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ABSTRACT 

Endogenous Sparse Recovery 

by 

Eva L. Dyer 

Sparsity has proven to be an essential ingredient in the development 

of efficient solutions to a number of problems in signal processing and 

machine learning. In all of these settings, sparse recovery methods are 

employed to recover signals that admit sparse representations in a pre­

specified basis. Recently, sparse recovery methods have been employed 

in an entirely new way; instead of finding a sparse representation of a 

signal in a fixed basis, a sparse representation is formed "from within" 

the data. In this thesis, we study the utility of this endogenous sparse 

recovery procedure for learning unions of subspaces from collections of 

high-dimensional data. We provide new insights into the behavior of en­

dogenous sparse recovery, develop sufficient conditions that describe when 

greedy methods will reveal local estimates of the subspaces in the ensem­

ble, and introduce new methods to learn unions of overlapping subspaces 

from local subspace estimates. 
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CHAPTER 1 

Introduction 

1.1 Unions of Subspaces 

With the emergence of novel sensing systems capable of acquiring data at scales 

ranging from the nano to the tera, modern sensor and imaging data is becoming in-

creasingly high-dimensional and heterogenous. To cope with this explosion of complex 

high-dimensional data, we must exploit the fact that 'natural signals'1 have intrinsic 

structure of much lower dimension than that of the ambient space. 

Linear subspace models are one of the most widely used signal models for charac-

terizing the intrinsic low-dimensional structure contained within collections of high­

dimensional data, with applications throughout signal processing, machine learning, 

and the computational sciences. This is in part due to the simplicity of linear models 

but is also due to the fact that principal components analysis (PCA) provides an 

elegant closed-form solution to the problem of finding an optimal low-rank approx­

imation to a collection of data (an ensemble of points in lRn). More formally, if we 

stack a collection of d points in lRn into the columns of a matrix Y E lRnxd, PCA 

1 Natural signals arise when studying natural phenomenon. Examples of natural signals include: 
images captured from a structured light field, the trajectory of a protein when moving from its 
native to unfolded state, or the acoustic waveform arising from the pluck of a guitar string. 
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seeks the best rank-k estimate of Y by solving 

(PCA) min IIY- XIIF subject to rank(X) :::; k. 
X 

(1.1) 

Despite the power of linear subspace models, mounting evidence suggests that 

a wide range of data may not be succinctly represented in terms of a single linear 

subspace but instead admit an union of subspaces. For instance, ensembles ranging 

from collections of images taken of objects under different illumination conditions [1], 

motion trajectories of point-correspondences [2, 3], to structured sparse and block­

sparse signals [4, 5, 6], can all be well-approximated by a union of low-dimensional 

subspaces or a union of affine hyperplanes (flats). Unions of subspace models have 

also found utility in the classification of signals collected from complex systems at 

different points in time, e.g., local field potentials collected from the motor cortex 

over different days [7]. 

Unions of subspaces provide a natural extension of linear subspace models, but 

providing a provable extension of PCA that is capable of determining an optimal union 

of subspaces that well-approximate a collection of data, is extremely challenging. This 

is due to the fact that segmentation-the identification of points that live in the same 

subspace-and subspace estimation must be performed simultaneously. However, if 

we can accurately sift through the points in the ensemble and determine which subsets 

of points lie near the same subspace, then subspace estimation becomes trivial. 

A common approach for identifying sets of points that live in the same subspace 

is to determine the 'multi-way affinity' between points in the set from locally linear 

approximations to the data [8] . To be precise, these methods compute the affinity 

between two test points by fitting a linear approximation to the points within an 

euclidean neighborhood of each test point and computing the the similarity between 

these subspace estimates. After determining the affinity between points in the set, 
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spectral clustering is performed on the resulting affinity matrix. Methods that use 

nearest neighbor sets to form locally linear approximations to data include: local 

subspace affinity (LSA) [9], spectral clustering based on locally linear approximations 

[8], spectral curvature clustering [10], and local best-fit flats [11, 12]. 

When the subspaces present in the ensemble are independent and/ or are linearly 

separable, linear approximations obtained from neighboring points typically provide 

reliable and stable estimates of the affinity between points in the ensemble. However, 

neighborhood-based approaches quickly begin to fail as the overlap between the two 

structures increases and as the subspace dimension increases. This is due to the 

fact that as the overlap between two subspaces increases, the set of points that live in 

neighborhoods of one another are less likely to be contained within the same subspace. 

This suggests that if we can find another feature selection strategy that improves our 

probability of selecting a feature set that contains points from the same subspace, 

then we can use this alternate set of points to form a local subspace estimate 1 instead 

of forming linear approximations from sets of near neighbors. 

1.2 Endogenous Sparse Recovery 

Recently, Elhamifar et al. have set forth an entirely new proposal for feature selec­

tion which remedies a number of the issues that arise when using neighborhood-based 

subspace estimates [13]. The idea behind this approach is to select a subset of points 

from the ensemble that provide a 'sparse representation' of another point in the same 

ensemble. By enforcing sparsity in this representation, one can show that a represen­

tation formed from points in the same subspace is more efficient than a representation 

formed from points outside of the subspace that the point is contained in [14]. For 

1 We refer to subspace estimates as being local if they are formed from a subset of points in the 
ensemble. In contrast, we refer to standard low-rank approximation over the entire set of points as 
a global subspace estimate. 
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this reason, the resulting feature sets selected via sparse recovery methods are likely 

to contain points that all belong to the same subspace. 

We will refer to this application of sparse recovery methods as endogenous sparse 

recovery due to the fact that representations are not formed from an external source--

as in standard applications of sparse recovery-but are formed "from within" the data. 

Formally, for a collection of d signals, Y = {y1, ... , Yd} each of dimension n, we seek 

a sparse representation of the ith point with respect to the remaining d - 1 points in 

the ensemble. The sparsest endogenous representation of the ith point is defined as 

the representation with smallest "f0-norm" 1 

c; - arg min 
c 

II clio subject to Yi = L c(j)yi, 
#i 

(1.2) 

where the llcllo counts the number of non-zeroes in its argument. Let A(i) = supp(ci) 

denote the subset of points from Y selected to represent the point Yi and ci(j) denote 

the contribution of the lh point to the sparse representation of Yi. We will also refer to 

A (i) as the feature set selected for the ith point. In general, finding the optimal subset 

of columns from the ensemble that possess the smallest cardinality has combinatorial 

complexity; rather, sparse recovery methods such as basis pursuit (BP) [15] or a 

greedy pursuit (OMP) [16] may be employed to find approximate solutions to this 

problem. 

When the data live on a union of disjoint subspaces, i.e., subspaces intersect only 

at the origin, and are sufficiently separated, Elhamifar et al. demonstrated that the 

feature sets selected via BP will only contain points from the same subspace [14]. 

These results provide new insight into the role that 'sparsity' may play in feature 

selection from unions of subspaces; however, the practical performance of this tech-

1The "io-norm" is placed in quotes because it is not actually a norm. The io-penalty l!xllo 
simply counts the number of non-zeros in its argument. 
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nique has quickly outpaced the theoretical results that exist in the literature. In 

particular, there has been no study of the utility of greedy feature selection strategies 

for endogenous sparse recovery as well as the application of endogenous sparse recov­

ery to non-disjoint or overlapping subspaces. Examples of unions of non-disjoint or 

overlapping subspaces include natural image ensembles [17), illumination subspaces 

[18), and overlapping block-sparse signals [19, 20). 

The aim of this thesis is to provide new insights into the behavior of greedy 

feature selection strategies for learning local subspace estimates from collections of 

high-dimensional data. The contributions of this thesis can be summarized in terms 

of our efforts of three main fronts: 

1. Theoretical analysis of greedy feature selection from unions of subspaces. 

2. Empirical study of EFS from unions of overlapping subspaces. 

3. Study and comparison of methods for learning unions of subspaces from local 

subspace estimates. 

1.3 Motivating Example 

Before proceeding, we begin by revealing an interesting property of greedy feature 

selection from unions of subspaces-the feature sets selected by matching pursuits 

exhibit diversity. When we say that the feature sets are diverse, we mean that each 

point in the set is sufficiently different from the rest of the points in the set. This 

is due to the fact that orthogonal greedy methods such as OMP find points in the 

dataset that are highly correlated with the signal of interest; however, each time we 

select a point from the dataset, the signal is projected into the space orthogonal to 

the subspace spanned by the points selected at previous iterations. This guarantees 

that all of the points in our feature set will point in different directions and are not 
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redundant. As a consequence, we avoid accumulating redundant points in our feature 

set that will skew our local subspace estimates. This is particularly useful in the case 

where our nearest neighbor graph exhibits hubs (nodes with very high degree); in this 

setting, we find that greedy feature selection can be used to recover affinities that are 

hub-free. 

We now provide an example of this hub-breaking phenomenon. In Figure 1.1, we 

show an example of a union of subspaces formed from two different faces under vari­

ous illumination conditions. To visualize the affinity between points across different 

subspaces, the data is sorted such that all of the images from a single face are in 

a contiguous block. By sorting the data in this way, we expect to see clustering in 

the block-diagonal component and minimal edges contained in the off-diagonal com­

ponent. On the left, we show the adjacency matrix A for the near neighbor (NN) 

graph, which is laden with hubs in the off-diagonal which link points belonging to 

different subspaces. At the bottom of the NN affinity matrix, we show an example of 

two points from different subspaces that are linked via one of these hubs on the NN 

graph. 

On the right, we show the £0 -graph formed from the same ensemble. The £0-graph 

of the ensemble G = (V, E) contains lVI = d vertices, where each vertex corresponds 

to a particular point in the dataset. If we assume that each point in the ensemble 

can be expressed with no more than k points in the set, 1 then the number of edges 

lEI~ kd. In general, the edge weight between vertex i and j can take on any number 

of different values, as long as the edge weight is non-zero when point i and j use one 

another in their sparse representations. To ensure that the £0-graph of S(Y) = {A (i) 

1 We will refer to this property as self-expression. Our implicit assumption will be that for points 
living in k-dimensional subspaces, we can represent each point in the set in terms of at most k other 
points in the ensemble. 
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is symmetric, i.e., eii = eii, we will define the edge weights eii as follows: 

e;; ~ { ~e;(j)[ + [c;(i)[ 

if j rJ. A (i), i rJ. A 0>, 

else. 

This example provides striking visual evidence of the power of endogenous sparse 

recovery from unions of subspaces, where we observe perfect clustering in the correct 

components. In contrast, the NN-graph contains a great deal of energy in its off block­

diagonal, suggesting that points from different subspaces (images of different people) 

will be clustered together in terms of their NN relationship. This results suggests 

that endogenous sparse recovery is capable of "breaking hubs in high-dimensions". 

This is in stark contrast to NN-graphs which are known to be susceptible to hubs. 1 

1.4 Thesis Organization 

We provide a roadmap of the main contributions of this thesis below. 

Chapter 2. We describe relevant work in sparse recovery and discuss methods for 

forming sparse approximations from overcomplete dictionaries. Following this, 

we provide a summary of applications of endogenous sparse recovery to subspace 

learning problems. 

Chapter 3. We provide a method for greedy feature selection and introduce the 

notion of exact feature selection (EFS). 

Chapter 4-5. We develop sufficient conditions for EFS with greedy methods that 

reveals an intimate relationship between the covering of subspaces in the ensem-

ble and the geometry of the union of subspaces. In Chapter 5, we extend these 

1See (21] for a description of the 'hubness' phenomenon that plagues NN-graphs and classifiers 
in high-dimensions. 
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Figure 1.1: Comparison of nearest neighbor graph and 1!0 -graph for unions of illu­
mination subspaces. The highlighted point corresponds to a hub where points from 
different subspaces are identified as near neighbors. On the right, we show that greedy 
feature selection avoids selecting points from these hubs when we form endogenous 
representations of the data. 

results to the setting where our data admits an 'uniformly bounded union' ; this 

enables us to reveal further dependencies between EFS and the the distribution 

of principal angles between subspaces. 

Chapter 6. We study and characterize the empirical phase transitions for EFS from 

structured unions of overlapping subspaces. 

Chapter 7. We introduce a new method for subspace recovery and compare this 

method with other methods for learning unions of subspaces from local feature 

sets. 

Chapter 8. We study the application of greedy selection and our new methods for 

subspace consensus to segmentation and clustering problems arising in anum-
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ber of applications which include: segmentation of multispectral images, face 

subspaces, and motion trajectories, as well as document cluster analysis from 

educational material. 

Chapter 9. We discuss the implications of our analysis and subsequent studies on 

sparse approximation, dictionary learning, feature selection methods. We con­

clude with a number of interesting open problems. 

1.5 Notation and Preliminaries 

In this paper, we will work solely in real finite-dimensional vector spaces or in ~n. We 

write vectors x in lowercase script, matrices A in uppercase script, and scalar entries 

of vectors as x(j). The standard p-norm is defined as 

( 
n ) 1/p 

llxiiP = ~ lx(j)IP , 

where p ~ 1. The £0 quasi-norm of a vector x is defined as the number of non-zero 

elements in x. The support of a vector x, often written as supp(x), is defined as the 

set containing the indices of its non-zero coefficients; hence, llxllo = lsupp(x)l. The 

key matrix norms that we will employ in our subsequent analysis include: IIAih,ll the 

maximum £1-norm across all the columns in A and the spectral norm IIAII 2,2 , which 

is also equivalent to the maximum singular value of A. 

We denote the Moore-Penrose pseudoinverse of a matrix A as At. If A= UEVT 

then At = VE+UT, where we obtain :E+ by taking the reciprocal of the entries 

in :E, leaving the zeros in their place, and taking the transpose of this matrix. An 

orthonormal basis (ONB) is known to satisfy the following two properties, <I>[cf.>i = Ik, 

and range(cf.>i) = Wi, where his the k x k identity matrix. The ortho-projector onto 

the subspace spanned by the sub-matrix XA is defined as PA = XAX1. 
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We denote the 1!.2 sphere of radius r as 

(1.3) 

We will write the unit sphere as §n-l, without specifying the radius. 



CHAPTER 2 

Background 

In this chapter, we review relevant work in sparse signal recovery and describe appli­

cations of endogenous sparse recovery to subspace learning and clustering problems. 

2.1 Sparse Approximation 

2.1.1 Sparse Representation in Overcomplete Dictionaries 

Sparsity has proven to be an essential ingredient in the development of efficient and, 

in some cases, unique solutions to a number of fundamental problems in signal pro­

cessing and machine learning, from compression and denoising of signals [15, 22] to 

compressive sensing [23, 24], morphological components analysis [25, 26] and sparse­

representation based classification [27]. In all of these settings, sparse recovery meth­

ods, e.g., £1-minimization [15, 28] or greedy pursuits [16], are employed to recover 

signals that admit sparse representations in a fixed and pre-specified basis or over­

complete dictionary. 

To make this precise, we refer to a finite collection of unit-norm atoms V = { 1Pi}f=1 

as a dictionary. If the dictionary is complete, i.e., spans lRn, then an exact recon-
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struction of any input signal x E Rn can be formed by finding a linear combination 

of the atoms in the dictionary as follows 

d 

x = La( i)r.pi = ci>a, (2.1) 
i=l 

where ci> E Rnxd contains the atoms in 'D in its columns and a( i) indexes the ith 

entry of the coefficient vector a E JRd. When ci> forms an ONB, the coefficients in 

(2.1) are uniquely determined by the projection of each basis vector onto the signal 

of interest, i.e., a(i) = (r.pi, x). In this case, the representation of x with respect to 

ci> is unique. However, when ci> is overcomplete, i.e., d > n, an infinite number of 

representations can be formed from the atoms in ci>. Hence, the simplest or most 

parsimonious explanation can be sought by finding a sparse representation of x with 

respect to the atoms in ci>. To find the sparsest representation of x, our aim is to find 

a solution to the following problem 

(EXACT) min llallo subject to x = ci>a. 
a 

(2.2) 

Instead of looking for the sparsest representation directly, we may instead fix the 

sparsity level k and then search for the best k-term approximation of x 

(SPARSE) min 
a 

llx - ci>allz subject to llallo ~ k. (2.3) 

Although the objectives of both (EXACT) and (SPARSE) are similar, we will find 

that the structure of each problem lends itself well to different classes of methods 

designed for sparse signal recovery. 
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2.1.2 Sparse Recovery Methods 

Methods for sparse recovery fall broadly into one of two classes, convex optimization-

based approaches and greedy pursuit methods. The first class of methods transform 

the non-convex objective function in (EXACT) into a convex objective by replacing 

the £0 penalty with the £1 norm. This relaxation results in a formulation which is 

known to as Basis Pursuit (BP) 

(BP) min llalh subject to x = <I>a. 
a 

(2.4) 

We may also relax this equality constraint by trading off the sparsity of the solution 

with the £2 approximation error; this results in convex formulations known as basis 

pursuit denoising (BPDN) [15] and the LASSO [28]. 

The second class of sparse recovery methods employ greedy pursuit strategies to 

find an approximate solution to (SPARSE). Examples of greedy pursuit strategies 

include matching pursuit (MP) [29], orthogonal matching pursuit (OMP) [16], or 

subspace pursuits such as CoSaMP [30]. Greedy methods work by selecting atoms 

iteratively, subtracting the contribution of each selected atom from the current signal 

residual. This selection process is then repeated until a stopping criterion is satisfied: 

either a target sparsity llallo = k is reached, or the residual magnitude becomes 

smaller than a pre-specified value. 

Greedy pursuits will serve as the algorithmic framework for our subsequent study. 

For this reason, we detail OMP in Algorithm 1 to familiarize the reader with the 

algorithm. 
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Algorithm 1 : Orthogonal Matching Pursuit 
Input: Input signal y E JRn, a dictionary <I> E JRnxd-l, and a stopping criterion 
(either number of atoms k or the norm of signal residual E). 
Output: Index set A containing the indices of all atoms chosen in the pursuit. 
Initialize: Set the residual to the input signal r 0 = y. 
1. Compute the analysis coefficients for the current residual as <I>T r n· 

2. Find the largest analysis coefficient in absolute magnitude. Call the atom 
corresponding to this maximum analysis coefficient 'Pi and place its index in the 
support set A= AU j. 
3. Update the residual, rn+l =(I- <I>A<I>~)y. 
4. Repeat steps (1-3) until a stopping criterion is reached, i.e., either k atoms are 
selected or llrnll ::::; E. 

2.1.3 Exact Recovery Conditions 

In this section, we will describe geometric constraints on the dictionary required to 

guarantee exact support recovery for a signal that lies in the span of a particular subset 

of atoms from V. If we assume that x has been synthesized from a linear combination 

of atoms in the sub-dictionary <I>A E ]Rnxk, then we will be interested in when we can 

uniquely recover an approximation of x that consists solely of the elements in A. In 

this case, we say that exact support recovery occurs. After recovering the support 

of our signal, the best £2-approximation of the signal is then found by projecting the 

onto the subspace spanned by the recovered set of atoms, where x = <I> A <I>~ x. 

To guarantee that exact support recovery occurs for all signals supported over a 

particular sub-dictionary, Tropp introduced a general exact recovery condition (ERC) 

for both BP [31] and OMP [32]. The ERC is defined as follows. 

Definition 1 (Exact Recovery Condition) For any signal supported over the sub­

dictionary <I> A, exact support recovery is guaranteed for both OMP and BP if the 

following condition holds 
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A geometric interpretation of this condition is that the ERC provides a measure of 

how far a projected atom PAt.p outside of the set A lies from the antipodal convex 

hull of the atoms in A. In words, the ERC(A) provides a measure of how unique a 

representation drawn from a superposition of atoms in A is with respect to the rest 

of the elements in the dictionary. If the atoms outside of A are similar to the atoms 

in A, then exact support recovery is not guaranteed. 

Although the ERC provides some intuition about when a signal can be uniquely 

recovered from a certain sub-dictionary, to guarantee that all k-sparse signals can 

be uniquely recovered, we must ensure that all sub-dictionaries of size k satisfy the 

condition that ERC(A) < 1. Thus, in practice, the exact recovery condition is 

impossible to check because it requires evaluating ERC(A) for all (~) sub-dictionaries 

of size k and finding the maximum over this set. Instead, these conditions are often 

translated into constraints on the geometric structure of the dictionary. 

Two such quantities that we will be interested in are the maximum coherence and 

the cumulative coherence of the dictionary. We supply a formal definition of both 

quantities below. 

Definition 2 (Maximum coherence) The maximum coherence of a dictionary of 

unit-norm atoms 1) = { t.pi}f=1 is defined as 

f-L - max I ( I.{Ji, t.p3-) I· 
i#j 

Definition 3 (Cumulative coherence) The cumulative coherence of a dictionary 

of unit-norm atoms 1) = { t.pi}f=1, is defined as 

Whereas the maximum coherence describes the maximum amount of coherence that 
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exists between two atoms in the dictionary, the cumulative coherence measures the 

accumulation of coherence between a fixed atom and k other atoms in the dictionary. 

Moreover, the cumulative coherence gives an upper bound on the absolute off-diagonal 

row (or column) sum of the Gram matrix obtained for any sub-dictionary, where the 

Gram matrix list the inner products between the atoms in the sub-dictionary or 

G = <I>I<I>A for any set IAI :::; k. For a detailed review of the geometry of sparse 

approximation and ERC-based conditions for noisy signals see [33]. 

2.2 Applications of Endogenous Sparse Recovery 

We now discuss applications of endogenous sparse recovery in both supervised and 

unsupervised subspace learning problems. 

Pl. Subspace clustering: The goal of subspace clustering is to partition points in an 

ensemble in accordance with the subspace membership of each point. In [13], 

endogenous sparse recovery (BP) is used to form an adjacency matrix A for the 

ensemble, where the ( i, j)th entry of A is given by 

Following this, spectral clustering is performed on the graph Laplacian of the 

adjacency matrix A. Applications of subspace clustering include: segmenting 

motion trajectories, data-driven object recognition, and segmentation of diffu­

sion tensor imaging data. 

P2. Subspace consensus: The goal of subspace consensus is to find a linear approx­

imation to a subset of points from the dataset (local subspace estimate) and 

look for agreement or 'consensus' amongst local subspace estimates obtained 
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from different subsets of the data. A standard approach for selecting subsets 

of points from the data is to select points that live in a local euclidean neigh­

borhood around a point. In [34], endogenous sparse recovery is instead used 

to select subsets of points from which we may form local subspace estimates. 

At a high-level, this application of endogenous recovery can be summarized as 

follows: 

1. Solve the endogenous sparse recovery problem in (1.2) for each point in 

the ensemble to obtain a collection of support sets S(Y) = {A(i)}1=I· 

2. Compute local subspace estimates for each point by finding a low-rank 

approximation to the points indexed by each of the support sets in S(Y). 

This can be done either with PCA or a robust variant [35]. 

3. Determine the local estimates to be included in the model by letting points 

vote upon which of the estimates they agree upon, e.g., find the mode in 

the subspace estimates or count the number of points that lie within a 

fixed region around each of the local subspace estimates. 

Applications of this include decoding trajectories from local field potentials 

in the motor cortex [7] and for dictionary learning in audio source separation 

problems [34]. 

P3. Supervised subspace classification: The goal of supervised subspace classifica­

tion methods that employ endogenous sparse recovery is to determine which 

subspace structure a point belongs to based upon the energy of the sparse co­

efficients used to decorate points across each class in the dataset [18]. If we 

assume that ns denotes the set of points in y that belong to class s, then 

for a point Yi with an endogenous sparse representation given by Ci E JR.k, we 
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determine the class of the point by solving the following maximization problem 

s* = m:X L ICi(J)I, 
jEOs 

where s* corresponds to the class for which Ci contains the most energy. Ap­

plications of this approach include robust face recognition [18] and local image 

analysis [36]. 



CHAPTER 3 

Greedy Feature Selection from Unions of 

Subs paces 

In this section, we will introduce a generative model for our data and describe how 

greedy algorithms can be employed for selecting features from data living on unions 

of subspaces. Following this, we introduce an intuitive constraint that we will enforce 

on our procedure for greedy feature selection. 

3.1 Preliminaries 

3.1.1 Signal Model 

Although in general, our data may live in some arbitrary subset of ~n, we will assume 

that the data is centered about the origin and that the set is bounded such that it lives 

within the n-dimensional unit hypercube [0, 1 ]n. Given a set of p subspaces of ~n, 

W = W1, ... , Wp, each of dimension less than or equal to k, we generate 'subspace 

clusters' by sampling di points in Xi= Win [0, l]n. Let~ denote the resulting set of 

points and let Y = Uf=1 ~ denote the union of these p sets. 

We define the mapping g : ~n --+ sn-l from a point y E ~n to the unit sphere 
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§n-1 as follows 

If we apply this mapping to each of points in our setS, we may write the mapping 

of each of our subspace clusters onto the sphere as Si = g(S) and their union as 

3.1.2 Projective Space 

In the sequel, we will be interested in studying the use of our dataset as a dictionary. 

Thus, the projective space provides a natural setting for our study, i.e., in the projec-

tive space we consider all points along a line to be equivalent. In particular, we will 

be interested in how well the points in Y cover the projection each of the subsets Xi 

onto §n-1. If we consider the mapping of each ki-dimensional subspace Xi onto the 

unit sphere given by g(Xi), each surface Xi is mapped to a (ki- 1)-dimensional ring 

that encircles the n - 1-dimensional sphere. We show a mapping of a union of three 

planes (2D subspaces) in 3D to the sphere § 2 in Figure 3.1. 

To measure the degree to which the points in each subset Sk cover their span, 

we will define the covering radius of the set relative to the projective distance. The 

projective distance between two vectors u and vis defined relative to the acute angle 

between the vectors 

dist(u, v) = 
1- l(u,v)l2 

llulbllvlb. 

In the projective space, the covering radius of the set Sk is defined as 

cover9(xk) (Sk) max mm dist(u, y) 
uEg(X.k) yESk 

(3.1) 

(3.2) 

The covering radius can be interpreted as the size of the largest open ball that can be 

placed in g(Xk) without encompassing a point in the set Sk. We provide a visualization 
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of the covering radius of subspaces in the projective space in Figure 3.1 and in the 

ambient space in Figure 3.2. 
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cover g(Xi) ( S) 

Figure 3.1: Covering radius in the projective space. A union of four 2D subspaces 
mapped to the unit sphere § 2 . The covering radius between two points in a subspace 
is shown. 

3.2 Greedy Feature Selection 

To form an endogenous sparse representation of a point from the set Sk, we will 

employ a greedy algorithm known as orthogonal matching pursuit (OMP). At the 

first step, we find the point that is closest to our signal of interest in terms of its 

angular distance. If we consider this greedy selection for some point Yi E Sk, we will 

select the point from Y = {yj }j=1 that maximizes this expression 

].* = arg max I(Y y )I il-j i> j . 
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coverxi (S) 

Figure 3.2: Covering radius in the ambient space. A union of two intersecting 2D 
subspaces in 3D. The covering radius between two points in a subspace is shown and 
the point that attains the covering radius is highlighted. We show an E-tube around 
the subspace intersection. 

We place this index in our feature set A = j* and update the residual by removing 

the projection of YJ• onto Yi· To be precise, we set the residual to 

After computing the residual, we will look for the next point that is maximally cor-

related with the signal residual, 

j* = arg max I (r, YJ)I 
J llrll2 . 
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This point is added to our feature set, A = j* U A, and the residual is computed by 

projecting Yi into the space orthogonal to to the subspace spanned by the points in 

the current feature set. Formally, at the mth step of the algorithm, the residual is 

computed as 

where PAis an ortho-projector onto the subspace spanned by the current feature set 

A. If we have knowledge that Yi lives on a k-dimensional subspace, this selection 

procedure is repeated k times or until the norm of the signal residual drops below 

a certain pre-specified threshold. Let A (i} denote the feature set selected for the ith 

point in Y. 

3.3 Exact Feature Selection 

In order to learn local subspace estimates from our ensemble, we will be interested 

in determining when the feature set A (i) returned by our greedy feature selection 

strategy contains points that all belong to the same subspace. We will refer to this 

event as exact feature selection (EFS). We now supply a formal definition. 

Definition 4 (Exact feature selection) Let nk = {y: y = Pky, y E Y} index the 

set of points that live in the span ofX.k, where Pk is an ortho-projector onto the span 

of Wk. For a point Yi E Wk with feature set A (i}, we say that A (i) contains exact 

features if A(i) ~ nk. 

Exact feature selection is essential for studying the performance of algorithms for 

unsupervised subspace learning problems, because when EFS occurs for a point in the 

set, this will yield a subspace estimate that coincides with one of the true subspaces 

contained within the data. For this reason, EFS provides a natural metric for studying 
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Figure 3.3: Demonstration of exact feature selection (EFS) from unions of sub­
spaces. On the left, we show a union of intersecting planes and points tiling each 
of these planes. To form an fa-graph from these points, we place an edge between 
any two points that use one another in their sparse representations. To guarantee 
accurate subspace identification, the fa-graph must have a minimal number of edges 
linking points that live in different subspaces. On the top, we show a hypothetical 
fa-graph for which the points all admit exact features and below, we show a graph 
where EFS is violated (two vertices from different subspace clusters are connected) . 

the performance of both subspace consensus and subspace clustering methods that 

are based upon feature sets drawn from the data. 

EFS is also important in supervised learning problems that rely on sparse repre-

sentations of the data to determine the class membership of a new point as in [18]. In 

supervised learning problems, EFS is not required to guarantee accurate classification 

but is sufficient to ensure that accurate classification occurs; however, by studying the 

fundamental properties of the ensemble that govern EFS, we may also understand su­

pervised classification methods that employ endogenous sparse recovery more deeply 

as well. 



CHAPTER 4 

EFS from Unions of Disjoint Subspaces 

In this chapter, we will develop sufficient conditions that guarantee that EFS occurs 

for points in a particular subset Sk· To do this, we must characterize the properties 

of the data related to the covering of each subspace as well as the geometry of pairs 

of subspaces in the ensemble. Before proceeding, we will quickly introduce the notion 

of principal angles between subspaces. 

4.1 Principal Angles 

To characterize the interaction between pairs of subspaces in the ensemble, the prin-

cipal angles between subspaces will prove useful. The first principal angle Oi,J between 

k-dimensional subspaces wi and wj is defined as the smallest angle between a pair 

of unit vectors (ub VI) drawn from wi X Wj· 

The vector pair ( ui, vi) that attain this minimum are referred to as the first set of 

principal vectors. The second principal angle is defined much like the first, except 



28 

that the second set of principle vectors that define the second principal angle, are 

required to be orthogonal to the first set of principal vectors (ui, vi). The remaining 

principal angles are defined recursively in this way. The sequence of k = max(ki, ki) 

principal angles, Ol,i ~ O~i ~ · · · ~ Of.i, is non-decreasing and all of the principal 

angles lie between [0, 1T /2]. 

A pair of subspaces is said to be disjoint if the minimum principal angle is greater 

than zero. This implies that the only point of intersection between disjoint subspaces 

is the origin. Non-disjoint or overlapping subspaces are defined as subspaces with 

minimum principal angle equal to zero. 

Let Y E JRnxd denote our data matrix, where we have simply stacked the points 

in Y into the columns of Y = [Yi ... Yp] such that all of the points from a particular 

subset Si are placed into a contiguous block. The sub-matrix Yi E JRnxd.; which 

contains the points in Si, can be expanded in terms of an ONB <I>i E JRnxk• that 

spans Wi and subspace coefficients Ai E JRk,xd.;, where Yi = <I>iAi· We will refer to 

the singular values of the matrix G = <I>f<I>i as the cross-spectra of the subspace pair 

(Wi, Wi). Formally, the cross-spectra is defined to be a k-dimensional vector in the 

unit hypercube, u E [0, l]k, where k = min(ki, ki)· The cross-spectra is intimately 

related to the k principal angles between the subspace pair. In particular, the cross­

spectra can be written in terms of the sorted principal angles, where u(m) = cos(Oij). 

We define the mutual coherence with respect to the sets Sk and Si as follows 

- max l(u,v)l. 
uES;,vESk 

(4.2) 

By definition, the minimum principal angle bounds the mutual coherence. In par­

ticular, the mutual coherence J.Lc( Si, Sk) ~ cos( Oik), where Oik denotes the minimum 

principal angle between subspaces Wi and Wk. 
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4.2 Greedy Selection Lemma 

Now that we have introduced relevant definitions needed to develop sufficient condi­

tions for EFS, we will develop the main Lemma that will lay the foundation for our 

subsequent analysis of greedy feature selection. 

Let us assume that A represents the set of features that we have selected to 

represent a point y E Sk at the previous m- 1 iterations. Recall that at the mth 

iteration of the algorithm, we select the point from Y that maximizes the normalized 

inner product with the signal residual r = (I- PA)y. 

To guarantee that we select a point from the correct set Sk, we require that the 

inner product between the residual and another point in sk is larger than the inner 

product between the residual and a point outside of Sk; we denote the set of all such 

points as Sk = Y\Sk. Formally, we require that the following greedy selection criteria 

holds 

max l(r, v)l > max l(r, v)l. 
vESk vESk 

(4.3) 

The following lemma provides a sufficient condition that guarantees that this 

selection criterion will hold at a particular iteration of OMP. 

Lemma 1 Suppose that r lies in the span of Wk. Let 00 denote the minimum princi­

pal angle between Wk and all other subspaces in the ensemble. A sufficient condition 

for the selection criterion in (4. 3) to hold is that 

(4.4) 

Proof To guarantee that we select a point from Sk, we seek a lower bound on the 

maximum normalized inner product between a signal that lies in the span of Wk and 

a point in the set Sk. To do this, we will consider the unit norm signal u* E Wk that 
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attains the minimum correlation with all of the elements in the set Sk 

u* 

We can relate the maximum inner product between our signal residual r is related 

to the covering radius of sk as follows 

l(r,y)l2 >max l(u* Y)l2 
llrll~ - yES~; ' 

= 1- cover~,.(Sk)· 

Since the covering radii of g(Xi) and Wk are equivalent in the projective space, i.e., 

cover9(x,.)(Sk) = coverw,.(Sk), we conclude that 

l(r, y)l2 2 (S ) 
llrll~ 2:: 1 - cover9(x,.) k • 

Now, our aim is to find an upper bound on the maximum inner product between 

our residual and a point outside of Sk. We will use the fact that the maximum inner 

product between points in different subspaces is bounded by the minimum principal 

angle between pairs of subspaces 

max 
yES~ 

l(r, Y)l 
llrlb :5 cos(Bo), 

where 80 = mini'fk { B}k} is the smallest principal angle shared between Wk and any 

other subspace in the union. This bound holds because the minimum principal angle 

defines the smallest angle (or maximum correlation) that any two points from different 

subspaces can share. 
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4.3 Exact Feature Selection Theorem 

The greedy selection lemma that we developed in the previous section enables us to 

develop our main theorem for EFS from disjoint subspaces. 

Theorem 1 Let 80 denote the minimum principal angle between Wk and all other 

subspaces in the ensemble. A sufficient condition for EFS to occur for ally E Sk, is 

that the covering radius 

(4.5) 

Proof. We will prove this theorem by induction. At the first iteration, one can show 

that this condition easily leads to correct selection of a point in Sk in the first itera­

tion. This is due to the fact that the mutual coherence between points is also upper 

bounded by the minimum principal angle. Now, suppose that after m iterations, we 

have already selected m - 1 points from the optimal subset sk to included in our 

feature set A. The residual at the mth step of the algorithm equals the original signal 

y E Sk minus a linear combination of m- 1 points that also lie in Sk· Since all of 

these points lie in the span of Wk, then by our induction hypothesis, the residual also 

lies in Wk. We note that we have not assumed that the residual is contained in the 

original subset of the space Xi where the points Si are confined to. However, based 

upon our assumption that the points in Sk provide a covering of the image of Xi in 

the projective space, i.e., tile a (k- I)-dimensional ring on sn-I, we simply need 

apply the Greedy Selection Lemma to guarantee that we select a point from Sk at 

each iteration. Since our sufficient condition enforces a global sampling constraint on 

the points in Sk, this condition is also sufficient to guarantee that EFS occurs for all 

points in the subset sk. D 
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Remarks. Although computing the covering radius of a set is in general a difficult 

problem, this theorem provides us with a geometric interpretation of what is happen­

ing at each step of our greedy selection algorithm. In particular, at each iteration, 

we seek a point that is close to our signal residual in angular distance. However, be­

cause we restrict our residual to be orthogonal to all of the points selected at previous 

iterations, this requires that we select a new point that is sufficiently different from 

the previous features. For this reason, we require that for any residual formed during 

our recovery procedure, is closer to a point in the correct subspace than any point in 

a different subspace. This naturally imposes a sampling constraint on our subspace 

clusters-namely, if we do not have a covering of our space, it is likely that we select 

a point from the incorrect subspace. The minimum principal angle provides a natural 

constraint on how close each point in our sets must be. 



CHAPTER 5 

EFS for Uniformly Bounded Unions 

In this chapter, we extend our results for EFS to the case where we have a uniformly 

bounded union of subspaces. 

5.1 Uniformly Bounded Unions 

The sufficient condition that we developed in the previous section revealed an inter­

esting relationship between the covering of each subspace in the set and the minimum 

principal angle between the subspaces in the ensemble. However, we have yet tore­

veal any dependence upon principal angles beyond the minimum angle. To make the 

connection between the geometry of our subspace union more apparent, we will make 

additional assumptions on the 'spread' of our principal vectors and distribution of 

points in the subspace. In particular, we will assume that our principal vectors and 

subspace coefficients are uniformly bounded. 

To make this precise, we will consider the singular value decomposition (SVD) of 

G = ci>fci>j = UEVT, where ci>i E ]RnXki is an ONB that spans wi and the left and 

right singular vectors in U E JRkixki and V E JRk;xk; are referred to as the principal 

vectors between Wi and Wi. Let U = { um} and V = { vm} denote the set of left 
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and right principal vectors contained in the columns of U and V respectively. We 

can write the points in each set with respect to the same ONB, where y E Si may 

be expressed as y = 4>ia and the points y E Si can be expressed as y = 4>if3· Let 

A= {am}~=1 and B = {/3m}~=1 denote the subspace coefficients for points in Si and 

sj respectively. 

We will assume that the entries of the principal vectors and subspace coefficients 

are uniformly bounded such that they satisfy the following property 

max l(u,a)l, maxl(v,/3)1 < 'Y 
aEA PEB 

'VuE U, 'V v E V. (5.1) 

We will refer to ensembles that satisfy this property as 'uniformly bounded unions' 

of subspaces. in words, this constraint requires that the inner products between our 

subspace coefficients and the principal vectors of G are all bounded by the constant 

'Y E (0, 1). If our principal vectors are 'spread' or that U and V are uniformly 

bounded as one assumes in [37] to provide guarantees for matrix completion, then 

our constraint above may easily be satisfied when paired with weak constraints on 

the magnitude of the subspace coefficients for points in S. 

5.2 EFS Lemma for Bounded Unions 

Under the assumption that our union is uniformly bounded, we can prove the following 

Lemma. 

Lemma 2 Assume that we have a uniformly bounded union of subspaces Wi and 

Wi as defined in (5.1} with bounding constant 'Y < ..Jf!T, where r = rank(G). Let 

u E Rk denote the cross-spectra of the union. The maximum normalized inner product 
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between r E Wi and a point in Si is bounded by 

(5.2) 

Proof. We are interested in providing an upper bound on the maximum coherence 

between our residual r E Wi and points in the set Si. Our aim is to exploit the 

fact that our principal vectors and subspace coefficients are bounded to find a tighter 

bound than the one obtained by bounding the mutual coherence with the minimum 

principal angle. 

Since we have assumed that r E Wi, we can write the residual as r = 4>ia. 

Similarly, we can write all points y E sj as y = if!j/3, where 11/311 = IIYII2 = 1 because 

if!i is a unitary matrix which preserves the £2-norm of y. We can expand our inner 

product as follows 

Where the last step comes from an application of Holder's inequality, i.e., l(w,z}l < 

First, we will tackle the term on the right, which we can write as IIEVT /3111 = 

IIE.Bih, where we assume that ,8 is a bounded unit-norm vector. This term can be 

simplified by writing it as an inner product between the cross-spectra a = diag(E) 

and ,8, where we have assumed that II.BIIoo = 1 E (0, 1] and that 11.8112 = 1. 
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To develop an upper bound on this quantity, we seek the maximum of this con-

strained linear program with constraint set C = {,8 E JRk: II.Bib = 1, II.BIIoo < 'Y}, 

,8* = arg max aT ,8. 
{JEC 

(5.3) 

Suppose that 'Y2r < 1, where r = rank( G) = llallo· In this case, we can maximize 

the expression above by setting the nth entry of ,B*(n) = 'Y whenever a(n) # 0. In 

this case, 

When we relax our constraint on the maximum entry of ,8, then the l 2-norm 

provides an upper bound on this quantity 

This bound is due to the fact that when we relax our constraint on the maximum 

entry of ,8 and only require that it is unit norm, ,8* = a /llall2. Note that our bound 

that depends on llalh can be made arbitrarily small by requiring 'Y « 1. However, 

when we relax our constraint on the maximum value of,, the resulting bound is 

uninformative because in general, llall2 is greater than the cosine of the minimum 

principal angle. 

When 'Y2r < 1, we can plug this bound into our original expression 

max 
yES; 

l(r,y)l < 'YIIaii 1 IIUT~Jrlloo 
llrll2 - llrlb 

= II II maxueu l(u, a) I 
'Y a 1 llall2 · 

= 'YIIalhiiUII2,2 = 'YIIall1· 

(5.4) 

(5.5) 

(5.6) 
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Since we assumed that 'Y < ..(flr, this implies that 'YIIulh < ..(flrllulh· This con­

straint also requires that "fllulh < 1. This completes our proof. 0 

5.3 Theorem for EFS from Bounded Unions 

This lemma, coupled with Theorem 4.5 for EFS, enables us to develop the following 

sufficient for EFS from uniformly bounded unions of subspaces. To do this, we simply 

need replace our earlier upper bound which depended upon the minimal principal 

angle with our new bound that depends upon the trace norm of G or equivalently, 

the I! 1- norm of the cross-spectra. 

Theorem 2 Assume that we have a uniformly bounded union of subspaces as defined 

in (5.1} with bounding constant 'Y < VlfT, where r = rank(G). Let u E Rk denote 

the cross-spectra of the union. A sufficient condition for EFS to occur for all of the 

points in si, is that the covering radius in the projective space 

Remarks. To interpret this condition, we observe that when we have 'uniformly 

bounded unions', this allows us to bound the maximum inner product between points 

in different subspaces. When we have sufficient separation between points in different 

subspaces, this allows us to relax our constraint on the covering of the subspaces that 

we required which was based upon the minimum principal angle. 

To contrast this condition with our earlier result, this condition nicely reveals the 

connection between EFS and higher order principal angles. This suggests that when 

the points in our sets are sufficiently spread along each subspace structure, the decay 

of the cross-spectra is likely to play an important role in determining whether points 
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from each set will admit EFS or not. This condition also suggests that unions with 

different cross-spectral decay properties are likely to behave differently in terms of 

their respective probability of EFS. To test this hypothesis, we will study the role 

that the cross-spectra plays in EFS in the following section. 



CHAPTER 6 

Empirical Study of EFS from Unions of Subspaces 

In the previous section, we revealed an intimate connection between the covering of 

subspaces in the ensemble and the principal angles between subspaces in the ensemble. 

We will now conduct an empirical study to explore the dependence both on the cross­

spectra between pairs of subspaces (geometry of the subspaces) as well as the density 

and distribution of points along each subspace (sampling of subspaces). 

6.1 Generating Structured Unions of Subspaces 

In order to study the probability for EFS for unions of subspaces with structured 

cross-spectra, we will generate data from unions of overlapping block-sparse signals. 

We define our construction as follows: take two subsets of k atoms from a dictionary 

'D = {dm}~=1 , lf21l = I02I = k. Let WE ~nxk denote the subset of atoms indexed by 

0 1 and let <I> E ~nxk denote the subset of atoms indexed by f22. 

We will select our sub-dictionaries W and <I> such that G = wT<I> is diagonal, i.e., 

(·1/Ji, 'Pi) = 0, if i =/: j. In this case, the cross-spectra is defined as u = diag(G), where 

u E [0, l]k. We assume that the 'overlap' or the rank of G = wT<I> is fixed to q E [0, k). 

To generate a pair of k-dimensional subspaces with a q-dimensional intersection, 
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Figure 6.1: Generating unions of subspaces from shift-invariant dictionaries. An 
example of a collection of two sub-dictionaries of five atoms, where each of the atoms 
share some non-zero inner product with one other element. This produces cross­
spectra with overlap equal to the subspace dimension, i.e., qfk = 1. 

we can pair the elements from 'Ill and <P such that the ith entry of the cross-spectra 

equals 

u(i) = { ~(.p,, 'I'<) I if 1 < i ~ q, 

if i = q + 1 ~ i ~ k. 

We can leverage the banded structure of shift-invariant dictionaries to generate 

subspaces with arbitrary cross-spectra as follows. First, we fix a set of k incoherent 

atoms from our shift-invariant dictionary V, which we place in the columns of 'Ill. We 

set the ith atom of our second sub-dictionary to be a shifted version of the ith atom 

'1/Ji· To be precise, if we set '1/Ji = dm, where dm is the mth atom in our shift-invariant 

dictionary, then we will set cpi = dm+~ for a particular shift !J.. By varying the shift 

!J., we can easily control the coherence between '1/Ji and cpi. In Figure 6.1, we show an 

example of one such construction for k = q = 5. 

Since a E (0, 1]k, the worst-case q-dimensional union that we can construct is 

when we pair q of the same atoms and k - q orthogonal atoms. In this case, the 

cross-spectra attains its maximum over its entire support and equals zero otherwise. 

We will refer to this class of block-sparse signals as orthoblock sparse signals. 
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6.2 Influence of Cross-spectra on EFS 

In this section, we study the impact that the cross-spectra plays on EFS. For our 

experiments, we generate pairs of subspaces from shift-invariant dictionaries as we 

describe in the previous subsection. We show the cross-spectra arising from three 

different unions of block-sparse signals along the top row of Figure 6.2. On the left, 

we show the cross-spectra for a orthoblock sparse signal model with qfk = 3/4. We 

show cross-spectra attained from pairing shifted Lorentzian and exponential atoms 

in the middle and right respectively. 

We generate 'subspace clusters' by sampling m points from the span of the sub­

spaces generated by each of our two sub-dictionaries W and <P. Denote the set of 

points generated from the first k-dimensional subspace as Yi = WA1 E ]Rnxm and the 

second k-dimensional subspace as Y2 = <PA2 E lllnxm. For all of our experiments, we 

generate the subspace coefficients independently at random according to a standard 

normal distribution and then map all of the points in Yi and Y2 to the unit sphere. 

We set k = 20 and m = 100. 

In Figure 6.2, we show the average probability of EFS for these three subspace 

unions as we vary the overlap between subspaces. For a q-dimensional intersection, we 

select the first q elements from the full cross-spectra shown in Figure 6.1for qfk = 1 

and set the remaining k - q elements to be orthogonal. 

Remarks. The results of this study are striking. In particular, we observe very differ­

ent behavior for each of the three unions. For orthoblock sparse signals (worst-case 

unions), the probability of EFS for £0-graphs lies strictly above that obtained for the 

NN-graph, but the gap is relatively small. In the second union, where the cross­

spectra exhibits nearly linear decay, both £0-graphs and NN-graphs maintain a high 

probability of EFS, with £0-graphs admitting nearly perfect feature sets P(EFS)::::: 1, 
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Figure 6.2: Probability of EFS for unions with structured cross-spectra. In the top 
row, we show the cross-spectra for different unions of block-sparse signals. On the 
bottom, we show the probability of EFS averaged over 50 trials as we vary q E [0, k] 
for £0-graphs (solid) and NN-graphs (dash). 

even when the overlap ratio is maximal or where qjk = 1. The gap between £0 and 

NN-graphs is most pronounced for the third union with superlinear decay. In this 

example, we see the probability of EFS for the NN graph plunge to around p = 0.1, 

while the £0-graph maintains a very high probability of EFS even when the overlap 

ratio qjk = 1. 

This study provides a number of interesting insights into the role that higher-

order principal angles between subspaces play in feature selection. These results 

further support our claims that in order to truly understand and predict the behavior 

of endogenous sparse recovery across unions of subspaces, we require a description 

that relies on the entire cross-spectra. 
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6.3 Phase Transitions for EFS 

In this section, we will study the probability of EFS as we vary the density and 

distribution of points along each subspace in the ensemble. To study the probability 

of EFS as we vary the overlap and sampling, we will study the phase transitions in the 

probability of EFS as we vary the distribution of points along each subspace and the 

relative overlap between the subspace unions. By visualizing the probability of EFS 

in this way, we can more easily study the behavior of greedy selection from pairs of 

overlapping subspaces. Of particular interest to our study will be a characterization 

of the: 

1. Phase boundary: the contour that separates the phase space into regions where 

the P(EFS) = 1 and where the P(EFS) < 1. When we traverse this boundary, 

we transition between regions where all of points in the ensemble admit exact 

features (exact recovery for all) and regions where EFS occurs for some of the 

points in the set. 

2. Transition width: the area of the phase space where 0 < P(EFS) < 1. We find 

that the phase transitions in EFS are not sharp (decay immediately to zero). 

Instead, the transition width tells us how quickly the probability of EFS decays 

as we increase the overlap between planes. 

In Figure 6.3, we show the phase transitions for the probability of EFS for a union 

of orthoblock sparse signals for k = 20 and k = 50 on the left and right respectively. 

For these experiments, we generate data from each subspace by generating i.i.d. co­

efficients from a standard normal and mapping each point to the unit sphere. The 

results are averaged over 400 trials. 
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6.3.1 Oversampling of Subspaces 

In the top row of Figure 6.3, we show how the probability of EFS varies as we increase 

the overlap ratio qfk E [0, 1) in conjunction with the oversampling ratio k/m E [0, 1), 

To see the rapid shift in the phase boundary when we approach critical sampling 

m = k, we display these results in terms of the logarithm of the oversampling ratio. 

Remarks. In this study, we observe that the oversampling ratio has a big impact on 

the phase boundary for EFS. When the subspaces are densely sampled, i.e., m >> k, 

the phase boundary is shifted dramatically from qfk E (0, 0.7). This result seems 

to confirm our covering arguments in Section 4.2, where we studied the interplay 

between the covering of the space and the overlap between subspaces. In particular, 

as we sample each subspace more densely, the covering of the space becomes sufficient 

to ensure that even when the overlap between planes is high, we will still select exact 

features. In contrast, when we approach critical sampling, where m = k, the phase 

boundary is shifted all the way back to qfk = 0.1. 

As we increase the oversampling of each subspace, we also observe that the width of 

the transition region increases as the oversampling ratio increases. This suggests that 

there is a smooth transition between exact recovery (all points admit exact features) 

and the point where no points admit EFS as we vary the overlap; the transition width 

or smoothness of this transition seems to be tightly coupled with the oversampling. 

6.3.2 Energy in Subspace Intersections 

In the bottom row of Figure 6.3, we show the phase transitions for EFS as we vary the 

overlap ratio qfk E (0, 1) and the amount of energy that each point contains within 

the subspace intersection which we denote by T E [0, 1). To generate points with 

restricted energy in their intersection, we generate points with gaussian coefficients 
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Figure 6.3: Probability of EFS for Different Sampling Conditions. We study the 
probability of EFS for unions of subspaces of dimension k = 20 (left column) and 
k = 50 (right column). On top, we show the probability of EFS as we vary the 
logarithm of the oversampling ratio log(k/d) versus the overlap ratio qjk. Below, we 
show the probability of EFS as a measure of the amount of energy contained within 
the intersection T E [0, 1) versus the overlap ratio qjk E [0, 1). 

and then normalize the points such that the energy contained within the overlapping 

blocks is limited to a fixed value ofT. The energy in the remaining k - q orthogonal 

blocks is set to 1 - T. We set m = 200 for these experiments. 

Remarks. Surprisingly, we find that while the amount of energy that points have in 

their intersection does play a role in EFS, the effect that this parameter has on EFS 

is much less pronounced than in the previous experiment. In particular, we observe a 

nearly constant phase boundary at qjk ~ 0.9 as we vary T. It is not until the energy 

exceeds T > 0.6 that this parameter has a significant impact on the probability of 
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EFS. Even after points have more than 80% of their energy in their intersection, the 

phase boundary remains at around qjk = 0.7. This is quite surprising because even 

when points have nearly all of their energy in the intersection, we can still reliably 

obtain support sets that admit exact features. 

6.3.3 Comparison of £0 and NN-graphs 

In Figure 6.4, we compare the phase transitions for EFS for (left) t'0-graphs and 

(right) nearest neighbor graphs as we vary the relative dimension of the intersection 

qjk E [0, 1] and the oversampling ratio k/m E [0, 1]. For our simulations, we consider 

unions of orthoblock sparse signals for k = 50 and vary k/m E [0.2 --+ 0.96] and 

qjk E [1/k, 1]. 

Remarks. An interesting result of this study is that there are regimes where EFS 

does not occur for NN-graphs but occurs with a non-trivial probability for t'0-graphs. 

In particular, when subspaces exhibit high degrees of overlap for qj k > 0.6, the 

probability of EFS for nearest neighbor graphs quickly decays to zero. In contrast, 

t'0-graphs provide feature sets with non-zero probability of EFS. 

When the oversampling of the space is high, then the gap between t'0-graphs and 

NN graphs shrinks. This implies that when we have a dense sampling of unions of 

orthoblock sparse signals, nearest neighbor graphs often provide similar estimates to 

that acquired from t'0-graphs. On the other hand, when the sampling of the space 

is sparser, t'0-graphs admit EFS with significantly higher proportion. Our study of 

EFS for different cross-spectra in Section 6.2 suggests that the gaps between nearest 

neighbor graphs and t'0-graphs will be even more pronounced for subspaces with 

superlinear cross-spectral decay. 
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Figure 6.4: Phase transitions for sparse recovery and NN-graphs. We compare the 
probability of EFS for orthoblock sparse signals for the £0 (left) and NN (right) graphs 
as we vary the oversampling ratio k/m and the overlap ratio qjk. 



CHAPTER 7 

Methods for Learning Unions of Subspaces 

Until now, we have primarily been concerned with studying EFS; this lead to the 

development of sufficient conditions for EFS and an empirical study of the probability 

of EFS for different subspace unions. Now, we will study the utility of greedy feature 

selection for finding solutions to subspace clustering problems when overlap exists 

between subspaces in the ensemble. Following this, we introduce a new algorithm for 

subspace consensus on the £0-graph and demonstrate that this method outperforms 

spectral clustering formulations in the presence of high degrees of overlap. 

7.1 Methods for Subspace Learning 

There are two main ingredients in most of the existing state-of-the-art methods for 

solving unsupervised subspace learning problems. First and foremost, we require an 

affinity matrix or some other structure that encodes the pairwise distances amongst 

points in the ensemble. We have already demonstrated that £0 and NN graphs are 

both attractive proposals for revealing the subspace connectivity between points; 

other affinities include the polar curvature of the ensemble used in spectral curva­

ture clustering [10] and nearest-neighbors selected within beta-neighborhoods in [12]. 
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The second ingredient that we require is a technique for forming an estimate of the 

subspaces present in the ensemble from our subspace affinity matrix. 

Most techniques for finding estimates of the subspace structures present in a data 

ensemble fall into one of two classes. In the first class lie clustering-based approaches, 

where spectral clustering is performed on the graph Laplacian of our appropriately 

chosen subspace affinity matrix. The other class of estimation methods employ voting 

procedures or consensus to look for agreement across multiple subspace estimates to 

determine the most likely estimate. 

In contrast to clustering approaches which view the graph as encoding the sub­

space connectivity between points in the set, in consensus approaches, the goal is to 

utilize the geometric features contained in the edges of the graph. To be precise, for 

each vertex we determine the set of vertices for which an edge exists and map this 

sample set onto the Grassmanian manifold (set of all k-dimensional subspaces in lRn). 

By looking at the span of these points, we obtain an estimate of a subspace structure 

that may be present in the ensemble. The idea is that by looking at a number of such 

mappings for different vertices in the graph, we can quickly converge to a correct esti­

mate of the subspaces in the ensemble by finding the mode in the mappings. We point 

the reader to Vidal's review in [38] on subspace clustering for a thorough description 

of the subspace clustering problem as well as methods for obtaining solutions to this 

problem. 

7.2 Clustering or Consensus? 

We would now like to explore the implications of EFS on the performance of subspace 

recovery algorithms that employ either spectral clustering or a consensus-based esti­

mation procedure. EFS is intimately linked to the probability that we exactly recover 

the subspaces present in our ensemble. In particular, consensus methods are guaran-
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teed to recover the subspaces present in the ensemble, as long there are a sufficient 

number of points that admit exact features across the dataset. Thus, the probability 

of EFS provides an explicit lower bound for the probability of recovering a sufficient 

number of correct local subspace estimates; this will in turn lead to accurate recovery 

of the subspaces in our union. 

In contrast, even when all of the points in the set admit exact features, this is not 

sufficient to guarantee that spectral clustering based methods like sparse subspace 

clustering (SSC) [13] will recover the correct set of subspaces from the data. This is 

due to the fact that even for graphs with no links across subspaces, spectral clustering 

or graph cuts may still be unwieldy due to scaling and normalization issues. In 

practice, we find that in a number of settings, spectral clustering over the £0-graph 

will often recover small clusters containing less thank points from the same subspace. 

Even after removing these points, the same issues arise in subsequent iterations. This 

results in clusterings consisting of a large number of small clusters, from which the 

true union of subspaces underlying the data can not be ascertained. This issue is 

even more pronounced in real-world datasets. 

In contrast to clustering-based approaches, consensus methods are designed in a 

way such that they to remain robust to this degradation in the probability of EFS. 

Thus, consensus methods lend themselves well to settings where the probability of 

selecting sets of points with exact features is bounded above zero but not equal to 

one. For this reason, consensus approaches provide a natural means by which we can 

obtain efficient solutions to subspace learning problems when high-degrees of overlap 

exist or in settings where each point in the set can not be guaranteed to admit exact 

features. 
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7.3 Consensus on the £0-graph 

In our numerical studies of EFS, we found that there is a smooth transition in the 

probability of EFS as we vary the overlap between subspaces. To exploit this smooth 

phase transition in the probability of EFS, we propose the following subspace recovery 

algorithm which we refer to as consensus on the t0 -graph. The main idea behind this 

method is to simply replace step (1) in standard consensus-based methods that use 

sets of near neighbors [12] with the feature sets selected via OMP. In contrast to 

clustering-based approaches where no guarantees can be made, when all of the points 

in the ensemble admit support sets with exact features, our consensus-based approach 

is guaranteed to recover the true subspaces underlying the data. This method is 

very similar in spirit to the iterative subspace identification approach proposed by 

Gowreesunker et al. in [34]. We detail our proposed method in Algorithm 2. 

7.4 Experimental Results 

In Figure 7.1, we compare the performance of our t 0-consensus approach with the 

equivalent spectral clustering formulation on the t 0-graph proposed in [13]. We also 

compare these methods with a slightly modified version of sse, where instead of clus­

tering the eigenvector corresponding to the smallest non-zero eigenvalue of the graph 

Laplacian, we select the set of k largest and k smallest entries in this vector. These 

sets corresponds to two sets of k points from each cluster that are most separated 

with respect to their edge weights on the t 0-graph. 

In Figure 7.1, we observe similar behavior in the subspace recovery from l 0-graphs 

our slight modification to SSe and for t0-consensus. However, when qfk > 0.8, we 

see a quick drop in the probability of recovery for modified sse and we maintain a 

non-zero probability of recovery with t0-consensus, even when qf k = 0.9. In contrast, 
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Algorithm 2 : Subspace Consensus on the £0-graph 
Input: An ensemble of d data points Y E Rnxd, subspace dimension k, number of 
points required for consensus s, threshold .A. 
Output: A collection of ONBs {Qi}f=u and the number of points that agree upon 
each of the p subspace estimates N = { ni }f=1, where ni 2:: s for all i. 
Solve the support recovery problem in (1.2) for Y to obtain a collection of support 
sets S(Y) = {A(i)}f=I· 
for i = 1 ---+ d do 

1. Compute an orthonormal basis Qi for which range(YA(il) = range(Qi)· 
2. Compute the energy of points in the sub-dictionary YA{i) when projected onto 
the subspace spanned by Qi 

d(i,j) = L (c(n)(I- QiQf)yn) 2 , 

nEAUl 

where Cj ( n) is the contribution of the the nth point in A (j) to the representation 
of Yi· 
3. Count the number of points that agree upon the ith subspace estimate, 

d 

ni = L = T>.(d(i,j)), 
j=l 

where T>. ( ·) = 1 when its argument is less than .A and 0 otherwise. 
end for 
4. Place all unique projectors QiQf for which ni 2:: s into the set r. 
return Subspace estimates Qest = { QihEr and the number of points that agree 
on each estimate, N = {nihEr· 

when we perform standard spectral clustering, we observe a decrease in the probabil-

ity of recovery when qjk = 0.7. These results suggest that £0-graphs provide reliable 

feature sets for both clustering and consensus, even for high degrees of overlap. How-

ever, consensus can be used in settings where high degrees of overlap exist to maintain 

reliable recovery performance even when spectral clustering methods begin to fail. 

In Figure 7.2, we show the gap between modified SSC and £0-consensus when we 

vary s (the number of points that we require to form consensus). We see that the 

gap between these methods increases as we require less confidence in the estimate. 

However, if we require a large degree of confidence for our estimate s > 10, the 
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Figure 7.1: Probability of subspace recovery. The probability of recovery is shown 
for (a) .€0-consensus (b) modified SSe, and (c) SSe. The empirical probability of 
EFS is displayed below these curves (dots) and the area between this curve and the 
probability of recovery is shaded. The results are averaged across 150 trials with 
k = 10, d = 200, s = 5, and ,\ = 1e - 5. 

performance of .eo-consensus is very similar to the performance of modified sse as we 

vary the overlap between subspaces in the ensemble. 
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Figure 7.2: Performance of subspace consensus. In each plot, we overlay the prob­
ability of recovery for (¢) .eo-consensus, (solid) modified sse, as well as (dash) the 
empirical probability of EFS. The results are averaged across 50 trials with k = 10 
and A= 1e- 5. On the (left) s = 5, (middle) s = 10, and (right) s = 20. The number 
of points in each subspace is set to m = 200 and m = 400 in the top and bottom 
rows respectively. 



CHAPTER 8 

Learning Unions of Subspaces from Image and 

Text Data 

In this chapter, we will study the application on endogenous sparse recovery to real 

data and apply our £0-consensus algorithm to image and motion segmentation tasks. 

8.1 Face Illumination Subspaces 

We now compare the properties of £0 and NN-graphs for unions of 'illumination 

subspaces' arising from images of three different faces under various illumination 

conditions. If we fix the camera center and position of the persons face and capture 

multiple images under different lighting, the resulting images live on or are well­

approximated by a 10-dimensional subspace [1]. 

In Figure 8.1, we show the affinity matrices obtained from the £0-graph and the NN 

graphs from a collection of 64 different images of 3 people that we have subsampled 4 

times. All of the images are taken from the Yale Database B [39]. On the left, we show 

the NN graph obtained for k = 10 nearest neighbors, after projecting each subset of 

faces onto a lOD subspace. In the middle, we show the £0-graph obtained via OMP 
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on the raw data (no pre-processing). On the right, we show the fa-graph obtained 

via OMP after projecting the data onto a lOD subspace as in the NN graph on the left. 

Remarks. Since there is actually a high-degree of overlap between each of the datasets, 

when no dimensionality reduction is performed, a proportion of points do not admit 

exact features on the fa-graph. However, once we project each collection of face 

images onto a lOD subspace with PCA, the resulting fa-graph has practically all 

of its energy concentrated in the correct block/cluster. In contrast to this drastic 

change that we observe in the fa-graph when dimensionality reduction is performed, 

the nearest neighbor graph admits the same probability of EFS after dimensionality 

reduction as the raw dataset; this is due to the fact that the nearest neighbors in the 

ensemble are effectively preserved after PCA. 

This experiment provides a number of interesting insights into feature selection 

that we were not able to ascertain from synthetic experiments. In particular, we 

see hubs arise in our NN graph that link points from the wrong subspaces. Despite 

the fact that these highly structured intersections exist in the data, greedy feature 

selection with OMP manages to avoid these hubs and select points from the dataset 

that belong to the same subspace. In addition to avoiding hubs, we also observe that 

the representations formed for each point tend to be diverse and spread across the 

dataset (each cluster is more filled in). 

8.2 Motion Segmentation Data 

Motion segmentation is an important yet challenging problem in computer vision 

where one aims to segment different rigid body motion trajectories from one another 

directly from video sequences. Each trajectory may correspond to the motion of a 

different object or even the motion introduced from the camera. In can be shown that 
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50 70 

Figure 8.1: Cross-spectra for illumination subspaces. We display the cross-spectra 
for reduced data which has been projected onto a 10D subspace (left) and the cross­
spectra obtained from the raw data (right). In each subplot, we overlay the cross­
spectra between subspaces (WI, W2) (solid) where llall2 = 2.10 , (W2, W3 ) (dash) 
where llal12 = 2.12, and between (WI, W3 ) where llall2 = 2.30 (star). 

rigid body motion arising from point correspondences in multiple affine views live on 

a 5D affine hyperplane embedded in the ambient dimension. Thus, when multiple 

rigid body motions are combined within the field of view, the problem of motion 

segmentation boils down to learning subspaces from point correspondences and then 

segmenting the data in accordance with these learned hyperplanes. 

In Figure 8.3 and 8.4, we compare the results obtained on the Hopkins155 database 

with t'0-consensus (on the far right, labeled SSe-Grassman) to those obtained with 

other existing methods, including SSe. We note that both SSe and our method 

obtain state-of-the-art performance in comparison with other existing methods. In 

Figure 8.3, we show the classification performance obtained from segmenting video 

sequences with only two rigid body motions and in Figure 8.4 we show the results 

from segmenting three motions. 

8.3 Multispectral Image Segmentation 

In this section, we will apply endogenous sparse recovery to segment multispectral 

image data. Automated segmentation of multispectral image data is essential in many 
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Figure 8.2: Comparison of fa-graphs with NN-graphs. In each row, we show affinity 
matrices for a different pair of subspaces in the dataset . In each row we show the 
(left) NN-graph, (middle) fa-graph for the raw dataset, and (right) fa-graph for the 
reduced dataset (each subspace is reduced to k = 10 dimensions with PCA prior 
to support recovery) for (WI, W2) (top row), (W2 , W3)(middle row) , and (WI, W3 ) 

(bottom row), where k = 10. On the left of the affinity matrices are exemplar images 
from each illumination subspace. 

applications where both spectraland spatial information can be jointly extracted from 

a sample. To be precise, for each point in space (pixel) , we collect multispectral 

data which carries information about the absorption of a material at a particular 

wavelength of light in the visible range. 
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Checkerboard 

Median 

Figure 8.3: Classification performance for segmenting two motions. We show the clas­
sification rates for the Hopkins155 Database for segmenting two rigid body motions 
from point correspondences. 

Traffic 

Median 

Articulated 

Median 28.26 22.03 0 .25 0.2 0.75 0 .45 0.93 

Figure 8.4: Classification performance for segmenting three motions. We show the 
classification rates for the Hopkins155 Database for segmenting three rigid body mo­
tions from point correspondences. 

For our experiments, we study multispectral images [40], where each pixel in the 

image contains a 31-dimensional spectral representation in the visible light range. 

We show a single image from this database in the top row of Figure 8.5, for three 

different spectral bands. To be precise, the spectral bins range from 400nm to 700nm 

in lOnm increments. We select a random subset of 2500 pixels from the image for 
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training which corresponds to about 1% of the total n = 512 x 512 pixels in the 

image. We treat each of these pixels (and its associated spectral vector) as a point in 

our ensemble, subtract the mean, and then normalize each vector. Following this, we 

apply endogenous sparse recovery to this set of exemplar spectra to learn a collection 

of two-dimensional subspaces. Following this, we segment the entire image based 

upon the nearest subspace to each pixel in the image. 

We show these segmentation results for different number of classes in Figure 8.5. 

Interestingly enough, after including more than three subspaces in our representation, 

we are able to reliably segment the real human face from the photo of the person's 

face. 

400nm 540nm 690nm 

3-class Segmentation 5-class Segmentation 9-class Segmentation 

Figure 8.5: Multispectral image segmentation. Along the top row, we display multi­
spectral image data for three spectral bands, (left) 400nm, (middle) 540nm, (right) 
690nm. Along the bottom row, we show the segmentation results obtained via fa­
consensus for (left) 3 classes, (middle) 5 classes, and (right) 9 classes. 
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8.4 Document Clustering 

In this section, we will employ endogenous sparse recovery to study clustering within 

a corpora of documents. Each document in our collection is a different subsection 

from the textbook, "Fundamentals of Electrical Engineering" by Don Johnson [41]. 

8.4.1 Clustering Documents with £0-graphs 

To study similarity across the subsections in the text, we treat each word that appears 

in the corpora as a separate coordinate and form a representation of each document 

with respect to the number of times a particular word in the global vocabulary set 

appear in the document. We study 92 subsections from the text over a reduced 

vocabulary (after removing stop-words and other uninformative words from the set) 

of 1952 words. By representing each document in terms of its word content, we can 

simply stack each document's word vector into a document matrix Y E JRnxd, where 

n = 1952 and d = 92. We then normalize each vector such that it has unit £2 norm. 

£2-affinity between documents fa-affinity between documents knn-affinity between documents 

Figure 8.6: Document affinity matrices. On the left , we display the Gram matrix 
( £2 affinity) for each document in our corpora. In the middle, we display the affinity 
matrix for the £0-graph and on the right, we display the affinity for the NN graph, 
where k = 7. 

The interpretation behind the 1!0 and £2-graphs formed across documents can be 
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Figure 8.7: Document support matrices. On the left, we display the thresholded 
Gram matrix (£2 affinity) for each document in our corpora. In the middle, we 
display the thresholded affinity matrix for the £0-graph and on the right, we display 
the thresholded affinity for the NN graph, where k = 7 and the threshold is set to 0.3 

thought of as follows. Whereas the nearest neighbor information between documents 

will tend to group two documents with similar word distributions (the intensity or 

proportion of a particular word), when forming sparse representations of a document, 

the absolute proportion of word counts is much less important. In particular, because 

we assume that each document can be written as a combination of other documents 

(relative to their normalized word counts), endogenous sparse recovery will tend to 

reveal subsets of documents that use the same vocabulary set (and thus have the same 

support in the word count space) rather than the same proportion of each word. 

We show the image scaled version of the £0-graph from the ensemble in Figure 8.6 

and show the structure of this affinity matrix when we threshold the graph such that 

only edge weights overT= 0.3 are displayed. 

8.4.2 Visualizing Information Flow Across Documents 

To visualize the £0 connectivity amongst documents in the corpora, we will now 

generate a graph that reveals the information flow across sections of the textbook. In 
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particular, we place all of the documents into different clusters based upon the chapt er 

that they are contained in. In Figure 8.8, we separate documents (nodes) into clusters 

based upon the chapter they appear in chronological order. In the Figure, each of 

these clusters is separated along the horizontal axis. For each cluster, we scatter 

the document nodes about the chapter's centroid at random. By visualizing the 1!.0-

graph of the corpora in this way, we can more easily visualize information flow in the 

t ext- as well as visualize the concept map or connectivity between different chapters. 
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Systems 
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, ---...-..,...... I 

·····l "'< 

L-

0.203 
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..... , ...... ,.~< ... : 

Frequency 
Domain 

-- ... 
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J 

Digital SP Information Com 
r-----
1 

I 

0.956 

Figure 8.8: Visualizing information flow across documents. We display t he edges in 
the 1!.0-graph after partitioning the documents by chapter. The weight of each edge is 
given by t he colorbar at the bottom and each cluster in the graph is labeled according 
to its corresponding chapter in t he textbook. 

We observe a number of interesting trends in t his graph. In particular, we observe 

dense connectivity amongst documents in the last chapter of the book on Information 

Theory. In contrast to t his clustered document connectivity, the documents contained 
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in the introduction on basic signals and systems has long range connections with 

concepts that arise throughout the text. Chapters 2-4 seem to exhibit a mixture of 

both chapter-specific clustering as well as links between each of these chapters and 

neighboring clusters. 



CHAPTER 9 

Discussion 

9.1 Summary of Results 

Let us now revisit the main contributions of this thesis which we outlined in Intro­

duction; we are now equipped to summarize our results on each of these fronts. 

1. Theoretical analysis of greedy feature selection from unions of subspaces. We 

developed sufficient conditions that describe when OMP will return feature sets 

that contain exact features. An interesting result of our analysis is a sufficient 

condition that highlights the tradeoff between the minimum principal angle be­

tween subspaces and the covering of each subspace. We provide an extension 

of these results to the case where we assume that we have a uniformly bounded 

union of subspaces. This enables us to reveal the connection between the sam­

pling of each subspace and the entire distribution of the principal angles between 

subspaces in the ensemble required to guarantee EFS. 

2. Empirical study of EFS from unions of overlapping subspaces. Following our 

analysis of greedy feature selection, we conducted an empirical study to explore 

the role that both the sampling and geometry of subspaces play in the proba-



66 

bility of obtaining EFS. One of the most striking results of our empirical study 

is that the probability of EFS is strongly linked with the decay in the cross­

spectra; in fact, the minimum principal angle (maximum value of cross-spectra) 

provides a very poor indicator of whether EFS will occur for an ensemble. We 

conjecture that the rate of decay of the cross-spectra may be the fundamen­

tal geometric quantity that governs whether EFS occurs for points in a given 

dataset. Thus an interesting question is whether we can accurately predict the 

phase transitions for EFS for a particular union of subspaces by studying an­

other unions with the same cross-spectra. If this is indeed the case, we provide 

a simple way to create a wide-range of structured cross-spectral interactions 

from shift-invariant dictionaries which may be used in the future for large-scale 

studies of endogenous sparse recovery. 

3. Study and comparison of methods for learning unions of subspaces from local 

subspace estimates. After studying EFS from unions of subspaces, we studied 

competing methods for learning unions of subspaces from local subspace es­

timates. We introduced a new algorithm for subspace consensus from local 

subspace estimates and provided theoretical justification for the utility of this 

method when high degrees of overlap exist between subspaces in the ensemble. 

We demonstrated that in the presence of overlap, consensus based approaches 

indeed outperform clustering-based formulations. 

9.2 Implications of this Work 

In this section, we discuss the implications of this work in a number of related areas, 

including discriminative dictionary learning, model-based CS, and sparse approxima­

tion. 
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9.2.1 Cross-spectral Minimization 

In both theory and in practice, we find that the decay of the cross-spectra is strongly 

linked with the probability of EFS on the i 0-graph. Since all of the unions that we 

have studied admit the same minimum principal angle, our study suggests that the 

spectral norm does not provide an adequate glimpse into the nature of the interactions 

between two collections of data living on unions of subspaces. Thus, in settings 

where we can manipulate the cross-spectral interaction between two collections of 

data, e.g., supervised classification [18] and discriminative dictionary learning [36], 

our analysis suggests that it is far more advantageous to reduce the i 1-energy in the 

entire cross-spectra instead of simply minimizing the maximum coherence between 

points in different subspaces as in [36]. 

This finding opens up the possibility that instead of constraining dictionary learn­

ing and sensing matrix optimization in compressive sensing ( CS) to minimize the 

maximum coherence between points in distinct classes, a superior strategy is to mini­

mize the trace norm between the sub-matrices that correspond to points in each class. 

An interesting and relevant question is how one might impose such a constraint in 

discriminative dictionary learning methods. 

9.2.2 'Data Driven' Sparse Approximation 

The standard paradigm in signal processing and approximation theory is to compute 

a compact representation of a signal in a fixed and pre-specified basis or dictionary. 

In most cases, the dictionaries used to form these representations are designed ac­

cording to some mathematical desiderata. A more recent approach has been to learn 

a dictionary from a collection of data that admit a sparse representation of all of the 

points in the ensemble. 

The applicability and utility of endogenous sparse recovery in subspace learning 
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draws into question whether we can use endogenous sparse recovery in other tasks, in­

cluding approximation and compression. The question that naturally arises is, "do we 

design, learn, or use the data directly?" Understanding the advantages and tradeoffs 

between each of these approaches is certainly an interesting and open question. 

9.2.3 Learning Block Sparse Signal Models 

Block-sparse signals and other structured sparse signals have received a great deal of 

attention over the past few years, especially in the context of compressive sampling 

from structured unions of subspaces [4, 5] and in model-based CS [6]. In all of 

these settings, one wishes to exploit the fact that signals admit structured support 

patterns to obtain improved recovery of sparse signals in noise and in the presence of 

undersampling. 

However, to exploit such structure in sparse signals-especially in situations where 

the structure of signals or blocks of active atoms may be changing across different 

instances in time, space, etc.-the underlying subspaces must be learned directly from 

the data. Thus, the methods that we have described for learning union of subspaces 

from ensembles of data, can certainly be utilized in the context of learning block 

sparse and other structured sparse signal models. 

9.3 Going Beyond Coherence 

Our study is the first of its kind to uncover the connection between the principal angles 

between subspaces and the performance of sparse recovery methods from overcomplete 

dictionaries. In some cases, the principal angles between certain sub-dictionaries of 

atoms can resemble the cumulative coherence of the dictionary; however, the principal 

angles formed from pairs of sub-dictionaries provide an even richer description of the 
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geometric properties of a dictionary. A further exploration of the distribution of 

principal angles between sub-dictionaries could prove fruitful. 

9.4 Open Questions 

In this paper, we set out the understand some facets of the behavior of endogenous 

sparse recovery from unions of subspaces. In the end, we answered a number of these 

questions, in addition to uncovering a number of new questions that are likely to 

entertain us and (hopefully) other researchers for some time. Some of these questions 

and future lines of work include: 

1. How can we characterize the average-case behavior of endogenous sparse recovery­

based methods? How can we analytically characterize the phase transitions we 

observe empirically? 

2. What are sufficient conditions for EFS from overlapping subspaces? 

3. How does endogenous sparse recovery behave on noisy data? What about when 

ensembles are compressible or live near a union of subspaces, i.e., fp-balls for 

p < 1.? 

4. How can we predict and characterize the "gap" between £0 and NN-graphs over 

unions of subspaces? As the cross-spectra varies? As the subspace dimension 

increases? 
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