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ABSTRACT 

Ritz Values and Arnoldi Convergence for Non-Hermitian Matrices 

by 

Russell Carden 

This thesis develops ways of localizing the Ritz values of non-Hermitian matrices. 

The restarted Arnoldi method with exact shifts, useful for determining a few desired 

eigenvalues of a matrix, employs Ritz values to refine eigenvalue estimates. In the 

Hermitian case, using selected Ritz values produces convergence due to interlacing. 

No generalization of interlacing exists for non-Hermitian matrices, and as a conse­

quence no satisfactory general convergence theory exists. To study Ritz values, I 

propose the inverse field of values problem for k Ritz values, which asks if a set of k 

complex numbers can be Ritz values of a matrix. This problem is always solvable for 

k = 1 for any complex number in the field of values; I provide an improved algorithm 

for finding a Ritz vector in this case. I show that majorization can be used to char­

acterize, as well as localize, Ritz values. To illustrate the difficulties of characterizing 

Ritz values, this work provides a complete analysis of the Ritz values of two 3 x 3 

matrices: a Jordan block and a normal matrix. By constructing conditions for local­

izing the Ritz values of a matrix with one simple, normal, sought-after eigenvalue, 

this work develops sufficient conditions that guarantee convergence of the restarted 

Arnoldi method with exact shifts. For general matrices, the conditions provide insight 

into the subspace dimensions that ensure that shifts do not cluster near the wanted 

eigenvalue. As Ritz values form the basis for many iterative methods for determining 
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eigenvalues and solving linear systems, an understanding of Ritz value behavior for 

non-Hermitian matrices has the potential to inform a broad range of analysis. 
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Chapter 1 

Introduction 

This thesis analyzes the behavior of Ritz values and convergence of the restarted 

Arnoldi method for non-Hermitian matrices. Understanding the behavior of Ritz val­

ues is essential to establishing convergence of methods for approximating eigenvalues. 

In the Hermitian case, for which much is known, convergence of the restarted Arnoldi 

method with exact shifts follows from the interlacing property of Ritz values. In the 

non-Hermitian case, the restarted Arnoldi method with exact shifts performs well 

in practice. Researchers have observed typical patterns of behavior for Ritz values, 

but these are not sufficiently understood to establish criteria for convergence. In this 

thesis I show that Ritz values for non-Hermitian matrices can be localized. This in­

formation leads to sufficient criteria for convergence of the restarted Arnoldi method 

with exact shifts for these non-Hermitian matrices. Specifically, the criteria will ad­

dress constraints on the starting vector and the spectral properties of the original 

matrix. I believe these to be the first such convergence results to be obtained for the 

restarted Arnoldi method with exact shifts for a nontrivial non-Hermitian matrix. 

1.1 Eigenvalues 

The restarted Arnoldi method is an indispensable tool for determining a few selected 

eigenvalues of a matrix, for example, those with the largest real part. Eigenvalues 

provide insight into the behavior of dynamical systems. They indicate how modeled 
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features will grow, decay or oscillate. An important use of eigenvalues is to determine 

the stability of systems modeled by x'(t) = Ax(t). Real world systems cannot sustain 

the constant growth of a modeled feature that corresponds to eigenvalues with pos­

itive real part. Similarly, undampened oscillations associated with purely imaginary 

eigenvalues, when coupled with resonant driving forces, can lead to unsustainable 

behavior. The determination of system stability typically involves the computation 

of only a few of the eigenvalues. This is fortunate, as it limits the work needed to 

analyze real-word problems; moreover, many of the eigenvalues of the matrix can be 

spurious approximations to the true eigenvalues of an underlying infinite dimensional 

operator. 

Determining eigenvalues of A E cnxn involves finding X and>. such that 

Ax= x>., 

where x, the eigenvector, is a nonzero vector of dimension n and >., the eigenvalue, 

is a complex scalar. The vector x and scalar >. are said to be an eigenpair, and are 

denoted (x, >.). The set of all eigenvalues of a matrix is called the spectrum of the 

matrix, denoted by a(A). A space spanned by eigenvectors is an eigenspace. 

Eigenvalues can be characterized as roots of the characteristic polynomial, 

p(>.) = det(>.I- A). 

The roots of the characteristic polynomial correspond to the values >. for which >.I- A 

is singular, meaning that >.I - A has a nontrivial null space. For each unique root 

there exists at least one eigenvector. As the roots of polynomials of order greater than 

five cannot generally be determined in a finite number of steps, eigenvalues must be 

determined iteratively. 
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If A E enxn is Hermitian, A= A*, then all its eigenvalues are real. If A is normal, 

AA* = A* A, then A is unitarily diagonalizable, i.e., the eigenvectors of A can be 

selected to form a complete orthonormal basis. As a consequence, A = X AX* where 

A is a diagonal matrix with the eigenvalues of A along the diagonal and X E enxn 

is unitary, X* X = I, with eigenvectors of A in its columns. Hermitian matrices 

are normal; however, unlike the Hermitian case, the eigenvalues of a generic normal 

matrix can be complex. Any matrix with a set of eigenvectors that spans en is called 

diagonalizable, and may be decomposed as A = X AX-1 , where A is a diagonal matrix 

with eigenvalues along the diagonal and X is a nonsingular -not necessarily unitary­

matrix whose columns are eigenvectors of A. A non normal matrix, AA * =1- A* A, need 

not be diagonalizable: the eigenvectors of A need not that span all of en. Nonormality 

can give rise to much difficulty in the computation of eigenvalues. 

1.2 Ritz Values 

Knowing the action of a matrix upon various subspaces allows the approximation of 

a few of its eigenvalues. Eigenvalue approximations from a subspace are known as 

Ritz values. The set of all possible Ritz values of a matrix from a one dimensional 

subspace is known as the field of values or numerical range. The field of values (FOV) 

of A E enxn is 

W(A) := {v*Av: v E en,v*v = 1}. 

Hence the field of values is the set of all possible Rayleigh quotients of a matrix. 

Methods for sketching the field of values [32] make use of the following property: the 

Hermitian part of A, H(A) :=~(A+ A*), satisfies W(H(A)) = ReW(A) = {Rez: 

z E W(A)} = [111 , 1-lnJ, where 111 and 1-ln are the largest and smallest eigenvalues of 

H(A). Hence the boundary of the field of values of A can be determined by computing 
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W(H(ei0 A)) for various values of 8. 

Ritz values have many interesting properties. The Ritz value associated with unit 

vector v is the scalar () such that Av- v8 is orthogonal to the space spanned by v, 

i.e., v*(Av - v8) = 0. A Ritz value is optimal in the sense that it minimizes the 

norm of Av- v8. The Ritz value represents the action of A restricted to the subspace 

spanned by v. For a Ritz value to be a good approximation to an eigenpair, the 

residual Av- v() should be small. For Ritz values generated from a subspace spanned 

by the columns of a matrix V, the residual is required to be orthogonal not only to 

the Ritz vector, but also to any vector in the subspace, i.e., 

V*(Av- v8) = 0. 

Since any v E Ran(V) can be written as V y, 

V*(AVy- Vy8) = 0, 

which becomes 

Hy = V*Vy8, 

where H = V* AV. The problem of determining Ritz values from a subspace is then 

equivalent to solving the generalized eigenvalue problem Hy = V*Vy8. If the columns 

of V are orthonormal, then V*V = I, and the problem of determining Ritz values 

from a subspace reduces to an ordinary eigenvalue problem. 

Eigenvalues can be thought of as are Ritz values for which IIAv- vv* Avll = 0. 

As not all Ritz values are good approximations to eigenvalues, the question then 

is: what exactly is the relationship between Ritz values and eigenvalues? How may 

Ritz values be used to localize and approximate eigenvalues? The restarted Arnoldi 

method with exact shifts uses Ritz values to approximate eigenvalues and often works 
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well in practice; however, our current knowledge of Ritz values does not explain why 

it works so well. As Ritz values are simply another means of observing the action of 

a matrix, such questions are naturally related to inclusion regions for eigenvalues. 

1.3 Inclusion Regions for Eigenvalues 

Different characterizations of eigenvalues give rise to different inclusion regions. Such 

inclusions are helpful for several reasons. If they are easy to compute, then they 

may in some cases quickly answer questions related to eigenvalues, such as system 

stability or rate of decay. Also, they may provide insight into the conditioning of 

the eigenvalues, i.e., sensitivity to perturbation, as well as methods for computing 

eigenvalues. 

1.3.1 Min-max and majorization characterization 

The eigenvalues .A1 :::; .A2 :::; • • • :::; An of a Hermitian matrix satisfy the min-max 

theorem of Courant and Fischer. 

Theorem 1.1 (Courant-Fisher) If A E cnxn is Hermitian with eigenvalues .Ai such 

x*Ax 
min max -- = .Ak, 

dim(U)=k xEU, xi'O X* X 
uccn 

x*Ax 
max min -- = .Ak. 

dim(U)=n-k+l xeU, xi'O X* X 
uccn 

Replacing the subspace U by a particular subspace spanned by, say, the columns of a 

matrix V E cnxm with V*V = Im, m 2: k, gives an upper bound 

x*Ax 
.Ak :::; min max -- = fh, 

dim(U)=k, xi'O,xEU X* X 
UcRan(V) 
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where fA denotes the kth eigenvalue of the matrix V* AV, ordered by increasing real 

part (i.e., fh is a Ritz value for A from Ran(V)). Similarly, fork 2:: n- m we have a 

lower bound 

Combining these two results gives the Cauchy interlacing theorem. 

Theorem 1.2 (Cauchy interlacing) If A E <Cnxn is Hermitian with eigenvalues ..\i, and 

V* AV E <Cmxm with V E <Cnxm, V*V = I with eigenvalues Oi, then 

for k = 1, 2, ... , m. 

Combining Cauchy interlacing with knowledge of the Ritz values of A from a sub-

space, we may determine inclusion regions for some of the interior eigenvalues, and 

exclusion regions for some of the exterior eigenvalues [44]. If we are interested in the 

largest or extreme eigenvalues, interlacing tells us that as we increase the size of our 

subspace Ran(V), the extreme Ritz values must march towards the extreme eigenval-

ues. Interlacing is precisely why the restarted Arnoldi method works for Hermitian 

matrices. 

A much weaker notion than interlacing is majorization. A real vector x E lRn is 

said to majorize a vector y E lRn, denoted y -< x, provided that 

k k 

LY(i) ::; L X(i) for k = 1, 2, ... , n, (1.1) 
i=l i=l 

where X(i), denotes the ordering from smallest to largest of the entries of x, i.e., 

X(i) ::; X(i+l) for i = 1 ... , n - 1. The majorization is said to be strong if we have 

equality in (1.1) fork= n, and weak otherwise (38]. Care must be taken in reading the 
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literature about majorization, as some authors define majorization with the inequality 

reversed, or sum the entries from largest to smallest. Unless otherwise noted, we will 

be referring to strong majorization and our sums will be from smallest to largest. 

A 1923 theorem of Schur uses majorization to relate the diagonal entries of a 

Hermitian matrix to its eigenvalues [38]. 

Theorem 1.3 If A E cnxn is Hermitian with diagonal elements a 11 , ••• , ann and eigen­

values AI, ... , An, then [Ai] -< [aii]· 

The proof of this theorem uses induction on the size of the matrix, along with Cauchy 

interlacing. 

Amir-Moez and Horn [2] considered the implication of this theorem for non­

Hermitian matrices. 

Theorem 1.4 Let A E en have eigenvalues Ai such that Re AI $ · · · $ Re An and 

eigenvalues of ~ (A* + A), Jli such that Jli $ · · · $ Jln. Then [Jli] -< [Re Ai]· 

This theorem follows from Theorem 1.3 by considering a Schur decomposition, A = 

QTQ*, where Q is unitary and T is upper triangular, for then the diagonal of the 

Hermitian part ofT gives the real part of the eigenvalues of A. This theorem tells 

us that if we know some of the eigenvalues of the Hermitian part of a A, then we 

may determine regions in the complex plane where the eigenvalues of A must lie. 

Unlike interlacing, which only uses the action of the matrix on a subspace to localize 

eigenvalues, this result requires knowledge of the of eigenvalues of the Hermitian part 

of A, a property of the full matrix. 
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1.3.2 Singular values and eigenvalues 

The singular values of A E cnxn denoted ai(A) with ai(A) 2: ai+I(A) are the square 

roots of the eigenvalues of A* A, and thus they also have min-max/max-min charac­

terizations, as well as interlacing properties [31]. 

Lemma 1.1 Let A E cmxn, V E cmxk and WE cnxk be given, where k::; min{m, n} 

and V and W have orthonormal columns. Then 

(a) ai(V* AW) ::; ai(A), i = 1, ... , k, and 

(b) ldetV*AWI ::;a1(A) .. ·ak(A). 

From the second inequality, Weyl derived an inequality relating the magnitudes of 

the eigenvalues to the singular values [31]. 

Theorem 1.5 (Weyl's Theorem) LetA E cnxn havesingularvaluesa1(A), ... ,an(A) 2: 

0 and eigenvalues {>.1(A), ... , >.n(A)} C C ordered so that I..\1(A)I 2: .. · 2: l>.n(A)I. 

Then 

l..\1 (A)··· >.k(A) I ::; a1 (A)··· ak(A) fork = 1, ... , n, with equality fork = n. (1.2) 

This result says that the magnitudes of the eigenvalues are log-majorized by the 

singular values, 

As the exponential function is convex, this log majorization of the magnitudes of 

the eigenvalues gives rise to the following weak majorization. 

Thus, knowledge of some of the singular values of the full matrix gives disks in the 

complex plane in which a prescribed number of eigenvalues must lie. 
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1.3.3 Lehmann bounds 

These singular value based bounds are not unlike Lehmann bounds, which are also 

inclusion regions for eigenvalues. Lehmann bounds were originally developed for 

Hermitian matrices [4], but have since been generalized to non-Hermitian matrices [5]. 

Determined from the action of a matrix upon a subspace, they determine disks in the 

complex plane that contain a prescribed number of eigenvalues. For normal matrices 

the bounds are optimal, in the sense that there exist matrices with eigenvalues for 

which the bounds are sharp. 

For diagonalizable matrices we have the following result from Beattie and Ipsen 

[5]. 

Theorem 1. 6 Let A E <Cnxn be diagonalizable with an eigenvalue decomposition A = 

XAX-1 . For a given complex number p and ann x m matrix S having orthonormal 

columns, denote by r_1 :::; r_2 :::; · · · :::; Lm, the singular values of then x m matrix 

(A- pi)S. Then for each i E {1, ... , m}, the disk 

Di := {z: lz- PI :::; ~(X)T-i}, 

contains at least i eigenvalues of A. 

Beattie and Ipsen also have a result for nondiagonalizable matrices [5]. 

Theorem 1. 7 Let A be an n x n matrix. For a given complex number p and an n x m 

matrix S with orthonormal columns, denote by T _ 1 :::; T _ 2 :::; · • · :::; T -m the singular 

values of then x m matrix (A- pi)S. Then each for each i E {1, ... , m}, the disk 

Di := {z: z- PI :::; Li + c5(A)}, 

contains at least i eigenvalues of A, where c5(A) is Henrici's departure from normal­

ity {26}: c5(A) = min IINII where N is the strictly upper triangle portion of a Schur 
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decomposition of A, A= Q(A + N)Q*, and the min is over all possible Schur decom­

positions of A. 

In the normal case, ,.,;(X) = 1 and b(A) = 0, these bounds can be computed with-

out having either an eigendecomposition or a Schur factorization. All that is required 

are the singular values of the rectangular matrix (A- pi)S. Both Lehmann bounds 

leave something to be desired in the nonnormal case. Both generalizations involve 

quantities that are not easily computed for nonnormal matrices; however, we must 

note that for a nonnormal matrix, without any additional assumptions or knowledge 

of the full matrix other than its action on a subspace, it is impossible to localize the 

eigenvalues. In the normal case, the action of a matrix on a subspace Ran(V) also 

provides some information about the action of the matrix on the orthogonal subspace 

Ran(V)j_. In the nonnormal case, nothing can be said about the action on the or-

thogonal subspace, and as a consequence, the eigenvalues of the full matrix may occur 

anywhere throughout the complex plane. For example, let A E C 2 x 2 and suppose 

V = e1 . Then 

and the first column of A is known simply from knowing the action of A upon V. 

With the first column of A fixed, the eigenvalues of A can be placed anywhere in the 

complex plane by the choice of a21 and a22· 

In this light, for bounds such as those in Theorems 1.6 and 1. 7 for nonnormal 

matrices, we must ask: How much more are we willing to assume or compute in order 

to localize some of the eigenvalues? For example, supposing that we knew some of 

the largest singular values of the matrix, then Weyl's condition, equation (1.2), would 

give inclusion regions for all the eigenvalues, n - 1 of the eigenvalues, and so on. It 
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is likely that such bounds will be sharp for normal matrices and not necessarily so 

for nonnormal matrices. These results have implications for Ritz values, which I will 

explore in Chapter 3. 

1.3.4 Pseudospectra 

Another type of inclusion region for eigenvalues is the pseudospectrum [57]. The c­

pseudospectrum of a matrix A for a given c > 0 is the set of>. in the complex plane 

for which there exists some E E cnxn with IIEII < € such that >. is an eigenvalue of 

A+ E, i.e., 

o"c(A) = {z E <C: :3 E with IIEII < c and z E u(A +E)}. 

This definition may also be stated in terms of the matrix valued function known as 

the resolvent, R(z) = (zl- A)-1: 

A Ritz pair (0, v) from H = V* AV, V E cnxk and V*V =I, is in the c-pseudospectrum 

of A for all c > IIAv- vOII. To see this, take E = -rx*, where r = Av- vO. The 

bound on how accurate a Ritz pair can be for a given llrll is reflected in how large 

the c-pseudospectrum of A is, relative to the spectrum of A. For a normal matrix, 

the c-pseudospectrum for a given c consists of the union of open disks in the complex 

plane of radius c centered about the eigenvalues. Hence, small perturbations to a 

normal matrix produce small changes to the eigenvalues. In this case, the eigenvalues 

are said to be well conditioned. For a nonnormal matrix, the pseudospectra can differ 

significantly from the spectrum. The condition of the eigenvalues may vary; some 

may be more sensitive to perturbations than others. Typical applications require ap-
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proximating well-conditioned eigenvalues, which can be complicated by nonnormality 

associated with the remaining eigenvalues. 

One of the primary uses of pseudospectra in the analysis of matrices is for the 

study of functions of matrices. There are several different ways of defining functions 

of matrices. Perhaps the most elegant makes use of the resolvent. Evaluation of a 

function of a matrix using the resolvent is a generalization of the Cauchy integral 

formula: 

f(A) = ~ f f(z)(zi- A)-1dz, 
2nz lr (1.3) 

where r is any simple closed rectifiable curve containing the spectrum of A in its in-

terior. Since the E-pseudospectrum of A always contains the spectrum, equation (1.3) 

can be evaluated using the boundary of the c-pseudospectrum for r. This does not 

facilitate the computation of f(A); rather it simplifies the analysis of 11/(A)II: 

llf(A)II :::; ~ f lf(z)lll(zi- A)-1 llldzl 
27!" lacr,(A) 

- 1 f lf(z)llldzl 
27rc j 8cr,(A) 

< 2~e:c a~~) lf(z)l, 

where Le is the length of the boundary of the c-pseudospectrum. Thus pseudospectra 

allow us to bound the norm of a matrix function by knowing the length of the bound-

ary of the pseudospectrum, as well as the maximum of the function on the boundary 

of the pseudospectrum or simply on the pseudospectrum itself, by the maximum 

principle. This can be particularly useful, as it turns a matrix problem into a scalar 

problem. 
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1.4 Krylov Subspaces 

The Arnoldi method approximates eigenvalues by orthogonally projecting a matrix 

onto a Krylov subspace. The performance and analysis of many iterative methods for 

eigenvalues and systems of equations rely on Krylov subspaces. A Krylov subspace 

is spanned by the iterates of the power method, 

where v is the starting vector. The power method itself is an eigenvalue method that 

approximates the eigenvector associated with a distinct, largest-magnitude eigenvalue, 

if such an eigenvalue exists. The power method approximates the vector that Akv 

approaches (in angle), the desired eigenvector, ask becomes large. A Krylov subspace 

contains not only all power method iterates, but it contains all shifted power method 

iterates (A- aJ)iv for any complex a, i = 1, ... , k- 1. 

Associated with a Krylov subspace is a particular polynomial optimization, the 

Arnoldi minimization problem [23], that is relevant for the computation of eigenvalues: 

min IIAkv- xll = min llp(A)vll, 
xEK:k(A,v) pEJPk 

where JPk denotes the set of monic polynomials of degree less than or equal to k. If 

the Krylov subspace spans an eigenspace, the minimum for this problem will be zero 

and the roots of p will be eigenvalues of A. In this case, p is said to be the annihilating 

or minimal polynomial for (A, v). If the smallest k such that p annihilates v is n, 

then v is said to be a cyclic vector. If one had a means of determining p, and if 

the resulting llp(A)vll was small, then one might be tempted to use the roots of pas 

approximations to eigenvalues. This is the idea behind using the Arnoldi method to 

approximate eigenvalues. 
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The Arnoldi minimization problem is essentially a matrix function problem. Uti­

lizing diagonalizability or pseudospectra, one may bound the Arnoldi polynomial by 

a scalar problem. Assuming A is diagonalizable, A= XAX- 1 , 

llp(A)vll = IIXp(A)X-1vll ~ IIXIIIIX-1 11 max IP(-X)IIIvll· 
>.ea(A) 

Assuming llvll = 1, this gives rise to the min-max problem 

min llp(A)vll ~ K(X) min max IP(-X)I, 
peJPk peJPk >.ea(A) 

where K(X) = IIXIIIIX-1 11, the condition number of X. Similarly, a pseudospectral 

approach gives 

min IIP(A)vll ~ 2Le min max lp(-X)I. 
pEJPk 7TE pEJPk >.Eae(A) 

As a Krylov subspace is larger than the span of any single power method iterate, 

(A - a1)iv, provided that the starting vector v is not an eigenvector, the Krylov 

subspace should offer a better approximation to desired eigenspaces than any single 

vector method. Subspaces are particularly useful for eigenvalue estimation when the 

size of the matrix prohibits dense eigenvalue methods, and also when the number of 

eigenvalues desired makes single vector iteration/ deflation techniques impractical. 

1.5 The Arnoldi Method 

The Arnoldi method determines Ritz values by generating an orthonormal basis for 

the Krylov subspace. The Arnoldi method was introduced in the early 1950s by W. E. 

Arnoldi [3] as a generalization of the Lanczos method for Hermitian matrices [34]. 

Though both Lanczos and Arnoldi recognized that their methods had some iterative 

potential, at the time they were proposed, both methods were seen primarily as ways 

of reducing a matrix to tridiagonal or upper Hessenberg form by a unitary similarity 
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transformation (44]. In the Hermitian case, for which the eigenvalues all fall on the 

real line, in their most basic form Sturm sequence methods determine eigenvalues by 

repeatedly evaluating the characteristic polynomial, locating eigenvalues by noting 

sign changes. The idea of the Arnoldi and Lanczos methods was that the evaluation of 

the characteristic polynomial is much simpler for such structured matrices. However, 

numerical instabilities in the methods lead to inaccuracies in the reduced matrices 

that limit the ability to accurately determine eigenvalues. As a result, until the 

1970s neither method received much attention as anything other than a procedure for 

reducing a matrix to tridiagonal or upper Hessenberg form (see, e.g., Wilkinson (60]). 

The utility of the Arnoldi and Lanczos methods comes from their ability to gen-

erate accurate eigenvalue approximations from a partial, rather than full, upper Hes-

senberg factorization of a matrix. Both the Arnoldi and Lanczos methods work by 

generating an orthonormal basis for the Krylov subspace. The Lanczos method can be 

viewed as a special case of the Arnoldi method for A = A*. Each step of the Arnoldi 

method generates a new basis vector vi such that llvdl = 1 and vi j_ .K:i(A, v) for j < i 

and vi E .K:i(A, v). At the kth step, the columns of the matrix Vk = [v1 , ... , vk] span 

the kth Krylov subspace. Based on these properties, the vi must satisfy 

i 

A vi = L hjiVj + hi+I,iVi+I, 
j=l 

where hii = vjAvi. This recurrence is a consequence of the nesting of Krylov sub­

spaces, .K:k(A, v) ~ .K:k+I(A, v). Combining these equations into a matrix equation, A 

and Vk must satisfy 

(1.4) 

where [Hk]ii = hii is an upper Hessenberg matrix. Premultiply equation (1.4) by Vk* 
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to get 

v;Avk = Hk, 

so Hk is the orthogonal restriction of A onto the kth Krylov subspace. Similar to 

the optimality of the Ritz values, Hk is optimal in that it minimizes the norm of 

AVk - VkH over all H [54, p. 254). Hk is also optimal in that the characteristic 

polynomial of H minimizes jjp(A)vll, i.e., p solves the Arnoldi minimization problem 

for Kk(A, v). If hk+l,k = 0, the columns of Vk span an eigenspace of A. If hk+l,k is 

small relative to II All, then the entire kth Krylov subspace accurately approximates 

an eigenspace of A. Even if hk+l,k is large, there may be Ritz pairs that are good 

approximations to eigenvalues. To see this, note that the residual for a Ritz pair, 

x = Vky and B, obeys 

Ax- xB 

- VkHky + hk+1,kvk+le~y- Vky(} 

- Vky(} + hk+l,kvk+1e~y- Vky(} 

- hk+I,kVk+le~y, 

and hence IIAx- xBII = ihk+I,kiiekyj. Thus, if together the product of ihk+I,ki and 

the kth component of y are small, then ( (}, x) is likely to be a good approximation 

to an eigenpair. The matter of how small ihk+l,ki must be to ensure that the Ritz 

values are good approximations to eigenvalues depends on the sensitivity of the spec­

trum to perturbations. The sensitivity to perturbations can be measured using the 

pseudospectra of the matrix, as described in Section 1.3.4. 
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1.6 The Restarted Arnoldi Method 

The advantage of both the Arnoldi and Lanczos methods is that the Hessenberg 

factorization can be updated incrementally with the size of the Krylov subspace. 

The primary difficulty with these methods is maintaining the orthogonal basis. The 

cost of doing so increases steadily as the dimension of the subspace increases. The 

costs of maintaining orthogonality and of storing the basis vectors are the primary 

reasons why these methods must be restarted. Loss of orthogonality in the Hermitian 

case is particularly acute, as the Lanczos method works on the assumption that 

basis vectors satisfy a three-term recurrence, a huge computational advantage, as the 

method only stores three basis vectors at any one time. However, the three-term 

recurrence only holds in exact arithmetic. In floating point arithmetic, more must 

be done to maintain orthogonality. The problem also worsens when the subspace 

develops a good approximation of a particular eigenvalue. Without modification, the 

Lanczos method can lead to dubious eigenvalue estimates. In the 1970s, Paige and 

Parlett determined the necessary modifications to the Lanczos method for addressing 

the loss of orthogonality due to floating point arithmetic [39, 44]. The knowledge 

and insight developed for Lanczos set the stage for Saad to introduce the restarted 

Arnoldi method as a means of calculating a few eigenvalues of a non-Hermitian matrix 

in 1980 [46]. 

The impact of Saad's paper on the restarted Arnoldi method was threefold. First, 

Saad provided an alternative eigenvalue algorithm. At the time, subspace iteration 

(then also known as simultaneous iteration) was the prominent iterative method for 

determining several eigenvalues of a non-Hermitian matrix. Subspace iteration is a 

generalization of the power method to subspaces. Unlike the original Arnoldi method, 

which requires ever larger subspaces and hence more memory and computation to 
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improve eigenvalue approximations, the restarted Arnoldi method (like subspace it­

eration) works to refine an approximate eigenspace. 

Second, Saad provided the first a priori convergence bounds for the approximation 

of eigenvectors of non-Hermitian matrices from a Krylov subspace. Assuming that the 

eigenvalues of A are simple and that the starting vector represented in a normalized 

eigenvector basis { Xj} is v = l:f=1 G.jXj, then provided that ai =I= 0, the norm of the 

residual of the projection of the eigenvector Xi onto the Krylov subspace is bounded 

as 

min . max lp(..\i)l, 
pElPk J=l,2, ... ,N 

(1.5) 
p(Ai)=l j#i 

where 8i = 2::f=1.Hi lail/lail· Though presented in terms of a projection, the bound 

gives a measure of the angle between an eigenvector and a Krylov subspace. The 

bound involves a min-max problem for determining a polynomial that is small on 

the unwanted eigenvalues. The 8i factors capture the nonnormality of the matrix, as 

evident from the conditioning of the eigenvector basis. Assuming v is normalized, the 

G.j can be large if some of the eigenvectors Xj are nearly linearly dependent. 

Last, Saad motivated the need for restarting the Arnoldi method and proposed 

a technique to do so. To restart the Arnoldi method, one must pick a new starting 

vector, v+, for the Krylov subspace. Saad suggested that this new starting vector 

be a weighted linear combination of the Ritz vectors, with the weights chosen based 

on how well the Ritz vectors approximate eigenvectors. As every vector in a Krylov 

subspace can be represented as a polynomial in the matrix times the starting vector, 

Saad's approach to restarting is equivalent to selecting the roots, f.ti, of a polynomial, 

p 

1/l(z) = IT (z- f.ti)· 
i=l 
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Hence the new starting vector is 

v+ = 'lji(A)v. 

In the years following his introduction of the restarted Arnoldi method, Saad used 

the polynomial representation of vectors in a Krylov subspace to suggest that the 

restart polynomial, 'ljl, should be small on the unwanted portion of the spectrum. 

Such a choice will amplify the components of the starting vector in the direction of 

desired eigenvectors. In the case that the spectrum is real, if one can determine an 

interval containing only the unwanted eigenvalues, then a Chebyshev polynomial can 

be constructed to be uniformly small on the interval and large everywhere else [48]. 

Chebyshev polynomials are optimal for intervals; i.e., any other polynomial on the 

same interval would not be as uniformly small on the interval. For complex spec­

tra, if there exists an ellipse containing the unwanted eigenvalues but not the desired 

ones, then a Chebyshev polynomial can be constructed to be small on the ellipse. In 

this case the Chebyshev polynomial is asymptotically optimal for the ellipse: as the 

polynomial degree increases, the Chebyshev polynomial will improve asymptotically 

at the same rate as the optimal polynomials for the ellipse. In practice there may not 

exist an ellipse that contains only the unwanted eigenvalues. In this case, the problem 

of constructing a polynomial that is small on a region containing the unwanted eigen­

values becomes difficult; one could use another method such as conformal mapping 

to construct the restart polynomial [27, 53]. The main difficulty in this approach to 

constructing restart polynomials is estimating the location of the unwanted eigenval­

ues. The goal of the Arnoldi method is to compute solely the wanted eigenvalues, 

but in following the recipe above, one has to determine estimates of the unwanted 

eigenvalues as well. This problem remains relevant in analysis and application of the 

Arnoldi method. My work is partly focused on clarifying how reliably Ritz values can 
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be used to approximate the unwanted portion of the spectrum. 

1. 7 Implicitly Restarted Arnoldi with Exact Shifts 

A decade after Saad introduced the Arnoldi method, Sorensen [52] formulated the 

implicitly restarted Arnoldi method. Explicit restarting of the method involves ei­

ther directly applying the restart polynomial to the starting vector to generate the 

starting vector for the next iteration, or building v+ as a linear combination of Ritz 

vectors. The new starting vector is then used to generate a basis for the new Krylov 

subspace, as well as the projection of the matrix onto that subspace. In floating 

point arithmetic, explicit restarting is numerically unstable. The direct application 

of the matrix polynomial to a vector can lead to rounding errors. By interpreting 

the Arnoldi method as a truncated version of the QR eigenvalue iteration, Sorensen 

developed a numerically stable method of implicitly applying the restart polynomial 

using the tools and concepts from the QR eigenvalue iteration, including implicit 

shifting and deflation. In addition to putting the restarted Arnoldi method into a 

reliable numerical form, Sorensen proposed a method for picking the roots of the 

restart polynomial, and showed that this approach, under mild assumptions, gives a 

convergent algorithm for Hermitian matrices. 

To determine a restart polynomial, one must have some knowledge of the location 

of wanted and unwanted eigenvalues. Unless one has some prior knowledge of the 

system, this information has to be determined adaptively as the algorithm proceeds. 

With prior knowledge one can construct a fixed restart polynomial. In this case, the 

Arnoldi method is similar to applying the power method with a fixed polynomial. 

Not surprisingly, Sorensen showed that the convergence criteria for Arnoldi with a 

fixed restart polynomial is similar to the convergence criteria for the power method. 
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Fixed restart polynomials are rarely used in practice, but they are useful in theory 

for establishing convergence bounds. For a more potent practical algorithm, Sorensen 

proposed using some of the Ritz values as the roots of the restart polynomial. De­

pending upon the type of eigenvalue desired (largest/smallest magnitude, real part 

or imaginary part), the Ritz values are sorted, and a fixed number of the least desir­

able Ritz values at each iteration are used as roots for the restart polynomial. These 

Ritz values are referred to as exact shifts. Using Cauchy interlacing, Sorensen showed 

that for Hermitian matrices the implicitly restarted Arnoldi method with exact shifts 

would converge. As Hermitian matrices are encountered in numerous applications, 

Sorensen's proof validated the utility of the implicitly restarted Arnoldi method for 

determining eigenvalues of Hermitian matrices. 

1.8 Convergence of Restarted Arnoldi for Non-Hermitian 

Matrices 

Non-Hermitian eigenvalue problems arise frequently, and the use of the implicitly 

restarted Arnoldi method with exact shifts to solve them is common practice. Though 

the behavior of Ritz values for non-Hermitian problems is poorly understood, exact 

shifts perform well in practice. This thesis will identify and characterize the Ritz 

values of particular non-Hermitian matrices for which the restarted Arnoldi method 

will converge. This is a difficult problem because, for one, there are matrices and 

starting vectors for which the method will fail to converge in exact arithmetic; the 

restart polynomial annihilates the components of the starting vector in the direction 

of desired eigenspaces [20). Matrices that allow for this type of failure are character­

ized by having wanted eigenvalues that lie in the field of values of the portion of the 
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matrix associated with the unwanted eigenvalues. Understanding Ritz value behavior 

alone is not sufficient to establish convergence, as the starting vector must be properly 

oriented to guarantee convergence. Even for the case of normal non-Hermitian rna-

trices with perfectly conditioned eigenvalues, little is known about what is necessary 

for convergence. 

Various lines of research have developed for understanding convergence of the 

restarted Arnoldi method. The most direct attacks on the problem focus on bounding 

convergence of the method using optimal shifts for some region of the complex plane 

containing the unwanted eigenvalues but not the desired eigenvalues [6, 7]. The 

convergence of the restarted Arnoldi method is best measured by calculating the 

containment gap, which is the sine of the largest canonical angle between the current 

subspace and the desired subspace: 

. llv-wll 
8(W, V) = maxmm II II , 

wEW vEV W 

where typically W will be an invariant subspace and V some approximating subspace 

(possibly of unequal dimensions). Often the analysis of the Arnoldi method is con-

cerned with approximating a single eigenvector w, in which case the containment gap 

reduces to 

c)( V) = II(!- Pv)wll 
w, llwll ' 

where Pv is the orthogonal projector onto the subspace V. In this light, Saad's original 

work for Arnoldi bounds precisely the containment gap; see equation (1.5). These 

approaches involve seeking polynomials that are small not only on the spectrum but 

also on larger sets that contain the spectrum, such as a pseudospectrum. 

The main result [7] on the convergence of restarted Arnoldi bounds the contain-

ment gap between a desired invariant subspace U9 and the restarted Krylov subspace 
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as 

The first term C1(A, v) accounts for the starting vector v. The second term C2(A, Ob) 

accounts for the nonnormality of A associated with the unwanted eigenvalues con-

tained in the complex set nb· The last term, where W is product of all the restart 

polynomials and a.9 is a polynomial with roots at the wanted eigenvalues, captures 

the convergence behavior associated with constructing restart polynomials that are 

small on a set containing the unwanted portion of the spectrum and yet large on the 

wanted portion of the spectrum. Using potential theory, the last term can be shown 

to decay like pk for some p E (0, 1). The disadvantage of this approach is that, though 

it does bound the rate of convergence and essentially identifies what would be ideal 

behavior for exact shifts, it does not provide insight into what is necessary for such 

ideal behavior to occur with exact shifts in practice. By localizing Ritz values, this 

thesis provides insight into why exact shifts should exhibit such behavior. 

1.9 The Inverse Field of Value Problem 

In 2008 Frank Uhlig [59] offered an interesting approach to studying Ritz values. 

Uhlig posed the inverse field of values problem (iFOV): for A E <Cnxn and z E W(A) 

construct a unit vector v E <Cn such that z = v* Av. Due to the convexity of the field 

of values, the problem is always solvable, and Uhlig offered a complicated algorithm 

for solving it based upon concepts from geometric computing. In this work we provide 

a simpler algorithm for solving the inverse field of values problem, and then propose 

a generalization that is much more relevant to understanding Ritz values. 

So little is known about the behavior of Ritz values for non-Hermitian matrices 

that much effort must be invested simply in characterizing those {01 , ... , Ok} c W(A) 
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that may be observed via Arnoldi eigenvalue estimates or any orthogonal restriction 

of a matrix. Such questions have the flavor of Uhlig's iFOV, and hence lead to what 

we call the inverse field of values problem for k Ritz values (iFOV-k): for A E cnxn 

and {z1 , ... , zk} c W(A), is it possible to construct aVE cnxk with V*V =I such 

that a(V*AV) = {z1 , .. . ,zk}? iFOV-k is much more difficult than Uhlig's problem: 

simply characterizing when the problem is solvable is nontrivial. Much of the work in 

this thesis consists of solving iFOV-k for particular matrices, and illustrating criteria 

that sets of complex values must satisfy to be a set of Ritz values. 

Other authors have made different strides in understanding Ritz values. Inspired 

by results from Lie algebra, Shomron, Parlett and Strang (42, 50] consider the set of 

matrices having the same Ritz values, where by Ritz values they mean the eigenvalues 

of all principal submatrices, the n square matrices formed from columns 1, ... , i for i = 

1, ... , n. Parlett and Strang's Ritz values consist of n(n+ 1)/2 complex numbers. One 

feature of their work is a parametrization of all, not necessarily Hessenberg, matrices 

that share the same Ritz values. They discussed Lie algebra methods for moving 

between these different matrices; however, as shown by Smit [51], if we are only 

interested in Arnoldi and Hessenberg matrices, then diagonal similarity is all that is 

needed to generate all Hessenberg matrices that share the same Ritz values. Tebbens 

and Meurant (19] noted that, as a consequence of these results, the convergence of the 

Arnoldi method for eigenvalues can be arbitrary: there exist A E cnxn for which the 

Ritz values, eigenvalues of Hk, bear no resemblance to the eigenvalues of A up until 

the nth step of the Arnoldi method. This is similar to a result of Greenbaum, Ptak 

and Strakos [22], which says that any residual curve for GMRES is possible wfor a 

matrix with any specified spectrum. The primary use of such results is theoretical; 

they tell us about what is possible for all matrices, rather than for any given A that 
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we wish to study. The problem of prescribing Ritz values is much harder when the 

Ritz values must come from a particular matrix, as in iFOV-k. As these results are 

all constructive, they can be useful for determining necessary conditions for restarted 

Arnoldi convergence, through the construction of specific examples. 

In this thesis I will solve completely iFOV-2 for a 3 x 3 Jordan block and for all 

3 x 3 non-Hermitian normal matrices. I will show that even for the most nonnormal 

matrix, a Jordan block, the Ritz values can be "localized", in the sense that repeated 

Ritz values cannot occur throughout the entire field of values. I will show how this 

localization of Ritz values can be generalized to all matrices. For the 3 x 3 non­

Hermitian normal matrix, I show that using fundamental matrix properties one can 

significantly restrict Ritz values for general normal matrices. 

1.10 Ritz Values and Restarted Arnoldi Convergence 

This thesis will identify criteria that give rise to localization of Ritz values, particularly 

Arnoldi Ritz values, for non-Hermitian matrices. In the Hermitian case, the classical 

interlacing result of Cauchy [44, §10.1 J restricts the location of Ritz values with respect 

to the spectrum. The optimality of Arnoldi Ritz values gives rise to the separation 

of Ritz values by eigenvalues. These properties restrict the set of possible Arnoldi 

factorizations. Toward establishing similar properties for the non-Hermitian case, this 

thesis utilizes criteria for the solvability of iFOV-k to characterize the Ritz values. 

The results of this thesis will allow for further analysis of methods that rely upon 

Ritz values for eigenvalue approximation. A better understanding of the behavior of 

Ritz values for non-Hermitian matrices can potentially aid in the analysis of deflated 

and augmented Krylov techniques, such as Morgan's GMRES-DR algorithm [14, 41]. 

These methods use information about eigenspaces derived from Ritz pairs to improve 
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the rate of convergence. In the standard restarted GMRES algorithm, at each restart 

information associated with certain eigenvalues (such as those closest to the origin) 

must be rediscovered before the algorithm can continue to make progress (49]. By 

supplementing the method with Ritz value information from previous steps, the time 

spent rediscovering the troublesome eigenvalues can be minimized. The question is, 

How well can one expect the Ritz values to approximate these eigenvalues? 

This thesis will also establish criteria that are sufficient for convergence of the 

restarted Arnoldi method for certain scenarios in which the wanted eigenvalues are 

not in the field of values of the portion of the matrix associated with the unwanted 

eigenvalues. For this class of matrices, the type of failure demonstrated by Embree 

cannot occur (20]. The results of this thesis will also provide a different criteria for 

ruling out this type of failure. 

Without loss of generality, the possible Ritz values will be characterized using the 

Schur decomposition, an invaluable tool in understanding many different eigenvalue 

problems. In 2001, Stewart generalized the notion of an Arnoldi decomposition, in­

troducing what he called K rylov decompositions (55]. With this generalization and 

the Schur decomposition, he introduced a Krylov-Schur algorithm for determining 

eigenvalues. The algorithm is equivalent to the Arnoldi method, but the resulting 

factorization is upper triangular rather than upper Hessenberg, and allows for a sim­

pler application of the exact-shift restart polynomial. 

To the set of possible Krylov-Schur factorizations for a particular matrix there 

corresponds the set of equivalent matrices that can generate the same factorizations. 

Understanding the behavior of Ritz values for Arnoldi is largely about understand­

ing the possible Krylov-Schur factorizations for a given matrix. However, Tebbens 

and Meurant (19] have shown that any sequence of Ritz values can be realized by 
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Arnoldi for some matrix. Thus in this thesis care is taken in utilizing this approach 

by respecting aspects of the original matrix: the field of values, pseudospectra or 

normality. 

1.11 Summary of Contributions 

The contributions of this thesis are: 

1. an improved algorithm [12] for the inverse field of values problem (Chapter 2); 

2. proof that the covering number of a point z E W(A) is always n; 

3. bounds for the Ritz values of general matrices (Section 3.1); 

4. a complete description of the Ritz values for a 3 x 3 Jordan block (Section 3.2); 

5. a complete description of the Ritz values for a 3 x 3 normal non-Hermitian 

matrix (Section 3.3); 

6. sufficient conditions for the convergence of the restarted Arnoldi method based 

on the bounds for Ritz values derived in Section 3.1 (Chapter 4). 
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Chapter 2 

The Inverse Field of Values Problem 

Given z E W(A), a unit vector x such that z = x* Ax is a Ritz vector for z. The point 

z and a corresponding Ritz vector x are referred to as a Ritz value/Ritz vector pair. 

A preliminary step toward understanding how Ritz values must distribute themselves 

throughout W(A) involves the inverse field of values problem (iFOV) recently pro­

posed by Uhlig [59]: given a point z E W(A), determine a unit vector x such that 

z = x* Ax. Due to the convexity of the field of values, the inverse field of values prob­

lem is always solvable. To solve such problems, Uhlig proposed an algorithm that 

begins by generating points in the field of values from random unit vectors, in the 

hope that these Ritz values surround the desired z. Uhlig's algorithm then iteratively 

refines these preliminary Ritz vectors to better approximate a Ritz vector for z. Due 

to the difficulty of encircling the desired point using Ritz values generated by random 

vectors, the algorithm does not always converge to the desired accuracy, as shown 

in Figure 2.5. In posing the inverse field of values problem, Uhlig hoped to derive 

some insight into the structure of the field of values using the notion of the covering 

number, the number of linearly independent Ritz vectors for a particular point in 

the field of values. Uhlig conjectured that the covering number of any point in the 

interior of the field of values for A E <Cnxn must be n. 

In this chapter I present a simple algorithm for solving the inverse field of values 

problem, work that appeared in [12]. My algorithm is inspired by the standard 

algorithm used to determine the boundary of the field of values of a matrix [32]. I 
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prove that indeed the covering number is n for any point in the interior of the field of 

values. Finally, I propose a more general inverse field of values problem that involves 

the construction of subspaces of dimension greater than one that yield Ritz values 

corresponding to several points in W(A). This problem provides a context for the 

analysis in the next chapter. 

2.1 Main Ideas 

In this section I state two results that are essential for the algorithm that follows. In 

two scenarios the inverse field of values problem can be solved immediately: (1) two 

dimensional matrices; (2) the point z is in the convex hull of three Ritz values, zi, for 

which the corresponding Ritz vectors, Xi, are known. In both scenarios a Ritz vector 

x for z can be computed exactly. Both results follow directly from the argument used 

to prove that the field of values is convex [31, Ch.1]. 

The solution for two dimensional matrices follows from the proof of Lemma 1.3.1 

in [31]. Without loss of generality, one may assume that the trace of A is zero. (If 

the trace were nonzero one would need only subtract (tr(A)/2)1 from A and tr(A)/2 

from z.) Furthermore, one may assume that eigenvalues of A are real. (To accomplish 

this, one need only multiply both A and z by e-i'I/J where the eigenvalues of A are 

±I.Aiei'I/J.) With this assumption, the eigenvalues sum to zero, and may be denoted as 

+.A and -.A. As in [31, §1.3], one may determine a unitary matrix Q such that 

..... [0 a] Q* AQ = A = {3 0 , (2.1) 

where a and {3 are both real and nonnegative and a ;:::: {3. Note that z is unchanged, 

as the field of values is invariant under unitary similarity transformations. As any 
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2 x 2 matrix can be shifted, scaled and unitarily transformed into this form, if we can 

solve the inverse field of values problem for A, then we are done. 

Without loss of generality, represent the unit vector x E <C2 as x = [cos(O); eii/J sin(O)], 

giving 

x* Ax= sin(20) ((a+ (J) cos(¢)+ (a- (J)i sin(¢)), 
2 

from which one can see that the field of values of A is an ellipse in the complex plane 

centered at the origin with major axis a+ (J and minor axis a- (J, see Figure 2.1. 

Given z E W(A), the 0 and 4> that specify the Ritz vector x must satisfy 

( ,.~..) _ (a+ (J)Im(z) 
tan 'f' - (a- (J)Re(z)' 

sin(20) = 21zl . 
i(a + (J) cos(¢)+ (a- (J) sin(¢)1 

In terms of the coordinates for A, the Ritz vector is Qx. Thus the inverse field of 

values problem is solved for two-dimensional matrices. Note that the solution need 

not be unique, i.e., for z in the interior of W(A), there exist linearly independent Ritz 

vectors, derived from 0 and 1r 12 - 0 for 0 =/:- 1r I 4. (When 0 = 1r I 4, z is a point on the 

boundary, and its Ritz vector is unique provided that the ellipse is nondegenerate. 

If a = (J, then the field of values of A is a line segment connecting the eigenvalues, 

and the solution is unique only for the end-points, which must be the eigenvalues. If 

a = (J = 0, then A is the zero matrix, so the field of values is just a point and any 

unit vector x E <C2 will do.) 

The procedure above offers a straightforward solution to solving iFOV for a 2 x 2 

matrix. The approach also offers insight as to the uniqueness of such solutions. 

Other authors [16, 40] have usedd a similar method, also see [31, p. 25, Problem 10]. 

The approach avoids the reduction to the form (2.1), which would be an expensive 

reduction were we not dealing with 2 x 2 matrices. The idea is as follows, using 

the reasoning above for A and A. Let A E cnxn with zero contained in the interior 
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of W(A). Suppose that we have x, y E <Cn and a, b E 1R such that x* Ax = a and 

y* Ay = b, a < 0 < b. Suppose that we wish to construct a Ritz vector for 0; such a 

vector is known in the literature as an isotropic vector. Consider the vector valued 

function v(t, ¢) = x + tei<f>y fortE 1R and¢ E [0, 21r]. Then 

where the coefficient of t is real if ¢ = - arg(y* Ax - y* A* x). For this choice of ¢, 

v(t, ¢)* Av(t, ¢) is a parabola in t with real coeffi.cents and unique roots, which may 

be used to determine a Ritz vector for 0 via v(t, ¢)/llv(t, ¢)11· Note that though this 

approach is formulated for a matrix of arbitrary size, it only makes use of knowledge 

of the action of the matrix upon the two dimensional subspace spanned by x and y. 

Figure 2.1 : On the left, an ellipse corresponding to the field of values of a general 
2 x 2 matrix. On the right, an illustration of the procedure for determining a Ritz 
vector for a point located in the convex hull of three points in W(A). 

For the second scenario, we first recall why convexity of the field of values for 2 x 2 

matrices implies the same for all larger matrices. Given any two unique points in the 
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field of values, ZI and z2 , and their corresponding Ritz vectors, XI and x2 , one can 

construct a matrix V E cnx 2 with orthonormal columns such that xi, x2 E Range(V). 

Then the field of values of the restriction of A to Range(V), H = V* AV, must be 

contained in the field of values of A. By construction, both XI, x2 c Range(V), hence 

the field of values of H must contain both ZI and z2 • Since the field of values of a 2 x 2 

matrix is an ellipse and hence convex, W(H) as well as W(A) must contain all convex 

combinations of ZI and z2 • Since ZI and z2 were arbitrary, W(A) must be convex. 

Thus the solution to our first scenario indicates that if we are given two values zi and 

z2 in the field of values of A, then we can determine vectors that generate any point 

that is a convex combination of ZI and z2 • 

Now suppose z is in the convex hull of three points, Zi E W(A), for which we have 

the corresponding Ritz vectors Xi. The convex hull of the three points is a (possibly 

degenerate) triangle. To apply the result for the 2 x 2 case, we would need z to fall on 

a segment with end-points for which we have- or can compute- corresponding Ritz 

vectors. Without loss of generality, take ZI as one of the end-points for this proposed 

line segment. Let the other end-point of the line segment, w, be the intersection of the 

line through z2 and z3 with the line through zi and z. As w is a convex combination 

of z2 and z3 , we can determine a corresponding Ritz vector for w. Now since z is a 

convex combination of w and ZI, we can determine a Ritz vector for z, as illustrated 

in Figure 2.1. 

Given the results above, all that remains is to specify a way to generate a triangle in 

W(A) that contains the desired value z. For this we consider Johnson's algorithm for 

the numerical determination of the field of values of a general complex matrix [31, 32]. 

Johnson's method constructs an approximation to the field of values by determining 

the largest and smallest eigenvalues of H0 = (ei0 A+ e-iO A*)/2, the Hermitian part of 
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eie A, for various values of 0. The largest and smallest eigenvalues of He provide sharp 

bounds on the extent of the field of values in the direction () in the complex plane. 

These sharp bounds together form an outer approximation to the field of values, i.e., 

a polygon that contains W(A) and whose sides intersect points on the boundary of 

W(A). This outer approximation can be used to identify points that fall outside the 

field of values. The corresponding eigenvectors of He generate points on the boundary 

of W(A). These points, taken together, yield an inner approximation to W(A); see 

Figure 2.2. By systematically selecting a series of angles(), one can construct polygons 

that, to a desired accuracy, contain the desired value z. This is the substance of the 

algorithm we describe in Section 2.3. 

Figure 2.2 : Illustration of Johnson's algorithm for drawing the boundary of the fields 
of values. The boundary of the field of values (black line) and an inner and outer 
approximation (grey) of a 4 x 4 matrix from He for () = {0, 1r /3, 27r /3}. 

2.2 Covering number 

Before detailing the algorithm, consider a conjecture posed by Uhlig [59]. 
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Definition. For a matrix A E cnxn and a point z E W(A) c C, the maximal 

dimension of a linearly independent set of complex unit vectors x with x* Ax = z is 

the covering number of (A, z). 

Having shown that the Ritz vector that generates a point in the interior of W(A) 

for A E C 2 x 2 is not unique, I have demonstrated that in the 2 x 2 case, the covering 

number of any point in the interior of W(A) is two. 

Uhlig introduced the covering number as a tool that might provide insight into the 

structure of the field of values, particularly for nonnormal matrices; however, based 

on numerical observations he conjectured that the covering number is n for all points 

in the interior of the field of values, which would imply that this initially appealing 

idea yields no further insight into the structure of the field of values. My algorithm 

can be used to prove that his conjecture indeed holds. 

Theorem 2.1 Let A E cnxn and suppose z is in the interior of W(A). (Note that if 

W(A) is a line segment, then by interior we mean that z is not an end-point of the 

line segment.) Then the covering number of (A, z) is n. 

Proof. Consider any point z in the interior of W(A). By definition, all points in 

W(A) have at least one Ritz vector. Suppose that we have a set of k < n linearly 

independent Ritz vectors for z. We will show that we can always find another linearly 

independent Ritz vector. Ask< n, there exists a unit vector u that is orthogonal to 

the set of k linearly independent Ritz vectors for z. Assume that the point a E W(A) 

generated by u is not equal to z, for otherwise u would be a Ritz vector for z. Since 

z is in the interior of W(A) and W(A) is convex, there always exists some bE W(A), 

b =/= z, a, for which z is a convex combination of a and b. Since b E W(A), it must 

have some Ritz vector, u. Now z must be in the interior of the field of values of the 
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2 x 2 matrix corresponding to the restriction of A onto the span { u, u}. Thus from 

our argument in Section 2.1, we find that there exist two linearly independent Ritz 

vectors for z such that u is in their span. At least one of these vectors must have 

a component in u, thus giving an additional Ritz vector for z linearly independent 

from the rest. Hence we have at least k + 1 linearly independent Ritz vectors for z. 

As k < n and z were arbitrary, the covering number for any point in the interior of 

the field of values must be n. • 

Note that Uhlig's conjecture differs from the problem of determining how many 

distinct Ritz vectors generate a given z E W(A). There are generally at least 2n- 4 

degrees of freedom available in specifying a Ritz vector for a given z. This may be seen 

by breaking up the Rayleigh quotient x* Ax in terms of the real and imaginary parts 

of both A and x, and then requiring that x be a unit vector with its first nonzero 

entry being real and nonnegative. Hence there are in general infinitely many Ritz 

vectors for a given z E W(A). Theorem 2.1 shows that this set of infinitely many 

Ritz vectors always spans en. Note however that the set of Ritz vectors for a point 

z E W(A) is not a subspace, i.e. a nontrivial linear combination of two Ritz vectors 

for z will in general not give another Ritz vector. Take for example the 2 x 2 case for 

a point in the interior. If the Ritz vectors for a point z E W(A) formed a subspace 

that would imply that the field of values consists of only z and A = zl. 

2.3 Algorithm 

Using the results above we can specify an algorithm for solving the inverse field of 

values problem. Given a matrix A E cnxn and some z E C, let c > 0 denote some 

tolerance (for example c = 10-16 IIAII for a double precision computation). 

I. Determine the leftmost and rightmost eigenvalues of H0 for () E {0, ?T"/2}. The 
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resulting outer approximation will be a rectangle with sides parallel to the real 

and imaginary axes. If z is inside the outer approximation, then continue; 

otherwise conclude z i. W(A). 

II. If the height or width of the outer approximation is less than c:, then W(A) is 

approximately either Hermitian or skew-Hermitian (or a complex shift of one of 

these). If both the height and width of the outer approximation are less than 

c:, then the field of values is approximately a point. In either of these cases, one 

can easily determine a Ritz vector for z; otherwise, continue. 

III. Using eigenvectors for the leftmost and rightmost eigenvalues of He for () -

{0, 7r /2}, determine an inner approximation to W(A). The inner approximation 

will be a quadrilateral with vertices on the boundary of W(A). 

IV. Check if z lies in the inner approximation. If so, determine a vector that exactly 

generates z as described in Section 2.1, and successfully terminate. Otherwise, 

determine the side of the inner approximation to which z is closest. 

V. Compute z, the closest point to z from the inner approximation. If J:Z- zl < c:, 

then compute the corresponding Ritz vector for z, accept this vector as a suitable 

Ritz vector for z, and successfully terminate. 

VI. Update the inner and outer approximations by determining the largest eigen­

value and corresponding eigenvector of He, where() is the direction perpendicu­

lar to the side of the inner approximation to which z is closest. If this does not 

produce a point on the boundary of W(A) that is not contained in the previous 

inner approximation, then z i. W(A). 
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VII. Check if z is in the new outer approximation. If so, go to step IV; otherwise, 

z f{. W(A). 

Figure 2.3 gives an example of this algorithm converging in one iteration. Figure 2.4 

gives a similar example requiring four iterations. 

2 

0 

-2 

-2 0 2 4 

Figure 2.3 : Eigenvalues ( x ), field of values boundary (solid line) and first inner 
and outer polygonal approximations (dashed, dotted) for Matlab's Grear matrix 
(gallery ( 'grcar' , 32)). In this case z (denoted by the *) falls inside the inner 
approximation, and an exact Ritz vector can be determined immediately. 

Note that steps IV-VII are repeated until the inner approximation is within c of 

z, or until the outer approximation does not contain z. This algorithm only updates 

the approximation to the field of values in the direction of z. To determine if z lies in-

side a particular polygonal approximation, there exist many efficient algorithms from 

computational geometry; see, e.g., [17]. In most cases the algorithm will terminate 

with an exact Ritz vector in step IV after only a few eigenvalue computations. 

The algorithm above does not utilize the fact that the field of values of a 2 x 2 

matrix is an ellipse. This property suggests that with the points and the corresponding 

Ritz vectors for the inner approximation, one may be able to exactly determine Ritz 

vectors for some points outside the inner approximation. This fact can be utilized 

with a modification of step V. 
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(b) Iteration 2 
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(d) Iteration 4 

Figure 2.4 : Eigenvalues ( x), field of values boundary (solid line) and first inner and 
outer polygonal approximations (dashed, dotted) for four iterations of the algorithm 
for Matlab's Grear matrix (gallery(' grcar', 32)) for z = 1 + 3i. At the fourth 
iteration, z (denoted by *) is in the inner approximation and a Ritz vector that 
exactly gives z can be determined. 

V(a) Check if z is in the ellipse corresponding to the field of values of the restriction 

of A to the subspace spanned by the two Ritz vectors associated with the end 

points of the side of the inner approximation closest to z. If so, determine a 

vector that exactly generates z. Otherwise, compute :Z, the closest point to z 

from the ellipse. If I:Z- zi < £, then compute the corresponding Ritz vector for 

z, accept it as a suitable Ritz vector for z, and successfully terminate. 
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Determining the closest point from an ellipse, a problem first solved by Greek geome­

ter Apollonius of Perga, involves solving a quartic polynomial [25]. Depending on 

the nature of the ellipse, this modification could in some case reduce the number of 

eigenvalues computations required by one. 

2.4 Discussion 

The proposed algorithm differs from Uhlig's in several ways. Our algorithm is nearly 

deterministic; the only lack of determinism occurs if the extreme eigenvalues of Ho 

have multiplicity greater than one, which is only possible when the boundary of 

the field of values contains a line segment. Otherwise, for a given z the algorithm 

will always return the same Ritz vector. A method for finding other Ritz vectors is 

suggested in the proof of Theorem 2.1. At the cost of determinism, Uhlig attempts to 

minimize the number of eigenvalue computations required by using random vectors 

to generate points in the field of values. If the randomly generated points sufficiently 

surround the desired point, then Uhlig's algorithm refines a quadrilateral that contains 

the desired point. Using great unit circles in en that contain pairwise Ritz vectors 

associated with the vertices of the quadrilateral, he refines his quadrilateral using 

the images of these great circles under the map x 1--+ x* Ax, which happen to be 

ellipses. Points on these ellipses are determined numerically using equally spaced 

vectors on the great circle. I have demonstrated how one could use the Ritz vectors 

for the quadrilateral to exactly solve the problem, rather than iterate as in Uhlig's 

approach. We utilize ellipses associated with subspaces spanned by pairs of Ritz 

vectors. For these ellipses we can exactly generate any point in the interior as well 

as on the boundary; thus we are able to determine Ritz vectors for any point in the 

quadrilateral. Were Uhlig's algorithm to take full advantage of these ellipses, it could 
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potentially be faster and more accurate, particularly for points not near the boundary 

of the field of values. 

As the Rayleigh quotients associated with random vectors tend to lie in the interior 

of W(A), Uhlig's algorithm has difficulty finding Ritz values that surround z when z 

is near the boundary of W(A). Also, as Uhlig observed, this problem becomes more 

acute for higher dimensions. If the randomly generated points do not sufficiently 

surround the desired point, Uhlig's algorithm utilizes the eigenvectors of Ho for no 

more than six distinct (}. The (} are chosen in much the same way that our algorithm 

determines a polygon that contains the desired point. Uhlig's concern in limiting the 

number of eigenvalue computations that must be performed is that such calculations 

require O(n3 ) operations, whereas the refinement process only requires matrix vector 

operations of complexity O(n2). Our algorithm performs a minimum of two eigenvalue 

computation and could potentially perform more than six, depending upon the nature 

of the boundary of W(A). To address this concern, in our implementation of the 

algorithm we allow for the use of Matlab's sparse eigensolver, eigs (which uses the 

ARPACK software [35]). In this case, for (} E {0, 1r /2}, a total of four calls must be 

made to eigs to determine the extreme eigenvalues of the H 0 . For additional angles 

utilized in step VI, only one call to eigs is necessary, as only the largest real eigenvalue 

is required. The advantage of using random vectors versus eigenvalue computations to 

generate a quadrilateral that contains the desired point will vary with the size of the 

matrix and the distance of z from the boundary of W(A). Even with the concern for 

the number of eigenvalue computations required, our algorithm, using Matlab's dense 

eigensolver eig, often performed much faster for points throughout the majority of 

W(A) for A of a variety of dimensions. Implementations of Uhlig's method and our 

algorithm are publicly available [10, 58]. 
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Since the algorithm in Section 2.3 was published in 2010 [12], several other authors 

have refined this approach to yield slight improvements in certain situations. All 

these other algorithms follow from my observation that the inverse field of value 

problem can be solved exactly in certain scenarios. As mentioned in Section 2.1, 

other authors [16, 40) have made some savings in computation by not resorting to 

the form in equation (2.1). The savings are only significant when working with 

small matrices. These same authors have also attempted to minimize the number 

of eigenvalue computations performed. Depending on the matrix and the desired 

Ritz value, when successful, such attempts can solve the problem as accurately and 

as quickly as my algorithm. However there are always situations, particularly with 

Ritz values near the boundary, in which several eigenvalue computations cannot be 

avoided. 

A comparison of run-times and errors for a Jordan block and a circulant shift, 

0 1 

0 1 

0 

and 

0 1 

1 

0 1 

0 

are shown in Figure 2.5. These matrices were chosen to illustrate extremes: a matrix 

with a large departure from normality, and a normal matrix for which the boundary 

of W(A) contains line segments. For the Jordan block, one can see that with the 

exception of points on the boundary, our algorithm is nearly an order of magnitude 

faster for points throughout the field of values. For the circulant matrix, our algo­

rithm clearly performs faster for all points not near the boundary. The error plots in 

Figure 2.5(e) shows that for Uhlig's algorithm, the error (the difference between the 

Rayleigh quotient from the computed Ritz vector and the desired z) varies over ten 
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orders of magnitude throughout the field of values, with the majority of the errors 

of the order 10-12 . The errors for my algorithm as shown in Figure 2.5(f) are much 

more uniform, varying only an order of magnitude about 10-14 . (These computations 

set the tolerance of our algorithm to w-s and use a built-in tolerance for Uhlig's of 

10-12 .) These results are typical of a range of test cases we have investigated. The 

patterns seen for my algorithm are as one would expect: run-time depends on the 

number of eigenvalue computations performed, with points near the boundary tak­

ing longer; errors are more or less uniform with some loss of accuracy due to small 

angles encountered for points near the boundary of the inner approximation. The 

patterns for Uhlig's algorithm are completely unexpected, and as of yet, unexplained. 

In Figure 2.5(a), there are regions for which it takes longer to compute a Ritz vector; 

points in the lower right quadrant inexplicably require more time. There are similar 

features, though not as pronounced, in Figures 2.5(c) and 2.5(e). 

2.5 A More General Inverse Problem 

The problem we have just solved suggest a much more challenging and interesting gen­

eralization. I propose an inverse field of values problem, iFOV-k, involving multiple 

Ritz values: 

Given z1, ... 'Zk E W(A), does there exist v E cnxk, V*V =I, such that 

the spectrum of V* AV is { z1, ... , zk}, and if so, find such a V. 

Note that the Zi need not be distinct, e.g, one can take z1 = z2• The algorithm in 

this chapter is concerned with iFOV-1. For iFOV-n, the only possible set {zi} is the 

spectrum of A. Even when k = 2, there exist matrices A and pairs {z1 , z2 } c W(A) 

so that no such V exists (e.g., as can be deduced from the Courant-Fischer min-max 
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theorem [30]). The solution to this problem for general k would allow one to study 

how Ritz values distribute themselves throughout the field of values. Such knowledge 

would prove useful for analyzing eigenvalue algorithms such as the restarted Arnoldi 

method, and could suggest a kind of generalization of the Cauchy interlacing theorem 

for non-Hermitian matrices. 

The solution of iFOV-1 might lead one to believe that iFOV-k can be solved using 

a combination of deflation and the solution of k iFOV-1 problems for each zi· To 

demonstrate that this is not the case, consider the n = 4 circulant shift matrix 

0 1 0 0 

0 0 1 0 
A= (2.2) 

0 0 0 1 

1 0 0 0 

Suppose we wish to solve iFOV-2 for ZI = -3. + .3i and z2 = .2 + .3i. To do so, 

we propose to first determine a Ritz vector, VI, for ZI· Thoughts of deflation would 

tempt one to find v2 for z2 - if such a vector exists- in the subspace orthogonal to VI, 

however this would not guarantee that ZI is an eigenvalue of the restriction, H, of A 

onto Range([vi, v2]). Rather, it would only guarantee that ZI, z E W(H). Recall that 

for ZI to be an eigenvalue of H we must require that r = Avi - Bvi be orthogonal 

to VI as well as v2 , see Chapter 1 Section 1.2. Thus, to determine a Ritz vector v2 

for z2 we consider the subspace orthogonal to v1 and Av1 • Forcing v2 to lie in this 

subspace amounts to solving iFOV-1 for A restricted to Null([vi Av1]*). If such a v2 

exists, then restriction of A to the subspace spanned by VI and v2 will have as its 

Ritz values z1 and z2• Figure 2.6 illustrate a success and a failure of this approach 

to the problem. The main issue is that for a given z E W(A), there exist numerous 

Ritz vectors v; however, the field of values of the restriction of A to the subspace 
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orthogonal to [v Av] can vary significantly, depending on the choice of v. 

A similar generalization of iFOV for joint numerical ranges is also not made 

any easier for having a solution for iFOV-1. Given Ai E <Cnxn and zi E W(Ai) 

for i = 1, ... , k determine x E <Cn such that zi = x* Aix. Determining when the 

restarted Generalized minimum Residual(GMRES) method stagnates is a problem 

of this sort [40]: If there exists an x such that x* Aix = 0 for i = 1, ... k- 1, then 

GMRES restarted after k steps can stagnate. Through the use of compound matrices 

the iFOV-k problem may be written as a joint numerical range problem. There are 

two difficulties with solving these sort of problems. First, the x must simultaneously 

solve k iFOV-1 problems. Second, the sets { { x* Aix} : x E <Cn llxll = 1} are in general 

not convex. These issues make solving these problems extremely challenging. 

In the next chapter I will present general bounds on Ritz values that provide 

necessary conditions for iFOV-k to be solvable, then solve iFOV-k for two different 

n = 3 matrices, a Jordan block and a normal matrix. From these solutions we will 

determine criteria that z1 , ... , zk must satisfy in general in order for iFOV-k to be 

solvable for a given A. 
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Figure 2.5 : Comparison of Uhlig's algorithm versus our method for two examples: 
a Jordan block and a circulant shift matrix, both of dimension n = 240. For those 
points, zona 256 x 256 uniform grid for [-1, 1] x [- 1, 1] that fall in W(A), plots (a) 
& (b) and (c) & (d) show run times in seconds. Plots (e) & (f) show log 10 of the error 
in the calculated Ritz vector for z, x* Ax- z, for the circulant shift matrix. From [12]. 
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Figure 2.6 : Illustration of why iFOV-k cannot be solved using iFOV-1. For an= 4 
circulant shift matrix, equation (2.2) , with z1 = - .3. + .3i and z2 = .2 + .3i. On the 
left , the Ritz vector for z1 determines a subspace for which iFOV-2 can be solved. 
On the right , z2 does not lie in the field of values of the restriction of the subspace 
orthogonal to v and Av where v is a Ritz vector for z1 . 
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Chapter 3 

Ritz Values for Non-Hermitian matrices 

For Hermitian matrices, the Cauchy interlacing Theorem gives necessary and sufficient 

criteria for a set of points to be Ritz values from a k-dimensional subspace. Cauchy 

interlacing also ensures that Ritz values cannot cluster near the extreme eigenvalues. 

When using the restarted Arnoldi method to compute eigenvalues, having the shifts, 

Ritz values or other choices, well separated from these eigenvalues allows thee gap 

between the Krylov subspace and invariant subspaces associated with the extreme 

eigenvalues to go to zero with successive restarts. This is understood by construct­

ing optimal polynomials on the remaining portion of the spectrum [6, 7, 8]. For 

restarted Arnoldi with exact shifts, Cauchy interlacing is also sufficient to guarantee 

the convergence of the Ritz values to the extreme eigenvalues [52]. The absence of in­

terlacing for non-Hermitian matrices makes the development of a convergence theory 

for the restarted Arnoldi method difficult. Moreover, the presence of multiple Ritz 

values beyond the rightmost eigenvalue is essential to examples of extreme eigenvalue 

failure [20]. 

In this chapter, I demonstrate bounds for localizing Ritz values of non-Hermitian 

matrices. These bounds provide criteria for the solvability of iFOV-k . The results 

were motivated by efforts to understand iFOV-2 for two particular 3 x 3 matrices: a 

Jordan block and a normal non-Hermitian matrix. For such matrices I will completely 

characterize iFOV-2. For both types of matrices, Ritz values can be localized, i.e., the 

Ritz values cannot cluster throughout the entire field of values. These bounds address 
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the possibility failure associated with field of values of the unwanted eigenvalues 

containing the wanted eigenvalues [20]. 

3.1 A General Bound 

Literature on the Ritz values of non-Hermitian matrices states little beyond the ele­

mentary fact that all Ritz values must lie in the field of values. Perhaps the scarcity of 

results for non-Hermitian matrices stems, in part, from the lack of a natural ordering 

for complex numbers. In the Hermitian case, all the Ritz values are real and there 

is a natural way of ordering them; this is not so for general matrices. Also, without 

interlacing, it is difficult to say which eigenvalue a Ritz value is converging towards. 

Consider the the Ritz values from an Arnoldi decomposition, see equation (1.4). The 

Ritz values are eigenvalues of A+ E with E = -hk+1,kvk+1vZ [54, p. 255]. For the 

Grear matrix, Figure 3.1 shows the curves in the complex plane traced out by the 

eigenvalues of A+ tE for t E [0, 1]. In the figure, the paths of the eigenvalues of 

A + tE nearly cross, or start out near one eigenvalue and yet converge to another. 

In spite of such results, applications often motivate a particular ordering, either 

by real part, imaginary part, or magnitude. Even for such basic orderings, little has 

been said. Here we begin by ordering Ritz values by their real part, a natural ordering 

if one wishes to compute the rightmost eigenvalue. To illustrate the consequences of 

this ordering, take A to be the 3 x 3 Jordan block 

0 1 0 

A= 0 0 1 (3.1) 

0 0 0 

The field of values of A is the closed disk centered at the origin of radius .../2/2 

in the complex plane [24]. Now consider the following simple numerical experiment: 
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Figure 3.1 : Eigenvalues of A + tE for t E [0, 1] and E = h3v3v~ from having 
run two steps of Arnoldi. The circles and the black line indicate the eigenvalues 
and the boundary of the field of values of A , where A is Matlab 's Grear matrix 
(gallery(' grcar', 12) ). The eigenvalues of A+ E take paths to the eigenvalues of 
A that make it difficult to associate the eigenvalues of one to the other. 

generate random two-dimensional (complex) subspaces, compute the Ritz values, and 

sort them by their real parts. Figure 3.2 illustrates the results. The leftmost Ritz 

values appear to cover only a portion of the field of values. In none of these 10,000 

experiments does the leftmost Ritz value fall near the rightmost extent of the field of 

values. Said another way, it does not appear possible to have two Ritz values in the 

far right portion of the field of values. 

Exactly how far to the right the leftmost Ritz value can lie can be bounded using a 

simple trace argument. Consider the matrix V E <[;3 x 2 with V*V = I , and let v E <[;3 

denote the unit vector such that U = [V v] is unitary. Let z 1 and z 2 , with Re z 1 ::; 

Re z2 , denote the Ritz values from V, i.e. , the eigenvalues ofT = V* AV. Also, let 

z3 = v* Av. Since the trace of a matrix is invariant under similarity transformations, 

tr(T) + z3 = tr(U* AU) = tr(A) = 0, 
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Figure 3.2 : Points in the region where left Ritz values of A may lie as determined 
by 10000 random subspaces. The dashed vertical line at Re z = v'2/ 4 indicates the 
bound for Re z1 based on a trace argument. 

as the trace of a matrix is equal to the sum of the diagonal entries, and the diagonal 

entries of A are all zero. Taking the real part and noting that z3 , as a point in the 

field of values of A, must have real part no smaller than -v'2/2, we conclude that 

v'2 Re (tr (T)) = -Re z3 :s; 2 . 

Hence the real part of the trace ofT can be no greater than v'2/2. From the ordering 

of the Ritz values, 2Re z1 :s; Re z1 + Re z2 = Re ( tr(T)); thus, the real part of the 

leftmost Ritz value must satisfy 

v'2 
Rez1 < -. - 4 (3.2) 

This result might at first seem quite jarring; however it is a natural consequence of 

some very fundamental matrix properties. Indeed, the simple bound (3.2) is actually 

just a special case of a far more general analysis based on eigenvalue majorization. 
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First recall that any matrix A E <Cnxn can be decomposed as the sum of its 

Hermitian and skew-Hermitian parts; some call this the Cartesian decomposition [45]: 

A= H +iS where H = (A+ A*)/2 and S = (A- A*)/2. For now, we wish to study 

the Ritz values of A drawn from the subspace Ran(V), where V E <Cnx(n- 1) has 

orthonormal columns. Without loss of generality, we can assume that R = V* AV is 

upper triangular, and hence the Ritz values are on the diagonal of R. Label the Ritz 

values by increasing real part: Re z1 ~ · · · ~ Re Zn_ 1 . Let Zn denote the Rayleigh 

quotient of a unit vector v orthogonal to Ran(V). Then the set {z1 , ... , zn} comprises 

the diagonal entries of the matrix [V v]* A[V v], while the real parts Re z1 , ... , Re Zn 

are the diagonal entries of [V v]* R[V v]. 

Let ~t 1 ~ ~t2 ~ · · • ~ ftn denote the eigenvalues of H, and let Z(i) denote the 

ordering of the Zi such that Re zc1) ~ · · · ~ Re Z(n). (This relabeling is necessary 

because the value Zn = v* Av may be left of the rightmost Ritz value Zn-d By 

Theorem 1.3, the vector [Re Z(j)J of diagonal entries of [V v]* R[V v] majorizes the 

vector [J-tj] of eigenvalues, i.e., 

k k 

L/tj ~ L Rez(j), k = 1, ... , n, 
j=1 j=1 

with equality for k = n. Since Re Z(j) ~ Re Zj, we have 

k k 

L/tj ~ L:Rezj, k = 1, ... ,n -1, (3.3) 
j=1 j=1 

which means that the vector [Re Zj]j~{ weakly majorizes the vector [J-tj]j~{. 

Theorem 3.1 For A E <Cnxn and V E <Cnxk with orthonormal columns, the real parts 

of the eigenvalues of V* AV weakly majorize the k smallest eigenvalues of the H ermi-

tian part of A. 
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From this majorization one may then derive bounds that localize where the Ritz values 

Zj of A must fall in the complex plane. For example, the weak majorization (3.3) 

with k = 2 implies 

and so 

thus restricting the leftmost extent of the second Ritz value of A. This analysis clearly 

generalizes to more Ritz values, and can be adapted to limit the rightmost extent of 

the Ritz values by replacing A with -A. 

Theorem 3.2 Let z1, ... , Zn-1 denote the Ritz values of A E <Cnxn drawn from an 

n - !-dimensional subspace, labeled by increasing real part: Re z1 :::; · · · :::; Re Zn_1. 

Then for j = 1, ... , n - 1, 

f.l1 + ... + /-lj < Re z. < /-lj+1 + ... + f.ln 
j - J- n-j ' (3.4) 

where f.l 1 :::; · · · :::; f.ln denote the eigenvalues of (A+ A*)/2, the Hermitian part of A. 

Notice that for j = 1 and j = n- 1, this bound yields the trivial statement 

which more directly follows from the fact that Ritz values must fall inside the field of 

values, andRe (W(A)) = [f.l1 , f.ln], see Section 1.2. Fork E {2, ... , n-2}, the theorem 

provides considerable insight into the interior structure of the field of values. 

The restriction to an n - 1-dimensional subspace was arbitrary, and a similar 

result could be stated for a k-dimensional subspace where k E {1, 2, ... , n}. The 

bound on the left would not change; however, the bound on the right would change 
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to (f.1n-k+J+1 + · · · + f.1n)/(k- j + 1). Note that these bounds are even applicable when 

k = n, in which case the zi are the eigenvalues of A, see [15]. 

When A is an n-dimensional Jordan block (ones on the first superdiagonal, zeros 

elsewhere), Theorem 3.2 takes a very concrete form. In this case, 

0 1 

H= ~ 1 
2 

0 

1 

1 0 

This is a very special matrix that arises from finite difference discretization of the 

second derivative, as well as orthogonal polynomials. 

The eigenvalues of Hare well-known, and can be computed by a small calculation. 

From this it follows that the eigenvalues of Hare Ai =cos( in /(n+ 1)) fori= 1, ... , n, 

with the largest eigenvalue p(H) = cos(n/(n + 1)). 

Using these eigenvalues, Figure 3.3 shows the bounds from Theorem 3.2 for Ritz 

values for a Jordan block of dimension n = 8. 

From tr(H) = 0 it follows that 111 + · · · + f.1n-1 = -f.1n, and so 

1 1 ( 7f ) Rezn-1 ;::: ---f.1n =---cos -- . 
n-1 n-1 n+1 

When A is ann-dimensional Jordan block, W(A) is the disk ofradius cos(n/(n+1)); 

Theorem 3.2 establishes a containment region for the rightmost Ritz value Zn-1 that 

tends toward the right half of W(A). It might initially seem a weakness that this 

bound does not require the rightmost Ritz value from ann- 1 dimensional subspace 

to fall further to the right. However, if we take for V the first n- 1 columns of the 

n-by-n identity matrix, then V* AVis the (n- 1)-by-(n- 1) upper-left corner of A. 

The corresponding Ritz values are z1 = z2 = · · · = Zn-1 = 0: any bound on Rezn-1 
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must thus contain the interval [0, cos('rr / ( n + 1)) ]. To put this another way, our Ritz 

value containment regions all include Retr(A)/n. 

Is Theorem 3.2 sharp? If A is Hermitian, then H = A, and J11 , ... , Jln are the 

eigenvalues of A, allowing a comparison with the Cauchy interlacing theorem, 

This bound, which is sharp, will be considerably tighter than the bound of Theo-

rem 3.2 when the eigenvalues of H are well-separated. 

On a similar note, consider instead the sharpness of the majorization in Theo-

7 [ - 3 
6 [ 

. .,...., 5 [ J 
>< 4 [ J Q.) 

"ij 
~ [ J ..... 

3 

2 J 
1 E •• J 
-1 -0.5 0 0.5 1 

Re Zj 

Figure 3.3 : Theorem 3.2 illustrated for a Jordan block of dimension n = 8. For each 
of j = 1, ... , n- 1, the bound from Theorem 3.2 is shown as a bracket containing 
the real parts of the Ritz values Zj drawn from 2000 random real n- 1 dimensional 
subspaces (solid black dots). 
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rem 3.1. Due to interlacing, the majorization can always be sharp. By selecting sub­

spaces that coincide with eigenspaces of H, for any k = 1, ... , n- 1, inequaltiy (3.3) 

can be sharp. Moreover, if the eigenvalues of the Hermitian part are distinct, then 

the corresponding subspaces are unique. For then= 3 Jordan block, this is precisely 

why there appear to be only two complex conjugate points that attain the bound in 

the plots in Figure 3.2. These two points correspond to restricting to the eigenspace 

associated with the two rightmost eigenvalues of the Hermitian part of A. 

A useful perspective to use when considering these results is that since the eigenval­

ues of the Hermitian part of a matrix and its restrictions must interlace, the boundary 

of the field of values also interlace as well, i.e., the projection property of the field of 

values, W(V* AV) C W(A), is due to interlacing. This is illustrated in Figure 3.4. 

Interlacing tells us that the real parts of the leftmost and right most points of the 

field of values of a k x k orthogonal restriction must fall in [P.ll Jl.n-k+I] and [P.k, JI.n]. 

This is evident in the figure. This observations suggests that for a given matrix, via 

interlacing, one can construct orthogonal restrictions having a prescribed Hermitian 

part. 

Note that all the results in this section bound the real part of the Ritz values. By 

a simple complex scalar rotation the Ritz values can be bounded along any direction 

in the complex plane. The next section addresses fundamentally different orderings. 

3.2 Other Orderings, Other Bounds 

In the previous section we derived bounds for Ritz values ordered by real part. Here 

we consider related bounds that result when ordering Ritz values by their magnitude, 

jzij, or their phase, arg(zi)· 
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3.2.1 Ordering by magnit ude 

Results regarding the magnitude of Ritz values follow readily from properties of sin-

gular values. Alfred Horn in 1954 [28] showed necessary and sufficient conditions that 

must be satisfied by the eigenvalues of a matrix with prescribed singular values. The 

conditions are due to Weyl, see Theorem 1.5. Weyl's Theorem is a consequence of the 

interlacing of the singular values , see Lemma 1.1. Together, Weyl 's Theorem and the 

lemma tell us two things that, when combined, give insight into Ritz values. First , 

the singular values of a matrix log-majorize the magnitudes of the eigenvalues (The-

orem 1.5): 

for k = 1, ... , n with equality for k = n, where .Ai and CJi denote the eigenvalues 

and singular values ordered from largest to smallest magnitude. The singular values 

Figure 3.4 : Illustration of interlacing of the boundary of the field of values for subma­
trices of an = 8 dimensional Jordan block. The tick marks indicate the eigenvalues 
of the Hermitian part of the Jordan block. The curves indicate the boundary of the 
field of values of submatrices of V * J8 V, where V is a random unitary matrix. Each 
matrix consists of columns and rows one through k of V* J8 V fork= 5, ... , 8. 
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of a k-dimensional orthogonal restriction of a matrix are bounded by the k largest 

singular values of the full matrix (Lemma 1.1): 

for i = 1, ... , k, where o-i (V* AV) denotes the ith singular value of the restric­

tion V* AV for V E <Cnxk having orthonormal columns. Since Ritz values are the 

eigenvalues of an orthogonal restriction V* AV, the magnitudes of the Ritz values 

lz1l ~ · · · ~ lzkl are weakly log-majorized by the singular values, 

j j 

II lzil ~ II O"i, 

i=l i=l 

fori = 1, ... , k. Thus if the singular values are known, we may bound the magnitudes 

of the Ritz values. 

Theorem 3.3 Let z1, ... , Zk denote the Ritz values of A E <Cnxn drawn from an k-

dimensional subspace, labeled by decreasing magnitude: I z11 ~ · · · ~ I Zk I· Then for 

j = 1, ... 'k, 
1 

lzjl ~ (o-1· · ·o-j)J, (3.5) 

where o-1 ~ · · · ~ O"n denote the singular values of A. 

Recall that Ritz values change accordingly for complex shifts, scalings and rotations 

of A: if { z} are Ritz values of A, the corresponding Ritz values of a( A - a I) for 

a, a E <Care simply { a(zi- a)}. This is not the case when we concern ourselves with 

magnitudes and phases. Bounds obtained with singular values of A are not linearly 

related to bounds obtained for a(A- o-1) for a nonzero. Depending on where we 

would like to localize the Ritz values, we should choose a accordingly to get the best 

bounds possible. 
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Since singular values have some of the same min-max/max-min characteristics as 

the eigenvalues of Hermitian matrices, Theorem 3.5 is not all that surprising. Of 

course, the bounds can be sharp when A is normal. It is perhaps more surprising 

that a majorization bound can also be constructed when the Ritz values are sorted 

by their phase. 

3.2.2 Ordering by phase 

There are few known results regarding the phases of eigenvalues, let alone Ritz values. 

In this section I provide a motivating example for ordering by phases, then review 

what is known. To properly characterize the phases of Ritz values, I use a unitary 

matrix whose eigenvalues have interlacing properties, derive a majorization result for 

the phases of the Ritz values, then show how this result relates to the majorization 

result for the real parts of Ritz values. 

As in Section 3.1, consider the 3 x 3 matrix 

0 1 0 

A= 0 0 1 

1 0 0 

This normal matrix, a circulant shift, has eigenvalues at the cubic roots of unity; the 

boundary of its field of values is the triangle formed by connecting its eigenvalues. 

Consider the Ritz values z1 and z2 from thousands of random two dimensional sub­

spaces, but this time sort the Ritz values by their phases. We could measure the 

phases of the Ritz values about the origin; however, instead we will shift our matrix 

by e-1ri/3 , one of the eigenvalues. The field of values of A- e-i1r/3 I lies in the upper 

half plane, and hence the phases of the Ritz values will be arg(zj - e-1ril3 ) E [0, 1r]. 

Again, identify a left and a right Ritz value. From the sorting by the real part, we 
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know that there should be regions where the Ritz values cannot cluster. The question 

is: What do these regions look like, subject to ordering by phase? Figure 3.5 shows 

the results. The Ritz values z1 and z2 appear to always lie on opposite sides of the 

Figure 3.5 : Left and right Ritz values of A from a 2-dimensional subspace, ordered 
by phase about the eigenvalue at .\2 = e-1ri/3 . The left and right Ritz values are 
separated by the angular bisector of L.\1.\2 .\3 (as will be explained in Section 3.4). 

The idea of ordering by the magnitudes and phases of the Ritz values is motivated 

by the polar form of a complex number, z =rei¢ for r E [0, oo) and¢ E [0 , 2n]. The 

generalization to matrices is known as the polar decomposition. A polar decomposi-

tion of A E <e;nxn consists of matrices Pi and Ui, such that A= P 1 U1 = U2 P2 , where 

the Pi are positive semidefinite matrices such that P 1
2 = AA *, P:j = A* A, and the Ui 

are unitary. The Ui, like eie in z =rei¢, account for rotation of a vector, while the Pi, 

like r, account for changes in length. If A is nonsingular , then U1 = U2 . The Pi and 

A have the same singular values, hence the inequalities in Theorem 1.5 give insight 

into what the eigenvalues of the Pi, the polar part of a matrix, indicate about the 

eigenvalues of the matrix. In the same spirit, Alfred Horn and Robert Steinberg [29] 
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considered what the eigenvalues of the Ui, the unitary part, of a matrix indicate about 

its eigenvalues. 

Unitary part versus unitary factor 

The polar decomposition and the unitary parts Ui of a matrix are not compatible 

with orthogonal restrictions. Other than the results for the singular values just stated, 

there is not a clear way of relating the polar decomposition of an orthogonal restriction 

of A to the polar decomposition of the full matrix. To overcome this problem, define 

the unitary factor of a matrix A such that 0 ¢: W(A). 

Definition. A unitary matrix U E <Cnxn is called a unitary factor for a matrix 

A E <Cnxn with 0 ¢: W(A), if there exists a nonsingular C E <Cnxn such that C* AC. 

A unitary factor of A is a matrix to which A is congruent. (Recall that two 

matrices A, B E <Cnxn are congruent if there exists a nonsingular C E <Cnxn such that 

A= C* BC. Congruence transformations preserve what is called the angular field of 

values, the smallest angular sector radiating from the origin in the complex plane that 

contains the field of values.) Note, the unitary factor of a matrix is not unique: if U is 

a unitary factor of A then so is Q*UQ for any unitary Q E <Cnxn. Much as the phase 

of 0 is ill-defined, the unitary factor of A is only defined if 0 ¢: W(A). Let us assume 

that we have used a complex scaling and a shift, so that W(A) is contained in the 

open upper half of the complex plane. In this case, Horn and Steinberg [29] showed 

that A is always congruent to a unitary matrix, and this matrix is a unitary factor 

of A. For A = H + iS, where H and iS are Hermitian and skew-Hermitian parts of 

A, if W(A) is in the strict upper half plane, then S is a Hermitian positive definite 

matrix, which may be factored as S = S112 S112 , with S 112 Hermitian positive definite. 

Then, s-112 AS-112 is congruent to A with Hermitian part fi := s-112 H s-112 and 
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skew-Hermitian part if. As H is Hermitian, let X denote a unitary matrix that 

diagonalizes fi. Then 

s-I/2 As-I/2 = X(A + ii)X*, (3.6) 

where A is diagonal with a(A) = a(H). The matrix C = s-I/2X(A2 + J)-I/4 is such 

that U = C* AC is a diagonal unitary matrix having eigenvalues in the strict upper 

half plane with phases equal to arg(Aii +if). Much like the signature of a Hermitian 

matrix, the eigenvalues of a unitary factor are unique 

Lemma 3.1 !fA E <Cnxn is such that W(A) lies in the strict upper half plane, then 

the eigenvalues of any unitary factor of a A are unique. 

Proof. Suppose there exist two unitary factors of A: A= CiUICI = c;U2C2, where 

the Ci are nonsingular and the Ui are unitary. Without loss of generality assume 

that UI and u2 are diagonal, and that the diagonal entries of u2 are arranged so that 

all equal eigenvalues are grouped consecutively. Let AI, ... , Am denote the distinct 

eigenvalues of U2 , labeled in the order they appear along the diagonal of U2 • AsCI and 

C2 are both nonsingular, U1 is congruent to U2 : UI = WU2W*, where W = C!*C;. 

From the normality of UI, we know Ui U1 = U1 Ui, so 

wu2w*wu;w* = wu;w*wu2w*, 

which, after factoring off a W on the left and a W* on the right, gives 

(3.7) 

Partition the columns of w so that w = [WI' ... ' w m]' where wi comprises all 

columns associated with Ai, the ith distinct eigenvalue of U2 • Since U2 is diagonal, the 
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2ii.Ai:Xkl sin¢, where <P = arg(.Aj:Xk). Since all the eigenvalues of U2 are in the strict 

upper half plane, if Aj =J Ak, then sin¢ =J 0. Hence 0 = (.Aj:Xk- :XjAk)WlWk implies 

Wi*Wk = 0, so the columns of W corresponding to distinct eigenvalues are orthogonal. 

Hence the matrix W*W is block diagonal of the form 

W*W= 

Let D = diag(D1, · · · , Dm), where Di = (WtWi)- 112. Then D is positive definite 

--- ---block diagonal, and W := W Dis unitary. In terms of Wand D, since U2 is diagonal, 
m 

U1 = WU2W* = wD-1U2D- 1W* = 2:.Ai~Di2Wt. 
i=l 

Performing a similarity transformation on U1 with W gives 

.AmD-2 

This implies that cr(U1 ) = U:1 cr(.AiD;). As the eigenvalues of U1 all have magnitude 

one and the Di are positive definite, each Di must equal the identity. Thus, the 

matrix W is in fact unitary and cr(UI) = cr(U2). Hence all unitary factors of a matrix 

have the same eigenvalues with the same multiplicities. • 

Contrast the flexibility in the unitary factor with the situation for the unitary 

part a polar decomposition A= PU, for which the matrix U, not just its eigenvalues, 

must be unique. 

Horn and Steinberg [29] showed that, when a unitary factor exits, the phases of 

its eigenvalues satisfy the following min-max, max-min relations: 

ai= min maxarg(x*Ax)= max minarg(x*Ax); (3.8) 
dim(U)=i xEU dim(U)=n-i+l xEU 
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the ai are the phases of the eigenvalues of the unitary part of A, ordered such that 

a 1 :::; · · · :::; an. This result can be seen by expressing x* Ax as xC-*UC-1x = 

x*Ux = L~=lliil 2ei0\ where X = c-1x. Then proof of these min-max, max-min 

relations follows as for the eigenvalues of a Hermitian matrix: pick a subspace for 

which the value is attained, and show that for any other subspace the quantity is 

either larger or smaller, as appropriate. 

For matrices having a unitary factor, Horn and Steinberg [29] related the eigen­

values of a matrix to the eigenvalues of its unitary factor. 

Theorem 3.4 Let Ai denote the eigenvalues of a nonsingular matrix A and ai the 

phases of the eigenvalues of a unitary factor of A, such that 0 :::; arg a 1 :::; · · · :::; 

arg an :::; 1r. Then [ ai] -< [ arg Ai] . 

This theorem follows in much the same manner as majorization of the diagonal en­

tries by the eigenvalues in the Hermitian case: induction on the size of the matrix, 

combined with interlacing. This theorem is for a unitary factor, but a similar result 

holds for the unitary part. Let A E cnxn have a polar decomposition, A= PU, with 

eigenvalues of the unitary part U satisfying the requirement of Theorem 3.4. Then 

the matrix 

A= p-1/2 AP112 = pl/2u pl/2 (3.9) 

is similar to A and has as a unitary factor the matrix U. As A and A have the same 

eigenvalues, by the Theorem 3.4 the phases of the eigenvalues of U are majorized by 

the phases of the eigenvalues of A. 

Horn and Steinberg also proved that the entries of any two length n vectors { Zi} 

and { zi} with nonzero entries satisfying arg rr=l Zi = arg n~=l Zi, can be arranged 

such that maxargzi- minargzi :::; 2n and {argzi} -< {argzi} [29]. This suggests 
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the eigenvalues of A and its unitary part U can always be arranged so that phases of 

eigenvalues of U are majorized by the phases of the eigenvalues of A. Furthermore, 

one could use the technique in equation (3.9) to relate the unitary part U of A from 

its polar decomposition to a matrix A that is congruent to U. Why bother with 

a unitary factor? What sets a unitary factor apart in these scenarios is that the 

eigenvalues of a unitary factor satisfy min-max/max-min relations (3.8), whereas the 

eigenvalues of a unitary part of a matrix do not. Moreover, as mentioned before, a 

unitary factor is compatible with an orthogonal restriction, while a unitary part of a 

matrix is not, i.e., an orthogonal restriction of a full matrix is also a restriction of the 

unitary factor, whereas there is no similar relationship for the unitary part from the 

polar decomposition. This is important for our setting in Chapter 4, as the Arnoldi 

method involves taking orthogonal restrictions of the matrix. 

Phase majorization for Ritz values 

If A has a unitary factor, then one knows two things: the phases of the eigenvalues 

of the unitary part have max-min/min-max properties (3.8), and the phases of the 

eigenvalues of the unitary part are also majorized by the phases of the eigenvalues 

of A (Theorem 3.4). From the max-min/min-max property, for any restriction T = 

V* AV with V E <Cnxk having orthonormal columns, the phases of the eigenvalues of 

the unitary part of T must interlace the phases of the eigenvalues of the unitary part 

of A: 

fori= 1, ... , k, where ai and &i denote the phases of the eigenvalues of the unitary 

parts of A and T. Combining these results, the phases of the Ritz values weakly 
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majorize the phases of the eigenvalues of the unitary part of A: 

j j 

L ai::; L argzi. 
i=l i=l 

Thus, if the phases of the ai are known, then we may bound the phases of the Ritz 

values. 

Theorem 3.5 Let A E cnxn be a nonsingular matrix with eigenvalues AI, ... ' An such 

that W(A) is contained in the upper half plane. Let z1 , ... , zk denote the Ritz values 

of A drawn from a k-dimensional subspace, labeled by increasing phase: arg z1 ::; • · · ::; 

argzk. Then for j = 1, ... , k, 

a1 + · · · + ai < < an-k+j + · · · + an 
j - arg zi - k - j + 1 ' (3.10) 

where a 1 2 · · · 2 an denote the phases of the eigenvalues of the unitary part of A. 

Though this result is for a matrix whose field of values is in the upper half of the 

complex plane, we can always shift and scale so that W (a( A- a I)) is in a half plane. 

Thus, for the more common case in applications, where W(A) is in the strict left or 

right half plane, the above theorem holds for -iA or iA. 

These phase majorization results can also be related to the majorization result 

involving the real parts of the eigenvalues and the eigenvalues of the Hermitian part. 

For W(A) in the upper half plane, let ai denote phases of the eigenvalues of a unitary 

factor of A ordered such that a 1 ::; · • · ::; an. The ai satisfy 

where ~i denote the eigenvalues of s-~Hs-~ with HandS being the Hermitian and 

skew-Hermitian parts of A. This can be seen from equation (3.6); the eigenvalues 
1 1 

of the unitary part of A have the same phases as the eigenvalues of s-2HS-2 +if. 
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Since the ai are increasing order, the ~i will be in decreasing order. In terms of the 

~i, the majorization from Theorem 3.4 takes the form 
j j 

L cot-1 ~i :::; L arg >.i, 
i=1 i=1 

for j = 1, ... , n, where >.i denotes the eigenvalues of A ordered by increasing phase. 

Now consider the matrix B(y) = A+ iyl and the corresponding ~i(y), >.i(y), and 

ai(y). Note, the phases of the eigenvalues of B(y) and its unitary factor correspond 

to measuring the phases of the eigenvalues of A about the point -yi. For large y, to 

first order in ~i(y), cot-1 ~i(Y) ~ 1r /2-~i(y), and similarly arg >.i(Y) ~ 1r-cot arg >.(y). 

This is a consequence of the angles approaching 1r /2 as y becomes large. Multiplying 

the ~i (y) and computing their limit as y goes to infinity, 

(3.11) 

- .~>.; ( GS+lt H GS+lt)' (3.12) 

where >.i(y(S + yi)-~ H(S + yi)-~) denotes the ithe eigenvalue of y(S + yl)-~ H(S + 

yl)-~, sorted from largest to smallest. Thus limy-+oo Y~i(Y) = f.Li, where f.Li denotes the 

ith eigenvalue of H sorted from largest to smallest. Similarly, limy-+oo y cot arg >.i (y) = 

Re >.i, where >.i denotes the ith eigenvalue of B(O) =A sorted from largest to smallest 

real part. Hence the majorization of the phases for large y gives 
j j 

L(1r- ~i) :::; L(7r- cot arg >.i), 
i=1 i=1 

for j = 1, ... , n. Removing the 1r's and then scaling by y gives 
j j 

Lycotarg>.i(Y):::; LY~i(y). 
i=1 i=1 

In the limit as y goes to infinity, this gives 
j j 

L Re >.i :::; L f.Li· 
i=1 i=1 
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Hence in the limit as y approaches infinity majorization of the phases of the eigenval­

ues of B(y) by phases of the eigenvalues of a unitary factor of B(y) gives majorization 

of the real part of the eigenvalues A by the eigenvalues of the Hermitian part of A as 

implied by Theorem 3.1. 

3.3 iFOV-2 for a 3 X 3 Jordan Block 

Having bounded Ritz values in the previous sections, in this section and the next we 

seek to precisely describe the Ritz values of two extreme matrices: a defective matrix 

and a normal matrix. We wish to show what becomes of interlacing, and also the 

difficulty of characterizing Ritz values of non-Hermitian matrices. In this section I 

will solve iFOV-2 for a 3 x 3 Jordan block, 

0 1 0 

J3 = 0 0 1 

0 0 0 

In doing so, I will characterize the Ritz value pairs {z1 , z2} for which iFOV-2 is 

solvable. These results motivated some of the bounds in the previous sections. To 

our knowledge, there do not exist any similar detailed analyses of the Ritz values of 

a nonnormal matrix. 

Characterizing when iFOV-2 is solvable is equivalent to analyzing the eigenvalues 

ofT = V* J3 V for all V E QJ3 X 2 such that V*V = I. As T is a 2 x 2 matrix, it will 

have two eigenvalues, z1 and z2, which without loss of generality, I refer to as left 

and right eigenvalues, in the sense that Re(z1) :::; Re(z2). With this ordering in mind, 

some questions arise: With z1 fixed, where in C may z2 lie? Where inC may z1 = z2? 

Recall that all Ritz values must lie in the field of values, and the leftmost Ritz value 

cannot fall to the right of the line Re z = 1 in the complex plane: see Figure 3.2 and 
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Theorem 3.2. I will determine the curve for the boundary of the regions where the 

left and right Ritz values may lie. The matrix is sufficiently small that the solution 

can be specified completely, though this process hints at the underlying complexity 

of the problem for larger matrices. This result will be contrasted with the much 

simpler analogue for a normal 3 x 3 matrix in the following section. In the language 

of algebraic geometry, I will start from a parametric representation of all possible 

solutions to iFOV-2, then construct a more implicit representation. The analysis 

becomes quite technical, but ultimately allows us to compute the boundary of the 

regions where the leftmost and rightmost Ritz values can fall. 

A detailed understanding of the Ritz values requires an expression for the Ritz 

values for all possible two-dimensional subspaces. For an n - !-dimensional sub­

space of en' the task of parameterizing all subspaces is simplified, because every 

n- !-dimensional subspace of en, represented by V E enx(n-l), V*V =I, can be 

characterized by any nonzero unit vector v orthogonal to the subspace, V*v = 0. The 

vector v uniquely determines the range of V. Any orthonormal basis for the range of 

V would determine the same Ritz values. We use these facts by way of the matrix 

adjugate. Recall that the adjugate of a matrix, sometimes referred to as the classical 

adjoint [1),[30, p. 21), satisfies 

[adjA)ii = (-l)i+idetAii = (detA)A-1, 

where Aii is the matrix formed by deleting row j and column i from the matrix. (The 

second equality is true provided A is invertible). For unitary U, the ad jugate satisfies 

adj(U* AU)= U*adj(A)U. If we form the unitary matrix U = [V v] E enxn, then 

det(V*AV) = det((U*AU)nn) = [adj(U*AU)]nn = [U*adj(A)U]nn = v*adj(A)v. 

Hence the characteristic polynomial of the restriction of a matrix A to the subspace 
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orthognonal to a vector v can be determined by computing the Rayliegh quotient of 

adj(>.I- A) with v. (Note that by using compound matrices, a similar approach may 

be taken for subspaces of size k < n -1; however there are issues with decomposability, 

the mapping of subspaces to vectors [1, 36].) 

For ln, ann x n Jordan block, we can compute 

n-1 

adj(>.I- ln) = L _xn-1-j J~. 
j=O 

Thus the coefficients Cj of the characteristic polynomial p(>.) = _xn- 1 :L:j = on-2cjAj 

of V* ln V are given by Cj = v* J;:-1-Jv. These coefficients are symmetric polynomials 

in the eigenvalues of V* ln V. For n = 3, 

-tr(V* J3V) 

det(V* J3 V), 

where z1 and z2 are the eigenvalues of V* J3 V. Without loss of generality, write the 

unit vector v in the form 

cos¢1 

v = - sin ¢ 1 cos ¢2ei¢3 

for independent real parameters ¢ 1 , ¢ 2 , ¢3 , ¢4 E [0, 2n-), thus giving 

(3.13) 

(3.14) 

(3.15) 

The Ritz values are completely parametrized by these two formulas. Hence, for 

there to be a two-dimensional subspace V that yields z1 and z2 as Ritz values, there 

must exist real ¢ 1, ... , ¢4 that satisfy (3.14)-(3.15). Without loss of generality, let 
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arg (z1z2) = ¢4. (For given ¢1, ¢2, ¢3 and ¢4 for which arg(z1z2) # ¢4, this may 

always be achieved through an appropriate change to ¢3 and either 1>1 or ¢2: set 

¢4 ----+ argz1z2, ¢3 ----+ ¢3 + 1r, and either 1>1 ----+ 1r- 1>1 or 1>2 ----+ 1>2 + 1r.) Given 

this parametric representation of the set of possible Ritz value pairs, our goal is to 

make implicit expressions relating z1 and z2 [18]. We will also note the number of 

distinct subspaces that are possible for particular Ritz value combinations, and, where 

possible, state v in terms of z1 and z2 . 

A Ritz value at zero 

We wish to use equation (3.15) to eliminate ¢4 from equation (3.14). To perform this 

elimination, cos ¢1 sin ¢1 sin ¢2 must be nonzero. First consider the special case where 

cos ¢1 sin ¢1 sin ¢2 = 0, which implies, by (3.15), that at least one of the Ritz values is 

zero. Without loss of generality, say z1 = 0. Three scenarios are possible from (3.14): 

• sin ¢1 = 0, in which case z2 = 0; 

• cos ¢1 = 0, in which case z2 = cos ¢2 sin ¢2ei(4J4 -4J3 ), allowing z2 to take any value 

in the disk {z E <C: lzl ::; 1/2}; 

• sin 1>2 = 0, in which case z2 = cos ¢1 sin ¢1ei4J3 , again allowing z2 to take any 

value in the disk {z E <C: lzl ::; 1/2}. 

Hence, any pair {0, z} is a valid set of Ritz values for lzl ::; 1/2: z = 0 only corresponds 

to the subspaces defined by v = e 1, e2 or e3, the canonical basis vectors; each nozero 

lzl ::; 1/2 corresponds to four possible subspaces determined by the vectors 

0 -v10f~ 
V= -VlOf~ V= L·f 1±~ 

lziY 2 

L.fl±~ 
lziY 2 

0 
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Note that the corresponding subspaces V = v..L contain either the left or the right 

eigenvector of J3 . As we will show in the following section, for a normal matrix, the 

magnitudes of the entries of v are uniquely determined by polynomial expressions 

in Zi [13). This nonnormal case already involves square roots of the Ritz values. 

(Notice that we can already conclude that it is impossible to have one Ritz value 

at zero and the other Ritz value near the boundary of W(J3 ), i.e., in the region 

{z E ([j: 1/2 < lzl ~ J2/2}.) 

Trace equals zero 

With all z1z2 = 0 cases understood, now assume z1z2 =/= 0. Using (3.15), substitute 

ei¢4 = ZIZ2 
cos ¢ 1 sin ¢ 1 sin ¢2 ' 

(3.16) 

into (3.14) to eliminate ¢4 : 

(3.17) 

If the coefficient of cos ¢2 is zero, then the expression on the right of equation (3.17) 

must also be zero. This implies that the trace z1 + z2 = 0 (since cos ¢1 =/= 0, 

for otherwise the determinant would be zero), hence cos2 ¢1e2i¢a = z~, i.e., z1 -

-z2 = ±cos ¢1eic/Ja. Since z1, z2 E W(J3), we must have I cos ¢II ~ J2/2, i.e., 

¢1 E [7r/4,37r/4) U [57r/4, 77r/4). In this case, there are only two possible solutions, 

corresponding to the vectors 

(3.18) 

This scenario happens to correspond to all possible normal V* J3 V. We will note this 

in the following section when we consider Ritz values of normal matrices. 
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Some conjugate pairs 

Now assume that the trace is nonzero: z1 + z2 =1- 0. Then from equation (3.17), 

(3.19) 

thus determining ¢2 in terms of ¢ 1 , ¢3 , and the Ritz values. 

To simplify the coefficients, write d := z1z2 and t := z1 + z2 for the determinant 

and trace of V* J 3 V: 

t cos ¢1 
cos ¢2 = 2 <P . <P ·cp d ·cp • cos 1 sm 1 e~ 3 + sin ¢1e-~ 3 

(3.20) 

Requiring the imaginary part of (3.20) to be zero yields 

(1m ( t) cos2 ¢1 - Im ( dt)) cos ¢3 (Re ( t) cos2 ¢1 - Re ( dt)) sin ¢3 • (3.21) 

If the coefficients of cos ¢3 and sin ¢3 are both zero, then t cos2 ¢1 = dt. This expres-

sion is invariant to rotations of the Ritz values, 

(3.22) 

as rotating the Ritz values by '1/J corresponds to multiplying the determinant by e2i1/J 

and the trace by ei'I/J. Hence for this case, it suffices to assume the trace is real and 

positive. This implies that the determinant, which we have assumed is nonzero, is also 

real and positive. Thus if equation (3.22) is satisfied, then Ritz values are equivalent, 

via rotation, to a complex conjugate pair located in the right half plane. These are 

not the only Ritz values that can be associated with complex conjugate pairs, they 

are just the ones that satisfy (3.22), i.e., the complex conjugate pairs that can be 

generated by complex subspaces, Im eic/Ja =1- 0. 
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With d = cos2 ¢h and t > 0, we eliminate ¢1 and ¢2 from equation (3.17): 

(3.23) 

If we require that d and t be such that sec2 ¢3 ;:::: 1, then we find that the Ritz values 

must satisfy 

( z + v; i 2 
- ~) ( z - v; i 2 

- ~) s 0. (3.24) 

This expression is negative for all z in the union of the disks of radius j1s centered at 

±iv'2/4 in the complex plane. Thus all the Ritz values for this scenario must come 

in complex conjugate pairs and lie in these disks. 

If we consider the Ritz values corresponding to d, t > 0 and rotate them by ei<P, 

there are two possible v: 

v'de-i<P 

V= - 2./ct ± i J 1 - 2d - !~ (3.25) 

.Jdei<P 

where if t = 0, this expression reduces to equation (3.18). If 1- 2d- t2 /4d = 0, there 

is only one possible vector. This corresponds to the Ritz values lying on the boundary 

of the discs mentioned above. Also if t = 0, this vector reduces to equation (3.18). 

General case 

Now assuming that t cos2 ¢1 =I= dt, equation (3.21) gives 

2 -
i¢a _ t COS c/>1 - dt 

e - ltcos2 ¢1 - dii" (3.26) 
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Using the expressions for ¢2, ¢3 and ¢4 , equations (3.20), (3.26), and (3.16) determine 

an expression for v in terms of d, t, and cos ¢1: 

V= 

cos¢1 

cos ¢1 ( t cos2 ¢1 - dt) 
cos4 ¢1 - ldl 2 

d 
cos¢1 

For this vector to have norm one, cos ¢1 must satisfy 

(cos12 c/>1 + ldl 6)- (cos10 c/>1 + ldl 4 cos2 c/>1) +(1tl 2 - ldl 2)(cos8 c/>1 + ldl 2 cos4 c/>1) 

(3.27) 

+ (2ldl 2 - dt2 - dt2 ) cos6 ¢1 = 0. (3.28) 

This equation is a polynomial in cos ¢ that involves only even powers, consistent with 

±v generating the same subspace Ran(V). The terms are arranged to emphasize that 

the polynomial is ldl-self reciprocal, i.e., if cos2 ¢1 is a solution then d/cos2 ¢1 is also 

a solution. Making use of this property, we make the substitution cos2 ¢ ~ ldieY, 

which reduces (3.28) to 

4d2 cosh3 y- 2d cosh2 y + ( -4d2 + t2) cosh y- t2 cos 'lj; + 2d = 0, (3.29) 

where 'lj; := arg(dP). This equation is cubic in cosh y, which means one can write 

out the solution exactly in terms of d, t, and cos 'lj;; however the complexity of the 

expressions limits the amount of insight that can be gained. From numerics, at most 

two of the solutions to this equation correspond to actual Ritz value pairs. 

3.3.1 Where can z 2 lie? 

If z1 is specified, the general case does not readily indicate where z2 lie. For bounding 

the region containing the leftmost Ritz value, the Ritz values that satisfy d = cos2 ¢1 
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for d, t > 0 only give a sharp bounds for the right upper and right lower portions 

where the leftmost Ritz value can lie; recall Figure 3.2. To address both these issues, 

we must better understand the general case. 

Understanding where z2 can lie once z1 is specified amounts to solving the fol­

lowing optimization problems: Given z1 E JR, and Im z2 E [-vf2/2, v'2/2], determine 

maxRez2 and minRez2 , such that z1 ,z2 E W(J3 ) and there exists cos2 ¢1 E [0, 1] 

that satisfies equation (3.28). Note we have assumed z1 is real; to handle complex z1 , 

the result of this optimization can be rotated, given the radiual symmetry of W(J3 ). 

Understanding this problem for Im z2 E [-v'2/2, v'2/2] would answer the question of 

when iFOV-2 is solvable. 

Now consider the similar problem: Given Im z1 E [ -vf2/2, v'2/2], determine 

max Re z1 and min Re z1 such that z1 , z2 E W(J3 ) and there exists a cos2 ¢ 1 E [0, 1] 

that satisfies equation (3.28) and Re z1 ~ Re z2 • The solution to this problem for 

Imz2 E [-v'2/2, v'2/2] would determine the region where the leftmost Ritz value 

may lie. 

Both these optimization problems have a polynomial constraint in equation (3.28). 

Let g( cos2 ¢1) denote the polynomial in cos2 'Pl in equation (3.28). Then using a 

Lagrange multiplier to solve the problems above requires the discriminant of g to be 

zero. Recall the computation of the discriminant of a polynomial requires taking the 

resultant of the polynomial and its derivative. The resultant of two polynomials can 

be computed by taking the determinant of the Sylvester matrix [18], a matrix whose 

rank determines the degree of their greatest common divisor, i.e., how many roots two 

polynomials have in common. The discriminant of g gives a multivariate polynomial 

in Re z1 , Im z1 , Re z2 and Im z2 • This polynomial determines, given z1 , the boundary 

of the region where z2 must lie for iFOV -2 to be solvable; see Figure 3.6. As g( cos2 ¢1) 
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has a repeated root for z2 on this boundary, there are fewer subspaces that generate 

the Ritz value pair z 1 , z2. 

Figure 3.6 : The region in W(J3) where z2 may lie once z1 (*) has been specified, 
shown in gray, for three choices of z1. (The solid line denotes the boundary of W ( J3 ).) 

The discriminant alone is insufficient to determine where the leftmost Ritz value 

may lie. For in this case we are maximizing over Re z 1 , Re z 2 , Im z 2 and cos2 clh. From 

symmetry, for Im z 1 the constraint Re z 1 :::; Re z 2 must be active. This may be seen 

by considering z 1 , z 2 such that I z 1 1 = R and Re z 1 < Re z 2 . All such pairs can be 

rotated to determine z1 , z2 such that either Re z 1 = Re z 2 or z 1 E IR and z 1 < Re z2. 

The second scenario is only relevant for the case Im z1 = 0; hence in general we may 

assume that along the right half of the boundary of the region containing the leftmost 

Ritz value, Re z1 = Re z2 . With this constraint and the discriminant, to determine the 

region where the leftmost Ritz value can lie for a given Im z1 , we need only maximize 

Re z 1 over z 1, z 2 E W(J3 ), for which the discriminant of g is zero. This requires taking 

the discriminant of the discriminant of g, but this time with respect to Im z2 . Doing 

so for the boundary of the region containing the leftmost Ritz value, the upper and 

lower portions of the right half of the region are determined by equation (3.24), and 
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the middle portion of the region is determined by 

Im Bi(l - 4Re Bi + 4Re Bf) + (Re Bi - 12Re Bf + 4Re en = 0. (3.30) 

This gives Im 81 as the square root of a rational function in Re 81 . The curves are 

shown in Figure 3. 7. 

v'2 
2 

v'2 
4 

0 

_v'2 
4 

_v'2 
2 

_v'2 _v'2 0 
2 4 

Figure 3. 7 : Boundary of the region where leftmost Ritz value z1 of J3 may lie for 
all possible choices of z2 . Points show z 1 from 10000 randomly generated complex 
2-dimensional subspaces. 

In this section we were able· to work out expressions that the Ritz values of a 

Jordan block must satisfy. Determining if a particular pair { z1 , z2 } is a solution to 

iFOV-2 involves checking if they satisfy any of the four cases. In the most general 

case, determining whether {z1 , z2 } is possible involves computing the roots of a cubic 

polynomial. This suggests that in general solving iFOV-(n- 1) requires computing 

the roots of a polynomial, possibly of degree at most 2n. For the 3 x 3 Jordan block, 

symmetry allowed us to reduce the polynomial to degree n; such a reduction may 
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not be possible for general matrices. Interlacing may not generalize for nonnormal 

matrices, but certain max-min/min-max problems can still be posed, and though such 

problems may not be readily associated with eigenvalue problem as in the Hermitian 

case, they provide useful information for localizing Ritz values. 

3.4 iFOV-2 for a 3 X 3 Normal Matrix 

In the previous section we considered a 3 x 3 matrix having only one eigenvector. 

Here we consider a much nicer matrix, a normal matrix which has complete set of 

orthonormal eigenvectors. I will solve iFOV-2 for a 3 x 3 normal matrix, showing that 

in most cases, once z1 has been specified, there is a unique choice for z2 • Contrast 

this with the Jordan block, see Figure 3.6, where specifying one of the Ritz values 

determined regions in W(J3 ) where the other Ritz value can fall. The results for 

normal matrices motivated the results involving marjorization of the phases of Ritz 

values. Some remarks will be made about solving iFOV-k for larger normal matrices. 

General case, k = n - 1 

Begin by assuming that A is a normal matrix with distinct eigenvalues. As normal 

matrices are unitarily diagonalizable, for normal A the field of values of W(A) is the 

convex hull of O"(A). Remember that Hermitian matrices are normal matrices that 

have all real eigenvalues, in which case W(A) is a line. For a generic normal matrix 

having complex eigenvalues, W(A) is some polygon in the complex plane [31]. 

Recall from Section 3.3 that a n- 1 -dimensional subspace V of ({jn is uniquely 

determined by any unit vector v E ({jn orthogonal to V, and through the use of the 

adjugate, the characteristic polynomial of the restriction of A to V is 

p(.X) = v*adj(.XJ- A)v. 
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Both Malamud [37] and Thompson [56] used these facts to characterize the eigenvalues 

of the ( n- 1 )-dimensional principal submatrices of a normal matrix. We can assume, 

without loss of generality, that A is diagonal, A= diag(>.1 , ... , An). Then 

n 

p(>.) = L I vi 12 IT(>.- >.k), (3.31) 
j=l k#j 

hence the magnitudes of the entries of v determine the Ritz values from the orthogonal 

restriction of A to V. As the eigenvalues are distinct, the I vi 12 may be thought of as 

the coefficients of p(>.) in a Lagrange-like basis. 

Evaluating p(>.) at the eigenvalues reveals that for z1 , .•. , Zn-l to be the Ritz 

values of A, i.e., the roots of p(>.), it is necessary and sufficient that the vector 

X E en, determined componentwise by 

Xj = TI(>.j- Ak)' 
k#j 

j = 1, .. . ,n, (3.32) 

have nonnegative entries. By construction, the Xj 's determine a monic polynomial 

with 2:: Xj = 1. If the entries of x are nonnegative, then lvil 2 = Xi, i.e., the entries 

of Xi are equal to the magnitude of the entries of v, squared. The vector v is only 

unique up to the magnitude of its entries, hence there are numerous subspaces that 

generate the same Ritz values; however they can all be related by diagonal unitary 

similarity transformation. Note that equation (3.32) breaks down if the eigenvalues 

of A are not distinct; however, a similar formulation using the distinct eigenvalues is 

possible. 

An expansion of equation (3.31) for the coefficients of the >. in p(>.) reveals that 

certain products and sums of the Ritz values must lie in the convex hull of the 

corresponding products and sums of the eigenvalues. This is ultimately how Malamud 

characterized the Ritz values of a normal matrix [37]. 
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If a Ritz value coincides with an eigenvalue, then an eigenvector for that eigen­

value must be in V, regardless of whether the eigenvalue is on the exterior or interior 

of W(A), where an eigenvalue is exterior if it cannot be represented as a nontrivial 

convex combination of other eigenvalues and interior otherwise. For example, in the 

Hermitian case all points between the largest and smallest eigenvalues would be con­

sidered to be in the interior of W(A), while the largest and smallest eigenvalues would 

be exterior. In the generic normal case, all eigenvalues at the corners of the bound­

ary of W(A) are exterior. So if a Ritz value coincides with an exterior eigenvalue, 

then an eigenvector for that eigenvalue must be in V, as the only Ritz vector for an 

exterior eigenvalue is its eigenvector. For an eigenvalue in the interior of W(A), there 

are numerous such vectors, most of them not eigenvectors. Thus, it is surprising in 

the normal case that having a Ritz value coincide with an eigenvalue requires that 

the corresponding eigenvector be in V. Malamud's result for Ritz values of normal 

matrices provides an algebraic means of characterizing Ritz values. For n = 3, we 

provide a geometric interpretation of Malamud's result, which accounts for the Ritz 

values seen in Figure 3.5. 

Ceva's theorem and iFOV-2 

The requirement that equation (3.32) be real and positive is essentially a constraint 

on the phases of the Ritz values. This characterization of Ritz values of a normal 

matrix lends itself naturally to Ceva's theorem, a connection made by my colleague 

Derek Hansen and described in [13], from which this section is adapted. Let A E C 3x 3 

be normal, with eigenvalues >.1 , >.2 , and >.3 that are distinct and not collinear, and let 

z1 and z2 be in the interior of W(A). The Xj from (3.32) are real and nonnegative if 



and only if arg(xj) = 0. Thus, 

arg(xi) _ arg ((AI- zi)(..\I - Z2)) 
(.AI - ..\2)(..\I - A3) 

arg(zi -.AI) - arg(..\2- AI)+ arg(z2- AI) - arg(..\3- AI) 

81 

(3.33) 

and similarly for x2 and x3 , where L(..\2, AI, zi) denotes the signed angle from ,\2 to 

ZI as centered about AI, being positive if counterclockwise and negative otherwise, 

such that IL(..\2, AI, zi)I < 1r, and similarly for L(..\3, AI, z2). In classical geometry, a 

Cevian is a line segment joining the vertex of a triangle with a point on the opposite 

side [33]. We can interpret (3.33) to mean that arg(xi) = 0 if and only if ZI and z2 

each lie on opposite Cevians that are reflections about the angle bisector through the 

vertex at Aj of triangle W(A); that is, ZI and z2 must lie on what are called isogonal 

Cevians; see Figure 3.8. 

We now show that given any ZI in the interior of W(A), there exists one and only 

one other choice of z2 E W(A) such that this geometric relationship is satisfied for 

all three angle bisectors. To this end, regard ZI as a Cevian point, i.e., the point 

of intersection of three Cevians. Reflect each of these Cevians across the associated 

angle bisector to get the isogonal Cevians. According to Ceva's theorem [33], these 

three isogonal Cevians intersect at the same point if and only if 

sin a I sin f3I sin II _ 1 
sin a2 sin /32 sin 12 - ' 

where the angles are as labeled in Figure 3.9. This equality must hold, since the 

original three Cevians are concurrent (at ZI). The point z2 is known as the isogo­

nal conjugate of the Cevian point zi [33]. Our observations are summarized in the 

following theorem. 
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Figure 3.8 : The Cevian from ).1 through z2 must be the isogonal Cevian of the Cevian 
from >.1 through z1. From [13). 
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Figure 3.9: The Cevians through z2 are the isogonals of the Cevians through z1 . The 
Ritz value z2 is the isogonal conjugate of z1 . From [13]. 
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Theorem 3.6 Let A E <C3 x 3 be normal with spectrum u(A) = {A11 A2 , A3}. Assume 

the eigenvalues of A are not collinear. For every ZI E W(A) \ u(A), there exists a 

unique z2 E W(A) such that u(V* AV) = {zi, z2} for some subunitary V E <C3 x 2 • 

This theorem implies that any Ritz value z1 E W(A) \ u(A) uniquely determines 

the second Ritz value z2 . Note, if z1 r:J. u(A) is on an edge of the triangle W(A), then 

z2 must be the eigenvalue (vertex) opposite the edge. Likewise, if z1 E u(A), then 

z2 can be any point on the opposite side. We also lose uniqueness when W(A) is a 

degenerate triangle, that is, when A is a shifted and scaled Hermitian matrix, what 

some call rotationaly Hermitian [21]. Suppose AI, A2 and A3 are collinear with, say, 

A2 lying between A1 and A3 . Divide W(A) into two closed line segments: one joining 

AI to A2 , the other joining A2 to A3 . The condition that 

(and similarly for A2 and A3 ) is equivalent to the statement that z2 must lie on the 

opposite segment of ZI, but it may lie anywhere on this segment. In other words, 

z1 and z2 can be any pair that interlace the eigenvalues of A. Though perhaps at 

first surprising, this nonuniqueness of the choice of z2 when W(A) is degenerate is 

consistent with Theorem 3.6 as a limiting case; moreover, it exactly recovers the 

Cauchy interlacing theorem. 

In summary, the steps for constructing a valid Ritz pair are as follows: 

• Specify ZI E W(A) \ u(A); 

• Draw the Cevians; 

• Draw the Bisectors; 

• Reflect Cevians across the angular bisectors to get the isogonal Cevians; 
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• z2 lies at the intersection of the isogonal Cevians. 

The result of this section accounts for Figure 3.5, where the eigenvalues of A are 

the cubic roots of unity. We are observing the phases of the Ritz values as measured 

about the eigenvalue e-1ri/3 . Sorting the Ritz values by their phase, arg(zi - e-7ri/3 ), 

the result of this section gives that the Ritz values lie on opposite sides of the angular 

bisector at e-1ri/3 . 

iFOV- ( n - 1) for larger normal matrices 

Building on some of the results of the previous section, we will discuss some numerical 

approaches to studying n - 1 Ritz values for an n > 3 dimensional normal matrix. 

The key feature that sets Ritz values of normal matrices apart from Ritz values of 

general matrices is evident from equation (3.31). The possible n- 1 complex Ritz 

values can be thought of as 2n- 2 real numbers, the real and imaginary parts of the 

Zi· From equation (3.32) the possible n- 1 Ritz values of a normal matrix can be 

parametrized using n real numbers: the magnitudes of the entries of the unit vector 

v orthogonal to the subspace that generates the Ritz values. Note, that as v is a 

unit vector llvll = 1 and that only n- 1 real numbers are required. For n = 3 and 

the eigenvalues not collinear, this resulted in one Ritz value almost always uniquely 

determining the other. For n > 3, one would expect that specifying roughly half 

of the Ritz values should determine the other half. Similar in spirit to the previous 

section, we provide recipes to determine where the remaining Ritz values may lie 

provided we have specified at most half of them. 

From the properties of the field of values, for any z E W(A) one can construct a 

vector v such that v* Av = z. For a normal matrix, assuming A is diagonal, such a v 
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must satisfy 

Rez 

Im>.n X= Imz (3.34) 

1 1 1 

where Xi= lvil 2 • Since the matrix has dimension 3 x n, the set of all possible x that 

satisfy equation (3.34) is an affine subspace of IRn of dimension at least n- 3. If the 

eigenvalues are collinear, then Im ..\i = aRe >.i + b for some a, b E IR, in which case 

the rows of the matrix in (3.34) are linearly dependent, and the affine subspace for 

x is n- 2 dimensional. If A is a multiple of the identity then all the rows of the 

matrix are linearly dependent, and then affine subspace for x is n- 1 dimensional. 

The intersection of this affine subspace with the positive orthant determines all v that 

would generate z. 

Suppose we wish to have a Ritz value at z. To determine where the remaining 

Ritz values must lie, we pick a v from the affine subspace corresponding to z. We 

would like to determine a v such that v = [v V] E cnx(n-l) has orthonormal columns 

and so that 

[ z ~*A~ ] [v V]* A[v V] = __ __ 
0 V*AV 

(3.35) 

in which case z is a Ritz value of V* AV and the remaining Ritz values of V* AV 

are the eigenvalues of V* AV. For this to happen, the range of (A - zl)v must 

be orthogonal to V, which is equivalent to having Ran(V) be the kernel of [v Av]*. 

Hence the remaining Ritz values are entirely dependent upon the particular v. To 

determine where the Ritz values may lie given only z, this process must be repeated 

for additional v; for an example, see Figure 3.10. The union of the field of values of 

the V* AV for all such v would indicate where the remaining Ritz values must lie for 

any size restriction having one prescribed Ritz value at z. 
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One thing should be clear from Figure 3.10: if we specify one Ritz value, it is 

unlikely that we will be able to place a second Ritz value wherever we want in the 

field of values. But if we wish to attempt to specify more than one Ritz value (perhaps 

we already have part of a valid combination), then the above procedure is unsuitable. 

Starting with an affine space corresponding to one of the Ritz values, we would then 

have to search through all possible subspaces to determine those that had the second 

Ritz value. Using the adjugate approach, we may do something similar in spirit to 

the procedure above. Suppose that we have some z1, ... , Zp for p :::; l ( n - 1) /2 J, 

and we wish to determine all possible V such that z1, ... , Zp are the Ritz values from 

some V*AV E <C(n-l)x(n-l)_ Then equation (3.31) gives the form of the characteristic 

polynomial p()..) of V* A V in terms of the vector v orthogonal to the range of V. If 

the z1, ... , Zp are to be roots of p(>.), then v must satisfy 

Ref1(z1) Refn(zi) 

lmf1(z1) lmfn(zi) 0 

X= (3.36) 
Re £1 (zp) Refn(zp) 0 

Im £1 (zp) lmfn(zp) 1 

1 1 

where again Xi= lvil 2 and fi(>.) = ITHi(>.->.j)· Equation (3.36) determines an affine 

subspace of lR n for x of at least dimension n - 2p - 1. If this subspace intersects the 

positive orthant, then there exists V such that z1, ... , Zp are Ritz values of V* AV. To 

determine where the remaining Ritz values lie for all possible V, one would explore 

the affine subspace for v. 

One must contrast these results with those for the Jordan block. In the normal 

case, due to A being unitarily diagonalizable, there exist affine subspaces of lRn associ-
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ated with n -1 dimensional subspaces having prescribed Ritz values. Also, specifying 

some of the Ritz values can significantly reduce where the remaining Ritz values may 

lie. In the nonnormal case, as evident from the Jordan block, there is a nonlinear 

relationship between the Ritz values and the subspaces that generate them, and spec-

ifying one of the Ritz values may only marginally restrict where the remaining Ritz 

values may lie. 

These examples illustrate the difficulties in analyzing Ritz values of non-Hermitian 

matrices. Chapter 4 uses the bounds developed in this chapter to analyze the restarted 

Arnoldi method with exact shifts, giving sufficient conditions for the convergence. One 

of the restarted Arnoldi examples will rely on the nice features of the normal case. 

Figure 3.10 : For restrictions onto 2-dimensional subspaces z2 can fall anywhere in 
the gray regions. For restrictions onto 3-dimensional subspaces, the light gray curves 
inside the gray region indicate where z2 and z3 have to lie. The correspondence 
between the points on the two curves is one-to-one: if z2 is at the the square along 
the top curve, then z3 must lie at the square on the bottom curve. 
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Chapter 4 

Convergence of the Restarted Arnoldi Method 

Having established in the last chapter various majorization-based bounds for the 

Ritz values of general nonsymmetric matrices, I exploit these bounds to develop some 

sufficient conditions for convergence of the restarted Arnoldi method with exact shifts. 

The problem of determining a few eigenvalues of a non-Hermitian matrix using 

an iterative method such as restarted Arnoldi is complicated by the nonnormality 

of the eigenvalues: both those that are desired, which restarted Arnoldi seeks to 

compute, and those undesired, which restarted Arnoldi suppresses via the restart 

polynomial. The possibility of failure or stagnation adds further challenges. The 

nonnormality of eigenvalues reflects how sensitive the eigenvalues are to perturbations 

in the matrix. The possibility of failure is dependent upon whether the starting 

vector leads to either "lucky breakdown," in which case a desired eigenspace has 

been found, or misconvergence to undesired eigenvalues. In applications, additional 

issues arise due to the finite precision of floating point arithmetic and the cost of 

performing real versus complex arithmetic. Such concerns necessitate modifications 

to the algorithm, such as reorthogonalization to counteract the loss of orthogonality 

due to finite precision, and double shifts to avoid complex arithmetic. 

Addressing all the factors above would be a rather daunting task; in this chapter 

I address some of these issues. First, I present examples demonstrating two different 

types of failure. These examples represent worse case scenarios that limit what can be 

said when dealing with general matrices. The first example demonstrates the possibil-
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ity of stagnation: the Ritz values converge, but not to eigenvalues. This type of failure 

is dependent on the starting vector. The second example comes from Embree [20] and 

involves extreme breakdown: the restart polynomial annihilates the desired eigenvec­

tor from the starting vector, thereby precluding the possibility of convergence to the 

desired eigenvalue. This type of failure is due to the wanted eigenvalue being in the 

field of values of the matrix restricted to the unwanted invariant subspace. With 

my knowledge of Ritz values, to eliminate this type of failure I can make restrictions 

on the properties of the matrix and the size of the subspace used for the restarted 

Arnoldi method. The projection property of the field of values is used to improve 

upon the bounds of the previous chapter. Throughout I assume exact arithmetic, in 

which case the implicitly restarted Arnoldi, explicitly restarted Arnoldi and restarted 

Krylov-Schur methods are all mathematically equivalent. 

Since in practical applications the desired eigenvalues tend to be well-conditioned, 

I will consider matrices that have a simple normal eigenvalue. An eigenvalue is simple 

if it has multiplicity one. An eigenvalue is normal if its eigenvector is orthogonal to 

the complementary invariant subspace associated with the other eigenvalues. Hence, 

the class of matrices I consider are all unitarily similar to a block diagonal matrix 

with diagonal entries A and D: 

(4.1) 

where a(D) contains all the unwanted eigenvalues and we wish to compute the eigen­

value A. Without loss of generality, assume A is real and nonnegative. (Later this will 

be generalized to allow for more wanted eigenvalues, as well as a nonnormal coupling 

between the wanted eigenvalue and the block associated with the unwanted eigenval­

ues.) Ultimately, we will assume that IIDII < A, so A is both the rightmost and largest 



91 

magnitude eigenvalue of A. Note that since A> IIDII, our analysis also applies to the 

computation of the largest magnitude eigenvalue of A. 

The development of a convergence theory for the matrices I consider will proceed 

in the following manner. I will establish that there is a Ritz value near the wanted 

eigenvalue, then I will show that the other Ritz values cannot be arbitrarily close 

to the wanted eigenvalue. These results lead to conditions on the spectrum and on 

the starting vector that together ensure convergence. While these conditions may 

seem quite strong for restarted Arnoldi, it is likely that they are reasonable for shift 

invert Arnoldi. To test my results, I will consider a case where D is skew symmetric, 

D* = -D. In this case A is normal, and the behavior of restarted Arnoldi with exact 

shifts can be worked out explicitly. 

4.1 Examples 

In this section, two examples will be considered; one demonstrates extreme break­

down, and the other demonstrates stagnation. All these involve computing the eigen­

value with largest real part. In each example, the wanted eigenvalue is simple and 

normal, and thus the matrices in question could each be presented in the block diag­

onal form (4.1). 

4.1.1 Stagnation 

In this section I will present a matrix and starting vector for which the restarted 

Arnoldi method stagnates. Consider 

0 1 0 

A= 0 0 1 

1 0 0 
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a circulant matrix whose largest real eigenvalue >. = 1 has an eigenvector with equal 

components in each entry. Use the restarted Arnoldi method with one exact shift to 

compute the largest eigenvalue with the starting vector 

1 

0 

0 

1 

The upper Hessenberg matrix H2 , the restriction of A onto K 2 (A, v1) using V2 = 

[v1 v2], then is 

H, = v;Av, = (: :) 

Clearly H 2 has but one eigenvalue, thus z1 = z2 = 0. Using an exact shift of zero to 

generate the new starting vector, 

0 

vi2) = v+ = (A - OI)v1 = 0 

1 

where the superscript denotes that vi2) is the starting vector for the second iteration 

of the restarted Arnoldi method. 

For the second iteration, the Arnoldi basis vectors are 

V(2)-
1 -

0 

0 

1 

V(2)-
2 -

0 

1 

0 
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As in the previous iteration, the restriction of A to the current Krylov subspace is 

Hj'> = cv,''>l• Av,''> = (: :) . 

As before, both Ritz values are zero. Proceeding with further restarted Arnoldi cycles 

produces the successive starting vectors 

V(3)­
I -

0 

1 

0 

V(4)­
I -

1 

0 

0 

Thus at the fourth cycle of restarted Arnoldi, the starting vector vi4) = vP): the 

new starting vector is equal to the first starting vector. Hence, for this example 

the restarted Arnoldi method stagnates, and the Ritz value never converges to an 

eigenvalue, wanted or unwanted. All Ritz values are zero. 

This example is particularly striking because A is a normal matrix with a unique 

rightmost eigenvalue A = 1, and all the other eigenvalues are in the left half plane. 

If put into the form (4.1), then A tJ. W(D). The starting vector VI has a significant 

component in the desired eigenvector direction; in fact, the problem arises because VI 

is equally weighted in each of the eigenvectors. Moreover, this example readily gen-

eralizes ton-dimensional circulant shift matrices with Krylov subspaces of dimension 

k for 2 ::; k < n. This matrix is also related to a well known example of stagnation 

for GMRES; see [9]. 

In this example and its generalization to higher dimensions, the Ritz values are as 

far as possible from the eigenvalues. They represent the worst that one could do in 

terms of gaining information about the eigenvalues from the Ritz values. Any bounds 

for Ritz values will have to work around such benign-looking examples. 
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If one were to alter the starting vector slightly, making it closer to the desired 

eigenvector, then the restarted Arnoldi method would converge. The stagnation 

demonstrated is not a stable fixed point. This example suggests that for some rna-

trices there exist criteria for local convergence. In other words, if the starting vector 

is sufficiently rich in the desired eigenvector, then the restarted Arnoldi process will 

converge. Later in this chapter, I will consider a class of matrices for which local 

convergence as well as stagnation can occur. 

4.1.2 Extreme failure 

This example is taken from Embree (20] and demonstrates extreme breakdown. 

Consider the matrix 

1 0 0 0 

0 0 6 -2 
A= (4.2) 

0 0 0 2 

0 0 0 0 

of the form (4.1) with largest eigenvalue .X = 1 and corresponding eigenvector e1 . 

Using the restarted Arnoldi algorithm with one exact shift to compute the largest 

eigenvalue with a starting vector that has equal components in each entry leads to 

the following Arnoldi basis for K 2(A, v1): 

1 -3 

1 1 1 9 
VI=- v2 = 2v'35 2 1 1 

1 -7 



Restricting the matrix A to K 2(A, vi) gives 

The characteristic polynomial of H2 is 

3/(4J35) 

5/4 

p(z) = det(zl- H2 ) = z2 - 3z + 2 = (z- 1)(z- 2). 
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Thus the eigenvalues of H 2 are z1 = 1, z2 = 2. The strategy for computing the 

rightmost eigenvalue would use z1 as the exact shift. Since z1 = A, this particular 

shift results in the new starting vector 

0 

3 

1 

-1 

which does not have a component in e1 , the eigenvector associated with the rightmost 

eigenvalue. Due to the structure of A, all further starting vectors of the restarted 

Arnoldi method will be orthogonal to e1. Hence convergence to e1 for this particular 

starting vector, v1 , is impossible. This failure is not unique to just this particular 

starting vector. Failure can also occur for any vector of the form 

1 

1 

1 

where a is any scalar. This form shows that the starting vector can be arbitrarily 

rich in the desired eigenvector and yet restarted Arnoldi can still fail to converge 
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to the desired eigenvalue. Similarly, in Section 4.3, we show a normal matrix for 

which the starting vector can be arbitrarily rich and the desired eigenvector, and yet 

initially the restarted Arnoldi method will diverge. Such examples are troubling for 

the convergence theory of the restarted Arnoldi method for general matrices. Unlike 

the previous example involving stagnation, local convergence is not possible for this 

matrix. 

Embree went on to generalize this example, allowing for more desired eigenvalues 

and more shifts. In all his examples, this type of failure occurs where the wanted 

eigenvalues are in the field of values of the portion of the matrix associated with 

the unwanted eigenvalues. All of his examples involved block diagonal matrices, A = 

diag(T, D): a block Twith wanted eigenvalues and a block D such that a(T) C W(D). 

Note that in the notation of (4.1), >. E W(D) for the matrix (4.2). In Section 4.2.1, 

we provide a criterion to help rule out this type of failure. Note that eigenvalues 

of the Hermitian part of A in ( 4.2) are -3.5616, .5616, 1 and 3. For subspaces up 

to size three, equation (3.4) indicates that the leftmost Ritz value could still fall on 

the eigenvalue >. = 1. For this matrix, using a larger subspace may not reduce the 

possibility of failure. 

4.2 The General Case 

Having shown two types of failure for the restarted Arnoldi method, in this section I 

develop a convergence theory for a class of matrices that addresses the more serious 

type of failure. Throughout this section, assume that >. E 1R is not in the field of 

values of D, and that IIDII < >.. For simplicity, I always assume we are computing a 

single rightmost eigenvalue, and hence will use all but one Ritz value as exact shifts. 

The development of the convergence theory rests upon the localization of the Ritz 
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values. I show there must be a Ritz value within a certain distance of the wanted 

eigenvalue, and that the rest of the Ritz values are bounded away from the desired 

eigenvalue. Sufficient criteria for convergence are then based upon these localization 

results. Throughout this section I assume A has the form ( 4.1), and the starting 

vector v is represented as 

where c E <C is a nonzero scalar that the gives component of the starting vector in 

the direction of the desired eigenvector, e1, and r E <Cn-l is the rest of the starting 

vector. 

4.2.1 Ritz Value Localization 

In this section I prove two lemmas that localize the Ritz values. (For theorems that 

localize Ritz values in more general settings, see Chapter 3.) The first lemma shows 

that not all the Ritz values can be arbitrarily far away from the desired eigenvalue. 

Lemma 4.1 For a Krylov subspace Kk(A, v), there must exist at least one Ritz value, 

z1, that is within rJ of the desired eigenvalue, jz1 --XI ::; rJ, where 

1 

rJ :=(liD II+ .X) ( 1\:ll),.. (4.3) 

Proof. Ritz values from a Krylov subspace are optimal, in the sense that they are 

the roots of the monic polynomial that minimizes 

k 

II(A- zJ)v = min llp(A)vll, 
pElPk 

i=l 
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where 1Pk is the set of all monic polynomials of degree k [47]. Define f] := minie{I, ... ,k} 1>.­

Zi I· Due to the block diagonal structure of A, 

k 2 k 2 k 2 

IT(>.- zi)c < IT(>.- zi)c + IT(D- zJ)r 
i=l i=l i=l 

- min llp(A)vll 2 . 
pElPk 

Thus 

Since the Ritz values are optimal, no other monic polynomial p with different roots 

can produce a smaller norm, so taking p(z) = (z- >.)k, one obtains 

this comes from the fact that this particular p annihilates the first component of 

the starting vector. Applying the definition of the operator norm and the triangle 

inequality, the term on the right gives 

min IIP(A)vll ~ (IIDII + >.)kllrll· pElPk 

Combining the bounds from above and below for minpelPk llp(A)vll yields 

This implies that f] ~ (IIDII + >.)(llrll/lcl)1/k, indicating that at least one Ritz value 

must be less than a distance of (IIDII + >.)(llrll/lcl)1/k from >.. Denoting the closest 

Ritz value to>. as z1, we see 1>.- z1l ~ TJ· • 

This lemma suggests that as the size of the subspace increases, there need not 

be a Ritz value any closer than IIDII + >. from>.. Such behavior should be expected; 

recall the example in Section 4.1.1, where all the Ritz values were as far as possible 

from the eigenvalues. 
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The next lemma localizes the exact shifts, i.e., the Ritz values z2 , ••. , zk. The 

weak majorization result, equation (3.3), is used. 

Lemma 4.2 Let '!91 , '!92 , ... , '!9n_1 denote the eigenvalues of the Hermitian part of A 

from equation (4.1) with '!91 2:: · · · 2:: '!9n_1, and 'r/ be as in Lemma 4.1. If the Ritz 

values are ordered such that Rez1 2:: · · · 2:: Rezk, then for each Zj, j = 2, ... , k, 

j-1 
Re ZJ :::.; f(j, ry) := 'f/ + L('l?i- Re zi) + 'l?J. (4.4) 

i=2 

Furthermore 

(4.5) 

where J-l(D) := maxzEW(D) lzl is the numerical radius of D. 

Proof. From the weak majorization of the real parts of the Ritz values by eigenvalues 

of the Hermitian part of A, equation (3.3), we have 

that is, 

j 

2:Rezi < 
i=1 

j-1 j-1 

Rez1+ L:Rezi+Rezj < '!?1+ L'l?i+'l?J. 
i=2 i=2 

For A of the form (4.1), we have .X= '!91, so 

j-1 
Rezj :::.; .X- Rez1 + L('l?i- Rezi) + 'l?j, 

i=2 
(4.6) 

for j = 1, ... , k. From Lemma 4.1, .X- Rez1 :::.; ry, and equation (4.4) follows. 

Bounding Rezj with equation (4.4) and Imzj with J-l(D) gives equation (4.5). • 

As z1 gets closer to .X, the bound on the other Ritz values lies closer to W(D). 

There are several simpler bounds that follow from Lemma 4.2. Rather than derive 

them as needed, we state them all here. 
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Corollary 4.1 The quantity f(j, 77) from Lemma 4.2 for j = 2, ... , k satisfies 

< 77 + '192 + ... + '!Jj 

j-1 
f(J,77) (4.7) 

A+ '/J2 < 
2 

(4.8) 

Proof Both bounds follow from the ordering of the Ritz values. From rearrang-

ing (4.6), for j = 2, ... , k, we have 

j j 

L Rezi < A- Rez1 + L '!Ji, 

i=2 i=2 

and hence from the ordering of the Re Zj 

j 

(j- l)Re Zj ::::; A-Re z1 + L '!Ji, 

i=2 

from which equation ( 4. 7) follows. Equation ( 4.8) follows similarly. • 

These bounds allow us to assume that we know nothing about the shifts z2 , ... , Zk· 

The quantity p(j, 77) in Lemma 4.2, gives a bound for the magnitude of the shifts such 

that p(j, 77) > J-£(D) for all 77· A more reasonable bound having the property that 

p(j, 77) -t liD II as 77 -t 0 can derived using the weak majorization of the magnitudes 

of the Ritz value by the singular values of the matrix. 

Lemma 4-3 Let A > IIDII and 77 be as in Lemma 4-1, and let a 1 ?:: · · · ?:: O"n denote 

the singular values of A. If the Ritz values are ordered such that Re z1 ?:: · · · ?:: Re Zk, 

then for each Zj, j = 2, ... , k, 

where J-£(D) is the numerical radius of D. 

Proof Let jz1 1 ?:: · · · ?:: lzkl denote the Ritz valuess ordered by magnitude. Recall 

the weak log-majorization of the magnitudes of the Ritz values by the singular values 
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of the matrix, see equation (3.5): 

j j 

ITI2il :::; IT ai, 
i=l i=l 

for j = 1, ... , k. The two largest singular values of A are a 1 = ). and a2 = IIDII· As 

weak log-majorization implies weak majorization, 

j j 

L l2il:::; l:ai, 
i=l i=l 

for j = 1, ... , k. Subject to the two different orderings, either 21 = z1 or 21 =f z1. In 

the first case, 

From this we may be bound the magnitude of the second largest shift: 

1221 < .\- 1211 +liD II 

< A- lz1l + IIDII· 

Using the triangle inequality for lz11 and recalling from Lemma 4.1 that I.\- z11 < 'f/ 

gives that 

1221 < A- Rez1 + IIDII 

< ry+IIDII· 

Now suppose that 21 =f z1. Then 

< .\+IIDII· 

Arguing as in the first case then gives the desired result: 
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Thus the magnitudes of the shifts are such that 

for j = 2, ... , k. • 

With our bounds for the wanted and unwanted Ritz values, we may now construct 

a convergence theory for the restarted Arnoldi method. 

Implications for Arnoldi Convergence 

Building upon the lemmas above, in this section I demonstrate a condition sufficient 

for convergence of the restarted Arnoldi method with exact shifts. The result gives 

conditions on the starting vector and the spectrum of the matrix which, if satisfied, 

guarantee that the restarted Arnoldi method with exact shifts will converge. 

To ensure convergence, I determine conditions on A and starting vector v that 

ensure the tangent of the angle <I> between the desired eigenvector and the Krylov sub­

space decreases at each restart. For the model problem (4.1), the desired eigenspace 

is spanned by the first canonical vector e1. Again, write the starting vector as 

where c E <IJ and r E <JJn-l are such that llvll = 1. Then the tangent of the angle 

between v and e1 is simply 

tan <I> = 111:11· 

Thus convergence occurs when the ratio of the norm of r to the absolute value of c 

is driven to zero by successive restarts. The relationship between the starting vector 

from one cycle to the next involves a restart polynomial, 7/J, whose roots are the k- 1 
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leftmost Ritz values of A restricted to the Krylov subspace JCk(A, v). The starting 

vector, at the next iteration is 

Due to the structure of A, 

+ 7/J(A)v 
v = 117/J(A)vll" 

7/J(A)v = ( c'lj;()..) ) . 

'lj;(D)r 

Using p = k- 1 exact shifts, Lemma 4.2 indicates that each shift Zj has real part 

less than or equal to f(j, TJ) and magnitude bounded by both Pi = J f(j, TJ) 2 + J-L(D) 2 

and TJ + IIDII· Each of these bounds depends on the starting vector through the 

quantity 'T/· Having the tangent of the angle between the starting vector and the 

desired eigenvector decrease at a prescribed rate 'Y E (0, 1) at each step is equivalent 

to having 

117/J(D)rll llrll 
lc'I/J(>-.)1 ::; 'Y < ~' 

for any valid exact shift polynomial 7/J. Thus for convergence, it is sufficient to show 

that there exists some 'Y E (0, 1) such that 

117/J(D)rll 
llriii'I/J(>-.)1 ::; 'Y < 1 (4.9) 

for all exact shift restart polynomials 7/J. With this notation in place, the following 

theorem employs the bounds on the shifts Zj for j = 2, ... , k to determine conditions 

that ensure that if tan <I> is sufficiently small at the first step, then the restarted 

Arnoldi method with exact shifts will converge. 

Theorem 4.1 Let"( E (0, 1) andTJ be as in Lemma 4.1. Suppose)..> 2IIDib-l/P+'!92. 

If TJ < ('Y11P()..- '!92) - 2IIDII)/(1 + "( 11P), then the tangent of the angle between the 

starting vector and the desired eigenvector will decrease by a factor of at least 'Y at 

each restart. 



104 

Proof. The bound ( 4.9) is implied by the more stringent criterion 

JJ'I/J(D)JJ <I< 1 
1'1/J(.\)J - . (4.10) 

This quantity is too difficult to work with; hence to generate an even stronger crite­

rion, recall that '1/J(z) = TI7=2(z- Zi), where the zi are the exact shifts, the unwanted 

Ritz values. If we have a upper bound z for the real part of all the exact shifts, then 

the worst possible scenario for the denominator of (4.10) would be that all the shifts 

occur at z, for this would minimize the distance between the shifts and.\. If we have 

a upper bound p for the magnitude of all the shifts, then the numerator of (4.10) can 

also be bounded. Each term in '1/l(D) = TI7=2(D- zJ) satisfies 

hence 

JJ'I/J(D)JJ < (JJDII + p)P 
1'1/J(.\) I - (.\- z)P · 

These bounds give an even stronger criterion that implies (4.10): If 

(JJDJJ + p)P 
(.\- z)P < 1 ' 

then 

JJ'I/J(D)JJ <I 
1'1/J(.\)J - . 

Taking the pth root of both sides of ( 4.11) gives 

JJDJJ +p 1 \ ~ < IP• 
A-Z 

Rearranging equation (4.12) leads to the inequality 

(4.11) 

(4.12) 
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From Lemma 4.2, the real parts of all the shifts are bounded by f(2, 'f!) := 'f/ + tJ2 , 

which can be used as the bound z. From Lemma 4.3, the magnitude of all the shifts 

can be bounded by 'f/ + IIDII, which can be used for p. Thus, progress is ensured if 

1 1 

("' + iJ2)'y"P +"' + IIDII < A"(P - IIDII· (4.13) 

Rearranging the expression gives a criterion for 'f/= 

(4.14) 

This criterion implies that if 

and if the starting vector v is sufficiently rich in the desired eigenvector, then the 

tangent of the angle between the new starting vector v+ and e1 will be at least 

a factor 'Y less than the tangent of the angle between v and e1 . This criterion is 

sufficient for convergence of the restarted Arnoldi method using p exact shifts at a 

rate no worse than 'Y· Since (4.14) and (4.14) ensures that 'f/ decrease when restarting, 

these criteria will thus be satisfied at the next cycle of restarted Arnoldi and thus the 

method will converge. 

Exactly how rich the starting vector must be in the desired eigenvector can be 

determined from the expression for 'f/= 

1 

"'= (liD II+>..) (M) k < lei 

which implies that 

llrll 
lei 
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The quantity 'Y is a bound for the initial rate of convergence. The bound for 

the rate of convergence improves with each cycle of restarted Arnoldi. In the limit 

as TJ ~ 0, (4.11) combined with the bounds z and p determine a bound for the 

asymptotic rate of convergence 

2IIDII 
A -1J2. • 

The criterion in Theorem 4.1 does not seem particularly sharp, that is, the wanted 

eigenvalue must be well separated from the unwanted eigenvalues. The proof involved 

bounding 117/l(D)rll/llrll with 117/l(D)II· Requiring 117/l(D)rll/llrll to be small, depend-

ing on r, may necessitate only that 7/J be small on some of the unwanted eigenvalues 

of D, whereas requiring 117/l(D)II to be small means that 7/J must be small on all the 

unwanted eigenvalues. In bounding 117/l(D)II/17/l(A)I, each of the shifts was treated 

independently, twice; different bounds were used for the numerator and in the de-

nominator of equation ( 4.10). The bounds limited the magnitude of the shifts as well 

as the proximity of the shifts to A. Such bounds are unlikely to be attained simul­

taneously for all the shifts. A sharper bound would require bounding the expression 

as a whole, and treating the shifts as an ensemble rather than independently. The 

latter could be done using f(j, ry) for each of the Ritz values; however this would 

significantly increase the complexity of the resulting expressions. Nonetheless, the 

analysis above (begun in [11)) do indeed give criteria that ensure convergence of the 

restarted Arnoldi algorithm with exact shifts, the first such results of which I am are 

aware. 
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Improvements on the bound 

Several things can be done to extend the result of Theorem 4.1. Here we consider 

keeping more shifts, computing more normal eigenvalues, and using interlacing of the 

boundary of the field of values to improve the bounds for the exact shifts. 

Suppose that instead of keeping just one shift at each restart and using the rest as 

exact shifts, that we instead use the p:::; k- 2 right most Ritz values as exact shifts. 

Then without assuming any further knowledge about the k - p rightmost Ritz values 

that are not being used as shifts, we have from Corollary 4.1 that real part of each 

of the exact shifts Zj will be bounded by 

. TJ + {)2 + ... + f)j 
f(J,TJ) := . 1 . 

J-

As we are keeping k-p of the Ritz values, a bound for the real parts of the exact shifts 

zk-p+ 1 , ... , Zk would be f ( k - p + 1, TJ). Using the same arguments as in Theorem 4.1, 

assuming that the starting vector is sufficiently rich in the desired eigenvector, the 

restarted Arnoldi method would converge if 

(4.15) 

From equation (4.15), we can see that as we keep more of the shifts, the criteria for 

convergence is not as strong, i.e., >.need not lie so far from the unwanted eigenvalues. 

Note that in the limit, the quantity on the left of (4.15) is the real part of the trace 

of D. This suggests that all the criteria for convergence could be made tighter by 

an appropriate shift of the whole matrix. There is an interesting implication of this 

result and Corollary 4.1: if we are concerned about having shifts near a wanted 

eigenvalue and we know the eigenvalues of the Hermitian part of the matrix, then we 

can determine the size of the subspace to use and the number of Ritz values to keep, 
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to guarantee that the shifts will be well separated from the wanted eigenvalue. It is 

unclear if this approach is an artifact of the analysis, or would be genuinely better in 

some situations than keeping all k - 1 shifts. 

The analysis above assumed there was one rightmost normal eigenvalue that we 

wished to compute. Suppose instead that there are m rightmost simple real normal 

eigenvalues, A1 , ... , Am that we wish to compute, and that their field of values is 

disjoint from the field of values of D. Our matrix would then be of the form 

(4.16) 

where A= diag(A1 , ... , Am)· The analysis would not change significantly. The quan­

tity rJ, instead of bounding the distance of the nearest Ritz value to just one of the 

eigenvalues, could be defined to bound the distance of m Ritz values to all the eigen­

values of A. The angle between the starting vector and the desired subspace would 

have to be sufficiently small so as to guarantee that each desired eigenvalue has its 

own Ritz value near it. The bound for the magnitude of the Ritz values could still use 

the weak majorization of the magnitudes of the Ritz values by the singular values. 

A bound for 117/I(A)II could be stated in terms of the distance of the shifts to Am, the 

smallest eigenvalue of A. Thus, similar to subspace iteration, the convergence to the 

desired eigenspace can be understood in terms of the eigenvalue that is closest to the 

unwanted eigenvalues. 

For a different bound for the Ritz values, recall from Section 3.1 that the boundary 

of the field of values satisfies certain interlacing inequalities. Let T = V* AV be the 

restriction of A onto a subspace. The bounds for the real part of W(T) are determined 

by the eigenvalues of the Hermitian part ofT: (T + T*)/2 = V*(A + A*)V /2. The 

Hermitian part of T is simply a restriction of the Hermitian part of A. Hence the 
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eigenvalues of the Hermitian part ofT must interlace the eigenvalues of the Hermitian 

part of A. Suppose that we are restricting onto a 2-dimensional subspace. Then in 

the notation used for Theorem 4.1, the two largest eigenvalues of the Hermitian part 

of A are '191 = >. and '192 • Denote with J1 and J2 ( J1 2: J2 ) the eigenvalues of the 

Hermitian part ofT. From interlacing, we must have that 

(4.17) 

thus the field of values of T must always contain points with real part less than or 

equal to '192 . This limits how nonnormal T can be; see Figure 4.1. In the figure, the 

problem of determining how far the eigenvalues z1 and z2 of H2 can be to the right of 

'192 is equivalent to determining the largest circle contained in W(A) that is tangent 

and to the right of the vertical line Re z = '192 and contained in W (A). This would 

correspond to T being similar to a Jordan block. Let h denote a bound for the size 

of the imaginary part of W(A) along Re z = '192 • As in the figure, () denotes half the 

angle made by W(D) at >.. (Note that the angle () is associated with the phases of 

the eigenvalues of the unitary factor of D - >.; see Section 3.2.2.) Let r denote the 

radius of the circle mentioned above. Then from the geometry, we have 

r = ( >. - '192 - r) sin (). 

We also have that tan() = hI ( >. - '192 ), thus 

r = (-h-- r) sin()= hcos() 
tan () 1 + sin () · 

Thus we can never have two Ritz values to the right of '192 + h cos() I ( 1 + sin B). To 

determine when this bound is sharper than the weak majorization-based bound of 



110 

(A+ 192)/2, consider 

19 h cos e < 
2 + 1 · e + s1n 

so, 

2h 

sece + tane 

and hence 

Eliminating e gives 

so, 

X 

h 

X 

X 
W(D) X 

h X 

Figure 4.1 : Illustration of the bound based on interlacing of the eigenvalues of the 
Hermitian part of V* A V and A. 
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Since this inequality always holds, the field of value interlacing bound for the shifts 

is always sharper than the majorization-based bound. This field of value interlacing 

based bound, unlike the quantity f(j, ry), does not incorporate the richness of the 

starting vector in the desired subspace. This offers an instance in which the weak 

majorization-based bounds are not sharp. To further illustrate, if we were to move >. 

in Figure 4.1 to the right, keeping D, fixed, then the weak majorization-based bound 

('192 + >.)/2 would increase at the rate of one half, regardless of the size of>.. However, 

the field of values interlacing based bound can be no greater than '192 + J.L(D). 

4.2.2 Some Nonnormality 

Up to now we have only been considering a normal eigenvalue. In this section, we 

relax this requirement and show that the results above for convergence need only be 

modified slightly. Let E = e1 [0 g*]. Then for A in (4.1), we have 

( 
>. g* ) 

A+E= 0 D . (4.18) 

Bellalij, Saad and Sadok [8] analyzed the same type of matrix for the unrestarted 

Arnoldi method. We will draw upon several observations they collected: a form for 

polynomials of A + E and an expression for the left eigenvector of >.. The matrix 

'!j;(A +E) has the form 

(
'lj;(>.) g*(>.I- D)-1('1/J(>.)I- '!j;(D))) 

'!j;(A +E)= . 
0 '!j;(D) 

This is a result that Parlett noted in [43]. The left eigenvector of A+ E associated 

with >. is 

(4.19) 



Now if we apply 7/J(A +E) to our starting vector v, 

(
'lj;(>.)e + g*(>.I- D)-1(7/J(>.)J- 'lj;(D))r) 

7/J(A + E)v = 

7/J(D)r 

_ ('lj;(>.)t*v- g*(>.I- D)-17/J(D)r) . 

7/J(D)r 
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( 4.20) 

(4.21) 

As before, in order for the restarted Arnoldi method to make progress, we must 

have 

117/J(D)rll llrll 
17/J(>.)t*v- g*(>.I- D)-17/J(D)rl < ~/', ( 4.22) 

where')' E (0, 1). Rearranging the expression, 

117/J(D)rll 17/J(>.)t*v- g*(>.I- D)-17/J(D)rl 
llrll < lei I'· 

(4.23) 

The strategy from Theorem 4.1 involving the magnitudes and real parts of the shifts 

applied here amounts to bounding the expression on the left from above and the 

expression on the right from below, 

and 

117/J(D)rll < 117/J(D)II 
llrll 

17/J(>.)t*vl-llg*(>.I- D)-1 11117/J(D)IIIIrll 17/J(>.)t*v- g*(>.I- D)-17/J(D)rl 
lei ~ lei · 

Combining these two bounds gives a stronger criteria for convergence that implies 4.23: 

Isolating terms involving the starting vector and the left eigenvector t gives 

lt*vl 117/J(D)II 
h( v, I') :=I' lei + 'YIIg*(>.J- D)-1 llllrll > 17/J(>.) I · (4.24) 
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Note as v ~ e1 , h(v) ~ "(. Also, if g = 0, then h(v) = 'Y· To bound the expression 

on the right, we will use the argument in Theorem 4.1. However, we must adjust our 

bounds for the shifts to take into account the effect of E. The field of values, and 

hence the Ritz values, of A can be perturbed byE by no more than IIEII. Hence the 

bounds in Theorem 4.1 for the magnitude and real part of the shifts can change by 

no more than IIEII. Thus a yet more stringent requirement for convergence is 

IIDII +p+ IIEII- IIDII +rJ+ IIDII + IIEII h( )l 
.X-z-IIEII- .x-rJ-'!92-IIEII < v,"fv, 

where p and fJ are as in Theorem 4.1. This gives a criterion for f): 

1 

'fJ < (h(v,"f))ii(.X -1'!92)- 2IIDII- IIEII. 

h(v, 'Y)ii + 1 

(4.25) 

(4.26) 

Thus, if A > 211DIIh(v, "f)-lfp + '!92 + IIEII((h(v, "f))-lfp + 1), then for v sufficiently 

rich in the desired eigenvector, the restarted Arnoldi method for A+ E will converge. 

This criterion reduces to that of Theorem 4.1 in the case that IIEII ~ 0, as would be 

expected. 

It is likely that a similar result could be derived for computing multiple eigenvalues 

or keeping several shifts, by noting that for polynomials of block triangular matrices, 

( 4.27) 

where T is such that G = R1T - T R2 and the rows of [I T] form a basis for the 

left eigenspace corresponding to the eigenvalues of R1. ForT to be well defined, the 

spectra of R1 and R2 must be disjoint, i.e., R1 and R2 do not share any eigenvalues. 

An analysis of the restarted Arnoldi method for matrices of the form ( 4.27) would have 

to account for both conditioning of the wanted eigenvalues, as well as the coupling 

between the eigenvalues of R1 and R2 due toG, and hence could provide much insight 

into the restarted Arnoldi method for non-Hermitian matrices. 
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Having derived some convergence criteria for the restarted Arnoldi method, in the 

next section I analyze convergence for a normal matrix. 

4.3 Normal Example 

Here I demonstrate some of the notions developed in the previous section for a small 

normal matrix for which Arnoldi convergence can be completely analyzed. Though 

simple, this example illustrates in a clean manner a variety of convergence behavior. 

Given a matrix with D = -D* of the form (4.1), 

,.\ 0 0 

0 ai 0 

0 0 -ai 

with,.\, a> 0, I will show the restarted Arnoldi method can be understood completely 

in terms of the Ritz values. We are interested in computing the rightmost eigenvalue, 

,.\, using restarted Arnoldi with exact shifts drawn from two dimensional subspaces. 

As the matrix is complex, I will be dealing with complex shifts. We will have two 

Ritz values, z1 and z2 , and we shall assume Re z2 :::; Re z1 ; hence, z2 will be the shift. 

I will address the following questions concerning restarted Arnoldi with Ritz values 

of 2 x 2 restrictions of A. 

• What are the possible Ritz values, z1 and z2? 

• How do Ritz values from one cycle relate to Ritz values from the next cycle? 

• Does restarted Arnoldi always converge? 

• At what rate does the method converge/diverge? 
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• Are there any restrictions that must be placed on the starting vector to ensure 

that z1 converges to >.? 

For restarted Arnoldi, starting with some V E C3x 2 having orthonormal columns 

and spanning a Krylov subspace, compute the Ritz values z1 and z2 from V* A V. Use 

the leftmost Ritz value z2 to compute V: 

Range(V) =Range ((A- z2I)V). 

Update V---+ V and repeat this process until (hopefully) z1 converges to the eigenvalue 

>.. We wish to understand the convergence of this process. 

The field of values of W(A) is a triangle, and from Section 3.4, we know that if 

we specify one of the Ritz values, then the other is determined uniquely. Also, the 

Ritz values from V uniquely determine the magnitudes of the entries of a unit vector 

v orthogonal to the range of V, see equation (3.32): 

(.>.-z1)(.>.-z2) 
(.>.-ai)(A+ai) 

(ai-z1)(ai-z2) 
(ai-.>.)(ai+ai) 

( -ai-z1)( -ai-z2) 
( -ai-.>.)( -ai-ai) 

(4.28) 

where lvl 2 denotes the vector consisting of the magnitudes entries of v squared. For 

z1 and z2 to be Ritz values of A, each entry in the vector in ( 4.28) must be nonzero. 

This constraint yields an equation relating z1 to z2 : 

( 4.29) 

In the language of Section 3.4, this expression shows that z1 lies on the isogonal of 

the Cevian from >. to z2 , i.e., the phase of z2 - >. gives the angle of isogonal Cevian 

to the Cevian from >. to z2 • A similar expression could be derived emphasizing the 

Cevians through the eigenvalues ia and -ia. The denominator for the second term in 
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Figure 4.2 : Shifts , fixed points, limit cycles and progress for A = 1.1a. The gray 
region indicates where all the shifts, the z2 , can lie. If a shift falls in the circle then 
the previous iteration of Arnoldi did not improve the eigenvector estimate. The black 
dots indicate the fixed points , with the one on the left being attractive and the one 
on the right being repulsive. The line segments on the left indicate the period two 
limit cycles to which the shift converges. 

( 4.29) is the equation for the circle passing through the eigenvalues. This expression 

breaks down for z2 E CJ (A): there no longer is a one to one correspondence between 

z2 and z1 . If Re z2 :s; Re z1 , then taking the real part of ( 4.29) and substituting the 

right hand side into Re z2 :s; Re z1 , one can see that z2 must lie inside the circle of 

radius ayl1 + a 2 I A2 centered at -a2 I A. To understand restarted Arnoldi behavior, 

we must know how z2 moves about this circle. For z1 to converge to A, Re z2 must 

go to zero. For illustrations of these circles containing the shifts for different A and a 

see Figures 4.2 , 4.3 , and 4.4. 

Equations ( 4.28) and ( 4.29) allow us to represent the unit vector v orthogonal 

to the range of V solely in terms of z2 . The vector orthogonal to V , denoted v, is 
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en 

-az 

Figure 4.3 : Shifts , fixed points, limit cycles and progress for A = 7a/8. The gray 
region indicates where all the shifts, the z2 , can lie. If a shift falls in the circle then 
the previous iteration of Arnoldi did not improve the eigenvector estimate. There 
is only one fixed point , shown as a black dot at the origin; it is repulsive The line 
segments on the left indicate the period two limit cycles to which the shift converges. 
Note that the portion of the segments contained in the circle correspond to repulsive 
limit cycles. 
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-az 

Figure 4.4 : Shifts , fixed points, limit cycles and progress for A = 2a. The gray 
region indicates where all the shifts, the z2 , can lie. If a shift falls in the circle then 
the previous iteration of Arnoldi did not improve the eigenvector estimate. There is 
only one fixed point , shown as a black dot at the origin; it is attractive. The line 
segments on the left indicate the period two limit cycles to which the shift converges. 
In this case, restarted Arnoldi with exact shifts converges monotonically. 
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proportional to (A- z2 I)-*v, hence we may also represent v in terms of z2. Thus, for 

this normal matrix, we may study restarted Arnoldi solely through the magnitudes 

of the entries of the vectors v and v. Note that the only vectors v such that the range 

of V is not a Krylov subspace correspond to V containing only one eigenvector of A. 

Expressing v and v in terms of z1, 

2 lv1l 2lz2- >.1 2 

lv1l = H>. + ~2)2 -lz2 _ ~(>. _ ~2)l 2 ' I A l2 _ Rez2 
V1 - -).-, ( 4.30) 

2 lv2l 2lz2- o:il 2 

lv21 = H>. + ~2 )2- lz2- ~(>.- ~2 )12' 
I A l2 _ Im ((>.- o:i)(z2 + o:i)) 
v2 - 2>.o: , (4.31) 

where we have omitted the expressions for v3 and v3 , as both v and v are unit vectors. 

Using these same equations for v and 22, where 22 is the leftmost eigenvalue of V* AV, 

by eliminating the lvil 2 and the lvil2, we can relate z2 and 22: 

Imz2 = 

H>. + ~2 ) 2 -122- ~(>.- ~)1 2 

Im22(o:2(1 + ~) -122 + !fl2) 

H A + a: ) 2 - I 22 - ~ (A - a: ) 12 . 

(4.32) 

(4.33) 

These expressions are interesting, in that they describe a discrete dynamical system 

in z2 that corresponds to running restarted Arnoldi in reverse. Though not immedi-

ately evident from these expressions because equations ( 4.32) and ( 4.33) allow for a 

subspace to specified by either of its two Ritz values, the pairing of the subspaces from 

running Arnoldi forward or backward is unique. Equation ( 4.33) for Im z2 involves 

the ratio of the distance of 22 to two circles; in the denominator, the circle passing 

through the eigenvalues, and in the numerator, the circle containing all possible 22. 

As the shift always lies in both these circles, this ratio is nonnegative. Moreover, 

this ratio is always less than or equal to one. Hence the imaginary part of z2 , if 

nonzero, alternates in sign, and its magnitude is increasing with each iteration of 
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restarted Arnoldi. An example of this alternating of the sign of the shifts can be seen 

in Figure 4.5. 

In order for the restarted Arnoldi method to converge, the range of V must, in the 

limit, contain [1, 0, O]r, the eigenvector associated with A. This corresponds to lv11 

going to zero. From ( 4.30) expressions above, this is equivalent to having Re z2 go to 

zero. For progress to be made during one iteration, Rei21Rez2 < 1. From (4.32), for 

Re i 2 to be less than Re z2 , i 2 must lie inside the circle ofradi us (A 2 + a 2) I 4A centered 

at (3A- a 2 I A)l4. Note that this circle indicates when progress has been made at the 

last iteration, rather then when progress will be made at the next iteration. From 

this circle and the circle containing z2 , for our matrix we can completely understand 

the behavior of the restarted Arnoldi method. This is illustrated in Figure 4.5. 

There are several special regions to note. For a < A ::::; J3a, there is a fixed point 

for z2 located at (A2 - a 2)12A. The latter corresponds to stagnation, in which case 

z1 never converges to the eigenvalue at A. This is a generalization of the stagnation 

observed for the circulant shift in Section 4.1.1. This fixed point is repulsive, hence 

for nearly all starting subspaces, the restarted Arnoldi method does not stagnate. For 

A> a, there is a fixed point located at 0, and it is attractive. All the points connecting 

the eigenvalues ia and -ia are periodic points of order two. They correspond to cycles 

for which the imaginary part of z2 alternates in sign, while z1 remains fixed at A. These 

are the limit cycles for restarted Arnoldi. There are also sources, corresponding to 

subspaces that could only be generated by having used z1 , the rightmost Ritz value, 

to generate V. In terms of z2 , the sources lie near the top and bottom portions of 

the boundary of the circle containing z2 • Illustrations of these different scenarios for 

a and A can be seen in Figures 4.2, 4.3, and 4.4. 

From above, we know that for nearly all starting V, the restarted Arnoldi method 
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Figure 4.5 : Convergence example for ..\ = 1.1o:. The top plot shows the shift z2 , the 
black dots, from several cycles of restarted Arnoldi with exact shifts for an initial shift 
lying in the circle corresponding to progress not having been made in the previous 
iteration. The circles correspond to z1 , the desired Ritz value at each cycle. The 
curves plotted are as in Figure 4.2. The bottom plot shows the tangent of the angle 
between the Krylov subspace and the desired eigenvector at each cycle of restarted 
Arnoldi with exact shifts. After a period of divergence, the Krylov subspaces starts 
converges to a subspace that contains the wanted eigenvector. 
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will converge, though it may initially diverge. The rate at which it converges or 

diverges can be determined from equation ( 4.32). Maximizing the ratio of Re z2 

to Re z2 gives a rate of a2 I>.. 2 + ava2 + >.. 2 I>.. 2 . This quantity is less than one for 

>.. > v'3a, in which case we have unconditional convergence. If a < >.. < v'3a, we 

have convergence in the sense that if we initially have a good approximation to the 

desired eigenvector for >..; then the approximations can only improve. For >.. < a, z1 

can be arbitrarily close to >.., and z1 can initially diverge from >... With the exception 

of the stagnation point, all z2 must eventually converge to a period two cycle along 

the imaginary axis. The asymptotic rate at which z2 converges to such a cycle is 

(a2 - y2 )1(>..2 + y2), where y is the limit of the imaginary part of z2 as restarted 

Arnoldi converges. This rate is bounded above by a 2 I>.. 2 , which is the rate you would 

expect from the power method provided, a < >... 

We now relate the results of this section to those of the previous. Here, in order 

for the method to converge for a starting vector that is sufficiently rich in the desired 

eigenvector e1 , we require >.. > a. Theorem 4.1 has that for convergence at rate '' 

>.. > 2IIDIII'Y + '191 . For this normal matrix, IIDII =a and '191 = 0, hence the theorem 

requires>..> 2alr· Thus, for this normal matrix, the theorem is not sharp. This is due 

to our independently bounding the magnitude of the shifts and the proximity of the 

shifts to >... Theorem 4.1 only gives a criterion for monotone convergence. A theorem 

that accounts for non-monotone convergence would be much more complicated. It 

would be interesting to know if there are any D for which Theorem 4.1 is sharp. 

4.4 Discussion 

In this chapter I developed sufficient conditions for the convergence of the restarted 

Arnoldi algorithm for a matrix with one simple normal wanted eigenvalue, then gen-



123 

eralized these conditions to allow for nonnormality. The conditions are stronger than 

having the wanted eigenvalue lie outside of the the field of values associated with the 

unwanted eigenvalues. If one is interested solely in preventing extreme breakdown, 

the requirement on the field of values need not be as stringent, and with knowledge 

of the eigenvalues of the Hermitian part of the matrix, one can determine the size 

of the subspace necessary to keep the shifts away from the wanted eigenvalue. The 

criteria are rather weak, in that they ask that the wanted eigenvalue be well sepa­

rated from the unwanted eigenvalues. However, these criteria may be more realistic 

for shift-invert Arnoldi. In this setting the standard Arnoldi algorithm is applied to 

(A- f.-t/)- 1 . If f.-t is close to the desired eigenvalue, then the wanted desired eigen­

value of the shifted and inverted matrix can be well separated from the rest of the 

spectrum. Developing less stringent criteria will require accounting not just for how 

the Ritz values may cluster about the wanted eigenvalue, but also for how the Ritz 

values must distribute themselves throughout the rest of the field of values. 

For a 3 x 3 normal matrix with a skew symmetric block and a real wanted eigen­

value, I showed that the restarted Arnoldi method with an exact complex shift nearly 

always converges. Depending on the size of the wanted real eigenvalue, there may 

exist starting vectors for which the method stagnates. The approach for this normal 

matrix took advantage of the properties of n- 1 Ritz values for an n-dimensional nor­

mal matrix discussed in Section 3.4. Building on this approach for normal matrices, 

it may be possible to nicely characterize restarted Arnoldi behavior for normal ma­

trices for n -1 dimensional subspaces with (n -1)/2 exact shifts. Such a result could 

provide a great deal of insight on how convergence depends on subspace dimension. 
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Chapter 5 

Conclusion 

This thesis has shown that the Ritz values of nonsymmetric matrices can be local­

ized and that the localization of the Ritz values can be used to determine sufficient 

conditions for convergence of the restarted Arnoldi method with exact shifts. 

The analysis of Ritz values in this thesis has been posed in terms of the inverse field 

of values problem with k Ritz values (iFOV-k). For just one Ritz value, iFOV-1, the 

problem can be solved easily and exactly due to the convexity of the field of values, as 

shown in Chapter 2. For more than one Ritz value, iFOV-k with k > 1, determining 

if the problem is solvable is nontrivial. In Chapter 3, I showed majorization results for 

the Ritz values ordered by their real part, magnitude and phase by the eigenvalues of 

different matrices: the Hermitian part, the polar part and the unitary factor. These 

same results are also useful for localizing the eigenvalues of the matrix. Hence, these 

results suggest that for nonsymmetric matrices, these bounds localize the Ritz values 

no better than they can localize the eigenvalues. 

It remains to be discovered if there is anything sharper than majorization for 

localizing Ritz values for general. I showed one way of improving upon these bounds 

using the projection property of the field of values. By limiting the size of the field 

of values of a restriction, the projection property limits how many Ritz values can 

cluster near the boundary of the field of values. There are generalizations of the field 

of values that take into account multiple Ritz values; however, they lack convexity 

[36]. An analysis of iFOV-2 for a Jordan block indicates the difficulty of precisely 
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understanding Ritz values in general. Understanding iFOV-(n-1) for normal matrices 

is something that may be tractable, as our analysis for n = 3 indicates. 

With bounds for the Ritz values, I determined sufficient conditions for the conver­

gence of the restarted Arnoldi method with exact shifts. In Chapter 4, for matrices 

with one simple normal eigenvalue, the conditions determine when convergence is 

possible, i.e., if the starting vector well approximates the desired eigenvector and the 

desired eigenvalue is well-separated from the rest of the spectrum, then the restarted 

Arnoldi method will converge. I provided a criterion that guarantees that exact shifts 

do not fall near wanted eigenvalues. This criterion differs from requiring that wanted 

eigenvalues not lie in the field of values associated with the unwanted eigenvalues. 

With knowledge of the eigenvalues of the Hermitian part of the matrix, one can get 

a sense of how large a subspace one should use and how many Ritz values to keep to 

prevent shifts from falling near wanted eigenvalues. Majorization limits the regions 

where large numbers of Ritz values can cluster. The density of the Ritz values can be 

greatest around tr(A)/n, and smallest near the boundary of the field of values. This 

provides some insight into why the restarted Arnoldi method works so well, but does 

not address how exact shifts can, in the limit, behave optimally. 

Future work could include determining the properties of Ritz values that give rise 

to convergence of the restarted Arnoldi method with exact shifts. Just as eigenval­

ues for non-Hermitian matrices do not completely explain convergence of restarted 

Arnoldi, to what extent do the characteristics of Ritz values from k-dimensional sub­

spaces determine convergence of the restarted Arnoldi method? The normal 3 x 3 

example in Chapter 4 included examples of stagnation and non-monotonic conver­

gence, as well as limit cycles of the restarted Arnoldi method. Working out a similar 

example for a nonnormal matrix could provide much insight. In addition to the pos-
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sibility of chaotic behavior, the 3 x 3 Jordan block showed that the Ritz values do 

not uniquely determine a subspace. If the subspace determined by Ritz values is not 

unique, can we understand Arnoldi behavior solely in terms of Ritz values? The an­

swers to these questions would improve our understanding of other iterative methods 

that depend on Ritz values. 
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