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Abstract 

Gold Nanoshells for Surface Enhanced Raman Spectroscopy and Drug 

Delivery 

By 

Aoune Barhoumi 

Gold nanoshells are tunable plasmonic nanostructures consisting of spherical silica 

cores wrapped with thin layer of Au. Based on the size of the Au layer with respect to 

the silica core, gold nanoshells can resonantly absorb or scatter light at any wavelength 

on the visible or infrared. On resonance, gold nanoshells interact strongly with light to 

give rise to collective oscillations of the free electrons against the background of the ionic 

core, phenomena known as localized surface plasmons. The free electron oscillation 

creates surface plasmon multimodes of various orders. As a result, the average local near 

field surrounding the Au nanoshell is enhanced. The local field enhancement has been 

extensively used in different applications. In this work, the local near-field is used to 

enhance the Raman spectroscopy of DNA and explore the different modes attributed to 

the base composition and structure of the DNA sequence. We showed that urface 

enhanced Raman spectroscopy of DNA is dominated by the adenine modes regardless of 

the base composition of the DNA sequence, a property that we have used to develop a 

DNA label-free detection system. 

As absorbers, plasmon-resonant Au nanoshells can convert absorbed light into heat. As 

a consequence, the temperature on the Au nanoshell surface increases dramatically. This 

property is used to light-trigger the release of variety of therapeutic molecules such as 
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single stranded DNA, siRNA and small molecules. We demonstrated that the local heat 

can be used to dehybridize double stranded DNA attached to the Au surface via a thiol 

moiety on one of the DNA strands. The complementary sequence (therapeutic sequence) 

is released at temperature lower than the standard melting temperature of same DNA 

sequence. Moreover, small molecules (DAPI) which were initially intercalated on the 

double stranded DNA attached to the Au surface were successfully released due to the 

heat generated around the nanoshell surface. Finally, siRNA molecules were also 

released using a different system made of PLL (polylysine) attached to Au nanoshells. 

The electrostatic interaction between the negatively charged siRNA and the positively 

charged PLL was overcome by the thermal perturbation causing the siRNA to be 

released. In vitro experiments successfully showed the release of siRNA, single stranded 

DNA and small molecules. 
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Chapter 1: Introduction 

1.1 Raman Spectroscopy: 

1.1.1 Raman Scattering: 

When electromagnetic (EM) waves interact with a molecule, the electron cloud of the 

molecule oscillates periodically at the same frequency of the incident EM. As a result, an 

induced dipole is created within the molecule. The dipole can radiate light, mostly at the same 

frequency of the emitted light (elastic scattering). However, some of the light is radiated at 

frequencies different than that of the incident light, phenomenon known as non-elastic scattering. 

Raman scattering is an example of the non-elastic scattering of light due to the interaction of 

incident EM with a molecule. 

Classically, Raman scattering can be explained using the model shown in Figure 1.1. The 

molecule is modeled as 2 spheres of masses m1 and m2 connect by a spring of constant k. 

K 

ml m2 V molecule = fi. v;;: 
Figure 1.1: Model of a molecule. The vibrational frequency vis proportional to the square root 

of the force constant and inversely proportional to the reduced mass of the atoms that are bonded 
together 
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The incident light 

The induced dipole is f.l = aE (a = polarizability) 

Substituting in the electric field oflight f.l = aE0 cos(mLt) 

Since the polarizability depends on the conformation of the molecule, it will change as the 

molecule vibrates. 

a=a(Q) where Q is the vibrational coordinate 

where Q = Q0 cos(mut) 

The induced dipole can be calculated as: 

The three terms represent frequencies at which light will be emitted. The first emitted frequency 

equals the frequency of the incident light (elastic scattering, example: Rayleigh scattering), the 

second and third emitted frequencies are shifted from the incident light (non-elastic scattering, 

example: Raman scattering). 

da has to be non-zero for Raman scattering to occur. Only molecules that interaction with EM 
dQ 

can induce a change in molecular polarizibilty are Raman active molecules. 

The quantum picture illustrates better the Raman scattering and explains the phenomenon in 

terms of transition between electronic states. When the molecule absorbs the incident light, it 

will be excited from the ground state to a virtual state that is lower than the lowest electronic 

state. The excited electron will return back to the ground state and three cases are possible. Given 

that the ground state has energy sub-levels due to the vibrational states of the molecule, the 
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excited electron can return back to the same sub-level giving off the same frequency of the 

incident light in that case the scattering is called Rayleigh scattering. If the electron returns back 

to a different vibrational sub-level (higher or lower in energy than the original sub-level), the 

scattering is called respectively stokes and anti-stokes. 

Electronic 

State 

Virtual 
State 

Ground 

State 

Rayleigh Scattering Stokes Scattering Anti~stokes scattering 

Figure 1.2: Quantum description of the molecular scattering 

As discussed earlier and depicted in the Figure 1.2, the Raman scattering depends on the 

vibrational modes of the molecule. Raman scattering is used as a spectroscopic tool to study 

simple molecules at different phases (especially solid and gas). Raman scattering is used to study 

more complex biological molecules such as DNA and proteins 1• It is also used for material 

identifications and analysis. One major disadvantage of Raman scattering is the signal weakness. 

Raman signal intensity is orders of magnitude weaker than the elastic scattering. Only 1 in 107 

photons is scattered inelasticallj. Because the low probability of detecting the Raman signals, 

Raman scattering remained under-used for a quite long period of time. 
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1.1.2 Surface Enhanced Raman Scattering: 

In order to overcome the problem of low cross section of Raman scattering, scientists tried to 

increase the number ofprobed molecules using a roughened surface. In 1974, Fleischmann eta/ 

reported the observation of relatively high Raman scattering signals from monolayer of pyridine 

absorbed on a roughened silver electrode3• The high intensity of the Raman signals which was 

explained by the increase of the absorbed molecules due to the surface roughness remained a 

mystery for couple of years since it did not match the predicted calculation. In 1977, Vanduyne 

reported an enhancement factor as high as 106 for pyridine on a roughened silver electrode and 

claimed that the real reason behind the high Raman signal intensity is the surface enhancement 

effect4• Recently SERS has overcome most of the technical problems and become the main 

techniques used to detect and identify low concentration analytes for chemical sensing and 

biological applications. 

The main reason behind the Raman surface enhancement is the electromagnetic effect5• 

Briefly, the laser excites the roughened metal free electrons creating local charge oscillations. 

The later generate a high local electric field. Both incident and scattered light are affected by this 

enhanced field. As a result the Raman signal enhancement is proportional to the E4 . The second 

less important contributor to the Raman enhancement is the chemical effect6. This effect can be 

explained by the charge transfer that takes place between the absorbed molecule and the metal 

surface. 

It was predicted that any nanoscale features capable of sustaining surface plasmon excitation 

can be used as active SERS substrates. Recently, it has been reported that other than roughened 

metal surfaces, metal nanostructures such as Au nanoaprticles and nanorodes can form good 
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Raman active substrate. The collective oscillation of the free electrons on the nanostructure 

surface generates an enhanced local electric field. Similar to the roughened metal surfaces, the 

local electric field generated on the close vicinity of metal nanostructures can enhance the weak 

Raman scattering. Moreover, small aggregates of two or more nanostructures can further 

enhance the local electric field leading to much higher Raman enhancement. An enormous 

variety of metal nanostructures were explored as Raman active substrates mostly fabricated using 

metal nanoparticles deposited on a substrate, chemically roughened surfaces and 

lithographically fabricated nanostructures. In this thesis, Au nanoshells deposited on silica 

substrates are used as Raman active substrate. 

1.2 Gold Nanoshells 

1.2.1 Background and Physical Properties: 

Au nanoshells are plasmonic, spherical nanostructures consisting of silica (Si02) core 

wrapped with a thin layer of Au7• The interaction between the plasmons of the dielectric core and 

the metal shell grants Au nanoshell a set of particularly important optical properties. Arguably, 

the most significant property that distinguishes Au nanoshell from other metal nanostructures is 

being tunable from the visible to the near infrared (NIR) portion of the spectrum. This tunability 

can be easily controlled by adjusting the thickness of the Au shell with respect to the silica core 

during the fabrication process. Au nanoshells like other metal nanostructures support local 

plasmon oscillation and can form ideal SERS active substrates. The open topography of 

nanoshells allows detection and identification of large biomolecule such as DNA. Au nanoshells 

that resonate at the NIR are particularly important for biomedical applications ranging from 

diagnostic to therapy. Au nanoshells have been used for NIR bioimaging8' 9 and photothermal 

cancer therapy10- 12• The ease of conjugation of certain biomolecules such as single stranded 
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DNA (ssDNA), double stranded DNA (dsDNA) and peptides to the Au surface of nanoshells 

open doors for new applications in many fields such as drug targeting and delivery. The relative 

ease of cell uptake and biocompatibility of Au nanoshells allow in vivo applications and make 

nanoshells a potential candidate for future therapies which will allow diagnostic, delivery and 

controlled release of therapy all done on a single nanostructure. 

1.2.2 Nanoshells Fabrication: 

Au nanoshells are synthesized according to previously published procedures. 13• 14 The 

dimensions of the silica core (120 nm colloidal silica, Precision Colloids LLC, Cartersville GA) 

and the Au shell were chosen such that the peak plasmon resonance in aqueous suspension was 

800 nm, corresponding to the excitation wavelength used in all this work. Briefly, after cleaning 

commercial silica stobers by multiple washes with ethanol (200 proof), the silica cores are 

functionalized with 3-aminopropyltriethoxysilane (APTES, Sigma) overnight under vigorous 

stirring. The silane part of the APTES allowed covalent binding to silica nanospheres and the 

amine group of the APTES is available to attach to small Au nanoparticles. Separately, small 

gold nanoparticles ~2 nm in diameter are synthesized using 

tetrakis(hydroxymethyl)phosphonium chloride (THPC) as the reducing agent from the method 

reported by Duff, et a/. 15 After aging for at least 2 weeks, the small Au nanoparticles are 

incubated with the APTES functionalized silica nanospheres overnight. As a result, the small Au 

nanoparticles decorate the silica nanospheres serving as nucleation sites for metal growth. The 

ratio of silica particles to THPC-Au is estimated from the total surface area of the silica particle 

solution, the concentration and physical cross-section of the THPC-Au, and assuming 25 - 30 % 

coverage of THPC-Au on the silica surface. Typically, 1 M NaCl is used to increases the 

isoelectric point of the solution mixture by increasing the ionic strength, thereby decreasing 
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Columbic repulsion and increasing surface coverage of THPC-Au nanoparticles on the silica 

surface. The size of the THPC-Au nanoparticles (the smaller the better) and the surface coverage 

of THPC-Au on silica nanospheres (the higher the better) are the main contributors to the quality 

of synthesized nanoshells. The role of these parameters becomes more prominent when thinner 

Au shell is attempted. 

Once the seeds (silica cores decorated with small nanoparticles, Fig. 1.3 (i)) are ready, a 

plating solution is prepared separately. The plating solution is prepared by mixing 3 mL of 1% 

HAuCl4 solution (which was aged for 14 days) with 50 mg K2C03 in 200 mL of deionized H20. 

The plating solution must let set for at least 24-72 hours before being ready to be used. The last 

step consists of adjusting the ratio of the seed solution to the plating solution. This ratio 

determines the amount of Au deposited on the surface of the silica spheres thus the thickness of 

Au shell which determines the optical properties of synthesized nanoshells. It is worth to note 

that a reducing agent must be added to the seed/plating solution mixture. Formaldehyde has been 

used as the reducing agent to synthesize nanoshells for a long time, however lately Brinson et 

a!. 16 have demonstrated that carbon monoxide (CO) can alternatively used to reduce the Au salt 

and produce nanoshells of relatively higher quality. 

ii iii 
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Figure 1.3: Schematic diagram and corresponding TEM images showing nanoshell fabrication: 
(i) small Au particles attached to amine terminated silica nanospheres, (ii) start of the Au 

reduction, and (iii) complete Au nanoshell 

Figure 1.4: SEM sample of synthesized nanoshells using method described above 

1.2.3 Near-Field Properties o[Au Nanoshells: 

As mentioned earlier, the Raman enhancement that takes place at the surface of the Au 

nanoshell is due to enhanced local field which is a near field property. In order to understand the 

fundamental physics behind the local field enhancement, this section will give a brief 

background on the physical properties of Au nanoshell and particularly the near field properties. 

In this section Au nanoshell is modeled as shown in Figure 1.5.a. The inner radius (radius of the 

silica sphere) is r 1and the outer radius (radius of the nanoshell) is r2• s 1, s2 and s3 represent 

oi 
dielectric constants of silica (2.13), Au (cDrude-Lorentz(m)=l- 2 P. +L(m)) and the aqueous 

m +zrm 

medium (1.78), respectively. The interaction between light and Au nanoshell is treated on the 

quasi-static approximation. The quasi-static approximation simply means that the size of Au 
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nanoshell is small compared to the incident light wavelength which implies that the incident 

electric field does not vary spatially over the dimension of the Au nanoshell, the temporal 

variation is preserved. Practically, the quasi-static approximation is valid for Au nanoshells of 

diameters less than 80 nm. The quasi-static approximation simplifies tremendously the 

mathematical calculations and gives a pretty accurate description of the optical properties of Au 

nanoshell even for diameters larger than 80 nm. 

Given the incident electric field E(r, t) = E0e -iax, the electric field in the three regions of the 

nanoshell (region 1 = silica, region 2 = gold and region 3 = aqueous medium) is given by the 

.c. 11 . . 17 18 
10 owmg equatiOn ' : 

Where ~,(r,O)= [ A,r+(:; )]cosO 

By adjusting the right boundary conditions, the electric fields at the three regions can be derived: 

Where 

Ea =E1 (3-2P)+2E 2 P 

E b = E 1 p + E 2 (3 - P) 

P=l-(;J 
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The important region for Raman enhancement is the region 3 (region outside the shell) where 

the entire field enhancement is taken place. At the region the induced field as similar to a dipole 

with an effective dipole moment given by: 

P £3 aE induced 

The polarizibility is given by: 

This interpretation shows that at the quasi -static approximation, the interaction of the Au 

nanoshell and the incident electric field generates an oscillating dipole. This dipole resonates 

when the polarizability a is maximized or the denominator reaches zero. 

b 

Figure 1.5: Au nanoshell near field properties. (a) schematic depicts the nanoshell parameters. 
(b) theoretical simulation shows nanoshell near field property. 
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The local near field at the nanoshell surface is calculated as E3 (in region 3). The nanoshell 

near field can be evaluated at appropriate distances from the surface by calculating the average 

of the field different points on the nanoshell surface. Figure 1.5.b illustrates the local field 

enhancement on the surface of the nanoshells. It also shows the decay of the local field that 

extends only few nanometers off the nanoshell surface. 19 

Designing the most appropriate SERS substrate that guaranties both high SERS enhancement 

factor based on high field enhancement as well as high signal reproducibility has been the main 

challenge on the SERS field. Theoretical calculations showed that interacting plasmon "motifs" 

such as dimers possess the largest field enhancement at the gap between adjacent particles and 

rapidly falls as a function of the interparticles distance.20 The debate between using higher order 

plasmon "motifs" ( dimers, trimers, etc) versus single particles has been lately resolved for the 

use of single particles for these reasons:21 

1. Even though theoretical calculations shows that the enhancement taking place at the 

dimers gap exceeds that on single nanoparticles by orders of magnitude, experimental 

data proves that the SERS enhancement produced by nanosphere dimers is only one order 

of magnitude greater than isolated nanoshells. Even more surprising, SERS enhancement 

on nanoshell dimers which theoretically should be one order of magnitude greater than 

nanosphere dimers, was comparable to isolated nanoshell22• The main reason behind 

these experimental observations is that the physical size of the gap between adjacent 

nanospheres (where the all enhancement takes place) is significantly smaller than the 

physical size of the enhanced area in a single particle. As a consequence increase in the 
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SERS enhancement in the case of the dimer gap in compensated by the decrease of 

probed molecule due to the limitation of the physical gap size. 

2. The physical size of the gap between adjacent nanoparticles prevents probing larger 

molecules such as DNA and proteins. The gap area will not be accessible for most large 

biomolecules which are of great interest. 

3. The fabrication of SERS substrates consists of nanoparticle dimers is extremely 

challenging and mostly involves the use lithography which is time and money 

consuming. On the other hand, substrate consisting of isolated particles is extremely easy 

and straightforward and requires only few steps of easy and known chemistry as will be 

described later. 

For all these reasons we preferred to use films of isolated nanoshells as SERS active substrates 

for all the SERS work on this thesis. The fabrication of the substrate will be discussed on detail 

later on. 

1.2.4 Thermal Properties o(Au Nanoshells: 

The combination of gold nanoparticles and biomolecules has enabled considerable advances in 

diagnostic and therapeutic nanomedicine. 23 In addition to biocompatibility and ease of 

fabrication and functionalization, the optical properties of certain noble metal nanoparticles are 

ideal for biomedical applications. The interaction of light with noble metal nanoparticles results 

in collective oscillations of the free electrons in the metal known as localized surface plasmons. 

On resonance, a metallic nanoparticle interacts strongly with incident light, possessing an 

extinction cross section nominally five times its physical cross section. Resonant illumination 

can result in strong light scattering (useful in biological sensing and imaging) and strong 

absorption, with relative magnitudes depending upon absolute nanoparticle size. As absorbers, 
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plasmon-resonant nanoparticles are unparalleled light-to-heat converters, dissipating energy via 

their lattice phonons. 24 

Due to their extraordinarily large absorption cross sections and their inability to re-emit 

light, the photothermal properties of metallic nanoparticles are arguably their dominant physical 

characteristic.25-27 The physical process underlying the photothermal response of metal-based 

nanoparticles has been studied quite extensively using time-resolved pulsed laser sources and 

techniques. 28-30 Whether a nanoparticle absorbs or scatters light is a function of its size: small 

nanoparticles are completely absorptive, while with increasing size the ratio of absorption to 

scattering cross section of a nanoparticle decreases in a complex manner. Ultimately, larger sized 

micron-scale particles are better scatterers than absorbers of light. Upon resonant illumination 

with an ultrashort laser pulse, absorptive metallic nanoparticles undergo a very rapid and 

dramatic increase in temperature (on the subpicosecond timescale). First, there is an initial 

transient regime where the electrons are at a much higher temperature than the atomic lattice of 

the nanoparticle. Following this initial rapid heating, the electron and lattice temperatures of the 

nanoparticle equilibrate on the timescale of a few picoseconds, consistent with the inverse of the 

highest phonon frequency in the material. Both theoretical and experimental studies indicate that 

nanoparticle surface temperatures that result can easily exceed the boiling point of water, 

sometimes by several hundreds of degrees,27 depending on the nanoparticle properties and 

illumination characteristics. In some cases this can result in a melting/reshaping of the 

nanoparticle, changing its optical absorption characteristics irreversibly.31 ' 32 If the light­

absorbing nanoparticle is immersed in a medium or fluid when illuminated, a nonequilibrium 

condition will exist between the hot nanoparticle and the cooler surrounding medium. At very 

low incident powers, this still can result in remarkably large temperature increases in the 
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surrounding medium due to the presence of the hot nanoparticle. 33 At the lower illumination 

intensities of interest in biomedical applications, the photothermal response of the nanoparticle 

can result in heating of the local medium surrounding the nanostructure, which can be used for 

photothermal tumor ablation by inducing hyperthermia, with resultant cell death.34 For the light­

assisted delivery of nucleotides, sufficient incident intensities must be used to initiate the process 

of DNA melting on the nanoparticle surface, but must be significantly below the intensities 

where photothermal cell death may result. 34-37 

The plasmon resonant frequencies of metallic nanoparticles depend strongly on particle 

geometry. The plasmon resonant frequencies of metallic nanoparticles can be tuned through the 

interaction, or hybridization, of plasmons supported by nanostructure geometry. 38• 39 This 

underlying principle, known as plasmon hybridization, has given rise to a large family of 

plasmonic nanoparticles whose resonances can be tuned to virtually any resonant frequency in 

the visible and infrared regions of the electromagnetic spectrum. For biomedical applications, a 

progression of gold nanostructures of various shapes and sizes has been developed with optical 

resonances in, or that can be tuned to, the near infrared (NIR) water window (690-900 nm).4042 

Blood and tissue are maximally transparent in this NIR spectral window, making it optimal for 

biomedical applications that utilize light.43 
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Figure 1.6: Au nanoshell characterization. Extinction spectra of Au nanoshells showing the 
maximum absorbance with respect to theIR window (dimensions"'"' [120,150] nm). Inset depicts 

the internal structure of a Au nanoshell. 

1.3 Gene Therapy: 

The fundamental definition of gene therapy is to insert or delete genes- the DNA 

sequences containing all information needed to express specific proteins- into cells, resulting in 

therapeutic benefits for specific diseases. The goal is to control and modify the expression of 

certain specific proteins associated with the cause or occurrence of a disease. When a protein is 

undesirably expressed by unhealthy cells, inhibiting its functionality or arresting its expression is 

a process known as downregulation: conversely, enabling protein expression is referred to as 

upregulation. Following the completion of the sequencing of the human genome, gene therapy is 

the next logical step in the development of advanced medical treatments for human disease. 

Recently, several approaches to gene delivery involving nucleic acids (DNA or RNA) 

have emerged as potential oligonucleotide-based therapeutic strategies for various diseases. 

15 



There are four major classes of oligonucleotide therapy:44 (i) Plasmid therapy, (ii) Antigene 

therapy, (iii) Antisense and short interfering RNA (siRNA) therapy, and (iv) Aptamer therapy 

(Fig. 1 ). Plasmid therapy targets DNA and introduces new genes that express proteins missing in 

cells. Plasmids are long, double-stranded DNA containing the foreign genetic code, delivered 

inside cells, to diffuse into the nucleus and become incorporated into the cell's genetic material. 45 

Once integrated with the cell's DNA, plasmids become part of the genetic material, allowing 

continuous expression of a specific missing protein. Antigene therapy directly targets and binds 

to specific segments of DNA, preventing transcription to the mRNA and thus protein expression. 

Antisense and siRNA therapies target messenger RNA (mRNA), the intermediary between DNA 

and functional protein, and can selectively inhibit the expression of a specific protein. Antisense 

is based on hybridizing a short ssDNA sequence (15 to 30 bases) to its complementary region on 

the mRNA; once bound, it blocks further translation of the specific mRNA, arresting protein 

synthesis.46 siRNA is a double stranded RNA sequence, nominally 20 bases long, containing the 

complement of the target mRNA. siRNA therapy involves a more complicated mechanism, 

where a combination of molecular complexes destroy the target mRNA and result in gene 

silencing.47 Aptamers are short single or double stranded DNA that have been combinatorially 

selected to recognize and bind to specific target proteins post-translationally, inhibiting their 

functionality for therapeutic benefit.48 Here we focus on antisense oligonucleotide delivery. 
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Figure 1.7: Schematic of the four major types of DNA-based therapies. Plasmid DNA enters the 
nucleus and biosynthesize new healthy protein. Antigene oligonucleotides enter the nucleus, 

form a triplex with the genomic DNA, and block transcription. Antisense oligonucleotides bind 
to mRNA, located in the cytoplasm, and block translation. Aptamers act as a conventional type 

of drug by targeting the malfunctioning protein directly. 

Antisense therapy was first suggested by Stephenson and Zamecnik 30 years ago. 49 The 

principle of antisense therapy is very simple: design a short single-stranded oligonucleotide to 

hybridize to a particular messenger RNA (mRNA) target, which then inhibits the translation of 

that specific mRNA sequence into its corresponding protein. Antisense therapy has been 

suggested as a therapeutic strategy for cancer, viral infections and inflammatory diseases. 5° 
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1.3.1 The Challenges o(Gene Therapy Vector Design: 

However, there are several major inherent challenges to antisense delivery that have impeded 

its translation into clinical practice. 51 Oligonucleotides by themselves cannot be injected directly 

into the bloodstream for systemic delivery, due to their rapid degradation (< 20 minutes) by 

serum nucleases. A carrier that protects the oligonucleotides from enzymatic degradation is 

therefore essential to any practical delivery strategy. The DNA carrier must also be small enough 

and possess favorable chemical properties to extravasate (be removed from the bloodstream), be 

taken up by cells, deliver the oligonucleotide cargo into the cells of interest, and access the cell's 

genetic material so that it is available to perform its therapeutic mission. Intracellular uptake of 

foreign materials or structures, a process known as endocytosis, typically results in sequestration 

of the foreign object within an endosomal compartment inside the cell. Here again, the 

oligonucleotide may be subject to enzymatic degradation within the endosome. For the 

oligonucleotide to have its intended therapeutic effect it must be released, or diffused from, the 

endosomal compartment into the cytosol and within an effective distance of the cell nucleus or 

ribosome, depending on its specific gene target. Originally, viruses were proposed as delivery 

vectors for gene therapy, because their own replication requires the injection of their genetic 

material into cellular hosts. Despite their inherent effectiveness in delivering oligonucleotides in 

vivo, viral vectors have induced unexpected and highly deleterious immune system responses in 

clinical subjects resulting in death, which is likely to prevent their ultimate approval for clinical 

use. 52 

To realize the promise of gene therapy as a new tool in advanced clinical medicine, safe 

and effective nonviral delivery vectors are critically needed. 53' 54 An ideal non viral gene therapy 
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vector would have several important properties. It would [1] induce no immunogenic response, 55-

57 [2] maintain high stability against nucleases in the circulatory system, 58• 59 

[3] target, and endocytosis into, specific cells of interest,60 and [4] provide a means for the 

efficient release of oligonucleotide cargo from the endosomal compartment. These requirements 

have led to a strong and growing interest in gold nanoparticles of various shapes and sizes as 

nonviral vectors for gene therapy. The biocompatibility of gold nanoparticles and nanostructures 

is well established. Oligonucleotides can be bound to the surface of a gold nanoparticle in 

relatively dense monolayers, greatly increasing their stability against degradation by nucleases. 

The facile binding of various types of biomolecules to the surfaces of gold nanoparticles enables 

multiple functions to be imparted on the same nanoparticle "platform": for example, combining 

oligonucleotide loading with antibody conjugation for targeting specific cells or tissues is 

realizable with this approach. Finally, remote-controlled release of DNA from a nanoparticle 

complex is made possible by the resonant optical properties of gold nanoparticles and 

nanostructures.61 -64 Resonant light absorption provides both spatial and temporal control for 

oligonucleotide release, which could be highly useful in research as well as in treatment 

scenarios. In addition, the energy input due to resonant light absorption and the accompanying 

local photothermal heating response may also assist diffusion of the oligonucleotides out of the 

endosomal compartment. In particular, nanoparticle-based complexes that respond to near 

infrared light, at wavelengths not significantly absorbed by cellular material, and release DNA 

upon resonant illumination would provide an ideal platform for light-controlled gene therapy. 

1.3.2 Gold Nanoparticle-based Vectors (or Gene Therapy: 

DNA can be bound to Au nanostructures by simple thiol chemistry or electrostatic 

attachment. DNA attached to Au nanostructures has an increased half-life from minutes to 
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hours58 against attack by large nucleases due to the increased steric hindrance caused by 

attachment to the Au surface. 58 Additionally, polyvalent cations near the Au nanoparticle 

surface electrostatically repel dications located within the nucleases, also increasing 

oligonucleotide stability. 65 

Increasing the cellular uptake efficiency of therapeutic DNA is necessary for effective 

therapy. The attachment of either therapeutic oligonucleotides (DNA, siRNA) or existing 

transfection agents (cationic liposomes, cationic polymers, dendrimers) to gold nanoparticles has 

been shown to universally increase cellular uptake and transfection efficiency. DNA/siRNA 

molecules condense when attached to the gold surface. Attaching other nonviral gene delivery 

vectors, such as lysine dendrimers, to gold nanoparticles has been shown to increase gene 

transfection 28-fold relative to the dendrimer alone.54 Following cellular uptake, the 

oligonucloetides must be able to escape from the endosome, diffuse through the cell, and interact 

with the cell's genetic material. Currently, subsequent to cellular uptake, the DNA-bearing 

carriers are believed to be sequestered in the endosome. It is currently hypothesized that the use 

of light activated plasmonic nanostructures can effectively disrupt the endosome and release the 

DNA into the interior of the cell. Wu et al. have observed that light-induced endosomal 

disruption occurs with pulsed laser irradiation, and suggested that transient cavitation of vapor 

microbubbles that form between the temperature gradient on the surface of the plasmonic gold 

nanoparticle and the surrounding medium are responsible for this disruption.66 

A summary of different Au nanostructure-based gene therapies reported to date is shown 

in Table 1. Cellular delivery of DNA/RNA conjugated to Au nanoparticles can be effectively 

accomplished either with or without light activation. Without light activation, when the Au 

nanostructures are merely serving as carriers for transferring genetic material into cells, they do 
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elicit a therapeutic response, either downregulation ,(15, 67 or enhanced gene expression.68 In 

general, however, the limited yield of non-light-activated therapy limits this therapeutic strategy. 

Light-responsive delivery vectors appear to overcome these challenges quite effectively and may 

be therapeutically more beneficial for controllable gene release than the non-light-activated 

approach. 

Type of Au Wavelength DNA/RNA Binding Type of Gene Therapeutic Ref 
Nanostructure of Response Chemistry Therapy Target 
Nanorods 900nm Nanorods capped with Light Plasmid DNA 

phosphatidylcholine activated release 69 

interact with DNA 
electrostatically 

Nanorods 780-1100 Thiolated DNA Light DNA release, "/U 

nm covalently attach to Au activated GFP gene 71 

surface expression, 64 

BlockmRNA 
translation of 
ERBB2 

Hollow 800nm Thiolated polyethylene Light RNA 72 

Nanoshells glycol-RNA chemically activated interference 
bound to Au surface 

Nanospheres 520nm Nanoparticles Light T7RNA (>j 

positively charged with activated polymerase 
dimethylethyl-
ammonium interact 
electrostatically with 
DNA. 

Nanospheres 520nm Ethylene glycol- Non-light Firefly (>7 

alkylthiol modified activated luciferase 
RNA attach chemically downregulation 
to Au surface 

Nanospheres 520-560 nm Plasmid DNA Non-light Enhanced green 73 

electrostatically activated fluorescent 
attached to Au protein 
encapsulated in expression 
cationic liposomes 

Nanospheres 520nm Positively charged Non-light Murine IL-2 74 

aminated nanoparticles activated mRNA 
electrostatically attach expression 
to plasmid DNA 

Nanospheres 520nm Nanoparticles bearing Non-light J3-galactosidase o!S 

primary ammonium activated reporter gene 
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----------------

groups bind with expression 
anionic DNA via ion-
pairing 

Table 1.1 A summary of different Au nanostructures utilized for light activated and non-light 
activated gene therapy, their wavelength of response, DNA attachment chemistry, and 
therapeutic target. 

As can be seen in Table 1, the combination of Au nanoparticles and light-activated DNA 

release has been recently identified by numerous groups as a potentially useful strategy for 

increased effectiveness in gene therapy. Several variations of this general approach have been 

demonstrated. DNA has been attached to functionalized Au nanoparticles via photoactive ester 

linkages, where near-UV irradiation has been used to cleave the ester moieties, releasing the 

DNA. 63 The potential practical biomedical applicability of this specific approach is limited, since 

for in vivo applications, NIR irradiation (650-900 nm) is highly preferable to near-UV light due 

to its far deeper penetration in tissue/5 as well as its negligible mutagenicity relative to near-UV 

light. Therefore, plasmonic nanoparticles with resonances in the NIR region of the spectrum, 

such as nanoshells and nanorods, are preferentially being pursued. Nanorods either 

electrostatically attached to DNA69 or covalently bound to thiolated DNA through the Au-S 

bond70• 71 were shown to release DNA when excited with a NIR pulsed laser at the plasmon 

resonance. However, pulsed laser irradiation may reshape nanorods, which can modify their 

aspect ratio and their optical properties, including their resonant frequency. 71 Modifications in 

the nanorod geometry will reduce or eliminate the NIR absorption of these nanoparticles, and 

could effectively tum offNIR light-controlled release. Moreover, in biomedical applications, the 

reshaping of nanoparticles may also modify their pharmacokinetics and biodistribution, which 

may affect their safety and delay or eliminate their ultimate approval for human use. The melting 

and reshaping of nanorods can be circumvented by using a continuous wave laser. 64 Lee et al. 
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conjugated thiol-modified dsDNA to nanorods, released the oligonucleotides upon NIR 

illumination, and successfully blocked the translation of ERBB2 mRNA in BT474 breast 

carcinoma cells. However, a very low percentage of cells showed protein downregulation: 

further studies are warranted to quantify this response. Still, the overall strategy of near-IR 

triggered oligonucleotide release from Au nanoparticle-based vectors is highly promising. 
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Chapter 2: Surface Enhanced Raman Spectroscopy of DNA 

2.1 Introduction: 

Detection of DNA, arguably the most important biological molecule, is the basis of 

numerous technologies ranging from diagnostic screening in clinical medicine to forensic testing 

in law enforcement. 76' 77 The vast majority of current DNA detection methods involve the use of 

fluorescent reporters as part of the signal transduction, requiring costly chemicals and complex 

chemistry. 78 Surface-enhanced Raman spectroscopy (SERS), with its demonstrated ability to 

detect single molecules such as the DNA base adenine, has generated tremendous interest as a 

potential strategy for label-free biomolecule detection.79' 80 While numerous SERS studies of 

DNA have been performed to date, sensitive and reliable acquisition of SERS spectra from DNA 

samples remains a significant challenge. For example, in one study it was reported that while all 

dsDNA samples yielded SERS spectra with good signal to noise ratio, none of the ssDNA 

oligomers studied yielded detectable SERS signals.81 Another study reported that the quality of 

the SERS spectrum of single stranded Calf Thymus DNA was much better than that of the 

double stranded DNA. 82 More recently, SERS detection of both single and double stranded 

DNA was reported, where the observed SERS features appeared to be sequence and/or 

composition dependent, 83 

It has now been shown in several detailed investigations that Au nanoshells, spherical 

nanoparticles whose plasmon resonance frequencies are controlled by the relative inner and outer 

radius of their metallic shell layer, can be used as highly reproducible SERS substrates. 19• 22• 84• 

85 Although nanoparticle dimers separated by nanometer scale gaps are known to produce larger 

SERS enhancements, known as "hot spots", fabrication of dimer-based substrates with highly 
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regular, reproducible hot spots is quite challenging. 86• 87 A major problem with adjacent 

nanoparticle pairs as SERS substrates is the very sensitive dependence of the SERS enhancement 

on interparticle spacing. Fortunately, the amplitude of the integrated SERS enhancement of 

single nanoshells can be comparable to that of a solid nanoparticle dimer with a nanometer scale 

gap. 22 With the SERS enhancement designed and built into each individual nanoshell particle, 

the challenging requirement of fabricating nanometer-scale spacing between adjacent 

nanoparticles is virtually eliminated. 19• 88•89 For many applications in chemical spectroscopy and 

sensing, the easily accessible, open surface topology of nanoshells presents a far more preferable 

substrate for surface-enhanced spectroscopies than the closed topology of nanoparticle dimers or 

aggregates. This open topology is critically important for biomolecular spectroscopy and 

sensing, since the spatial extent of many biomolecules of interest, DNA being a prime example, 

may exceed the nanoscale dimensions of dimer "hot spots". In addition to the large field 

enhancements on nanoshell surfaces, the plasmon resonant properties are remarkably insensitive 

to defects on the particle surface or to nanoscale roughness,90 making them ideal substrates for 

assessing SERS spectral reproducibility. The development and use of highly reproducible 

substrates is critical in the advancement of SERS as a mainstream spectroscopic technique. This 

is particularly important in studies of large, complex molecules such as DNA or proteins, since 

the SERS signal in these molecules already depends significantly on molecular conformation, 

orientation, and binding specificity to the substrate surface. 

In this chapter we report a study of the surface-enhanced Raman spectroscopy of 

thiolated ssDNA and dsDNA oligomers bound to Au nanoshell-based SERS substrates. In this 

study the SERS features of DNA are easily recognized. Previous studies have shown that 

spectral quality and reproducibility can be severely limited by large variations in molecular 
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conformation and/or packing density of the DNA adsorbate molecules on the substrate. Here we 

show that a gentle thermal cycling pretreatment of the ssDNA and dsDNA prior to adsorption 

onto the nanoshell substrate results in a relaxation of the DNA molecules into what we believe to 

be an extended, "linear" conformation. This procotol results in a dramatic increase in the 

reproducibility of the SERS spectrum. The spectra obtained using this preparation method show 

an overwhelming dominance of adenine Stokes modes in the SERS spectra, with much weaker 

secondary features occasionally observable from other bases, most predominantly guanine. The 

reproducibility of the SERS spectra decreases slowly over time (several days) as the molecular 

conformations re-randomize, where an increase in spectral variation consistent with an increased 

distribution of molecular conformations is observed in the SERS spectra. 

In the context of this study we introduce a new quantitative spectral analysis approach 

useful for SERS. We define a Spectral Correlation Function (SCF), r, that provides a metric with 

which to assess the reproducibility of SERS spectra or, alternatively, to quantify complex 

changes in the SERS spectrum that may be due to chemical modification of the adsorbate 

molecules (see Analysis section). We apply this analysis to quantitatively assess the 

improvements in DNA spectral reproducibility due to our thermal pretreatment protocol. SCF 

analysis also allows us to monitor complex changes in the SERS spectrum of adsorbate 

molecules due to chemical modification of the DNA. As an example, we apply SCF analysis to 

monitor the changes in the SERS spectrum of DNA upon interaction with cisplatin, a 

chemotherapeutic agent in widespread use for cancer treatment. This class of anticancer 

compounds is known to induce cell death by binding directly to DNA in cells, arresting cell 

replication and activating signal transduction pathways that ultimately lead to apoptosis. Our 

Spectral Correlation Function (SCF) analysis is of direct practical interest in the development 
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and quantification of high-performance, high-reproducibility SERS substrates. This approach 

also successfully discriminates changes in the SERS spectrum of DNA upon exposure to 

cisplatin in comparison with its trans analog, transplatin, known to have a much lower affinity 

for DNA and therefore useful in this study as a control molecule. 

2.2 Experimental: 

Nanoshell-based SERS substrates consisting of dispersed nanoshells bound to glass 

substrates were prepared.91 ' 92 Briefly, a fused quartz microscope slide (Piranha cleaned) was 

incubated overnight in an (1%) ethanolic solution of poly( 4-vinylpyridine) (MW = 160,000 from 

Sigma-Aldrich) and dried with nitrogen gas; subsequently 100 Jll of aqueous nanoshell 

suspension was deposited onto the substrate. The substrate was then allowed to sit at room 

temperature for 3-4 h before rinsing with Milli-Q water (Millipore, Billerica, MA) to remove 

excess nanoshells, followed by drying with a gentle flow of nitrogen. 

Oligonucleotide Sequence (5'-3') 

ST2oN1 SH-C6-TTTTTTTTTTTTTTTTTTTTGCGGCAATCAGGTTGACCG 

(70 bases) TACATCATAGCAGGCTAGGTTGGTCGCAGTC 

SA2oN2 SH-C6-AAAAAAAAAAAAAAAAAAAACGCCGTTAGTCCA 

(70 bases) ACTGGCATGTAGTATCGTCCGATGCAACCAGCGTCAG 

ST2oN3 SH-C6-TTTTTTTTTTTTTTTTTTTTGCGGCTTTCTGGTTGTCCGT 

(70 bases) TCTTCTTTGCTGGCTTGGTTGGTCGCTGTC 

SN4 SH-C6-GACTGCGACCAACCTAGCCTGCTATGATGTACGGTCAA 

(50 bases) CCTGATTGCCGC 
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SN5 
SH-C6-GACTGCGACCAACCTAGCCTGCTATGATGT 

(30 bases) 

SN6 
SH-C6-TCTTGCTGTGTCTGTTCTTT 

(20 bases) 

Table 2.1: Oligonucleotide sequences used in the described experiments. 

To study the possible sequence dependence of the SERS of DNA, several DNA 

oligomers of different lengths and compositions (Table I, purchased from Integrated DNA 

Technology Inc.) were studied. Prior to use, all thiolated DNA oligomers were reduced with 1,4-

Dithio-DL-threitol (DTT, Fluka) and purified with NAP5 purification columns (GE Healthcare). 

Unthiolated DNA sequences were used as received, having been HPLC-purified by the vendor. 

DNA uncoiling was achieved ex-situ (not on the substrate) by heating the DNA solutions in TE 

buffer (1x Tris EDTA buffer pH = 7.5 from IDT) to 95°C for 10-15 min. followed by rapid 

cooling in an ice bath. DNA prehybridization was carried out ex-situ by mixing two 

complementary DNA sequences at a 1: 1 molar ratio in DNA hybridization buffer (TE/50mM 

NaCl, pH = 7.5), heating the solution to 95°C, then allowing it to cool slowly to room 

temperature in a large water bath. To bind DNA to the nanoshell SERS substrates, 50 J.LL of the 

(typically 40 J.LM) target DNA (ssDNA/dsDNA) were deposited onto a freshly made nanoshell 

SERS substrate. After overnight incubation, the excess ssDNA or dsDNA solution was removed 

by rinsing with TE or TE/50 mM NaCl buffer, respectively. 

For the cisplatin/transplatin experiments, 30 bp prehybridized dsDNA (SN5) was 

immobilized on nanoshell-SERS substrate and then incubated with 7.5 nM mercaptohexano1 

(MH, Sigma-Aldrich) for 7 hours to remove nonspecifically bound DNA and prevent the direct 
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interaction of the cis- and transplatin with the Au surface. Subsequently, 1 mM (aq) cisplatin or 

transplatin (Sigma-Aldrich) was added. Samples were rinsed with TE/50 mM NaCl buffer prior 

to SERS acquisition. 

SERS spectra were recorded while substrates were immersed in the appropriate buffer 

(TE for ssDNA and TE/50 mM NaCl for dsDNA) using a Renishaw inVia Raman microscope 

(Renishaw, U.K.) with 785 nm excitation wavelength. Backscattered light was collected using a 

63x water immersion lens (Leitz, Germany), corresponding to a rectangular sampling area of 3 

J..Un x 30 J..Un. Unless stated otherwise, all the SERS spectra in this work were obtained with an 

integration time of 20 seconds and a laser power of 0.57 m W before the objective. 

Normal Raman spectra of DNA oligomers were acquired with the drop coating 

deposition Raman (DCDR) method.93 In this protocol, 10 J..LL of the 40 J..LM purified DNA 

sample was deposited onto spectRIM substrates (Sigma-Aldrich). Because of the so-called 

"coffee ring" effect, the DNA forms a ring on the substrate after drying in a vacuum assisted 

desiccator. The normal Raman spectra were acquired using a 50x dry objective. An integration 

time of 900 s and a laser power of 570 m W before objective were used for all the normal Raman 

spectral acquisitions. 

2.3 Analysis: 

To quantitatively analyze the reproducibility of the SERS spectra, a dataset of N spectra 

(in this work, typically N = 8) acquired at randomly selected regions on the same substrate was 

obtained. Correlation coefficients between all nonidentical spectral pairs (i ¢ j) in the same 

dataset were determined from the data using: 

w - -
:Lci;(k)- I;)(/j(k)- Ij) 

P, . = ..::.k-;;;.:.1 _______ _ 

1,] 
(1) 
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where i, j is the index of the spectra in the data matrix, k is the wavenumber index of the 

individual spectra, I is the spectral intensity, W is the spectral range, and Of is the standard 

deviation of the ith spectrum. Once the correlation coefficients PiJ are calculated, a Spectral 

Correlation Function r, the average of the off-diagonal correlation coefficients, can then be 

determined: 

N N 

2"" ""P, . LJ LJ 1,) 

i=l j"=i+l r=----=---
N(N-1) 

(2). 

r values can be used for quantitative assessment of spectral reproducibility, with values that vary 

from 1 in the case of identical spectra to 0 in the case of completely uncorrelated spectra. 

Changes in SERS spectra can be quantified using the correlation coefficients ~~·P with all 

possible spectral pairs originating from spectral measurements a and J3 respectively. 

w -:L (Iia ( k) - In(!) ( k)- I)) 
pa,p = ..!!.k:::!-I _____ -=------

1'1 a'!a~ 
I J 

(3) 

ra,p = i=l j=l 

MN 
(4) 

In this case, a and J3 may represent spectra from two different substrates, or spectra 

obtained from the same sample at two different times. Here i, j index the spectra obtained with 

substrate a and J3 respectively, and M and N refer to the total number of spectra analyzed. Prior 

to correlation analysis, all spectra were processed with a Savitzky-Golay second derivative 

method (window size of 15 data points with 2nd order polynomial), which can effectively reduce 

or eliminate possible false correlations resulting from a constant offset or broadband 
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background. 94 The larger the ra,f3 value, the higher the value of the spectral correlation function 

between the sets of spectra. 

Spectral variations induced by cisplatin/transplatin binding to DNA were analyzed using 

Equations (3) and (4). In this case, a, ~ refer to the DNA-nanoshell sample before and after 

cisplatin/transplatin treatment. The average correlation ru·l3, is a quantitative assessment of 

spectral variations induced by the sample treatment. Clearly, the smaller the ru·l3 value, the more 

significant the spectral changes that have occurred. The spectral range evaluated in this analysis 

was 350 cm-1 to 1700 cm-1• 

2.4 Results and Discussion: 

Figure 1.1 shows multiple SERS spectra of untreated and thermally cycled ssDNA 

(SA20N2, Table 1.1 ). Extremely large variations in SERS spectra are typically obtained for 

untreated DNA samples (Figure l.l.a). Following thermal pretreatment (heating of the DNA in 

solution followed by rapid cooling, then adsorption onto the substrate), the SERS spectra appear 

dramatically different and highly reproducible (Figure l.l.b ). To evaluate this change in spectral 

reproducibility, r was calculated for the spectra with and without thermal pretreatment (Figure 

1.1, inset). Also shown are the r values obtained from a series of SERS spectra of prehybridized 

dsDNA for the same base sequence (with its complement) and a mixture of the same two 

complement sequences without thermal pretreatment. Using this analytic approach it is clearly 

seen that the thermally treated ssDNA and the thermally treated, pre-hybridized dsDNA have far 

higher r values (r ~ 0.9) than the untreated samples (r ~ 0.1-0.2). Very similar SERS spectra 

and spectral reproducibility were observed for all other adenine-containing DNA sequences 
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listed in Table 1.1 , suggesting that the observed increase in spectral reproducibility is remarkably 

sequence independent, at least for the variety of DNA oligomers studied here. 

In the preparation of dsDNA for these studies, the SERS spectra and their spectral 

reproducibility for the mixture of untreated DNA and its complement in solution were observed 

to be extremely similar to those observed for untreated ssDNA. From this observation we 

conclude that without thermal pretreatment it is unlikely that extensive hybridization occurs for 

these experimental conditions. Substrate-to-substrate spectral reproducibility was also analyzed 

for thermally pretreated ssDNA and dsDNA samples. Although the overall SERS intensity can 

vary from substrate to substrate due to variations in nanoparticle density, 84 the SERS spectral 

features are highly reproducible, with r > 0.98 in all cases. 

400 800 1200 1600 

Raman Shift (cm-1) 

Figure 2.1: Typical SERS spectra of (a) untreated ssDNA and (b) ssDNA following thermal 
pretreatment. Spectra are offset for clarity. Inset: r values for series of 8 SERS spectra for (i) 
untreated ssDNA from (a), (ii) untreated ssDNA plus complement, (iii) thermally pretreated 
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ssDNA from (b) and (iv) thermally pretreated dsDNA. Error bars represent one standard 
deviation. 

The dramatic differences in SERS spectra and spectral reproducibility between the 

untreated and the thermally-pretreated ssDNA samples can be attributed to thermally induced 

uncoiling of ssDNA prior to attachment to the substrate. We believe this treatment results in 

extended ssDNA chains with a significantly greater uniformity of molecular conformation than 

untreated, randomly coiled ssDNA chains. Adsorption of the thermally pretreated, relaxed 

ssDNA onto the nanoshell substrate surface is quite likely to also result in a more ordered and 

densely packed monolayer on the nanoparticle surfaces relative to ssDNA adsorbed in randomly 

coiled conformations. Increased adsorbate order and packing density on the nanoshell substrate 

surfaces would also enhance the uniformity and reproducibility of the observed SERS signals. 

Since the persistence length of dsDNA can be as long as 50 nm,95 corresponding to -147 base 

pairs, all the hybridized dsDNA investigated in these studies are likely to adopt a rigid rodlike 

structure. Thus, just as with the thermally pretreated ssDNA, the similarly prepared dsDNA is 

also likely to bind to the nanoshell substrates with increased ordering and a higher packing 

density. 

33 



400 800 1200 1600 

Raman Shift ( cm-1) 

Figure 2.2: SERS spectra of(a) adenine, (b) thermally pretreated single stranded and (c) 
double stranded SN5. Each spectrum is an average of 8 spectra collected from different spots of 

the same sample. Spectra are scaled and offset for clarity. 

2.4.1 Adenine-Dominated SERS Spectra: 

In Figure 2.2, a direct comparison of the SERS spectra of adenine with the SERS spectra 

of the thermally pretreated thiolated ssDNA and dsDNA (thiolated ssDNA hybridized with its 

unthiolated complement) SN5, a random sequence 30-base oligonucleotide listed in Table 1.1 , is 

shown. It is clearly observable that both the SERS spectra of ssDNA and dsDNA for SN5 are 

overwhelmingly dominated by the SERS features of their adenine constituents. This dominance 

of the adenine features observed in this case was observed in all the SERS spectra of thermally 

pretreated ssDNA and thermally pretreated, prehybridized dsDNA, regardless of the position or 

percentage of adenine in the sequence. 
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Figure 2.3: (a) Normal Raman of(i) ST20Nl and (ii) SA20N2 (b) SERS spectra of(i) ST20N1 
and (ii) SA20N2. Spectra are offset for clarity. Major peaks in the normal Raman spectrum of 

S T A20N2 are assigned. 

WaveNumber 

678 

729 

785 

1098 

1336 

1485 

1576 

Assignments 

G 

A 

T,C 

bk (P0-2 st) 

A 

A,T,C 

A (ring st, N6H2 df) 

A, adenine; T, thymine; G, guanine; 

C, cytosine; bk, backbone; st, stretch; df, deformation. 

Table 2.2: Assignments of normal Raman bands of SA20N2. 
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This can be seen quite dramatically in the SERS spectra of thermally pretreated ST 20Nl 

and SA2oN2 oligomers, each a 70-base sequence (Figure 2.3). The adenine content in the two 

DNA sequences, 15.5% and 44.3%, respectively, vary significantly. In addition, the adenine 

position in each sequence is quite different: for ST20Nl, the first adenine is 26 bases away from 

the thiol group (and therefore the Au surface), where for SA20N2, 20 adenine bases are directly 

adjacent to the thiol group. Interestingly, the SERS spectra ofthe two DNA sequences were very 

similar (Figure 2.3.b), both dominated by adenine modes. Since poly(T) and poly(A) sequences 

are known to have significantly different packing densities on Au surfaces, a direct comparison 

of SERS intensities does not yield quantifiable enhancement information, and therefore the 

SERS spectra in Figure 2.3.b are normalized.96' 97 In contrast, their normal Raman spectra 

(Figure 2.3.a) reveal significant composition dependence. Mode assignments are provided in 

Table 2.2 for these spectra. 

These data suggest that, under our experimental conditions and for the selection of 

molecules we have studied, that the dominance of the adenine modes in the observed SERS 

spectra is not due to abundance of adenine base nor to the relative proximity of the adenine bases 

to the gold surface. The SERS signal itself from the adenine bases appears to be more greatly 

enhanced than that of the other DNA bases. The only SERS spectral signature from the other 

DNA bases that is observable is the weak 667 cm-1 peak, attributed to the ring breathing mode of 

guanine. 81 ' 98• 99 This much weaker feature appears in the SERS spectra of both the ssDNA and 

dsDNA, but is absent from the SERS spectrum of adenine. Stokes modes from thymine and 

cytosine, and the backbone constituents of ribose and phosphate, are indiscernible. 

One may possibly conclude that based on our experimental observations, the thermally 

pretreated DNA oligomers may be lying down and in direct contact with the Au surface of the 
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nanoparticle as an explanation of the consistent dominance of the adenine SERS modes. 

However, we have observed that the SERS of nonthiolated DNA, which is most likely to be 

lying flat on the gold surface, is quite different in terms of relative intensity of adenine (736 cm-

1) and guanine (667 cm-1) peaks than its thiolated DNA counterpart (unpublished). Moreover, 

experimental100 and theoretical101 studies have suggested a strong correlation between packing 

density and DNA conformation. The packing density of DNA chains on the gold nanoshell 

surface is quite likely to affect their conformation (and vice versa). At higher packing densities 

both single stranded and double stranded thiolated DNA would preferentially extend from the Au 

surface. On the other hand, loosely packed DNA chains may prefer to lie flat and in contact with 

the Au surface, stabilized by DNNAu interactions. 102 DNA-Au simulation studies taking into 

consideration DNA base pair stacking, electrostatic interactions, electrolyte effects, in addition to 

DNA-Au interactions are critically needed to better understand the precise conformation of 

thiolated and unthiolated DNA on Au surfaces. 

To further understand the relative signal contributions of the different DNA bases, SERS 

spectra of thermally pretreated single stranded ST 20N3, a thiolated 70-base oligomer that 

contains no adenine, and a prehybridized double stranded ST 20N3 with its complement, were 

obtained (Figure 2.4). As expected, in the absence of adenine, the guanine features are seen to 

dominate the DNA SERS spectra. It is worthwhile to note that there are no detectable features 

from either cytosine or thymine in the SERS of ST 20N3, supporting a conclusion that the SERS 

cross section of adenine >> guanine >> cytosine and thymine. 

Several reasons could explain the dominance of adenine in the SERS spectra. One 

possibility is that DNA degrades during thermal pretreatment of our DNA oligomers, resulting in 

adenine bases or base containing fragments binding directly to the Au surface thus yielding a 
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preferentially large SERS signal. This possibility was carefully examined by gel electrophoresis 

analysis of our DNA oligomers following thermal cycling, which confirmed that the thermal 

pretreatment is entirely nondestructive and does not compromise DNA integrity. Furthermore, 

when the pretreat~d, uncoiled ssDNA samples, now bound to the nanoshell substrates, were 

reheated then allowed to cool slowly, the reproducibility of the SERS spectra of the reheated 

samples was measurably decreased. This is most likely due to partial, random DNA recoiling 

occurring during the slow cooling step. If thermal cycling caused partial DNA dissociation, then 

additional heating would likely result in further DNA dissociation and an increase in the SERS 

signal from the additional available adenine, which is not what is observed. These observations 

lead us to conclude that the most likely reason that adenine dominates the SERS spectra of DNA 

is that adenine possess a significantly higher SERS cross section than the other DNA bases. 

The dominance of adenine due to its higher SERS cross section is consistent with other 

previously reported SERS studies of DNA. For example, in an equimolar mixture of poly(A), 

poly(G), poly(C) and poly(T), it was found that the SERS intensities of the ring breathing modes 

showed an order of A> C >> G ~T.83 Tip-enhanced Raman spectroscopy (TERS) of single 

DNA bases in self-assembled monolayers on Au(lll) showed the intensity of the adenine 

breathing mode to be far higher than that of guanine, which in turn was higher than cytosine and 

thymine. 103 This observation is consistent with our experiments. It is also important to note that 

adenine is the only DNA base that exhibits single molecule detectability while the lowest 

reported detection limits for the other DNA bases are in the sub !-LM range80. 
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Figure 2.4: (a) SERS ofuncoiled ST20N3 (adenine-free 70 base ssDNA). (b) pre-hybridized 
dsDNA (ST 2oN3 with its complement). 

In previous SERS studies of DNA on nanoshell substrates it was determined that LsERs, 

the effective 1/e distance above the nanoshell surface where SERS enhancement could be 

detected for nanoshells of this size, is nominally 9 nm. 19 The observations reported here are 

consistent with this LsERS· Assuming a tilt conformation for thiolated DNA chains on the Au 

surface supported by simulation studies, 104 approximately the first 30 to 40 bases closest to the 

Au surface would lie within the LsERS for this substrate. In the case of ST 20Nl, the first adenine 

is 26 bases away from the Au surface, still within the LsERs for this nanoshell substrate. In this 

case, the high SERS cross section of adenine compensates for the weaker SERS enhancement 

experienced by this moiety at its distance from the nanoshell surface. 
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2.4.2 Detection o[DNA Interaction with Cisplatin and Transplatin: 

Having achieved highly reproducible SERS spectra of DNA by this method, we apply 

this approach to detect and discriminate conformational changes induced by the interaction of 

DNA with the two platinum ligands cisplatin and transplatin. 
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Figure 2.5: SERS of cisplatin/transplatin bound to 30 bp ds-DNA SN5. (a) Spectra (i) before, 
(ii) immediately following, and (iii) after overnight incubation with cisplatin. (b) Same as (a) for 
transplatin. Spectra are offset for clarity. Inset: Spectral correlation functions r a,p for different 

DNA spectra as labeled. 

Representative SERS spectra of 30 bp dsDNA (SN5) on mercaptohexanol (MH) 

passivated nanoshell substrates before and after incubation with cisplatin and transplatin are 

obtained (Figure 2.5). (MH surface passivation is performed to prevent nonspecific binding of 

DNA and platinum ligands to the Au nanoshell surface, assuring better DNA-ligand 

interaction. 105
) SERS spectra of DNA before and after incubation with cisplatin or transplatin are 

similar, with the only recognizable new peak at~ 450 cm-1
, which can be attributed to the 
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1 .. hi 106 P atmum-amme stretc ng mode. The appearance of this new peak verifies covalent bonding 

of the cis-/transplatin to the DNA. 

Although the spectra clearly change over time, all the SERS spectra remain reasonably 

reproducible (r > 0.95), validating the cross-comparison of the SERS spectra between different 

samples. The reduction in SERS spectral reproducibility is explained by the binding of cisplatin 

and transplatin to DNA resulting in the formation of monofunctional, interstrand and intrastrand 

adducts. Since these adducts can form randomly at any purine residues, it is expected that 

random modifications ("kinks") in the molecular conformation of the DNA will increase 

significantly upon adduct formation. The increase in DNA distortion induced by cisplatin 

binding during incubation does indeed correlate with a decrease in spectral reproducibility 

(Figure 2.5.a). This observation is consistent with the current understanding of this interaction as 

a two-step process, where cisplatin initially attaches quickly and preferentially to the N7 atom of 

guanines and adenines, forming cisplatin/DNA monoadducts. Then, monoadducts are converted 

into bivalent platinum/DNA complexes in a much slower step that takes up to several hours107• In 

contrast, for transplatin, the spectral reproducibility appears time-independent, (Figure 2.5.b). 

consistent with the fact that transplatin/DNA interaction is a one-step process. 107 

It is also clear from our SCF analysis that the spectral changes induced by cisplatin (Pi,ii) 

= 0.85 immediately after adding cisplatin and pi,iii) = 0. 73 after overnight incubation) are much 

more significant than those induced by transplatin cr<i,ii) = 0.97 right after adding transplatin and 

pi,iii) = 0.97 after overnight incubation). The cross-linking of cisplatin to DNA is believed to be 

predominantly intrastrand, occurring between two adjacent purines (1,2 intrastrands, d(GpG) or 

d(ApG), -90%). 108 Other intrastrand linkages that may occur are between purines separated by 

one or more nucleotides, and interstrands between purines from opposite DNA strands. A few 
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adducts are likely to remain monofunctional. It is widely accepted that the 1,2 intrastrand adducts 

locally unwind and bend double stranded DNA. 109 This is consistent with our observation that 

cisplatin interaction induces numerous complex changes in the SERS spectrum and a decrease in 

rover time. In the case oftransplatin, some of the cross-links formed are interstrands, but most 

ofthe adducts remain monofunctional, inducing significantly less DNA distortion. This is 

consistent with our observation that r is unchanged upon DNA-transplatin incubation. 

These experiments demonstrate that SERS of DNA can detect ligand binding in two 

ways: by exciting the Stokes modes of the ligands themselves, but also through the complex 

conformational changes occurring in the DNA spectra resulting from the conformational 

distortion due to ligand binding. We believe that this SERS-based approach can be 

straightforwardly applied to studying the binding affinities of DNA with small molecules. This 

approach may also be used to develop a new type of all-optical chemical sensor based on optical 

detection ofDNA conformational changes upon binding ofthe DNA to a ligand of interest. 

2.5 Conclusion: 

This work demonstrates a successful method for obtaining high quality SERS spectra of 

single and double stranded DNA. Thermal uncoiling of ssDNA and hybridization of dsDNA 

dramatically increase the reproducibility of SERS spectra, acquired on nanoshell SERS 

substrates with highly regular, highly controlled electromagnetic enhancements. 

Regardless of the DNA composition, sequence and hybridization state, the SERS spectra 

of our model DNA exhibit almost identical spectral features dominated by adenine. The high 

spectral quality and reproducibility of the spectra strongly suggest the possibility of using 

adenine as an endogenous SERS reporter of DNA. High quality, highly reproducible DNA 
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spectra may also provide opportunities for label-free DNA detection schemes based on surface 

enhanced Raman spectroscopy. 

The study of the interaction of cis- and transplatin with ds-DNA reveals that spectral 

changes and reproducibility are highly correlated with DNA-cisplatin binding. These 

experiments demonstrate the possibility of using SERS to investigate the interaction and kinetics 

of DNA with various molecules, a topic of high-priority interest in drug discovery, 

pharmaceutical development and testing. 
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Chapter 3: Correlation of Molecular Orientation and Packing 
density in a dsDNA self-assembled monolayer observable with 

Surface Enhanced Raman Spectroscopy 

3.1 Introduction: 

DNA, the genetic material of most living systems, has more recently found its way into many 

novel applications ranging from nanoelectronics 110 to DNA-based nanosensors. 111 • 112 In these 

applications, the binding of DNA to metal surfaces, frequently through the use of a terminal 

functional group on a DNA oligomer, is prevalent. In particular, the orientation of DNA 

immobilized on Au surfaces has been extensively studied both experimentally113 and 

theoretically114• The ability to monitor the orientation of DNA molecules tethered to metal 

surfaces is crucial to improving these applications. It has been proposed that the orientation of 

DNA molecules bound to surfaces correlates with packing density, however, most of these 

studies were done in the context of determining the optimal packing density of ssDNA for 

maximum hybridization114• 115• Here we report that the surface-enhanced Raman spectra of a 

thiolated dsDNA monolayer provide a new level of detail regarding its orientation and packing 

density on an Au nanoshell surface. 

This chapter is an important extension of our previous work in which we demonstrated that a 

simple protocol based on thermally pretreating DNA prior to binding to Au nanoshell SERS 

substrates greatly enhances its spectral quality and reproducibility116• Here we use the same 

experimental procedure to investigate the orientation of dsDNA bound to the Au nanoshell 

surface. SERS is particularly advantageous for this study since the enhancement depends, in 

addition to other parameters, on the relative orientation of the investigated molecule with respect 
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to the substrate surface. However, only few attempts to study DNA orientation on gold surfaces 

using SERS have been reported 117• The high reproducibility of our DNA SERS spectra allows us 

to monitor variations in DNA orientation with respect to its packing density in significant detail. 

3.2 Results and Discussion: 

Our detection strategy is based on comparing the relative intensities of the Raman breathing 

mode of guanine at (667 cm-1) and the Raman ring-bending mode of adenine at (623 cm-1) 118 in 

the SERS spectrum of thiolated DNA bound to Au nanoshell surfaces. Adenine and guanine 

possess the highest Raman cross-sections of the naturally occurring DNA bases: SERS features 

from thymine and cytosine are much weaker, and are indiscernible in our experiments. For the 

Au nanoshells used in this study, the LsERs, defined as the effective 1/e distance for SERS above 

the nanoparticle surface, is ~ 9 nm/ 19 corresponding to ~30 bases for a vertical DNA 

conformation. The DNA sequences used in this study, SA20Nl and SA10Nl, were designed 

specifically with adenine in the first 20 and 10 bases closest to the Au surface, respectively. 

Oligonucleotide Sequence (5'-3') 

SA2oNl SH-C6-AAAAAAAAAAAAAAAAAAAACGCCGTTAGTCCA 
(70 bases) ACTGGCATGTAGTATCGTCCGATGCAACCAGCGTCAG 

SAlON I SH-C6-AAAAAAAAAAGCTGCTGTCCCGCCGTTAGTCCAAC 
(70 bases) TGGCATGTAGTATCGTCCGATGCAACCAGCGTCAG 

Table 3.1: DNA sequences used in the described experiments 
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As a result, for DNA in a near-vertical orientation, the adenine peak has a significantly higher 

intensity relative to the guanine peak. As the DNA tilt angle increases, more guanine bases enter 

the fringing field (Figure 3.1.A). Thus the guanine peak intensity gradually increases relative to 

the adenine peak. The ratio of the guanine to the adenine peak intensity can be correlated 

quantitatively with an effective tilt angle for the DNA. For simplicity, we will call RGtA the ratio 

of the intensity of the 667 cm-1 guanine peak to the 623 cm-1 adenine peak. 
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Figure 3.1: SERS detection of DNA orientation. A) schematic of the orientation detection 
strategy based on variation of dsDNA tilt angle. B) SERS spectra of SA20Nl with its 
complement at different DNA concentrations. Spectra 1 to 5 correspond to 40, 20, 10, 5 and 1.25 
jlM dsDNA, respectively. Spectra are offset for clarity 

Figure 3.1.B shows the SERS spectra of dsDNA (SA20N1 with its complement) at different 

DNA concentrations. For the sample at high DNA concentration, corresponding to a high 

packing density, the adenine peak intensity is much greater than the guanine peak intensity. The 

DNA surface density was not directly calculated; however, it could be roughly estimated to be 

around 18 pmol/cm2 at high surface coverage regime120• This appears to correspond to a 

minimum tilt angle. On the other hand, at low DNA concentrations corresponding to low packing 

densities, the guanine peak intensity significantly increases relative to the adenine peak intensity, 

suggesting a tilted DNA conformation. These observations are consistent with previous work 

suggesting that DNA chains tend to stand up at high packing density and lie down at low packing 

To better illustrate the correlation between DNA orientation and packing density for SA20N1, 

we plotted Ra1A against DNA concentration (Figure 3.2). Ra1A decays asymptotically with 

increased DNA concentration. This same experiment was also performed with 70 bp DNA with 

the same sequence as SA20N1 but with 10 adenine (thymine) bases adjacent to the terminal thiol 

group (and complement) (Figure 3.2). 
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Figure 3.2: Guanine to adenine peak intensity ratio as a function of DNA concentration. Blue 
and red lines correspond to SA20Nl and SA10Nl, respectively, conjugated with their 
complementary sequences. Insets show schematics of variations of DNA orientation with 
packing density. 

The highly systematic variation of Ra;A with DNA concentration strongly suggests that 

guanine and adenine are changing their relative proximities to the Au surface. Since 70 bp 

dsDNA is likely to adopt a rigid rodlike structure 121
, these measurements are consistent with a 

variation of the DNA orientation on the Au surface. As a control, we plotted the ratio of the 

intensity of the ring-bending mode of adenine at (623 cm-1
) to the intensity of the breathing mode 

of adenine at (736 cm-1
) as a function of DNA concentration. As would be expected, this ratio 

was observed to be constant since the two peaks belong to the same DNA base (Figure 3.3) 
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Figure 3.3: The ratio of the intensity of the ring-bending mode of adenine at 623 cm-1 to the 
intensity of the breathing mode of adenine at 736 cm-1 as a function of the DNA concentration. 

The highly consistent trends in the variation of RGIA with concentration for the two DNA 

sequences demonstrates a strong likely correlation between DNA packing density on the Au 

surface and DNA chain orientation (avg. tilt angle). It also suggests that RG/A may be useful as a 

noninvasive optical monitor to assess packing density ofthiolated DNA chains on a SERS-active 

Au substrate in sensing applications. 

Both RG/A plots in Figure 3.2 show dramatic increases at low DNA concentrations, 

corresponding to DNA chains in close proximity to the Au surface. The asymptotic case would 

occur for nonthiolated dsDNA lying on the Au surface. For the nonthiolated case, the RG/A value 
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was found to be much higher than the values measured here for thiolated dsDNA (6.9 compared 

to ~3, Figure 3.4). 
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Figure 3.4: SERS spectrum ofnonthiolated SA20Nl with its complement 

To test the validity of the proposed model, we investigated the possibility of varying the DNA 

orientation by coadsorbing additional, smaller molecules to the Au surface that would "lift" the 

DNA chains off the substrate surface. Short thiolated polyT (20 bases) was chosen as a 

"molecular spacer" for several reasons: its SERS signal is indetectable and would not contribute 

to the spectrum; it also binds to Au surfaces via its thiol moiety, and it has minimal affinity with 

the dsDNA, so it is not likely to induce conformational variations in the dsDNA itself. 

50 



Figure 3.5 shows a dramatic decrease in RG/A when polyT is coadsorbed with the thiolated 

dsDNA, (see supporting information for experimental details) corresponding to a decrease in tilt 

angle due solely to the presence of the coadsorbed molecule. With the polyT bound to the Au 

surface, the available space for the long DNA chains decreases, causing them to adjust their 

spatial orientation to a more upright conformation. 
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Figure 3.5: DNA tilt due to incubation with polyT. (a) SERS spectra of SA20Nl(2.5 J.!M) before 
polyT incubation, (b) SERS spectra of SA20Nl after polyT incubation, (c) bar plot showing the 
adenine guanine peak intensity ratio before and after polyT incubation. Insets are schematics 
depicting the DNA orientation variation caused by polyT incubation. 

3.3 Conclusions: 

In summary, we have observed that the ratio of two specific features in the SERS spectrum of 

adenine and guanine in thiolated dsDNA provide highly consistent markers that correlate with 

DNA chain orientation with respect to the substrate surface. From this analysis, DNA appears to 

adopt a steeper orientation at higher packing densities, which for decreased packing densities is 
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reduced. This study will shed light on geometric structure of long chain molecules in general 

and particularly DNA bound on metal surfaces. Understanding the way this geometrical structure 

depends on the molecular surface coverage would have great benefit on many technology based 

on surface chemistry. 
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Chapter 4: Label-Free Detection of DNA Hybridization Using 
Surface Enhanced Raman Spectroscopy 

4.1 Introduction: 

Recently, DNA hybridization has become one of the most frequent applied techniques for 

clinical laboratory screening of genetic and infectious diseases as well as for forensic testing. 122-

124 In a typical DNA hybridization design, probe DNA must be labeled with a radioactive or 

optical label for detection. The most common DNA array technique employs fluorescent 

labels125• 126, which, unfortunately, is both chemically and labor intensive. Also, its quantization 

accuracy is often compromised by the poor photostability of the labeling fluorophores. 

Significant progress has been made in the development of alternative DNA assay techniques 

by using gold nanoparticles,127' 128 dye-doped silica nanoparticles129, and quantum-dots130• 131 as 

optical tags combined with various modalities of optical detection schemes. Although these 

approaches have the potential to improve the detection limits, they too, involve costly tagging 

chemicals and detection instrumentation. On the other hand, label-free detection has been 

emerging as a potential method for detecting DNA hybridization at high sensitivity with low cost 

and less preparation time. Whereas several format for label-free detection have been proposed 

such as electronic132, colorimetric133• 134, and electrochemical135, surface enhanced Raman 

spectroscopic (SERS) has not been yet explored as a promising alternative to achieve this goal. 

The SERS detection of a single adenine base makes this technique ideal for ultrahigh sensitive 

label-free detection of DNA hybridization. 136 Most of the reported SERS-based DNA detection 

techniques are fundamentally based on detecting labels (SERS active tags) where the presence of 

the label is an indication of the presence of target DNA. 137-139 Two main impediments have 
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prevented the development of a label-free detection technique based on SERS. First, the spectral 

reproducibility has been a major challenge for SERS especially for biomolecules such as DNA. 

Recently, we have reported an experimental procedure based on thermal cycling DNA oligomers 

which greatly enhances DNA spectral quality and reproducibility140• Second, since both target 

and capture probe sequences (capture probe sequence is bound to the SERS-active substrate and 

complementary to the target sequence) are consisted of the same DNA bases, distinguishing 

SERS signal resulting from the hybridization of the target sequence is extremely challenging. 

Au nanoshells (Au NS), spherical core-shell nanoparticles consisting of a silica core and Au 

shell with plasmon resonance frequencies controlled by the relative inner and outer radius of the 

metallic shell layer, have been used as reproducible SERS substrates. 119• 141-143 In previous 

reports, we have proved that Au NS-based SERS-active substrates are ideal for large molecules 

detection such as DNA. 140' 144 By thermally cycling ssDNA, the spectral quality and 

reproducibility was greatly enhanced. All DNA sequences were proven to have similar SERS 

spectra dominated by adenine SERS features regardless sequence length and/or base 

composition. This step is considered a major achievement towards SERS-based DNA label-free 

detection technique. 

In this chapter I will discuss how we developed a label-free detection technique based on 

highly reproducible DNA SERS spectra on NS substrates and a substitution of all adenine bases 

on the capture probe sequence with the artificial base analogue 2-aminopurine. The 2-

aminopurine substitution allows for the detection of target hybridization based on the appearance 

of the dominant SERS peak of adenine bases located within the target sequence. This is the first 

reported SERS-based label-free DNA detection technique based on DNA base substitution. 
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4.2 Experimental: 

Nanoshell-based SERS substrates consisting of dispersed nanoshells bound to glass substrates 

were prepared as previously described. 145• 146 Briefly, a fused quartz microscope slide (Piranha 

cleaned) was incubated overnight in an (1 %) ethanolic solution ofpoly(4-vinylpyridine) (MW = 

160 000 from Sigma-Aldrich) and dried with nitrogen gas; subsequently, 100 ,uL of aqueous 

nanoshell suspension was deposited onto the substrate. The substrate was then allowed to sit at 

room temperature for 3-4 h before being rinsed with Milli-Q water Millipore, Billerica, MA) to 

remove excess nanoshells and then dried with a gentle flow of nitrogen. 

All DNA sequences (Table 4.1) were purchased from Integrated DNA Technology Inc. 

(Coralville, lA). Prior to use, all thiolated DNA oligomers were reduced with 1,4-dithio-DL­

threitol (Fluka) and purified with NAP5 purification columns (GE Healthcare). Unthiolated DNA 

sequences were used as received, having been HPLC-purified by the vendor. DNA uncoiling was 

achieved in solution, prior to binding of the DNA to the substrate by heating the DNA solutions 

in TE buffer (1x Tris EDTA buffer, pH) 7.5, from IDT) to 95 oc for 10-15 min. This step was 

followed by rapid cooling in an ice bath. DNA prehybridization was carried out ex situ by 

mixing two complementary DNA sequences at a 1: 1 molar ratio in DNA hybridization buffer 

(TE/50 mM NaCl, pH= 7.5), heating the solution to 95 °C, and then allowing it to cool slowly to 

room temperature in a large water bath. To bind DNA to the nanoshell SERS substrates, 50 ,uL 

(typically 40 ,uM) of the target DNA (ssDNA/dsDNA) was deposited onto a freshly made 

nanoshell SERS substrate. After overnight incubation, the excess ssDNA or dsDNA solution was 

removed by rinsing with TE or TE/50 mM NaCl buffer, respectively. In-situ hybridization was 

performed by adding 50 JlL of the eDNA, corresponding to 1: 1 molar ratio, to a SERS substrate 

that was previously functionalized with thio1ated ssDNA, followed by adding 50 JlL of 

55 



hybridization buffer. After overnight incubation, the excess ssDNA solution was removed by 

rinsing with TE/50 mM NaCl. 

Oligonucleotide 

SN3 

C-SN3 

SN4 

S2APN5 

C-S2APN5 

SN6 

Sequence (5'-3') 

SH-C6-TTTTTTTTTTTTTTTTTTTTGCGGCAATCAGGTT 
GACCGTACATCATAGCAGGCTAGGTTGGTCGCAGTC 

SH-C6-TTTTTTTTTTTTTTTTTTTTGCGGCTTTCTGGTT 
GTCCGTTCTTCTTTGCTGGCTTGGTTGGTCGCTGTC 

SH-C6-TCTTGCTGTGTCTGTTCTTT 

AAAGAACAGACACAGCAAGA 

CATGTGACCTCTTCTAGATC 

SH-C6-CGCT/2AP/GG/2AP/TCTG/2AP/CTGCGGCTCCTC 
C/2AP/T 

ATGGAGGAGCCGCAGTCAGATCCTAGCG 

CATGTGACCTCTTCTAGATC 

Table 4.1: Oligonucleotide sequences used in the described experiments 

SERS spectra were recorded while substrates were immersed in the appropriate buffer (TE for 

ssDNA and TE/50 mM NaCl for dsDNA) by using a Renishaw in Via Raman microscope 

(Renishaw, U.K.) with 785 nm excitation wavelength. Backscattered light was collected using a 

63 x water immersion lens (Leitz, Germany), corresponding to a rectangular sampling area of 3 

pm x 30 pm. Unless stated otherwise, all the SERS spectra in this work were obtained with an 

integration time of 20 s and a laser power of 0.57 m W before the objective. 
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4.3 Results and Discussion: 

4.3.1 Label-Free Detection Using Adenine-Free Capture Probe: 

All SERS spectra are averages of at least 8 spectra acquired from different spots of the same 

substrate to ensure SERS spectral reproducibility. Typical r 140 (spectral correlation function) of 

~ 1 is calculated for all SERS spectra. The overwhelming dominance of adenine spectral features 

is supported by previous studies and is primarily attributed to the higher SERS cross section of 

adenine. 136 The DNA SERS spectrum looks extremely similar to adenine SERS spectrum, 

dominated by the 736 cm-1 peak (adenine breathing mode) (Figure 4.l.a). In the presence of 

adenine, spectral features from other DNA bases (guanine, thymine and cytosine) are 

inconsequential. SERS of adenine-free DNA, DNA sequence that does not contain adenine bases 

(ST20N2), shows SERS modes of other bases especially guanine (Figure 4.1.b). The main SERS 

feature of the adenine-free DNA spectrum appeared at 663 cm-1 (guanine breathing mode). 
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Figure 4.1: SERS of DNA sequences (a) with adenine bases and (b) with no adenine bases 

I Peak Assignment 

663 G breathing mode 

958 NH bending 

1349 A and G stretching 

1449 A and G stretching 

1705 Carbonyl group 

Table 4.2: Raman Assignments 

This result proves that the overwhelming 736 cm- 1 mode is very distinctive for adenine bases. 

This 736 cm-1 strong adenine SERS mode can be used to detect the presence of a target sequence 

(containing adenine) that would hybridize to a capture probe which is adenine free. The SERS of 

the adenine-free capture probe is missing the 736 cm-1 mode as shown in Figure 4.l.b. 
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In the adenine-free capture probe format, single stranded adenine-free DNA sequences 

(capture strand) were first immobilized on the Au NS SERS active substrate through a thiol 

moiety on their 5' end, the rest of the DNA sequences are available for hybridizing with the 

complementary strands. SERS of the capture probe sequences is shown in Figure 2 with the main 

peak being at 663 cm-1 (guanine breathing mode). A target sequence (complementary to the 

capture probe) and a random sequence (non-complementary to the capture probe) were 

separately hybridized with the capture probe. The hybridization of the target sequence is evident 

by the appearance of the 736 cm-1 adenine peak (Figure 4.2.a). For the control sequence, a very 

small peak appeared at 736 cm-1 due to DNA/DNA interaction as well as DNA/surface non­

specific binding (Figure 4.2.b). 
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Figure 4.2: SERS label-free detection of DNA hybridization based on adenine-free probe. SERS 
of: (a) capture probe hybridized with complementary DNA sequence (target), (b) capture probe 
hybridized with non-complementary DNA sequence (control) and (c) DNA capture probe 
(adenine-free) 

It has been reported that, for on-surface DNA hybridization, the packing density of the capture 

probe greatly affects the hybridization efficiency96
• Lower capture probe packing density 

significantly increases the hybridization efficiency since it allows for better interaction between 
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the capture probe and the DNA target. On the other hand, lower packing density provides more 

free space between DNA probe sequences for DNNsurface non-specific binding. This non­

specific binding is significant for Au surfaces due to the high affinity between single stranded 

DNA and Au. To overcome this problem, mercaptohexanol was used to passivate the free 

surface which prevents target single stranded DNA from interacting with the Au surface. 

Label-free detection of DNA hybridization has been proven using SERS and adenine as a 

SERS biomarker. Since the hybridization is indicated by the appearance of the main adenine 

peak, the capture strand has to be adenine-free. A convolution of adenine spectral features from 

capture and target DNA sequences is undesirable. Whereas this result is very promising, 

limitation in the detected DNA sequences is very unpractical. 

4.3.2 Label-Free Detection Using 2-Aminopurine Substituted Capture Probe 

To overcome the problem of sequence limitation substitution of adenine bases in the capture 

probe rather than completely eliminating them has been considered. 2-aminopurine have been 

found to be widely used as an artificial adenine substitution.147 The substitution of adenine by its 

isomer 2-aminopurine, preserves the same characteristics of the substituted sequence. Very 

similar to adenine, 2-aminopurine binds to thymine through hydrogen bonding. 148• 149 The 

substitution only causes a very small perturbation of the nucleic acid structure. 150 

The SERS of the 2-aminopurine bases, however, is quite different than adenine bases. Most 

importantly, 2-aminopurine does not have SERS features at 736 cm-1 region (Figure 4.3.a) which 

means that it can be used as an ideal adenine substitution. SERS of DNA sequence containing 2-

aminopurine shows only two main features at 807 cm-1 (breathing mode of 2-aminopurine) and 

663 cm-1 (breathing mode of guanine) (Figure 4.3.b). A 2-aminopurine substituted DNA capture 
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probe can be used as a label-free adenine-based detection system where the hybridization of the 

target sequence is marked by the 736 cm-1 adenine peak. 
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Figure 4.3: Raman spectroscopy of 2-aminopurine. (a) Surface enhanced (black) and non­
enhanced (red) Raman spectroscopy of 2-aminopurine bases. (b) SERS of DNA containing 2-
aminopurine bases. All adenine bases are substituted with 2-aminopurine. Inset is structural 
formula of 2-aminopurine. 

Figure 4.4 shows the SERS spectra of the target (a) and a non-complementary control (b) 

DNA sequences hybridized to the 2-aminopurine substituted capture probe. The hybridization of 

the target sequence is identified by the 736 cm-1 adenine peak. 

Further spectral proof of the target sequence hybridization, in addition to the 736 cm- 1 adenine 

peak, is demonstrated by comparing the intensity of the guanine peak (663 cm-1):2-aminopurine 

peak (807 cm-1
) ratio between the target and the non-complementary control sequence. A 

significant increase of this ratio is observed in the case of target hybridization. A relative 
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increase in intensity of the guanine peak indicates the hybridization of the target sequence, which 

contains guanine bases. The hybridization of the target sequence is verified by the appearance of 

a new peak at 736 cm-1 (adenine peak) and the relative increase of the guanine peak. 
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Figure 4.4: Label-free detection of DNA hybridization based on 2-aminopurine modified DNA 
probe. (a) complementary DNA sequence hybridized to 2-aminopurine probe (target). (b) non­
complementary DNA sequence hybridized to 2-aminopurine probe (control). 

4.3.3 Hybridization Efficiency: 

On-surface DNA hybridization has been extensively studied for different surfaces, capture 

probe sequences and packing densities, buffers and so on. Experimentally determining the DNA 

hybridization is a very time consuming task. It usually requires dye-labeling the target sequence 

and determining the number of hybridized DNA sequences after displacing the DNA target and 
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capture probe from surface96• Since the fluorescence of these label dyes is very pH dependent, 

keeping experimental solutions at the optimum buffer conditions (pH and salt concentration) for 

dye fluorescence is tedious, difficult and typically introduces some experimental errors. 

The SERS label free detection technique described provides a more straightforward way to 

determine hybridization efficiency. The DNA hybridization efficiency can be simply calculated 

based on the ratio of the 736 cm-1 adenine peak intensity to the 807 cm-1 2-aminopurine peak 

intensity. The intensity of the 807 cm-1 2-aminopurine peak is constant and determined only 

based on the capture probe packing density. The peak ratio is 0 for non-hybridization. When 

capture probe and target sequences are prehybridized prior to binding to the NS substrate, the 

peak ratio would be maximum corresponding to A100% hybridization efficiency. Different 

hybridization efficiencies can be extrapolated from the different peak ratios and correlated to the 

target concentration. The hybridization efficiency is normalized for all substrates since it only 

depends on the ratio of intensities of the two peaks. 

Figure 4.5 shows that the hybridization efficiency is fairly low even at high target concentration 

( ~ 11% at 80 JlM). The low hybridization efficiency is consistent with previous reports96 and is 

mainly due to the capture probe packing density and hybridization conditions (buffer, 

temperature). Mercaptohexanol was used as a spacer molecule which increases the hybridization 

efficiency and decreases the non-specific DNNsurface interaction (result not shown). In 

addition, it was suggested that using a spacer short DNA sequence could further improve the 

hybridization efficiency. 96 

This system provides a straightforward approach to study DNA hybridization efficiency for 

different DNA sequences, buffer conditions, spacers and so on. This could help improve other 

DNA detection techniques as well as on on-surface DNA hybridization technologies 
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Figure 4.5: Label-free detection calibration curve. Plot shows the hybridization efficiency versus 
target concentration 

In addition, since, the DNA mutations decrease the hybridization efficiency, 132 this technique 

can be used to detect DNA mutations such as SNP (single nucleotide polymorphism). 

Introducing a mutation on the target sequence should decrease the hybridization efficiency which 

can be determined as a decrease in the peak ratio. Moreover, chemically modified DNA 

(oxidized or methylated) should also have a lower hybridization efficiency which could be 

detected as well. Particularly, DNA oxidation, which occurs most readily at guanine and 

correlated to aging-related diseases such as cancer could be detected. SERS of oxidized guanine 

will be different than normal guanine. The presence of oxidized guanine on the target sequence 

can be indicated by: (i) decrease in the adenine to 2-aminopurine peak ratio due to lower 

hybridization efficiency associated with sequence perturbation. (ii) decrease in the guanine to 2-

aminopurine peak ratio since oxidized guanine will not have the same SERS features as native 

guanine. (iii) possibility of the appearance of new SERS features associated with the oxidized 

guanine. 
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One advantage of using SERS for DNA detection is the tremendous amount of information 

that could be derived from the SERS spectra. Whereas other DNA detection techniques are based 

on detecting tags, our detection scheme is based on detecting DNA itself. As a result the slightest 

variation on DNA target base composition and/or chemical structure can be easily detected. This 

technique can be extended beyond simple DNA detection to detecting mutated and chemically 

modified DNA, which could be used for many biomedical applications. 

4.3.4 Target Concentration and Detection Limits: 

The system allows measurement of the target concentration based on the calibration curve 

(Figuer 4.5). Whereas in other DNA detection techniques, target concentration is typically 

determined through a comparative study, in this system, target sequence concentration could be 

directly extrapolated from the calibration curve. The adenine to 2-aminopurine peak intensity 

ratio is directly correlated to the target concentration. We have reported that thermal relaxation 

of DNA provides high substrate to substrate SERS spectral reproducibility in terms of peak 

position but not peak intensity. In SERS, peak intensity depends not only on number, 

conformation and relative proximity of molecules to the surface, but mostly on substrate quality. 

Comparing intensities of spectra acquired on different substrates requires high substrate 

reproducibility which is experimentally hard to achieve. The described label-free detection 

technique allows substrate to substrate comparison since it is based on the peak ratio regardless 

of the absolute intensity. The peak ratio depends only on the number of target molecules with 

respect to the number of probe molecules which represent the hybridization efficiency. 

To determine the detection limit of the SERS label-free detection technique, we performed the 

hybridization experiment with decreasing DNA target concentrations. SERS of different samples 

was then acquired. Data shows that the minimum target concentration that could be detected and 
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discriminated versus a control sequence based on the peak ratios is ~80 nM corresponding to 

only 1.2 x 106 detected DNA molecules. 1.2 x 106 is the number of molecules on the 30 f.!m x 3 

f.!m sampling area and it is based on the DNA surface coverage (determined based on previous 

reports 151 ) and DNA hybridization efficiency. It is worth to note that for 80 nM target 

concentration, the hybridization efficiency is only 0.3 %, this value could be easily improved by 

developing appropriate hybridization buffer and/or altering the capture strand packing density. 

The detection limit for the described technique is not determined by the target concentration 

rather by the hybridization efficiency, increasing the hybridization efficiency to 30 % will 

decrease the detection limit to the femto molar range. 

The packing density of single stranded DNA on a Au surface which is easily predicted from 

previous studies is related to the number of hybridized DNA molecules through the hybridization 

efficiency. This technique is able to determine the absolute number of DNA molecules 

hybridized to the substrate which is relevant to all biomedical applications involving DNA 

detection. Number of molecules detected is reported for different target DNA concentration in 

Figure 4.5. 

4.4: Conclusion 

We observe that adenine can be used as a Raman marker for detecting DNA hybridization. 

The SERS high sensitivity to adenine bases (single molecule detection) makes adenine an 

optimum marker for label-free detection of DNA hybridization. We showed that an adenine-free 

DNA sequence can be used as a capture probe to label-free detect DNA hybridization. The 

appearance of the adenine peak is an evidence of the target hybridization. To overcome the 

limitation on detecting only thymine-free DNA, we substituted all adenine bases with 2-

aminopurine bases. Whereas 2-aminopurine is chemically similar to adenine, SERS signal of 2-
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aminopurine is quite different. Most importantly 2-aminopurine does not have any SERS feature 

at 736 cm-1 (breathing mode of adenine). The appearance of the adenine peak is still distinctive 

to the hybridization of the target sequence. Since the ratio of the adenine peak to the 2-

aminopurine peak depends only on the number of the target sequences with respect to the 

number of the probe sequences, this technique can be used to determine both hybridization 

efficiency and target concentration. The high sensitivity to the hybridization efficiency allows 

the technique to be extended to detect DNA mutation such as SNP (single nucleotide 

polymorphism) and DNA base modification such as oxidation and methylation which will all 

decrease DNA hybridization efficiency. The detection limit is demonstrated to be ~80 nM which 

corresponds to only 1.2 x 106 DNA molecules under SERS sampling area. Given that the 

detection of a single adenine base is attainable by SERS, ultra sensitive label-free detection 

technique based on SERS is approachable by experimentally improving the hybridization 

efficiency. 
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Chapter 5: Detecting Chemically Modified DNA Bases Using 
Surface Enhanced Raman Spectroscopy 

5.1 Introduction: 

The chemical modification of DNA bases has become a topic of rapidly increasing interest in 

the assessment of human disease. There are two major types of DNA base chemical 

modifications of interest in this context. The first occurs in epigenetics, the study of alterations in 

gene expression induced by changes other than modifications in the genetic code. Chemically 

modified bases can alter phenotype without changing DNA sequence. 152 Epigenetic markers are 

thought to arise due to the influence of environmental factors influential in the onset of diseases 

such as cancer. In eukaryotic cells, methylated cytosine (mC) is the most common epigenetic 

marker. 153 In addition to its role in controlling gene expression, DNA methylation has been 

shown to strongly correlate with cancer in humans. Hypomethylation of DNA in human 

tumors, 154 hypermethylation of tumor-suppressor genes155' 156 and the inactivation of microRNA 

genes by DNA methylation 157 are all strong evidentiary factors of a relationship between the 

presence of chemically modified DNA bases and various human cancers. 

Hydroxymethylcytosine (hmC) is a stable DNA modification of great interest as a new 

epigenetic marker that has recently been discovered158' 159• Hmc is highly abundant in the brain 

and believed to be important in neuronal function. It is currently accepted that hmC performs a 

fundamentally different epigenetic function than mC, making discrimination between hmC and 

mC extremely important; however, distinguishing hmC from mC is very challenging. Common 
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methods such as enzymatic approaches and busilfite sequencing have proven unable to 

distinguish mC from hmC in DNA160• 

A second type of chemically modified DNA that is also extremely important is oxidized DNA. 

DNA oxidation occurs as a result of the interaction of reactive species of oxygen or nitrogen with 

genomic DNA161 • The most common form of DNA oxidation in eukaryotes is guanine 

oxidation162, resulting most commonly in G toT transverse mutation163• Despite the absence of a 

firm correlation between guanine oxidation and cancer, there is strong evidence that the level of 

guanine oxidation in genomic DNA is a relevant biomarker for assessing antioxidant status and 

cancer risk164. 

Typical methods for detecting DNA base modifications include single cell gel electrophoresis 

assay164 for guanine oxidation detection, and bisulfite-based 165•166• 167 or enrichment-based 

methods 166' 167 for DNA methylation. All these methods require multiple-step sample preparation 

with chemicals that may induce additional chemical modifications in the DNA or interfere with 

the detection of modified DNA. In addition, most of these methods fail to distinguish between 

hmC and mC. The low throughput of these methods makes them unreliable strategies for the 

development of clinical diagnostic assays. Therefore the need for robust, streamlined methods 

for detecting chemically modified DNA bases is an important goal for analytical research, with 

the promise of clinical applications and technological impact. 

Surface enhanced Raman spectroscopy (SERS) has been extensively explored to detect 

different types of biomolecules using broad range of nanostructures168-171 • In particular, Au 

nanoshells have shown great success as an active SERS substrate172-174• In this chapter, I report a 

simple and direct method for detecting the DNA base chemical modifications of adenine and 

cytosine methylation and hydroxymethylation, and guanine oxidation, using SERS. This method 
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is based on identifying SERS spectral variations due to DNA base modifications. No chemical 

treatments are needed, which eliminates the interaction of DNA with other chemicals, 

minimizing unwanted chemical modifications due to sample preparation. Applying this method 

would make detection of DNA base modification straightforward. 

5.2 Experimental and Methods: 

All DNA sequences used in this study were custom synthesized (Integrated DNA Technology, 

Inc). Modified bases were inserted during the sequence synthesis such that the number and 

position of modified bases was well determined. All DNA sequences were only thermally 

pretreated 172 before SERS spectral acquisition with no further chemical treatment. All SERS 

spectra shown are the average of at least 5 individual spectra acquired from different spots on the 

same substrate. All SERS spectra are highly reproducible, with a spectral correlation function (r) 

close to 1. 172' 175 
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5.3: Results and Discussion: 

5.3.1 Detection o(Methylated Adenine: 
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Figure 5.1: SERS spectra of (a) normal DNA sequence, and (b) adenine-methylated DNA 
sequence. Inset: molecular structures of adenine (top) and 6-methyladenine (bottom). 

The spectrum of thermally pretreated 12 base single stranded DNA sequences 

(TCAAGCTGTGAC) is shown in Figure 5.1.a. As expected, the SERS spectrum is dominated 

by the 736 cm- 1 peak (adenine breathing mode) 172
• When all adenine bases are substituted by 6-

methyladenine (TCA *A *GCTGTGA *C) two new peaks appeared on the SERS spectrum, at 

1100 and 1197 cm-1 (Figure 5.1.b). The 625 cm-1 adenine peak disappears, and the 665 cm-1 peak 
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(guanine breathing mode) has higher intensity. The appearance of these two new peaks is a 

confirmative marker indicating the methylation of adenine bases. 

5.3.2 Detection o(Methyaled Cytosine: 

Cytosine methylation is the most abundant epigenetic marker in eukaryotes. Unfortunately, 

cytosine bases possess a significantly weak Raman cross section compared to adenine and 

guanine. 176 Cytosine SERS features can barely be distinguished in the DNA SERS spectrum. 

Therefore, it is expected that the methylation of cytosine bases would not introduce large spectral 

variations in the DNA spectrum. Figure 5.2 shows that the substitution of cytosine by 5-

methylcytosine (TC* AAGC*TGTGAC*) causes a slight increase in the 786 cm-1 intensity 

(cytosine breathing mode). 

Cytosine methylation of many eukaryotes frequently occurs at the CpG nucleotide sequences 

and 60 to 90% of all CpGs in mammals are methylated177' 178• Given this high degree of cytosine 

methylation, mC SERS detection is still possible although changes in the SERS DNA spectrum 

of this base are relatively minor. 
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Figure 5.2: SERS spectra of (a) normal DNA sequence, and (b) cytosine-methylated DNA 
sequence. Inset: molecular structures of cytosine (top) and 5-methylcytosine (bottom). 

5.3.3 Detection o(hydroxymethvlated Cytosine: 

In contrast, however, the hydroxymethylation of cytosine introduces a significant change in 

the DNA SERS specrum. It is worth noting that this particular DNA sequence has only one hmC 

due to synthesis limitations (TGAC* AGTTGTGATAG). Figure 5.3.b shows a significant 

intensity increase of the 665 cm-1 mode as well as the 963 cm-1 feature. Most importantly, the 

1397 cm- 1 is greatly suppressed as a result of the presence of the hmc base in the DNA sequence. 

The spectral variations between normal DNA and hydroxymethylated DNA are significant and 

dramatic, making verification of the presence of hmCs in a DNA sequence using SERS very 

straightforward. This data clearly indicates that a discrimination between mC and hmC is 

possible using SERS. The significant increase of the 665 cm-1 peak is an obvious marker of the 
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presence of hmC. The relative increase of the 786 cm-1 peak intensity for cytosine methylated 

DNA is still larger than the same peak increase for hydroxymethylated cytosine, rendering the 

detection of mC in the presence of hmC possible as well. To better elucidate this specific 

detection problem would require a DNA sequence containing both modifications. 
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Figure 5.3: SERS spectra of (a) normal DNA sequence, and (b) cytosine-hydroxymethylated 
DNA sequence. Inset: molecular structures of (top) cytosine, (bottom) 5-
hydroxymethylcytosine. 

5.3.4 Detection of Oxidized Guanine: 

The SERS spectrum of guanine oxidized DNA (where all guanine bases are substituted with 8-

oxo-guanine, (TCAAG*CTG*TG* AC) was acquired (Figure 5.4). Here there are two significant 

markers indicating guanine oxidation: the appearance of a new mode at 1079 cm-1 and the 

disappearance of the guanine breathing mode (665 cm-1
). More detailed experimental studies 
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coupled with theoretical analysis are needed to identify the specific structural origin of these 

observed changes in the SERS spectrum. It is possible that the presence of modified DNA bases 

may affect the overall DNA spectrum by introducing new modes as well as suppressing or 

enhancing existing modes related the modified base itself. Also, modified bases may affect the 

DNA/ surface interaction causing enhancement and/or suppression of modes not related to the 

modified base itself. The scope of this study is limited to the experimental demonstration of 

SERS detection and the identification of spectral markers for specific DNA base modifications. 
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Figure 5.4: SERS spectra of (a) normal DNA sequence, and (b) guanine-oxidized DNA 
sequence. Inset: molecular structures of guanine (top) and 8-oxo-guanine (bottom). 
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5.4 Conclusion: 

In conclusion, we demonstrated that SERS can be used to identify chemically modified DNA 

bases, including methylated adenine, methylated and hydroxymethylated cytosine, and oxidized 

guanine. All identified markers are unique and evident for discrimination of the specific 

modification. No chemical pretreatment was used, maintaining the integrity of the DNA 

sequence and making this a potentially promising approach for diagnostic applications. 
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Chapter 6: Light-induced Release of DNA from Plasmon-resonant 
Nanoparticles: Towards Light-controlled Gene Therapy 

6.1 Introduction: 

Recently, many reported results proving the potential role of nanoparticles in therapeutic 

molecules delivery and controlled release. That is an excellent motivation for quantitative studies 

of the light-induced release process of DNA from plasmon-resonant nanoparticle surfaces. In 

this chapter we develop a Au-nanoparticle-based nonviral vector for antisense gene delivery 

consisting of double stranded DNA (dsDNA) covalently attached to NIR-absorbing, plasmon-

resonant Au nanoshells. Light-controlled release of ssDNA from Au nanoshells induced by 

resonant light absorption is demonstrated for oligonucleotide sequences of differing lengths and 

base compositions. The dehybridization temperatures of these sequences have been determined 

experimentally for both thermal and light-controlled dehybridization. Light-controlled 

oligonucleotide release is found to occur with essentially no temperature increase of the 

nanoparticle solution ambient, in stark contrast to thermal release, which occurs significantly at 

higher temperatures. Both dehybridization temperatures are found to be significantly below the 

solution-phase T m for the same oligonucleotide. The maximum dsDNA coverage, as well as the 

percentage of DNA released from the nanoparticle surface, are determined for both light-

controlled and thermal DNA dehybridization, and are found to be quite different for these 

processes. This work is the first study quantifying the effects of light-controlled DNA release 

from plasmon-resonant nanoparticles relative to thermally driven DNA release: the 

characteristics observed here are likely to provide general insight and stimulus for further study 

oflight-induced DNA release from other plasmonic nanoparticles. 
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6.1.1 Gold Nanos hells in Photothermal Therapy and Drug Delivery: 

Au nanoshells are spherical core-shell nanoparticles consisting of a silica core and Au shell 

with plasmon resonance frequencies controlled by the relative inner and outer radius of the 

metallic shelllayer.38' 39' 179 Au nanoshells can be designed to have their maximum absorbance in 

the NIR region of the spectrum. 180 This absorbance wavelength is particularly important for 

biomedical applications since it falls within the near infrared spectral water window where tissue 

is nearly transparent. When illuminated with NIR light of resonant wavelength Au nanoshells 

absorb a portion of the total electromagnetic energy incident on the nanoparticle complex and 

convert the light into heat, resulting in an increased temperature on the Au nanoshell surface. 

This nanoparticle-based light-to-heat conversion has been explored in other therapeutic 

applications, in particular for photothermal cancer therapy. 181 In this chapter, we study both 

purely thermal and light-controlled DNA dehybridization for DNA bound to nanoshell surfaces. 

The dsDNA has two strands: [1] a sense oligonucleotide with a thiol group on its 5' end for 

covalent bonding to the Au nanoshell surface, and [2] a complementary antisense 

oligonucleotide, which is the therapeutic sequence. These two complementary oligonucleotides 

hybridize through Watson-Crick base pairing. In this study, the therapeutic payload is the 

antisense oligonucleotide (ssDNA), and the principle is the same as antisense oligonucleotide 

therapy except Au nanoshells are the therapeutic carriers and light excitation controls the ssDNA 

release. Figure 6.1 shows a schematic of the Au nanoshell-based delivery system. 
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Figure 6.1: Schematic of light-controlled release of ssDNA from Au nanoshells. Green 
sequences are the thiolated sense sequences bound to the Au nanoshell surface, red sequences are 
the antisense sequences, released when nanoshells are illuminated with NIR light at their 
plasmon resonant frequency. 

6.1.2 Thermal Dehybridization o(dsDNA: 

The temperature at which melting, or dehybridization, of double stranded DNA tn 

solution occurs is influenced by many factors, including composition and orientation of 

neighboring base pairs, sequence length, and salt concentration. For example, dsDNA with a 

higher percentage of Guanine-Cytosine (GC) pairs will have a higher melting temperature, 

because the GC pair compared to the Adenine-Tymine (AT) has greater stacking interactions and 

an additional third hydrogen bond. To predict the melting temperature of dsDNA in solution, the 

nearest neighbor (NN) model is used to determine nucleic acid stability based upon the 

composition and orientation of neighboring base pairs 182
-
186

• The NN model is based largely on 

experimental work over more than two decades that provided precise measurements of 

thermodynamic parameters. 187
-
193 These included specifically the binding free energy (AG), 

enthalpy (AH), and entropy (AS) for the 10 possible neighboring base pair combinations: 
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AA/TT, AT/TA, TA/AT, CA/GT, GT/CA, CT/GA, GA/CT, CG/GC, GC/CG, GG/CC. So, by 

knowing the composition of dsDNA, the predicted aG can be calculated by summing the aG 

values of each neighboring base pair plus a aG initiation value (aGint). 

(1) 

Similarly, aH and aS are calculated and used to predict the melting temperature (T m) of 

complementary oligonucleotides. The total oligonucleotide strand molar concentration (CT), and 

the theoretical aH and aS, are used: 

(2) 

where R is the gas constant (1.987 cal/K·mol). The salt concentration also plays a critical role in 

dsDNA melting temperature. The T m increases with increasing salt ion concentration due to the 

salt ions shielding the Coulombic repulsion between the negatively charged phosphate 

backbones of the oligonucletides. If the salt ion concentration is low, the shielding decreases, so 

the dsDNA becomes less stable and the T m decreases. There has been much debate whether the 

salt effect is sequence or length dependent; however, the most accurate empirical equation is a 

quadratic salt correction function that is sequence, composition, and length dependent. Because 

of this extensive research effort the T m of dsDNA in solution is considered to be a relatively 

straightforward-to-predict value. However, binding dsDNA to nanoparticle surfaces for either 
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thermal or light-induced release introduces a new local environment for the DNA molecules 

which dramatically modifies solution phase T m values. 

6.2 Experimental: 

6.2.1 Thermal and Light-driven DNA Release: 

To demonstrate thermal and light-controlled release of ssDNA, several DNA oligomers 

of varying lengths and compositions (purchased from Integrated DNA Technology Inc.) were 

utilized (Table 6.1). Prior to use, all thiolated DNA oligomers were reduced with 1,4-Dithio-DL-

threitol (DTT, Fluka) and purified with NAPS purification columns (GE Healthcare). 

Unthiolated DNA sequences were used as received, having been HPLC-purified by the vendor. 

DNA hybridization was performed by mixing two complementary DNA sequences in a 1: 1 

molar ratio in DNA hybridization buffer (TE/50mM NaCl, pH = 7 .5), heating the solution to 95 

oc, then allowing it to cool slowly to room temperature in a large water bath. To ensure the 

maximum surface dsDNA coverage on the nanoshells, excess hybridized dsDNA was incubated 

with an aqueous suspension of Au nanoshells for at least 8 hours. The dsDNA was first 

precipitated with ethanol to minimize salt concentration and avoid nanoshell aggregation. 

Oligonucleotide Sequence (5'-3') 

ST2oN1 CTGACGCTGGTTGCATCGGACGATACTACATGCCAGTTGGACTA 

(70 bases) ACGGCGGGACAGCAGCTTTTTTTTTT 

SN2 GCGGCAATCAGGTTGACCGTACATCATAGCAGGCTAGGTTGGTC 

(50 bases) GCAGTC 
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SN3 
TATGATCTGTCACAGCTTGATACTACTTCA 

(30 bases) 

SN4 
TATGATCTGTCACAGCTTGA 

(20 bases) 

SN3-comp 
TGAAGTAGTATCAAGCTGTGACAGATCATA 

(30 bases) 

Table 6.1: DNA sequences used in this study. The released sequences are shown: the capture 
sequences are complements of these sequences with a thiol on the 5' end to ensure binding to the 
Au nanoshell surface. Labeled-sequences are the same released sequences with fluorescein on 
the 5' end. 

Before the thermal or light-assisted dehybridization of dsDNA, the DNA/nanoshell mixture 

was centrifuged at least twice and resuspended in fresh buffer to remove excess free DNA in 

solution. Light-assisted release was performed as follows: 1 ml of nanoshells/DNA suspension 

was illuminated with a continuous wave laser (DioMed, A. = 800 nm, 1 W incident power). The 

temperature of the suspension (ambient temperature) was monitored with a thermocouple. For 

non-labeled DNA sequences, 1 mL aliquots were taken at different temperatures and run in a 3% 

agarose gel. For fluorescein-labeled DNA samples, fluorescence measurements of the 

supernatant were performed. For thermal dehybridization, DNA/nanoshell suspension was 

heated in a water bath. Similarly, aliquots were obtained and run in gel electrophoresis or 

checked for fluorescence intensity. 

6.2.2 DNA-nanoshell Coverage and Percentage Release: 

To quantify the number of oligonucleotides on the nanoshell surface, a 12 mM 

mercaptoethanol solution (Sigma Aldrich) was used as a DNA-displacing solution. 

Mercaptoethanol rapidly displaces hybridized surface-bound oligonucleotide via a thio1 
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exchange reaction. 194 This process is rapid and efficient because the oligonucleotide self­

assembled monolayer (SAM) cannot block access of the mercaptoethanol to the gold surface and 

mercaptoethanol forms a more tightly packed SAM due to its greater packing energy via Vander 

Waals forces than the DNA monolayer it displaces. 

First, a standard curve of fluorescein-labeled DNA fluorescence intensity versus DNA 

concentration was experimentally determined. The amount of DNA bound to the nanoshell 

surface in a sample was determined by taking a fluorescence measurement of the supernatant 

before the mercaptoethanol displacing solution was added (background fluorescence) and after 

24 hours incubation with mercaptoethanol. Subtraction of the background fluorescence allowed 

us to obtain a value for the amount of DNA displaced. Nanoshell concentration was determined 

by using the Beer-Lambert law, the extinction coefficient was determined by Mie theory. Finally, 

the amount of DNA per nanoshell was calculated. Since the antisense strand was tagged with 

fluorescein, the amount of DNA released was easily quantified. After thermal or light-driven 

release of DNA, the difference in fluorescence intensity was calculated and the percentage of 

DNA released was determined. In these experiments the displacing solution was not used. 

6.3 Results and Discussion: 

6.3 .1 DNA Dehybridization Irreversibility: 

The purpose of this study was to compare the amount of ssDNA released by light­

controlled and thermal dehybridization, and to obtain the effective DNA-ambient melting 

temperature for both processes. Dehybridization reversibility is a critical concern for these 

processes, since rehybridization of the released ssDNA back to the nanoparticle once the laser 
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irradiation has ceased, if it occurs to a significant extent, would greatly limit the effectiveness of 

this strategy for gene delivery. 

In the first experiment, a suspension of Au nanoshell/dsDNA (SN3 prehybridized with its 

thiolated complement) was prepared as described. The ssDNA antisense strand has a fluorescein 

label on its 5' end. The prepared nanoparticles were divided into two samples. For both samples, 

DNA dehybridization was thermally induced. In one sample, an excess of the nonthiolated SN3-

complement was added to solution. In the presence of the excess of the SN3-complement, the 

released SN3 DNA will preferentially hybridize to the excess SN3-complement in solution. For 

the other sample, no additional DNA was added to the solution. After thermal dehybridization of 

both samples under the same experimental conditions, the aliquots were centrifuged and the 

fluorescence intensity of the supernatant was measured. The released sequence was the only 

source of a fluorescence signal. If the released DNA rehybridizes with its complementary 

sequences left behind on the Au nanoshell surface, the amount of fluorescent DNA in solution 

will be significantly higher for the sample with the excess DNA complement in solution and a 

measureably lower fluorescent signal when no SN3-complement is available in solution for 

competitive binding. 
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Figure 6.2: DNA dehybridization irreversibility. (a) Schematic depicting the released DNA 
behavior with and without complementary sequence. (b) Graph shows the amount of DNA 
released versus the temperature based on the released DNA fluorescence intensity with (red) and 
without (black) complementary sequence. 

The results of this experiment are shown in Figure 6.2. Here it can be seen that the fluorescent 

signal due to the released DNA agrees for the two release conditions within experimental error, 

and that the DNA dehybridization on the Au nanoshell surface is an essentially irreversible 

process. This dehybridization irreversibility is critical for biological applications, and must be the 

case for the released DNA to be delivered to proceed to mRNA binding, in the case of antisense 

oligonucleotide therapy. 

Two main factors contribute to the dehybrization irreversibility. First, rehybridization of the 

released ssDNA would require it to hybridize with the complementary sequences on the Au 

surface, a process well documented to be of low efficiency. 194 In addition, after dehybridization, 

the sense sequence on the nanoparticle surface may loop and bind non-specifically directly onto 
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the Au surface, preventing rehybridization. This effect would be likely for all metal surfaces with 

high affinity to DNA. It is worth noting that the presence of the SN3-complement in solution did 

not appreciably affect either the DNA melting temperature (around 35 °C) or the amount of DNA 

released. At low temperatures, however, the amount of DNA released in the presence of the 

excess SN3-complement sequence is slightly higher due to non-thermal DNA release, either due 

to nonthermal dehybridization or the presence of some nonspecifically bound ssDNA on the 

nanoparticle surface. 

6.3.2 Thermal Release o(ssDNA: 

dsDNA dehybridization is an essential process in all biological systems as well as many DNA­

based nanotechnology applications. The mechanism of dsDNA thermal dehybridization has been 

thoroughly studied195 • It has been shown that dsDNA attached to surfaces, in particular Au 

surfaces, behaves differently than free dsDNA in terms of melting temperature and phase 

transition. 196 

We first studied the thermal dehybridization of dsDNA attached to Au nanoshell surfaces. Gel 

electrophoresis has been used to determine the amount of ssDNA released, a process requiring 

no fluorescent labeling of the DNA. In the 3% agarose gel used in this work, the pore size is 

much smaller than the nanoshell diameter. Consequently, the nanoshells in the DNA/nanoshell 

suspension are trapped in the gel electrophoresis wells. Only free DNA will migrate through the 

gel matrix. Comparing the bands intensities of the released ssDNA from aliquots taken at 

different temperatures reveals the progression of the DNA release in the DNA/nanoshell sample, 

since the band intensity is proportional to the concentration of DNA. 
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Figure 6.3: Thermal (a) and light-assisted (b) release of ssDNA from dsDNA-coated nanoshells 
in solution. The melting curves for 20 base dsDNA attached to Au nanoshell surface are shown. 
Insets show the first derivatives of the melting curves, depicting the melting temperatures T m of 
each process. 

DNA melting curves, obtained by monitoring the UV fluorescence (from the DNA-associated 

dye Syber green) in the gel column as a function of solution-ambient temperature, are shown for 

thermal DNA dehybridization (Figure 6.3.a) and for light-induced DNA dehybridization (Figure 

6.3.b). The UV absorption intensity is directly proportional to the amount of DNA released. The 

maximum of the first derivative of these curves, corresponding to the temperature of maximum 

DNA release, is defined as the DNA melting temperature, T m· For both thermal and nonthermal 

DNA release, the derivative plots are shown as insets. The melting temperature of the 20 base 

dsDNA (SN4 with its thiolated complement) attached to Au nanoshells was experimentally 

determined to be 37 °C (Figure 6.3.a). The melting temperature of the same dsDNA sequence in 

solution, not confined to Au surface, is expected to be nominally 50 °C at 50 mM salt 

concentration (IDT DNA). Although the salt concentration on the nanoshell/DNA solution is 

likely to be somewhat lower than 50 mM due to ethanol precipitation of the DNA prior to 

88 



binding to the nanoshell surfaces, there is still clearly a significant decrease in the DNA melting 

temperature when DNA is bound to the Au surface relative to the anticipated solution phase T m· 

The same trend was consistent for all DNA sequences investigated in this study. It is interesting 

to note that DNA melting temperature depression for DNA bound to an Au surface is still a 

matter of debate: both increasing and decreasing T m for DNA on Au nanoparticles relative to the 

corresponding solution phase value have been reported. 196• 197 

Under the experimental conditions described above, the T m of the dsDNA sequence attached 

to Au nanoshell surfaces has shown a significant decrease. 196 Most likely, the high affinity of 

DNA to the Au surface is playing an essential role in the T m reduction. In solution, the T m 

depends solely on DNA strand length and base composition. However, when one strand of the 

duplex is attached to a surface, the T m may be affected by the influence of the surface on the 

duplex stability. Because of the high affinity of ssDNA to the Au surface, the single-stranded 

DNA form is more favorable than when in solution, which would result in a decrease in DNA 

melting temperature. 

6.3.3 Light-induced Release o(ssDNA: 

The DNA melting curve for light-assisted DNA dehybridization is shown in Figure 6.3.b, 

with the first derivative of the melting curve shown in the inset. Here the T m of the 20 base DNA 

sequence, the same sequence used in thermal dehybridization, is 27 °C. This corresponds closely 

to the ambient temperature of the DNA-nanoshell suspension. This lack of temperature increase 

corresponds to two possible mechanisms for DNA release. These are: [1] a nonequilibrium 

thermal mechanism, where the irradiated nanoparticle undergoes a strong and rapid temperature 

increase at its surface sufficient to melt the DNA but not sufficient to raise the ambient solution 

temperature, or [2] a nonthermal mechanism, such as charge transfer to the DNA adsorbate, 
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resulting in DNA dehybridization driven by Coulomb repulsion. Further experimentation would 

be needed to specifically identify which mechanism or mechanisms may be responsible for the 

DNA release. 

To examine this ambient-temperature light-induced dehybridization further, both thermal and 

light-assisted dehybridization experiments were performed on three other sequences (30, 50, and 

70 bases). Correspondingly, similar distinct decreases in the T m due to thermal dehybridization 

and to light-assisted dehybridization of dsDNA attached to nanoshells were observed (Figure 

6.4). For all sequences studied, light-assisted DNA dehybridization is observed to occur at 

essentially ambient temperature. While further studies are warranted to determine the specific 

light-induced release mechanism, the fact that release occurs at ambient temperature over a range 

of oligonucleotide lengths and compositions is extremely encouraging for gene therapy 

applications. The fact that laser-induced gene release can occur in a regime where the laser 

irradiation does not increase the ambient temperature indicates that this process may be useful 

for the safe release of oligonucleotides in cells without inadvertently compromising cell viability. 
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Figure 6.4: Comparison of the light-induced (green) versus thermal (red) dehybridization of 
dsDNA sequences of different lengths tethered to Au nanoshells. For all DNA sequences studied, 
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the light-assisted melting temperatures are lower than 30 °C which makes this system suitable for 
releasing ssDNA as long as 70 bases in biological applications. 

6.3.4 Surface coverage and percentage release: 

DNA surface coverage on nanoshells was determined using a previously reported protocol 

with minor modifications. 194 In this procedure, (i) the concentration of nanoshells is determined 

from the extinction spectra and Mie theory, (ii) the emission intensity of fluorescence-labeled 

DNA displaced from the nanoshell surface is measured, and (iii) the fluorescence intensity is 

correlated to the DNA concentration through a standard, previously determined curve. The 

number of molecules and the percentage of ssDNA released from the nanoshell surface can be 

determined by comparing the fluorescence intensity before and after thermal or light illuminated 

DNA release. 

The coverage of dsDNA molecules on Au nanoshells was determined to be 6400 dsDNA 

molecules/nanoshell which corresponds to 14.6 pmol/cm2• This coverage is consistent with 

previous results of oligonucleotide surface coverage on Au films (18.1 ±3 pmol/cm2). 194 Due to 

the 150 nm diameter size of the NS particle, its surface is more analogous to a gold film 

compared to a small gold nanoparticle. This observation is consistent with published results 

indicating that the packing density of oligonucleotides on the surface becomes analogous to 

packing densities on a gold film when a spherical gold nanoparticle substrate approaches 150 nm 

in diameter. 198• 199 The decrease in packing density determined for DNA on nanoshells relative 

to that reported for planar Au surfaces may be due to: [1] the use of dsDNA in our studies 

instead of ssDNA, and [2] a decreased salt concentration needed to prevent nanoshell 

aggregation, which reduces electrostatic repulsion between DNA chains and decreases overall 

packing density. 194 
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The percentage of DNA released was determined for the cases of both thermal and light­

induced DNA dehybridization. While ~90% of the ssDNA is released for thermal 

dehybridization, only ~50 % of the total available ssDNA is released for the light-induced 

process. The fact that these release percentages are so remarkably different provides strong 

support for a fundamental difference between the thermal and light-induced DNA 

dehybridization process. While it is not surprising that the thermal release process, conducted 

under equilibrium conditions, results in the greatest percentage of ssDNA released from the 

nanoshell surface, it raises significant further questions regarding the actual release mechanism 

or mechanisms involved in light-driven DNA release. It is also important to note that the number 

of ssDNA molecules released per nanoshell in the case of light-induced release (3169 

ssDNA/nanoshell) is considerably larger than the number of molecules released by the same 

process on nanorods (250 molecules/nanorod). 64 This possible dependence of yield on the 

aspect ratio of the nanoparticle also suggests that this process occurs under highly 

nonequilibrium conditions on the nanorods surface, or that a charge-transfer mechanism may be 

important in the release process. 

6.4 Conclusion: 

Both thermal and light-triggered dehybridization of dsDNA where one complementary strand 

was covalently bound to Au nanoshells was investigated. In contrast to dehybridized ssDNA in 

solution, dehybridization of dsDNA bound to an Au nanoparticle surface is shown to be 

essentially irreversible. The melting temperatures of dsDNA bound to nanoshell surfaces was 

assessed for both thermally-induced and resonant light-induced dehybridization. A large 

difference in T rn was observed for each process, and each process occurs at a T rn substantially 

lower than the corresponding melting temperature of the same oligonucleotide in solution. 
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The light-induced dehybridization of dsDNA bound to Au nanoshells appears to occur at the 

solution-ambient temperature for all dsDNA sequences and lengths studied. The coverage of 

dsDNA on Au nanoshell surfaces was quantified and shown to correspond closely to packing 

densities obtainable on planar Au films. By quantifying surface coverage of dsDNA, we were 

also able to determine the percentage of ssDNA released for both the thermal (~90%) and the 

light-induced (~50%) release process. These studies point to some very interesting and dramatic 

differences between thermal and light-induced processes on plasmon-resonant nanoparticle 

surfaces. Not only does this system provide a promising potential for light-controlled gene 

release for gene therapy, it also provides a new and exciting context where the rich chemical 

physics of substrate-adsorbate interactions may prove relevant to our understanding of light­

actuating nanoparticle complexes. 
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Chapter 7: Visualizing Light-triggered Release of Molecules Inside 
Living Cells 

7.1 Introduction: 

7.1.1 Biomedical Applications o(Plasmonic Nanoparticles: 

Strategies for the directed release of controlled quantities of molecules inside living cells are in 

high demand for drug delivery,200 gene therapy,201 • 202 and tissue engineering.203• 204 The release 

mechanisms of most delivery vectors depend on processes such as diffusion, dissolution, 

chemical and enzymatic reactions, or changes in various environmental factors such as 

temperature, pH, solvent, and ionic concentrations.201 ' 205-208 For example, transfection reagents 

such as polyethylenimine act as a proton sponges following endocytosis, absorbing protons in the 

low-pH environment of the endosome, causing it to swell and eventually rupture, facilitating 

gene delivery.209 This type of environmental control of molecular release varies with cellular 

location and cell type, and can result in unpredictable release. A physical release mechanism 

that does not rely on the specific chemical properties of the cellular environment would be highly 

useful and more easily generalizable to various cell types.210 Light-induced release is a 

particularly attractive option: the high spatial and temporal control that lasers provide would be 

highly useful for initiating and following intracellular processes dynamically, at the single cell 

level. 211-217 

Plasmonic nanoparticles, metal-based nanostructures supporting collective electronic 

oscillations, are highly promising potential candidates for facilitating controlled light-triggered 

release, due to their large optical cross sections, their geometrically-tunable optical resonances218• 
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219 and their strong photothermal response.220• 221 Because of their large cross sections and 

extremely low quantum yield, metallic nanoparticles convert optical energy to thermal energy 

with high efficiency upon resonant optical illumination.27' 222 Resonant optical illumination of 

the nanoparticle triggers the controlled dehybridization and release of DNA molecules adsorbed 

onto the nanoparticle surface. 215• 217 Gold nanoparticles are also biocompatible, easy to fabricate, 

and can be functionalized with a wide variety of host-carrier molecules capable of noncovalent 

accommodation of guest molecules. 205• 217 

In the previous chapter I described light-induced dehybridization of double-stranded DNA 

(dsDNA) attached to Au nanoshells.217 Nanoshells with plasmon resonance wavelength at 800 

nm were coated with dsDNA, where one strand of the DNA had a thiol moiety on its 5' end, 

facilitating covalent attachment to the nanoshell surface by a Au-thiol bond. The complement 

DNA sequence was nonthiolated, and therefore bound only to its complementary DNA sequence 

and not to the nanoparticle surface. Upon illumination with NIR light at the nanoshell plasmon 

resonance wavelength, the dsDNA was dehybridized, releasing the antisense sequence. This 

process is highly efficient, resulting in the dehybridization and release of nominally 50% of the 

DNA from the complexes upon illumination, with no apparent temperature increase in the 

solution ambient. DNA antisense therapy has been explored extensively as a class of gene 

therapy and has highly promising potential to provide safe and effective treatments for a 

multitude of diseases and genetic disorders. 223 

Here we show that, in addition to light-controlled release of DNA, the nanoshell-dsDNA 

complex serves as an effective host and light-triggered release vector for other types of 

molecules. Many types of guest molecules can associate with dsDNA, either by intercalating 

between adjacent base pairs or by binding in either the major or minor groove of the DNA 
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double helix. 224 The driving forces for association can include 1t-stacking, hydrogen bonding, 

van der Waals forces, hydrophobic and polar interactions, and electrostatic attractions; therefore, 

dsDNA can host a large variety of guest molecules via noncovalent bonds.224• 225 

7.1.2 DAPI (4'.6-diamidino-2-phenylindole) 

DAPI (4',6-diamidino-2-phenylindole), a water soluble blue fluorescent dye that binds 

reversibly with dsDNA (Figure 84) is the molecule we chose to deliver, to demonstrate and 

clearly visualize the light-induced intracellular release. DAPI was chosen because of its bright 

fluorescent properties, stability and negligible toxicity.226 DAPI binds preferentially to the minor 

grooves of dsDNA: its association with DNA causes a large increase in its quantum yield. 226-230 

The selectivity of DAPI to dsDNA makes it a frequently used, standard stain for cell nuclei in 

fluorescence microscopy. 229• 230 

A schematic of the light-triggered molecular release is shown in Figure 7.1. Initially, 

nanoshell-dsDNA complexes were loaded with DAPI by incubation of DAPI with the nanoshell­

dsDNA complexes. Next, the nanoshell-dsDNA-DAPI complexes were incubated with H1299 

lung cancer cells, where intracellular uptake was verified using both dark-field and bright-field 

microscopy. Upon illumination with an 800 nm CW laser, corresponding to the peak resonant 

wavelength of the nanoshell complexes, the DAPI molecules were released from the nanoshell 

complexes. Subsequent to release, the DAPI diffused through the cytoplasm and into the cell 

nucleus, where it preferentially bound and stained the nuclear DNA. To the best of our 

knowledge, this is the first light-controlled delivery system that can be tailored to release 

quantifiable amounts of nonbiological molecules, within living cells by remote means, on 

demand. 
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Figure 7.1 Light-induced DAPI release. (a) Schematic diagram of the light-induced DAPI 
release and diffusion inside the cell. (b) Fluorescence emission of (i) DAPI only, (ii) DAPI with 

ssDNA, and (iii) DAPI with dsDNA. 

7.2 Results and Discussion: 

7.2.1 DAPI Fluorescence Emission: 

The DAPI fluorescence emission intensity drastically increases as a result of DAPI molecules 

binding to DNA (Figure 7.l.b). As an isolated molecule, DAPI has a low quantum yield (Figure 

7.l.b, i), 227 however, when DAPI is attached to single stranded DNA (ssDNA) (Figure 7.l.b, ii), 

a weak electrostatic attraction binds the cationic DAPI molecules to the negatively charged 
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phosphate backbone of the DNA, resulting in a slight increase in its fluorescence intensity. 227 

When the DAPI molecules bind to the minor grooves ofthe dsDNA (Figure 7.l.b, iii),227• 230 the 

increased rigidity and stabilization significantly increases its quantum yield.226 DAPI binding to 

the dsDNA also displaces H20 molecules initially solvating the DNA oligomers, significantly 

reducing intermolecular proton transfer between H20 and DAPI, resulting in an additional 

increase ofDAPI fluorescence intensity.227• 228• 231 

The specific base-pair composition of the dsDNA plays an important role in determining the 

number of DAPI molecules that will bind to the dsDNA.232 Previous studies have shown that 

DAPI preferentially binds to regions rich with adenine (A) and thymine (T) nucleotide bases 

because DAPI forms hydrogen bonds with A-T bases pairs.230 The DAPI molecule is 14-15 A 

long, corresponding to an overlap of three base pairs.227-229' 232 In our experiments, since it is 

desirable to bind as many DAPI molecules as possible to improve the staining of the nucleus 

after light-induced release, we designed a 26-base pair sequence with multiple A-T -rich regions 

with segments of three or more consecutive A-T base pairs to specifically enhance DAPI 

loading. 

7.2.2 Nanoshell Cell Uptake: 

To use this light-triggerable complex for molecular release in live cells, the complex must first 

be effectively taken up by the cells of interest. To facilitate cell uptake, the nanoshell-dsDNA­

DAPI complexes were incubated with Hl299 lung cancer cells in serum containing cell culture 

medium for 1 hour. After incubation, the cells were fixed and internalization of the nanoshell­

dsDNA-DAPI complexes was imaged using both dark field (Figure 7.2.a-b) and bright field 

(Figure 7.2.c) microscopy. Nanoshells in this size range both absorb and scatter light: their 

strong scattering cross section enables them to be easily visualized by optical microscopy. In 

98 



Figure 7.2.a, a H1299 cell with its cell membrane marked by the green fluorescence dye Alexa 

Fluor 488 WGA (wheat germ agglutinin) is shown. Internalized nanoshells are easily seen as 

diffraction-limited bright spots in this image. As a control, cells not incubated with the 

nanoshell-dsDNA-DAPI complexes showed no observable bright spots when imaged in the same 

manner (Figure 7.2.b). 

Figure 7.2 Nanoshell-dsDNA-DAPI Cell uptake. Dark field/epifluorescence images of (a) 
H1299lung cancer cells incubated with nanoshell-dsDNA-DAPI complexes, (b) nonincubated 
cells (control). (c) Bright field image of middle slice ofH1299lung cancer cells incubated with 

nanoshell-dsDNA-DAPI complex. 

Because the dark-field images are two-dimensional, these images alone do not give clear 

evidence whether the nanoshell complexes have been endocytosed, or are merely adsorbed onto 

the outer membrane of the cell. Bright-field imaging was used to further investigate cellular 

uptake. Obtaining images at varying depths of field within an individual cell allows us to clearly 

visualize in three dimensions the nanoshell distribution within the cell. Figure 7 .2.c is a slice 

from the middle of the cell showing clear diffraction-limited dark spots corresponding to 
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nanoshell complexes, verifying that the nanoparticles are internalized within the cell. A video 

sequence of two-dimensional projections obtained as the depth of field is scanned through the 

cell resolves the 3D distribution of nanoshell. Internalization of nanoshells is in agreement with 

observations by Ochsenkiihn et a/, who used TEM sections of NIH-3T3 fibroblast cells to 

confirm nanoshell uptake. 233 

At first thought, it is surprising that the nanoshell-dsDNA-DAPI complex is internalized into 

cells because the negatively-charged phosphate backbone on the DNA should experience 

electrostatic repulsions with the negatively-charged cell membrane. 234 However, previous 

studies by Chithrani et a/ and Giljohann et a/ suggest that Au nanoparticles functionalized both 

with and without DNA adsorb extracellular serum proteins from the cell culture media.234• 235 

The adsorbed extracellular proteins then interact with the cell membrane and facilitate cellular 

uptake in an adsorptive endocytosis pathway. Conversely, recent studies by Ochsenkiihn eta/ 

show that nanoshell uptake increases in the absence of extracellular proteins, suggesting the 

possibility of a passive, nonendocytotic uptake mechanism.233 While in our studies nanoshell 

complex uptake is clearly visualizable in H1299 cells, the precise uptake mechanism is not 

clearly identifiable, and is likely to depend on a variety of factors including cell type, 

functionalization of the nanoparticle, and incubation conditions. 

7.2.3 Intracellular Light-Induced DAPI Release: 

To investigate intracellular light-induced molecular release, the H1299 cells incubated with 

nanoshell-dsDNA-DAPI complexes were illuminated with a NIR CW laser (1 W/cm2, 800 nm) 

for 5 minutes. This irradiation time and laser power level were determined from previous 

experiments,217 which demonstrated after 5 minutes oflaser irradiation no additional 

dehybridization of the DNA occurred. This laser power and time allow the DAPI to be released 
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while minimizing laser exposure to the Hl299 cells. After laser irradiation, samples were placed 

in an incubator for one hour to allow time for released DAPI molecules to diffuse to the nucleus. 

Next, the nuclei of the cells were isolated by lysing the cell membrane (see supplemental 

information) and the DAPI fluorescence intensity was quantified by flow cytometry. Nuclei 

isolation is necessary to ensure that flow cytometry only measures fluorescence from DAPI 

molecules bound to genomic DNA in the nucleus and does not measure fluorescence from DAPI 

molecules in the cytoplasm. 

Evidence of DAPI release is shown by the normalized flow cytometry histograms of DAPI 

fluorescence intensity versus number of nuclei from H1299 cells incubated with nanoshell­

dsDNA-DAPI before and after laser treatment (Figure 7.3). After laser treatment, the 

fluorescence intensity of the nuclei increased, demonstrating that DAPI molecules were released 

from the nanoshells, diffused through the cytoplasm and into the cell nuclei, binding with the 

genomic DNA. Prior to laser irradiation, some DAPI fluorescence is observed within the cells 

(Figure 7.3.c, left) and measured by flow cytometry (Figure 7.3.a-b, before laser). This DAPI 

fluorescence signal originates from both excess DAPI molecules present in the sample and DAPI 

molecules which were non-controllably released from the complexes during the incubation and 

prior to laser irradiation. 

The bar graph depicts the mean DAPI fluorescence intensity ± SEM (standard error of the 

mean) increase from before laser (59.7±0.21) to after laser (79.8±0.33) (Fig. 3a). A -33% 

increase in fluorescence intensity. An unpaired t-test of the two means was performed at a 95% 

confidence level, which resulted in a two-tailed p value of p < 0.0001, which is statistically 

significant. This observed increase in DAPI fluorescence after laser treatment (-33%) 

demonstrates that the nanoshell-dsDNA complex effectively released its guest molecules from 
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the dsDNA host carriers inside the cells. Epifluorescence images of Hl299 cells incubated with 

nanoshell-dsDNA-DAPI before (Figure3c, left) and after (Figure 7.3.c, right) laser treatment 

visually show the increase in DAPI fluorescence intensity. The cell membrane is marked by the 

green dye, Alexa-Fluor 488 wheat germ agglutinin. 

The plasmon resonant illumination of the nanoshells is crucial for DAPI release into the cells. 

To test this hypothesis, a control experiment consisting ofH1299 cells incubated with DAPI only 

(no nanoshells) was conducted (Figure 7.3.b). The cells were irradiated with the NIR laser under 

conditions identical to the previous experiment. The mean DAPI fluorescence intensity ± SEM 

did not significantly increase after laser irradiation (237±0.86 to 239 ± 0.95, p = 0.1188), 

indicating that DAPI release does not occur without the presence of the nanoshell-dsDNA 

complex. It is important to note that the mean fluorescence intensity is higher for the control 

(Figure 7.3.b) compared to the nanoshell-dsDNA-DAPI sample (Figure 7.3.a) due to multiple 

washings of the nanoshell-dsDNA-DAPI sample. 
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Figure 7.3 Light-induced DAPI release. (a-b) Flow cytometry histograms ofDAPI Fluorescence 
(Ex: 355nm/Em: 460 nm) versus number of isolated nuclei from H1299 cells incubated with a) 
nanoshell-dsDNA-DAPI and b) DAPI (control). Negative control (gray), treated cells without 

laser irradiation (blue) and treated cells with laser irradiation (red). Bar graphs display the mean 
DAPI fluorescence intensity± SEM before and after laser irradiation. (c) Bpi fluorescence images 

ofH1299 cells incubated with nanoshell-dsDNA-DAPI (left) before and (right) after laser 
treatment. The cell membrane is marked by the green dye, Alexa-Fluor 488. 
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The shape of the flow cytometry histograms for both before laser and after laser are consistent 

with nuclei stained with DAPI. DAPI is routinely used to study the cell cycle because it binds to 

DNA stoichiometrically. Looking at the before laser histogram in Figure 7.3.a as an example, 

the tallest peak ( ~40) originates from nuclei with two sets of chromosomes. This peak is the 

tallest because in a typical cell cycle, a cell spends the longest portion of time with two sets of 

chromosomes; therefore, the probability of a cell having two sets of chromosomes is the highest. 

The second, smaller peak ( ~80), double the fluorescence intensity of the tallest peak, indicates 

nuclei which have exactly double the amount of DNA, four sets of chromosomes, and are ready 

to enter mitosis and divide. The nuclei with fluorescence intensities in between these two peaks 

indicate cells which are currently synthesizing DNA prior to mitosis. The negative control 

histogram (gray) has a single peak because in the absence of DAPI every nuclei essentially 

fluoresces identically resulting in a signal which is attributed to autofluorescence (background). 

7.2.4 Cytotoxicity Study: 

To ensure that this method for light-triggered intracellular molecular release would be useful 

for biomedical applications, such as drug delivery, a cytotoxicity assay was performed to 

investigate both the effects of nanoshells and laser irradiation on cell viability. Propidium iodide 

(PI) was chosen as a marker to distinguish viable from non-viable cells, because it is a 

membrane-impermeable dye which is excluded from viable healthy cells.236 When a cell 

membrane is damaged, PI enters the cell, stains the dsDNA in the nuclei and emits red 

fluorescence; however, undamaged cells will not fluoresce. Flow cytometry was used to observe 

changes in PI fluorescence intensity for a large sample size of 30,000 cells. The negative control 

(Figure 7.4.a) consisted of cells which were not incubated with nanoshell-dsDNA-DAPI and did 
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not undergo laser treatment. The fluorescence observed in Figure 4a is attributed to 

autofluorescence and PI staining caused by apoptotic and necrotic cells already present in the 

experiment, with damaged membranes. The nanoshell-dsDNA-DAPI complexes were then 

incubated with H1299 cells for 12 hours. Following incubation, the cells were divided into two 

samples: cells not treated with the laser (Figure 7.4.b) and cells treated with the laser for 10 

minutes (Figure 7.4.c). Figure 7.4.b shows no significant increase in PI fluorescence intensity, 

demonstrating that nanoshell-dsDNA-DAPI complexes are not cytotoxic under the experimental 

conditions of the study. 
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Figure 7.4 Flow cytometry cytotoxicity assay. All plots are side-scattered light (SS) versus 
Propidium Iodide (PI) intensity. (a) Negative control: H1299 cells not incubated with nanoshell­

dsDNA-DAPI and no laser treatment. Cells incubated with nanoshell-dsDNA-DAPI for 12 
hours: (b) without laser treatment and (c) with laser treatment. (d) Positive Control: Cells were 
treated with 0.1 %Citrate/0.1% Triton, which permeates the cell membrane, allowing PI to stain 

the dsDNA in the nucleus. 

More interestingly, cells incubated with nanoshell-dsDNA-DAPI complexes and irradiated 

with the laser for 10 minutes also show no significant increase in PI fluorescence intensity. This 

demonstrates that the light-triggered release procedure did not adversely affect the cells. 
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Considering nanoshells are well-known for their use in photothermal therapy, this result may be 

surprising; however, the illumination conditions for this experiment (1 W/cm2, 5 minutes) were 

significantly below those used for photothermal induction of cell death in cell culture (4W/cm2, 

4-6 minutes).221 Figure 7.4.d represents a positive control sample of cells treated with 0.1% 

Citrate/0.1% Triton solution, which permeates the cell membrane, allowing PI to enter the cell 

and stain the nucleus, resulting in a large increase in PI fluorescence intensity. 

7.3 Conclusion: 

In conclusion, nanoshells functionalized with dsDNA were successfully used to transport 

DAPI molecules into living cells. Successful uptake of nanoshells into H1299 cells was 

achieved. DAPI molecules, initially bound to the dsDNA on the NS surface, are released due to 

the illumination of the nanoshell-dsDNA-DAPI complex with the appropriate NIR light. DAPI 

molecules initially released in the cell cytoplasm diffuse into the cell nucleus and bind to the 

genomic DNA of the cell. The staining of the cell nucleus with the released DAPI was quantified 

using flow cytometry. A cytotoxicity assay demonstrated that nanoshell uptake is nontoxic and 

that laser irradiation of nanoshell-laden cells under the conditions where DAPI release occurs 

does not induce cell death. 

This nanoshell-dsDNA system could be extended to a multitude of other guest molecules that 

associate with the host dsDNA carrier including small organic fluorophores,225 steroid 

hormones,237 and therapeutic molecules.224' 225 ' 237 For example, the quest to find dsDNA 

intercalators that inhibit the uncontrollable replication of tumor cells comprises an entire field of 

cancer research. Currently, there are more than 130 FDA approved anti-cancer drugs that 

specifically target DNA.238 For in vivo clinical applications, however, before the DNA 

intercalator can reach the genomic DNA, it must overcome several hurdles, such as metabolic 

106 



pathways and cytoplasmic and nuclear membranes. As a result, the failure of DNA therapies to 

offer successful clinical treatments is primarily due a lack of viable delivery methods rather than 

effectiveness of the DNA intercalator to treat cancer.224 This nanoshell-dsDNA delivery vector 

preserves the guest molecule by minimizing non-desired interactions with other molecules and it 

provides light-triggered release with controllable delivery. 
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Chapter 7: Conclusions and perspectives 

In this thesis, Gold nanoshells were used as SERS active substrates to investigate spectral 

properties of DNA molecules. The SERS spectra obtained from untreated DNA were very non­

reproducible and varies based on DNA base composition and state (single or double stranded). 

After DNA thermal treatment, the SERS DNA spectral quality and reproducibility were greatly 

enhanced. All DNA spectra acquired were very identical and dominated by the adenine modes 

regardless of base composition, DNA length or state. After thermal treatment DNA molecules 

are more rigid and adopt a more linear structure causing a great improvement in surface 

coverage. As a result, the reproducibility of SERS spectra is tremendously improved. 

The high reproducibility of DNA spectra allowed the detection of DNA perturbation caused 

by the binding of small molecules to DNA. The binding of small molecules to DNA strands 

initiates kinks and bends in the DNA strands causing a significant decrease in the spectral 

reproducibility. The detection of the real time binding of cisplatin, commonly used 

chemotherapy, to DNA was achieved using SERS. The discrimination between cisplatin and 

transplatin (structurally similar to cisplatin but does not bind to DNA) interactions with DNA 

was very obvious. The DNA SERS system can be further developed to be used for screening 

potential new chemotherapeutic molecules and assess their binding to DNA. 

A label-free DNA detection system was developed using SERS. The new system is based on 

the adenine SERS spectral dominance. When the capture strand is adenine-free or adenine 

substituted, the SERS of the capture strands is missing all adenine features. The target binding 

event is detected by the appearance of a strong peak from adenine bases on the target sequence. 
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It turns out that the intensity of the adenine peak is directly related to the DNA target 

concentration which makes the developed system not only label-free but also self calibrated. 

SERS was also used to detect and identify DNA base chemical modifications on DNA strands. 

DNA base modifications have been proven to be related to certain diseases such as cancer as 

well as playing main role in epigenetic. Four different base modifications: adenine methylation, 

cytosine methylation and hydroxymethylation and guanine oxidation were all detected using 

SERS. Each base modification causes the appearance or disappearance of certain SERS features 

unique for that modification, which make the system reliable for detecting single or multiple 

base modifications. The SERS detection is very straightforward and does not require any sample 

preparation eliminating possible chemical modifications caused by interaction of DNA with 

various chemicals. SERS detection enabled discrimination between cytosine methylation and 

hydroxymethylation on the DNA strands investigated. The discriminations between these two 

bases is considered particularly challenging in the field of epigenetic due to their chemical and 

structural similarity and complexity of detection using common methods . The described method 

is the first attempt in using SERS in epigenetic research. The simplicity of the SERS detection 

may introduce SERS-bases DNA chemical modifications screening as routine in clinical 

diagnosis. 

On the second part of this thesis, Au nanoshells were used as non-viral, controllable drug 

delivery systems. Au nanoshells can be promising triggered non-viral drug delivery systems 

owing to their exceptional photothermal property. Upon light illumination, Au annoshells 

efficiently convert part of that light into heat which is used to dehybridize double stranded DNA 

attached to the nanoshell surface. Single stranded DNA can then be delivered for antisense gene 
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therapy or small DNA interculators for conventional therapy s well as in vivo intracellular 

imaging. 

Investigated cells can uptake Au nanoshells at very high efficiency and the DNA can be 

dehybridized and delivered at temperature lower than 3 7°C upon light irradiation which makes 

the system ideal for intracellular drug delivery and controlled release of ssDNA and small 

molecules. DAPI molecules, typically used to stain cell nuclei, were bound to the dsDNA 

initially tethered to the Au annoshells. After incubation with H1299 cancer cells and upon light 

irradiation, Au nanoshells were able to release their DAPI payloads. DAPI, then, diffused on the 

cytoplasm, crossed the nuclear membrane and stained the nuclear DNA. Brighter cellular nuclei 

were seen after Au NS/DNA/DAPI uptake and DAPI release. The Au nanoshell system 

efficiently holds the DAPI payload, carries it into the cell cytoplasm and releases it upon light 

illumination. The system can be further developed to span other potential therapeutic agents such 

as siRNA, dsDNA , etc. 

The field of plasmonic has been largely expending bringing new applications that affected 

many areas such as medicine, sensing, and energy. The applications of plasmonic on medicine 

are particularly essential as I believe the fight against diseases is the main goal of science. The 

plasmonic nanostructures can combine the efficiency of delivery and the control of release to 

form ideal drug delivery systems. Finally, I hope that this work will be a contribution to reach 

our global goal to improve human health and life in general. 
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Appendix: Publications and Patents 

PUBLICATIONS 

• Yu Zhang, Aoune Barhoumi, J. Britt Lassiter, Naomi J. Halas, "Orientation-Preserving 
Transfer and Directional Light Scattering from Individual Light-Bending 
Nanoparticles" Nano Lett. ASAP. 

• Aoune Barhoumi, Naomi Halas, "Label-Free detection of DNA hybridization Using 
Surface Enhanced Raman Spectroscopy" J. Am. Chern. Soc. 2010, 132, 12792-12793. 

• Ryan Hushka, Oara newman, Aoune Barhoumi, and Naomi Halas "Visualizing Light­
Triggered Release ofMolecules Inside Living Cells" Nano Lett. 2010, 10, 4117-22. 

• Aoune Barhoumi, Ryan M. Huschka, Rizia Bardhan, Mark W. Knight, Naomi 
Halas, "Light-Induced Release of DNA from Plasmon-Resonant Nanoparticles: Towards 
Light-Controlled Gene Therapy" Chern. Phys. Lett. 2009, 482, 171-179. COVER 
ARTICLE 

• Carly S. Levin, Janardan Kundu, Aoune Barhoumi, Naomi Halas "Nanoshell-Based 
Substrates for Biomolecular Spectroscopic detection" Analyst 2009, 134, 1745-1750. 

• Janardan Kundu*, Oara Neumann*, Benjamin Janesko, Dongmao Zhang, Surbhi Lal, 
Aoune Barhoumi, Gustavo Scuseria, Naomi J. Halas "Adenine- and Adenosine 
Monophosphate (AMP)- Gold Binding Interactions Studied by Surface Enhanced Raman 
and Infrared Spectroscopies" J. Phys. Chern. C 2009, 113, 14390-14397. 

• Dongmao Zhang, Hui Wang, Oara Neumann, Aoune Barhoumi, Michael Perham, 
Jeffrey Hartgerink, Pemilla Wittung-Stafshede, Naomi J.Halas "Gold Nanoparticles can 
Induce the Formation of Protein-Based Aggregates at Physiological pH" Nano 
Lett. 2009, 9, 666-671. 

• Aoune Barhoumi, Dongmao Zhang, Felicia Tam, Naomi Halas "Surface-Enhanced 
Raman Spectroscopy of DNA" J. Am. Chern. Soc. 2008, 130, 5523-5529. 

• Aoune Barhoumi, Dongmao Zhang, Naomi Halas, "Correlation of Molecular 
Orientation and Packing Density in a dsDNA Self-Assembled Monolayer Observable 
with Surface-Enhanced Raman Spectroscopy" J. Am. Chern. Soc. 2008, 130, 14040-
14041. 

PATENTS 

• Aoune Barhoumi, Dongmao Zhang and Naomi Halas, "Composition for Targeted Drug 
Delivery and Controlled Release" United States Patent, 20100040549. 

• Aoune Barhoumi, Dongmao Zhang and Naomi Halas, "Device and Method for Label­
free Detection of DNA Hybridization" Filed on 08/16/2010. 

• Aoune Barhoumi, Ryan hushka, Oara Newman, and Naomi Halas "Triggered-release of 
DNA absorbed and/or intercalated from nanoparticles" Filed on 09/15/2010. 
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