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ABSTRACT 

Design of a Fast, Efficient and Controlled DNA Shearing System Based on Lateral 

Acoustic Waves 

by 

Kapil Dev 

With the continuous research and advances in Deoxyribonucleic acid (DNA) se­

quencing technologies, the need for an efficient DNA shearing system has increased 

more than ever before. In this thesis, we propose a fast, efficient and controlled DNA 

shearing system based on a uniquely designed ultrasonic transducer, called Fresnel 

Annular Sector Actuator (FASA). Based on the simulation and experimental results, a 

circular array of four 90°-FASA elements is chosen as the basic unit for the proposed 

shearing system. DNA is successfully sheared from 300 to 1500 base-pair lengths. 

The shearing performance of the system is independent of the source of DNA over a 

large range of concentrations of the DNA. Finally, multiple FASA elements, excited 

by separate RF -signals, are used to increase the throughput of the proposed shearing 

system. 



Acknowledgments 

First and foremost, I would like to thank my thesis advisor, Professor Yehia Mas­

soud, for his continuous encouragement and support during this research work. His 

invaluable suggestions and extreme enthusiasm helped me in persistently working on 

the problems I faced during the research. I feel honored and privileged to work under 

the tutelage of Professor Yehia Massoud. 

Next, I would like to thank my thesis committee members, Professor Farinaz 

Koushanfar and Professor Lin Zhong for providing invaluable comments and sugges­

tions on this research work. 

I am indebted to the engineers and scientists at Microsonic Systems (Microson­

ics) San Jose, CA. In particular, I am thankful to Vibhu Vivek, Babur Hadimioglu, 

Smriti Sharma, Parvez Deshmukh, Steven Horwitz, and Peter Leigh for helping me 

in different ways to perform DNA shearing experiments. I feel lucky to get an in­

ternship opportunity at Microsonics. Most of the practical work presented in this 

thesis was performed there. I also want to extend my sincere appreciation to Brian 

Jones and Ma Phiengsai for helping me in assembling electrical circuits, piezoelectric 

transducers and building test-fixtures for performing DNA shearing experiments 

I am highly grateful to all the colleagues of N anoelectronic Systems Lab (NSL) 

at Rice University. In particular, I am privileged to share the lab with extremely 

talented people, like Sami El Smaili, Vikas Singal, Ahmad Hammoudi, and Keith 

Wilhelm, who not only used to be available for any-time technical discussions but 

also are very good friends of mine. 

Finally, I want to thank my parents and sister for continuously providing me love 

and encouragement throughout these years. This thesis is dedicated to my parents. 



Abstract 

Acknowledgments 

List of Illustrations 

List of Tables 

1 Introduction 

2 DNA Shearing 

201 DNA Structure 0 0 0 0 0 

Contents 

202 DNA Shearing Methods 

20201 Related Work 0 0 

20202 Our Research Work 0 

ii 

iii 

VI 

X 

1 

7 

7 

8 

9 

14 

3 Theory and Modeling of Piezoelectric Transducers 16 

301 Piezoelectric Effect 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 

302 One-dimensional Model of a Piezoelectric Slab Excited in its 

Thickness Mode 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 

4 Acoustic Field Due to Different Piezoelectric Transduc-

ers: Simulation Based Analysis 26 

401 Plane/Flat Piston Transducers With Different Electrode Patterns 27 

402 Circular Plate Transducer 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29 

403 Plane Transducer With Full-ring Electrode Pattern 35 

40301 Acoustic Fresnel Lens 0 0 0 0 0 0 0 0 0 0 0 0 0 35 



~~-------~----------------------

4.3.2 Acoustic Field due to 360° Fresnel Lens ...... . 

4.4 Piezoelectric Transducer with Sectored Annular Electrodes 

v 

36 

39 

4.4.1 270° Sectored Annular Transducer . 40 

4.4.2 180° Sectored Annular Transducer . 42 

4.4.3 90° Segmented FASA Element: the Basic Unit of DNA 

Shearing System . . . . . . . . . . . . . . . . . . . . . 43 

4.4.4 Phased-Array Fresnel Annular Sector Actuators (FASAs) 46 

5 Fabrication and Characterization of Piezoelectric FASA 

Element 50 

5.1 Photo-lithography Based Fabrication Process . 50 

5.2 Characterization . . . . . . . . . . . . . . . . 51 

5.3 Equivalent Electrical-Circuit of Piezoelectric Transducer Based on its 

Impedance Characterization . . . . . . . . . . . . . . . . . . . . . . . 53 

6 Complete Architecture of Proposed DNA Shearing Sys-

tern 

6.1 Electrical Domain . 

6.2 Piezoelectric Domain 

6.3 Acoustic-fluid Interaction Domain 

7 Experimental Results 

7.1 DNA Fragment Analysis Tools ........... . 

7.2 DNA Shearing Protocol and DNA Shearing Results 

8 Conclusions and Future Work 

Bibliography 

56 

56 

60 

60 

63 

63 

65 

75 

79 



Illustrations 

1.1 Genome based disease detection and treatment. . . . . . . . . . . . . 3 

2.1 Different representations of DNA molecule: (a) chemical structure of 

DNA [35] (b) double-helix structure of DNA [36] (c) long entangled 

DNA. . . . . . . . . . . . . . . . . . . . . . . 8 

2.2 Unsheared DNA and sheared DNA fragments 9 

2.3 Hydroshear System . . . . . . . . . . . . 11 

2.4 DNA shearing using lateral shear waves . 15 

3.1 An acoustic medium of finite thickness, d, with waves propagating in 

+z and -z directions. 17 

3.2 Electrical excitation of piezoelectric slab in thickness mode. . 21 

3.3 Mason model equivalent circuit of a finite thickness piezoelectric plate 24 

4.1 Electrodes (in blue color) of different shapes patterned on 

piezoelectric square block (in green color): (a) circular plate electrode 

(b) full-ring electrode (c) 270° FASA element with two rings (d) 180° 

FASA element with two rings (e) 90° FASA element with two rings. 28 

4.2 Computation of acoustic field at a point P due to circular 

piezoelectric slab. . . . . . . . . . . . . . . . . . . . . . . . 30 



4.3 (a) Circular-plate electrode of 4mm radius; (b) vertical-component of 

particle displacement ('uz); (c) radial-component of particle 

displacement (ur); (d) circumferential-component of particle 

displacement ( u..p). . . . . . . . . . . . . . . . . . . . . . . . 

4.4 Natural focal length versus diameter of the transducer at 4MHz in 

vii 

33 

water. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 

4.5 Top view, cross-sectional view and ring-radii of a three-ring Fresnel lens 35 

4.6 (a) Full ring (360°) electrode with 13mm focal length; (b) 

vertical-component of particle displacement (uz); (c) 

radial-component of particle displacement (ur); (d) 

circumferential-component of particle displacement ( u..p). 

4.7 (a) 270° FASA ring electrode with 13mm focal length; (b) 

vertical-component of particle displacement (nz); (c) 

radial-component of particle displacement ( nr); (d) 

circumferential-component of particle displacement ( n..p). 

4.8 (a) 180° FASA ring electrode with 13mm focal length; (b) 

vertical-component of particle displacement (uz); (c) 

radial-component of particle displacement (nr); (d) 

4.9 

circumferential-component of particle displacement ( n..p). 

(a) 90° FASA ring electrode with 13mm focal length; (b) 

vertical-component of particle displacement ( nz); (c) 

radial-component of particle displacement (ur); (d) 

circumferential-component of particle displacement ( n..p). 

4.10 Particle displacement for different sector angles (a)-(c) nz, 'Ur, 'IL..p per 

39 

41 

43 

45 

unit electrode area; (d)-(f) Absolute nz, nr, n..p . . . . . . . . . . . . . 46 

4.11 Proposed piezoelectric transducer structure based on array of four 90° 

Fresnel annular actuators. . . . . . . . . . . . . . . . . . . . . . . . . 47 



4.12 Particle displacement due to an array of four 90° sectored annular 

transducers: (a)-(d) 'Uz: shift=O, A, 3A, 5A; (e}-(h} 'Ur: shift=O, A, 

viii 

3A, 5A; (i}-(l} u,p: shift=O, A, 3A, 5A. . . . . . . . . . . . . . . . . 49 

5.1 S11 plots for a sample piezoelectric FASA element plotted using 

Agilent E5061B network-analyzer. (a) log magnitude plot; (b) Smith 

impedance plot .......... . 

5.2 S11 plot of a fresnel annular sector actuator patterned on a 

52 

transducer obtained from Piezo Systems, Inc. . . . . . . . . . . . . 53 

5.3 Resistance (R), reactance (X) and impedance (Z) plots of a Fresnel 

annular sector actuator designed on a transducer obtained from Piezo 

Systems, Inc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 

5.4 Circuit models for FASA element at different operating frequencies. 

(a) f < fs; (b) fs < f < /p; (c) f > JP" · .. · · .. · . . . . . . . . 55 

6.1 Block diagram of the proposed DNA shearing system . . . . . . . . . 56 

6.2 Combined clock: logical AND of fast RF clock (MHz) and slow clock 

at repetition rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 

6.3 Circuit diagram of class-E amplifier used to generate RF-signal for 

exciting the transducer [52]. 59 

6.4 DNA shearing in action. . . 62 

7.1 (a) Gel-electrophoresis system [55] (b) gel-image of Lambda 

DNA(48kb)[Concentration 5ng/pL] sheared to different peak 

fragment sizes using the proposed shearing system . . . . . . . . . . . 67 

7.2 Agilent Bioanalyzer plots for the four shearing experiments (a) mean 

fragment size: 1850; (b) mean fragment size: 1350; (c) mean 

fragment size: 700; (d) mean fragment size: 370 ....... . 68 



7.3 Agilent Bioanalyzer plots for a 50uL DNA sample sonicated for 

different time durations (a) 10 mins; (b) 20 mins; (c) 30 mins; (d) 40 

ix 

mins; (e) 50 mins; (f) 60 mins. . . . . . . . . . . . . . . . . . . . 70 

7.4 Agilent Bioanalyzer plots for a lOOuL DNA sample sonicated for 

different time durations (a) 10 mins; (b) 20 mins; (c) 30 mins; (d) 40 

mins; (e) 50 mins; (f) 60 mins. . . . . . . . . . . . . . . . . . . . . . . 71 

7.5 Shearing results on Lambda and Genomic DNA for 15 mins, 30 mins, 

and 1 hour sonication time. 72 

7.6 Shearing results on Lambda and Genomic DNA for 15 mins, 30 mins, 

and 1 hour sonication time. 74 

8.1 Scattering parameter, 8 11 of FASA element after usage for different 

durations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 

8.2 Resistance (R), reactance (X) and impedance (Z) of FASA element 

after usage for different durations. . . . . . . . . . . . . . . . . . . . 78 



Tables 

2.1 Comparison of different Shearing Techniques . . . . . . . . . . . . . . 15 

6.1 Effect of Duty Cycle and Repetition Rate (slow clock) on the DNA 

Sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 



1 

Chapter 1 

Introduction 

It is well established that the complete information about development and function­

ing of a living organism is encoded in its DNA; this has very useful implications. For 

example, we can assume that every disease or disability occurring in an organism 

could be directly associated with the sequence of a particular DNA segment of that 

organism. This also means that a disease could be detected, diagnosed and treated 

more accurately and efficiently if we have a good understanding of genomic data of 

living beings. Therefore, all pharmaceutical companies, drug discovery companies, 

forensic laboratories, and biotechnology researchers are very keen in understanding 

and determining the genome sequence of different organisms. If we can determine 

the entire DNA sequence of an organism, we can map all of its characteristics to 

particular DNA fragment-sequences. 

Since it is almost impossible to read the entire genome sequence by current se­

quencers, one needs to fragment the DNA into small fragments, say of different known 

sizes. The fragments are read to find the order of nucleotides (base-pairs); the read­

ing process is called DNA sequencing. The small fragments are later joined in proper 

order to build long fragments with the help of computationally intensive reconstruc­

tion algorithms. The algorithms are first simulated in order to reconstruct the long 

chain of base pairs, a step toward reconstructing the whole DNA. The efficacy and 

success of sequencing technique is dependent on how random the DNA fragments 

are [1]. The reconstruction algorithm has higher probability of convergence if the 
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DNA fragments are of different sizes and fragments having different base-pair orders. 

To this end, we need an efficient DNA shearing system to make DNA libraries so that 

one could study and compare the properties of different DNA sequences in different 

organisms. Although the fragment size is largely decided by the maximum base-pair 

length reading capability of sequencing instrument, it is also decided by the average 

length of single gene within the organism of interest. 

A typical application of DNA shearing and DNA sequencing could be justified by 

following example. Suppose a person has got tumor in one of his arms and the other 

arm is healthy. To diagnose, detect, cure or study the tumor-type, one takes DNA 

samples from both, tumor-affected arm and the healthy arm. DNA samples from both 

arms are processed and then sheared to fragment sizes which the current genomic­

sequencers can read. In this manner we can find the sequence of base-pairs in both 

unhealthy and healthy DNA samples and can compare them to find tumor-specific 

variations in genomes. This can eventually help in clinical diagnosis of different types 

of tumors, and tumor-specific treatments could be devised. This example is pictorially 

represented in figure-1.1. 

There are many methods which can be used to shear the DNA such as enzymatic 

digestion [2], nebulization [3], hydroshear [1, 4, 5, 6], and sonication [7]-[28]. Enzy­

matic digestion is a chemical method of shearing the DNA which can not provide 

random set of fragments, required to build sequencing-library. In nebulization, the 

shearing of DNA is achieved through atomization or mistification process. Nebu­

lization can provide random fragments of DNA for sequencing but this method has 

specific requirement for the volume and concentration of input DNA [1]. Hydras­

hear can provide size-specific random DNA fragments with minimal DNA damage, 

suitable for sequencing strategies, but the complete process is time consuming. Soni-
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Figure 1.1 Genome based disease detection and treatment . 
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cation is among the powerful and controlled methods which can meet the throughput 

demands of next generation DNA sequencing technologies. Ultrasonic probe, sonore-

actor , ultrasonic bath, and adaptive focused acoustic (AFA) are some of the current 

ultrasound-based platforms for DNA shearing [7, 8]. 

This thesis describes a fast , efficient, controlled , and scalable DNA shearing sys-

tern that uses uniquely generated ultrasonic shear forces to shear the DNA to desired 

fragment sizes. The proposed system uses a specially designed piezoelectric trans-

ducer to generate the shear forces. The piezoelectric transducer has sectored annular 

electrodes, which generate lateral acoustic waves in the space over it when an RF 

excitation is applied across the t ransducer . Such a transducer with sectored annular 

electrode pattern is called as Fresnel Annular Sector Actuator (FASA) and has been 
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successfully used for contactless mixing and thawing of low-volume (1uL-1mL) liquid 

samples by Microsonic Systems [29, 30, 31]. We modified the existing FASA element 

and arranged those FASA elements in a particular pattern to generate strong shear 

forces and used it to shear the DNA samples [32, 33, 34]. 

The thesis is organized as follows. In chapter-2, we discuss the structure of a DNA 

molecule and its different representations. Then we discuss the different methods used 

in practice to shear the DNA. We highlight the advantages and disadvantages of each 

DNA shearing technique in this chapter. Finally, we compare different DNA shear­

ing techniques with respect to different parameters, namely, the physics behind each 

technique, the time each technique requires to shear the DNA, the fragment sizes that 

could be obtained from each technique, the approximate coefficient of variation ( CV) 

of the size of DNA fragments around the mean fragment size, as measured using the 

Agilent Bioanalyzer 2100, the volume of DNA sample that can be sheared at a time 

using each technique, the DNA-concentration requirements for each technique, and 

the approximate cost of the DNA shear system implemented based on each technique. 

Some of the numbers are approximate in this table. For example, the coefficient of 

variation of the DNA fragments obtained using different shearing technique varies a 

lot from one experiment to another. Also, the Bioanalyzer tool can not measure the 

coefficient of variation very accurately. Finally, the value of coefficient of variation 

of DNA fragments in a DNA sample changes with the change in the region of inter­

est decided by selecting the position of lower and upper marker in Bioanalyzer plot. 

Chapter-3 presents the theory and modeling of piezoelectric effect and the common 

materials exhibiting piezoelectric behavior. This chapter presents a model of piezo­

electric rectangular slab excited in its thickness mode. The model computes forces 

developed at the top and bottom surface of the slab as a function of particle dis-
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placement/velocity at top and bottom surfaces of the slab. Finally, the Mason model 

representing the conversion of electrical energy into acoustic energy and vice-versa 

is discussed in this chapter. In chapter-4, we present the acoustic field computation 

due to different shapes of the piezoelectric transducers. This chapter describes the 

analytical model that we have developed to compute particle displacement due to a 

transducer. The model could be used to simulate the acoustic field due to fiat, also 

called piston, transducers. We simulate the acoustic potential and particle displace­

ment due to following piezoelectric shapes: circular disc, 360° (full) concentric rings, 

270° (sectored) concentric rings, 180° sectored concentric rings, and goo sectored 

concentric rings (also called Fresnel Annular Sectored Actuator, FASA). This chapter 

compares the acoustic quantities (mainly particle displacement) due to different types 

of piezoelectric transducer. Finally, this chapter presents the simulation based anal­

ysis of the proposed circular array-topology of goo sectored transducers. Chapter-5 

describes the fabrication and characterization techniques used for the FASA elements. 

As a part of characterization, frequency dependent impedance plots and the s 11 scat­

tering plots are plotted for each transducer used to shear the DNA. These plots are 

used to choose the operating frequency and to find the values of lumped components 

of electrical circuit used to excite the transducer. In chapter-6, we present the archi­

tecture of complete DNA shearing system as proposed and implemented in this work. 

The complete system is divided in to different physical domains- namely, electrical, 

piezoelectric, and acoustic-fluid interaction domain, based on the physics involved in 

that domain. In the electrical domain, the digital, analog and RF circuits required to 

excite the transducer is discusses. While in the piezoelectric and acoustic-fluid inter­

action domains, the use of piezoelectric material to generate acoustic waves and the 

interaction of acoustic waves with DNA sample is discussed. Chapter-7 presents the 
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shearing results of selected experiments performed on real DNA samples. This chap­

ter describes the basic constituents/parameters of shearing protocol and the effect of 

each parameter on the DNA shearing results in our system. Finally, we summarize 

the work done in thesis in chapter-S and discuss the future work required to make 

the proposed DNA shearing system more robust and reliable. 
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Chapter 2 

DNA Shearing 

2.1 DNA Structure 

DNA is a double helix structure in which each strand consists of two long polymers 

of simple units, called nucleotides, as shown in figure-2.1 [35]. A nucleotide is made 

of sugar/phosphate backbone and one of four bases, Adenine (A), Cytosine, (C), 

Guanine (G) and Thymine (T). The two strands of double helix DNA run in opposite 

direction and a base of one strand pairs only with its complementary base on the other 

strand, e.g. adenine always pairs with thymine and guanine pairs with cytosine. DNA 

is made of millions of base-pairs connected in a particular sequence and a segment of 

DNA is made of few hundreds to few thousand base-pairs. Figure-2.1 shows segments 

of DNA in three different ways. Figure-2.1 (a) shows a DNA segment of four base-pairs 

along with the phosphate backbone on each side [35]. Figure-2.1 (b) shows the double 

helix form of DNA [36]; at room temperature, the two strands of DNA coils around 

each other and make a helix structure. Such a DNA is also termed as double-stranded 

DNA (dsDNA). At elevated temperatures, usually higher than 90°C, the two strands 

separate and such a DNA is called single-stranded DNA (ssDNA). DNA fragments 

are also called genes and they contain the genetic information responsible for the 

development and functionality inside a living organism. If we can determine the 

entire DNA sequence for an organism, we can map all its characteristics to particular 

DNA fragment-sequences. 



Thymine 
Adenine 

'\;0~~ 
~\P· \A' 

Ph osphate- '\;t<• "'". "~~~-deoxyribose._ 
backbone - " · 

)<~Y<\. 
a.";nd . Cytosine f· 

Guanine 5· end 

(a) 

8 

(b) (c) 

Figure 2.1 : Different representations of DNA molecule: (a) chemical structure of 
DNA [35] (b) double-helix structure of DNA [36] (c) long entangled DNA. 

2.2 DNA Shearing Methods 

DNA is made of long chain of base-pairs (typically millions) connected in a particular 

sequence. The DNA is similar to a spaghetti and it is very difficult to read the base-

pair sequence for the large DNA. To facilitate DNA sequencer in reading the sequence, 

the DNA has to be broken into small fragments. Figure-2.2 presents a pictorial 

representation of DNA before and after shearing. Random shotgun sequencing is the 

most common method used to determine the sequence of a genome. The success 

and efficiency of sequencing is dependent on randomness and unbiased cloning of 

DNA fragments used to build a shotgun library. An ideal library would provide 

uniform, unbiased coverage, yield a sufficient number of clones for sequence overlap , 

and have no background of clones without inserts. DNA could be sheared using 

different methods [37]; some of the common DNA shearing methods are described 

below. 
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Large Un-sheared DNA Sheared DNA Fragments 

Figure 2.2 : Unsheared DNA and sheared DNA fragments 

2.2 .1 Related Work 

1. Enzymatic DNA Shearing: There are two types of enzymatic treatments 

that can be used to shear the DNA- restriction endonuclease and DNase I. Re-

striction endonuclease partially digests the DNA at fixed sites and hence is used 

to obtain fragments of fixed sizes. DNase I is another enzyme which in presence 

of maganese ions result in shearing of DNA. Since these are chemical methods , 

they are highly concentration-dependent. In addition, these methods are not 

used for generating fragments targeted for sequencing application because se-

quencing requires clones of random fragments . Further, these chemical methods 

not only require the addition of specific enzymes to input DNA but also require 

the optimization of pH and ionic strength conditions for successful shearing. 

Also, the addition of extra reagents makes it necessary to purify the DNA after 

digestion/shearing process and the extra purification step always causes a loss 

of valuable DNA sample. The enzyme based DNA shearing typically takes 8-10 

hours. 

Recently, New England BioLabs has announced a better technique of DNA 
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shea~ing using their special enzyme-solution and protocols [2]. Their enzyme­

solution is named as NEBNext dsDNA Fragmantase and it yields DNA frag­

ments between 100 to 800 bp lengths depending on the reaction time. The 

solution contains two enzymes, one generates dents on one of the strands of 

dsDNA at random sites and the other enzyme recognizes the nicked site and 

cuts the opposite DNA strand across from the nick, producing dsDNA breaks. 

The typical reaction time or shearing time is 30 minutes and the results show 

that NEBNext dsDNA Fragmantase gives better shearing than nebulization and 

hydroshearing, shearing techniques explained next. 

2. Nebulization Based DNA Shearing: In this method, DNA sample is placed 

in a high-pressure chamber, which converts the DNA sample in to mist. The 

mist generated in such manner comes out of an opening and is collected in 

the container [38]. The final size of DNA fragments is dependent on the ap­

plied pressure and is not decided by time. However, the volume of the DNA 

sample affects the shearing time; higher volume takes more time to nebulize. 

Higher pressure gives smaller DNA fragments and smaller pressure provides 

longer fragments. Earlier, when sonication based shearing techniques were note 

studied fully, it was considered that nebulization was better than sonication, 

because the latter tended to break DNA at AT-rich regions [37]. This nebuliza­

tion based shearing is quite cumbersome method and is not scalable to achieve 

higher throughput, needed to meet the demands of next generation sequencing 

techniques. Also, the smallest DNA fragment size obtainable using this tech­

nique is 700 bp, which is larger than most of the current DNA sequencers. The 

coefficient of variation of DNA fragments obtained using this technique is also 

large. 
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3. Hydroshear Based DNA Shearing: In this method the input DNA is passed 

through a fine-gauge needle whose orifice-diameter and speed of passage decide 

the size of DNA-fragments. This is one of the simplest methods to shear the 

DNA but one can not achieve all fragment sizes using this method. The ef-

ficiency of this method is highly dependent on the DNA concentration where 

DNA solutions with higher concentrations can be sheared to smaller sizes than 

DNA solutions with higher concentrations [1]. 

with large 
strands 

Pressure 
DNA getting stretched 
and sheared through 
narrow tube 

fragments 

Figure 2.3 : Hydroshear System 

4. Sonication Based DNA Shearing: This method uses different variations of 

sound or ultrasonic waves t o process the DNA sample and shear it to desired 

length. Ultrasound is described as high frequency acoustic waves (20 kHz or 

higher) requiring a medium in order to propagate. There are various shear-

ing platforms which uses sound energy to shear the DNA; some of these are 

mentioned below. 

(a) Ultrasonic Probe (UP) : Ultrasonic Probe uses small tips which are inserted 

in DNA sample and they are vibrated at ultrasonic frequency [7]. The UP 

could achieve DNA fragmentation but this methods has some inherent 
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disadvantages. Some of the disadvantages are as following: risk of cross­

contamination as the tips make direct contact with the DNA sample, loss 

of sample due to aerosol formation during ultrasonication, thermal degra­

dation of DNA due to rise in temperature from high ultrasonic energy, and 

potential contamination due to micro-degradation of metallic probe-tips. 

All these reasons may cause problems during downstream processing of 

DNA sample. 

(b) Sonoreactor: Sonoreactor does not make direct contact with the DNA 

sample and hence eliminates the contamination and sample loss problems 

of Ultrasonic Probe [7]. As compared to Ultrasonic Probe, Sonoreactor 

inputs 50 times less energy than into the sample and hence reduces the 

temperature-induced thermal degradation problem of UP method. But 

the size-distribution of DNA fragments obtained using this method is quite 

broad and lot of sample goes waste during the DNA selection process. 

(c) Ultrasonic Bath: In this method, sound energy is generated over large 

area using array of ultrasonic transducers or one large piezoelectric trans­

ducer [7]. This method could shear large amount of DNA at a time but 

that is not the demand in market. One more problem with this method 

is that the size-dispersion of DNA fragments is broad which causes higher 

sample loss in the downstream selection process. 

(d) Adaptive Focused Acoustic: Covaris is one of the leading companies which 

has successfully built a stable DNA shearing system that can give repro­

ducible results [39]. Their technology is based on adaptive focused acous­

tics (AFA), in which the ultrasound waves are focused to a point in the 

liquid sample and a vacuum is created at the focal point. This process is 
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also called cavitation. When passing through an aqueous solution, acous­

tic waves cause the formation of micro bubbles filled with gas (cavities), 

hence the name cavitation. Two types of cavitation have been observed: 

stable cavitation (gas body activation) and inertial cavitation (transient or 

vaporous). Stable cavitation occurs during low intensities of ultrasound, 

but inertial cavitation requires high intensities of ultrasound. The latter 

is responsible for high energy events, and considered to be destructive to 

biological molecules. During inertial sonication, the size of microbubbles 

varies: first, there is a rapid increase in size, followed by a decrease, until it 

implodes. The high temperatures and high pressure inside the bubble are 

sufficient to cause hydrolysis, sonoluminescence phenomena and shearing 

of biological molecules. Besides cavitation, two additional phenomena may 

lead to the damage of biological molecules: mechanical and thermal degra­

dation, and reaction with radicals generated from water. Also, the use of 

ultrasonic waves directly in cells was shown to induce DNA fragmentation 

and damage. Covaris Inc. has built a DNA shearing system that can shear 

DNA to fragment sizes between 100 bp (base-pairs) to 5Kbp. The sheared 

DNA has tight distribution around the targeted mean fragment size, but 

the time required for the complete process is in the order of hours. Also, 

their system only processes one sample at a time, so throughput is also 

one of the problems with their system. Some other methods of shearing 

DNA are autoclavingjboiling, and mini bead beating. 
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2.2.2 Our Research Work 

Lateral Acoustic Shear Waves Generated Using Proposed System: We 

propose a method of shearing the DNA by generating lateral acoustic waves. The 

lateral shear waves are generated using RF excitation of specially designed ultrasonic 

transducers. The piezoelectric plate is patterned with electrodes of special shapes 

and sizes on its top and bottom surface. These electrode regions, when excited 

with RF signal generate acoustic waves in space over it and generate an interference 

pattern. By proper design techniques, we can generate different pressure patterns in 

the space. When a liquid sample, in particular DNA sample, is placed in the space 

over transducer, the sample experiences very strong differential acoustic pressure. 

Such a strong differential pressure causes the large molecules to break into smaller 

molecules. We use this phenomenon to shear large DNA into small DNA fragments 

as shown in figure-2.4 [32, 33, 34]. 

Most large-scale sequencing strategies require random fragmentation of the target 

DNA into smaller pieces. Physical fragmentation methods such as nebulization, hy­

drodynamic shearing, and sonication are generally preferred over enzymatic methods, 

because they are more random, more readily controlled, and they result in a collection 

of overlapping fragments. The comparison of different DNA shearing is summarizeq 

in table 2.1. 



DNA Sample 

Piezoelectric 
FASACell 

DNA Shearing 

RF Circuit to Exdte 

FASACell 

Small DNA Fragments 

Figure 2.4 DNA shearing using lateral shear waves 

Table 2.1 Comparison of different Shearing Techniques 

Enzyme Nebulization Hydroshear Sonication 

Based Covaris Our System 

Physics Chemical Atomization Mechanical Focused Lateral 

Acoustic Waves 

Speed Fast Fast Slow Medium Fast Fast 

(Minutes) (Minutes) (Hours) (1-4Hours) ( <lHr) 

Fragment F ixed Random Specific Specific Specific 

Size 

Volume Independent High Low Low Low 

- 1-2m£ > 40J-LL 100-120J-LL 50-300J-LL 

Concentration Independent High - Independent Independent 

Cost - Low Moderate High Moderate 

15 
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Chapter 3 

Theory and Modeling of Piezoelectric Transducers 

3.1 Piezoelectric Effect 

Piezoelectric effect is the property of some materials to generate stress/strain in re­

sponse to applied electric field and also, conversely, to generate electric field in re­

sponse to applied stress. Hence, theoretically, all piezoelectric materials can be used 

as transducers, i.e. they can work as both actuators and sensors. The ability to gener­

ate electric field or electric potential when a stress is applied to the material is termed 

as Direct Piezoelectric Effect. While the reverse-property of generating stress waves 

in response to applied electric field is called as Reverse Piezoelectric Effect. Some 

of the examples of piezoelectric materials are as following: lead zirconate titanate 

(Pb[ZrxTi 1-x]03 , 0 < x < 1), lead titanate (PbTi03 ), barium titanate (BaTi03 ), 

barium sodium niobate, lithium niobate, lithium tantalate, quartz, rochelle salt, bis­

muth germanate, cadmium sulfide, gallium arsenide, tellurium dioxide, zinc oxide, 

zinc sulfide, amonium dihydrogen phosphate, aluminum nitride and different chemi­

cal variations of these ceramics. For example, lead zirconate titanate, also known as 

PZT, has different variations: PZT-2, PZT-4, PZT-4D, PZT-5A, PZT-5H, PZT-5J, 

PZT-7A, and PZT-8. As of today, PZT is the most commonly used piezoelectric ma­

terial because of its superior properties. We procurred PZT transducers from different 

companies and evaluated them for their performance, reliability, center frequency, and 

electromechanical conversion efficiency. Eventually, we decided to use the transducers 
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from Piezo Systems Inc. due to their good value for price [40]. 

3.2 One-dimensional Model of a Piezoelectric Slab Excited 

in its Thickness Mode 

Let us consider a piezoelectric slab in x -y plane bounded by two planes, z = z1 and 

z = z2 , in z-direction. The thickness of the slab ( d = z2 - zl) is very small as compared 

to its length and width. Let us also assume that the piezoelectric material is excited 

by an RF signal with resonance frequency corresponding to its thickness mode, also 

called thickness-excitation (TE) mode. Acoustic waves travelling in z-direction will 

be generated and these waves will experience reflections from both top and bottom 

boundaries of piezoelectric slab. A diagram representing such waves is presented in 

figure-3 .1. 

Incident Wave l 1 I Reflecte: :::e 
d 

Incident w_av_e __ l ______ l ____ ..r.,I_R_e_fl-ecte:::e 

Figure 3.1 : An acoustic medium of finite thickness, d, with waves propagating in +z 
and - z directions. 

We can assume that there are two waves being present in the slab at a time, one 

wave travelling upward ( +z) and the other travelling downwards ( - z) . The particle 

displacement, u in the piezoelectric medium can then be expressed as 

u = a e - jkz + bejkz (3.1) 
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Where, the value of coefficients, a and b, depends on the acoustic impedance 

mismatch at two boundaries and k is the wave vector, equal to 21r /A, A being the 

wavelength of acoustic wave inside the slab. Let us assume the particle-displacement 

to be a simple harmonic function of time ( ueJwt, with w being the angular frequency 

of excitation). The particle velocities at lower and upper boundaries(v1 and v2 re­

spectively) are given by 

vl = dul - = J.W (ae-jkzl + bdkzl) dt Z-Zl 
(3.2) 

(3.3) 

From equations (3.2) and (3.3) we can calculate the value of constants a and bin 

terms of v1 and v2 . Their values are given by equations (3.4) and (3.5) below. 

(3.4) 

(3.5) 

Where, d is the thickness of piezoelectric slab under consideration, i.e., d = z2 - z1 . 

The analysis presented till now is applicable for any solid material. For a piezoelectric 

material, the stress (T) is related to strain (S) and electric field (E) as follows [41, 42]. 

E Edu T = c S - eE = c - - eE 
dz 

(3.6) 

Where, cE is the stiffness constant measured at constant E and e is the piezo-

electric coefficient for the slab. This is one of the fundamental constituent equations 

of a piezoelectric material. Since piezoelectric slab is typically a dielectric with very 
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high resistance, the free charge density can be assumed to be zero inside the slab. 

From Gauss's law, we have \l.D = Pe = 0 , which implies that the displacement 

vector inside the piezoelectric slab is constant or zero. In our 1-D example, D is in 

z-direction. Again, for a piezoelectric slab, we have following fundamental equation 

always being satisfied [41]. 

du 
D = eS + E8 E = e dz + E8 E (3.7) 

Where, E8 is the dielectric constant (including polarization effect) for the piezo-

electric slab. This is the second fundamental constituent equation for a piezoelectric 

material. From above two equations, (3.6) and (3.7), we get 

T = cE du _ _.:.._ (n _ e du) 
dz E8 dz 

= (cE + e2) du _ eD 
E8 dz E8 

= cD du _ eD = cD 8 _ eD 
dz E8 Es 

(3.8) 

Where, cD = cE + o/ff- is a new constant. For our one-dimensional case, we can 

derive the formula for strain by differentiating particle displacement with respect to 

excitation direction, z, as following. 

au "k "k S =- = -jkae-1 z + jkbe1 z az (3.9) 

By substituting the values of a and b as derived above, we get following equation 

for strain (S), at all points in a plane at height z, inside the slab of thickness d. The 

slab is bounded by two planes, z = z1 and z = z2 , in z-direction. 

S _ _ ·k 1 2 -Jkz + ·k 2 1 ~1kz 
au ( V ejkz2 _ V ejkz1) . V e-jkz1 _ V e-jkz2 . 

--- -J - e J - e-az 2wsin (kd) 2wsin (kd) 
(3.10) 
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Substituting the value of S from equation (3.10) in equation (3.8), we get following 

identity for stress (T). 

Let T1 be the stress generated at bottom surface (at z = z1 ) and T2 be the stress 

at top surface (at z = z2) of piezoelectric slab, the corresponding forces at bottom 

and top surfaces are given by F1 and F2 respectively. We can write 

(3.12) 

Acoustic impedance per unit area is given by the ratio of stress to particle velocity, 

the total acoustic impedance, Z, inside the slab with cross-section area A could be 

written as: 

T keD 
Z =--A= J"P;}5 A= pvaA =-A 

v w 
(3.13) 

Where, T represents the stress, v is the particle velocity, p is the density of slab, 

Va is the phase velocity, and cD is a constant dependent on stiffness constant of the 

piezoelectric slab. The minus sign is used because stress is 180° out of phase with 

particle velocity. The particle velocity is 90° out of phase with respect to particle 

displacement. Also, using the following trigonometric identity: 
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1 1 (kd) 
tan (kd) = sin (kd) -tan 2 (3.14) 

The equation (3.12) could be re-written as: 

jZ . (kd) eD F1 = . (v1- v2)- ]Ztan - v1 - -A 
s~n (kd) 2 f.s 

(3.15) 

Similarly, we can derive an equation for force F2 at the top surface of the piezo-

electric slab. 

- D ,'k 1 2 -JkZ2 + 'k 2 1 JkZ2 
( { ( 

v ejkz2 _ v eJkzt ) . ( v e-jkzt _ v e-jkz2 ) . } eD) 
- c -J - e J , - e - -

2wsin (kd ) 2wsin (kd) c5 

- 'k DA 1 2 A 
( 

2v - v (eJkd + e-Jkd) ) eD 
-) c --

2ws'in (kd) cS 

= j keD A ( v1 _ v2 ) _ eD A 
w sin ( kd) tan ( kd) f.s 

jZ . (kd) eD 
= s'in (kd) (vl- v2) + ]Ztan 2 v2 - 7 A (3.16) 

RF sfgnal 

Figure 3.2 : Electrical excitation of piezoelectric slab in thickness mode. 
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In order to make an equivalent electrical model for the piezoelectric slab, as shown 

in figure-3.2, we would like to obtain current-voltage characteristic for the slab. Since 

most of the piezoelectric materials are dielectric, the current through them is purely 

displacement current. If A is the area of cross-section of piezoelectric slab through 

which the current flows, the current density inside slab is given by: 

aD 
J= at =jwD 

l=jwDA (3.17) 

In the case of direct piezoelectric effect, the voltage developed between the top 

and bottom surface of the piezoelectric slab could be found by integrating the electric 

field in z-direction 

1z2 1z2 (D e au) Dd e V = E.dz = - - -- dz = - - - { u (z2) - u (z1)} 
E8 E8 az E8 E8 

Zl Zl 

(3.18) 

Where, d = z2 - z1. Since displacement current D = j~A, and particle velocity, 

v = ~~ = jwu, we arrive at following equation: 

(3.19) 

By substituting h = fo- and C0 = <:A, we get following current-voltage (I- V) 

relationship inside the piezoelectric slab. 

(3.20) 
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Here C0 can be considered as the static electrical capacitance at zero or fixed 

strain. From the above I - V equation, we notice that the current flowing through 

piezoelectric slab is composed of two terms: 1) the displacement current through a 

capacitance, jwC0V; and, 2) the current due to conversion of mechanical energy to 

electrical polarization due to piezoelectric effect, hC0(vi- v2). Hence, this equation 

relates electric current to acoustic current and it is a very important relationship. 

When we substitute values of D and h in the equations for forces at two surfaces, 

we get following equations for FI and F2. 

jZ . (kd) h FI = . (vi- v2)- ]Ztan - vi--. I 
sm(kd) 2 JW 

(3.21) 

jZ . (kd) h 
F2 = sin (kd) (vi- v2) + ]Ztan 2 v2 - jw I (3.22) 

Now, we can build an equivalent circuit of a piezoelectric slab as shown in figure-

3.3. This model is widely known as Mason model, after Warren Mason, who performed 

a lot of pioneer work in crystal acoustics [41]. In Mason's model, force in acoustic 

domain is analogous to voltage in electrical domain and velocity in acoustic domain 

is equivalent to current in electrical domain. 

In figure-3.3, an electrical current flows in left-side, i.e. terminals a-b, of the 

transformer and an acoustic current (VI - v2 ) flows in the right side of the transformer. 

Hence, the transformer in the Mason's circuit represents the conversion of electrical 

energy to acoustic energy and vice-versa. We can assume the equations derived for 

forces at top and bottom surfaces of slab, F2 and FI respectively, for acoustic domain 

to be equivalent to Kirchhoff's voltage laws in electrical domain. Hence, we find that 

the voltage at terminal c-d is given by 
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vl vl v2 v2 
~ ~ ~ ~ 

1 {vl-v2) 

Fl /1 

~ 
--7 F2 

+ z. = -C0 a 

I 112 
«--- v·-

~ 
v 

-~~~· I I~ 

• 

Figure 3.3 : Mason model equivalent circuit of a finite thickness piezoelectric plate 

h vcd = -. I 
JW 

(3.23) 

Since the turn-ratio between right side to left side windings of the transformer is 

equal to hC0 , we have following voltage at terminal a-b 

I 
Vab = -.-­

JWCo 
(3.24) 

Writing Kirchhoff's voltage law at left side of the transformer circuit, we get 

I I2 I 
V =V-vab=-----

jwCo jwCo 
I1 . = --:-;::;-(Smcei = h + I2) 

JWvo 

=? V' = ji1 
wCo 

(3.25) 

As we can see in figure-3.3, V' is the voltage across impedance Ze and it is equal 

to .....Lc. , assuming that I 1 is the current flowing away from the node. We immediately 
w 0 
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notice that the impedance Ze is of a unique kind- it behaves like a negative capacitor. 

That is, the impedance is like a capacitor because its reactance varies inversely with 

frequency, but it is also like an inductor because the magnitude of its reactance is 

positive. This does not necessarily mean that there exists a passive element whose 

impedance has properties similar to Ze; it just helps in making the theoretical model 

complete. 

The Mason's model needs to be modified to include the effect of electrodes, typi­

cally made of different materials, which are patterned on top and bottom surfaces of 

piezoelectric slab. In practical acoustic applications, e.g. in the mixing application 

or in our DNA shearing application, water is used as coupling medium between the 

transducer and target (in our case, the target is nothing but the container holding 

the sample. 



Chapter 4 

Acoustic Field Due to Different Piezoelectric 
Transducers: Simulation Based Analysis 

26 

It was shown in chapter-3 that acoustic pressure-waves are generated from a piezo­

electric plate when a time varying voltage signal is applied across it. We made an 

assumption that the particle displacement inside piezoelectric material is u, after con­

sidering the superimposition of two types of waves travelling in opposite directions 

inside the piezoelectric material. Based on that assumption, we derived the model 

equations for the piezoelectric slab. Such waves are generated inside piezoelectric ma­

terials when an RF signal is applied across it. The stress waves associated with the 

particle displacement are not just contained inside the transducer, these waves also 

propagate in all directions in space around the transducer. One could characterize 

this transduction process, i.e. the amount of stress waves generated in response to 

different voltages applied across the transducer could be characterized. Hydrophone 

is an example of such device that is used to measure the intensity of vibrations inside 

liquid and is typically used to characterize different piezoelectric transducers. For 

acoustic simulations presented in this chapter, we have assumed that the particle 

displacement just at the surface of the slab is known, and it is denoted as uo. Also, 

we assume that the particle displacement at the surface of slab is a wave function 

having temporal behavior similar to the RF signal applied across the transducer. 

In this thesis, we have analyzed only planar geometries of the piezoelectric trans­

ducers, also called piston transducers, because they are easy to fabricate and the 
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fabrication process is compatible to MEMS fabrication process. In reality, a trans­

ducer could be manufactured of any shape/geometry depending on the application 

it is used for. For example parabolic-shaped transducers are sometimes used in ap­

plications requiring acoustic focusing. The pressure/stress waves generated from a 

transducer travel as spherical waves in the space over the slab. We want to compute 

the particle displacement at any point in space due to the stress-waves generated 

inside the piezoelectric slab. 

4.1 Plane/Flat Piston Transducers With Different Electrode 

Patterns 

The plate transducers, also called piston transducers, have planar geometry. For 

thickness excitation of these transducers, an RF signal is applied in thickness direc­

tion, i.e. between top and bottom electrode of the transducer. The slab is assumed 

to be larger by many magnitudes in other two dimensions than in thickness direction. 

One can use different shapes of electrodes to excite a piezoelectric slab. Figure- 4.1 

shows some of the shapes of electrodes that we will analyze in this thesis. Piezoelec­

tric slab is sandwiched between top and bottom electrodes to generate stress field in 

space. In figure-4.1 (a), layers of circular electrodes are deposited on both surfaces of 

a rectangular piezoelectric slab; the green region represents the piezoelectric slab and 

the blue region corresponds to the electrode. In the figure, we see only top electrode, 

although there is similar electrode patterned on the bottom side of the slab also. 

Usually, the size of piezoelectric slab is larger than the electrodes' area. Here, only 

the circular region of piezoelectric slab generates acoustic field which lie exactly be­

tween the circular electrodes. The electrodes are typically made of high-conductivity 
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(a) (b) (c) (d) (e) 

Figure 4.1 : Electrodes (in blue color) of different shapes patterned on piezoelectric 
square block (in green color): (a) circular plate electrode (b) full-ring electrode (c) 
270° FASA element with two rings (d) 180° FASA element with two rings (e) 90° 
FASA element with two rings. 

materials, e.g. Cu, Au, Ag, Pt etc. The thickness of electrode layer is generally a 

few micrometers ( 1-50 f.-L m), which is far lesser than the thickness of piezoelectric 

slab (0.5-2 mm) for operating frequency between 1MHz and 4MHz. The resonant 

frequency of piezoelectric slab changes with the thickness of slab; hence, thickness of 

the slab literally decides the operating frequency. Also, for thickness mode excitation 

of piezoelectric slab, the length and width of piezoelectric slab are significantly larger 

than its thickness. 

It is important to note that stress-waves or acoustic-waves are generated from only 

those regions of piezoelectric plate/slab which lie precisely between the two electrodes. 

The regions of piezoelectric slab which are not sandwiched by any electrode, and 

hence not excited by any signal, do not generate any acoustic wave. The cutoff 

between active and inactive zone is very sharp for most of the modern piezoelectric 

materials. Figure-4.1(b) shows a rectangular piezoelectric slab (green slab) with top 

electrode having two full rings (blue-rings). The bottom surface of piezoelectric slab 

is also patterned with two rings of similar dimensions so that the top and bottom 

electrodes lie exactly over one-another. It is worth emphasizing again that in figure-

4.1 (b) complete rectangular green slab does not generate stress waves; only, the region 
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which lies between top and bottom electrodes generate stress waves. 

Figure-4.1 (c), (d) and (e) show Fresnel Annular Sector Actuator of 270°, 180° and 

90° sector angles respectively. The waves generated from different points on electrode 

reach at a point in space with different path lengths; due to path-differences between 

different acoustic waves, interference pattern will be formed in space. The resultant 

acoustic field is computed by superimposing the field generated by different points on 

electrode. 

4.2 Circular Plate Transducer 

In this section, we consider a piezoelectric slab sandwiched between two electrodes 

of circular shape as shown in figure-4.2. In this figure, blue colored plates at the 

top and bottom surface represent two electrodes, and green slab in between these 

electrodes is the piezoelectric plate itself. When an RF signal is applied between two 

electrodes with RF-frequency corresponding to the thickness resonance of the piezo-

electric plate, stress waves are generated inside and outside of the transducer plate. 

The fundamental frequency of vibration of these stress waves is same as the frequency 

of RF -excitation. Since complete electrode-area is excited by same voltage, we can as-

sume that the particle displacement right above (i.e. z = 0+) the transducer surface 

is same at every point at a particular instant of time. Let the particle displacement 

at the transducer surface be u0 • Since the shapee of electrodes are circularly symmet-

ric, we will write all equations and derivations in cylindrical coordinate system. The 

acoustic potential per unit area at distance R from a point source of spherical wave 

is given by [43]: 

uo e-<a+jk)R 

<P(r,'lj;,z)=-21!" R (4.1) 
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Figure 4.2 : Computation of acoustic field at a point P due to circular piezoelectric 
slab. 

To compute the acoustic potential due to whole circular electrode-area of radius 

a, we first consider a small elemental area at a radial distance r' and angular distance 

'!j; ' on the top circular-electrode [44, 45]. We, then use integration to find the acoustic 

potential due to complete electrode area. Let the area of a small element is dA = 

r' dr' d'!j; '; this differential area element is located at coordinate ( r' , '!j;' , 0) in cylindrical 

system. The z = 0 plane represents the top electrode on the slab. The acoustic 

potential (<I?) due to whole circular electrode at point P located at (r , '!j;, z) is given 

by 

Uo 127T la e-(o+jk)R 
<J? (r, 't/J , z) = -- r.t d'!j; ' dr' 

27r '1/J '=O r'=O R 
(4.2) 

Where, a is the acoustic attenuation constant of the medium, k is the wave vector 

( = 21r /).) and R is the distance between point P and the elemental area dA. It can 
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be shown that R = J z2 + r2 + r'2- 2rr'cos ('1/J- '1/J'). 

Once the acoustic potential is known at point P, the relative particle displacement 

(in radial, vertical, and circumferential directions) can be calculated by differentiating 

the acoustic potential at that point. That is 

u = \7<1> (r, '1/J, z) = ( :/ + r;'lj; ~ + :z z) <l> (r, 'lj;, z) (4.3) 

Hence, relative particle displacement in radial direction ( Ur) can be written as 

a a ( U 1211" 1a e-(a+jk)R ) 
Ur =-a <l> (r, 'lj;, z) I..P=const,z=const =-a __ 2o R r'd'l/J'dr' 

T r 7r ,P'=O r'=O 

- Uo 1211" 1a e-(a+jk)R 
::::? Ur-- {1 +(a+ jk) R} {r- r'cos ('1/J- ¢')} r'd'l/J'dr' 

27r ..P'=O r'=O R3 

(4.4) 

Similarly, the circumferential component of relative particle displacement (u..p) is 

given by 

a a ( U 1211" 1a e-(a+jk)R ) 
U..p = a·'· <l> (r, 'lj;, z) lr=const,z=const = a·'· --2° R r'd'lj;'dr' 

r '+' r '+' 7r ..P'=O r'=O 

1
211" 1a -(a+jk)R 

=?u..p= uo e R3 {1+(a+jk)R}r'2sin('lj;-'l/J')d'lj;'dr' 
21r ..P'=O r'=O 

(4.5) 

And, the z-component of particle displacement (uz) can be computed as 

a . a ( U 1211" 1a e-(a+jk)R ) 
Uz =-a <l> (r, '1/J, z) lr=const,,P=const =-a --2° R r'd'l/J'dr' 

Z Z 7r ..P'=O r'=O 

::::? Uz = ~ {1 +(a+ jk) R} zr'd'lj;'dr' 
U 1211" 1a e-(a+jk)R 

27r ..P'=O r'=O R3 
(4.6) 

We can easily compute the particle displacements in Cartesian coordinate system, 

or for that matter in any coordinate system, once we have their values in cylindrical 
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coordinate system, equations (4.4), (4.5), and (4.6). The simulated particle displace-

ments due to a circular electrode of 4mm radius are shown in figure-4.3. The vertical 

component is given by same equation in both cylindrical and Cartesian coordinate 

systems. Only the planar components (ux and uy) needs to be computed again. It 

is sometimes required to compute nx and 'Uy to plot the quiver plot of particle dis­

placement in a plane. The particle displacement in x and y directions are given by 

following equations. 

(4.7) 

(4.8) 

In equations (4.4), (4.5) and (4.6) for Un u.p and Uz, we have assumed that the 

particle displacement just above the surface of transducer at a particular time instant 

is u 0 • Typically, u 0 varies with time because piezoelectric transducer is excited by a 

time varying RF -signal. We denote U as the particle displacement at any time instant. 

After computing the particle displacement at point P as a function of time, we can 

easily compute the particle velocities by differentiating it with respect to time. If the 

particle displacement U is a simple harmonic function of time, i.e., U = ucos (wt) , 

we can find the particle velocity as follows: 

au . ( ) v = at = -uws~n wt (4.9) 

We can obtain x, y and z components (orr, 'lj;, and z components in cylindrical 

coordinate system) of particle velocity at point P, or for that matter at every point 

in space. In fluid mixing applications, the sample to be mixed is placed over the 

transducer. 
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abs(Uz), f = 3.85 MHz, @ a = 45./225. 

0.5 
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(b) 

abs(U41), f = 3.85 MHz, @ a = 45./225. 

2 
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(d) 

Figure 4.3 : (a) Circular-plate electrode of 4mm radius; (b) vertical-component of 
particle displacement ( Uz); (c) radial-component of particle displacement ( Ur) ; (d) 
circumferential-component of particle displacement ( u'!f; ) . 

There are two distinct regions of interest, the near-field and far-field regions. 

The near-field region is also called Fresnel zone and the far-field region is sometimes 

called Fraunhofer zone. The main difference between these two regions is that the 

diameter of the acoustic beam emitted from the transducer remains uniform in Fresnel 

zone and the beam spreads in diameter in the Fraunhofer zone . There is not an 

abrupt change in the field pattern at the boundary of near-field and far-field though. 

Also, within Fresnel zone, there are rapid variations of acoustic field in the beam in 

both vertical/ axial and radial directions , while in Fraunhofer zone, the stress fields 

remain uniform over a large diameter. It is worth mentioning that an ultrasonic 
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Figure 4.4 : Nat ural focal length versus diameter of the transducer at 4MHz in water. 

transducer with circular electrode has a fixed focal length, and the natural focus is at 

a distance 4;:::~d from the transducer, where f is the operating frequency, D is the 

transducer diameter and speed is the speed of sound in the medium. The dependence 

of transducer diameter on the focal length of a circular transducer is plotted in figure-

4.4. 

The vertical component of acoustic field is maximum at the boundary of these two 

regions; this could also be observed from the simulation results plotted in figure 4.3 

(b). It requires the sample or object under investigation to be placed at a fixed 

distance from the transducer [43] . The focal length in this case is dependent only 

on the diameter of the electrode (the electrodes are kept circular shape due to their 

circularly symmetric acoustic field). 
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4.3 Plane Transducer With Full-ring Electrode Pattern 

In order to better control the focal length of an ultrasonic transducer while allowing 

the transducer to be of any size, the electrodes on the transducer could be designed 

in the shape of rings. 

Top View Cross-section a I 
View 

rS 

I r4 

I r2 r) 

focus 

z=O 

Fresnel ring-radii 

Figure 4.5 : Top view, cross-sectional view and ring-radii of a three-ring Fresnel lens 

4.3.1 Acoustic Fresnel Lens 

The electrodes on a piezoelectric plate can be patterned in the shape of circular 

rings of certain widths in order to focus acoustic field at a point in space through 

constructive interference of waves [46]. To achieve a constructive interference the ring 

widths and ring radii are chosen such that the path difference between the acoustic 

waves reaching to focal point from outer side of one ring and inner side of the next 

larger ring is equal to an integer multiple of A./2. Such acoustic source is called as 

a Fresnel half-wave band (FHWB) source. There are two types of FHWB sources­

positive wave FHWB and negative-source FHWB [46, 47, 48] . The positive-wave 

FHWB are those lens that have the innermost ring (first-ring) with non-zero inner 
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and outer radii; this means that the waves generated from first ring have path-length 

of at least A./2 higher than the focal-length itself. On the other hand the negative­

wave FHWB sources have zero inner radii for the first ring. If the focal length of the 

transducer is F, the path-length of waves generated from first ring is between F and 

F + A./2. A negative-source FHWB with three rings is shown in figure-4.5. Let F be 

the focal length, r n and r n+l be the inner and outer radii of a ring, and dR be the 

path-difference between adjacent rings. Mathematically, we can write it as following. 

dR = V p2 + r2 - J p2 + r2 = ~ 
n+l n 2 

Where, n = 0, 1, 2, 3, ... 

r 0 = 0 (4.10) 

In other words, one could write the path difference between waves generated from 

Nth ring and from the center of first ring ~s N time half-wavelength. If the indexing 

is done such that r n represents the inner or outer radius of a ring, ( l ~ J + 1) th ring, 

we could write: 

>.. 
Rn - F = J p2 + r; - F = n 2 

~ r. = V (F+n~)'- F 2 

(4.11) 

4.3.2 Acoustic Field due to 360° Fresnel Lens 

In a typical application, the transducer size to be used is first decided based on the 

power-level requirement or the space-constraints. For example, in our DNA shearing 
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product, we want to design the transducer such that it could shear 96 DNA samples 

at a time placed in a microplate area. The pitch of a standard microplate is 9mm. 

Therefore, we had to design the transducer within 9mm by 9mm; this also includes the 

area needed for electrical pads or interconnects required for exciting the transducer. 

Once the size of the transducer is fixed, the focal length and operating-frequency 

decide the number of rings in the transducer. The focal length of the transducer is 

usually decided by the application in which the transducer is used. As mentioned 

earlier, the operating frequency is decided by the thickness of the transducer. In our 

application, the average operating frequency of different transducers is 3.85MHz. We 

designed the transducers for 13mm focal length because at 3.85MHz, we wanted to fit 

atleast two electrode rings in the 8mm by 8mm area; remaining lmm space is utilized 

for electrical pads and routing of RF signal. At focal length more than 13mm, we can 

not fit two rings in 8mm by 8mm, so, we chose the 13mm focal length for our design 

and simulations. 

Once the focal length, operating frequency and the maximum size of transducer 

is decided, we can easily find the number of rings that can fit in the area. For two 

ring negative source Fresnel transducer design, there are three different radii needed 

to design the rings: r 1 , the radii of first ring; r 2 , the inner radii of second ring; and 

r 3 , the outer radii of second ring. The inner radius (r0 ) of the first ring is zero. With 

these parameters, the acoustic field due to Fresnel ring transducer can be computed 

by adding the field from each ring. That is, for a two ring 360° transducer, the radial 

(ur), circumferential (u..p), and vertical component (uz) of the particle displacement 

is computed as following: 
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Ur=_uo r'Tr I: 1r
2
i-l e-<aR+:k)R {1+(a+jk)R}{r-r'cos('lj;-'lj;')}r'dr']d'lj;' 

27f }'1/J'=O i=l [ r'=r2(i-1) 

(4.12) 

U ·'· __ Uo 121r ~ [ 1r2;-1 e-(aR+
3
jk)R 

"' ~ -=-::---- {1 +(a+ jk) R} r'2sin ('lj;- 'lj;') dr']d'lj;' 
27f 1/J'=O i=l r'=r2(i-1) 

(4.13) 

Uz = Uo 121r I: 1r2i-1 e-<~:k)R {1 +(a+ jk) R} zr'dr'] d'lj;' 
27f 1/J'=O i=l [ r'=r2(i-1) 

(4.14) 

Where, i is the ring number and r 0 , r~, r 2 ,... are inner/outer radii of different 

rings and n denotes the number of rings in the transducer. 

The acoustic field due to two-ring Fresnel lens is shown in figure-4.6. By com-

paring the plots of figure-4.3 and 4.6, we confirm that the ring-shaped electrode has 

higher radial and vertical component of particle displacement than that due to the 

circular transducer even though the total active area is higher in a circular transducer. 

The circumferential component due to both circular and ring-shaped transducer is 

negligible. The acoustic field at a fixed distance from complete annular electrodes is 

symmetrical in the horizontal plane and the field is intensified in vertical direction. 

Hence the acoustic source in the shape of complete annular electrodes (360°) is use­

ful in the liquid ejector applications [48]. Next, we present some transducer designs 

which have higher rotational component of acoustic particle displacement as well as 

large radial and vertical component of particle displacement per unit electrode area. 
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Figure 4.6 : (a) Full ring (360°) electrode with 13mm focal length; (b) vertical­
component of particle displacement ( Uz); (c) radial-component of particle displace­
ment (ur); (d) circumferential-component of particle displacement (u'I/J )· 

4.4 Piezoelectric Transducer with Sectored Annular Elec-

trodes 

Since both circular and 360° transducers have circular symmetry, the rotational com-

ponent of acoustic field is zero. We design non-360° annular transducers to increase 

the circumferential (responsible for vortexing) component of particle displacement in 

fluid due to acoustic potential. We present simulation results for three sector-angles 

other than 360° angle: goo, 180°, and 270°; these transducers are shown in figure-4.1 

(c)-(e). The goo transducer was first proposed in [29) and it was shown that such a 

transducer generates rotational field causing the liquid to vortex in opposite direc-
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tions. We computed the particle displacements ( Ur, u'I/J and Uz) due to 90°, 180°, and 

270° transducers. In all cases, the transducers are designed for focal length of 13mm 

at 3.85MHz and the maximum size of the transducer is limited to 8mm by 8mm; with 

these design parameters, the transducer can have maximum two-rings that could fit 

it the constrained area. All sectored transducers are assumed to be placed around the 

origin (0,0), as shown in figure-4.1. Next we present the acoustic field due to these 

sectored transducers. 

4.4.1 270° Sectored Annular Transducer 

A 270° sectored transducer and its acoustic field in a plane at 13mm away from 

the transducer is shown in figure-4.7. For a two ring transducer, the radial (ur), 

circumferential (u'lf;), and vertical component (uz) of the particle displacement due to 

270° transducer are computed as following: 

·u - uo 137r/2I: 1r2i-1 e-C;:k)R {1+(a+jk)R}{r-r'cos('lj;-1/J')}r'dr']d't// 
r - 27r 1/.>'=0 i=l [ r'=r2(i-1) 

(4.15) 

U 1311"/2 n=2 1T2i-1 e-(a+jk)R 
u'I/J = 2; 1/J'=O ~ [ r'=r2(i-l) R3 {1 +(a+ jk) R} r'2sin (',P -1/J') dr'] d'lj;' 

(4.16) 

Uz = uo 1311"/2 I: 1r2i-1 _e-_c __ ;...,.:-k)_R {1 +(a+ jk) R} zr'dr'] d'lj;' 
27r 1/J'=O i=l [ r'=r2(i-1) 

(4.17) 

Where, i is the ring number and Tt, r2 , ... are inner/outer radii of different rings 

and n denotes the number of rings in the transducer. 
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Figure 4.7 : (a) 270° FASA ring electrode with 13mm focal length; (b) vertical­
component of particle displacement ( Uz); (c) radial-component of particle displace­
ment ( 1Jr); (d) circumferential-component of particle displacement ( u'!f; ). 

From figure-4. 7 (b) , we notice that the vertical component of particle displacement 

has its maxima near origin, as in 360° rings case, but the maximum intensity is more 

spread in 270° case. We would appreciate this later once we discuss the simulation 

results for other sector-angles; the maximum intensity point of Uz for 270° transducers 

are mostly located in the region right above the transducers. So, even though the 

maxima intensity points look circularly located around the origin in this case, the 

maxima points are mostly in the first three quadrants for the transducer having 

active area in first three quadrants. 

The radial component of particle displacements ( ur) at 13 mm height from a 270° 

sectored annular transducers is shown in figure-4.7 (c). Typically, the Ur of a sectored 

transducer has its maxima in the direction diagonally opposite to the orientation of 

the transducer. For example, a 270° transducer covering I , II , and III quadrant has 

the orientation of 135° , so the maximum intensity of Ur is in the 315° ( = 135+ 185) 

direction, i.e. in IV quadrant. The Ur- is spread mainly in three quadrants , I , III and 

IV, and not in II quadrants. The understanding of acoustic patterns due to different 

sector angles is necessary to choose the right sector-angle for the transducer for an 
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application. The importance of choosing right-sector angle for the transducer based 

on its acoustic field will become more clear when we would discuss the phase-array 

transducer design (section 4.4.4), wherein more than one sector-transducers could be 

made active or inactive at a particular instant of time. 

It is observed from the simulation results that the circumferential component of 

particle displacement ( u'I/J) due to sectored transducers has a unique characteristic. 

The maximum rotational component of a sectored transducer is always in the plane 

perpendicular to the orientation of the rings of the transducer. This could be seen 

from the simulation result plotted in figure-4.7 (d). The u'I/J due to 270° transducers 

has peaks in the ( 45°, 225°) direction because the transducer is oriented towards 

135°. The ( 45°, 225°) direction could also be thought of as a line passing through 

origin and is at 45° from x-axis. More importantly, 270° sectored transducer has 

higher rotational acoustic field than a full ring transducer, which has zero rotational 

component (compare figure-4.7 (d) and figure-4.6 (d)). So, 270° transducer is better 

than a 360° transducer for mixing or fluid processing applications. 

4.4.2 180° Sectored Annular Transducer 

In this section, we discuss the acoustic field pattern due to a 180° sectored annu­

lar piezoelectric transducer. The particle displacements at 13mm height from the 

transducer due to 180° transducer is shown in the figure-4.8. The radial (ur), circum­

ferential (u'I/J), and vertical component (uz) of the particle displacement due to 180° 

transducer is computed using equations 4.15 -4.17, except that the integral limits for 

1/J' is 0 to 1r instead of 0 to 37r /2. 

The vertical displacement component has only one prominent maxima at the origin 

but the acoustic field is spread over two quadrants where the transducer is placed; 
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Figure 4.8 : (a) 180° FASA ring electrode with 13mm focal length; (b) vertical­
component of particle displacement ( Uz); (c) radial-component of particle displace­
ment ( Ur); (d) circumferential-component of particle displacement ( u'!f; ) . 

this could be seen in figure-4 . 8 (b) . The Ur due to 180° has its maxima located in 

the two quadrants where the transducer is not having any active source of ultrasonic 

waves (figure-4.8 (c)). Such a localized acoustic field is useful in focused acoustic 

applications. The rotational component due to 180° transducers has peaks in the 

(0°, 180°) directions. Typically, the maxima lobes of rotational component are close 

to the directions of the start-angle and end-angle of the transducer. This could be 

verified from this case also, as could be seen in figure-4.8 (d). 

4.4.3 goo Segmented FASA Element: the Basic Unit of DNA Shearing 

System 

As described above, an acoustic lens built using 360° Fresnel rings focuses the acous-

tic waves at a focal point and the acoustic field pattern has radial and azimuthal 

symmetry in the x-y plane. The acoustic field varies in the z-direction and its inten-

sity decreases as we move away from the lens. However, when the complete annular 

electrodes are broken into annular electrodes of incomplete rings (e.g. goo or quarter 

rings), the acoustic field becomes unsymmetrical in the xy-plane, and produces spe-
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ciallateral (or in-plane) force in the space. These lateral pressure variations cause 

the liquid placed over transducer to spin/mix and the vertical component causes the 

liquid to move in chaotic motion. Such an in-plane lateral acoustic field was first 

published in [2g]. It is important to note that the vertical component of acoustic 

field is still accentuated due to constructive interference between the waves generated 

from different rings. In [2g], a go-degree segment of annular source, called Fresnel 

Annular Sector Actuator (FASA), was shown to generate strong lateral forces in the 

liquid placed over the transducer. 

We designed a goo FASA element with focal plane at a height of 13mm. The first­

resonant thickness mode frequency of transducer is taken as 3.85MHz. The sound 

velocity inside water is assumed to be 1480 mjs. The maximum tile size is taken 

as 4mm by 4mm. We computed the radii of Fresnel rings which can fit in this size; 

two rings could fit in 8mm by 8mm area with the above design parameters. The 

radial ( Ur), circumferential ( u.p), and vertical ( Uz) components of particle velocity are 

computed using equations 4.15, 4.16, and 4.17 respectively, with integral limits for 

'lj/ from 0 to 1r /2 instead of 0 to 37r /2. The plots for Ur. Ucf> and Uz are shown in 

figure-4.g. 

The simulated vertical particle displacement due to goo transducer is shown in 

figure-4.g (b); we notice that Uz has two peaks, first peak near the origin and sec­

ond peak at the edge of first ring. Also, we observe that the first peak has circular 

symmetry while the second maxima resembles the shape of the goo ring. Having 

distributed maxima of acoustic field or particle displacement helps in homogenous 

mixing of the fluid sample placed over the transducer. The radial component of par­

ticle displacements due to goo sectored annular transducer is shown in figure-4.g (c). 

As expected, the peak of Ur for goo transducer, placed in the first quadrant, lies in 
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Figure 4.g : (a) goo FASA ring electrode with 13mm focal length; (b) vertical­
component of particle displacement ( Uz); (c) radial-component of particle displace­
ment ( Ur); (d) circumferential-component of particle displacement ( u l/J ). 

the third quadrant because there is no active transducer element in the third quad-

rant to equalize the acoustic field generated towards third quadrant. The maximum 

rotational component of a sectored transducer is in the plane perpendicular to the 

orientation of the rings of the transducer. For example, the goo transducer placed in 

first quadrant has an orientation of 45°, its ul/J has maximum intensity in 135° and 

315° direction, as shown in figure-4.g (d). 

Finally, to compare transducers with different sector-angles, we plot the maximum 

acoustic particle displacements (uz, Ur, and uV;) for these transducer patterns in figure-

4.10. Figure-4.10 (a)-( c) plot the value of Uz, Ur, and ul/J normalized to electrode area. 

It is observed that the 90° transducer has higher normalized field than 180°, 270°, 

and 360° transducers. We also observe that the transducer with low sector-angle has 

higher normalized acoustic field. Figure-4.10 ( d)-(f) show the plots of absolute value 

of Uz, Un ul/J for goo, 180° , 270° sectored and 360° transducers. As expected, the 

absolute values of 'Uz and 'Ur increase with increase in sector angle because of increase 

in the active area of transducer which generates the ultrasonic waves. However the 

rotational component ( u.¢ ) increases with increase in sector angle and it is maximum 
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Figure 4.10 : Particle displacement for different sector angles (a)- (c) U z, U r, u 'I/J per 
unit electrode area; (d)- (f) Absolute U z, U n u 'I/J 

for 180° transducer. It again decreases as we increase the sector angle from 180° and 

reaches to zero value for 360° ring transducer due to complete symmetry_ We select 

goo sector angle because we can build a 180° , 270°, 360° transducer by arranging 

more than one goo transducers in an array. Also , we wanted to keep the number 

of transducers in an array to a low number to keep the requirement of number of 

separate RF signal low for the phased-excitation. 

4 .4 .4 Phased-Array Fresnel Annular Sector Actuators (FASAs) 

When two or more FASA elements are placed adjacent to each other, we call such 

an arrangement as array of FASA elements. Each FASA element generates its own 

acoustic field in the space over it. Typically, all the FASA clements used to make 
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an array are of same type. In other words, electrode pattern of all FASA elements is 

same and an array is formed by placing different FASA elements near one another on 

a piezoelectric slab. By arranging the FASA elements in different types of array, one 

can generate different type of acoustic field-patterns targeting different applications. 

For example, if we make an array by putting multiple goo- FASA elements in a straight 

line, we can transport the liquid in a horizontal line. It is shown in [47] that the liquid 

can be transported from one place to another at a controlled speed; a speed upto 123 

m/s is reported in that work. We can also use dissimilar FASA elements to make 

an array of FASA elements. For example, we may use one go 0 -FASA element , two 

60°-FASA elements and one 150°-FASA element to make a circular array of dissimilar 

FASA elements. Such an array will have a unique acoustic field pattern in the space 

which could be used in special applications. 

Figure 4.11 : Proposed piezoelectric transducer structure based on array of four goo 
Fresnel annular actuators. 

In the proposed microfiuid-processor or DNA shearing system, we use four goo_ 

FASA elements and arrange them in a circle to cover the entire bottom of the fluid 

container. Such a transducer pattern is shown in figure-4.11 , wherein, T1 , T2 , T3 and 
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T4 represent the four 90° transducers and the "shift" denotes the distance between 

any two adjacent transducers in the array. The value of "shift" is either chosen to be 

some multiple of wavelength or it is decided based on the maximum tile size allocated 

to the transducer area. Depending on the value of shift between two transducers the 

transducer has localized or distributed maximum acoustic field in space. 

Each FASA element in the array has a dedicated RF-circuit which provides us 

the freedom to excite each FASA element at different voltage, frequency, phase, duty 

cycle, and so on. We leverage this freedom and excite the FASA elements with 

four RF signals of same voltage, frequency, repetition-rate and duty-cycle but at 

different phase angles. By changing the phase difference between RF -signals applied 

to different FASA elements we are able to generate different acoustic field-patterns in 

the liquid. Different acoustic fields produce different particle velocities (i.e. different 

types of vortexes) in the liquid sample. As we notice from the simulation results in 

figure-4.12 (a)-(1), the particle displacement fields (uz, Ur, and u.p) get delocalized in 

space as we increase the value of "shift" from 0 to 5>... 

Four transducers are excited by four separate RF amplifiers in our fluid processing 

system. The RF signals for T1-T4 are given by equations (4.18): 

(4.18) 

Where, i={1, 2, 3, 4} denotes transducers T1, T2, T3 and T4 respectively, "\li, 

Di(t) and Pi are the peak voltage, duty cycle and phase of RF signal applied to ith 

transducer. Having independent RF excitation for each transducer helps in switching­

on and-off or applying a phased excitation that greatly improves the fluid processing 

or DNA shearing process based on sonication. 
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Figure 4.12 Particle displacement due to an array of four goo sectored annular 
transducers: (a)-(d) U z : shift=O, A, 3A, 5A; {e)-{h) Ur: shift=O, A, 3A, 5A; {i)-(l) u1/J: 
shift=O, A, 3A, 5A. 
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Chapter 5 

Fabrication and Characterization of Piezoelectric 
FASA Element 

5.1 Photo-lithography Based Fabrication Process 

Most of the ultrasonic transducers are made of piezoelectric materials. Lead zirconate 

titanate (PZT) is the most common piezoelectric material which is used to build the 

transducers. PZT material is initially available in the powder form; a very high 

temperature and pressure is applied to make an amorphous solid out of PZT powder. 

The large solid block is cut into shape of plate by very high speed (high rpm) crystal 

cutters. We procured PZT wafers from different vendors. all of whom have more or 

less same fabrication process. The electrodes of particular shape are patterned on 

both surfaces (top and bottom surfaces) of PZT wafer using standard semiconductor 

photo-lithography process. Typically, PZT wafers are available with nickel evaporated 

on its surfaces; 75% nitric acid (H N03 ) is used to remove the nickel from top and 

bottom surfaces of PZT [30]. 

A positive SU-8 photoresist is coated on both surfaces of PZT. The SU-8 layers 

have front-to-back aligned patterns for the complete overlapping of top and bottom 

electrodes of PZT. The SU-8 mask layers is exposed to UV light for a specific time and 

hence, only the light exposed region of photoresist becomes soluble to photoresist­

developer. The extra metal, corresponding to light-exposed region of mask, is removed 

leaving behind only the overlapping electrodes of desired pattern on both sides of PZT. 
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All external contacts to the FASA transducer are then to be made from the bottom 

side of the transducer. Each FASA effector has a dedicated RF-driving circuit. 

5.2 Characterization 

Each FASA element is characterized for its resistance and reactance values at dif­

ferent frequencies. Impedance values of FASA elements at different frequencies are 

obtained from smith-charts plotted using Agilent Network Analyzer (E5061B) [49]. 

Based on the impedance-plots for every FASA element we find precise series and 

parallel resonance frequencies for the element. Both, at series and parallel resonance 

frequencies, the impedance of piezoelectric FASA element is purely resistive. How­

ever, the impedance is minimum at series resonance and hence, the charging and 

discharging current flowing through FASA element is maximum at series-resonance 

frequency for a fixed input-voltage. Therefore, we operate at series resonance fre­

quency. Also, we know from Mason's model that the particle velocity, due to stress 

waves generated from piezoelectric plate in response to RF signal, is directly related 

to the electrical current flowing through the piezoelectric plate. High particle velocity 

generates powerful vortexes and shear forces, so, we operate the FASA element at its 

series resonance frequency. Further, we plot RF scattering-plots, in particular S11 

plots, for FASA elements using network analyzer; based on those plots we find the 

frequency at which the power-reflection at input port of FASA element is minimum. 

S11 is the ratio of the reflected to the incident signal; it provides a mesaure of the 

complex electrical input impedance of the transducer. We use this information to 

design/procure a suitable power amplifier for feeding the power to FASA element. 

Typical S11 and smith-chart plots for FASA element with water loading are shown in 

figure-5 .1. 
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(a) (b) 

Figure 5.1 : S11 plots for a sample piezoelectric FASA element plotted using Agilent 
E5061B network-analyzer. (a) log magnitude plot; (b) Smith impedance plot. 

The S11 plot on smith chart, with impedance scale, for a sample FASA element 

is shown in figure-5.l(b). The two markers shown in the smith-chart denote the 

frequencies at which the impedance of FASA element, as seen from input port, is pure 

resistive. The first marker (placed at 4.0677MHz) corresponds to series resonance of 

the transducer at which the impedance of the transducer is minimum. While the 

second marker (placed at 4.168MHz) represents the parallel-resonance frequency of 

transducer. As explained above, this transducer should be operated at 4.07 MHz for 

optimum performance. 

We want to operate at the frequency at which there occurs minimum reflection 

at the input port. The operation at that frequency will make sure that a large 

fraction of RF power generated by class-E amplifier is absorbed by the transducer 

element. It is important to note that this frequency may not be same as the series or 

parallel resonance frequencies of the transducer element, as discussed above because 

this includes loading from coupling fluid and the sample placed over the transducer. 
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Figure 5.2 : 8 11 plot of a fresnel annular sector actuator patterned on a transducer 
obtained from Piezo Systems, Inc. 

5.3 Equivalent Electrical-Circuit of Piezoelectric Transducer 

Based on its Impedance Characterization 

Piezoelectric transducer is excited by RF signal of appropriate frequency to generate 

ultrasonic waves. We use class-E topology to generate RF-signals [50 , 51 , 52]· for RF 

amplifier , piezoelectric transducer elements acts as the electrical load. This load is 

not purely resistive; the transducer element offers different resistance, inductance and 

capacitance at different frequencies. Also, the load varies depending on the number of 

transducer elements we connect across the output of RF amplifier. All these varying 

parameters make the analysis difficult , because we have to consider variable load 

during the analysis of RF amplifier in the desired frequency range. It is important 
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Figure 5.3 : Resistance (R), reactance (X) and impedance (Z) plots of a Fresnel 
annular sector actuator designed on a transducer obtained from Piezo Systems, Inc. 

to note here that one can not drive all four FASA elements of a shearing module 

by single RF-amplifier, provided one uses phasing circuit between the RF amplifier 

and FASA elements. It is difficult to cont rol/ add phasing between high-voltage RF 

signals , so, the phasing is achieved using digital circuit. Hence, four RF-amplifiers 

are used to generate four-different RF signals to achieve any possible phasing between 

them. 

The MEMS based transducer element designed on a piezoelectric plate has differ-

ent impedance at different frequencies. Both real and imaginary parts of impedance 

are functions of frequency. At low frequencies t he impedance of the piezoelement is 

capacitive and hence, it is typically modeled by a series RC circuit . As we increase 

the frequency of the excitation to the piezoelement, there occurs a resonance point 
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Figure 5.4 : Circuit models for FASA element at different operating frequencies. (a) 
I < Is; (b) Is < I < lp; (C) I > lp· 

where the impedance of the piezoelectric element reaches to its minimum value. The 

impedance at this frequency is purely resistive. This frequency is typically repre-

sented by Is and is called as series resonance frequency. As we increase the frequency 

further , impedance of the piezoelectric element starts becoming somewhat inductive 

and hence it is modeled by a resistance connected in series/parallel to a series/parallel 

connection of capacitor and inductor. By further increasing the frequency, there ar-

rives a point where impedance of the transducer with piezoelectric plate becomes 

maximum and purely resistive. This frequency is called as parallel resonance fre-

quency, lp· The electrical models for piezoelectric transducers operating at different 

frequencies are shown in figure 5.4 (a)-(c) [53]. 

Ideally, we would like to operate at one of these two resonance frequencies to 

minimize the reactive power and maximize the actual power being delivered to trans-

ducer element. At both these resonance frequencies, piezoelectric transducer element 

behaves as a purely resistive load and that also allows us to leverage the circuit anal-

ysis presented by Sokal [52] for the class-E amplifier circuit . This way, we were able 

to find the values of different inductors (L1 and L2) and capacitors (C1 and C2) by 

simulating the circuit in SPICE. 
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Chapter 6 

Complete Architecture of Proposed DNA Shearing 
System 

The proposed DNA shearing system consists of mainly three physical domains. These 

domains are- Electrical Domain, Piezoelectric Domain, Acoustic-fluid Interaction Do-

main. The block diagram of proposed DNA shearing system is shown in figure-6.1. 

Starting DNA 
Samples 

I 
---------------------1 
I I 

I 
1 EXPERIMENTAL SETUP/SHEARING SYSTEM 
L--------------------

I 
I 

~ 

DNA Analysis 

~ Bioanalyzer-

~ Bectrophoresis 

Figure 6.1 : Block diagram of the proposed DNA shearing system 

6. 1 Electrical Domain 

The electrical domain constitutes of different digital , analog and RF components used 

to build electrical circuitry of the system. The clocking circuit and control-signal 

generation circuitry are the main digital components and they are implemented in 

Cyclone III family of FPGA from Altera. Since one shearing module is made of four 
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90° FASA elements and each FASA element is excited by separate RF signal, we need 

four clock signals of appropriate frequency and phase to drive four elements. The 

clock signals are not just continuous square pulses of a particular frequency, instead, 

they are generated by the logical AND operation of two different frequency signals­

fast clock and slower clock. It is pictorially shown in figure 

Fast RF Clock 

Slow Clock 

Combined 
Clock 

Figure 6.2 : Combined clock: logical AND of fast RF clock (MHz) and slow clock at 
repetition rate 

The frequency of the faster clock signal is the same as the first thickness-mode 

resonant frequency of piezoelectric transducer. For the transducer used in our system, 

this frequency is around 4MHz. The frequency of slower clock signal is commonly 

referred as Repetition rate or simply reprate and its value is determined empirically 

on the basis of desired DNA fragment size. The duty cycle of slower clock decides 

the number of fast (RF) pulses in a burst, with burst rate same as the frequency 

of slower clock. The frequency of fast clock decides the frequency of square pulses 

within a burst. 

It is important to choose proper values for the frequency and duty cycle of the 

slower clock because these determine the time required to shear the DNA and the size 

distribution of the sheared DNA. If we decrease the frequency of reprate, the number 

of continuous RF pulses in a burst will increase which could generate strong enough 

acoustic pressure to cause liquid ejection or splashing of liquid inside the tube. On 

the other hand decreasing the duty cycle and keeping the reprate low will not be able 

to generate enough acoustic waves and therefore does not provide shearing. This is 
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Table 6.1: Effect of Duty Cycle and Repetition Rate (slow clock) on the DNA Sample 

Low Repetition Rate High Repetition Rate 

(0- 500Hz) (>500Hz) 

Low Duty Cycle Not enough Acoustic Pressure Ejection Dominated Nebulization 

High Duty Cycle Ejection Without Nebulization Ejection and Heating 

also summarized in the table 6.1. 

We generate four such combined clock signals, also called RF clocks, for four FASA 

elements. The RF clocks are generated using Aletra FPGA which has TTL compatible 

outputs with 3.3V as high and OV as logic low. Each RF clock is used as an input to 

an RF amplifier which generates a high-voltage RF signals with frequency and phase 

profiles same as the applied RF clock. This means that we require four separate RF 

circuits corresponding to four RF clock-signals. We chose to implement class-E RF 

amplifiers to generate high-voltage RF signals due to their high power-efficiency [52]. 

Class E Amplifier: The circuit diagram of class-E amplifier is shown in figure-

6.3. Class-E amplifier circuit has an active device or switch, e.g. power MOSFET, to 

control the operation of series tank circuit containing £ 2 and C2 lumped elements [52]. 

The inductor £ 1 has a large value to prevent any harmonics being added to the supply 

voltage Vee or Vvv· The value of supply voltage is allowed to vary between 5V to 

140V in the proposed DNA shearing system. When input to the active device is high, 

the switch is closed and charge stored on capacitor C1 will discharge immediately into 

ground through the switch. To avoid power dissipation in the switch, it should be 
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Figure 6.3 : Circuit diagram of class-E amplifier used to generate RF-signal for ex­
citing the transducer [52]. 

made sure that the voltage at drain/ collector of transistor is reduced to zero before 

switching ON the active device. Reducing the voltage at drain/collector to zero before 

the active device becomes ON means that we are discharging the charge stored on C1 

towards the load side and not through the switch. This is required for increasing the 

overall efficiency of RF amplifier. 

On the other hand, when input to the active device (transistor) is low, the switch 

is open and the capacitor C1 is charged to supply voltage Vee through RF-choke 

L1. Values of different inductors and capacitors are decided in such a way that the 

circuit delivers maximum power to the load, R. The analysis presented in original 

Sokal's paper assumes that the load is pure resistance. Based on this assumption it 

was possible to find the opti1num values of different circuit elernents. 



60 

6.2 Piezoelectric Domain 

When the RF signal generated from class-E amplifier is applied across the two elec­

trodes of piezoelectric plate, stress waves are generated inside the transducer. This 

is called as reverse-piezoelectric effect and is explained in detail in section 3.2. For a 

thickness excited transducer, these stress waves propagate in both upward and down­

ward side. Depending on the acoustic impedance of the medium above transducer, 

a part of acoustic waves will be transmitted through the material-boundary in the 

path and others will be reflected back towards the transducer. More often than not, 

the waves after multiple reflections at different material-transitions become too weak 

to do any useful work and hence dump their energy in to the coupling fluid. The 

circulating coupling fluid extracts this energy and keeps the temperature of the bath 

or the DNA sample in the tube within the allowable limits. 

6.3 Acoustic-fluid Interaction Domain 

Acoustic field generated from the piezoelectric transducer (FASA) creates vortexes 

and shearing forces in the sample. The frequency of acoustic field is the same as RF 

frequency (in MHz). The liquid particle tries to move at the RF frequency; however, 

the viscous force dampens (like a resistance) the acoustic energy, converting some of 

the energy into heat. Due to this reason, a part of acoustic energy gets converted in 

to heat inside the sample and can increase temperature of the sample if precautionary 

steps are not taken. We use coupling fluid in our system to maintain the temperature 

of DNA sample with in allowable limit during shearing process. It is important to 

keep the temperature of sample within limit (typically 90°C), after which the l)NA 

gets denatured. It is also reported that if we let the temperature of DNA to go above 
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45 degree C, the DNA sample becomes AT-rich and the proportion of GC decreases. 

To avoid these adverse effects, we circulate the water to extract the heat dumped 

in to sample and an external chiller is used to keep the temperature of circulating 

water, and hence of DNA sample, at user specified value. In addition to its use as 

cooling fluid, water has another important purpose in our system, that is, it acts 

as coupling fluid. In order to efficiently transfer the stress waves generated inside 

PZT material to external medium, the relative acoustic impedance of the material 

which comes in direct contact with the transducer is critical. The typical acoustic 

impedance of commonly used PZT materials is between 30 and 40 MPa.s/m. The 

acoustic impedance of water is 1.5 MPa.s/m and that of air is 420 Pa.s/m. Since 

the difference between acoustic impedances of water and PZT is smaller than the 

difference between acoustic impedance of air and PZT, the transfer of acoustic waves 

happen more efficiently at PZT-water interface than at PZT-air boundary. Hence, 

water helps in efficient propagation of acoustic waves from transducer to the sample. 

The sample is placed in a plastic tube, which also reflects a part of acoustic waves 

from its bottom. To minimize these kind of losses, we should use a quarter wave 

matching layer at every material interface, viz. transducer-water interface and water­

tube interface. 

Figure-6.4 shows the DNA shearing process in action. This figure shows 96 trans­

ducer (FASA) modules designed on a large piezoelectric transducer. The center to 

center distance between adjacent transducers is such that each module aligns exactly 

with the 96-well standard microplate. For the experiment purpose, 100~-tL sample of 

Lambda-DNA was put in a matrix-tube from Thermo Scientific. The concentration 

of DNA was 20ng/ ~-tL. The tube was held at a height of 7mm from the transducer 

surface; the optimal height where the DNA shearing is maximum is found empiri-



62 

cally. The figure also shows the atomized DNA inside the tube; we termed it as cold 

smoke. The DNA sample leaves the meniscus in the form of smoke when sonication 

is applied to the sample and the smoke does not escape out from the tube, even if 

the tube is not covered from the top. Hence, this smoke is not same as conventional 

smoke which would have escaped from the tube. The smoke rises to a certain height 

in the tube and comes down back to the sample and converts in to liquid again. The 

smoke generation is a continuous process. In this whole process some of the smoke 

comes in contact with the side walls of tube and converts in to liquid droplet. The 

size of droplets stuck on walls increase over time due to continuous smoke coming in 

contact with walls. But some of the small droplets remain stuck on the walls which 

causes the loss of DNA sample, an undesirable thing in the DNA shearing process. 

Tube Holder 

Tube Cont3ining 
DNA Sample 

Atomi=:t DNA Due 
to Sonication 

Figure 6.4 : DNA shearing in action 
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Chapter 7 

Experimental Results 

We performed many shearing experiments on real DNA samples. Mainly, we per­

formed shearing experiments on three types of DNA samples- Lambda DNA, mouse 

genomic DNA and human DNA. Since human DNA and mouse genomic DNA are 

relatively more expensive than the Lambda DNA from E. Coli, we used Lambda DNA 

for our most of the experiments. As discussed later in this chapter, we observed that 

the shearing results are independent of the source of the DNA. So, all the results 

obtained on Lambda DNA are reproducible on DNA from other sources also. 

7.1 DNA Fragment Analysis Tools 

Gel-electrohoresis and Agilent Bioanalyzer 2100 are two standard methods of analyz­

ing the DNA shearing results [54, 55, 56]. 

1. Gel-Electrophoresis: In a standard gel electrophoresis system, DNA, along with 

reference markers (having known fragment sizes) is loaded in the wells of the 

gel solution and an electric field is applied between the two electrodes, placed 

at two ends of the gel [54, 55]. Due to the ionic properties of DNA, the DNA 

sample starts moving toward the negative electrode. The speed at which the 

DNA fragments travel in the gel is decided by the DC voltage applied between 

the electrodes. Further, the smaller DNA fragments move at higher speed than 

larger DNA fragments. This means that at any particular instance of time, after 
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the electric field is applied, the DNA fragments get separated in the gel based 

on their base-pair length. Both markers and DNA sample under test propagate 

in the gel under the influence of applied electric field. Since, the sizes of DNA 

fragments in marker wells are known, one could find the range of DNA fragments 

in the DNA sample also. After a reasonable time, typically 30 mins for standard 

gel-electrophoresis and 10 mins for Lanza gel-electrophoresis system, the DNA 

fragments are well separated in the gel. As the electric field is applied only in 

one-direction, the DNA fragments travel only in one direction. Before loading 

the DNA in to wells of gel, a fluorescent dye is mixed with the DNA sample 

which fluoresces in the presence of ultraviolet light. The fluorescent image is 

then captured using UV camera and the image shows the different fragments 

present in the sample. One such image is shown in figure-7.1 (b); it is captured 

using a gel-system, as shown in figure-7.1 (a), from Lanza company [55]. The 

intensity of gel image is directly proportional to the number of fragments of 

particular size. 

Before sequencing the DNA fragments using DNA sequencers, the DNA frag­

ments lying in the desired fragment-size range are selected by cutting the gel and 

then chemically processed for any repair of the ends of fragments. The advan­

tages of gel-electrophoresis are that it is relatively cheaper than other methods 

and it provides fairly good analysis of DNA fragment sizes in a DNA sample. 

However, standard gel-electrophoresis provides only qualitative analysis of DNA 

fragments in a sample. For example, if a DNA sample has all fragment sizes 

ranging from 100 bp to 3000 bp, the gel-electrophoresis image will have a large 

smear ranging from 100bp to 3000bp. The intensity of gel-image is used to 

predict the mean size of DNA fragments. Other tools and methods should be 
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used for more quantitative analysis of DNA fragments in the DNA sample. 

2. Agilent Bioanalyzer 2100: Agilent Bioanalyzer is another tool to analyze the 

molecular weights (or base-pair length in more common language) of DNA frag­

ments in the DNA sample [56]. It provides more quantitative analysis of the 

fragment sizes present in the sample. The basic principle of finding the DNA 

fragment size is same in both standard gel-electrophoresis system and Bioana­

lyzer - both methods rely on the difference in travel-speed of different fragment 

sizes inside gel under the influence of electric field. However, Bioanalyzer pro­

vides a more quantitative analysis of fragment sizes in the DNA sample. For 

analyzing the sample using Bioanalyzer, DNA samples along with reference 

marker (called ladder more often) are loaded into the small wells of microfluid 

chips using a well-defined procedure and a software controlled method is used 

to generate the distribution graphs for base-pair lengths present in the DNA 

sample. There are two types of chips available from Agilent- normal-kit and 

high-sense kit. Normal chips require DNA to be of higher concentration, while 

the high sense kit, as the name implies, could analyze the DNA with low con­

centrations also (as low as 500pg/uL). One has to follow same procedure for 

both normal and high-sense kits/chips to plot the fragment sizes in a sample; 

the difference being that the high-sense kit provides more accurate analysis with 

lower DNA concentrations. 

7.2 DNA Shearing Protocol and DNA Shearing Results 

To achieve different shearing results, one just needs to find proper experimental set­

tings, also called shearing protocol. A typical shearing protocol comprises following 
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parameters: peak RF voltage, RF frequency (decided by the thickness and material of 

piezoelectric transducer), repetition rate (duty cycle) of RF signal, phasing between 

RF signals applied to different transducers in the transducer-array, sonication time, 

volume of DNA, concentration of DNA, type of DNA, starting size of DNA, target 

mean size and distribution. The results presented in this thesis are preliminary results 

for the shearing experiments performed on the proposed system. We are still opti­

mizing the shearing protocols for obtaining user defined DNA fragments in minimum 

time. 

The shearing protocol is decided based on following parameters: the starting 

size of DNA, target mean fragment size, fragment distribution, volume of DNA, 

concentration of DNA. Based on the experiments done on our system, we observed 

that the peak to peak RF voltage used to excite the transducer, duty cycle of the RF 

signal, and the sonication time has great effect on the final mean DNA fragment size. 

Figure-7.1 shows the results of four sample experiments performed on Lambda 

DNA. In the first experiment, we used peak-to-peak RF voltage applied to the trans­

ducer array as 140V. The repetition rate of the RF signal is kept at 420Hz for all the 

experiments. After 15 minutes of sonication at 140V at 1% duty cycle, the mean size 

of DNA fragments is found to be about 1854bp. In the second experiment, we wanted 

to decrease the mean fragment size of sheared DNA. To this end, we increased the 

voltage to 165V and decreased the duty cycle to 0. 75% to keep the same intensity of 

sample processing and sheared the lambda DNA to mean fragments of 1350bp size 

(third channel of the gel image in figure-7.1). We further increased the voltage to 

190V and 215V and decreased the duty cycle to 0.5% and 0.25% respectively; the 

mean DNA fragment size obtained at these voltage settings are 700bp and 370bp re­

spectively. The sheared DNA were analyzed using both standard gel-electrophoresis 
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(b) 

Figure 7.1 : (a) Gel-electrophoresis system [55] (b) gel-image of Lambda 
DNA ( 48kb) [Concentration 5ng/ ~-tL ] sheared to different peak fragment sizes using 
the proposed shearing system 

and Agilent Bioanalyzer 2100. The gel-image for these four experiments is shown in 

figure-7.1. Hence, Lambda DNA with starting size of 48 kb was successfully sheared 

to different fragment sizes using the proposed DNA shearing system. We were able 

to achieve fragment sizes ranging from 300bp to 1.5kbp using different experimental 

conditions. The sheared DNA was loaded in to a gel electrophoresis system (elec­

trophoresis is used to find the size of DNA fragments); the gel-image as captured by 

the imaging systern (figure-7.1- (a)) is shown in figure-7.1- (b). 

We studied the effect of different parameters on the shearing. Some of these pa-

rameters include the starting size of DNA, type of DNA to be sheared, concentration 

of DNA, volume of DNA, DC voltage , frequency of operation, repetition rate (burst 

rate), number of pulses in a burst and sonication time . We present the effect of each 

of these in this thesis. 

1. Effect of Sonication Power on DNA Shearing Results: Eventhough dif-
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Figure 7.2 : Agilent Bioanalyzer plots for the four shearing experiments (a) mean 
fragment size: 1850; (b) mean fragment size: 1350; (c) mean fragment size: 700; 
(d) mean fragment size: 370. 

ferent sonication based DNA shearing systems utilize different types of ultra-

sonic waves for DNA shearing, one thing is common in all methods- ultrasound 

energy. Most of the sonication based methods generate higher than required 

sonication energy and then empirically find the energy levels required for ob-

taining different mean fragment size of sheared DNA. Fo:r: example, in focused 

acoustic DNA shearing technique, one has to attenuate the ultrasonic energy 

to obtain large DNA fragments; large unattenuated ultrasonic energy is used to 

generate small fragments. Hence, the DNA fragment size is controlled by the 

different attenuation levels , typically obtained by using sample tubes made of 

different materials or different thicknesses. However, in our proposed system , 
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we generate a controlled ultrasonic energy and we do not rely on the attenu­

ation of sonic energy for obtaining different sizes of DNA fragments. We use 

uniquely designed piezoelectric transducer to generate special ultrasonic waves 

(having both converging and vortexing effects inside DNA sample) in our DNA 

shearing system. The intensity or power of ultrasonic waves generated from 

the transducer is directly related to the peak RF voltage applied across the 

transducer. We varied the peak-to-peak RF voltage to see its effect on DNA 

shearing results, we observed that the mean fragment size reduces with increase 

in voltage. The result of such an experiment are presented in figure 7.1 (b) and 

7.2. 

We found that the mean size of fragmented DNA is largely decided by the peak­

to-peak voltage RF signal applied across the piezoelectric transducer. At supply 

voltage of 73 volts DC to class-E RF amplifier, the mean size of sheared DNA 

is about 800 base-pairs (bp). As we increase the voltage, the mean fragment 

size reduces. 

2. Effect of Sonication Time on DNA Shearing Results: For sonication 

based DNA shearing methods, sonication time is a very important parameter of 

the shearing protocol. The total sonication energy dumped into a DNA sample 

is the product of sonication power and the time. So, with increase in time, it 

is expected that the DNA will be fragmented more. We performed a controlled 

experiment at 215V peak-to-peak RF voltage with 50uL and lOOuL of DNA 

sample. The results of these two experiments are shown in figure 7.3 and 7.4. 

The initial Lambda DNA had 48kbp size. A plot showing the comparison of 

DNA shearing results for these two experiments is shown in figure 7.5. 
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Figure 7.3 : Agilent Bioanalyzer plots for a SOuL DNA sample sonicated for different 
time durations (a) 10 mins; (b) 20 mins; (c) 30 mins; (d) 40 mins; (e) 50 mins; (f) 60 
mins. 

3. Effect of Volume of DNA Sample on Shearing Results: Since ultra-

sonic based DNA shearing technique rely on the ultrasound wave, the medium 

through which the wave propagate affects the amount of energy actually being 

dumped in to the sample. Further , if we assume that a particular amount of en-

ergy is required to break the bonds between nucleotides, higher volume of DNA 

sample would require more ultrasonic energy. So, for most of the ultrasound 

based DNA shearing systems, more ultrasonic energy is required to process 

higher volume of DNA. However, in our technology, the shearing is achieved 

by converging and vortexing properties of the ultrasonic waves and hence, the 

volume of DNA sample has different impact on the shearing results. We use con-

verging effect of the acoustic wave to break the meniscus of the sample inside the 
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Figure 7.4: Agilent Bioanalyzer plots for a 100uL DNA sample sonicated for different 
time durations (a) 10 mins; (b) 20 mins; (c) 30 mins; (d) 40 mins; (e) 50 mins; (f) 60 
mins. 

sample and vortexing effect to mix and recirculate the DNA sample for getting 

homogeneous shearing. For lower volume of DNA sample, the surface tension 

is higher than for a larger volume of sample, so we need little high duty cycle of 

RF signal to break the meniscus . We have experimented with sample volumes 

ranging from 25uL to 120uL. Based on experimental results , we observed that, 

for the same sonication time, the mean fragment size for 50uL DNA sample is 

lesser than the mean fragment size achieved in 100uL. This could be observed 

from the experimental results shown in figure 7.5. 

With the current experimental setup, we observed that one could use any volume 

between 50uL to 120uL. With more robust system implementation and better 

optimized shearing protocol, the range of volumes that could be sheared using 
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Figure 7.5 : Shearing results on Lambda and Genomic DNA for 15 mins, 30 mins , 
and 1 hour sonication time. 

the proposed phased-array transducer would be higher. In fact, the transducer is 

fabricated using MEMS based process, so one could use the proposed transducer 

structure in a lab-on-a-chip device. In a lab-on-a-chip device, very small volume 

of DNA sample (pL to nL) could be transported through the microchannels and 

the DNA could also be sheared using the integrated transducer array based on 

FASA element . 

4. Effect of Concentration and starting size of DNA Sample on Shear-

ing Results: DNA is typically diluted with TE buffer. As the concentration 

of DNA increases, the solution becomes more viscous. With most of the sonica-

tion based DNA shearing methods, the viscosity has an impact on the shearing 

results. With our system, we have experimented with DNA sample of concen-
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trations ranging from 500pgjuL to 1ugjuL and our shearing results are inde­

pendent of the concentration of the DNA. This may be because of the fact that, 

unlike focused acoustic techniques, our phased-array transducer structure gen­

erates a distributed ultrasonic wave pattern inside the sample and that helps us 

in getting concentration independent shearing results. Similarly, we performed 

shearing experiments on DNA samples with two different starting sizes ( 48kb 

Lambda DNA and 20kb genomic DNA). In both cases, the shearing results un­

der same experimental settings were same. This means that the shearing results 

are independent of the starting size of the DNA 

5. Effect of Source of DNA Sample on Shearing Results: The shearing 

experiment is performed on DNA samples from two different sources to vali­

date that the shearing process is not dependent on the type of DNA. We ran 

experiments on two types of DNA- Lambda DNA with 48kb base pair lengths 

and genomic DNA with 20kb base pairs. Under the same shearing protocol, 

both type of DNAs shear to same mean fragment sizes; even the size distribu­

tion around the mean is also the same. Following settings are used to get 500 

base pair DNA fragments: Vvc = 73V, RF-frequency = 3.85MHz, Repetition 

Rate= 420 Hz, Number of RF Pulses in a Burst = 100. With Vvc=73V as 

supply voltage, we get around 350 volts peak-to-peak across the transducer. 

In this experiment, two out of four FASA elements were excited by one RF­

signal and other two were driven by another RF signal at 180° out of phase 

with the first RF-signal. 100 t-LL DNA sample, with 20ngj t-LL concentration, 

was put in a flat-bottom matrix orbital tube and was sonicated under the afore­

mentioned protocol settings. Samples were aliquoted after 15 mins, 30 mins, 

and 1 hour of sonication. These three samples, sonicated for different time 
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durations , from each DNA (Lambda and Genomic) were analyzed using Lonza 

gel-electrophoresis system and it was found that both type of DNA sheared to 

equal fragment sizes. The gel image for this experiment is shown in figure-7.6. 
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Figure 7.6 : Shearing results on Lambda and Genomic DNA for 15 mins, 30 mins, 
and 1 hour sonication time. 
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Chapter 8 

Conclusions and Future Work 

To avoid the shearing step from being a bottleneck in the sequencing process we have 

proposed a fast, efficient and controlled DNA shearing system in this thesis. The 

proposed shearing system can provide user-specified high-quality DNA fragments in 

significantly lesser amount of time. The system can shear DNA from any source and 

the shearing results are independent of concentration of input DNA. The system uses 

lateral acoustic shear waves to shear the DNA without damaging, heating or dena­

turing it. These lateral waves are generated by RF excitation of uniquely designed 

piezoelectric transducers. 

One of the problems which we are facing today is that the transducer performance 

degrades over time [57, 58]. The rate of transducer performance degradation is de­

pendent on the voltage used to excite it. The higher the voltage we apply across 

the transducer, the smaller the size of DNA fragments we get, but the faster the 

degradation of transducer. Figure-8.1 shows the log magnitude plots of S11 for a 

transducer under different usage durations. We observe that the magnitude of Sn 

minima increases with usage, which is quite surprising and is little hard to explain. 

One may think that the performance of transducer should increase as the S11 magni­

tude increases, but this is not the case in practice. We may explain the performance 

degradation through the increase in transducer selectivity as we see from the same 

plot in figure-8.1. By increase in selectivity, we mean that the transducer has large 

quality factor (Q) and it absorbs lesser frequency contents from the RF-signal. Typ-
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ically, the RF-signal applied across the transducer has multiple frequencies along 

with the fundamental frequency. If the transducer is wide band, then large part of 

RF -signal (as measured by number of frequency components) will be converted in to 

useful acoustic energy. 
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Scattering parameter, S11 of FASA element after usage for different 

Figure-8 .2 shows the resistance, reactance and impedance plots of a transducer 

used for different time durations. From the top plot in figure-8.2, we observe that 

the resistive part of impedance is increasing with its usage and it could cause more 

/ 2 R losses inside the piezoelectric plate . This in turn will increase the temperature of 

the transducer and will degrade the performance of the transducer. The middle plot 
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in figure-8.2 shows the reactance of the transducer under different usage durations. 

We observe that the transducer is capacitive for most of the frequencies and its ca­

pacitance increases with increased usage. The increase in capacitance will shift the 

resonant frequency to the higher frequency and will reduce the piezoelectric property 

of the material. Finally, we notice from the bottom plot that the impedance of a 

piezoelectric transducer increases with usage which in turn reduces the overall per­

formance of the transducer. These problems are important to address if we want to 

build a commercial product and therefore, we include these problems in our future 

work. Once the shearing system becomes robust, we would model the shearing results 

with the help of fragment analysis tools, like Lonza-gel and Agilent Bioanalyzer. This 

would further our understanding of underlying physics behind DNA shearing [59]. 
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Figure 8.2 : Resistance (R), reactance (X) and impedance (Z) of FASA element after 
usage for different durations. 
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