3.3.2 Extension to Higher Dimensions 

The extension of the uniqueness theorem to higher dimensions follows from the extension 

of analytic filter to higher dimensions [27]. For example, consider a 2D signal x E JRN 

with VN x VN pixels. The 2D magnitude p(m, n) and phase O(m, n) in each band are 

constructed by filtering x( m, n) with a 2D analytic filter F with single quadrant frequency 

response (Figure 2.6). We can construct polynomials Sx(Zl, Z2) and Sv(Z2' Z2) in a similar 

way as for 1D and let S(Zl' Z2) = S;(I/ zi, 1/ z2')Sv(Zl, Z2). Since Equation 3.1 in the 

uniqueness theorem holds for higher dimensions, we conclude that S(Zl' Z2) should have 

no non-trivial symmetric factors (f (Zl' Z2) = ei a zf41 Z~2 f* (1/ zi, 1/ z2')) for the phase and 

magnitude to be unique. 

3.3.3 Simulation Examples for the Analytic CWT Magnitude and Phase 

In this section, I present some simulation examples of the iterative reconstruction from the 

analytic CWT magnitude or phase. The signals in Figure 3.5 are used in the simulation. 

The wavelet lowpass band in (b) is a signal with non-zero mean and the wavelet highpass 

band in (c) is a signal with zero mean. 
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Figure 3.5 : The signals used in the simulation for reconstruction from the analytic CWT 
magnitude and phase: (a) a signal with two edges; (b) the wavelet lowpass band of (a); (c) 
the wavelet highpass band of (a). 
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Figure 3.6 : The signals reconstructed from the analytic magnitude: (a) reconstructed 
wavelet lowpass band (perfect reconstruction); (b) reconstructed wavelet highpass band; 
(c) the analytic magnitude of (a) (perfect reconstruction); (d) the analytic magnitude of (b) 
(relative error in magnitude "11~~1 2 = 0.6%). 
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With the iterative algorithm in the previous section, the wavelet lowpass band and high-

pass band are reconstructed from their analytic magnitude respectively. The results are 

shown in Figure 3.2. In (a), the lowpass band is perfectly reconstructed from an initial esti-

mate of a positive constant signal. In (b), the highpass band is reconstructed from an initial 

estimate of a zero signal. Although, the reconstruction in (b) is not good, the magnitude in 

(d) is very close. 
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Figure 3.7 : The reconstruction from the CWT magnitude: (a) initial estimate given by 
projecting the lowpass band to highpass band; (b) reconstruction result with initial estimate 
in (a) ; (c) reconstruction result by repeatedly projecting the lowpass band to the highpass 
band in every reconstruction iteration (perfect reconstruction); (d) reconstruction results 
with estimating the two CWT in parallel (perfect reconstruction). 

In Figure 3.7, the influence of the CWT on the reconstruction results is demonstrated. 
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In (a), the projection of the lowpass band to the highpass band is shown to be a good initial 

estimate for reconstructing the highpass band. In (b), the reconstruction result improves 

significantly by using the initial estimate in (a). In (c) and (d), perfect reconstruction of the 

highpass band from the CWT magnitude is achieved by repeatedly projecting the lowpass 

band to the highpass band and reconstruct both the lowpass and highpass band in parallel 

respectively. 
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Figure 3.8 : The signals reconstructed from the CWT phase: (a) reconstructed wavelet 
lowpass band (perfect reconstruction); (b) reconstructed wavelet highpass band; (c) the 
analytic phase of (a) (perfect reconstruction) ; (d) the analytic phase of (b) (the maximum 
phase deviation is O.OOl7r). 

For the reconstruction from the CWT phase, the problem is simpler, because the low-

pass band and highpass band can be reconstructed (up to a scaling factor) independently as 
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shown in Figure 3.8. The result in (b) shows a little problem in deciding the right energy of 

the two pulses: the reconstructed left pulse is a little smaller and the right one is a little big­

ger than the original signal. This is exactly the zeros in magnitude problem just discussed 

in Section 3.3.1. When the two bands are reconstructed in parallel, the lowpass band can 

help decide the right scaling factor for the two pulses. Since the two bands have the rela­

tionship just discussed above, the scaling factor of one band can be typically derived from 

that of the other band, if the signal components around the band boundary are not zero. So, 

a signal can even be reconstructed given only the CWT phase of both bands without further 

information about the signal energy in each band. 

Figure 3.9 shows some simulation examples for reconstruction from the 2D CWT mag­

nitude and phase with 300 iterations starting from white Gaussian noise. For a crop from 

Lena image, the reconstruction from both magnitude and phase are very good. The mag­

nitude reconstruction has problem on locating some of the hair strips. In the areas with 

problems, typically, some of the phase variables in a CWT band of the reconstructed image 

have an extra offset close to 7r, i.e., the signal has the wrong polarity (positive or negative) 

there in that CWT band. 

For the crop from the Barbara image, the reconstruction from magnitude has low PSNR, 

because the magnitude has trouble determine the direction of the texture (the signal is not 

unique given the magnitude in this situation). The reconstruction from the phase is not 

perfect (but with very good visual quality), because the convergence is very slow on some 

of the texture area in determining the local magnitude. 

The iterative reconstruction processes of the two crops above are illustrated in Figure 

3.10. The initial estimates are white Gaussian random noise with positive mean. So, the 
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PSNR = 44.10dB PSNR= 00 

PSNR = 19.23dB PSNR = 42.94dB 

original from magnitude from phase 

Figure 3.9 : The reconstruction results from the CWT magnitude or phase after 300 itera­
tions starting from white Gaussian noise: (left) the original image; (middle) image recon­
structed from magnitude; (right) image reconstructed from phase. 

convergence at the beginning is slightly slow. After the first iteration (the first column), 

the image contents are recognizable. After iteration 10 or 20 (the second or third column), 

the most of the image details are recovered, although reconstructions from magnitude show 

blurry or shifted edges at some places and reconstructions from phase are noisy in smooth 

areas. The convergence is typically much faster in practice, if a better initial estimate or 

some other information is available as in many real applications. 
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Figure 3.1 ° : The process of reconstruction from the CWT magnitude or phase: (first row) 
Lena crop from magnitude; (second row) Lena crop from phase; (third row) Barbara crop 
from magnitude; (fourth row) Barbara crop from phase; (from left to right) reconstruction 
after iteration 1, 10, 20, 40, 80, and 160 respectively. 

3.4 The Magnitude and Pseudo-phase of the Over-complete neT 

In this chapter, I have developed the theory and algorithms for image reconstruction from 

the analytic CWT magnitude and phase. However, for some applications, the over-complete 

nCT is preferred over the CWT (e.g., the temporal image prediction problem discussed in 

this dissertation). In those applications, the over-complete nCT can be employed as an 

alternative to the CWT. The nCT pseudo-phase (sometimes called nCT-phase by other 

authors) has been exploited in the fields of image registration and block matching motion 

estimation [50, 42, 51]. The DCT magnitude rarely appears as a topic in image processing 
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research. In this section, I discuss image reconstruction from the magnitude and pseudo-

phase of the over-complete DCT. 

The iterative reconstruction algorithms for analytic magnitude and phase discussed in 

Section 3.2 can be applied to the over-complete DCT magnitude and pseudo-phase with 

only a little modification. The convergence properties for the analytic magnitude (Proposi-

tion 3.5 and Theorem 4) still hold true for the over-complete DCT. The reconstruction from 

the DCT pseudo-phase can also be considered as projection onto convex sets (POCS) just 

like the reconstruction from the CWT phase. 

PSNR = 45.07dB PSNR= 15.39dB 

PSNR = 30.05dB . PSNR = 14.76dB 

original from magnitude from pseudo-phase 

Figure 3.11 : The reconstruction results from the over-complete DCT magnitude or pseudo­
phase: (left) the original image; (middle) image reconstructed from magnitude; (right) 
image reconstructed from pseudo-phase. . 
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I observe that images can be reconstructed quite well from the magnitude and pseudo­

phase of the over-complete DCT, although I cannot give theoretical results about the unique­

ness. As shown in Figure 3.11, the reconstruction from the magnitude of the over-complete 

DCT is very similar to the reconstruction from the CWT magnitude (Figure 3.9): the mag­

nitude can reconstruct good looking images, but has trouble in determining some details 

and orientation of some textures. The DCT pseudo-phase can reconstruct almost all the 

image details, but has trouble in determining the local signal energy. The reconstruction 

result from the DCT pseudo-phase in Figure 3.11 is very impressive, considering the fact 

that a pseudo-phase variable carries only one bit of information. For real applications, some 

information about the local signal energy may also be available so that the reconstruction 

may have much better local energy distribution. 

3.5 Summary 

This chapter considers the image reconstruction from the analytic magnitude and phase of 

the CWT. The conditions under which a signal is unique given its analytic magnitude or 

phase are presented. Iterative algorithms for reconstructing a signal from its analytic mag­

nitude or phase are proposed and the convergence of proposed algorithms are analyzed. The 

above results are extended to the 2D CWT and illustrated with simulation examples. Image 

reconstruction from the over-complete DCT magnitude or pseudo-phase is also discussed 

for problems to which the CWT is not applicable. 

In the next chapter, I apply simple models on both the CWT magnitude and phase to 

construct a new spatial image prediction algorithm, following the image reconstruction 
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theory and algorithms developed in this chapter. In Chapter 5, I model the magnitude and 

pseudo-phase of the over-complete DCT under complicated spatial and temporal image 

evolutions involved in motion compensated video prediction for video coding. 

3.6 Appendix: Some Properties of the Analytic Magnitude and Phase 

This section presents some basic properties of the analytic magnitude and phase represen­

tation. Since the CWT can be considered as a set of analytic bandpass filters, I look at 

the properties of the analytic bandpass filters and the analytic magnitude and phase of the 

filtered coefficients. 

First, if an ideal bandpass analytic filter has linear phase and zero delay (zero-phase), 

then it is complex conjugate symmetric. 

Proposition 3.7 (Zero-phase analytic bandpass filter). A zero-phase analytic filter h (t) = 

hr(t) + j hi(t) has even real part hr(t) and odd imaginary part hi(t), i.e., h*( -t) = h(t). 

Proof: By definition, the Fourier transform of the filter response h(t) should be a real 

function (§ {h(t)} = H(w) E IR). Therefore, we have h(t) = h*( -t). D 

A bandpass analytic filter h(t) can be simply designed by modulating a zero-phase 

lowpass filter (a even real function ho (t) = ho ( - t) E IR) to the pass-band center frequency 

We, then we have h(t) = ho(t)ej wet and h*( -t) = ho( -t)ej wet = h(t). 

Note that in the special case of discrete analytical filter with center frequency We = ~ 

(the pass-band is [0, 7r]), we have hr(n) = ho(n) cos(~n) and hi(n) = ho(n) sin(~n). 

Proposition 3.8 (Phase at edge center). The phase of the analytic bandpass filtered coef­

ficient at the center of one anti-symmetric edge is ~ or - ~. 
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Proof: Suppose the edge is x(t) = s(t - to) where s(t) is an odd function oft. Let the 

analytic bandpass filter be h(t) = hr(t) + j hi(t), then hr(t) and hi(t) are real even and 

real odd functions respectively. The filtered coefficients are given below: 

c(t) = x(t) * h(t) = s(t - to) * h(t) 

= s(t - to) * (hr(t) + j hi(t)) 

The coefficient at the edge center is: 

c(to) = 1 (x (to - T)hr(T) + j x(to - T)hi(T)) dT 

= 1 (s( -T)hr(T) + j s( -T)hi(T)) dT 

= 0 - j 1 s(T)hi(T) dT 

=jK (K =I 0) 

Therefore, c(to) is pure imaginary, i.e., its phase is ~ or -~. 

Note that the correlation of S(T) and hi(T) can be computed in the frequency domain 

Since j s ( T) for edges from black to white and j hi ( T) typically both have positive re-

sponse at positive frequency and negative response at negative frequency, the inner product 

should be positive. Therefore, black to white edges have center phase ~ and white to black 

edges -~. D 

Proposition 3.9 (Linear phase analytic signal). An analytic bandpass filtered signal has 

linear phase c(t) = m(t)ej (w c t+8) (where m(t) E lR is the analytic magnitude), ifand only 



if the Fourier transform ofc(t) is generalized complex conjugate symmetric about We. 

C(We + w) = C*(We - w)ej 20 

Proof: Here, we relax the condition ofm(t) 2: 0 to m(t) E JR. 

If c(t) = m(t)ej (wct+O) , let g: {m(t)} = M(w) = M*( -w), then, 

C(w) = M(w - we)ejO 

C(we + w) = M(w)ejO 

C(we - w) = M( -w)ej 0 

C(we + w) = C*(we - w)ej 20 
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If C(we + w) = C*(we - w)ej20 , let m(t) = g:-l{ e-jOC(we + w)}, then we have 

m(t) E 1R and c(t) = m(t)ej (wct+O). D 

I observed that the CWT phase are approximately linear around edges and some struc­

tured textures. These features we met in images are approximately symmetric (odd or 

even), hence they have linear Fourier phase. The following proposition gives the necessary 

and sufficient condition of the coefficients of these symmetric features to have linear phase. 

Proposition 3.10 (Linear phase analytic signal). Suppose a signal x(t) and the analytic 

filter h(t) both have linear Fourier phase, i.e., X(w) = Xm(w)e- j (wt x +8x) and H(w) = 

Hm(w )e-j (wth+Oh), where Xm(w), Hm(w) E JR. The filtered coefficients c(t) = x(t) * h(t) 

has linear phase with slope We, ifand only if the magnitude Xm(w)Hm(w) is symmetric 

about frequency We. 



Proof: Let Xm(w)Hm(w) = M(w - we), then we have 

C(w) = Xm(w)e- j (wtx+iJx) Hm(w)e- j (wth+(h) 

= Xm(w)Hm(w)e-j(w(tX+th)+iJx+iJh) 
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Therefore, C(w) is generalized complex conjugate symmetric about We, if and only if 

Xm(w)Hm(w) is symmetric about We (i.e., M(w) E JR is even). According to the pre­

vious Proposition, c(t) has linear phase, if and only if Xm(w)Hm(w) is symmetric about 

We. Then, we have 

c( t) = m( t - tx - te)ej wet e -j (We(tx+th)+(}x+1h) 

= m(t - tx - te)ej (We(t-tx-th)-(}x-(}h) 

where m(t) = g--l {M(w)} E JR. D 

From the about two propositions, it becomes clear that analytic filter output c( t) has 

linear phase, if and only if c( t) has symmetric Fourier magnitude. Since many narrow band 

signals are approximately symmetric about its band center frequency, they have approxi­

mately linear phase. For example, the CWT coefficients of many structured textures are 

narrow band analytic signals. Therefore, these signals have approximately linear phase. 



Chapter 4 

Spatial Image Prediction Based on the Geometrical 
Modeling of the CWT Magnitude and Phase 

4.1 Introduction 
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Spatial image prediction has many important applications such as the predictive coding of 

images and videos, the recovery of damaged image blocks due to errors in transmission 

or storage, and the removal of scratches in old paintings [52, 8, 4, 5, 14, 15, 16, 17]. This 

prediction problem has also been known as "inpainting" among museum restoration artists. 

Inpainting algorithms predict or interpolate a missing or unknown region of an image from 

information provided by surrounding known regions based on some assumed model for im-

ages. This chapter proposes a novel inpainting algorithm that interpolates smooth regions, 

edges, and patterned textures in images based on simple geometrical models placed on the 

CWT magnitude and phase of the unknown image. 

It is clear that two types of image information need to be interpolated by any reason-

able image model for inpainting. Within smooth regions, gray levels of the missing region 

should be smoothly interpolated based on surrounding gray levels. Many linear methods 

(polynomial interpolation, band-limited interpolation, etc.) perform this processing well. 

But when surrounding pixel values indicate that some spatial structure (piece-wise smooth 

structure like an edge or edges, or a patterned texture) passes through the missing region, 

a second type of interpolation is needed. In such cases, it is perhaps clearer to view the 
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structure itself as being interpolated, rather than the pixel values. For example, inpaint­

ing a region containing a sharp edge involves first smoothly interpolating the contour de­

fined by the edge, and then smoothly interpolating the pixel values on either side of the 

edge. Similarly, inpainting a region surrounded by patterned texture involves replicating 

the surrounding structure smoothly through the missing region. Because this second type 

of interpolation involves estimating the locations of structure features, nonlinear processing 

approaches are necessary. 

Most existing inpainting works fall into 3 categories ([17, 13]). First, diffusion based 

methods formulate inpainting as a variational problem and compute the missing region as 

the solution to a set of nonlinear PDEs used to propagate information from the surrounding 

areas at pixel level. [7,8,4,9,5, 10]. These variational approaches work well on piece-wise 

smooth image structures but poorly on textures. Second, sparse coding based approaches 

[14, 15, 16, 17] define the missing region as the solution to an optimization problem seeking 

to maximize the sparsity ofthe image's linear expansion with respect to some sparse repre­

sentation dictionary of image basis vectors. These approaches are quite complex computa­

tionally, and their performance depends heavily on the choice and design of the dictionaries 

(using learned dictionaries [53] improves performance with further increased complexity). 

Good performance on both piece-wise smooth (cartoon-like) structure and texture image 

component can be achieved simultaneously by choosing a dictionary as the combination of 

one sub-dictionary designed for edges (e.g., the wavelet) and the other for textures (e.g., the 

over-complete DCT) [16]. Third, texture synthesis and examplar-based methods propagate 

the image information from know regions into the missing region at the patch level. Classic 

texture synthesis method [11] works for regions with only textures. After decomposing an 
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image into a texture layer and a piece-wise smooth structure layer, texture synthesis and 

some diffusion base method can work on the two layers respectively and their results can be 

combined together finally [5]. Examplar-based methods propagates known patches into the 

missing region with composite piece-wise smooth structures and textures by defining some 

patch priority terms to encourage proper fill-in of patches on piece-wise smooth structures 

[12, l3]. 

This chapter proposes a much more direct and unified approach to interpolating both 

gray levels and spatial structures (including both piece-wise smooth structures and tex­

tures), using the magnitude and phase representation of the CWT. The proposed approach 

follows the image reconstruction work in the previous chapter, and also showcases the ad­

vantages of the magnitude and phase representation of the CWT. The central idea of the 

proposed approach comes from one observation: the missing region of an image is correctly 

interpolated from surrounding regions if the CWT magnitude and/or phase corresponding 

to that region can be correctly interpolated from surrounding regions. To interpolate the 

CWT coefficients in each band, I separately interpolate their magnitudes and their phases. 

That is, using the CWT, I translate the inpainting problem into many simpler interpolation 

problems of each band's magnitude and phase fields. The inpainting problem is solved if 

both the magnitude and phase are correctly predicted. If only the magnitude or phase is cor­

rectly interpolated, the iterative reconstruction algorithm discussed in the previous chapter 

may be applied to recover the correct image. The CWT magnitudes represent the local band 

energy, and are typically very smooth in the highest energy bands associated with edges or 

patterned textures. Thus, although any approach can be used to interpolate the magnitude 

fields, I find that very simple directional smoothing of these fields gives very good results. 
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The CWT phases are only significant for coefficients with large magnitudes, and, for such 

coefficients, the phases represent the location of the band's energy. Using linear-phase 

CWT filters, I find the unwrapped phase fields associated with edges and patterned tex­

ture are approximated well by linear interpolation models. In summary, piece-wise smooth 

structures and textures can be inpainted simultaneously by correctly interpolating the CWT 

magnitude and phase respectively. It should be noted that, since the very simple linear in­

terpolation models are applied to parameters (magnitudes and phases) that are nonlinearly 

related to the image pixel values, they do not correspond to linear modeling assumptions 

on the image itself. 

The proposed algorithm has the following advantages. First, the proposed method has 

low computational complexity, because the CWT magnitude and phase of the missing re­

gion are estimated with simple and explicit models and there are no complex nonlinear 

optimization problems to solve. Second, piece-wise smooth structures and textures are 

inpainted simultaneously by correctly interpolating the CWT magnitude and phase. There­

fore, the decomposition of the image into two layers is not necessary. Third, the proposed 

method gives very natural looking inpainting results for edges and patterned textures. The 

good visual quality of the proposed simple models on edges and textures may be due to 

the fact that the CWT magnitude and phase match the way human visual system encoding 

those visual information. 

The chapter is organized as follows. In section 4.2, I present the implementation and 

notations of the 2D CWT used in this chapter and motivate the idea of using the simple 

models mentioned above for predicting the CWT magnitude and phase. In section 4.3, I 

propose a new iterative inpainting algorithm based on the proposed models. Section 4.4 
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gives some simulation results and Section 4.5 concludes this chapter. 

4.2 The CWT Magnitude and Phase for Images 

The 2D CWT is a multi-resolution representation of images. In its magnitude and phase 

form, the CWT decomposes an image f (x, y) into a set of magnitudes p( x, y; k) and phases 

B(x, y ; k), where k is in an index set <I> of scales and orientations. The CWT magnitude 

represents a smoothed measurement of the local signal energy for the designated frequency 

band, and the CWT phase indicates the location of that energy relative to the position of 

each coefficient. 

CWT(f) =* {p(x, y; k) ei OCX ,Yik ). : k E <I>} 

The frequency response of the CWT filter bank used in the implementation of this chapter is 

shown in Figure 4.1 [27, 33,28]. With carefully designed filters and redundancy, the CWT 

is nearly alias-free. In higher dimensions, the CWT is approximately shift and rotational 

invariant. 
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Figure 4.1 : The frequency response of the CWT on the first three scales 

The CWT magnitude and phase exhibit strong geometrical properties around edges and 

within patterned texture areas (e.g., Proposition 3.10 gives a condition for linear CWT 



66 

phase). As illustrated in Figure 4.2, the CWT magnitude is a smooth ridge-like function 

around edges (e.g., the arm and the chair leg). If an edge is symmetric, the CWT phase may 

be approximately linear under certain conditions. Patterned textures (e.g., the pants and the 

table cloth) can usually be decomposed into local directional narrow band 2D components 

by the CWT and each component has nearly constant or patterned magnitude and approx­

imately linear unwrapped phase. Based on the above observations, I propose to employ 

simple 2D directional model and 2D linear model to estimate the missing magnitude and 

phase respectively for inpainting. 

(a) Barbara (b) CWT magnitude (c) CWT phase 

Figure 4.2 : The geometrical regularity of the CWT magnitude and phase 

4.3 The Proposed Inpainting Algorithm 

4.3.1 The Problem Formulation 

Suppose in an image f , the region f a is known and the region f b is missing (or need to be 

predicted for the purpose of predictive coding). The missing region f b has to be estimated 



67 

from the infonnation available in fa with some assumed image model. 

In the CWT domain, there are roughly corresponding missing regions of the magnitude (p) 

and phase (0) in each band. Therefore, the original inpainting problem of estimating fb is 

translated into the problem of estimating (Pb, Ob) in each band. 

p ~ [ :: ] , 8 ~ [ :: ] 

As discussed above, P and 0 have strong geometrical properties around edges and within 

patterned textures. In section 4.3.2, simple 2D direction model and 2D linear model will 

be presented to describe those geometrical properties and estimate the missing magnitude 

and phase respectively. 

Here, I assume that the models hold true around and within the missing region and the 

image with a set of magnitude and phase satisfying the models is a reasonable estimate of 

the original image. 

Ifboth the magnitude and phase estimation are perfect (i.e., p = P and e = 0), the image 

f can be recovered trivially with the inverse CWT (1 = ICWT(p, e)). For edges, typically, 

the magnitude can be estimated accurately and the phase may not fit the linear model very 

well when getting away from the center of the edge. And for many patterned textures, the 

phase may fit the linear model very closely and the magnitude may not be smooth (patterned 
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instead). In those cases, only the magnitude or phase can be estimated every well by the 

proposed models and the iterative reconstruction algorithm in the previous chapter can be 

employed to recover the missing image block. Inspired by image reconstruction from its 

CWT magnitude and phase, in section 4.3.3, I propose an iterative estimation algorithm 

to enforce the geometrical models on the magnitude and/or phase from high energy bands 

to low energy bands. In each iteration, the proposed algorithm looks at each CWT band, 

estimates and verifies the geometrical model parameters and then interpolate the magnitude 

and phase. 

4.3.2 Geometrical Models for the CWT Magnitude and Phase 

For the CWT magnitude, a simple 2D directional model works well when the missing block 

size is small. Suppose a block of m by m magnitudes is missing in one CWT band and 

denote the i-th column of the missing magnitudes as Pi. The columns Pi are modeled as 

different shifts of a common magnitude profile function p: 

where D (p, T) is the shift of p with amount T. I assume that the variable Ti changes 

smoothly with column number i (it can be linear, quadratic or more complex functions 

of i). A linear model of Ti is adequate for inpainting the missing blocks with size 16 by 

16 in real images 1, because within such a small region image structures are close to be 

straight. Therefore, in this chapter, I simply choose Ti to be linear in i when inpainting 16 

1 The block size for image and video coding is usually 16 by 16. 
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by 16 missing image blocks: 

where w p and Tp are linear model parameters. 

The unwrapped phases in the missing region are simply modeled as a 2D linear func-

tion: 

where i and j are the column and row numbers respectively; We, Wr and ¢ are 2D linear 

model parameters. 

The magnitude and phase estimation with the proposed models is illustrated by an ex-

ample shown in Figure 4.3. To interpolate the magnitude in Figure 4.3 (a) from (b), let 

PI and (Pr) denote the columns of the magnitudes just to the left and right of the missing 

region and determine their relative shift T by minimizing the difference between D(PI' T) 

and Pro Assume that the columns of magnitudes in the missing region (Pi, l < i < r) are 

shifts of PI and Pr and the shift Ti changes linearly with the column number i. Therefore, 

the shift operator D can be used to estimate all the columns of magnitudes in the missing 

region as below: 

i-l~ 
Ti = --T 

r-l 

~ r - i ( ~) i-I ( ~~) 
Pi = r _ zD PI, Ti + r _ ID Pn -T + Ti 

For the estimation of the missing phases, the unwrapped CWT phase is fit to a linear 

2D plane with the current estimate of the magnitude as weights. If the linear model fits 

the phases in the surrounding areas very well, it will be used to predict the phases in the 



70 

(a) (b) (c) (d) 

Figure 4.3 : The CWT magnitude and phase of the true image ((a) and (c)) and of the image 
with a missing block ((b) and (d)) (the phases associated with very small magnitudes are 
set to 0 for better visualization). 

missing region. Otherwise, the phase is not estimated. For the case of Figure 4.3, the phase 

in the missing region can be recovered accurately by a linear plane. 

4.3.3 The Proposed Iterative Inpainting Algorithm 

To address the inpainting problem, I propose an iterative algorithm to construct an image 

..-.. 
estimate i with the simple CWT magnitude and phase models in the previous section. In 

..-.. 
the n -th iteration, a new image estimate in is obtained by applying the proposed models on 

..-.. 
the CWT magnitude and phase of the previous image es~imate f n- I to predict the missing 

. . 
Image regIon. 

The basic idea is to recover the CWT bands with high signal energy (typically parent 

bands) in earlier iterations than bands with low signal energy. As discussed in the previous 

chapter, recovering a high energy parent band first will help reconstructing the low energy 

child bands from magnitude or phase (e.g., Figure 3.7). If a parent band has significant 

error (e.g. , the edge direction is wrong in the current estimation), its child bands may have 

the same error and cause trouble in estimation. 
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Let Bk denote the CWT band with the k-th high band signal energy in the missing re-

gion. At the n-th iteration, the CWT magnitude and phase in B 1 , B 2 , ..• , Bn are estimated. 

A band Bk (k :::; n) is recovered trivially if both its CWT magnitude and phase can be 

estimated accurately with the models. If only the magnitude or the phase of Bk can be 

estimated accurately, Bk can still be reconstructed by the iterative reconstruction algorithm 

discussed in the previous chapter. The overall structure of this proposed inpainting algo-

rithm is very similar to the iterative reconstruction algorithm in that the magnitude or phase 

in Bk will be repeatedly estimated and enforced in the rest of the iterations. So, Bk gets 

estimated for the first time at the k-th iteration and can be reconstructed after a few more 

iterations. After processing all the bands, the final estimate f is obtained. 

Two details have to be taken care of for the basic idea above to work. First, the actual 

~ 

CWT band energy in the missing region is unknown. Second, the initial estimate fo may 

contain some strong spurious edges which may cause trouble in applying the proposed 

magnitude and phase models and lead to poor estimate of the missing block. 

To solve these two problems at the same time, I pick a threshold Tn for the n-th iteration 

to determine all the bands to process (Bl' B 2 , ... , Bn). At the n-th iteration, only the bands 

with maximum CWT magnitude in the missing region of the previous iteration image esti-

mate fn-l no less than Tn are interpolated with the proposed models. The CWT magnitude 

of all the bands (interpolated or not processed) will be hard thresholded by Tn before com-

puting the new estimate fn to remove the influence of the spurious edges. At the beginning, 

set the initial threshold Tl to the maximum of the CWT magnitude in the missing region 

of fo in all CWT bands (except the DC band). In the first iteration, Tl is big enough such 

that only one band will be estimated and all the spurious edges in fo will be removed after 
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thresholding with this big threshold. At the end of the n-th iteration, the maximum CWT 

magnitude in the missing region of In are computed for all bands. The new threshold Tn+1 

is set to the maximum band magnitude just below Tn. Therefore, ideally, one new band will 

get into consideration in the next iteration. In this way, the maximum number of iterations 

N can be set to the total number AC bands of the CWT used. 

The proposed algorithm is outline as follows. A final noise floor threshold Tf is speci-

fied such that the algorithm will not waste time on processing bands with only noise. 

The Proposed Iterative Inpainting Algorithm 

Given total iteration number N and final threshold Tf 

(1) Compute the initial estimate 10 and CPo, eo) = CWT(1o). 

(2) Set n = 1 and compute threshold TI from Po. 

(3) Determine the bands to interpolate given Tn. 

~ 

(4) Interpolate (Pn-Il en-I) to get (Pnl en) 

(5) Hard threshold Pn with Tn to get Pn. 

(6) Compute the inverse CWT: [T;[, T[]T = ICWT(Pn, en). 

(7) Compute new estimate fn = [1;[, T[]T . 

(8) Compute the CWT: (Pn, en) = CWT(fn) 

(9) Calculate a new threshold Tn+1 from Pn. 

(10) Set n=n+l and go to (3) while Tn>Tf and n<N. 

(11) Output the final result. 

Figure 4.4 shows some examples of the iterative inpainting process. The thresholds 

{To, TI, T2 , T3 } are fixed to {85, 75, 65, 55} for all the three rows for better illustration. The 

first column shows the input images with the missing blocks. The second column shows the 
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initial estimates of the missing blocks. There are some spurious edges because of the initial 

estimate is obtained by a simple method of averaging the neighboring pixels. The rest of the 

columns show the inpainting results after the first four iterations of the proposed algorithm. 

After the first iteration with To = 85, all the spurious edges are removed, since To is large 

enough to clean all the AC bands. With just the first four iterations, the inpainting results 

look very natural. 

(a) (b) (c) (d) (e) (f) 

Figure 4.4 : The process of the proposed inpainting algorithm: (a) input images with miss­
ing blocks; (b) initial estimates; (c) after the first iteration with To = 85; (d) after the 
second iteration with Tl = 75; (e) after the third iteration with T2 = 65; (f) after the fourth 
iteration with T3 = 55. 
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22.94dB 37.74dB 

24.55dB 31.24dB 

25.39dB 29.67dB 

21.21dB 26.13dB 

22.39dB 26. 14dB 

26.53dB 25.82dB 

29.92dB 33.06dB 

(a) (b) (c) (d) 

Figure 4.5 : Inpainting simulation results: (a) clean images, (b) missing blocks, (c) results 
of the iterated denoising algorithm, and (d) results of the proposed method (the dB numbers 
in (c) and (d) are the PSNR of the missing blocks) 
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4.4 Simulation Results 

Some simulation results ofthe proposed algorithm are shown in Figure 4.5. A 3-level CWT 

is used in the simulation because it is enough for the missing block size of 16 by 16. The 

results of the iterated denoising method in [14, 15] with 16 by 16 DCT are also shown for 

comparison. To finish all the 7 shown examples, it takes less than 10 seconds with the pro­

posed algorithm in Matlab, while the C code of the iterated denoising method takes about 

260 seconds on the same computer. The image blocks are all from Lena and Barbara with 

16 by 16 missing blocks. The proposed method takes only about 10 iterations to finish each 

of the 7 examples, since only a few number ofthe CWT bands needs to be interpolated. The 

proposed algorithm generates inpainting results with very good visual quality and mostly 

good PSNR. It has to be noted that PSNR is not a very good performance measure for the 

proposed method, because small error in the estimation of edge and patterned texture loca­

tions may results in big drop in PSNR although the visual quality still keeps about same. 

For example, on the forth row of Figure 4.5 (the table cloth in the standard Barbara image), 

the prediction result looks very natural despite the 26.1dB PSNR. On the sixth row, the 

original edge has a small curvature and the proposed algorithm straighten the edge because 

of the simple directional model on magnitude, which leads to a low PSNR of 25.8dB. A 

few more inpainting simulation examples are shown in Figure 4.6. 

It may appear to the readers that the proposed linear models are too simple for real 

life images. However, they are very effective when applied on the CWT magnitude and 

phase and combined with the proposed iterative procedure. The performance is determined 

mostly by ifthe magnitude interpolation direction can be estimated correctly in a few CWT 
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bands with high energy. If the estimated direction is right, edges can be recovered correctly 

and thus the inpainting results look natural. Sometimes, especially when complex image 

structures exist around the missing block, the proposed algorithm may have problem in 

estimating model parameters and result in edges or textures with wrong directions. 

Figure 4.6 : Inpainting simulation results: (left) missing blocks, (right) results of the pro­
posed method 
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4.5 Conclusions 

Under the magnitude and phase representation of the CWT, edges and patterned textures 

can be closely approximated by employing simple linear models on the edge location and 

the 2D phase fields respectively. In this chapter, I constructed a new iterative inpainting 

algorithm by applying the above simple models and following the image reconstruction 

theory and algorithms developed for the CWT in the previous chapter. The proposed al­

gorithm is very simple (linear edge location and linear phase models) and fast (about 10 

iterations to finish each simulation example). It gives inpainting results with appealing 

visual quality for piecewise smooth signals, patterned textures and their mixtures. 

It has to be noted that more sophisticated sparse coding based algorithms [16, 53, 17] 

may give better inpainting results through powerful nonlinear optimization techniques. The 

proposed algorithm, however, is seeking to solve the problem from a very different new 

perspective: the magnitude and phase representation ofthe CWT. The simplicity and effec­

tiveness of the proposed method demonstrates the advantages of the magnitude and phase 

representation of CWT in dealing with important image features like edges, patterned tex­

tures, and their mixtures. 
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Chapter 5 

Temporal Image Prediction for Hybrid Video Coding 

In this chapter, I propose a novel temporal (inter-picture) image prediction technique for the 

motion compensated prediction employed in hybrid video coding. The proposed predic­

tion technique enables successful inter-picture predictive encoding during fades, blended 

scenes, intensity modulations, linear distortions (e.g., focus variations), structure clutter, 

temporally decorrelated noise, and many other evolutions under which motion compen­

sated predictors used in traditional hybrid video coders fail in generating reasonable image 

prediction. 

Under the aforementioned video evolutions, the reference frame blocks to be used in 

motion compensated prediction is modeled as consisting of two superimposed parts: one 

part that is relevant for prediction and the other part that is irrelevant (it could be noise, 

interference, or both). By performing prediction within a small spatial and temporal neigh­

borhood under sparse over-complete representations (e.g., the CWT or the over-complete 

DCT) of the video frames, the proposed technique allows completely automated and blind 

learning of the evolutions of the video frames and the separation of the prediction-relevant 

part from the irrelevant part. This separated relevant part is then used to enable better pre­

diction than what would be possible with the traditional block matching based prediction 

methods. 

Experimental results on images and video frames show that the proposed method pro-
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vides successful predictions under a variety of complex transitions, distortions and inter­

ferences. The proposed prediction method is also implemented to operate inside a state­

of-the-art video compression codec and results show significant improvements on scenes 

that are hard to encode using traditional prediction techniques. The proposed algorithm can 

also be employed in other applications like image registration with little modification. 

5.1 Introduction 

As video compression matures, temporal (inter-picture) prediction techniques that try to 

yield significant performance improvements must concentrate on providing gains over ever 

more sophisticated evolutions in video. Traditional inter-picture prediction techniques rely 

on translated blocks from reference frames to directly match blocks in the frame to be 

coded. However, translated reference frame blocks may contain prediction-irrelevant in­

terference. In simple cases the interfering signal can be as unstructured as white noise, 

whereas in more difficult cases, the interference can be as structured as the class of in­

terested signals. In many types of evolutions in video, such as fades from one scene 

to the other, blended scenes, spatial modulations, linear distortions, temporally decorre-

1ated noise, the prediction-irrelevant part can become severe and significantly hurt predic­

tion accuracy, resulting in the encoding of expensive "INTRA" macrob10cks. Figure 5.1 

shows two examples of the reference frame consisting of both the prediction-relevant and 

prediction-irrelevant parts. For example, the lightning bolt in Figure 5.1 (a) will adversely 

affect the temporal prediction of the frame in (b) in portions of that frame; the scene fad­

ing out in Figure 5.1 ( c) may render straightforward block matching prediction completely 
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useless. 

( a) The reference frame (b) The frame to be predicted 

( c) The reference frame (d) The frame to be predicted 

Figure 5.1 : Two-frame transitions from a commercial video sequence: (a) and (b) show a 
transition with prediction-irrelevant lightning bolt and temporally decorrelated rain drops; 
(c) and (d) illustrate a fade-in and fade-out transition with motion. 

In this chapter, I consider the temporal evolutions over which motion compensated pre-

diction employed by state-of-the-art codecs [54, 55] results in unusable predictors and thus 

non-differentially encoded (INTRA) frames and macroblocks. Figure 5.2 uses example 

video frames composed of standard test images to illustrate a simple subset of the temporal 

evolutions that can be effectively handled by using the proposed prediction technique. 

The basic idea of the proposed work of this chapter is as follows. The CWT or the over-

complete DCT decomposes an image into spatially sparse and smooth magnitude and phase 
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Figure 5.2 : Example temporal evolutions that can be targeted using the prediction algo­
rithm proposed in this chapter. The frame to be coded is predicted using the reference 
frame in a hybrid video compression setting. Both frames have additive Gaussian noise of 
standard deviation (jw = 5. The fourth column provides a summary of the required pro­
cessing for successful prediction (the proposed algorithm accomplishes these results using 
simple low-level prediction). Traditional motion compensated prediction results in signifi­
cant prediction errors and ends up with non-differential encoding. The prediction accuracy 
is shown in the last column. Note that the prediction is successful even under complicated 
scenarios that involve brightness changes and sophisticated fades. The algorithm manages 
to "fish-out" scenes, recombine them, correct lighting, etc., to form these predictors. 

fields. In the reference frame, the prediction relevant and irrelevant parts can typically be 

separated by the CWT or the over-complete DCT into different bands, and a coefficient Ci 

and its spatial neighborhood of Q( Ci ) have strong correlations. In the frame to be coded, 
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there is a corresponding coefficient di and neighborhood Q( di ) at the same spatial location. 

Therefore, by looking at Q(di) and Q(Ci) jointly, di (or its magnitude and/or phase) may 

be temporally predicted from Ci with some assumed model trained over Q(di) and Q(Ci) 

(;Z = P(Ci)). In this chapter, a simple linear temporal model is used (;Z = P(Ci)), which 

corresponds to a linear scaling of the magnitude and a constant phase shift. Applying spatial 

magnitude and phase models similar to the previous chapter is conceptually possible, but 

is computationally prohibitive, since it has to be done on a coefficient by coefficient basis. 

This chapter proposes a predictor using the over-coniplete DCT under which the frame 

to be coded and the reference frames to be used for prediction are all assumed to be sparse 

and smooth in space. By using the spatially causal information, the proposed predictor 

estimates temporal correlations, constructs predictions of the transform coefficients of the 

frame to be coded, and finally performs an inverse transform to obtain the equivalent pixel 

domain prediction. The proposed method first transforms signals to the over-complete DCT 

domain. Then, in this transform domain, I show that very simple predictors can be designed 

to isolate the prediction-relevant part of the reference blocks, learn the spatial and temporal 

video evolution, and perform efficient prediction. The parameters of these predictors are 

derived from causal information enabling completely automated and blind operation. The 

utilized over-complete representation allows multiple predictions for each sample in signal 

domain, which are averaged and combined into a single prediction. Conceptually, the 

proposed technique processes reference frame blocks that are about to be used in prediction 

so that they become much better predictors of the frame to be coded. Figure 5.3 shows the 

positioning of the proposed technique inside a basic hybrid video encoder. 

In contrast to the proposed method, established work in inter-picture prediction is for-
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Figure 5.3 : The proposed predictor inside a basic hybrid video encoder: the proposed pre­
dictor is incorporated as a module that processes motion compensated prediction estimates 
so that they become better predictors of the frame to be coded. 

mulated in pixel domain, where authors have designed elaborate spatio-temporal formula-

tions that aim at estimating the correct statistics and associated predictors (see for example 

[56, 57, 58, 59, 60] and references therein). Despite their general formulations , many 

techniques are eventually designed for simplified transitions. This is because, in the ab-

sence of significant modeling assumptions, dealing with sophisticated transitions requires 

accurate inter-picture correlation information over sizeable neighborhoods and the solu-

tion of large and sometimes badly-conditioned systems of equations (see Appendix I in 

this chapter). Accuracy can also be limited as obtaining accurate correlations over image 

regions with non-stationary statistics is itself a difficult estimation problem. Due to such 

issues many established techniques restrict themselves to simplified transitions (typically, 

to additive noise only) and derive practical pel-recursive estimators (e.g. , [56, 61]), utilize 

spatio-temporal Kalman filters (e.g. , [57, 62]), or concentrate on Wiener filters (e.g. , [58]). 
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Temporal prediction research in video compression has mainly concentrated on simple 

pixel domain parametrization that are geared towards accounting for interpolation errors, 

aliasing noise, and global brightness changes that may be present in the reference frames 

(see for e.g., [63, 64, 65]). While these techniques do form better predictors, the temporal 

evolution models they are targeted at are very limited compared to the predictor proposed 

here!. As the author of [66] suggested, the proposed predictor may also be related to multi­

hypothesis prediction approaches. Note that filter-based techniques typically result in a 

small set of filters having low-pass characteristics which are not applicable on frames rich 

in spatial frequencies and textures (see Section 5.3 and Figure 5.4). As shown later, by 

only using causal information over limited spatial neighborhoods, the proposed technique 

can result in effective prediction over widely varying spatial statistics. Earlier research on 

the other hand needs to signal per-block choice of filters with overhead bits and typically 

requires much larger neighborhoods for the design of filters. One of the strengths of the 

proposed predictor is its effective transform domain parameterization which allows adapta­

tion and accurate prediction with little training data. This is a desirable characteristic when 

operating over non-stationary frame statistics with localized singularities. 

In the very rich image/video restoration research, authors have targeted specific models 

of distortions and have obtained very good results for the targeted scenarios using different 

forms of regularization (see for example, [67] for a recent survey of restoring common 

degradations in film, [68, 69, 70, 71] for prediction under noise, [72] for camera focus 

correction, [73] for rain-like noise removal, and [74, 75, 76] for deconvolution). While such 

I Tools like weighted prediction [54] can target fades but require blending scenes to be available among 

previously decoded frames in isolated form because of motion. 
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techniques excel at their niche scenarios, they are computationally expensive, they typically 

need many correlated pictures, and they require the estimation of model parameters. They 

are also not robust to deviations from their niche models and to the presence of structured 

interference and clutter. The algorithm constructed in this chapter on the other hand is 

not narrowly committed to a specific corruption model in that the particular nature of the 

corruption (i.e., whether it is structured interference, noise, clutter, linear distortions, etc.) 

does not necessitate any changes in the steps of the algorithm. The proposed algorithm 

also does not perform any estimation of interference parameters and accomplishes high 

performance results that remain valid under a competitive compression setting. 

Being close to the temporal prediction techniques cited above in terms of applica­

tion area, the proposed predictor is conceptually closer to deblending [77, 78], denoising 

[79,80,81,82,83,84], and recovery techniques [85, 36, 14] that similarly use sparse repre­

sentations and exploit the non-convex structure ofthe sets that natural images lie in. The in­

verse blending techniques typically operate by using two images that are different blends of 

two target natural images. Their goal is to recover the two natural images assuming simple 

blending functions. The proposed framework is very different as one image is predicatively 

encoded based on the other. The proposed predictor is also more powerful as it can handle 

blends involving more than two images, spatially varying blending parameters, cross-fades 

depicting a transition from one blend to a different blend so that the image to be predicted 

is a blend itself, brightness and focus changes, clutter, and many other inter-picture tran­

sitions as well as their combinations. In comparison to regularized denoising setups, the 

"noise" that the proposed predictor removes from the reference frame is highly structured 

and cannot be dealt with using simple denoising techniques. Furthermore, the proposed 
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predictor straightforwardly handles intensity modulations, linear distortions, blends, clut­

ter, etc., which are difficult to address with simple thresholding iterations used in sparse 

recovery techniques. Despite the many substantial differences however, the fundamental 

similarity between the proposed predictor and these denoising methods is the reliance on 

the non-convex structure of natural image sets. As shown later this chapter, these sets are 

so structured that given two signals x and z from such sets, a reference signal of the form 

Y = x + z (or in fact, much more complicated reference) can be used to form accurate 

predictors of x or z (or much more complicated targets as well). 

This chapter is organized as follows. Section 5.2 and 5.3 formulate the problem and 

illustrate the basic ideas of the proposed technique respectively. The main algorithm im­

plementation for hybrid video coding is introduced in Section 5.4 and simulation results are 

provided in Section 5.5. In section 5.6, the proposed prediction method is slightly modified 

and applied to the image registration problem. This chapter concludes in Section 5.7 with 

some remarks. 

5.2 Problem Formulation 

Let Xn E IRN denote the n-th frame to be predicted (and coded) and let y be the reference 

frame to be used in its prediction. For notational convenience assume that only one refer­

ence frame will be used in prediction and that motion compensation has taken place, i.e., if 

Xn-l denotes the decoded reference frame, y = MC(xn-l), where MC denotes the motion 

compensation operation. In the following, the subscript n of Xn is dropped for convenience 

when there is no confusion. 
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The motion compensated reference frame y is assumed to be consisted of two parts: 

one prediction-relevant part (l8 (s * x)) and one prediction-irrelevant part (z + w): 

y=l8(s*x)+z+w (5.1) 

where l denotes a band-limited intensity modulation signal, 8 denotes per component mul­

tiplication, s is a linear spatial filter, * denotes linear convolution of appropriate dimensions, 

z is structured interference caused by a signal with similar characteristics as x, and w is 

white noise. 

In typical scenes, l can be used to model spatial lighting variations such as shadows and 

diffuse light that manifest themselves as intensity modulation of the signal; s models the 

variations of the point spread functions of image capture devices, post-processing opera­

tions, and optical lens focus (when nearby objects are focused, far away objects are blurred, 

and vice versa); z can be, for example, due to specular lighting, due to other scenes fading 

in or out, or due to special visual effects introduced into the video in post processing. In 

the simulations of this chapter, w will be white. However, it can easily be generalized to 

include quantization noise in y. 

The problem formulated in equation 5.1 is the composition of a signal denoising or 

separation problem and a blind linear inverse problem. The available information includes 

y and the spatial causal part (already coded) of x. Note that straightforward application 

of denoising techniques [79, 86, 38, 77] can deal only with w, and restoration techniques 

[87, 75, 74] with wand with known s. As shown later, the proposed method provides a 

solution that is substantially more general. The algorithm proposed in the following section 

can handle spatial variations in both wand in s, provides completely blind and automated 
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operation with no parameter estimation, and perhaps most importantly, allows operation 

when one or more interfering signals like z are present. 

5.3 The Basic Ideas 

To construct a good prediction of x given y and the spatially causal part of x, we need 

to separate the prediction-relevant part (l 8 (s * x)) and the prediction-irrelevant parts (z 

and w), identify the relevant and reject the irrelevant, learn the smooth lighting map land 

spatial filter s, and invert both of them. 

The key steps of the proposed predictor are as follows: 

1. Separate the prediction-relevant and prediction-irrelevant parts with an appropriate 

over-complete sparse transform. 

2. Learn the lighting map and spatial filtering in the sparse transform domain with the 

causal neighborhood information. 

3. Construct a temporal linear predictor in the sparse transform domain to invert the 

lighting map and spatial filtering. 

4. Form the image domain prediction with proper iteration and progression in the sparse 

transform domain. 

5.3.1 The Separation of the Relevant and Irrelevant in a Sparse Transform Domain 

As formulated in the previous section, we assume that (1) the relevant part l 8 (s * x) 

is a natural image (a modulated and filtered version of another natural image x), (2) the 
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irrelevant part z is also a natural image, and (3) the irrelevant part w is white Gaussian 

noise. So, the relevant part and the irrelevant part z are typically sparse under certain 

over-complete sparse transforms, such as the (complex) wavelet and the over-complete 

DCT. Because of their sparsity, those parts will rarely overlap with each other in the sparse 

transform domains. Also, the white Gaussian noise w is typically spread out evenly in 

the sparse transform domains. It overlaps with the sparse relevant part with only a very 

small fraction of its total energy. Therefore, the three parts l 8 (s * x), z and w can be 

separated automatically by the sparse transforms. This automatic separation of the relevant 

and irrelevant parts by the sparse transforms is illustrated with a pictorial example in Figure 

5.4. 

Figure 5.4 shows the mixture of the relevant part (the Lena image) and the irrelevant 

part (the Barbara image). In the image domain, the two parts (Lena and Barbara) are mixed 

together everywhere (Figure 5.4 (a,b,c)); Therefore, it is very hard to separate them from 

each other without knowing exactly how the two images are mixed together. In contrast, 

in the over-complete sparse transform domain, the two signals rarely overlap with each 

other spatially. In Figure 5.4 (d,e,f), the signal component of Lena is color-coded as the 

red channel and the signal component of Barbara is color-coded as the blue channel. When 

Lena and Barbara are mixed together in Figure 5.4 (f), the overlapping of the two is color­

coded as the mixture of the red channel and the blue channel, so that it will be a color 

different from either red or blue (the color is close to some shade of purple depending on 

the relative strength of the two signal components). As we can see in the figure, at most 

places the color is still either red or blue, because the signals of Lena and Barbara rarely 

overlap. The color becomes purple, only at very limited locations where the two signals 
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(a) (b) (c) 

(d) (e) (f) 

Figure 5.4 : Example images (a) Lena, (b) Barbara, and (c)Lena-Barbara average. The 
pictures in (d), ( e) and (f) illustrate synthetic images of transform coefficient magnitudes 
for (a), (b) and (c) respectively. The pictures in (d) and (e) are obtained by applying a 
translation invariant decomposition of 4 by 4 block DCTs to the top row images, taking the 
coefficients with block index (0, I), obtaining their magnitude, and spatially arranging the 
resulting values to reflect the relative translations. Darker colors show larger coefficients. 
(f) shows (d) and (e) as two color channels to demonstrate overlaps. 

overlap, because of the sparsity of the two signals in the transform domain. 

In a short summary, sparse transforms automatically separate the prediction-relevant 

and prediction-irrelevant parts. However, we still need to identify whether a transform 

coefficient at a particular location is from the relevant part or from the irrelevant part. 

To distinguish the relevant part l 8 (s * x) from the irrelevant part z, the spatial smooth-



91 

ness of x and z under the used transform has to be exploited. That is, in the over-complete 

sparse transform domain, the signal (x or z) at the any location is assumed to have similar 

energy density as in the causal neighborhood. This assumption has been used in the previ­

ous chapter for inpainting. It can be intuitively justified by the smoothness of the transform 

coefficients of Lena and Barbara shown in Figure 5.4 (d) and (e). Therefore, the transform 

coefficient at the current location is the relevant part, if in the causal neighborhood the rel­

evant part has significant energy; otherwise, it is the irrelevant part 2. In the following, this 

idea is generalized to construct an adaptive linear temporal predictor in the sparse trans­

form domain which can not only distinguish the relevant part, but also lean and invert the 

spatial modulation and filtering effects. 

5.3.2 The Proposed Linear Temporal Predictor in the Sparse Transform Domain 

The problem formulation of Equation 5.1 can be greatly simplified in the over-complete 

sparse transform domain with some mild assumptions on the spatial modulation (l) and 

filtering (s) effects. 

First, the spatial modulation (l) is assumed to vary slowly in space, so that it can be 

considered a constant in any spatial neighborhood which is sufficiently larger than the sup­

port of the sparse transform basis vectors. This is a very mild assumption especially for the 

over-complete DCT employed for video coding implementation later in this chapter. For 

example, when the 4x4 DCT is chosen, the spatial modulation only needs to be approx­

imately constant in every 4x4 pixel neighborhood. Therefore, under this assumption, the 

2If the relevant part has exactly the same shape as the neighborhood boundary, we may erroneously treat 

the current coefficient as irrelevant. However, for real life images, it rarely happens. 
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modulation effect of l becomes a constant scaling ofthe coefficients in the sparse transform 

domain. 

Second, we assume that the filter s has a relatively smooth frequency response and it 

also varies slowly in space. In the transform domain, while forming (s * x), s modifies the 

transform coefficients of x that correspond to a particular "frequency band" by modulating 

the coefficients with a locally smooth factor. Therefore, the transform coefficients of x 

in the same frequency band and over spatially close regions are modulated with similar 

factors to form the coefficients of (s * x). Hence, overall, we assume that the filtering effect 

of s can be approximately diagonalized by the over-complete sparse transform (e.g., the 

complex wavelet or the over-complete DCT). In summary, if a linear filter s has smooth 

frequency response and varies slowly in space, then s can be approximately diagonalized 

by the CWT or the over-complete DCT. The implication and limitation of this assumption 

is analyzed later in Equation 5.6. 

With the above two assumptions, we can use the following equation to approximate 

Equation 5.1 in the over-complete sparse transform domain: 

(5.2) 

where cx, cY ' Cz and Cw are the transform coefficients of x, y, z and w respectively, 0: 

approximates the overall influences of land s, k denotes the spatial location within each 

"frequency band", and the frequency band index is dropped for clarity and simplicity. 

The most important property of Equation 5.2 is that 0: can be assumed to vary slowly in 

space in each frequency band. According to the discussion above, both land s vary slowly 

in space. Therefore, we are able to assume that o:(k) also varies slowly with location k 
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in every frequency band. This smoothness property of 0: (k) greatly simplifies the learning 

and inverting of the spatial modulation of l and the filtering effect of s. 

I propose the following adaptive linear temporal predictor PL (cy(k) ; 'Y(k), ~(k)) to 

estimate cx(k) with given cy(k) based on Equation 5.2. 

(5.3) 

The predictor parameters 'Y(k) and ~(k) can be trained in the causal neighborhood, since 

0: ( k) can be assumed to be smooth in the neighborhood. 

In the following, I will introduce a simple solution to the above equation along this line. 

5.3.3 The Learning and Inverting of the Spatial Modulation and the Filtering Effect 

With the above assumptions, I propose to solve the problem in Equation 5.2 by estimating 

the transform coefficients Cx (k) with the following linear predictor: 

= 'Y(k)cy(k) + ~(k) 

{'Y(k), ~(k)} = argmin L IJcx(q) - 'Ycy(q) - ~112 
'Y,t:,. 

qEQk 

(5.4) 

where Qk is the causal neighborhood at location k within which cx(q) and cy(q) are avail-

able. That is, the optimal parameters {'Y(k), ~(k)} can be determined via well known 

least-squares estimation technique. 

With the estimated transform coefficients ex (k) for every k in every frequency band, 

the prediction x can be constructed with the iterative inversion of the over-complete sparse 

transform in a similar way as the inpainting algorithm discussed in the previous chapter. 
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Suppose { cPk} ~=1 and { cP~} ~=1 are respectively the sets of analysis and reconstruction basis 

functions of the sparse transfonn used (e.g., the DCT or the CWT), then, 

K 
~ I"",, ~() 
x = K ~cPq * ex k 

k=l 

(5.5) 

I also observed that starting from Cx (k) and iterating on the magnitude Icx (k) I may some-

times improve the reconstruction quality. 

To see the implications on the spatial filter 8, consider the simple deconvolution problem 

of y = 8 * x. Suppose that coefficients in sub-band k of yare multiplied with a prediction 

weight, ( k) in order to obtain the predictor. 

X= ~ LcP~ * b(k)cPk *y) 
k 

= ~ L ,(k) cP~ * cPk * (8 * x) 
k 

= ~ L b(k) cP~ * cPk) * 8 * X 

k 

Hence, as long as the optimal deconvolution filter, 8-1, can be closely approximated by the 

following equation 

8-1 = ~ L ,(k) cP~ * cPk (5.6) 
k 

for some {,(k)}~=l' the optimal filter will be in the span of predictors that can be con-

structed by the proposed algorithm above. It also has to be noted that there are structural 

limitations on such 8-1 . For example, with localized orthononnal transfonns, Equation 5.6 

corresponds to symmetric filters of limited support. 
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5.3.4 A Motivating Experiment Demonstrating the Basic Ideas 

The above ideas about the proposed predictor is demonstrated by the experiment shown 

in Figure 5.5. In this experiment, we ignore the complexity in implementation with video 

coding and focus on showing the effectiveness of the proposed ideas. The full algorithm 

implementation for video coding will be introduced in the next section. 

In this experiment, the spatial modulation l is assumed to be constant; the spatial filter-

ing effect s is a Gaussian low-pass filter; the frame to code x is Barbara (Figure 5.5 (b)); the 

irrelevant part z is Lena; the reference frame (Figure 5.5 (a)) is the average of the filtered 

Barbara and Lena. Both the reference frame and the frame to code contain additive wight 

Gaussian noise with (J = 5. We use the same CWT as in the previous chapter and perform 

coefficient-wise prediction as in Equation 5.4. 

To illustrate the influence of the magnitude and phase, the second row of Figure 5.5 

shows the performance ofa similar solution to Equation 5.4 which estimates the magnitude 

of the current frame transform coefficient Icx (k) I from the magnitude of reference frame 

coefficient Icy (k) I· 

(5.7) 

This method is similar to inpainting with the CWT magnitude in the previous chapter. Its 

performance shall be the same as Equation 5.4 where cxis significant and cy is negligible. 

Where Cx is negligible and cy is significant, it keeps the phase of cy and leaves an apparent 

trace ofthe irrelevant part (Lena) in the prediction (see Figure 5.5 (c)). After iterated recon-

struction from the estimated CWT magnitude, the trace of the Lena goes away as explained 
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(a) PSNR = 17.1dB (b) PSNR = 34.2dB 

(c) PSNR = 22.3dB (d) PSNR = 22.8dB 

(e) PSNR = 26.5dB (f) PSNR = 26.8dB 

Figure 5.5 : An experiment to demonstrate the prediction ideas: (a) the reference frame 
y (the average of Lena and blurred Barbara plus white Gaussian noise, PSNR = 17.1dB; 
blurred Barbara relative to clean Barbara has PSNR = 24.3dB) (b) the frame to be coded 
x (Barbara plus white Gaussian noise, PSNR = 34.2dB); (c) magnitude prediction result 
(PSNR = 22.3dB); (d) magnitude prediction and iterated reconstruction result (PSNR = 
22.8dB); (e) proposed prediction result: denoised and sharpened (PSNR = 26.5dB); (f) 
proposed prediction and iterated reconstruction result (PSNR = 26.8dB) 
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in the previous chapter (Figure 5.5 (d)). The overall PSNR performance is improved from 

22.3dB to 22.8dB. 

In contrast, the solution of Equation 5.4 takes advantage of the decorrelated phases of 

the two parts and estimates the phase of Cx as much as possible (this can remove the adverse 

influence of the phase of cy even when the phase of Cx is not predictable with the simple 

training in the causal neighborhood). Therefore, in Figure 5.5 (e), it is much harder to find 

any trace of Lena. The PSNR of the prediction in Figure 5.5 (e) is 26.5dB and the PSNR 

of the blurred Barbara (relative to the clean Barbara to be predicted) in the reference frame 

is 24.3dB. It shows that the predictor successfully isolate the relevant part and invert the 

blurring filter s by at least 2.2dB (from 24.3dB to 26.5dB). If iterative reconstruction from 

magnitude is performed, the PSNR can be further improved slightly to 26.8dB (Figure 5.5 

(f)). 

The above experiment does not consider the macroblock structure of video codecs. For 

ease of implementation, I choose the over-complete DCT in the next section and describe 

the details about constructing a predictor for state-of-the-art hybrid video coding. 

5.3.5 A Short Summary of the Proposed Temporal Predictor 

1. The temporal ( or inter-picture) image prediction problem considered in this chapter 

is formulated in the image domain by Equation 5.1 

y=l8(s*x)+z+w 

2. With some mild conditions, the problem is translated to a sparse transform domain 



as in Equation 5.2. 

3. An adaptive linear prediction solution is proposed in Equation 5.4. 

PL (cy(k) ; 'Y(k), ~(k)) = 'Y(k)cy(k) + ~(k) 

{'Y(k), ~(k)} = argmin L Ilcx(q) - 'Ycy(q) - ~112 
'Y,~ 

qEQk 
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4. With cx(k) = PL (cy(k); 'Y(k), ~(k)), the image domain prediction can be easily 

constructed with simple inverse transform or iterated reconstruction. 

5.4 The Main Algorithm with the nCT for Video Coding 

In this section, the main algorithm implementation with the DCT for video coding is intro-

duced in details. The implementation follows the basic ideas in the previous section and 

also takes into account the macroblock structure required by video encoders and other im-

plementation details. The iterated reconstruction is implemented as progressive estimation 

and reconstruction because of the limitation imposed by video encoding. 

Let HI, ... ,HM (N X N) denote an over-complete set oflinear transforms. For issues 

of implementation simplicity and computational speed, in this section Hi, i = 1, ... , M, 

are given by a p x p block DCT transform and its p2 - 1 shifts with M = p2. Please note 

however that it is straightforward to utilize the proposed predictor with different transforms 

and different redundancy factors. 

We would like to implement M temporal predictors of Xn which are denoted as :i;~, i = 
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1, ... , A1. Each predictor is simple and is composed via 

(S.8) 

(S.9) 

(S.IO) 

where fi(j) are linear prediction weights that are determined to minimize mean squared 

prediction error. The final prediction of Xn is obtained as an average of the j\lf predictors 

VIa 

1 M . 
A ~ A~ 
Xn= M~Xn' (S.ll) 

i=l 

though weighted averaging techniques similar to [6] can also be used. Of course, if desired, 

it is straightforward to augment the basic prediction setup in (S.8) through (S.ll) to account 

for further correlations among coefficients. 

Modern high-performance video compression involves many steps and optimizations 

that aim at satisfying several important requirements. Macroblock structure utilized in 

codecs and the order in which macroblocks are coded present practical issues for any tem-

poral prediction algorithm. In this section, we discuss our main algorithm that is geared 

towards operation inside a high performance video codec (h264/AVC reference software 

- JM 1 0.2 [S4]) in macroblock units. The main concern is the design of an algorithm that 

obtains the prediction weights in (S.9) using available information during the decoding of 

each macroblock. 

Since the utilized transforms are block based, the transform domain prediction opera-

tion can be thought of as predicting p x p blocks in Xn using the corresponding blocks in :y 
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and then averaging the predictions suitably to satisfy (5.11). In order to help notation, let us 

adopt a block viewpoint and deviate slightly from the frame-wide notation of Section 5.3. 

Suppose bx (p2 xl) represents a p x p block in Xn that is to be predicted and let by be the 

corresponding block in y. We know the transform coefficients of by which will be used via 

(5.11) to determine predictions of the transform coefficients of bx . We need to determine 

the per coefficient prediction weights3 . 

Figure 5.6 (a) illustrates bx within the frame to be coded (current frame), inside the 

macroblock to be coded (current macroblock). In determining the prediction weights we 

would like to utilize the information provided by previously decoded macroblocks inside 

the current frame4 . Let Abx denote a L x L spatial neighborhood around bx . Consider all 

blocks formed by shifting a p x p mask inside Abx • Denote those blocks that completely 

overlap known data (training data) by t 1 , ... ,tQ. Let Ul, ... ,uQ be the corresponding 

blocks in y. 

Block prediction: Suppose we are performing the prediction for the kth DCT coefficient of 

bx . Let hk (p2 X 1) denote the kth DCT basis function. We derive the prediction weight rk 

as the weight that minimizes the mean squared prediction error on the training data, i.e., 

(5.12) 

3For the moment we leave issues related to motion estimation to Section 5.5 and keep assuming that y is 

such that translations are properly accounted for. 

4If previously decoded macroblocks are not available one can set the prediction weights to an appropriate 

value (such as 1) or determine optimal weights and send them using overhead bits. 
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The prediction for the kth DCT coefficient in bx is then set as 

(5.13) 

Once the prediction is carried out for all DCT coefficients of bx , an inverse block DCT 

yields the pixel domain prediction bx . Observe that the solution of (5.12) is straightforward 

and the computations for its calculation can be reused when predicting other blocks so that 

complexity remains contained. 

Given the desired predictor in (5.11), it is clear that we need to predict all p x p blocks in 

the current macroblock, i.e., all shifts of a p x p block that overlap the current macroblock. 

H.264/AVC utilizes a 4 x 4 transform (compression transform) to encode prediction errors. 

In forming predictors for our blocks, we try to utilize available data as much as possible 

so that compression transform coefficients of the prediction error are used to augment the 

known data regions of the current macroblock as soon as they become available. Note how­

ever that the exact pattern in which compression transform coefficients are sent depends on 

the motion modes determined at the motion estimation stage [54]. For example, the motion 

mode where motion blocks are 8 x 8 sends coefficients in a different order compared to the 

16 x 16 mode. As such, our technique orders block predictions based on the motion mode 

in order to utilize prediction error updates as much as possible. In order to save space, 

further discussion of these detailed but conceptually straightforward implementation issues 

will be ignored in the presentation. The proposed implementation also utilizes predictions 

provided for previous blocks to augment the training data by scanning the current mac­

rob lock in layers (see Figure 5.6 (b) for an example scan). The procedure below outlines 

the proposed prediction of a macrobiock as carried out by a hybrid video decoder: 
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5.6 Application in Image Registration 

The proposed temporal image prediction method can also be successfully applied to the 

image registration/matching problems. In order to motivate this application, let us consider 

the case of predicting a target image (say, the image peppers) using an unrelated source 

image (say, the image barbara). Assuming sufficiently large neighborhoods are used in 

generating the training pairs, Equation (5.4) is expected to result in ,(k) = 0 (zero predic-

tion coefficient), but in general the mean predictor L1 will be close to the mean of the target 

training region, especially for the DC sub-band. As a consequence, the algorithm will 

form nonzero predictors using information from the target image, even when the source 

image is completely unrelated. In a compression setting such predictors are beneficial 

and allow compressing target blocks around their causally calculated means. In registra-

tion/matching cases, however, it becomes a problem because one can declare a match over 

unrelated images. Therefore, for registration/matching applications, the fixed-mean predic-

tor PF (cy (k) ; ,( k)) below is proposed instead. Also, the training region is not limited to 

the causal region as in the coding scenario. 

(5.14) 

(5.15) 

where Qk is the non-causal training region, hk is defined in Equation 5.12, and Tf is a 

constant vector with a given value that quantifies a generic average for image pixel values 

(e.g., 128 for 8-bit images). 

In Figure 5.10, the proposed prediction method is applied in an affine registration setting 

where the goal is to find the affine warp parameter that quantify the geometric relation 
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between the source and target images. The affine motion estimation technique of [88] is 

used as a baseline registration algorithm. The baseline algorithm calculates spatial and 

temporal derivatives in a coarse to fine, multi-resolution fashion to obtain the affine warp 

parameters. While only locally optimal, this technique provides high performance and 

robust results for many examples (see [88]). The aim in this section is to augmented the 

baseline algorithm with the proposed temporal prediction method in order to derive a new 

affine image registration technique. The new algorithm is identical to the baseline except 

that the spatial and temporal derivatives are calculated after prediction using the temporal 

prediction method proposed in this chapter. 

Figure 5.10 ( a) illustrates the case involving clean signals. The source image, target im­

age, the source image registered with the ground-truth warp, the source registered using the 

warp calculated by the baseline technique, and finally the source image registered using the 

warp calculated by the proposed augmented algorithm are shown from left to right. Both 

algorithms obtain the correct warp and the source is correctly registered. The Frobenius 

norm of the affine warp error is shown for the calculated warps. 

The second example involves a source that is heavily corrupted with Gaussian noise 

(aw = 200). The baseline technique diverges from the correct solution while the proposed 

method remains very close to it. The same can be observed in Figures 5.10 (c) and (d) 

which are corrupted with a sine wave and an unrelated image respectively. Again, proposed 

registration method obtains results that are very close to the ground truth while baseline by 

itself diverges. 
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a specific corruption model in that the particular nature of the corruption (i.e., whether it 

is structured interference, noise, clutter, linear distortions, etc.) does not necessitate any 

changes in the steps of the algorithm. The same steps that perform deconvolution reject 

highly structured interference, denoise, recover missing pixel values, separate and recom­

bine scenes, and so on. The algorithm does not perform any estimation of corruption pa­

rameters and accomplishes high performance results that remain valid under a competitive 

compression setting. It also has to be noted that many other sophisticated image transitions 

cannot be dealt with using this version ofthe proposed algorithm (e.g., transitions involving 

complex motion effects such as transparent motion [89, 90]). 

It is important to point out that some of the errors in the proposed block-recursive al­

gorithm are naturally due to causality and can easily be avoided in a compression setting 

by sending prediction parameters as overhead. The results based on causal predictors are 

motivated by ease of integration within an established video codec and its established syn­

tax. An optimized video coder specifically built around the proposed temporal predictor is 

expected to obtain significantly improved results. 

The proposed predictor in this chapter can be improved by using more sophisticated 

decompositions and by allowing for more elaborate predictors. In terms of decompositions, 

beyond the transform optimization of Appendix I and various established designs (e.g., [91, 

92]), one can also utilize adaptive transform optimizations that maximize the sparsity of the 

decomposition (e.g., [93,94]) or recent work that provide various adaptive reconstructions 

from expansive decompositions (e.g., [83, 36]). The predictor can be generalized by using 

various kernel-based techniques (e.g., [95]) and also incorporate geometrical regularity 

of image singularities (e.g., [96, 94]) so that the interference is better rejected. Of course, 
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when necessary, the reach ofthis work can be improved by employing high-level estimation 

of corruption parameters. 

5.8 Appendix I: prediction-optimal transforms 

In this section we derive transforms that optimize the prediction of target random vectors, 

denoted by v, using anchor random vectors, denoted by u. Assume that u and v are adjusted 

to have zero-mean. Let us first consider the general case where we would like to solve 

(5.16) 

where H is the analysis basis, G is the synthesis basis, and A is a diagonal matrix which 

encapsulates the scalar predictors applied in transform domain. Without any restrictions on 

G, A, H it is clear that the GAHT product should match the optimal linear predictor [97], 

(5.17) 

which minimizes (5.16), i.e., one does not gain or lose anything by considering the problem 

in transform domain. For any such GAHT product the optimal predictor becomes 

(5.18) 

where ~ is a vector that incorporates the target mean. 

Suppose now that we are interested in orthonormal transforms, i.e., we would like solve 

min E[llv - HAHT ull~, subject to HTH = 1, 
H,A 

(5.19) 

where A is again diagonal. Let K = HAHT and note that K is symmetric. Equation 5.19 

is thus equivalent to 

min E[llv - Kull~, subject to K = KT. 
K 

(5.20) 
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Noting that K(i,j) = K(j, i), and setting the derivatives of (5.20) with respect to K(i,j) 

to zero we obtain 

(5.21) 

Consider the eigen decomposition E[uuT ] = FUFT where F is orthonormal and U is 

diagonal. Let R = E[vuT] and let A = FT AF denote the similarity transformed version 

ofa matrix A. In the F coordinate system Equation 5.21 becomes 

R+RT = UK+KU, 

which is straightforward to solve and yields 

U(i,i)K(i,j) + U(j,j)K(i,j) = R(i,j) +R(j,i) 

K(i,j) = (R(i,j) + R(j,i))/(U(i, i) + U(j,j)) 

after which we have K* = FKFT. The optimal predictor becomes 

i) = K*u +~, 

(5.22) 

(5.23) 

(5.24) 

(5.25) 

and the optimal H*, A * pair can be obtained via an eigen decomposition of K*. Note that 

while the orthonormal case is structured and slightly better conditioned compared to the 

general case, the resulting predictors are constrained. 

Now let us assume that u and v are extracted from localized training regions within 

x and y respectively. Regardless of the structure of the prediction, it is clear that one 

needs accurate correlation/cross-correlation statistics and the conditioning of E[uuT ] plays 

an important role in forming the predictors. When one has to learn these statistics over 

available data, the resulting learning problem is thus conflicting. On the one hand, one 
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would like to have many training vector pairs which require large neighborhoods, on the 

other hand, one needs to quickly adapt to spatial variations which is only possible through 

using very small neighborhoods. The computational complexity of forming the predictors 

also involves conflicting goals. Observe that not only does one have to obtain substantial 

correlation statistics but one also has to perform inverses, accomplish other complex ma­

trix operations, and matrix-vector multiplications in order to obtain the optimal predictors. 

Lowering the complexity may be possible by performing these operations infrequently or 

only once per-signal but this is again completely counter to the required adaptivity. 

By making modeling assumptions one can alleviate these operational difficulties and, 

as long as the model is applicable, obtain accurate predictors. We conclude by noting the 

two assumptions our base algorithm will make in terms of the notation of this section. 

We will assume that F is approximately constant and can be approximated in terms of 

the DCT basis. We will also assume that the evolution from u to v is such that R is 

approximately diagonal. These assumptions by themselves are of course not particularly 

noteworthy. What is interesting is the fact that they can be made to work so well even on 

cases involving complex transitions. 

5.9 Appendix II: differential compression with piecewise smooth pro-

cesses 

In this section we consider the one dimensional model of [98] in order to outline the benefits 

of inter-signal prediction and compression in terms of localized correlations within piece­

wise stationary processes. This model is stated in continuous time and in the unit interval 
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for analytically tractable bounds on transfonn coefficient variances. Since it incorporates 

discontinuities, the 1 - D model can be considered appropriate for rows extracted from 

real-world images. Extensions of the discussion to two dimensions are straightforward 

and considered at the end. The main point of this section is that differential encoding ac-

complished by using simple predictors in transfonn domain obtains the optimal asymptotic 

perfonnance. 

Summary of PSM as defined in [98}: Let y be a zero-mean stochastic function defined on 

the unit interval. Assume that y is a realization from the piecewise smooth stochastic model 

(PSM) of [98]. This model realizes a finite set of discontinuity locations using a Poisson 

process and, conditioned on fixing these locations, obtains realizations so that function 

values at two points it and t2 are correlated via the autocorrelation function, 

{ 
R(ltl - t21), if there is no discontinuity point between tl and t2 , 

R(t1 , t 2 ) = 

0, otherwise. 

In this section we will assume that realizations of the process have a random but bounded 

number of discontinuity points given by /'i,. As in [98] assume that R is of class C2r1 , Tl 2:: 

1, with Tl quantifying the smoothness of the correlation function5 . Let el be the ran-

dom vector that captures the location of the discontinuities. Given an orthononnal wavelet 

decomposition with compact basis functions of vanishing moments, let Wj,k denote the 

5For details please see the PSM definition in [98], page 1901. For two different ways in which unbounded 

/<i, can be accommodated please see [98], pages 1904 and 1908. 
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wavelet basis function at scale j and shift k. It can be shown that 

{ 

Cs,12-j(2T1 +1), s: if support ( </Jj,k) does not overlap any discontinuities, 
Ell < y, ?jJj,k > 1

2
1 e1] ::; .. 

Ce .12-J , e : otherwise. 

(5.26) 

Observe that wavelet coefficients over the smooth segments decay rapidly compared to 

those over the discontinuities. One of the main results shown in [98] is that transform 

coding with a wavelet decomposition obtains the operational distortion-rate function 

(5.27) 

for some constant C1 > O. Equation 5.27 is obtained despite the poor decay of coefficients 

over the discontinuities. In fact, one would obtain the same decay in the distortion-rate 

function had there been no discontinuities in the process. The gist of the result is that with 

a localized wavelet decomposition one can fully exploit the strong local correlations in the 

process (as determined by the smoothness of R) regardless of the discontinuities. This is 

possible because it can be shown that if a realization has K discontinuities, of the 2j coeffi-

cients at scale j, only K are of type e and have slow decay. An encoder can simply separate 

coefficients at each scale into two groups, an exponential ('" 2j ) number of coefficients of 

type s and at most a constant number of coefficients of type e, encode each group optimally, 

and send the grouping information with comparatively negligible bits. The rapid decay of 

the coefficients over the smooth segments can be taken advantage of as long as the number 

of poorly decaying coefficients is small. 

Simple Predictors in Transform Domain: With y generated as an instance of the PSM, let L 

be generated independently via another instance of the PSM with autocorrelation function 
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smoothness T2 and discontinuities in e2. Let x = y + L Suppose that both the encoder 

and the decoder have x and we are interested in communicating y to the decoder. Given 

(5.27), it is clear that an encoder can communicate either y or L depending on the associated 

smoothness to obtain D ( R) ::; C' R-2 max( TI, r 2 ), where C' > 0 is a constant. Let us see that 

one can obtain similar performance by predicting y using x and compressing the prediction 

error. We perform scalar prediction in transform domain so that < y, Wj,k > is linearly 

predicted using < x, Wj,k >=< y, Wj,k > + < L, 'l/Jj,k >. Conditioned on knowing e1 and 

e2, a linear predictor Q < x, 'l/Jj,k > of < y, Wj,k >, obtains the mean squared error (MSE), 

(5.28) 

Ideally we would like to use the prediction weight Q* (j, e1, e2) that minimizes (5.28), which 

can be obtained as 

(5.29) 

However, since we only have bounds for the expectations in (5.29), let us instead consider 

the upper-bound predictor, QU(j, e1, e2), which heuristically replaces the variances with 

their upper-bounds obtained from (5.26) (and its equivalent for L). QU(j, e1, e2) assumes 

four different values in each scale depending on the coefficients involved in the prediction 

vIa 

Cs,12-J(2r1 +1) +Cs,22-J(2r2+1) , 

Cs ,1 2- J(2q +1) 

(8,8) 

(e, s) 

( e, e) 

C 2-j(2max(r1,r2)+1) 
S8 • 

C 2- j (2r1 +1) 
8e , 

C 2-j(2r2+1) 
es , 

(5.30) 
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where we have also substituted the upper-bounds into (5.28) to obtain the MSE for each 

case. These four cases reflect whether < y, 'l/Jj,k > and < L, 'l/Jj,k > overlap discontinuities 

or not, as determined via el and e2. Observe that in the worst-case scenario where the 

inequalities in (5.26) become equalities, QU(j, el, e2) = Q*(j, ell e2), i.e., the upper-bound 

predictor is optimal. 

Differential Encoding: At first glance it seems as if we obtain the fastest decay (2 max( rl , r2)+ 

1) in the prediction error only in a restricted case. However, even with the addition of L, 

we have that of the 2j coefficients of x at scale j, at most a constant number overlap the 

discontinuities. Hence, if QU(j, el, e2) can be realized at both the encoder and decoder, the 

bounds on the right side of (5.30) can be used to bound the variances of the prediction­

error coefficients in order to encode them using the scalar coders discussed in [98]. This 

will accomplish 

(5.31) 

with an appropriate Gil > O. Realizing QU(j, el, e2) is also straightforward since one can 

again group coefficients into two with negligible bits, and further signal (s, e) 1 (e, s), and 

(e , e) within the discontinuity group. An optimizing encoder will hence have performance 

equal or better than (5.31). Note also that for a worst-case Gaussian process with indepen­

dent coefficients, (5.31) is asymptotically optimal. 

Hard-thresholding Predictor: From a MSE point of view it is clear that the (s, s) branch in 

(5.30) is the one that primarily impacts asymptotic performance. For reference signals of 

the specific form x = y + L, it thus becomes possible to use even simpler predictors which 
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can be realized using thresholding. Suppose r2 > r1 and consider the trivial predictor 

1, (s, s) C' 2- j (21' 2 +1) 
88 , 

1, (8, e) C' 2- j 

ot(j, e1, e2) = mse(ot(j, e1, e2)) ~ 
se , 

, (5.32) 
1, (e,s) C' 2- j (21' 2 +1) 

es , 

1, (e, e) C' 2- j 
ee , 

which obtains the desired asymptotic performance by encoding -L. For the case r2 ~ r1 

one can tum off the prediction (so that y is encoded), and realize the "combined" predic-

tor using hard-thresholding (using, say, an encoder that chooses a rate-distortion optimal 

threshold). Naturally, if the corruption also causes amplitude modulation of coefficients, if 

the smoothness of y and L are varying in each segment, etc., the effectiveness of a thresh-

olding or on/off predictor becomes limited and the desired performance cannot be realized. 

Extension to two dimensions and non-smooth corruption: The above discussion can be 

extended to two-dimensions in a straightforward manner using decompositions that are 

appropriate for 2 - D signals with discontinuities along curves [99, 100, 101]. When x is 

further corrupted by white noise, inter-signal prediction will give improvements for scales 

in which the variances ofthe coefficients of y and L are larger than the noise variance, i.e., 

the distortion-rate function will decay at 2 max(r1' r2) until one reaches a noise-floor where 

the decay will reduce to 2r1. 

We conclude this section by noting that inter-signal compression is beneficial when 

the corruption caused by L is small for at least some components in y, provided that the 

indices of these components can be predicted or signaled cheaply. For 1 - D piecewise 

smooth processes considering signals in wavelet domain and using simple predictors result 

in significant prediction benefits in segments where L is smoother than y. It is clear that 
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asymptotically optimal encoding becomes possible due to two factors, both of which are 

enabled by the wavelet transform. 

• Efficient prediction that results in rapidly decaying prediction error coefficients. (In 

(5.30), except for few, if any, (e, e) overlaps, the variances of prediction error coeffi­

cients are rapidly decaying). 

• Helper-information that realizes the required adaptive predictors using negligible 

bits. 

Over general signals one must hence use a decomposition that highlights the sparsity in the 

data with the expectation that significant prediction gains are possible when the corruption 

is small on the information carrying parts of y, i.e., when larger (smaller) coefficients of L 

corrupt smaller (larger) coefficients in y. 
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Chapter 6 

Conclusions 

In this dissertation, I looked at the spatial and temporal image prediction problems from 

the new perspective of the magnitude and phase representations of the CWT or the over­

complete DCT. Under those representations, the formulation and modeling of complicated 

spatial and temporal image evolutions are greatly simplified: edges, textures, structured 

temporal interferences, and linear temporal distortions can be modeled easily within a small 

spatial and temporal neighborhood. 

I investigated the theory of image reconstruction from the CWT magnitude and phase. 

I showed that an image is unique under certain conditions given its analytic magnitude or 

phase ofthe CWT, proposed iterative reconstruction algorithms, and presented results about 

the convergence of the proposed algorithms. The CWT phase is considered being close to 

the 2D spatial phase that may be used internally by the human visual system for encoding 

visual information. The investigation in this dissertation verified that the CWT phase is 

capable of representing images alone. It also sheds some new lights on the importance of 

the CWT magnitude by showing that the magnitude is also capable of representing images 

alone and encodes the visual information in a "dual" way to the phase. 

Following the investigation about the magnitude and phase representations, I proposed 

simple geometrical models for interpolating the analytic CWT magnitude and phase, and 

constructed an iterative image inpainting algorithm to solve the image inpainting problem. 



120 

Under the magnitude and phase representation, important image features like edges and 

patterned textures become very simple to model and interpolate (linear models for edge 

location and phase). The proposed inpainting algorithm achieved high visual quality pre­

diction results with low computational complexity. 

For inter-picture image prediction encountered in video coding and image registra­

tion, I proposed a novel temporal prediction algorithm which enables successful predic­

tion under complicated scene transitions. Under the sparse and smooth representation of 

the over-complete DCT, the rejection of structured temporal interference and the learning 

and inverting of linear temporal distortion can be achieved by a set of simple predictors. 

The proposed temporal prediction algorithm has been successfully applied to the standard 

H.264! AVC video encoder and image registration. 
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Scan all p x p blocks overlapping the current macroblock. 

* Predict the p x p block. 

* Update current prediction. 

* Store prediction for final averaging. 

* Expand and update the training region. 

Combine stored predictions for the macroblock. 
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Figure 5.6 : Implementing the prediction algorithm for 'macroblock based operation. (a) 
Block bx and neighborhood Abx ' (b) Example prediction scan inside a macroblock in layers 
of horizontal, one pixel thick strips. Previous predictions are incorporated into the training 
data of later ones. At certain points in the scan, prediction of compression transform blocks 
are completed and corresponding prediction error updates are incorporated. 

5.5 Simulation Results on Video Coding 

The proposed predictor is implemented inside the JM h264/AVC reference software [54] . 

In generating the simulation results, the parameters in Figure 5.6 are set to p = 4 and 

L = 12 (corresponding to + / - 1 block around each p x p block). For each macroblock, 

there is a 1 bit overhead information to determine if the proposed prediction is used or 

not. This bit was set within the rate-distortion optimization loop of the JM software. Only 



-. , _~_o_ 

,.r r 

(a) 
. .--

,I, 

I -
'*: ....... 

-. .. ~ 
(b) 

(c) 

" 

o f~'o ; ,,"--.: .. -
.. :..-...:~ ........ s . .. , _ 

(d) 

'" 

. , 

- #'''-"~ • .....: «r r 

, M 

_o~~ _ _ 

... - .. , 

.. .\~ 

- . ~ 

- -" T--- ~ 
'~r r 

~ ~ ' 

--~ - ' - - ~ ~ 

"".... ... .. 

I 

I 

I 

. ~i; 

-- .JI 

- '-,--"- ~ 
~r r 

A 0 1" 0 

.,,~-- --- .... 
-. -.. ., 

(" 
.. 

I 

. " . ,=- ' -' 
,--~ .. " .­

... r-.... ~J-• .. .." 

Figure 5.7 : Test set of five-frame transitions. 
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luminance macroblocks were predicted with the proposed technique. All test sequences are 

QCIF (144 x 176) resolution. Beyond the traditional motion search, a motion search on 

an integer grid is implemented to find the optimal integer motion vectors for the proposed 

predictor. 

Figure 5.7 shows a set of five-frame transitions from ~he video sequences "car" (Figure 

5.7 (a), (b), and (d)) and "glasgow" (Figure 5.7 (c)). In Figure 5.8, the corresponding 

rate-distortion results is provided using QP = 22 , 26, 30. Each five-frame sequence was 

encoded in the I P P P P pattern. The video frame rate is at 30 frames/sec. Both rate 

and distortion are averages for the four P frames since both h.264/AVC and the proposed 

predictor utilize the same INTRA frame. Figure 5.7 (a)-(c) correspond to fades, and (d) 

depicts a special effect with localized blurring, fades, and brightness changes. Figure 5.7 



104 

42 42 

40 40 

38 38 

n:: 36 n:: 36 
z z 
en en 
a.. 34 a.. 34 

32 32 

30 
...... JM (h264/AVC) 

30 
- - - 25% improvement mark 
...... Proposed 

28
0 100 200 300 400 500 600 

28
0 . 100 200 300 400 500 600 

Rate (kbps) Rate (kbps) 

(a) (b) 

40 42 

38 40 

38 
36 

n:: n:: 36 
~ 34 z 

en 
a.. a.. 34 

32 
32 

30 ...... JM (h264/AVC) 
30 

...... JM (h264/AVC) 
- - - 15% improvement mark - - - 15% improvement mark 
...... Proposed ...... Proposed 

28
0 200 400 600 800 1000 1200 

28
0 100 200 300 400 

Rate (kbps) Rate (kbps) 

(C) (d) 

Figure 5.8 : Rate-distortion performance of a h2641 AVe-based video coder (lM) without 
and with the proposed predictor for encoding the short sequences in Figure 5.7. The pro­
posed predictor improves the performance by about 25%, 30%, 15% and 15% respectively. 

( a) has mostly rotational motion, (b) and (c) have translations, and (d) is stationary. As seen 

in Figure 5.8, the proposed predictor obtains improvements for all cases even for scenes rich 

in spatial frequencies. Allowing the use of fractional motion is expected to improve these 

results. 

Over entire sequences the gains provided by the proposed technique varies depending 

on the density of sophisticated temporal evolutions in the sequence. On simple sequences 

(such as "foreman", "car-phone", and "container"), gains are on the order of 2 - 5% im-

provements in rate at constant distortion, whereas on more complicated sequences (such as 
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movie trailers and commercials, see Figure 5.9), gains again become significant. A more 

compression-optimized implementation that determines -and sends the prediction parame-

ters in a rate-distortion optimal fashion is expected to improve these results. 
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Figure 5.9 : Rate-distortion performance of a h264/AVC-based video coder (1M) without 
and with the proposed predictor for encoding two movie trailers and a commercial. The 
sequences (150 frames) are encoded in the IPPPP profile. In each case, the distortion/rate 
involved in the first (INTRA) frame is not included since the encoding of this frame is the 
same for both coders 

The bulk of the per-frame decoding complexity of the proposed work can be summa-

rized as rv 3p2 multiplies +p2 divides +4p2 additions per-pixel (in order to solve (5.12) 

and apply (5.13)), and a translation invariant DCT decomposition. Note however that this 

complexity can be reduced significantly by reducing the size of the training set. Encoder 

complexity is more cumbersome due to the motion search. Complexity can be alleviated 

by restricting the technique to macroblocks where traditional prediction fails or is deemed 

inefficient in a rate-distortion sense. Encoder complexity may also be reduced by using fast 

motion search algorithms. 
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Source image Target image Ground-truth warp J.L Baseline method warp J.Ll Proposed method warp J.L2 

(a) Clean 1iJ.L - J.Ll1i2 = 0 .087 1iJ.L - J.L21i2 = 0 .021 

(b) Gaussian noise 1i J.L - J.Ll1i2 = 23 .214 1iJ.L - J.L21i2 = 0 .979 

( c) Interfering sine wave 1iJ.L - J.Ll1i2 = 24 .556 1iJ.L - J.L21i2 = 0 .063 

(d) Interfering image 1iJ.L - J.Ll1i2 = 19.561 1iJ.L - J.L2 1i 2 = 0 .015 

Figure 5.10 : Image registration examples using the proposed prediction method where the 
target image is clean and the source image may have interference ( a) Clean; (b) Gaussian 
noise; (c) Interfering sine wave; (d) Interfering image. 

5.7 Conclusions 

This chapter constructed a temporal prediction algorithm. that provides successful estimates 

over complex inter-picture transitions involving focus changes, cross-fades, intensity vari-

ations, noise, clutter, and so on. The proposed algorithm is not narrowly committed to 
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