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ABSTRACT 

QUIRE: Lightweight Provenance for Smart Phone Operating Systems 

by 

Michael Dietz 

Smartphone applications(apps) often run with full privileges to access the network and sen­

sitive local resources, making it difficult for remote systems to have any trust in the prove­

nance of network connections they receive. Even within the phone, different apps with 

different privileges can communicate with one another, allowing one app to trick another 

into improperly exercising its privileges (a confused deputy attack). This thesis presents 

two new security mechanisms built into the Android operating system to address these is­

sues. First, the call chain of all interprocess communications are tracked, allowing an app 

the choice of operating with the diminished privileges of its callers or to act explicitly on its 

own behalf. Additionally, a lightweight signature scheme allows any app to create a signed 

statement that can be verified anywhere inside the phone. Both of these mechanisms are 

reflected in network RPCs, allowing remote endpoints visibility into the state of the phone 

when an RPC is made. 
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Chapter 1 

Introduction 

1.1 Motivation 

On a smartphone, applications(apps) are typically given broad permissions to make net­

work connections, access local data repositories, and issue requests to other apps on the 

device. To date there have been two approaches to managing the permissions granted to 

the applications installed on a user's smartphone. 

For Apple's iOS devices, the only mechanism that protects users from malicious apps 

is the vetting process for an app to get into Apple's app store. (Apple also has the ability 

to remotely delete apps, although it's something of an emergency-only system.) An iPhone 

user might rely on Apple's manual policing of applications to protect themselves from 

malicious apps, but any iPhone app might have its own security vulnerabilities, perhaps 

through a buffer overflow attack, which can give an attacker full access to the entire phone. 

The Android platform, in contrast, has no significant vetting process before- an app is 

posted to the Android Market. Instead, applications from different authors run with differ­

ent Unix user ids, containing the damage if an application is compromised. (In this aspect, 

Android follows a design similar to SubOS [15].) This approach to operating system secu­

rity prevents a security vulnerability in one application from affecting other applications on 
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the device. However, it does nothing to defend a trusted app from being manipulated from 

a malicious app via IPC (i.e., a confused deputy attack. Likewise, there is no mechanism 

to prevent an IPC callee from misrepresenting the intentions of its caller to a third party or 

the operating system itself. 

This mutual distrust is present in the interactions between many mobile applications. 

Consider the example of a mobile advertisement system. The application hosting an ad 

would rather the ad run in a distinct process, with its own user-id, so bugs in the ad system 

do not impact the host app. Similarly, the ad system might not trust its host app to display 

the ad correctly and it must be concerned with the ability for a host app to generate fake 

clicks in order to inflate the host app's ad revenue. 

1.2 Overview 

To address these concerns, this thesis introduces QUIRE, a set of low-overhead security 

mechanisms that provides important context in the form of provenance and operating sys­

tem managed data security to local and remote apps communicating by IPC and RPC, 

respectively. QUIRE uses two techniques to provide security to communicating applica­

tions. 

First, QUIRE transparently annotates IPCs occurring within the phone such that the 

recipient of an IPC request can observe the full call chain associated with the request. When 

an application wishes to make a network RPC, it might well connect to a raw network 

socket, but it would lack credentials that QUIRE builds into the OS, which can speak to 
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the state of an RPC in a way that an app cannot forge. (This contextual information can 

be thought of as a generalization of the information provided by the recent HTTP Origin 

header [3], used by web servers to help defeat cross-site request forgery (CSRF) attacks.) 

Second, QUIRE uses simple cryptographic mechanisms to protect data moving over 

IPC and RPC channels. QUIRE provides a mechanism for an app to tag an object with 

cheap message authentication codes, using keys that are shared with a trusted OS service. 

When data annotated in this manner moves off the device, the OS can verify the signature 

and speak to the integrity of the ~essage in the RPC. 

1.3 Practical applications of QUIRE. 

The mechanisms presented by this thesis allow a variety of applications already present 

in the smart phone ecosystem to be improved upon. Consider the case of in-application 

advertising. A large number of free applications include advertisements from services like 

Google's AdMob. AdMob is presently implemented as a library that runs in the same 

process as the application hosting the ad, creating trivial opportunities for the application 

to spoof information to the server, such as claiming an ad is displayed when it isn't, or 

claiming an ad was clicked when it wasn't. In QUIRE, the advertisement service runs as a 

separate application and interacts with the displaying app via IPC calls. The remote appli­

cation's server can now reliably distinguish RPC calls coming from its trusted agent, and 

can further distinguish legitimate clicks from forgeries, because every UI event is tagged 

with a MAC, for which the OS will vouch. 
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Consider also the case of payment services. Many smartphone apps would like a way 

to sell things, leveraging payment services from PayPal, Google Checkout, and other such 

services. It would be useful to enable a use case where an app sends a payment request to a 

local payment agent, which can then pass the request on to its remote server. The payment 

agent must be concerned with the payee app trying to issue fraudulent payment requests, 

so it needs to validate requests with the user. Similarly, the main app might be worried 

about the payment agent misbehaving, so it wants to create unforgeable "purchase orders" 

which the payment app cannot corrupt. All of this can be easily accomplished with the new 

mechanisms in QUIRE. 

Finally, consider the case of permission escalation. The Android security architecture 

assumes that an app that wishes to steal GPS information from a user must request both 

Internet and fine grained location permissions. This permission set should act as a red flag 

to users that the app may be up to no good so they will not install it. However, a malicious 

application that requests Internet permission can issue an IPC request to an unprotected 

interface of an honest app that has GPS permission. With no context about the call chain 

leading to an IPC call, the Android platform has no way to detect that the honest app is 

being used as a confused deputy and will gladly reveal the user's GPS information to the 

honest app and ultimately the malicious app. QUIRE attaches provenance to IPC calls, 

defeating these confused deputy attacks. 
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1.4 Challenges. 

For QUIRE to be successful, it must accomplish a number of goals. The design must be 

sufficiently general to capture a variety of use cases for augmented internal and remote 

communication. Toward that end, the design for QUIRE build on many concepts from 

Taos [32], including its compound principals and logic of authentication (see Chapter 2). 

The implementation must be fast. Every IPC call in the system must be annotated and must 

be subsequently verifiable without having a significant impact on throughput, latency, or 

battery life. (Chapter 3 describes QUIRE's implementation, and Chapter 5 presents perfor­

mance measurements.) QUIRE expands on related work from a variety of fields, including 

existing Android research, web security, distributed authentication logics, and trusted plat­

form measurements (see Chapter 6). QUIRE is expected to serve as a platform for future 

work in secure UI design, as a substrate for future research in web browser engineering, 

and as starting point for a variety of improved smart phone applications (see Section 7). 
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Chapter 2 

Design 

Fundamentally, the design goal of QUIRE is to allow apps to reason about the call-chain 

and data provenance of requests, occurring on the host platform via IPC or on a remote 

server via RPC, before committing to a security-relevant decision. This design goal is 

shared by a variety of other systems, ranging from Java's stack inspection [28, 29] to many 

newer systems that rely on data tainting or information flow control (see, e.g., [18, 19, 9]). 

QUIRE, much like in stack inspection, wishes to support legacy code without much, if any, 

modification. However, unlike stack inspection, QUIRE shouldn't modify the system to 

annotate and track every method invocation, nor suffer the runtime costs of dynamic data 

tainting as in TaintDroid [9]. Likewise, QUIRE should operate correctly with apps that 

have natively compiled code, not just Java code (an issue with traditional stack inspection 

and with TaintDroid). Instead, QUIRE need only track calls across IPC boundaries, which 

happen far less frequently than method invocations, and which already must pay significant 

overheads for data marshaling, context switching, and copying. 

Stack inspection has the property that the available privileges at the end of a call chain 

represent the intersection of the privileges of every app along the chain (more on this in 

Section 2.3), which is good for preventing confused deputy attacks but doesn't solve a 

variety of other problems such as validating the integrity of individual data items as they 
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are passed from one app to another or over the network. For that, QUIRE need semantics 

akin to digital signatures, but needs to be much more efficient than the relatively slow 

digital signature operations (more on this in Section 2.4). 

2.1 Comparisons to information flow 

QUIRE's design is necessarily less precise than dynamic taint analysis, but it's also very 

flexible. It can avoid the need to annotate code with static security policies, as would be 

required in information flow-typed systems like Jif [21]. Similarly QUIRE does not need to 

poly-instantiate services to ensure that each instance only handles a single security label as 

in systems like DStar/HiStar [33]. Instead, in QUIRE, an application that handles requests 

from multiple callers will pass along an object annotated with the originator's context when 

it makes downstream requests on behalf of the original caller. 

Likewise, where a dynamic tainting system like TaintDroid [9] would generally allow 

a sensitive operation like learning the phone's precise GPS location to occur, but would 

forbid it from flowing to an unprivileged app; QUIRE will carry the unprivileged context 

through to the point where the dangerous operation is about to happen and will then forbid 

the operation. An information flow approach is thus more likely to catch comer cases (e.g., 

where an app caches location data, so no privileged call is ever performed), but is also more 

likely to have false positives (where it must conservatively err on the side of flagging a flow 

that is actually just fine). The tradeoff is that a programmer in an information flow system 

would need to tag these false positive comer cases as acceptable, whereas a programmer in 
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QUIRE would need to add additional security checks to corner cases that would otherwise 

be allowed. 

In stack inspection, where this tracking is implicit with metadata on the call stack, this 

context can be lost in cases where requests are queued for later dispatch. In QUIRE, how­

ever, the caller's context can be captured and stored alongside queued requests, allowing 

the original security context to be resurrected for subsequent IPC dispatches. 

Finally, by adopting stack inspection's security semantics, QUIRE can gain its pro­

tections against confused deputy attacks [13]. When a sensitive privilege is about to be 

executed, such as learning the fine GPS location of the phone, the operating system service 

that protects the GPS information knows the full IPC call stack and can inspect the permis­

sions of the apps in the call chain in order to deny such requests. However, in cases where 

the calling app wants to explicitly act on its own behalf rather than on behalf of a calling 

app, it can do so by actively choosing to drop the existing call chain, thereby assuming its 

own privileges rather than its callers. 

2.2 Authentication logic and cryptography 

In order to reason about the semantics of QUIRE, there must be a formal model to express 

what the various operations in QUIRE will do. Toward that end, QUIRE uses the Abadi 

et al. [1] (hereafter "ABLP") logic of authentication, as used in Taos [32]. In this logic, 

principals make statements, which can include various forms of quotation ("Alice says 

that Bob says X") and authorization (e.g., "Alice says that Bob speaks for Alice"). ABLP 
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nicely models the behavior of cryptographic operations, where cryptographic keys speak 

for other principals, and apps within the QUIRE system can use this model to reason about 

cross-process communication on a device or over the network. 

ABLP statements can be concretely represented in a variety of different syntaxes like 

SDSI* which are sensible for remote procedure calls but would be too slow to marshal for 

every local IPC. In QUIRE, as in traditional stack inspection, statements are always of the 

form "App says X" or, more generally use quoting, i.e., "App 1 says App2 says App3 says 

X", which would model the call stack where App3 called App2 which then called App 1. 

For the remainder of the current section, we will flesh out QUIRE's IPC and RPC design 

in terms of ABLP and the cryptographic mechanisms we have adopted. 

2.3 IPC provenance 

The goal of QUIRE's IPC provenance system is to allow endpoints that protect sensitive 

resources, like a user's fine grained GPS data or contact information, to reason about the 

complete IPC call-chain of a request for the resource before granting access to it. 

QUIRE realizes this goal by modifying the Android IPC middleware layer to automat­

ically build calling context as an IPC call-chain is formed. Consider a call-chain where 

three principals A, B, and C, are communicating. If A calls B which then calls C without 

keeping track of the call-stack, C only knows that B initiated a request to it, not that the call 

from A prompted B to make the call to C. This loss of context can have significant security 

*http:// groups.csail.mit.edu/ cis/sdsi.html 
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implications in a system like Android where permissions are directly linked to the identity 

of the principal requesting access to a sensitive resource. 

To address this, QUIRE's design is for any given callee to retain its caller's call-chain 

and pass this to a downstream callee. The downstream callee will automatically have its 

caller's principal prepended to the ABLP statement. In the above scenario, C will receive 

a statement "B says A says Ok", where Ok is an abstract token representing that the given 

resource is authorized to be used. It's now the burden of C (or QUIRE's privilege manager, 

operating on C's behalf) to prove Ok. As Wallach et al. [29] demonstrated, this is equivalent 

to validating that each principal in the calling chain is individually allowed to perform the 

action in question. 

2.3.1 The confused deputy problem 

With this additional context, QUIRE defeats confused deputy attacks; if any one of the prin­

cipals in the call chain is not privileged for the action being taken, permission is denied. 

Figure 2.1 shows this in the context of an evil application, lacking fine-grained location 

privileges, that is trying to abuse the privileges of a trusted mapping program, which hap­

pens to have that privilege. The mapping application, never realizing that its helpful API 

might be a security vulnerability, naively and automatically passes along the call chain to 

the location service. The location service then uses the call chain to prove (or disprove) 

that the request for fine-grained location show be allowed. 
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As with traditional stack inspection, there will be tin1es that an app genuinely wishes to 

exercise a privilege, regardless of its caller's lack of the same privilege. Stack inspection 

solves this with an enablePrivilege primitive that, in the ABLP logic, simply doesn't pass 

along the caller's call stack information. The callee, after privileges are enabled, gets only 

the caller's identity. (In the example of Figure 2.1, the tlusted mapper would drop evil 

app from the call chain, and the location service would only hear that the map application 

wishes to use the service.) 

Userspace 

UID: 1 UID: 2 UID: 3 
Call Chain: () Call Chain: (1) Call Chain: (1 ,2) 

Call TM( ... ) Call LA( ... ) VerifyCaiiChain( ... ) 

/ 
EviiApp Trusted Mapper / ,..Location Provider 

/ 
Operating System / 

Call chain: (1 ,2,3) 

1 ~no GPS 
2 --+GPSokay 
3 ~GPSokay 

Privilege Manager 

Figure 2.1: Defeating confused deputy attacks. 

QUIRE's design is, in effect, an example of the "security passing style" transforma-

tion [29], where security beliefs are passed explicitly as an IPC argument rather than passed 

implicitly as annotations on the call stack. One beneficial consequence of this is that a 

callee might well save the statement made by its caller and reuse it at a later time. This 
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situation may arise if the callee queues requests for later processing and wishes to properly 

modulate the privilege level of each outgoing request according to the call chain informa­

tion sent by the calling app. 

QUIRE's modifications to the Android IPC system push the IPC call-stack into out­

bound IPC messages and allow the callee principal to operate with this passed call-stack 

by default. This means that principals in the QUIRE system automatically quote the call­

chain that lead to their invocation when issuing outbound IPC requests. This approach is 

conceptually very similar to the "security passing" Java stack inspection model; however 

QUIRE operates at a much higher level than traditional stack inspection by treating appli­

cations as principals (with unique Unix user-id identifiers) and monitoring cross-process 

communication rather than method invocations. 

2.3.2 Security analysis 

Although apps, by default, will pass along call chain information without modification, 

QUIRE allows a caller to forge the identities of its upstream callers. No cryptography need 

be used to prevent this. Although enabling a caller to misrepresent its antecedent call chain 

would seem to be a serious security vulnerability there is no incentive for a caller to lie, 

since nothing it quotes from its antecedent callers can increase its privileges in any way. 

Conversely, QUIRE's design requires the callee to learn the caller's identity in an un­

forgeable fashion. When the callee prepends the "Caller says" tokens to the statement it 

hears from the caller, using information that is available as part of every Android Binder 
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IPC, any lack of privileges on the caller's part will be properly reflected when the privileges 

for the trusted operation are later evaluated. 

The design outlined thus far is is very lightweight; without the need for cryptography, 

QUIRE can construct and propagate IPC call chains with very little impact on the overall 

IPC performance (see Chapter 5). 

2.3.3 Resolving call chains and the confused deputy problem 

Consider the case where principal A calls B which then calls Con A's behalf, with C ul­

timately utilizing some security-sensitive resource X. C wants to know that the request is 

authorized and might be worried that B is being tricked by an evil A. QUIRE, does not (yet) 

include an explicit theorem prover, as in Taos, but here is how the logical reasoning over 

QUIRE provenance statements could protect against misuse of B. 

If there were a rule that C protects some resource X ("C controls X"), this would require 

C to reduce a call chain to Ok(X) before releasing X to the calling principal. C can arrive at 

this Ok(X) reduction by applying OS granted permissions, in the form of OS says (B ==? X) 

which shows that the OS has granted B permission to access X, to the ABLP representation 

of the requesting call chain. 

Consider a simple confused deputy problem where B has permission to access X the but 

no there is no corresponding permission for A. If A attempts to use Bas a confused deputy 

to access X, B need only quote A in its request to drop its permission set to that of B n A, 

the intersection of the permission sets of A and B. When C receives the request, it hears 
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"B says A says X". Since B is authorized but A is not, the theorem prover can derive that 

access to X is not authorized with this call chain. Conversely, if B makes the call by itself, 

A will not be mentioned anywhere, and B acts with its own permission set. This makes it 

possible to derive that access to X is allowed. In this way, QUIRE grants B the ability to 

drop privilege as a consequence of receiving a call from A. 

2.4 Verifiable statements 

Stack inspection semantics are helpful but not sufficient for many security needs. There are 

a variety of scenarios where an app will need semantics equivalent to digital signatures, but 

with much better performance than public-key cryptographic operations. 

Definition A verifiable statement is a 3-tuple [P,M,A(M)p] where Pis the principal that 

said message M, and A(M)p is an authentication token that can be used by the Authority 

Manager OS service to verify P said M. In ABLP, this tuple represents the statement "P 

saysM." 

In order to track the provenance of IPC method invocations, QUIRE creates a verifiable 

statement whenever a cross-application call is made using Android's "Binder" IPC system. 

The implementation of the code generator responsible for producing the stub and proxy 

code that handles the concrete construction of the statements is discussed in Chapter 3. 

In order to operate without requiring slow public-key cryptographic operations, QUIRE 

must instead use message authentication codes (MAC). MAC functions, like HMAC-SHAl, 

run several orders of magnitude faster than digital signature functions like DSA, but MAC 
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functions require a shared key between the generator and verifier of a MAC. To avoid an N2 

key explosion, QUIRE instead has every application share a key with an OS hosted, trusted 

authority manager. As such, any app can produce a statement "App says M", purely by 

computing a MAC with its secret key. However, for a recipient app to verify the received 

statement it must send the statement to the authority manager for verification. If, after 

computing a symmetric operation to the one the calling app used to create the verifiable 

statement, the authority manager says the MAC is valid, then the second app will believe 

the validity of the statement. 

Consider a scenario with two local applications, A and B, and a remote service C, rep­

resented by principals PA, PB, and Pc respectively. The local applications wish to commu­

nicate with the remote service and the remote service C wants to verify that A generated 

the message C received. A first requests a shared secret from the authority manger. The 

authority manager stores the mapping PA = kA and returns kA to A. Application A then 

creates object M and attaches toM a statement SM = [PA,D], where D = MAC(M)kA, a 

message authentication code keyed to the shared secret kA. Application A then establishes 

an IPC connection to Band transmits M to application B. The statement SM attached toM 

can now be used by any on-phone recipient of M to verify the authenticity of M with the 

help of the OS, as discussed in Section 2.5. 
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2.5 OS verification of statements 

The fundamental assumption that allows mutually untrusted userspace applications to ver­

ify the provenance of incoming IPC messages using QUIRE is that userspace applications 

trust the operating system. A userspace application can then use a trusted OS service to 

act as a third party mediator that verifies statements made by other userspace applications 

running on the system. Is it reasonable to trust the operating system for this? Consider the 

alternative. If an app cannot trust what the operating system tells it about other applications, 

then it cannot trust much of anything. 

To allow applications to verify statements from other applications, QUIRE exposes a 

new Authority Manger system service. This service speaks with the authority of the OS 

and can be used by userspace applications to tum an unauthenticated statement received 

from the IPC system into a statement said by the OS, having verified the authenticity of the 

statement. 

The Authority Manager service must first allow userspace applications to request a 

shared secret with the OS to be used by those applications to compute MAC authenticators 

over statements they wish to make. The Authority Manager service stores the mapping 

between userspace applications and their secret MAC keys in order to later authenticate 

statements made by that application. 

The example outlined above established that the principal PA had already requested a 

shared secret and that the authority manager possessed the mapping PA = kA, of principals 
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to shared secrets. We left off with application B issuing a request for the Authority Manager 

to authenticate the message M with attached statement SM = [PA,D]. 

The Authority Manager begins the verification of M by looking up the shared secret 

kA associated with PA. It then computes D' = MAC(M)k8 , and the computed value of D' 

is then compared to the D that was included in SM. This operation has the end result 

of comparing the authentication token SM computed by PA when M was created with an 

authentication token computed by the Authority Manager using the provided M delivered 

to B. The message M can therefore be verified by the OS upon delivery to any principal P 

on the phone regardless of how many IPC channels M has moved through. 

The end result of this verification of M by theAuthorityManager allows B to believe the 

statement AuthorityManager says (PA says M). However, this statement is only meaning­

ful to an application on the phone. Section 2.6 discusses the steps required to communicate 

on phone provenance to a remote end point. 

2.6 RPC attestations 

When moving from on-device IPCs to Internet RPCs, some of the properties that exist on 

the device disappear. Most notably, the receiver of a call can no longer open a channel to 

talk to the Authority Manager, even if they did trust itt. To combat this, QUIRE's design re­

quires an additional "network provider" system service, that can speak over the network on 

tuke it or not, with NATs, firewalls, and other such impediments to bi-directional connectivity, we can 

only assume that the phone can make outbound TCP connections, not receive inbound ones. 
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behalf of statements made on the phone. This will require it to speak with a cryptographic 

secret that is not available to any applications on the phone. 

One method for getting such a secret key is to have the phone manufacturer embed, in 

storage only accessible to the OS kernel, an X.509 certificate which they sign along with the 

corresponding private key. This certificate can be used to establish a client-authenticated 

TLS connection to a remote service, with the remote server using the presence of the client 

certificate, as endorsed by a trusted certification authority, to provide confidence that it is 

really communicating with the QUIRE phone's operating system, rather than an applica­

tion attempting to impersonate the OS. With this attestation-carrying encrypted channel in 

place, RPCs can then carry a serialized form of the same statements passed along in QUIRE 

IPCs, including both call chains and signed statements, with the network provider trusted 

to speak on behalf of the activity inside the phone. 

All of this can be transmitted in a variety of ways, such as a new HITP header. Regular 

QUIRE applications would be able to speak through this channel, but the new HTTP head­

ers, with their security-relevant contextual information, would not be accessible to or forge­

able by the applications making RPCs. (This is analogous to the HITP origin header [3], 

generated by modem web browsers, but it carries more detailed contextual information 

from the caller.) 

The strength of this security context information is limited by the ability of the device 

and the OS to protect the key material. If a malicious application can extract the private key, 

then it would be able to send messages with arbitrary claims about the provenance of the 
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request. This leads us inevitably to techniques from the field of trusted platform modules 

(TPM), where stored cryptographic key material is rendered unavailable unless the kernel 

was properly validated when it booted. TPM chips are common in many of today's laptops 

and could well be installed in future smartphones. 

Even without TPM hardware, Android phones generally prohibit applications from run­

ning with full root privileges, allowing the kernel to protect its data from malicious apps. 

This is a sound design until users forcibly "root" their phones, which is commonly done 

to work around carrier-instituted restrictions such as forbidding phones from freely relay­

ing cellular data services as WiFi hotspots. Regardless, most users will never "root" their 

phones, preventing normal applications, even if they want superuser privileges, from get­

ting them and then compromising the network provider's private keys. 

Privacy. An interesting concern arises with the QUIRE design: Every RPC call made 

from QUIRE uses the unique public key assigned to that phone. Presumably, the public key 

certificate would contain a variety of identifying information, thus making every RPC per­

sonally identify the owner of the phone. This may well be desirable in some circumstances, 

notably allowing web services with Android applications acting as frontends to completely 

eliminate any need for username/password dialogs. However, it's clearly undesirable in 

other cases. To address this issue in a broader context, the Trusted Computing Group has 

designed what it calls "direct anonymous attestation":l:, using cryptographic group signa­

tures to allow the caller to prove that it knows one of a large group of related private keys 

:j:http:/ /www.zurich .ibm.com/security /daa/ 
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without saying anything about which one. A production implementation of QUIRE could 

switch from TLS client-auth to some form of anonymous attestation without a significant 

performance impact. 

An interesting challenge, for future work, is being able to switch from anonymous 

attestation, in the default case, to classical client-authentication, in cases where it might 

be desirable. One notable challenge of this would be working around users who will click 

affirmatively on any "okay I cancel" dialog that's presented to them without ever bothering 

to read it. Perhaps this could be finessed with an Android privilege that is requested at the 

time an application is installed. Unprivileged apps can only make anonymous attestations, 

while more trusted apps can make attestations that uniquely identify the specific phone. 
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Chapter3 

Implementation 

QUIRE is implemented as a set of extensions to the existing Android 2.3 Java runtime li­

braries and Binder IPC system. The Authority Manager and Network Provider are trusted 

components of the QUIRE system and therefore implemented as OS level services, while 

the modified Android interface definition language code generator provides IPC stub code 

that allows applications to propagate and adopt an IPC call-stack. The result, which is 

implemented in around 1300 lines of Java and C++ code, provides locally verifiable state­

ments, IPC provenance, and authenticated RPC for QUIRE-aware applications and back­

ward compatibility for existing Android applications. 

3.1 On- and off-phone principals 

The Android architecture sandboxes applications such that apps from different sources run 

as different Unix users. Standard Android features also allow us to resolve user-ids into 

human-readable names and permission sets, based on the applications' origins. Based on 

these features, the prototype QUIRE implementation defines principals as the tuple of a 

user-id and process-id. QUIRE includes the process-id component to allow the recipient 

of an IPC method call to stipulate policies that force the process-id of a communication 
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partner to remain unchanged across a series of calls. (This feature is largely ignored in the 

applications discussed in this thesis, but it might be useful later.) 

While principals defined by user-id/process-id tuples are sufficient for the identification 

of an application on the phone, they are meaningless to a remote service. QUIRE therefore 

resolves the user-id/process-id tuples used in IPC call-chains into an externally meaningful 

string consisting of the marshaled chain of application names when RPC communication is 

invoked to move data off the phone. This lazy resolution of IPC principals allows QUIRE to 

reduce the memory footprint of statements when performing IPC calls, at the cost of extra 

effort when RPCs are performed. 

3.2 Authority management 

The Authority Manager discussed in Chapter 2 is implemented as a system service that 

runs within the operating system's reserved user-id space. The interface exposed by the 

service allows userspace applications to request a shared secret, submit a statement for ver­

ification, or request the resolution of the principal included in a statement into an externally 

meaningful form. 

When an application requests a key from the Authority Manager, the Authority Man­

ager places a record in a table mapping user-id I process-id tuples to the key. It is important 

to note that a subsequent request from the same application will prompt the Authority Man­

ager to create a new key for the calling application and replace the previous stored key in 
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the lookup table. This prevents attacks that might try to exploit the reuse of user-ids and 

process-ids as applications come and go over time. 

3.3 Verifiable statements 

Chapter 2 introduced the idea of attaching an OS verifiable statement to an object in order 

to allow principals later in a call-chain to verify the authenticity and integrity of a received 

object. 

The implementation of this abstract concept involves a Parcelable statement object that 

consists of a principal identifier and an authentication token. When this statement object is 

attached to a Parcelable object, the annotated object contains all the information necessary 

for the Authority Manager service to validate the authentication token contained within the 

statement. Therefore the annotated object can be sent over Android's IPC channels and 

later delivered to the QUIRE Authority Manger for verification by the OS as discussed in 

Chapter 2. 

QUIRE's verifiable statement implementation establishes the authenticity of message 

with a Hashed Message Authentication Code (HMAC) digest rather than a heavyweight 

public key digital signature. This implementation decision drastically reduces the cost 

of creating and verifying a statement, as discussed in Chapter 5 while still providing the 

authentication and integrity semantics required by the QUIRE design. 

Fast authenticator creation A fundamental assumption of our decision to use Hashed 

Message Authentication Codes (HMACs) rather than public key digital signatures as our 
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cryptographic mechanism for authentication was that the Android-provided HMAC library 

code would yield results within a constant factor of OpenSSL's baseline numbers. In prac­

tice, doing HMAC-SHAl in pure Java was still slow enough to be an issue. 

The prototype QUIRE implementation resolves this issue by using the native C imple­

mentation of SHAl-HMAC from OpenSSL and exposing it to Java code as a Dalvik VM 

intrinsic function, rather than a JNI native method. This eliminated unnecessary copying 

and runs at full native speed (see Section 5.2.1 for more details). 

3.4 Code generator 

The key to the stack inspection semantics that QUIRE provides is an extension to the An­

droid Interface Definition Language (AIDL) code generator. This piece of software is 

responsible for taking a generalized interface definition and creating stub and proxy code 

to facilitate Binder IPC communication over the interface as defined in the AIDL file. 

The QUIRE code generator differs from the stock Android code generator in that it adds 

directives to the marshaling and unmarshaling phase of the stubs that pull the call-chain 

context from the calling app and attach it to the outgoing IPC message for the callee to 

retrieve. These directives allow for the "quoting" semantics that form the basis of a stack 

inspection based policy system. 

The modified code generator will take an authenticated method like auth void noop () 

and will expand this method into two parallel Java methods void noop () and void noop(Statement 

authenticator) defined in the proxy. 
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The first generated method presents a proxy interface that allows the application to 

make the method call without attaching any existing provenance to the outgoing mes­

sage. The semantics of this method call result in the delivery of a statement representing 

{Application says Method(Arguments) } to the application at the other end of the IPC 

method call. 

The QUIRE modified code generator enables this functionality by injecting pre-processing 

code that creates and marshals the outgoing statement into the generated proxy methods. 

The modified proxy method first requests a shared secret, if it doesn't already have one, 

from the authority manager and stores it for later use. It then marshals the outgoing Parcel 

representation of the IPC call and arguments into a byte array and computes the SHAl 

HMAC digest of the marshaled data with its stored shared secret. Finally, a Parcelable 

Statement object is created with the uid/pid principal of the calling process, the marshaled 

outgoing message, and the computed HMAC digest. The statement is then appended to the 

outgoing Parcel and sent to the recipient application. 

The prototype implementation of the QUIRE AIDL code generator requires that an 

application developer specify that an AIDL method become "QUIRE aware" by defining 

the method with a reserved auth flag in the AIDL input file. This flag informs the QUIRE 

code generator to produce additional proxy and stub code for the given method that enables 

the propagation and delivery of the call-chain context to the specified method. A production 

implementation would pass this information implicitly on all IPC calls. 
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Chapter4 

Applications 

4.1 PayBuddy 

To demonstrate the usefulness of QUIRE for RPCs, consider a micropayment application 

called PayBuddy: a standalone Android application which exposes an activity to other 

applications on the device to allow those applications to request payments. By exposing 

this functionality as a separate application and using the QUIRE mechanisms for commu­

nication, PayBuddy can avoid many types of attacks which circumvent user approval of 

payments. 

To demonstrate how PayBuddy works, consider the example shown in Figure 4.1. Ap­

plication ExampleApp wishes to allow the user to make an in-app purchase. To do this, 

ExampleApp creates and serializes a purchase order object and signs it with its MAC key 

kA. It then sends the signed object to the PayBuddy application, which can then prompt 

the user to confirm their intent to make the payment. After this, Pay Buddy passes the pur­

chase order along to the operating system's Network Provider. At this point, the Network 

Provider can verify the signature on the purchase order and also that the request came from 

the PayBuddy application. It then sends the request to the PayBuddy.com server over a 
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client-authenticated HTTPS connection. The contents of ExampleApp's purchase order 

are included in an HTTP header as is the call chain ("ExampleApp, Pay Buddy"). 

Userspace 

MAC Key: kA MAC Key: kpa 

PurchaseOrder po { 
RPCPayBuddy.com( ... ) Cost c ... 

Payee p ... } 
-,. 

MACkA(po) / 
ExampleApp / iii"'PayBuddy 

/~ 

Operating System / 
"ExampleApp says ... " kA -+"ExampleApp' 
"PayBuddy says ... " 

'· .. 
kpa -+ "PayBuddy'' 

I/ 
/ Net Provider Auth Manager 

/ 
PayBuddy.com 

Figure 4.1: Message flow in the Pay Buddy system. 

At the end of this the remote endpoint, Pay Buddy.com, knows the following: 

• The request came from a patticular device with a given certificate. 

• The purchase order originated from ExampleApp and was not tampered with by the 

PayBuddy application. 

• The PayBuddy application approved the request (which means that the user gave 

their explicit consent to the purchase order). 
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If PayBuddy.com accepts the transaction, it can take whatever action accompanies the 

successful payment (e.g., returning a transaction ID that ExampleApp might send to its 

home server in order to download a new level for a game). 

Security analysis This design has several curious properties. Most notably, the Exam­

pleApp and the Pay Buddy app are mutually distrusting of each other. 

The Pay Buddy app doesn't trust the payment request to be legitimate, so it can present 

an "okay/cancel" dialog to the user. In that dialog, it can include the cost as well as the 

ExampleApp name, which it received through the QUIRE call chain. The PayBuddy app 

will only communicate with the PayBuddy.com server if the user approves the transaction. 

Similarly, ExampleApp has only a limited amount of trust in the PayBuddy app. By 

signing its purchase order and including a unique order number of some sort, a compro­

mised PayBuddy app cannot modify or replay the message. Because the OS's Network 

Provider is trusted to speak on behalf of both ExampleApp and the Pay Buddy app, the re­

mote PayBuddy.com server gets ample context to understand what happened on the phone 

and deal with cases where a user later tries to repudiate a payment. 

Lastly, the user's PayBuddy credentials are never visible to ExampleApp in any way. 

Once the PayBuddy app is bound, at install time, to the user's matching account on Pay­

Buddy.com, there will be no subsequent username/password dialogs. All the user will see 

is an okay/cancel dialog. Once users are accustomed to this, they will be more likely to 

react with skepticism when presented with a phishing attack that demands their Pay Buddy 

credentials. (A phishing attack that's completely faithful to the proper PayBuddy user in-
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terface would only present an okay/cancel dialog, which yields no useful information for 

the attacker.) 

4.2 Click fraud prevention 

Current Android-based advertising systems, such as AdMob, are deployed as a library that 

an app includes as part of its distribution. So far as the Android OS is concerned, the app 

and its ads are operating within single domain, indistinguishable from one another. Fur­

thermore, because advertisement services need to report their activity to a network service, 

any ad-supported app must request network privileges, even if the app, by itself, doesn't 

need them. 

From a security perspective, mashing these two distinct security domains together into 

a single app creates a variety of problems. In addition to requiring network-access privi­

leges, the lack of isolation between the advertisement code and its host creates all kinds of 

opportunities for fraud. The hosting app might modify the advertisement library to generate 

fake clicks and real revenue. 

This sort of click fraud is also a serious issue on the web, and it's typically addressed 

by placing the advertisements within an iframe, creating a separate protection domain and 

providing some mutual protection. To achieve something similar with QUIRE, we needed to 

extend Android's UI layer and leverage QUIRE's features to authenticate indirect messages, 

such as UI events, delegated from the parent app to the child advertisement app. 
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Currently, many advertisement-driven apps for Android embed in their view hierarchy 

third party libraries which display advertisements, and revenue is generated when a user 

clicks on the advertisements. However this leads to several problems: 

1. Violation of principle of least privilege: The applications, which do not need to use 

the network and thus do not need any permission for using network, are forced to 

have the permission so that the advertisement views can download advertisements 

and send the click data back to server. Given that a large number of free apps use 

advertisements for monetization, almost every free app on a device ends up with 

network permission, even when it is not needed. 

2. No isolation between advertisement views and the hosting app: As the advertisement 

code runs with same privileges as the hosting application, a potentially malicious or 

buggy implementation of advertisement code can steal or corrupt the data accessed 

by the hosting application. 

3. Click fraud: A hosting application can synthesize clicks or modify clicks and pass 

them as genuine clicks by user on advertisements to increase its revenue. 

The above problems are largely unique to smartphones due to prevalence of the advertisement­

driven revenue model of apps and can be best addressed by providing an OS-level mech­

anism specially designed for applications to host advertisements in an isolated and secure 

manner. 
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Design challenges Fundamentally a design that uses QUIRE to solve the above issues re­

quires two separate apps to be stf}.cked (see Figure 4.2), with the primary application on top, 

and opening a transparent hole through which the subordinate advertising application can 

be seen by the user. This immediately raises two challenges. First, how can the advertising 

app know that it's actually visible to the user, versus being obscured by the application? 

And second, how can the advertising app know that the clicks and other UI events it re­

ceives were legitimately generated by the user, versus being synthesized or replayed by the 

primary application. 

Figure 4.2: The host and advertisment apps. 
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Verifying events With the stacked app design, motion events are delivered to the host 

app, on top of the stack. The host app then recognizes when an event occurs in the adver-

tisement's region and passes the event along. To complicate matters, Android 2.3 reengi-

neered the event system to lower the latency, a feature desired by game designers. Events 

are now transmitted through shared memory buffers, below the Java layer. 

Userspace 

Delegate( e) ,. VerifyMAC( e) 

' ' ~dViewApp ~ Sample App 

Operating System ' " ClickEve nt e = { kEM-+ "E.M." 
Timet 
Position x,y 
... } 

MACkEM(e) 

Event Manager Auth Manager 

Figure 4.3: Secure event delivery from host app to advertisement app. 

This design leverages QUIRE's signed statements. A prototype implementation of the 

design modified the event system to augment every MotionEvent (as many as 60 per second) 

with one of QUIRE's MAC-based signatures. This means apps don't have to worry about 

tampering or other corruption in the event system. Instead, once an event arrives at the 

advertisen1ent app, it first validates the statement, then validates that it's not obscured, and 
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finally validates the timestamp in the event, to make sure the click is fresh. This process is 

summarized in Figure 4.3. 

At this point, the local advertising application can now be satisfied that the click was 

legitimate and that the ad was visible when the click occurred and it can communicate that 

fact over the Internet, unspoofably, with QUIRE's RPC service. 

In total, the prototype click fraud prevention prototype added around 500 lines of Java 

code for modifying the activity launch process and small modifications to the user input 

system to generate signed events. While this prototype implementation does not deal with 

every possible scenario (e.g., changes in orientation, killing of the advertisement app due 

to low memory, and other such things) it still demonstrates the feasibility of hosting of 

advertisement in separate processes and defeating click fraud attacks. 



34 

Chapter 5 

Performance analysis 

5.1 Experimental methodology 

All of the following experiments were performed on the standard Android developer phone, 

the Nexus One*, which has a 1GHzARMcore (aQualcommQSD 8250), 512MB ofRAM, 

and 512MB of internal Flash storage. The experiments were conducted with the phone dis­

playing the home screen and running the normal set of applications that spawn at start up. 

The default "live wallpaper" was replaced with a static image to eliminate any background 

CPU load. 

All of the following benchmarks are measured using the Android Open Source Project's 

(AOSP) Android 2.3 ("Gingerbread") as pulled from the AOSP repository on December 

21st, 2010. QUIRE is implemented as a series of patches to this code base. We used an 

unmodified Gingerbread build for "control" measurements and compared that to a build 

with our QUIRE features enabled for "experimental" measurements. 

*http:/ /www.google.com /phone/ static/ en_US- nexusone_tech...specs. htm I 
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5.2 Microbenchmarks 

5.2.1 Signed statements 

The first micro benchmark of QUIRE measures the cost of creating and verifying statements 

of varying sizes. To do this, an application was created to generate random byte arrays of 

varying sizes from 10 bytes to 8000 bytes and measured the time to create 1000 signatures 

of the data, followed by 1000 verifications of the signature. Each set of measured signa­

tures and verifications was preceded by a priming run to remove any first-run effects. The 

average of the middle 8 out of 10 such runs were taken for each size. The large number 

of runs is due to variance introduced by garbage collection within the Authority Manager. 

Even with this large number of runs the impact of the aggressive garbage collector was 

not fully accounted for leading to some jitter in the measured performance of statement 

verification. 

The results in Figure 5.1 show that statement creation carries a small fixed overhead 

of 20 microseconds with an additional cost of 15 microseconds per kilobyte. Statement 

verification, on the other hand, has a much higher cost: 556 microseconds fixed and an 

additional 96 microseconds per kilobyte. This larger cost is primarily due to the context 

switch and attendant copying overhead required to ask the Authority Manager, via expen­

sive IPC, to perform the verification. However, with statement verification being a much 

less frequent occurrence than statement generation, these performance numbers are well 

within the QUIRE performance targets. Statement verification is expected to be performed 

much less often than statement creation because an app will optimistically want to sign 
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Figure 5.1: Statement creation and vetification time vs payload size. 
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each outgoing message (particularly for any messages involving user input) however, only 

a few of the signed messages will eventually lead to a security critical action in which the 

verification is performed. 

5.2.2 IPC call-chain tracking 

The next micro-benchmark measures the additional cost of tracking the call chain for an 

IPC that otherwise perforn1s no computation. In order to measure this a service with a 

pair of methods was implemented. One method uses the QUIRE IPC extensions and one 

petf orms standard Android IPC. These n1ethods both allow us to pass to them a byte anay 
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of arbitrary size. We then measured the total round trip time needed to make each of 

these IPC calls. These results are intended to den1onstrate the slowdown introduced by the 

QUIRE IPC extensions in the worst case of a round trip null operation that takes no action 

on the receiving end of the IPC method call. 

The perforn1ance timings for the first IPC call of each 1un were discarded to remove 

any noise that could have been caused by previous activity on the system. Each data point 

in Figure 5.2 was obtained by performing 10 1uns of 100 trials each at each size point, with 

sizes ranging from 0 to 6336 bytes in 64-byte increments. 
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Figure 5.2: Roundtrip single step IPC time vs payload size. 
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These results show that the overhead of tracking the call chain for one hop is around 70 

microseconds, which is a 21% slowdown in the worst case of doing no-op calls. 

The effect of adding a second hop into the call chain was also measured. This was done 

by having two services, where the first service n1erely calls the second service, which once 

again performs no action. 

I I t I 

Quire ••• •• •• • • •• .:; • • • • • • • • 0 • ••• • - • • ;. ••• •••• • • • • ••••• ~ • • •• •• •••••• • • - • ; ••••••• 

Stock Android 

1500 

. ~ .-- . -. -- .- .... - . ..: . . . .. . -- . . ... ... -~ ................ : ................ : ...... . 
: : : : 
: : : : . . . . . . 

. . 
500 - - . - .• - ••. - . - • • ~ •• • •••• • ••• -- .• • ; • -- . - . - • ••. • - . - . -: - • - . - . - •••• - •• • • -;- ••••••• • ••• - • • •• :- ••••• • •••••••••• f •• • •••• . . . . . . 

: : : : : : 
: : : : : : . . . . . . . . . . . . . . 

1000 2000 3000 4000 5000 6000 
payload (bytes) 

Figure 5.3: Roundtrip two step IPC time vs payload size. 

The results in Figure 5.3 show that the overhead of tracking the call chain for two hops 

avreages 145 microseconds, which is a 20% slowdown in the worst case (or, in other words, 

the overhead introduced by the QUIRE IPC call chain tracking appears to be a constant 

factor above stock Android IPC, regardless of the call chain length). This suggests that 
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tracing moderate-sized (under 10) app call chains will not noticeably degrade performance 

(a penalty of under a microsecond for a call chain involving 10 applications). Call chains 

of longer than 4 to 5 hops are not expected within the Android ecosystem as the Android 

OS attempts to aggressively limit the number of tunning applications to under six. 

5.2.3 IPC to RPC principal resolution 

Statement Depth Time (J.ls) 

1 770 

2 1045 

4 1912 

8 4576 

Table 5.1: IPC principal to RPC principal resolution time. 

The next microbenchn1ark measures the cost of converting from an IPC call chain into 

a serialized form that is meaningful to a remote service. This includes the IPC overhead in 

asking the systen1 services to perform this conversion. 

The results of this microbenchmark, as shown in Tablereffig:ipctorpc show that even 

for very long statement chains, the extra cost of the IPC to RPC principal conversion is 

a small number of milliseconds, which is should be dwarfed by the cost of maintaining a 

TLS network connection. 
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5.3 HTTPS RPC benchmark 

To understand the impact of using QUIRE for calls to remote servers, a micro benchmark 

was implemented to perform some simple RPCs using both QUIRE RPC and a regular 

HTTPS connection. A simple echo service was called that returned a parameter that was 

provided to it. This metric allows for the measurement of the effect of payload size on 

latency. These tests were run on a small LAN with a single wireless router and server 

plugged into this router, and using the phone's WiFi antenna for connectivity. Each data 

point is the mean of 10 Iuns of 100 trials each, with the highest and lowest times thrown 

out prior to taking the mean to remove anomalies. 
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The results in Figure 5.4 show that QUIRE adds an additional overhead which averages 

around 6 ms, with a maximum of 13.5 ms, and getting smaller as the payload size increases. 

This extra latency is small enough that it's irrelevant in the face of the latencies experienced 

across typical cellular Internet connections, as a typical cellular 30 connection should ex­

perience significantly more latency than the test setup used for this microbenchmark. 

5.4 Throughput benchmarks 

In addition to the microbenchmarks, it's useful to observer QUIRE's performance in a larger 

benchmark that would stress the QUIRE IPC system in a more realistic scenario. Toward 

that end, consider the problem where an Android application that hosts a third-party ad 

service might wish to create synthetic click events on the advertisements in order to gain 

fraudulent income from the advertising server (see Section 4.2 for implementation details). 

In order to prevent this attack, an advertising application must establish that the click 

event it received indirectly from the host application was legitimately generated by the OS 

and therefore corresponds to a legitimate click by the user on the screen. 

The goal for this QUIRE benchmark was to use the existing Android system with 

QUIRE's modifications and correctly reject synthesized clicks. A simple click injection pre­

vention system was created that attaches statement chains to all UI "touch" events. These 

events are eventually delivered to a GUI view object which acts as the advertising service's 

share of the screen real-estate. When this view receives a touch event, it passes it to the 

system service to verify whether the clicks have valid statement chain from the OS. 



42 

The throughput of the prototype click injection system was tested by modifying An­

droid to remove its 35 event-per-second hard-coded limit on touch events and observing 

the total time taken to perform 100 thousand synthetic touch events running as fast as the 

hardware will allow. 

Android QUIRE Ratio (QUIRE/Android) 

291.7 224.6 0.770 

Table 5.2: Average touch event throughput in events per second. 

The results in Table 5.2 show that attaching verifiable statement chains to the touch 

event delegation system results in a 25 percent loss of throughput when compared to the 

unmodified Android touch delegation system. The QUIRE prototype still allows 220 events 

per second, which is much higher than the existing limit of 35 events per second in Android, 

even though the QUIRE version of the ad application performs an extra IPC operation in 

order to verify every click delivered to the end-point application. 

5.5 Battery benchmarks 

Finally, the effect on the battery of signing and verifying ever click in a QUIRE aware 

ad application must be considered. The PowerTutor [34] utility was used to monitor the 

battery utilization during a run of the click event throughput micro benchmark. Table 5.3 

shows that the additional hashing and data copying introduced by our authenticated IPC 
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accounts for a .6 millijoule (80%) increase in power consumption per click. We also mea­

sured the power consumed by the operating system and its services while this was running 

as presented in Table 5.4. OS power consumption increases 38 percent relative to stock 

Android while userspace power consumption only increased 4 percent relative to stock an­

droid. This result shows that most of the negative impact on battery is contributed by the 

IPC to the OS Authority Manager during statement verification rather than the creation of 

verifiable statements in userspace stub code. 

Android QUIRE Ratio (QUIRE/Android) 

0.72 1.29 1.80 

Table 5.3: Average battery utilization in mJ per click. 

Subsytem Android QUIRE Ratio (QUIRE/Android) 

OS 210.80 290.73 1.38 

Userspace 95.6 99.3 1.04 

Table 5.4: Subsystem battery utilization breakdown in mW, lOOk clicks. 

5.6 Analysis 

These benchmarks demonstrate that adding call-chain tracking can be done without a sig­

nificant performance penalty beyond that of performing standard Android IPCs. Also, the 
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cost of creating a signed statement is low enough that it can easily be performed for every 

touch event generated by the system. Finally, our RPC benchmarks show that the addi­

tion of QUIRE does not cause a significant slowdown relative to standard TLS-encrypted 

communications. 
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Chapter 6 

Related work 

6.1 Smart phone platform security 

As mobile phone hardware and software increase in complexity, the security of the code 

running on a mobile devices has become a major concern. 

The Kirin system [10] and Security-by-Contract [8] focus on enforcing install-time 

application permissions within the Android OS and .NET compact framework, respectively. 

These approaches to mobile phone security allow a user to protect themselves by enforcing 

blanket restrictions on what applications may be installed or what installed applications 

may do, but do little to protect the user from applications that collaborate to leak data or to 

protect applications from one another. 

Saint [23] extends the functionality of the Kirin system to allow for runtime inspection 

of the full system permission state before launching a given application. Apex [22] presents 

another solution for the same problem, where the user is responsible for defining run-time 

constraints on top of the existing Android permission system. Both of these approaches 

allow users to specify static policies to shield themselves from malicious applications but 

don't allow apps to make dynamic policy decisions. 
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CRePE [7] presents a solution that attempts to artificially restrict an application's per­

missions based on environmental constraints such as location, noise, and time-of-day. Al­

though CRePE considers contextual information to apply dynamic policy decisions, it does 

not attempt to address privilege escalation attacks. 

6.1.1 Dynamic taint analysis on Android 

The TaintDroid [9] and ParanoidAndroid [24] projects present dynamic taint analysis tech­

niques for preventing runtime attacks and data leakage. These projects attempt to tag ob­

jects with metadata in order to track information flow and enable policies based on the path 

that data has taken through the system. TaintDroid's approach to information flow control 

is to restrict the transmission of tainted data to a remote server by monitoring the outbound 

network connections made from the device and disallowing tainted data to flow along the 

outbound channels. The goal of QUIRE differs from that of taint analysis in that QUIRE 

allows applications to protect sensitive data at the source as opposed to at the network 

output. 

The low-level approaches used to tag data also differ between these projects. TaintDroid 

enforces its taint propagation semantics by instrumenting an application's DEX bytecode 

to tag with a taint value every variable, pointer, and IPC message that flows through the 

system. In contrast, QUIRE's approach requires only the IPC subsystem be modified, with 

no reliance on instrumented code; therefore QUIRE can work with applications that use 
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native libraries and avoids the overhead imparted by instrumenting code to propagate taint 

values. 

6.1.2 Information flow control 

The idea of tracking and annotating the flow of information throughout an operating sys­

tem is not new. Many existing information flow control systems, such as JFlow [18], use 

a combination of dynamic taint tracking and tagged data to enforce security guarantees on 

the data flowing through the system. QUIRE differs from existing information flow con­

trol systems in that it doesn't focus on propagating taint but rather attempts to preserve 

the originator of a request throughout the lifetime of a call chain. QUIRE also relies on 

process isolation and augments IPC channels to track provenance rather than relying on 

augmentations to an applications code to propagate taint tags. 

6.1.3 Decentralized information flow control 

A branch of the information flow control space focuses on how to provide taint tracking 

in the presence of mutually distrusting applications and no centralized authority. Meyer's 

and Liskov's work on decentralized information flow control (DIFC) systems [19, 20] was 

the first attempt to solve this problem. Systems like DEFCon [17] and Asbestos [27] use 

DIFC mechanisms to dynamically apply security labels and track the taint of events mov­

ing through a distributed system. These projects and QUIRE are similar in that they both 

rely on process isolation and communication via message passing channels that label data. 

However, DEFCon cannot provide its security guarantees in the presence of deep copying 
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of data; while QUIRE can work in an environment where deep copying is allowed since 

QUIRE defines policy based on the call chain and ignores the data contained within the 

messages forming the call chain. Asbestos avoids the deep copy problems of DEFCon by 

tagging data at the IPC level. Although Asbestos and QUIRE use a similar approach to data 

tagging, the tags are used for very different purposes. Asbestos aims to prevent data leaks 

by enabling an application to tag its data and disallow a recipient application from leaking 

information that it received over an IPC channel, while QUIRE attempts to preemptively 

disallow data from being leaked by protecting the resource itself, rather than allowing the 

resource to be accessed and then blocking leakage at the taint sink. 

6.2 Operating system security 

QUIRE is closely related to Taos [32], which presents a solution to data provenance and 

secure channels in distributed systems. Our design replaces Taos's expensive digital signa­

tures with relatively inexpensive HMAC authenticators. This approach was also considered 

as an optimization in practical Byzantine fault tolerance (PBFT) [6]. However a PBFT im­

plementation using HMAC authenticators cannot scale to large numbers of nodes because 

each node requires a unique shared secret with every other node. QUIRE is able to use 

HMACs as its authentication mechanism because each application need only register a 

shared secret with a central point of authority, the operating system. Network communi­

cation in QUIRE replaces the HMACs with statements made through a cryptographically 

authenticated channel. 
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6.3 Trusted platform modules 

Our use of a central authority for the authentication of statements within QUIRE shares 

some similarities with projects in the trusted platform module space. Terra [ 11] and vTPM [ 4] 

both use virtual machines as the mechanism for enabling trusted computing. The architec­

ture of multiple segregated guest operating systems running on top of a virtual machine 

manager is similar to the Android design of multiple segregated users running on top of a 

common OS. However, these approaches both focus on establishing the user's trust in the 

environment rather than trust between applications running within the system. 

6.4 Web security 

Many of the problems of provenance and application separation addressed in QUIRE are 

directly related to the challenge of enforcing the same origin policy from within a web 

browser. Google's Chrome browser [2, 25] presents one solution where origin content 

is segregated into distinct processes. Microsoft's Gazelle [30] project takes this idea a 

step further and builds hardware-isolated protection domains in order to protect principals 

from one another. MashupOS [14] goes even further and builds OS level mechanisms for 

separating principals while still allowing for mashups. 

All of these approaches are more directed at protecting principals from each other than 

building up the communication mechanism between principals. QUIRE gets application 

separation for free by virtue of Android's process model and focuses on the expanding the 
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capabilities of the communication mechanism used between applications on the phone and 

the outside world. 

6.5 Remote procedure calls 

Weigold et al. [31] provides an overview of some of the challenges and threats surrounding 

authenticated RPC. There are many other systems which would allow for secure remote 

procedure calls from mobile devices. Kerberos [16] is one solution, but it involves placing 

too much trust in the ticket granting server (the phone manufacturers or network providers, 

in our case). Another potential is OAuth [12], where services delegate rights to one an­

other, perhaps even within the phone. This seems unlikely to work in practice, although 

individual QUIRE applications could have OAuth relationships with external services and 

could provide services internally to other applications on the phone. 
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Chapter7 

Future work 

QUIRE can be a platform for conducting a variety of interesting security research around 

smartphones, and as such there are a number of applications that map well onto the QUIRE 

system. 

Usable and secure UI design The IPC extensions QUIRE introduces to the Android op­

erating system can be used as a building block in the design and implementation of a secure 

user interface. Chapter 5 has already demonstrated how the system can efficiently sign ev­

ery UI event, allowing for these events to be shared and delegated safely. 

Any opportunity to eliminate the need for username/password dialogs from the ex­

perience of a smartphone user would appear to be a huge win, particularly because it's 

much harder for phones to display traditional trusted path signals, such as modifications to 

the chrome of a web browser. Instead, app developers can leverage the low-level client­

authenticated RPC channels to achieve high-level single-sign-on goals. The PayBuddy 

application demonstrates the possibility of building single-sign-on systems within QUIRE. 

Extending this to work with multiple CAs or to integrate with OpeniD I OAuth services 

would seem to be a fruitful avenue to pursue. 
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7.1 Policy for apps 

QUIRE allows apps to determine if a calling app should have access to a resource based 

on the state of the incoming call chain and the permissions of the apps contained within 

that call chain. This data, when combined with a theorem prover could be used to pro­

vide dynamic, adaptive protection for sensitive resources rather than protection via static 

policies. 

7.2 License verification 

Google's Android team recently published an API for applications that wish to use the 

Android Marketplace application to establish the licensing validity of an installed instance 

of an application. This license verification system consists of two parts. First, the An­

droid Marketplace application, which facilitates the remote communication with Google's 

servers in order to look up the licensing information for a phone, and secondly, the Li­

cense Verification Library (LVL), a bit of third party code that facilitates communication 

locally with the Marketplace app. Immediately after the announcement of this system, an 

attack was presented [5] in which an attacker can disassemble and modify the function of 

the LVL so that it interprets a response from the Marketplace application that indicates the 

application using the LVL is not licensed for the phone as an approval for use rather than 

disapproval. 

This attack could be easily prevented with the QUIRE extensions to Android's IPC 

mechanism. The LVL would run as a separate service, with its own user-id, on the Android 



53 

phone. Any application that wishes to make use of the LVL would query it, which would 

then either query the Android Marketplace or keep a local policy cache, ultimately yielding 

a signed statement in return to the caller. 

7.3 Web browsers 

While QUIRE is targeted at the needs of smartphone applications, there is a clear relation­

ship between these and the needs of web applications in modem browsers. Extensions to 

QUIRE could have ramifications on how code plugins (native code or otherwise) interact 

with one another and with the rest of the Web. Extensions to QUIRE could also form a 

substrate for building a new generation of browsers with smaller trusted computing bases, 

where the elements that compose a web page are separated from one another. This con­

trasts with Chrome [25], where each web page runs as a monolithic entity. Our QUIRE 

work could lead to infrastructure similar, in some respects, to Gazelle [30], which sepa­

rates the principals running in a given web page but lacks QUIRE's provenance system or 

sharing mechanisms. 

An interesting challenge is to harmonize the differences between web pages, which in­

creasingly operate as applications with long-term state and the need for additional security 

privileges, and applications (on smartphones or on desktop computers), where the princi­

ple of least privilege [26] is seemingly violated by running every application with the full 

privileges of the user, whether or not this is necessary or desirable. 
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Chapter 8 

Conclusion 

This thesis presents QUIRE, a set of extensions to the Android operating system that enable 

applications to propagate call chain context to downstream callees and to authenticate the 

origin of data that they receive indirectly. When remote communication is needed, QUIRE's 

RPC subsystem allows the operating system to embed attestations about message origins 

and the IPC call chain into the request. This allows remote servers to make policy decisions 

based on these attestation. 

The QUIRE design is implemented as a backwards-compatible extension to the Android 

operating system that allows existing Android applications to co-exist with applications that 

make use of QUIRE's services. 

The QUIRE implementation is evaluated by measuring QUIRE's modifications to An­

droid's Binder IPC system with a series ofmicrobenchmarks. Two application designs and 

prototype implementation are presented that use the QUIRE mechanisms to provide click 

fraud prevention and in-app micropayments. 

This thesis shows that a Taos-style system, with applications tracking call chains and 

making signed statements to one another, can be implemented efficiently on a mobile plat­

form, enabling a variety of novel security uses. 
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