
RICE UNIVERSITY

NOOP
A Mathematical Model Of

Object-Oriented Programming

by

Moez A. AbdelGawad

A THESIS SUBMITTED

IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE

Doctor of Philosophy

APPROVED, THESIS COMMITTEE:

Robert Cartwright, Chair
Professor of Computer Science

Joe W: ren
Professor of Computer Science and
Department Chair

Marcia 0 'Malley
Associate Professor of Mechanical
Engineering

Houston, Texas

May, 2011

ABSTRACT

NOOP

A Mathematical Model Of

Object-Oriented Programming

by

Moez A. AbdelGawad

Computer software is ubiquitous. More than 35 x 1018 computer instructions are

executed around the globe each second. As computers dominate more aspects of our

lives, there is a growing need to reason more accurately about computer software.

Most contemporary computer software is written using object-oriented (00) pro­

gramming languages, such as JAVA, C#, and C++. How should we mathematically

characterize object-oriented software'? This is the question this thesis addresses by

presenting an accurate domain-theoretic model of mainstream object-oriented pro­

gramming.

Mainstream object-oriented languages are class-based. In such languages, the

name of a class is part of the meaning of an object, a property often called "nom­

inality". Most mainstream 00 languages also conform to a static type discipline.

Hence, the focus of this thesis is the construction of an accurate model of nominal,

statically-typed 00 languages.

In statically-typed nominal 00 languages, class names are also part of the mean­

ing of corresponding class types, and class inheritance (subclassing) is explicitly de­

clared; one class is a subclass of another only if it is declared as such. When static

type systems are formulated to describe sets of objects, subtyping is defined so that

subclassing is consistent with subtyping. Nevertheless, some programming languages

(PL) theoreticians dismiss this identification as a design error because the only pub­

lished models of 00 languages exclude nominal information from objects and define

subtyping in a way that ignores nominality.

In nominal 00 languages, program behavior depends on the nominal information

embedded in objects. This thesis builds a model of 00 languages called NOOP that

includes nominal information and defines static types in accord with mainstream 00

language designs. In NOOP, the meaning of every object includes its class name.

Similarly, types are defined such that objects belong to a particular class type if and

only if they are members of classes that inherit from the class corresponding to the

class type.

To demonstrate the utility of the model, we show that in NOOP inheritance and

00 subtyping coincide. This work shows that mainstream 00 languages are not

technically defective in identifying inheritance and subtyping. In models that include

nominal information and define types that respect nominal information, this identi­

fication is mathematically correct. The folklore among 00 programming language

researchers that "inheritance is not subtyping" is incorrect.

iv

Dedication

To my mum, my brother, and my dad ...

Together with Corky, my Ph.D. supervisor, you all suffered, and sacrificed a lot­

perhaps much more than you should have--to make it happen ...

And together with all the great respect, and great passion that I, and we all, have

much of toward my Ph.D., I hope we are all honest and courageous enough to admit

that we do not believe the heavy total price, paid by us all, was worth it!

v

Acknowledgments

There are many people that I would like to thank for helping me in my Ph.D., but

if there is only one person I am allowed to thank then that person is definitely my

corky Ph.D. supervisor, Professor Robert "Corky" Cartwright.

The tremendous amount of guidance and advice-corky and otherwise-Professor

Cartwright provided me with, and the method and directions-corky or otherwise­

Professor Cartwright employed in supervising me throughout our long journey were

simply indispensable, and unparalleled. I am certain the research contained in this

thesis is impossible to reproduce without these. There is no way for me, a finite

human, to thank Professor Cartwright enough for providing me with his advice and

directions.

If allowed to, I also would like to thank Professor Joe Warren much for his strong

support of me during my Ph.D. journey, and the great patience he exercised till I was

able to produce this thesis.

I would further like to thank Professor Marcia O'Malley for being a member of

my thesis exam committee.

Next, without the supportive (and otherwise) environment at the Computer Sci­

ence Department and at Rice University, I could not have reached this particular

moment at which I am writing this acknowledgment. I thank them all, everyone in

both, for all they did for (and against) me to make it happen.

Other than Professor Cartwright, Professor Walid Taha has taught me much and

motivated me to learn more about PL research. I'd like to thank him much for that.

Throughout my Ph.D. journey, I also benefited much from my ex-colleague Dr.

Eric Allen (particularly his opinion about domain theory). I also enjoyed and had

the pleasure of being in the company of Dr. Mathias Rieken, to whom I give special

thanks for our friendly academic and non-academic discussions. Throughout the

journey, I also had the pleasure to know my Masters colleague Michael Jensen, and

every member of the Rice JavaPLT research team.

Finally, just like Professor Cartwright, there is no way I could fully compensate

and thank all my friends and family members for all the support, encouragement,

motivation, and sacrifices they made to let it happen. Your sacrifices, as well as our

non-academic discussions and interactions, provided me with much of the needed fuel

to keep feeling alive, and to thus keep me going. Every one of you was special, and

each of you deserves a special mention. I console myself by the thought that you know

who you are. I can do nothing but simply say to all and each one of you: Thank You.

Contents

Abstract

Acknowledgments

1 Introduction

1.1 Nominal OOP .

1.2 Thesis Overview.

2 Object-Oriented Programming

2.1 OOP Notions and Terminology ...

2.1.1 Objects, Fields and Methods .

2.1.2

2.1.3

2.1.4

Encapsulation

Classes, Class Names and Nominality .

2.1.3.1 Shapes, Object Interfaces and Nominal Typing

Object Types, Object Type Expressions and Signatures .

2.1.5 Inheritance, Subclassing and Nominal Subtyping .

2.1.6 Signatures, Subsigning and Substitutability .

2.2 Nominal OOP versus Structural OOP . .

2.2.1 The Meaning of Being an Object

ii

v

1

2

4

7

7

7

8

9

11

15

17

20

22

22

2.2.2 The Semantic Value of Nominal Typing . 23

2.2.3 Nominal Typing and Subtyping versus Structural Typing and

Subtyping . 24

2.3 Statically-typed 00 Languages versus Dynamically-typed 00

Languages 26

3 Motivation and Background

3.1 NOOP Motivations

3.1.1 Shifting PL Research View of OOP to be Nominal.

3.1.2 Enabling Progress in Type Systems of Mainstream 00

Languages

3.2 Related Research

3.2.1 Main PL Research Sources .

3.2.2 PL Research on Functional Programming.

3.2.2.1 Domain Theory and Denotational Semantics .

3.2.3 PL Research on Object-Oriented Programming

3.2.3.1 Early 00 Research .

3.2.3.2 Recent 00 Research

4 COOP: A Simple Structural Model of OOP

4.1 Records Domain Constructor (--o) .

4.1.1 Record Functions

4.1.2 Definition of --o .

4.1.3 Properties of the Records Domain Constructor (--o)

4.1.3.1 Domain Constructor --o is Continuous

4.2 COOP Domain Equation

4.3 COOP Construction . . .

4.3.1 A General COOP Construction Iteration

4.3.2 The Solution of the COOP Domain Equation

5 Signatures and N ominality

5.1 Signature Constructs . .

5.1.1 Class Signatures.

5.1.2 Signature Environments

5.1.2.1 Circularity in Signature Environments

iii

28

28

29

31

32

32

34

34

37

38

41

43

46

46

47

49

49

49

50

51

52

53

53

55

58

59

iv

5.1.3 Signature Closures 60

5.2 Signature Equality 61

5.2.1 Equality of Class Signatures 61

5.2.2 Equality of Signature Environments and Signature Closures 62

5.3 Extension of Signature Environments 62

5.4 Inheritance and Subsigning. 63

6 NOOP: A Domain-Theoretic Model of Nominal OOP 65

6.1 NOOP Domain Equation . 67

6.2 Construction of preNOOP 68

6.2.1 A General preNOOP Construction Iteration 68

6.2.2 Ranking Finite Domain Elements 69

6.3 Filtering of preNOOP to NOOP 71

6.3.1 Filtering is a Finitary Projection 7 4

6.3.2 The NOOP Domain of Objects 75

6.4 Properties of NOOP 75

6.4.1 Semantics of Signatures 76

6.4.2 Signatures Denote Subdomains of 0 76

6.5

6.4.2.1 Types as Subdomains

6.4.2.2 Exact Object Types .

6.4.2.3 Nominal Object Types are Subdomains .

Reconciling Inheritance with Subtyping .

7 Discussion and Future Work

7.1 Main Research Conclusions and Contributions

7.1.1 Main Research Conclusions

76

77

77

78

81

81

82

7.1.1.1 Comparing Nominal and Structural Views of OOP 82

7.2 Incidental Research Contributions . 83

7.3 NOOP Limitations 84

7.4

7.3.1 NOOP Models Immutable OOP

7.3.2 Invariant Subtyping of Method Signatures

7.3.3 NOOP is The Universe of a Model

Directions for Future Work .

v

85

85

86

86

Bibliography 88

A Domain Theory 96

A.1 Basic Notions . . 96

A.2 Domains of Functions. 102

A.3 Domain Constructors . 105

A.3.1 Coalesced Sum (+) 105

A.3.2 Strict Product (x) 106

A.3.3 Continuous Functions (---+) 107

A.3.4 Strict Finite Sequences (V*) 107

B Proofs of Important Theorems 109

B.1 The Domain of Record Functions has an Effective Presentation . 109

B.2 Domain Constructor ---<> is Continuous 112

B.3 Filtering is a Finitary Projection 114

C Code Examples 119

C.1 Classes . 119

C.2 Shapes . 122

C.3 Object Interfaces/Record Types 123

C.4 Structural Subtyping . . . 124

C.5 Signatures and Subsigning 125

vi

Notation

Symbol Meaning

{ ... } Sets

[...] Sequences

(-,.) Pairs

{ li I-+ di}' 1 ~ i ~ k Records

·li Thple Projection

lVI Universe of Domain 'D

81 +82 Disjoint Union Set Construction

'Dl + 'D2 Coalesced Summation Domain Construction

81 x 82 Cartesian-Product Set Construction

'D1 X 'D2 Strict Product Domain Construction

A---<>--+ B Strict Continuous Functions Domain Construction

.C---o'D Records Domain Construction

<: Subtyping

<l Subsigning -

1

Chapter 1

Introduction

I think the fact that {biological] cells are software-driven machines, and that this software

is DNA and that truly the secret of life is writing software, is pretty miraculous.

-Dr. Craig Venter, a lead microbiologist in mapping the human genome

(edge. org, November 2010)

Today, around the globe, over thirty-five million trillion (35 x 1018) computer

instructions get executed each second, and this figure has an annual growth rate of

more than 55% [35]. Obviously, computer software is becoming ubiquitous.

As software permeates every aspect of our lives, however, software errors and

software bugs are becoming ubiquitous too. These could overwhelm us, if we are not

careful. Thus, there is an ever-growing need to analyze computer software accurately.

Most contemporary computer software is written using object-oriented program-

ming (OOP) languages. Thus, there is a natural interest in determining how we can

properly reason and think about object-oriented software.

How should we mathematically characterize object-oriented software? This is the

main question we attempt to answer in this thesis. We do so by presenting a math-

ematical model of mainstream object-oriented programming. We call this model

NOOP.

Without a precise mathematical model of OOP, it is hard to reason about and

discuss many of the questions related to the properties and behavior of object-oriented

software. More importantly, the lack of a precise model of OOP makes it harder to

2

convincingly answer these questions. An imprecise model of OOP may lead us to

make wrong conclusions about OOP and object-oriented (00) software.

1.1 Nominal OOP

Mainstream OOP is class-based. Classes have names. Class names are associated

with behavioral contracts for objects. Because of this, class names play an important

role in the way 00 developers think about programs and in the structure of type

systems of mainstream 00 languages. These type systems have the following common

characteristics:

1. Nominal objects: Objects in mainstream OOP are nominal because the name

of the class of an object is carried inside the object as part of the identity (i.e.,

the meaning) of the object.

2. Nominal object types (class types): In statically-typed 00 languages, a class

name is used as a type name that identifies an object type (the set of all objects

constructed using the named class or using explicitly-declared subclasses of the

named class).

3. Nominal subtyping: Subclassing (i.e., inheritance) in mainstream OOP is ex­

plicitly declared between classes_, using class names. A class type subtypes

another class type if and only if the former is an explicitly declared subclass of

the latter.

The type systems of mainstream 00 languages all share these characteristics. These

type system are thus often called nominal 00 type systems.

Earlier models of OOP, such as the well-known model Cardelli developed in [13,

14), do not model the nominal aspects of mainstream OOP. Unlike nominal OOP,

----~--

3

objects and object types in Cardelli's model only carry information about the struc­

ture of objects. Hence, objects in Cardelli's model are structural objects, often called

records, and object types in Cardelli's model are structural types. Further, although

inheritance is not formalized in Cardelli's model, his paper informally equates it with

subtyping between structural types. This view of inheritance has been rejected by

00 software developers and most PL researchers, because structural subtyping does

not imply any sharing of type implementations (and thus any sharing of behavior).

00 languages based on structural objects and object types are called structural

00 languages. Examples of such languages include STRONGTALK [8], MOBY [29],

POLYTOIL [10], and OCAML [43]. To make a distinction between different 00 lan­

guages that have different kinds of type systems, mainstream 00 languages are thus

sometimes called nominal 00 languages. Structural 00 languages are not common.

For the most part, they are only used by 00 programming language (PL) researchers.

Despite the fact that mainstream 00 languages are nominal 00 languages, most PL

research on OOP and on 00 languages, however, assumes and builds on Cardelli's

structural model of OOP.

NOOP, our model of OOP, is based on a nominal view of objects and classes,

consistent with the formulation of objects in mainstream 00 languages. In contrast to

Cardelli's model (which we call SOOP for Structural Object Oriented Programming),

our model includes class names in objects and defines class types in a way that respects

the declared class hierarchy. As a result, subtyping has a fundamentally different

interpretation in our model than it does in Cardelli's model and in more elaborate

models based on Cardelli's work.

Inheritance is a defining feature of object-oriented programming. As a demonstra­

tion of the utility and validity of NOOP as a more precise model of mainstream OOP,

4

we use NOOP to prove that nominal subtyping in mainstream OOP completely rec­

onciles inheritance and semantic object subtyping. This reconciliation goes against

the common folklore among PL researchers, which asserts that. "inheritance is not

subtyping". This folklore is based on a mathematical analysis of structural models

of OOP (such as SOOP). The proof that NOOP completely reconciles inheritance

and 00 subtyping underlines the importance of including the nominal aspects of

mainstream 00 languages in models of mainstream OOP.

1. 2 Thesis Overview

In this thesis, we present the construction of NOOP on three steps.

1. First, we construct a simple structural model for OOP, which we call COOP.

2. Next, we define signatures as pieces of syntax that are similar to object type

expressions.

3. Finally, we use signatures to define nominal objects, and we then construct

NOOP as a model of nominal OOP using essentially the same construction

technique that we used to build COOP.

After constructing NOOP and proving. that it is well-defined, we use it to define nom­

inal object types and prove that nominal subtyping completely reconciles inheritance

and semantic subtyping.

Thus, the remainder of this thesis is organized as follows:

• Chapter 2, OOP: A Technical Overview, presents a more detailed overview of

nominal typing notions in nominal OOP, and contrasts them with their coun­

terparts in structural OOP.

5

• Chapter 3, Motivation and Background, presents the motivations behind devel­

oping our research and an overview of earlier research similar to or related to

ours.

• Chapter 4, COOP: A Simple Structural Model of OOP, presents COOP as a

simple structural model of OOP. COOP models objects as records. In ChaJr

ter 4 we thus also present, in detail, a records domain constructor (---o). Using

standard domain-theoretic construction methods, we then use the records do­

main constructor and other standard domain constructors to construct COOP.

• Chapter 5, Signatures and Nominality, defines class signatures and all necessary

related entities. Consistency conditions and a subsigning relation are defined

for signature closures, so that signatures have properties that agree with our

intuitions about object types in nominal 00 languages.

• In Chapter 6, NOOP: A Domain-Theoretic Model of Nominal OOP, we con­

struct our domain-theoretic model of mainstream OOP. In NOOP, signature

closures, of Chapter 5, are paired with records, of Chapter 4, to define nomi­

nal objects, as models of objects in mainstream OOP. NOOP is constructed

using a similar construction method to that used for constructing COOP. An

additional domain-filtering step is used to guarantee that signature closures

are paired with matching records. Finally, in this chapter also we prove that

inheritance and subtyping are completely reconciled in mainstream OOP.

• In Chapter 7, Discussion and Future Work, we discuss the work presented in

this thesis in less-technical terms, and we make some general conclusions. We

also present directions for possible future work.

6

• Finally, three appendices at the end of this thesis present (1) a brief overview

of the main domain theoretic notions used in this thesis (Appendix A), (2)

proofs of the important theorems in this thesis (Appendix B), and (3) few code

examples that help demonstrate the notions presented in this thesis and the

main differences between nominal 00 languages and structural 00 languages

(Appendix C).

7

Chapter 2

Object-Oriented Programming:
A Technical Overview

The beginning of wisdom is to call things by their right names.

-Chinese Proverb

In this introductory chapter, we present an overview of some main notions of

mainstream OOP, and we give informal definitions for these technical notions that

will help motivate later formal definitions. Later in the chapter, we use these informal

technical definitions to make a clear distinction between structural OOP, a view of

OOP that is commonly held by PL researchers, and nominal OOP, the view of OOP

commonly held by mainstream 00 software developers. In Appendix C, we present

a few code examples that demonstrate the concepts and notions discussed in this

chapter.

This chapter only assumes some familiarity with mainstream OOP and with basic

mathematical notions (like sets and functions), but the chapter does not assume much

familiarity with OOP research or PL research in general.

2.1 OOP Notions and Terminology

2.1.1 Objects, Fields and Methods

An informal view of objects in object-oriented programming is "objects as service

providers". In this view, an object is 'an entity that provides a service'. Objects in

8

00 software provide their respective services by providing object fields and object

methods. A field of an object is a binding of a name to an object, while a method

of an object is a binding of a name to a function that performs a computation (e.g.,

accessing fields of objects and/or calling their methods) when invoked on zero or more

objects, as method arguments and returns an object as a result. The object containing

a method is always available as an implicit argument to that method under the name

this or self. Collectively, the fields and methods of an object are called the members

of the object. Fields are sometimes also called instance variables.

The set of members of a given object is fixed and finite. Member names are

typically plain labels (alphanumeric identifiers). An object responds to a method call

by itself calling other methods (of itself or of other objects) then returning a result

object. Collectively, the response of an object to field accesses and method calls,

and the logical relation between this response and the method arguments, defines

the behavior of the object. The behavior of an object defines the service the object

provides.

2.1.2 Encapsulation

Object-oriented programming is defined by two main features: encapsulation, and

inheritance. In this section we discuss encapsulation. We will discuss inheritance in

Section 2.1.5.

Because an object is a service provider, the members of an object are not a collec­

tion of unrelated, independent members. Rather, members of an object collectively

share responsibility for providing the service the object is designed to provide (i.e.,

they mutually-depend on each other in provide the service) . This mutual depen­

dency particularly pertains to the "active" component of an object, i.e., its methods.

9

In object-oriented programming, methods of an object often call one another (i.e.,

an object can recursively call its own methods). The fields of an object record the

"state" of the object. Methods of the object can access these fields to obtain this

information.

An object is said to encapsulate its data because the object pairs its fields with

methods which may access and manipulate these fields. Because fields are members

embedded inside an object, methods of the object can access the fields of the object

(i.e., the data the object encapsulates) in the same way as they can call other methods

of the object (via the special variable this or self).

The encapsulation of data (fields) with functions (methods) that process them was

a major motivation behind the development of OOP. SMALLTALK was the language

that popularized OOP widely. About SMALLTALK's existence, and the existence of

OOP by implication, Alan Kay wrote [40]:

"Smalltalk's design, and existence, is due to the insight that everything

we can describe can be represented by the recursive composition of a

single kind of behavioral building block that hides [i.e., encapsulates] its

combination of state and process inside itself and can be dealt with only

through the exchange of messages [field accesses and method calls]."

2.1.3 Classes, Class Names and Nominality

Many objects in an 00 program respond to the same set of field accesses and method

calls in a similar way. These objects, thus, share similar behavior, and they provide

the same service, only with some little variations. A class is a syntactic programming

construct that mainstream 00 languages offer for the specification of the common

behavior shared by some objects that provide the same service.

10

Classes are used to create (or produce, or construct) objects with common be­

havior. A class is a template from which objects that share the same behavior are

produced. Objects produced using a certain class are called instances of that class.

A class has a name, called a class name. A class name is typically associated

with a behavioral contract, i.e., with a specification (formal or informal) of the service

provided by instances of the class. 1 The association of class names with behavioral

contracts is commonly used by mainstream 00 developers, since it enables developers

to design their software based on the behavioral contracts of objects in their software2 .

A class in mainstream OOP always has a special "meta-method" called an (object)

constructor. The constructor of a class is used to form objects (instances) of the class.

Typically, a constructor has code that initializes the fields of an object. As special

class methods, constructors usually have the same name as the class name of the

objects they construct. In program text, the name of the constructor, which is the

same as the class name, ties the constructed object to its class.

Thus, in mainstream OOP, instances of a class have the name of that class as part

of their identity. Objects with class names embedded inside them are nominal objects.

Nominal objects are tied to the class that created them, via class names. Having

names as part of the meaning of objects (i.e., their identity) is called nominality. An

00 language with nominal objects is a nominal 00 language.

The nominality of objects in mainstream OOP implies that two objects produced

from classes with different names are not equal objects3 . Because class names are

1 Behavioral contracts are usually attached to classes in the form of comments, sometimes even
in a standardized comment format like that of JAVADOC comments.

2Via tests like the instanceof check in JAVA, and isMemberOf in SMALLTALK, etc.
3 Mathematical equality of objects is meant here, not programmatic equality. For programmatic

equality, where the equals() method is program-defined (e.g., in languages like JAVA), it is possible
for a program to equate any two objects. This practice is generally regarded as a programming
error, but programming equality has no bearing on the mathematical equality under discussion.

11

associated with behavioral contracts (or, equally, with the service that objects of

a class provide), two objects having different class names are considered different in

mainstream OOP because the different class names embedded inside them imply that

the objects provide different services or, equally, that the objects satisfy, or abide by,

different behavioral contracts.

Informally, a class can be considered as a "cookie cutter", from which cookies (i.e.,

objects) that behave the same are molded. As being an integral part of the identity

of objects, class names are thus "baked into" objects (i.e., into the "cookies~').

As explained above, nominal OOP languages have class names embedded in in­

stances of the classes. An OOP language that does not embed class names in objects

is called a structural OOP language.

Objects in a structural OOP language are simply records containing fields and

methods; class names do not appear in structural objects.

Figures C.l, C.2, and C.3, in Appendix C, present JAVA-like code for classes

Object, Pair and few simple classes that we use to demonstrate the concepts we

discuss in this chapter.

2.1.3.1 Shapes, Object Interfaces and Nominal Typing

In this thesis we call the set of names of members of an object the shape of an object.

We believe the notion is important and intuitive enough to have a name of its own.

It should be noted that shapes are only sets of labels.

Given that the set of members of an object is fixed, the shape of an object is an

invariant of objects of the same class. The shape of an object can, thus, be derived

from the class of an object (i.e., the class used to produce the object). Given that

the shape of all instances of a class is the same (is invariant), shapes can also be

12

associated with classes rather than just with objects. The shape of an object or of a

class is called the shape supported by the object or the class.

A shape that has all member names belonging to another shape, and possibly

some more, is called a supershape of the other shape. Dually, the other shape (with

the smaller set of member names) is called a subshape of the first (larger) one. As

sets, a subshape is always a subset of its supershapes.

Figure C.4, in Appendix C, presents examples for shapes.

Objects have interfaces. An object interface4 specifies how an object is viewed

and should be interacted with by other objects, i.e., by "the outside world" (i.e., the

interface of an object specifies how objects can access fields and call the methods of

the object).5

Further, members of an object have interfaces. Member interfaces specify how an

object member is viewed and should be interacted with by other objects. Member

interfaces and object interfaces mutually depend on each other.

A field interface tells the name of the field and the interface of objects that can

be bound to the field. A method interface tells the name of the method, as well as

the interface of objects that can be pa.Ssed to the method as arguments and also the

interface of the result object. An object interface includes member (field and method)

interfaces of the members of an object.

Like the shape of an object, an object interface is an invariant of the objects of a

class, and thus it can also be derived from the class of an object.

In nominal OOP, class signatures express object interfaces (See Section 2.1.6 for

4Despite some similarity, our informal notion of an object interface should not be confused with
the more concrete, formal notion of interfaces that exists in some languages such as JAVA.

5 The interface of an object, thus, sort of tells the "set of rules" other objects have to follow to
interact with the object.

13

a discussion of class signatures). A significant difference between structural OOP

and nominal OOP is that, in nominal OOP, an object interface (as expressed in class

signatures) also includes the name of the class of the object, and the names of the

superclasses of the class, together with interfaces of members of the class (expressed

as member signatures) . In nominal OOP, an object interface is thus, roughly, the

shape of objects of a class augmented with extra information, i.e., the class name,

superclass names, and extra information on member interfaces.

Object interfaces will the basis for the formal definition of object types and class

signatures below. A nominal 00 language where nominal objects are also associated

with class signatures is a nominally-typed OOP language.

Exact Shapes and Exact Object Interfaces When we discuss inheritance, in

Section 2.1.5, we will see that an object can be associated with more than one shape,

and more than one object interface. For a given object, the object interface of the

object derived from the definition of the particular class used to produce the object

is called the exact object interface of the object. The exact shape of the object is the

shape derived from the class of the object, which is the same as the shape derived

from the exact interface of the object. Other shapes an object can be associated with

are subsets (subshapes) of its exact shape.

The exact interface of an object is the object interface that includes member

interfaces of all members of the object (and nothing more), and member interfaces

in the object interface are exact member interfaces, i.e., ones where field and method

interfaces use exact object interfaces. Relative to a particular object, the exact shape

and the exact interface are the most precise and the most specific of the multiple

shapes and interfaces that can be associated with the object.

~-----~--------

14

Class Names and Circular Object Interfaces Due to using class names as

interface names, an object interface in nominal OOP (when expressed as a class

signature) can circularly refer to itself, using its own name. Multiple object interfaces

that are mutually-circular also easily refer to each other using their interface names.

Circular class definitions are quite common in mainstream OOP6 • Nominal-typing

allows the easy expression of circular object interfaces.

In structural 00 languages, due to the lack of class names, self-references inside

object interfaces have to be expressed by requiring some explicit means for expressing

recursive interfaces 7. Due to requiring explicit recursion, object interfaces that have

multiple mutually-recursive interfaces are usually notationally heavier to define, ex-

press, and manipulate in structural 00 languages than their circular counterparts in

nominal 00 languages. The ease by which recursive typing notions can be expressed

in nominally-typed 00 languages is one of the main advantages of nominally-typed

OOP. According to Benjamin Pierce [56, p.253], "The fact that recursive types come

essentially for free in nominal systems is a decided benefit".

In structural 00 languages objects are associated with structural object interfaces,

but not with nominal ones. 00 languages where objects interfaces include no class

names are structumlly-typed 00 languages.

Figures C.5 and C.6, in Appendix C, present code examples for (structural) object

interfaces.

6 For example, in purely 00 languages, the definition of classes Object and Boolean is usually
circular, because class Object has a method equals() that returns values of class Boolean, and class
Boolean inherits from class Object and it also usually has methods which take or return objects of
class Object (e.g., also the equals() method).

7Using, e.g., type variables and the J.l operator for self-recursive interfaces, and using the and
operator, together with J.l and type variables, for expressing multiple mutually-recursive interfaces
(as is done in the functional language OCAML [43], for example).

---------------------~

15

2.1.4 Object Types, Object Type Expressions and Signatures

In computer programming-whether it is procedural programming, functional pro-

gramming, or object-oriented programming, or otherwise-every value has a type.

The type of a value ensures the proper use of the value8 . A type of a value may

disallow improper use of the value by specifying what operations are allowed for that

value (i.e., what computations can be done using the value), and, accordingly, what

operations are not allowed for it. In type-checked languages, the language compiler

checks type declarations for consistent and proper use of program values.

In OOP, every object is a value, and, accordingly, each object in OOP has at

least one object type.9 In 00 programming language (PL) research, an object type

is usually viewed semantically as a set of objects with similar properties and behavior.

Given that checking the equality of behavior of objects is generally an undecidable

problem, 00 programming languages use object interfaces and other syntactic pro­

gram features (such as inheritance) to characterize object types and to decide the

similarity of the behavior of their objects.

Thus, PL research, a type has two meanings: a syntactic meaning, and a semantic

one. Given that the semantic meaning of types depends on the syntactic meaning

of types (due to practicality considerations, i.e., the decidability of type checking),

we first discuss the syntactic meaning of object types in 00 PLs, then we discuss

their semantic meaning. When discussing types, usually the context is enough to

infer which sense of the two is meant. We first discuss the meaning of object types

in nominal OOP first, then in structural OOP.

8 For example, using types, it is not allowed to add integers to booleans, or to strings.
9In pure OOP, it is also the case that every value is an object. In NOOP, we model pure nominal

00 languages, or "the pure 00 subset" of "impure" ones.

16

The syntactic meaning of 'object type' is that an object type is a syntactic ex­

pression of an object interface. Object types, in their syntactic meaning , are thus

sometimes more accurately called object type expressions. An object type expression

is thus a concrete expression of an object interface.

The semantic meaning of 'object type' (which is also called the denotational mean­

ing of an object type) depends on the syntactic meaning. Semantically, an object type

is the set of objects (in a domain of objects) denoted by a given object type expres­

sion, i.e., the set of objects that have the particular object interface expressed by this

object type expression.

In nominal OOP, class signatures express object interfaces. In structural OOP,

object type expressions (which, given the structural view of objects in structural OOP,

are the same as record type expressions) express structural object interfaces.

Class signatures are nominal constructs (i.e., they have class names as part of their

meaning), because they express object interfaces of nominal OOP, which have class

names as part of their identity. Names of class signatures are usually also called type

names. Class signatures can be automatically derived from the source code of classes.

Type names, which are the same as interface names and class names, are thus also

associated with the same contracts associated with the class names. Because class

signatures (i.e., as "nominal object type expressions") are nominal notions, the set of

objects denoted by a class signature is called a class type or, synonymously, a nominal

object type.

In structural OOP, on the other hand, class names are irrelevant to objects and

are not included in their object interfaces. Thus, object type expressions in structural

OOP are the same as record type expressions. Hence, semantically, structuml object

17

types are the same as record types (denotations of record type expressions). 10

Given the likeness between object type expressions and how we concretely ex-

pressed object interfaces in earlier code examples, we elide presenting examples for

structural object type expressions, referring the reader to Figures C.5 and C.6 instead.

Exact Object Types Syntactically, as a type expression, an exact object type

(expression) is a concrete expression of an exact object interface (See Section 2.1.3.1).

An exact object type is a precise expression of the exact interface of the object.

Semantically, as a set of objects, an exact object type is the set of objects denoted by

an exact object type expression.

2.1.5 Inheritance, Subclassing and Nominal Subtyping

Inheritance is a defining feature of OOP. It is a syntactic notion, defined as a binary

relation between classes in an 00 program, where a class is said to inherit (or,

extend) another class. Inheritance is also called subclassing, where the inheriting

class is called the subclass while the inherited class is called the superclass. The main

practical motivation behind having inheritance, in OOP, is to simultaneously support

software extensibility (i.e., the addition of new members to objects) while supporting

software reuse (i.e., the reuse or overriding of existing object members).

In relation to type inheritance, which is our main interest in this thesis11 , inher-

10Record types and record type expressions are familiar notions to functional programmers and
to PL researchers. This familiarity caused the confusion of objects with records and is one reason
why earlier models of OOP were structural models rather than nominal ones.

11Usually inheritance includes code sharing, where methods code is inherited from a superclass to
a subclass, but we ignore this aspect of inheritance in this thesis, because, in NOOP, our model
of OOP, we more liberally model 00 languages that allow each object of a class to have its own
implementation code for methods. All method implementations of objects of the same class are
required to have the same method signature, however, so as to not affect the common outside
view (the object interface expressed in a class signature) of these objects, as well as to stick to the
behavioral contract associated with signature names.

-----------~--------- ---

18

itance is a binary relation between class signatures of classes. Similar to classes, a

class signature is thus said to inherit from another class signature.

As a relation between class signatures, inheritance means the class signature of

the subclass shares with the class signature of the superclass all field and method

signatures of the members in the class signature of the superclass. The shape sup­

ported by the subclass signature is thus always a supershape of the shape supported

by the superclass signature (The subclass signature may add some new members of

its own, together with their member signatures). The subclass signature may also

inherit other member signatures from other superclass signatures12 . An object that

has some class signature S can always respond to any field access or method call that

any of the objects that have any of the supersignatures of S as their class signature

can respond to. Under the inheritance relation, class signatures corresponding to

classes in an 00 program form an inheritance hierarchy.

For a subclass signature (the class signature corresponding to a subclass) and a

superclass signature (the class signature corresponding to a superclass), signatures

of corresponding members (i.e., members with the same name) in the two signature

are required to match, where the exact criteria for matching of member signatures

may differ from one 00 language to another. Typically, however, matching means

requiring equality of member signatures (i.e., for the same member name, the member

signature in the subclass signature is required to be exactly the same signature of the

member with the same name in the superclass signature).

In addition to nominality, and nominal typing, the third significant difference

between mainstream OOP and structural OOP lies in how they differently view in­

heritance.

12Note that this definition allows for multiple-inheritance (of class signatures).

19

In nominal 00 languages, inheritance is explicitly specified between classes (and

thus also between class signatures and object interfaces of these classes), and it is

specified using class names. Inheritance (subclassing), in nominal OOP, thus is a

nominal relation. Because of it being explicitly specified, inheritance in nominal OOP

is always an intended relation, and is never accidental. A class explicitly inheriting

from another class is declaring, explicitly, that not only does its instances support

the shape and the signature of the superclass, with matching member signatures, but

that they further stick to the full behavioral contract associated with the name of

the superclass. Further, because the inheritance relation and the subtyping relation

between nominal object types (i.e., the inclusion relation between class types, also

informally called the "is-A" relation) are identified in statically-typed nominal OOP

(which we prove in Chapter 6), a nominal 00 language with nominal sub classing is

called a nominally-subtyped 00 language.

In structural 00 languages, though, inheritance is inaccurately interpreted as an

(implicitly-specified) relation between structural object interfaces (or, equivalently,

as a relation between concrete expressions of structural object interfaces, i.e., record

type expressions). An object interface (or, its corresponding record type expression)

in structural OOP implicitly inherits from another object interface if and only if each

member interface in the subinterface matches with a member interface in the super­

interface. As such, inheritance is misinterpreted in structural 00 languages as being

syntactic structural subtyping between record type expressions. Because it is not

specified explicitly, "inheritance" in a structural 00 language can be accidental and

unintended. Because of the lack of a connection (e.g., via class names) to behavioral

contracts, inheritance in structural OOP, thus, may not be a reflection of a true "is-A"

20

relation 13 .

Even though nominally-subtyped 00 languages can sometimes be less flexible

than structurally-subtyped 00 ones (in the cases where accidental inheritance is

useful [47]), having more control over the inheritance relation, so that it reflects true

"is-A" relations, is why mainstream 00 developers embrace nominally-subtyped 00

languages more than structurally-subtyped ones. Biological taxonomy, which has the

inheritance relations humans are most familiar with, has nominal inheritance relations

(explicitly specified via class names, based on organisms sharing behavioral contracts)

rather than derived, implicitly-specified structural inheritance relations.

Figure C.7, in Appendix C, presents examples for record type expressions in the

syntactic structural subtyping ("structural inheritance") relation.

2.1.6 Signatures, Subsigning and Substitutability

In Chapter 5 of this thesis, we formally present the notion of class signatures in detail.

We quickly introduce them though in this section.

Class signatures are the formal construct we use in NOOP to model the features

of class types in nominal OOP. Class signatures are syntactic entities that carry infor­

mation that is used for typing purposes. A signature closure "closes" a class signature

by providing fixed, known class signature bindings for all class names referenced in a

class signature.

Similar to a class signature, a signature closure (as a "closed class signature")

thus has a name, contains member signatures (i.e., field and method signatures),

and it includes names of its supersignatures. As a nominal object type expression, a

13Causing the familiar problem of "spurious subtyping". See [56].

21

signature closure, not just a class signature, is the full formal expression of the notion

of object interfaces in nominal 00 languages (see Section 2.1.3.1).

In the context of signatures, the inheritance (i.e., subclassing) relation between

signature closures is called subsigning. A signature closure is a subsignature of (sub­

signs) another signature closure if and only if corresponding member signatures match

and the first class signature explicitly declares the second class signature as one its

supersignatures (using the name of the second class signature). For the subsigning

relation to hold, thus, not only is the structure of objects of a class important in de­

ciding the relation but also the behavior of the objects (as expressed in the contract

associated with the signature/class name) is equally important.

The inclusion of behavioral contracts in deciding the subsigning relation makes

the relation a more accurate reflection of a true 'is-A' (substitutability) relationship

than the structural syntactic subtyping relation. This makes subtyping in nominal

OOP more semantically accurate than structural subtyping. Semantic subtyping is

commonly expressed as the 'Liskov Substitution Principle' (LSP) familiar to many

00 developers. The LSP states that in a computer program, S is a subtype of T, if and

only if objects of type T may be replaced with objects of type S, without altering any of

the main behavioral properties of that program. Via including class names associated

with behavioral contracts in deciding the subtyping relation, the subtyping relation in

nominal OOP is semantically precise (incorporates more behavioral properties) than

structural subtyping found in structural 00 languages.

Figures C.8 and C.9, in Appendix C, present examples of class signatures, and

Figure C.ll presents pairs of signature closures in the subsigning relation.

Class signatures and signature closures play an important role in defining and

building our model of mainstream OOP. The embedding of signature closures in the

22

objects of our model, NOOP, makes the objects of NOOP model nominal objects

of mainstream OOP more precisely. The "baking" of signatures into objects makes

NOOP be a model of nominal OOP.14

2.2 Nominal OOP versus Structural OOP

Building on the account of OOP presented in Section 2.1, to motivate seeing why

a model of OOP that does not include nominality is not a precise model of OOP,

this section focuses on discussing the main technical differences between nominal fea-

tures of nominal OOP and structural features of structural OOP that were discussed

sporadically above.

2.2.1 The Meaning of Being an Object

The main semantic difference between nominal OOP and structural OOP is that,

given that the type information of an object cannot be inferred based on the structure

of the object alone, to support run-time type-dependent operations15 , objects in a

nominally-typed 00 language must carry their type information at run-time. An

object, in a nominal 00 language, thus, is not only a record, but is a record paired

with a tag that associates the object with a class that expresses the type of the object ..

Such a difference in how objects are viewed is the first, and most fundamental

difference between nominal OOP and structural OOP. Overlooking this difference

causes denotational models of structural 00 languages (e.g., Cardelli's SOOP [14])

14In NOOP, full signatures, formalized as signature closures, have to be embedded in objects,
rather than just signature names, because the domain of objects in NOOP, as a model, has to
include all possible objects in all possible 00 programs.

15Such as checking types of field assignments, checking method argument types against method
parameter types, instanceof checks, and "type casting".

23

and denotational models of nominal 00 languages (e. g., NOOP) to be fundamentally

different.

2.2.2 The Semantic Value of Nominal Typing

As explained earlier, in nominal OOP, the class of an object has a name. This name is

also used as the name of the exact object type of the object. In structural OOP, this

is not the case. The type of an object, in structural OOP, is only a specification of

the members (fields and methods) of the object and of the (structural) types of these

members. In a structural 00 language, using structural object types (record types)

disallows accessing a field or calling a method of an object only when that object

does not have that field or method as a member16 . In a nominal 00 languages, the

inclusion of a class name in class types additionally disallows accessing the members of

an object whose class does not explicitly declare that its objects stick to the behavioral

contract associated with the class name. This stricter requirement by class types in

nominal 00 languages is the second fundamental difference between nominally OOP

and structural OOP.

Nominal typing is thus useful when the structure of objects (mirrored in the struc-

ture of their record types) is not enough to express the behavioral constraints satisfied

by the objects of the type. For reasons that have to do with the decidability of type

checking, type expressions in type systems of practical programming languages can-

16The notion of structural typing was introduced in the simply typed A-calculus [20], and subse­
quently extended to enrichments of the A-calculus [52, 56]. Hindley-Milner type inference, which is
widely used in functional languages to infer the types of programs, critically depends on the property
of structural typing. Hindley-Milner type inference depends on the fact that every program value
has a unique monotype (program values cannot belong to multiple types). Type-inference becomes
muddled in the presence of subtyping, which is why Hindley-Milner type inference does not ac­
commodate explicit subtyping, but only accommodates structural/implicit subtyping (in purely-00
nominal 00 languages, every value is an object, making the declared types of functions/methods
manifest.)

24

not express all logical properties of objects in programs that a software developer may

wish to express. These properties always hold as true for the objects. These "always

true, but inexpressible" properties are considered as extra terms in the behavioral

contracts of the objects in the software.17 Class names, nominality, and nominal typ­

ing, provide 00 software developers with a simple yet formal means for summarizing,

in the class name, the behavioral contract of objects in OOP software.18 As we noted

earlier, nominal typing allows circular object types to be expressed more lightly (See

Section 2.1.3.1).

2.2.3 Nominal Typing and Subtyping versus Structural Typing and Sub­

typing

As discussed in the last section, nominal typing dictates that the name of an object

type, in addition to its structure, is taken into consideration when making decisions

regarding whether the type is equivalent to another object type, and whether it is a

subtype of another object type.

A type-checker, for a statically-typed programming language, must verify that the

type of any expression is consistent with the type expected by the context in which

that expression appears. For instance, in a method invocation of the form m(e), the

inferred type of the expression e must be consistent with the declared or inferred

type of the formal parameter of method m. This notion of consistency, called type-

compatibility, is specific to each programming language. Type compatibility involves

17Documentation and comments accompanying software, e.g., in the style of JAVADOC comments,
are usually viewed as an informal specification of the behavioral contracts of the software and its
components.

18 A behavioral contract can, for example, express that all members of a subtype of interface
Comparable (in JAVA) are totally-ordered by the compareTo() method they inherit from interface
Comparable.

25

checking two types for equivalence, and checking them for subtyping (i.e., one being

a subtype of the other).

Based on the discussion in Section 2.2.2, the main difference between the type

systems of nominal 00 languages (with nominal typing and nominal sub typing) and

the type systems of structural 00 languages (with structural typing and structural

subtyping) lies in how these type systems differently answer two main questions,

about type equivalence and type subtyping.

The first main question the two different styles of OOP answer differently is:

What if two objects have the same members (fields and methods) with the same

member signatures, will the two objects then have the same type? Structural typing,

in a structural 00 type system, says: 'Yes', unconditionally. Nominal typing, in a

nominal 00 type system, says: 'Only if the structurally-equivalent types also have

the same type name'. Thus, nominally-equivalent types of two nominal objects are

always structurally-equivalent types, but not necessarily vice versa.

The second main question the two kinds of 00 type systems answer differently is

related to the first question, but pertains to subtyping. The question is: What if for

two objects where the shape of the first object is a supershape of the second object

and the first object has the same member signatures as those of the corresponding

members in the other object, will the type of the first object be a subtype of the type of

the second object? Again, structural subtyping says: 'Yes', unconditionally. Nominal

subtyping says: 'Only if the type of the first object explicitly states (using the names

of the two types) that the structurally-compatible type of the second object is one of

its supertypes (i.e., those of the first object type)'. Thus, nominally-subtyped types

of two nominal objects are always structurally-subtyped types, but not necessarily

vice versa.

26

Based on how they differently answer the second question, it is thus said that in

structural OOP subtyping happens "by chance" (i.e., is sometimes accidental), while

in nominal OOP subtyping takes place "by choice" (i.e., is always intended).

How nominal type systems (of nominal OOP) and structural type systems (of

structural OOP) differ in answering these two fundamental questions is behind the

fundamental differences between the two kinds of 00 type systems. These differences

makes the translation of research results reached for one kind of type systems not

immediately applicable to the other.

2.3 Statically-typed 00 La~guages versus Dynamically-typed

00 Languages

Statically-typed 00 languages, where type-checking is done at program compilation

time, define the formal notion of object types (See Section 2.1.4) based on the notion of

object interfaces (See Section 2.1.3.1). Static type-checking is done based on object

types. Examples of mainstream statically-typed 00 languages are JAVA [32) and

C# [2). Our focus in this thesis is on modeling statically-typed nominal 00 languages.

On the other hand, in dynamically-typed 00 languages (where "type-checking" is

only done during program run-time) there is no notion of an object type. An example

of a dynamically-typed 00 language is SMALL TALK [1). Given that dynamically­

typed languages do need to ascertain some form of type-safety (i.e., ascertain the

proper use of objects), such languages usually define notions that are similar to

types to use and check for consistency at run-time. For example, SMALL TALK [1]

requires objects at run-time to conform to 'protocols'. According to how they are

used in SMALLTALK, protocols are actually closer to structural types than they are

27

to nominal types. In particular, despite them having names, the names of protocols

in SMALLTALK, and the nominal subclassing relation between SMALLTALK classes,

are not relevant at run-time in deciding the conformance ("subtyping") relation.

SMALLTALK is a nominal 00 language, but it is dynamically-typed. Because it has

no clear notion of types in the first place, SMALLTALK is not a nominally-typed 00

language nor is it is not a nominally-subtyped 00 language. In this thesis, we are

not concerned about modeling non-nominal features of dynamically-typed nominal

00 languages.

28

Chapter 3

Motivation and Background

I see further by standing on the shoulders of giants.

-Isaac Newton

Although a precise mathematical model of nominal OOP has not been developed

before, much research on the semantics of programming languages, object-oriented

and otherwise, has been done by the programming languages (PL) research com­

munity in the last few decades. This thesis depends on this research as a context

in which the thesis fits, and as a source of motivation for the particular research

presented therein. In this chapter, we present the motivations and the context for

developing NOOP as a rigorous model of nominal OOP.

3.1 NOOP Motivations

Our development of NOOP has two main motivations. These are:

1. Refocusing PL research on models and type systems relevant to mainstream

software development.

2. Encouraging the development of more sophisticated type systems for main­

stream OOP languages.

We discuss each motivation in the following subsections.

29

3.1.1 Shifting PL Research View of OOP to be Nominal

As we discussed in Chapter 2, earlier models of OOP (e.g., the model developed by

Cardelli in 1988 [14], first presented in 1984 [13]) did not include the name of the

class of an object as part of the meaning of the object. Objects in earlier models

of OOP are not nominal objects, but are mere records. Cardelli [14], in fact, does

not make use of explicit class definitions, but only has a notion of structural object

type expressions (i.e., record type expressions). In Cardelli's model of OOP, only the

structure of an object (specifying the interface of its members) defines the interface

of the object to the outside world. Objects in Cardelli's model only have structural

object interfaces. In particular, the contract associated with a class name in OOP is

not associated with an object in Cardelli's model. Since Cardelli's framework does

not include explicit classes, he does not have a simple way to annotate programs

with class contracts. In 00 design, the class hierarchy reflects program behavior and

method contracts.

All subsequent models of OOP have been built on top of Cardelli's structural

model. Thus, nominality has been ignored in subsequent analysis and reasoning

about the properties of OOP. Henceforth, we will use the acronym 'SOOP' to refer

to the structural model of OOP [14] Cardelli developed. It should be noted that

Cardelli's decision to construct a structural model was well-motivated at the time.

OOP was in its infancy at that time. When Cardelli did his seminal work, the domi­

nant 00 language (SMALLTALK) was dynamically-typed. The potential importance

of nominality in 00 design and 00 type systems was not yet appreciated.

In the ensuing twenty-five years, PL researchers have generally relied on SOOP

and its descendants for an intuitive understanding of what 00 programs mean. The

reliance of subsequent PL research on structural models of OOP has adversely affected

30

the relevance and impact of that research. To see why, one should consider that three

essential features of mainstream OOP make crucial use of class names: namely, (1)

circular class dependencies, (2) inheritance, and (3) generics. Even though these

three features have counterparts in structural OOP, conclusions about the structural

counterparts are not necessarily applicable to nominal 00 languages.

We find some indirect support to our opinion, regarding the mismatch between

00 PL research on semantics of OOP and mainstream 00 software development,

among researchers in the PL research community. According to Benjamin Pierce, a

leading researcher on type systems ([56, p. 254]):

. . . [given the practical advantages of nominal typing], it is no surprise to

find that nominal type systems are the norm in mainstream programming

languages. The research literature on programming languages, on the

other hand, is almost completely concerned with structural type systems.

As we discuss in more detail in Section 3.1.2, this non-alignment between how OOP

is viewed by OOP researchers, on one hand, and how OOP is viewed by mainstream

00 software developers, on the other, could be inhibiting new developments in 00

language design, particularly regarding the development of static type systems. Given

the ubiquity of computer software, and the non-diminishing popularity of OOP among

mainstream software developers, we find this schism between PL researchers and

mainstream software developers to be no longer tenable.

To bridge this gap, we developed NOOP as a model of nominal object-oriented

programming that carefully pays full attention to the nominal structure and nominal

aspects of mainstream OOP.

By developing NOOP, as a precise mathematical model of mainstream 00 soft­

ware that takes nominal features of mainstream OOP in full consideration, we defi-

31

nitely hope to refocus PL research on models and type systems relevant to mainstream

programming languages and software development.

3.1.2 Enabling Progress in Type Systems of Mainstream 00 Languages

In considering putative language designs similar to JAVA and SCALA, the lack of a

clear model for OOP has proven to be an insurmountable obstacle. These putative

designs could not be compared in any credible intuitively accessible way.

JAVA wildcards (also called, wildcard types) is a feature of JAVA generics that

was added to soften the mismatch between 00 subtyping and generics [70) .1 Due

to the lack of a clear model for OOP, the mathematical analysis of JAVA wildcards

has proven to be unwieldy, thus inhibiting the growth of JAVA, and decreasing the

interest of software developers in the language.

As a demonstration of how the inclusion of wildcards in the type system of JAVA

has inhibited the growth of JAVA, one of the reasons the addition of JAVA Closures [41)

to the JAVA programming language was delayed, was to give time for developing

simpler proposals of JAVA Closures. As Joshua Bloch put it, while commenting on

proposals for Closures, JAVA has "used up its complexity budget on generics, and in

particular, on wildcards." [41, part 5).

JAVA wildcards also affect other parts of the JAVA type system. The current JAVA

type system in fact rests on shaky formal foundations; the JAVA local type inference

algorithm is broken and there is no obvious "quick fix" [67). Newer 00 languages like

SCALA [54) and X10 [60) have retreated from wildcard types (or, 'usage-site variance

annotations') in the absence of good models of the current JAVA type system.

1 Having a good understanding JAVA wildcards is important for confidently using some core classes
of JAVA, such as the Hashtable class.

32

Having a precise model of nominal OOP, such as NOOP, can help prove the type

safety of the JAVA type system when it gets extended with other putative features,

and thus enable the future growth of the language and its even-wider adoption. Hav­

ing a precise model of OOP can also help in developing better designs for new 00

languages.

3.2 Related Research

Prior research on the semantics of OOP has been strongly influenced by research on

the semantics of functional programming. In this section, we identify the primary PL

research sources on which this thesis rests, then we review some of the most important

research results on the semantics of functional programming (FP) that are relevant to

OOP. We conclude this section by reviewing prior research on the semantics of OOP.

3.2.1 Main PL Research Sources

The research in this thesis rests primarily on three sources:

• A monograph on domain theory titled "Domain Theory: An Introduction" by

Robert Cartwright and Rebecca Parsons [19); ·

• Luca Cardelli's seminal paper on the semantics of OOP titled "The Semantics

of Multiple Inheritance" [14); and

• Igarashi, Pierce, and Wadler's paper on the operational semantics and type

systems of mainstream 00 languages titled "Featherweight Java: A Minimal

Core Calculus for Java and GJ" [36).

Domain theory is not a readily accessible branch of theoretical computer science. The

first source above presents one of the simplest and most accessible introductions to

33

the field. Domain theory is a branch of computer science that builds on set theory,

order theory, and topology. It was developed by Dana Scott, Gordon Plotkin, and

others, to provide a framework for defining the mathematical meaning (the denota­

tional semantics) of computer programming languages. The first source [19] is au

unpublished revision and simplification of Dana Scott's tutorial monograph [64] on

domain theory. Domain theory can be considered as "the mathematics of compu­

tation". For.more details on domain theory see Appendix A. In Section 3.2.2.1 we

present a very brief account of the historical development of domain theory.

In the second source, Luca Cardelli presents a domain-theoretic model of structural

OOP (which we call SOOP) that has served as the basis for nearly all subsequent

research on the semantics of OOP. The model of OOP we present in this thesis can

be viewed as an updated alternative to SOOP. Our model faithfully represents the

nominal character of mainstream 00 languages, which arose after Cardelli's work.

The third source [36] presents the most recent major work on the semantics of

mainstream OOP. In this paper, the authors present a small language, called Feath­

erweight Java (FJ), that has a number of core features of a mainstream 00 PL (i.e.,

JAvA). Using operational semantics, the authors prove the type safety of F J. The

authors, then, extend F J to FGJ (Featherweight Generic Java), and revise its eval­

uation rules twice: they revise the rules first to support first-class generics, and they

revise them next to support "erased generics". Again using operational semantics,

the authors prove the type safety of the extended language in each case. Igarashi,

et al [36], provide strong evidence that the core type system in JAVA with generics

(without wildcards) is safe.

Each of these three main sources of PL research rests broadly on core research in

functional programming, which we briefly survey in the next section.

34

Another major source on the semantics of OOP related to this thesis is Kim

Bruce's textbook entitled 'Foundations of Object-Oriented Languages: Types and

Semantics' [12]. Like SOOP, Bruce's book presumes that statically-typed 00 pro­

gramming languages should have a structural semantics rather than a nominal one.

Of course, mainstream OOP has followed a course diametrically opposed to Bruce's

vision. Since this thesis presents a firm theoretical foundation for mainstream, nom­

inal OOP, it can be 'viewed as the antithesis of Bruce's work.

3.2.2 PL Research on Functional Programming

Interest in the mathematical meaning of computer software--and, thus, in the math­

ematical modeling of programming languages-has started since the advent of high­

level functional programming languages. Since the production of the pioneering work

by McCarthy [48, 49], Strachey [69], and Landin [42] in the 1960s, computer scien­

tists have compiled a deep body of research on program semantics and proof systems

rooted in mathematical logic, most notably the .A-calculus, the "mother of all func­

tional languages".

3.2.2.1 Domain Theory and Denotational Semantics

Since the semantics of programming languages is closely related to the semantics of

logical formulas in mathematics, it is not surprising that logician Dana Scott made

the seminal breakthrough in program semantics by defining the first algebraic models

for the untyped lambda-calculus [61, 62]. Scott's construction showed how to view

function spaces as computational domains, resolving the mismatch in set theory be­

tween the cardinalities of D-+ D and D. Scott imposed an 'approximation' partial

ordering on computational domains and restricted the set-theoretic function space

35

construction to continuous functions according to the approximation orderings on

the input and output domains. From Scott's perspective, infinite computable objects

like functions mapping N into N and infinite trees over N are the limits of progressively

more defined finite approximations.

Dana Scott [63, 69, 64, 65, 33] and Gordon Plotkin [58, 68, 59, 46, 4] subsequently

generalized the constructions used in these models to accommodate arbitrary compu­

tational domains. Plotkin played the key role in eliminating the artificial maximum

element (T) present in Scott's lattice-based models. The work of Scott and Plotkin

helped bring into existence the fields of domain theory and denotational semantics.

Domain theory is so-called because it studies the mathematical space (called a

domain) that software data, as abstract entities, occupy. In denotational semantics,

a program phrase (expressed in abstract syntax [48]) is assigned a denotation as its

logical meaning. This denotation is an element of a semantic domain, as formulated

by Scott and Plotkin. Abstract syntax, which was invented and named by McCarthy,

might more accurately be called 'algebraic syntax' since it expresses all program

text in terms a set of free algebraic generators called constructors. A denotational

model simply interprets these algebraic generators as semantic functions on semantic

domains, just as a model of a first order logical language interprets each function

symbol in the logical language as a function mapping the input domains (in the

model) for the symbol to the output domain (in the model).

An important property of denotational semantics is that it is compositional. Us­

ing denotational semantics, the meaning of any term C(t1 , ..• , tn) in the abstract

syntax is simply M [C] (M [t1] , ••• , M [tn]) where M is the meaning function.

The value M [C] is extracted from a table (the meaning of abstract-syntax-tree prim­

itives); the other invocations of M are recursive.

36

Using these two fields, Dana Scott and Gordon Plotkin constructed multiple mod­

els of the >.-calculus (Scott's original motivation for working on the mathematical

meaning of software though was not to find models for >.-calculus. See Stoy's book [69]

for details). Since then, all semantic models of functional programming languages

have been rooted in domain theory, and are based on models of the >.-calculus.

Research on domain theory and denotational semantics continued in the 1980's.

PL researchers later built on top of Scott and Plotkin's work, helping establish

and enrich the two fields (See [44, 15, 46, 16, 18, 17, 37]). Jung [28] presents a

mathematically-oriented account of the historical development of domain theory and

denotational semantics.

Research compiled in the last fifty years on program semantics (and on proof

systems, such as LCF [57, 31]) has supported the development of an array of sophis­

ticated statically-typed functional languages, including ML, MIRANDA, HASKELL,

OCAML, and F#, and the development of corresponding semantic models rooted in

domain theory.

As part of PL research in "the functional world", a number of proof-assistants

(sometimes called "theorem provers") have also been developed. With the help of

the programmer, proof-assistants can ascertain the correctness of (some) functional

software (CoQ [7], for example, was used to prove security properties of the Java

Card system (http: I I coq. inria. fr). Arguably equally-important, proof assistants

can also be used to prove pure mathematical theorems). Research supporting recent

proof-assistants (e.g., CoQ [7], and ISABELLE [55]) was based upon and inspired by

research supporting earlier similar tools (e.g., LCF [57, 31], and NuPRL [21]).

Proof assistants such as COQ and ISABELLE depend on the mathematical mean­

ing (the denotations) given to constructs of functional programs to reason about the

37

correctness of these programs. Having a precise domain-theoretic model of functional

programming was, among other factors, an important factor in allowing the devel­

opment of these tools ([7]), and in allowing better (semi-)automatic reasoning about

functional software.

3.2.3 PL Research on Object-Oriented Programming

According to Cardelli [14], "the method of structuring data in 00 programming

languages can be said to derive from biology and taxonomy". In FP, the method

of structuring data is mathematical. The data domains of FP are inductively de­

fined, using familiar mathematical constructions from set theory (disjoint unions,

tuples/cross-products, and functions).

Cardelli [14] states:

Data, in OOP, is organized in a hierarchy of classes and subclasses, and

data at any level of the hierarchy inherits all the attributes of data higher

up in the hierarchy. The top level of this hierarchy is usually called the

class of all objects; every datum is an object and every datum inherits the

basic properties of objects, e.g., the ability to tell whether two objects are

the same or not. Functions and procedures are considered as local actions

of objects, as opposed to global operations acting over objects.

Explaining the widespread use of OOP among mainstream software developers, and

emphasizing the superiority of OOP over other styles of software development, Bruce [12]

states that

"there is real substance behind the reasons for the increasing use of object­

oriented languages. There seem to be clear advantages for the object-

38

oriented style in organizing and reusing software components. For exam-

ple, subtyping and inheritance seem to make it much easier to adapt and

reuse existing software components."

The intuitiveness of OOP data structuring, and the scalability advantages of using 00

languages, have helped establish OOP as a mainstream approach/style of computer

programming. With roughly about 60% of software developers using 00 languages

in developing their programs, OOP is currently the dominant style of programming

in industrial software development2 •

3.2.3.1 Early 00 Research

Since its inception, OOP has attracted the attention of PL researchers, although not

at the same level as functional programming did.

Even though OOP was invented in 1967 (in SIMULA), in the 1980s OOP was still

in its infancy. OOP did not impact industrial practice until personal computing with

graphical user interfaces become an important mode of computation in the mid-80's.

At this point, OOP also attracted the attention of PL researchers.

During this period, most 00 programming was conducted in SMALLTALK, a

dynamically-typed language. But the dominant mainstream language, C, was statically-

typed. Computing researchers and developers anticipated that statically-typed 00

languages would emerge, supplanting SMALLTALK, but the precise form of those Ian-

guages and their type systems was unknown. Initially, PL researchers anticipated

building static type systems for 00 languages as extensions of the sophisticated type

2See, for example, statistics of the TIOBE index (at http: I /www. tiobe. com/index. php/
content/paperinfo/tpci/index.html), and at http://www.langpop.com.

39

systems [51 J they had recently developed and refined for functional programming

languages.

Benjamin Pierce [56] presents an account of the development of research on the

semantics of OOP, where he states that:

"the first interpretation of objects in a typed .A-calculus was based on

recursively-defined records. It was introduced by Cardelli [14] and studied

in many variations by Kamin and Reddy [38, 39], Cook and Palsberg [22]

and Mitchell [53]. In its typed form, this model was used quite effectively

for the denotational semantics of untyped 00 languages. In its typed

form, it could be used to encode individual 00 examples, but it caused

difficulties with uniform interpretations of typed 00 languages. The most

successful effort in this direction was carried out by Cook et al. [23, 24] ."

Our assessment of the effectiveness of these models for untyped 00 languages (like

SMALLTALK) is less sanguine than Pierce's evaluation, because these models do not

accommodate class name information .in objects, precluding the definition of oper-

ations like SMALLTALK isMemberOf, akin to JAVA instanceof, and type casting

operations. The PL research community did not think such operations were impor-

tant, but they are critical for confirming inheritance relationships and debugging code

that relies on inheritance.3).

Cook's paper [24], emphatically-titled 'Inheritance is not subtyping', is the pub­

lication that led PL researchers to the mistaken folklore that inheritance and 00

subtyping should not be identified. Cook's research was predicated on modeling ob-

jects as records devoid of class names (following Cardelli's footsteps [14]), and on

3In fact, it is impossible to write an informative output operation, akin to the JAVA toStringO
method, in the absence of such an operation like instanceof, because the program cannot determine
the class of an object!

40

Cook's modeling of recursive types (e. g., SelfType), which Cardelli had intentionally

omitted from SOOP4 .

During this period of early 00 research, research on functional programming was

"the measuring rod" that set the standards for what is right and what is wrong in

OOP research. Among PL researchers, research on FP was the ideal to be sought, and

on whose footsteps research on OOP should follow. This ideal included the implicit

assumption of structural typing, which is a reasonable assumption in functional pro­

gramming. In short, no one in the PL research community envisioned the critical role

that nominality will play in OOP, both in language design and software development.

In the 1990s, research on OOP was focused on even more encoding of 00 features

using functional ones. In 1994, Bruce presented a paper [11] on the semantics of a

functional object-oriented language. PL researchers wanted OOP to be formalized as

a dialect of the typed lambda calculus using type constructions familiar to functional

programmers. The desire to view OOP as a subset or subdiscipline of FP elimi­

nated nominal information from objects, in conflict with how 00 software developers

conceptualize 00 data.

After writing the above, Pierce [56] further continues that "Meanwhile, frustrated

by the difficulties of encoding objects in A-calculi, Abadi and Cardelli introduced a

calculus of primitive objects [3]." Abadi and Cardelli [3] thus did not map objects to

corresponding "lower-level" functional constructs. Objects were considered a primi­

tive entity on their own. Abadi and Cardelli gave an operational semantics to their

object calculus. The subtyping rules in their work, however, still respected structural

subtyping, precluding the inclusion of class names in object denotations. Objects in

Abadi and Cardelli's work [3) did not carry the class name of objects, and inheritance

4 Cardelli states in [14, page 11] that 'recursive types are not treated in the formal semantics'

41

relation was not explicitly specified between object types.

3.2.3.2 Recent 00 Research

To provide a comprehensive account of structural OOP, Bruce wrote his book on

'Foundations of Object-Oriented Languages: Types and Semantics' [12]. Bruce based

his view of 00 subtyping on that of Cardelli [12, p. 72] ..

In this book, Bruce further separates inheritance and subtyping by introducing

the notion of 'matching' as a generalization of structural subtyping. Bruce's notion

of matching did not gain credence among software developers and language designers

because it critically relies on the absence of nominal information (class names) in

object denotations. Given a structural view of objects, matching makes sense but

software developers conceptualize objects as carrying class names and conforming to

invariant behavioral contracts associated with their class names.

Another significant foundational work that also adopted the structural view of

OOP is that of Anthony Simons, who presented, in the Journal of Object Technol­

ogy, a series of twenty articles (in 2002-2005) on 'The Theory of Classification' [66].

Based on the structural view of objects, Simons also made a clear distinction between

subclassing (inheritance) and subtyping in his articles.

The most significant work on the operational semantics of a mainstream 00 lan­

guages is Igarashi, Pierce and Wadler's work on FJ/FGJ (as a "featherweight" version

of JAVA), presented in [36], [56], and other earlier publications. The development of

F J /FGJ was motivated by the need to prove the type soundness of the "erased gener­

ics" semantics used in Generic Java. We briefly discussed the main research results

of FJ/FGJ in Section 3.2.1.

42

Disenchantment with structural OOP Despite this situation where many 00

PL researchers have adopted a non-nominal view of objects, the proponents of func­

tional programming appear to have become disenchanted with functionalized, struc­

tural formulations of inheritance (OOP). Supporting our belief in this regard is that,

in 2002, David MacQueen argued [45] that 00 features should not be added to

STANDARD ML [51], despite them being already included in OCAML [43] (OCAML

is another widely-used variant of ML). One of the reasons MacQueen [45] did not

mention explicitly for not favoring the mixing ML with 00 features is that, if they

were added to STANDARD ML (which,. like all functional programming languages, is

a structurally-typed functional programming language), 00 typing features would

have to be those of structural OOP, not ones of nominal OOP (so as to make the sup­

posed new 00 features of Standard ML mesh well with the already-structural type

system of STANDARD ML). But then, MacQueen argued, these (structural) OOP

features will not match with the (nominal) typing concepts mainstream 00 software

developers are familiar with. For this reason, and for other reasons that MacQueen

details [45], if ML became object-oriented its 00 features are likely to be unused, or

will be cumbersome and unnatural to use.

43

Chapter 4

COOP: A Simple Structural Model of OOP

In this and the following two chapters we present the details of defining and con­

structing NOOP, our model of nominal OOP. First, this chapter presents COOP

as a simple structural model of OOP. Chapter 5 then presents class signatures and

discusses how signatures capture the nominality features of nominal OOP. By enrich­

ing COOP, Chapter 6 then uses signatures to define preNOOP. preNOOP is an

unfiltered model of nominal OOP because it includes invalid "objects" (whose record

components do not match their signatures). In Chapter 6, thus, preNOOP is then

filtered by a simple projection to produce NOOP, as our mathematical model of

mainstream OOP.

The reasons for presenting a structural model of OOP (i.e., COOP) first, before

presenting NOOP, are threefold. First, earlier research on structural OOP needs to

be put on a more rigorous footing. The literature on models of structural OOP glosses

over important technical details like constructing a domain of records, having methods

of multiple arity, and being purely 00 (i.e., not allowing functions and non-object

values have first-class status), which we address. Second, the construction of COOP

is similar to but simpler than the construction ofNOOP. Understanding how COOP

is constructed makes it easier to understand the construction of NOOP. Third, and

most importantly, the rigorous definition of COOP alongside the definition of NOOP

clarifies the distinction between structural OOP and nominal OOP.

As mathematical models, COOP and NOOP are collections of domains. In

44

denotational semantics, domains (partially ordered sets with certain properties as

defined by Scott [65] and others [58, 59, 46, 37]) are used to model computational

constructs and notions (as explained in more detail in Appendix A). Domains of

COOP and NOOP correspond to the set of all possible object values, and field

values, and method values (using JAVA terminology) of structural and nominal 00

programs. Similarly, specific subdomains of COOP and NOOP domains correspond

to specific structural and nominal types definable in statically-typed structural and

nominal 00 languages. COOP and NOOP, thus, give an abstract mathematical

meaning to the most fundamental concepts of structural and nominal OOP.

The domains of COOP1 are the solution of a reflexive domain equation. Ap-

pendix A presents a summary of the main definitions and theorems of domain theory

presented in Dana Scott's monograph [64], as updated by Cartwright and Parsons [19].

In Section 4.1 of this chapter, based on the domain theory foundations recounted in

Appendix A, we first present a new domain constructor, the records domain construe-

tor -o, that formulates records as finite functions.

In Section 4.3 we then show how the COOP domains are constructed as the solu-

tion of the COOP domain equation. The domains of COOP are constructed using

standard domain theoretic construction methods that make use of standard domain

constructors as well as the records domain constructor we described in Section 4.1.

The view of objects in COOP is a very simple one. An object in COOP is a record

of functions mapping sequences of objects to objects. In other words, in COOP an

object is 'a finite collection of labeled methods', where methods are functions from

sequences of objects to objects. In COOP, we encode fields as zero-ary methods.

1Similarly, NOOP domains are also the solution of a reflexive domain equation. We will, however,
drop any further mention of NOOP in this chapter unless absolutely necessary.

45

Given that objects of COOP, like those of SOOP, miss nominality information,

COOP is also a structural model of OOP. Given that it is a structural model of

OOP, COOP closely resembles SOOP (i.e., Cardelli's model of OOP, presented

in [13, 14]). The construction of COOP shows how to rigorously construct a model

like Cardelli's.

COOP, however, differs from SOOP in five respects:

1. Unlike SOOP, but similar to many mainstream 00 languages, the COOP do-

main equation does not allow functions as first-class values (thus, COOP does

not support function currying). Only objects are first-class values in COOP.

2. Unlike SOOP, COOP uses the records domain constructor, --<>, to construct

records (rather than the standard continuous functions domain constructor used

in SOOP). The definition of--<> is presented in Section 4.1.

3. Unlike SOOP, methods in COOP objects are multi-ary functions over objects. 2

4. For simplicity, COOP objects have fields only modeled by (constant) 0-ary

functions, not as a separate component in objects. Thus, names of fields and

methods in COOP objects share the same namespace.

5. Since we do not use COOP (nor NOOP) to prove type safety results, COOP

does not need to have a counterpart to the W ={wrong} domain that is used

in SOOP to detect type errors.

When we present NOOP, in Chapter 6, we will show that COOP, and thus also

SOOP, does not accurately capture the notion of inheritance as it has evolved in

2Since SOOP defines a domain for a simple functional language with objects based on ML, it is
natural to force all functions to be unary (as in ML). In this context, a multi-ary function can be
transparently curried.

46

statically-typed nominal 00 languages (like JAVA [32], C# [2], SCALA [54], and

XlO [60]).

4.1 Records Domain Constructor (-o)

As mentioned above, COOP models objects as records. In this section, we present

the records domain constructor, --o, which constructs domains of records, and we

discuss its mathematical properties. The definition of this constructor makes use of

the standard definitions from basic domain theory. We present a summary of these

in Appendix A.

4.1.1 Record Functions

A record (or COOP object) can be viewed as a finite mapping from a set of labels

(member names) to methods. Thus, we model records using record functions, which

are explicitly finite. A record function is a finite function paired with a tag repre­

senting the input domain of the function. The tag of a record function modeling a

record thus represents the set of labels of the record. In agreement with our earlier

definition of shapes (for objects) in Section 2.1.3.1, we similarly call the set of labels

of a record the shape of the record. The tag of a record function thus tells the shape

of the record.

Due to the finiteness of the shape of an object, and due to the flatness of the shape

when it is formulated as an input domain to record functions, modeling objects of

COOP as records motivates defining a new domain constructor that is similar to but

different from conventional functional domain constructors. This domain constructor

constructs record functions, which are explicitly finite. 3

3 In this thesis, we do not follow Cardelli's modeling of records (in [14]) as infinite functions.

47

4.1.2 Definition of --o

Let C be the flat domain containing all record labels (member names) plus an extra

improper bottom label, ..i.e, that makes C be a domain (all domains must have a

bottom element). Let V be an arbitrary domain, with approximation ordering Cv

and bottom element ..lv, that contains the values members of records are mapped to.

We use <S: to denote the subdomain relation (See [19, Definition 6.2]). If we use

Ct to range over arbitrary finite subdomains of C (all domains £ 1 contain ..i.e), then

we define the domain R = C --o V as the domain of record functions from C to V,

where

IRI = {..l'R} u u R(Cf, V). (4.1)
.Ct!E.C

Sets R(£1, V) are defined as

(4.2)

where tag is a function that maps the shape corresponding to a domain C 1 to a

unique tag in a countable set of tags (whose format we leave unspecified), and where

C 1 ~ V is the domain of strict continuous functions from C 1 into V. 4

Thus, a record r = {h 1---+ db··· , lk 1---+ dk} is modeled by a record function

Cardelli states that he is only interested in the function mapping a cofinite subset of labels to an
error value, but this subset of the function space used in Cardelli's domain equation does not form
a subdomain of the function defined in Cardelli's domain equation. So the solution to Cardelli's
domain equation necessarily contains superfluous elements. In contrast, we use a record function
construction (instead of a conventional function space constructor) whose elements are in one-to­
one correspondence with Cardelli's set of interest but form a domain. So our model of records is
equivalent to Cardelli's in spirit, but our record domain excludes the 'junk' elements that technically
exist in Cardelli's domain but Cardelli asks the reader to ignore.

4 Since the functions in .CJ --<>-+ V are strict, the undefined element ..i.e is always mapped to ..lv.
Moreover .C J is flat, so there is no ordering relationship between label names it and l2 in I.C J I \ {..i.e}.
Hence the functions in .C J --<>-+ V precisely correspond to ordinary mathematical functions from
I.CJI \{..i.e} to v.

48

r = (tag({it,··· , lk}), {(..L.c, ..Lv), (it, d1), · · · , (lk, dk)}). It should be noted that -o

does not disallow constructing the (unique) record function (tag({}), { (..L.c, ..Lv)}) that

models the empty record (one with an empty set oflabels, for which 1£11 = {..L.c}).

The approximation ordering, Cn, over elements of R is defined as follows . ..Ln

approximates all elements of R. The bottom element ..Ln approximates all elements

of the domain R. Elements r and r' in R with unequal tags are unrelated to one

another. On the other hand, elements rand r' with the same tag are ordered by their

embedded functions (which must be elements of the same function domain).

Hence, for two non-bottom record functions r, r' in R that are defined over the

same .Cf, where I.C1I = {..L.c, it,··· , lk}, if

and

where d1 , · · · , dk and d~, · · · , dk are elements in V, then we define

(4.3)

Theorem 4.1. Given a flat countable domain of labels .C and an arbitmry domain

V, .C -o V is a domain.

Proof. Direct consequence of Lemma B.l in Appendix B. D

49

4.1.3 Properties of the Records Domain Constructor (-o)

Because we will use the records domain constructor -o in constructing domains as

least fixed points (lfp's) of functions over domains, as subdomains of Scott's universal

domain U, we need to ascertain -o has the domain-theoretic properties needed so

that it can be used inside these functions. In this section we thus proof that -o is a

continuous function over its input domain V (i.e., that, as a function over domains,

-o is monotonic with respect to the subdomain relation, <S, and that it preserves lubs

of domains under the same relation).

4.1.3.1 Domain Constructor -o is Continuous

Theorem 4.2. -o is a continuous function on fiat domain£ and arbitrary V.

Proof. By lemmas B.2 and B.3 in Section B.2 of Appendix B. 0

This concludes our proof that -o constructs subdomains of Scott's universal do­

main U. Armed with -o, we now proceed to presenting the construction of COOP,

as a simple structural model of OOP.

4.2 COOP Domain Equation

The domain equation that defines COOP makes use of two simple domains B and £.

Domain B is a domain of atomic "base objects". B could be a domain that contains a

single non-bottom value, e.g., unit or null, or the set of Boolean values {true, false},

the set of integers, or some more complex set of primitive values that is the union of

Boolean values and various forms of numbers (e.g., whole numbers and floats) and

other primitive objects, such as characters and strings, etc.

50

Domain £, is a flat countable non-empty domain of labels. Elements of £ (or,

1£1, more accurately) are proper labels used as names of record members (fields and

methods), or the improper "bottom label", .l.c, that is added to proper labels to make

£, a flat domain. Elements of £, other than .l.c (proper labels) will serve as method

names in COOP.

The domain equation of COOP is

0 = B + £--<) (0* ---<>-+ 0) (4.4)

Domain 0 is a domain of simple objects, and it is the primary domain of COOP.

Equation (4.4) states that a COOP object (an element of 0) is either (1) a base

object (an element of domain B); or is (2) a record of methods (i.e., a finite mapping

from labels, functioning as method names, to functions), where, in turn, methods are

functions from sequences of objects to objects.

4.3 COOP Construction

The construction of domain 0, as the solution of domain equation (4.4), is done using

standard techniques for solving recursive domain equations (we use the 'least fixed

point (lfp) construction', which, according to Plotkin [58), is equivalent to the 'inverse

limit' construction).

Conceptually, the right-hand-side (RHS) of the COOP domain equation (Equa­

tion (4.4)) is interpreted as a function

(4.5)

51

over domains, from a putative interpretation oi for 0 to a better approximation oi+l

for 0. Each element in this sequence is a domain. The solution, 0, to the domain

equation is the least upper bound (lub) of the sequence Oo, 01,

Thus, the construction of 0 proceeds in iterations, numbered i + 1 fori ~ 0. We

use the empty domain as the initial value, 0 0 , for domain 0, and for each iteration

i + 1 we take the output domain produced by the domain constructions using the

domains Oi, £, and B (the values for the function given by Formula (4.5)) as the

domain oi+l introduced in iteration i + 1.

4.3.1 A General COOP Construction Iteration

For a general iteration i + 1 in the construction of COOP, the construction method

thus proceeds by constructing

using the strict continuous functions domain constructor, ---o--+, and the sequences

domain constructor, *. Then, using the records domain constructor, --o, presented in

Section 4.1, we construct the domain of records

and, finally, using the coalesced sum domain constructor, +, we construct

52

4.3.2 The Solution of the COOP Domain Equation

Given the continuity of all domain constructors used in the function defined by the

lambda expression (4.5), and given that composition of domain constructors preserves

continuity, the function defined by the RHS of the COOP domain equation is a

continuous function [19, Theorem 2.10 and Corollary 2.11]. The least upper bound

(lub) of the sequence 0 0 , 0 1 , ... of domains constructed in the construction iterations

is the least fixed point (lfp) of the function given by Formula (4.5). According to

standard theorems of domain theory about lfp of continuous functions, the lub of the

domains oi (i.e., their "limit") is simply their union, and this lub is the solution of

Equation (4.4).

To complete the construction of COOP, we thus construct the solution 0 of the

COOP domain equation by constructing the union of all constructed domains Oi

, i.e., 0 will be given by the equation

53

Chapter 5

Signatures and Nominality

And He taught Adam the names - all of them.

[The Glorious Qur'an 2:31]

Class signatures are syntactic descriptions of the external interface of classes,

and thus of the common interface of the instances of classes. Given the interface

information class signatures contain, class signatures can be used as the basis for

type systems that confirm that objects are used consistently and properly within a

program. Embedding signature closures as tags inside objects of our model of nominal

OOP (as we do in Chapter 6) makes o~jects of our model be nominal objects.

The purpose of having signatures can be summarized by noticing that they will

be used as "nominal object type expressions" embedded inside objects as part of the

identity of the objects. Class signatures support the nominal typing and nominal

subtyping features of nominal object-oriented programs.

5.1 Signature Constructs

For the purposes of building NOOP objects we have three signature constructs: class

signatures, (class) signature environments, and (class) signature closures. Members

(fields and methods) of objects also have field signatures and method signatures.

Signatures are constructed entirely from class names and field/method names,

using standard syntactic set constructors. We use signatures to specify the interfaces

54

of classes, fields, and methods.1 The signature for a class specifies the class name,

the name of the signatures of the superclasses of the class, and the signatures for the

class members. A field signature specifies the name of the field and the class name

for field values. A method signature specifies the name of the method, a (possibly

empty) sequence of class names describing the inputs to the method, and the class

name class describing the output of the method. Information in class signatures is

thus derived from the text of classes of 00 programs. This information includes the

names and signatures of the fields and methods of the objects it describes.

The class name inside an class signature is used as a signature name. Signature

names are part of the identity of class signatures. Two class signatures with different

names are different, even if they carry the same member (field/method) signatures

information. Having signature names in class signatures as part of the identity of

these class signatures (i.e., part of their meaning) characterizes class signatures as

nominal constructs.

A class signature includes names of class signatures corresponding to immediate

superclasses of the class. The signatures referred to are called the supersignatures of

the class signature. Conditions we present in the definition of class signatures ensure

that member signatures inside a class signature match those in its supersignatures,

thus agreeing with 00 inheritance. Explicitly specifying the supersignatures of a class

signature identifies the nominal structure of the class hierarchy immediately above

the class in question. It also agrees with the inheritance of the behavioral contract

associated with class names, which is what is intended to be inherited in nominal

00.

1 As noted earlier, in the context of this thesis, JAVA interfaces are treated as (abstract) classes.
Our notion of object and class interfaces should not be confused with interfaces of JAVA and other
00 languages.

55

Viewed differently, signatures for classes, fields, and methods, describe the in­

tended external interface of these entities, in terms of names. A class signature

specifies the name of a class and its immediate superclasses, and the signatures of its

fields and methods. A field signature specifies the name of the class describing the

associated values of the field . A method signature specifies the names of the classes

associated with the result and the input arguments of the methods.

A signature environment is a finite set of class signatures such that no class name

appears as the name of two signatures. They can be viewed thus as functions from

class/signature names to class signatures. A signature closure is a pair of a signature

name and a minimal signature environment that includes a class signature with that

signature name (called a "root" class signature) and that is referentially-closed over

all class names in the root class signature.

In the following subsections all syntactic constructs related to class signatures are

rigorously defined. Signature environments and signature closures must be internally

consistent to model nominal typing and nominal subtyping in OOP. Conditions of

our inductive definitions of class signatures, signature environments and signature

closures, ensure the defined constructs satisfy the required internal consistency prop­

erties.

5.1.1 Class Signatures

Class signatures are the first constructs we define. Class signatures are syntactic

elements of a set S. If N is the set of signature names, and L, as before, is the set of

member names, then the set S of class signatures is defined by the equation

s = N X N* X FS* X MS* (5.1)

56

where x is the set theoretic cross product set constructor, and* is the finite-sequences

constructor, and where

FS = L x N

is the set of field signatures, and

MS =LX N* X N

is the set of method signatures.

The equation for 5 formally expresses the view presented above that a class signa­

ture is composed of four components: (a) a signature name, (b) a sequence of names

of supersignatures, (c) a sequence of field signatures, and (d) a sequence of method

signatures.

The use of signature names (members of N) in Equation (5.1) characterizes class

signatures as nominal constructs. The first component of a class signature (corre­

sponding to the first occurrence of N in Equation (5.1)) denotes the signature name

of the class signature.

The second component of a signature, the sequence of signature names, N*, is the

supersignature names component of the class signature. Note that the supersigna­

tures component of a class signature can be the empty sequence, implying the class

signature which this empty sequence is a component of has no supersignatures.

Having the names of supersignatures of a class signature explicitly included as a

component of the class signature is an essential and critical feature in the modeling

of nominal subtyping in nominal OOP.

The last two components of a class signature are its field signatures (a finite se­

quence of field signatures), and its method signatures (a finite sequence of method

57

signatures). A field signature is a pair of a field name (a member of L) and a class

signature name. Similarly, a method signature is a triple of a method name, a se-

quence of class signature names (for the method parameters), and a signature name

for the method result.2

In the sequel we use metavariable nm to range over members of the set N.

Metavariables a and b are used to range over members of L, where a stands for

field names and b stands for method names. Also, for visual clarity, we use the more

suggestive symbol '~' for syntactic pairing of the second and third components of a

method signature, in place of the standard ' , ' pairing symbol used elsewhere.

Not all members of S are class signatures. To agree with our intuitions about

describing the interfaces of classes and their objects, a member s of S is a class

signature if its field signatures component (the third component of s) has no duplicate

field names and its method signatures component (the fourth component of s) has

no duplicate method names (for simplicity, thus, method overloading is not allowed

in our modeling of nominal OOP). It should be noted that field names and method

names are in separate name spaces and thus a field and a method in s can share the

same name ..

2 An astute reader may note that, in Equation (5.1), the order of elements in sequences of su­
persignature names, sequences of field signatures, and sequences of method signatures, is actually
immaterial. Repetition of elements inside these three kinds of sequences is also not allowed. In
Equation (5.1), * can thus be replaced in these three case by a finite sets constructor (where fiJJ(X)
or X* can be used to denote the set of finite subsets of X). For the fourth use of *, that of signature
names of method parameters, order does matter and repetition of signature names inside the se­
quences is allowed. Instead of using (the more-accurate) finite sets in the three other cases, we keep
using (the more-intuitive) finite sequences, but, in Section 5.2, we then define and u..<;e an equivalence
relation for class signatures that asserts the equivalence of signatures that have equivalent sequences
(ignoring the order of their elements and any element repetitions) in these three components. This
approach somewhat mimics more closely what language compilers usually do.

58

5.1.2 Signature Environments

Signature environments are finite sets of class signatures where each signature name is

associated with exactly one signature3 . If nm is guaranteed to be the signature name

of some class signature in a signature environment se, we use the function-application

notation se(nm) to refer to this particular class signature.

Similar to class signatures, not all finite sets with unique class names are sig-

nature names. In addition to uniqueness of signature names, a finite set of class

signatures needs to satisfy the following consistency conditions to function as a signa-

ture environments. It first should be noted that a signature environment specifies two

relations: an immediate supersignature relation and a direct-reference (adjacency) re-

lation. The first is a subset of the second. These two relations can be represented as

directed graphs. The consistency conditions constrain these two relations and their

corresponding graphs.

A finite set se of class signatures is a signature environment if and only if

1. A class signature, with the right signature name, belongs to se for each signature

reference (by a signature name) in each class signature of se. This is a closure

and consistency constraint on signature environments.

2. The graph for the supersignature relation for se must be cycle-free (i.e., an

acyclic graph, commonly called a DAG). This well-foundedness constraint forces

se to have at least one class signature that has no supersignatures (i.e., the se-

quence of supersignature names of such a class signature is the empty sequence).

3 Defining signature environments as constrained sets, rather than functions from signature names
to class signatures, is motivated by redundancy concerns similar to those that could be met in tables
of relational databases, given that each "key" (i.e., a signature name) in a signature environment is
mapped to a unique class signature.

59

3. The set of member (field and method) signatures of each class signature 8 in

8e is a superset of the set of member signatures of each supersignature named

by the supersignatures component of 8 (i.e., the set of member signatures of

8 is a superset of the union of those sets for the supersignatures). This condi-

tion makes class signatures in 8e reflect the explicit inheritance information in

nominal OOP, by requiring a class signature to only extend (add to) the set of

members supported by an explicitly-specified supersignature .. By requiring the

members of a class signature to be a superset of the members of all of its super-

signatures exact matching of member signatures is required. This requirement

enforces an invariant sub typing rule for field and method signatures. 4

4. The finite set of class signatures 8e is a signature environment if and only if it

satisfies all constraints above. A finite set of class signatures that does not sat-

isfy one or more of the above constraints above is not a signature environment.

5.1.2.1 Circularity in Signature Environments

Even though consistency conditions for signature environments preclude a class sig­

nature from circularly naming itself as one of its own supersignatures (even indirectly

via other class signatures), the conditions do not preclude a class signature from re-

ferring to itself via its name in the signature of a field, or that of a method parameter

or method return value. This kind of reference is called a circular reference.

4We enforce an invariant subtyping rule of members for the sake of simplicity, and for the sake of
mimicking pre-generics JAVA. This constraint can be relaxed to model covariant subtyping of method
return value signatures (which is available in mainstream 00 languages such as JAVA 5.0+), but
we do not do so in this thesis. The constraint can even be further relaxed to model field signature
covariant subtyping, as well as to model contravariance of subtyping of method parameter signatures.
However, a relaxed constraint that allows covariance of field signatures/types, in particular, is known
to be unsound in 00 languages with mutation (e.g., in EIFFEL [50, 26]).

60

The consistency conditions also allow for expressing mutually-dependent class

signatures, where a signature refers to itself indirectly via other class signatures. This

kind of indirect reference is called a mutually-circular reference. Circular references

are indeed quite common in mainstream OOP, to allow developers to simulate real­

world entities that are circularly-dependent5 . The nominality of classes in mainstream

OOP allows them to readily handle circular references, since they merely involve the

use of class names.

5.1.3 Signature Closures

Having defined class signatures and signature environments, a (class) signature closure

is a pair of a signature name and a signature environment. The first component of

a signature closure, the signature name, tells which class signature in the second

component (the signature environment) is the "root" class signature of the signature

environment. Thus, not all pairs of signature names and signature environments are

signature closures. Such a pair sc = (nm, se) is a signature closure if and only if

there is a class signature s inside se with signature name nm (i.e., nm is in the

domain of se when se is viewed as a function, and thus se(nm) is always defined)

and if the direct-reference (adjacency) relation corresponding to se is referentially-

closed relative to s. The class signatures then is called the "root" signature of the sc.

Relative to the root class signature, a signature environment is thus minimal (contains

no unnecessary class signatures). All class signatures in the signature environment of

a signature closure are accessible via paths in the adjacency graph of the signature

environment starting from the node corresponding to the root signature name.

5 Check, for example, the circularity in the definitions of the core 2,000, or so, key words used to
define the meaning of words in a dictionary.

61

The set of all signature closures is used to construct a flat domain S that is used

in the construction of NOOP in Chapter 6.

5.2 Signature Equality

Checking the equality of signature constructs is needed in multiple places in our

modeling of nominal OOP. Equality is defined on signatures as would be expected

given their definitions above.

5.2.1 Equality of Class Signatures

For class signatures 51 = (nm~, [nms1], [fss1], [mss1]) and 52 = (nm2, [nms2], [fss2], [mss2]).

we have

where - is an equivalence relation on sequences that ignores the order and repetitions

of elements of a sequence, and where for two field signatures (in sequences fss1 and

fss2), fs1 = (a~, nm1) and fs2 = (a2, nm2), we have

and similarly, for two method signatures (in sequences mss1 and mss2), ms1 = (b~, [nms1] ~ nml)

and ms2 = (b2, [nms2] ~ nm2), we have

62

(note that sequence equality, not sequence equivalence, is used. Order and repetitions

do matter for method parameter signatures).

We should particularly note that the names of two class signatures have to be

equal for the two signatures to be equal. Two class signatures that share all other

components but have different signature names are not equal, since a signature name

is part of its identity.

5.2.2 Equality of Signature Environments and Signature Closures

Two signature environments are equal if and only if they are equal as sets. 6 Two

signature closures are equal if and only if they are equal as pairs, i.e., if they have

equal components. Equal signature closures have the same signature name and equal

signature environments.

5.3 Extension of Signature Environments

A relation between signature environments that we will need when we discuss in-

heritance in the next section (Section 5.4) is the extension relation. A signature

environment se2 extends a signature environment se1 (written se2 ..,.. se1) if se2 binds

the names defined in se1 to exactly the same class signatures as se1 does. Viewed as

sets se2 would be a superset of se1 . Thus we have

It should be noted that se2 may have extra signature names mapped to extra

6 It should be noted that because class names (as signature names) are part of the identity of
class signatures, the consistent renaming of all class signatures in a signature environment ("alpha­
renaming") does not produce an equivalent signature environment. Signature names are thus not
.,,.r;,. hlP n"mP<: hPr,.nc:P nn HkP .,,.r;,. hlP n"mPc: c:;an,.tnrP n"mpc: "rP hnnnrl tn hPh .. ,dnr" 1 rnnt.r .. rt.c:

63

class signatures not in se1 . Given it is the same as the subset relation, the extension

relation between signature environments is a partial-order relation.

5.4 Inheritance and Subsigning

Inheritance is a defining characteristic of object-oriented programming. Cook [23]

defines inheritance as 'a mechanism for the definition of new program units by mod­

ifying existing ones in the presence of self-reference'. Cook has multiple notions of

inheritance. For the purposes of this thesis, we are only interested in Cook's notion of

type inheritance. For object types, thus, Cook's defines type inheritance as 'a mech­

anism for the definition of new class signatures by modifying existing ones, in the

presence of "self-type" '.

In this thesis, we define inheritance a bit differently. We define inheritance in

nominal OOP languages as 'a mechanism by which a new class signature is defined

by adding members to an explicitly-specified set of other class signatures'.

In nominal OOP, inheritance (of class signatures) makes use of class names to ex­

plicitly specify the interfaces (implicitly including the informal behavioral contracts)

a class and its instances adhere to. In our model of nominal OOP, thus, object in­

terface and contract inheritance is modeled by class signatures explicitly specifying

their supersignatures.

The supersignatures component of class signatures defines a syntactic ordering

relation between signature closures. We call this relation between signature closures

subsigning.

A signature closure sc2 is an immediate subsignature (~Sh) of a signature closure sc1

if the signature environment of sc2 is an extension (..,..) of the signature environment

of sc1 and the signature name of sc1 is in the supersignature names component of the

64

root signature of sc2 , i.e.,

The subsigning relation ~ is the reflexive transitive closure of the immediate

subsignature relation ~1 , where we use the symbol ~ to denote the subsigning relation

between signature closures.

Chapter 6

NOOP: A Domain-Theoretic Model of Nominal
Object-Oriented Programming

65

A model focuses on parts rother than the whole. It is a caricature

which overemphasizes some features at the expense of others. A model

is a fetish in which the importance of one key part of the object of interest

is obsessively exaggeroted until it comes to represent the object's quintessence.

-Physicist Prof. Emanuel Derman

This chapter presents the construction of NOOP: a mathematical, domain­

theoretic model of nominal OOP. The construction of NOOP uses the same con-

struction method we employed for building COOP (our simple structural model of

OOP, presented in Chapter 4). The construction of NOOP also uses the same domain

constructors we used for constructing COOP. The algebraic structure of NOOP,

however, is different from that of COOP.

To model nominality, NOOP pairs appropriate signature closures with records

of fields and methods to model objects in nominal OOP. A NOOP object contains

two records-one for field bindings and one for method bindings-to accommodate

separate namespaces for fields and methods. 1

The formulation of objects in NOOP is rich enough that no base domain (like

domain Bin the definition of COOP) is necessary.

The construction of NOOP proceeds in two steps. First, we use a simple recursive

domain equation to define a domain of objects containing signature information as

1 As is the case in mainstream 00 languages such as JAVA and C#.

66

well as member bindings in separate field and method records. Second, we "filter

out" invalid objects where the signature information is inconsistent with the member

bindings. A simple recursive definition of objects with signature information does not

force the signature information embedded in objects to conform with their member

bindings. It is easy to define a projection on this raw domain that eliminates invalid

objects.

We define NOOP as being the model with only the domain of valid objects in

the constructed solution of the NOOP domain equation. Hence, the solution of the

NOOP domain equation does not define the actual NOOP domain of objects but

constructs a larger domain of a model that we call preNOOP. We then define the

domain of NOOP object as the image (range) of a filtering function on preNOOP

that only retains objects with consistent signature information. A filtering function

on domain is well-defined if its image is a subdomain of the input domain (See Defi-

nition A.20 in Appendix A).

As constructed, NOOP presents our answer for how we should mathematically

think of object-oriented software. We conclude this chapter by discussing and proving

some of the fundamental properties of NOOP, then we use these results to show how

the inclusion of nominal information completely reconciles inheritance and subtyping

in nominal OOP.

NOOPis a nominal model of OOP because objects include signature information

for their visible interfaces. This information provides a framework of naturally par-

titioning NOOP into nominal types. The "exact" nominal type corresponding to a

class C is the set of all objects tagged with the signature closure for C.2

2In JAVA, for example, the objects in the exact type for a class C are precisely those for which
the get Class() method returns the class object for C.

67

A cardinal principle of OOP is that objects from subclasses of C conform to the

visible interface of C and can be used in place of objects from class C. Hence, the

natural type associated with C consists of the objects in class C plus the objects in all

subclasses of C. In typed nominal 00 languages, the type designated by Cis not the

"exact" nominal type for C but the union of all the exact types for the classes D that

are subtypes of C (including C itself).

In NOOP, a class B inherits from class A if the signature closure for B subsigns the

signature closure for A. 3 In contrast to other models of OOP, we prove that inheritance

in NOOP is completely consistent with subtyping: a class B inherits from class A

if and only if class B is a subtype of A. In other words, inheritance is subtyping,

overturning one of the mantras of OOP research.

6.1 NOOP Domain Equation

The domain equation that defines preNOOP makes use of two simple domains £

and S, where domain £ is the same flat domain of labels as in Chapter 4, and S is

the flat domain of signature closures (see Section 5.1.3).

The recursive definition for preNOOP is fundamentally different from the def-

initions of other 00 domains like Cardelli's SOOP [14] because every object in

preNOOP contains a signature closure specifying its external interface. From an in-

tuitive perspective, the signatures embedded in objects are certificates authenticating

their interfaces.

3Note that subsigning is defined so that the JAVA subclassing relation (prior to the addition of
generics in JAVA 5) exactly matches the subsigning relation on the signatures of those classes. The
same observation applies to C# (without generics) and C++ (without templates).

68

The NOOP domain equation, which defines and describes preNOOP, is

(6.1)

where 6 is the domain of (valid and invalid) objects of preNOOP, x is the strict

product domain constructor, and domains £ and S are as described above. Equa­

tion (6.1) states that every object in preNOOP (and NOOP) is a triple composed

of: (1) a signature closure (a member of the domain S), (2) a fields record (a member

of£--<> 0), and (3) a methods record (a member of£--<> (0* --o--t 0)).

In the next section, we present the construction of preNOOP as the solution of the

NOOP domain equation, and we define the filtering function that maps preNOOP

onto NOOP.

6.2 Construction of preNOOP

Similar to COOP, the construction of preNOOP proceeds in iterations, driven by

the structure of the RHS of the NOOP domain equation, viewed as a continuous

function from domains to domains.

6.2.1 A General preNOOP Construction Iteration

Similar to the construction of COOP, a general iteration i + 1 in the construction of

preNOOP proceeds by forming

69

using the strict continuous functions domain constructor --o-+, and the sequences

domain constructor *. Then, using the records domain constructor --o, we construct

the domain of method records

and the domain of field records

and, finally, using the strict product domain constructor, x, we construct the domain

of objects

It should be noted that a non-bottom object o1 = (oscb frb mri) in 6i+l approx­

imates a non-bottom object o2 = (osc2, fr2, mr2) if and only if osc1 approximates

osc2, fr1 approximates fr2 , and mr1 approximates mr2. Given the flatness of S, o1

approximates o2 only if they have the same signature closure. Using domains 6i we,

then, finally define the domain 6 of preNOOP objects as the directed closure (also

called the ideal completion) of the infinite union of the different 6i 's:

6 = /dealCompletion(U 6i)·
i?:::O

6.2.2 Ranking Finite Domain Elements

For purpose of proving properties of preNOOP, it is useful to define a ranking notion

on the finite elements of the preNOOP domain of objects. The solution to domain

70

equation (6.1) builds a sequence 00 , 01 , 02 , • · ·, of domains where Oi <S Oi+l· In

this solution, we can assign finite objects of 6 a rank, when we note that every

finite object in 6 is introduced in some finite iteration Oi· Every finite element o

of 6 is constructed in some approximating domain Oi· The mnk of a finite object

o of domain 6 is the integer index of the iteration in which the element is first

constructed. Thus, in each Oi, the new finite elements of Oi have rank i.4 The

only object of rank 0 is j_0 (the only element of the empty domain Oo). All finite

non-bottom objects of domain 6 constructed after one application of the domain

construction function (corresponding to the RHS of Equation (6.1)) to domain Oo

have rank 1. The finite objects of rank 1 are objects having the form Cos, { · · · ,

liJ---+j_0 , · · ·}, {· · · , liJ---+j_M, · · ·}), in which all fields are bound to the bottom

object j_0 , and all methods are bound to the bottom element of the methods domain

j_M (i.e., the only element in the domain 00 --o---+ 00).

A finite object constructed in some iteration of the construction method always

has a higher rank than that of the finite objects used to construct this element (these

objects were constructed in earlier iterations of the construction method). Thus,

when an object o is represented by a derivation tree, whose root is the object, and

the derivation trees representing the objects used to construct o as its subtrees, the

depth of this tree is the rank of o. The rank of an object can thus be viewed as

the "construction depth" of the object, i.e., the length of the longest path from

the top of the tree representing the object to a leaf of the tree (Given the NOOP

domain equation has no base objects, all leaves in trees representing elements of the

preNOOP domain of objects are nodes that only represent j_0).

4 All of the elements in every domain 6i are finite. Hence, the elements of U 6i form a finitary
basis for 6. Therefore any element not in U 6i is not finite. In a Scott domain constructed from a
finitary basis, an element is finite if and only if it is a member of the finitary basis.

71

6.3 Filtering of preNOOP to NOOP

We define a filtering function called filter to map domain 6, the preNOOP domain

of objects, onto the NOOP domain of valid objects. We use the symbol 0 to denote

the domain of valid objects produced by filter.

Definition 6.1. A finite object o in 6 is valid if it is the bottom object l_o, or if it

is a non-bottom object (sc, Jr, mr) such that

• the sets of names of fields and methods (the field shape and the method shape)

of the root class signature of sc are exactly the same as the set of names of fields

in (i.e., the shape of) the fields record f r and the set of names of methods (i.e.,

the shape of) the methods record mr, respectively,

• non-bottom objects bound to field names in fr have signature closures that

subsign the signature closures for the corresponding fields in the root class of

sc, and

• non-bottom functions bound to method names in mr conform to the correspond­

ing method signatures in the root class of sc. By conformance, the functions

are required take in sequences of valid objects that subsign (component-wise)

the corresponding sequences of method parameter signatures in the root class

of sc prepended with sc itself, and to return valid objects with signatures that

subsign the corresponding return value signatures specified in the method sig­

natures in the root class of sc. (Note that sc must be prepended to sequences of

method parameter signatures when checking for validity of method arguments,

because in an application of a method in any nominal 00 language, the first

argument is bound to a receiver object this/self whose signature closure must

subsign sc).

72

Definition 6.2. The function filter mapping 6 into 6 is definedby the recursive

definitions in Figure 6.1.

fun filter(o:6):0
match o with ((nm,se), fr, mr)

if (sf-shp(se(nm)) != rec-shp(fr)) V
(sm-shp(se(nm)) != rec-shp(mr))
return ~0 II because of non-matching shapes

else II lazily construct closest valid object to o
match se(nm), fr, mr with

(_, _, [(ai, snmi) I i=1,· · · ,m],
[(bj, mi_snmj, mo_snmj) I j=i,···n]),

(fr-tag, {ai H oi I i=1, · · · ,m}),
(mr-tag, {bj H mj I j=1, · · · ,n})
let si = se_clos(se, snmi)
let misj = map(se_clos(se), [nm: :mi_snmj])

II nm is prepended to mi_snmj to handle 'this'
let mosj = se_clos(se, mo_snmj)
return ((nm, se),

(fr-tag, {ai H filter-obj-sig(si,oi) I i=1,··· ,m})
(mr-tag, {~ H filter-meth-sig(misj, mosj, mj)

I j=1, ... ,n}))

fun filter-obj-sig(ss:S, o:6):0
match o with (s, _, _)

if (s :S! ss)
return filter(o) II closest valid object to o

else
return ~0 II because of no subsigning

fun filter-meth-sig(in_s:S+, out_s:S, m:~):~
return (Ao*. let vo* = map2(filter-obj-sig, in_s, o*)

in filter-obj-sig(out_s, m(vo*)))

Figure 6.1 : Filtering preNOOP to NOOP

In Figure 6.1, to compute shapes of signatures we have

sf-shp((_, _, [(ai, _)I i=1, ... m],) = {a1, ... ,am}
sm-shp((_, _, _, [(bj, _,_)I j=1, ... ,n]) = {b1, ... ,bn}

and to compute shapes of records we have

rec-shp((_, { li r+ _ I i=1, ... ,k })) = {11, ... ,lk}

73

The function se_clos(se,nm) in Figure 6.1 computes a signature closure (a pair of
a signature name and a signature environment) corresponding to signature name nm
whose first component is nm and whose second component is the minimal subset of
signature environment se that makes se _ clos (se, nm) a signature closure. Note that
by the referential-closure of se, nm is guaranteed to be in the domain of se, and that
the class signature referenced by nm in se is the root signature of se _ clos (se, nm).
Note that to handle this/self a "curried" version of se_clos is passed to the map
function.
Also, in Figure 6.1 the domain s+ is the domain of non-empty sequences of signature
closures (signature closure sequences passed to filter-meth-sig are always non­
empty because object methods are always passed in at least one object argument,
corresponding to the value this/self). The function map2 is the two-dimensional
version of map, which takes a binary function and two input lists as its arguments.

Figure 6.2 : Filtering Auxiliary Definitions

It should be noted that all functions in Figures 6.1 and 6.2 are not eager ("call­

by-value") functions but lazy ("call-by-name") functions.

The definition of the filtering function filter in Figures 6.1 and 6.2 thus states

that it takes an object o of 6 and returns a corresponding valid object of 0. If

the object is invalid because of unequal shapes in the signature of o and its member

records, filter returns the bottom object ..lo (..l0 is the closest valid object to

an invalid object with non-equal shapes in its signature and records). Otherwise,

o has equal signature and record shapes but may have objects bounds to its fields,

or taken in or returned by its methods, whose signature closure does not subsign

the corresponding signatures in the signature closure of o. In this case, filter

74

then lazily constructs and returns the closest approximating valid object too, where

all non-bottom fields and non-bottom methods of o are guaranteed (via functions

filter-obj-sig and filter-meth-sig, respectively) to have signatures that subsign

the corresponding signatures in the signature closure of o.

Function filter-obj-sig checks if1ts input object o has a signature closures that

subsigns a required declared signature closure ss (also input to filter-obj-sig). If

sis not a subsignature of ss, filter-obj-sig returns j_0 . If it is, the function calls

filter on o, thereby returning the closest valid object to o.

For methods, when filter-meth-sig is applied to a method mit returns a valid

method that when applied to the same input o* as m (a member of 0*) returns the

closest valid object to the output object of m that subsigns the declared out signature

closure out_s corresponding to the sequence of valid objects closest (component-wise)

too* that (component-wise) subsigns the declared sequence of input signature closures

in_s prepended with the signature closure of the object enclosing m (to properly filter

the first argument object in o*, which is passed in as a value for this/self).

6.3.1 Filtering is a Finitary Projection

For domain() to be well-defined as a subdomain of 6, the filtering function filter

needs to be a finitary projection (See Section 8 in [19]).

Theorem 6.1. fitter is a finitary projection.

Proof. See Theorem B.1 in Section B.3. 0

By proving that filter is a finitary projection, Theorem 6.1 proves thus that

domain () is well-defined.

75

6.3.2 The NOOP Domain of Objects

Given that the filtering function filter is computable its behavior on infinite objects

is completely determined by its behavior on finite objects.

The behavior of filter is thus completely defined by its behavior on elements of

domains Oi. The filter function in fact can be considered as a function that maps

domains Oi to domains Oi. Given that filter is a continuous function, the lub of

its output domains Oi is the result of applying filter to the domain 6 (i.e., our

sought-after domain 0) because, given continuity, we have

0 = filter(O) = filt~r(UOi) = Ufilter(Oi) = uoi.

Thus, 0 is defined as the union (i.e., the lub) of domains oi = filter(Oi) rather

than as filter(O).

6.4 Properties of NOOP

Using the NOOP domain of objects, 0, in Section 6.4.1 we associate nominal ob­

ject types with signature closures (where nominal object types, as discussed in Sec­

tion 2.1.4, are certain subsets of 0 having similar objects). Signatures, thus, are

associated with certain subsets of the domain 0 of NOOP. These sets of objects

associated with signature closures are called nominal object types. In Section 6.4.2,

we then show that class types (nomina~ object types) are subdomains of 0.

Finally, in Section 6.5 we show how our association of class types with signature

closures (which embody inheritance in nominal OOP) enables NOOP to completely

reconcile inheritance with subtyping. That is, that in our model NOOP of nominal

00 programming, the type associated with a class B is a subtype of the type associated

76

with class A if and only if the signature of class B inherits from the signature of class A.

In other words, we show that inheritance and subtyping in mainstream OOP exactly

coincide, and that the shibboleth "inheritance is not subtyping" among PL researchers

is simply wrong.

6.4.1 Semantics of Signatures

Using notions of nominal OOP that we introduced less formally in Section 2.1.4, we

now provide a formal definition for nominal object types (also called class types).

Given that objects in NOOP have signatures embedded inside them, the nominal

object type in NOOP that interprets a signature closure sc (which we denote by §[sc])

is simply defined by the equation

§[sc) = {(scs, Jr, mr) E Olscs ~ sc} U {..lo} (6.2)

In other words, the interpretation of a signature closure sc is the set of all objects

(scs, Jr, mr) in domain 0 with a signature closure scs that subsigns sc, or the bottom

object ..l0 . The approximation ordering of elements of §[sc) is the one inherited from

0.

6.4.2 Signatures Denote Subdomains of 0

6.4.2.1 Types as Subdomains

To prove that class signatures denote subdomains of 0 (Check Definition A.20 in

Appendix A), we start by defining the notion of an 'exact object type' corresponding

to a signature closure.

77

6.4.2.2 Exact Object Types

The exact object type corresponding to a signature closure sc is the set of objects in

domain 0 that have a signature closure sc, or 1_0

§E[sc] = {(sc, fr, mr) E 0} U {_lo} (6.3)

with the approximation ordering inherited from 0.

Two posets are disjoint if there intersection is the empty poset (which only con­

tains the bottom element). Given the definition of exact object types in Equa­

tion (6.3), the sets §lE[sc] are disjoint posets for different sc (because of the flatness

of S). Thus, given the definition of §[sc] in Equation (6.2), with little effort we can

immediately see that

§[sc] = U §lE[scs] (6.4)
BCB~BC

since

U §lE[scs] - U ({(scs, r) E 0} U {_lo}) = U ({(scs, r) E 0}) U U ({_lo})
BCB~BC BCB~BC BCB~BC BCB~BC

U {(scs, r) E 0} U {_lo} = {(scs, r) E Olscs::;! sc} U {_lo} = §[sc].
BCB~BC

6.4.2.3 Nominal Object Types are Subdomains

We now establish that a nominal object type is a subdomain of 0 in two steps, where

we, first, prove that each exact object type is a subdomain of 0, then, in a second

step based on the first one, we show that a nominal object type, as a union of exact

object types, is a subdomain of 0.

Lemma 6.1. Exact object types are subdomains of 0.

78

Proof. Based on the definition of exact object types, properties (1), (2) and (3) of

Definition A.20 in Appendix A are immediate. For property (4), notice that exact

object types are closed under lubs, because all non-bottom objects in a (finite or

infinite) chain in an exact object type bave the same signature. Hence, the lub in 0

must have the same signature, and thus, by the definition of exact object types, the

lub belongs to the exact object type. D

Lemma 6.2. The union of a disjoint collection of subdomains of 0 is a subdomain

ofO.

Proof. Properties (1) and (2) of Definition A.20 in Appendix A are trivial to prove.

For properties (3) and (4), notice that due to the disjointness of the members of

the collection, any (finite or infinite) chain in the union must lie entirely (excepting

bottom) in one exact member of the collection. Thus, the approximation and lub

relations in the union of the collection are the same as in 0. D

Theorem 6.2. Nominal object types a-re subdomains of 0.

Proof. Immediate, from Lemma 6.2, Lemma 6.1, the definition of nominal object

types as given by Equation 6.4, and noting that exact object types are disjoint posets.

D

6.5 Reconciling Inheritance with Subtyping

Now we can easily see what it means for nominal 00 type systems to completely

reconcile inheritance and subtyping: Two signature closures are in the subsigning

relation if and only if the nominal object types (class types) denoted by the two sig­

nature closures are in the subset relation (i.e., are in the nominal subtyping relation).

79

Theorem 6.3 (Subsigning {::} Nominal Subtyping). For two signature closures sci

and sc2 denoting non-empty class types §[sci] and §[sc2], we have

(6.5)

Proof. Based on Equation (6.2), the proof of this theorem is simple.

Case: The ::::} (only if) direction:

If sci ~ sc2, then by the definition of §[sc2] an element of §[sci] belongs to §[sc2]

(the variable scs in Equation (6.2) is instantiated to sci)·

While the ::::} direction in Theorem· 6.3 is important, and is trivial to prove, the

-¢:: direction is more significant.

Case: The -¢:: (if) direction:

By Equation (6.2), a non-bottom object o of §[sc2] with signature closure osc has

sc ~ sc2, and, similarly, a non-bottom object o' of §[sci] has a signature sc' such that

sc' ~ sci. Given §[sci] ~ §[sc2], by inclusion, we also have sc' ~ sc2 for all sc' in

objects of §[sci]· Thus, for each signature closure sc' that is a subsign of scb we have

that sc' is a subsign of sc2. That is, we have

By reflexivity, we have sci ~sci. Hen~e, sci ~ sc2. 0

We should notice that nominality, where signatures are embedded into objects,

is what makes §[sc2] being a superset of §[sci] imply that sci has sc2 as one of its

ancestor supersignatures. The definition of§ guarantees that the set §[sc2] does not

have elements o of 0 that have a signature closure sc unless sc ~ sc2 oro= l_o. By

80

set inclusion, the set §[sc1] does not have objects that are not in §[sc2] (even though,

generally, the opposite is not true, unless sc1 = sc2).

81

Chapter 7

Discussion and Future Work

In this chapter, we discuss the implications of the nominal model of OOP presented

in this thesis. We also discuss some of the limitations of the model, and we explore

some of the possible paths for building more elaborate nominal models.

7.1 Main Research Conclusions and Contributions

In the preceding chapters, we have shown that mainstream 00 programming lan­

guages have straightforward denotational models that have quite a different internal

structure than models for structural 00 programming languages. Unfortunately,

the research literature on 00 programming languages is rife with misstatements and

faulty intuitions such as "inheritance is not subt.yping", based on incorrectly assum­

ing that structural 00 models are representative of mainstream 00 programming

languages.

Our model demonstrates that in fact inheritance is completely consistent with

subtyping in nominal 00 languages. This is not a dispute about taste or subjective

preferences but about the fundamental mathematical and technical properties of 00

languages. The structural models of 00 programming (like SOOP) are wrong when

they are applied to nominal 00 languages, because they are faulty and incomplete.

They are faulty because the meaning of class types includes object values that do not

belong to the corresponding class types in nominal languages. They are incomplete

82

because they do not include nominal information in the object denotations so that

fundamental operations, like type casting, cannot be defined, because they critically

depend on missing information.

7.1.1 Main Research Conclusions

The main conclusions we reached based on research presented in this thesis are:

1. Extant models of OOP do not precisely model mainstream OOP, because the

extant models are founded on a structural view of the meaning of objects while

mainstream 00 languages are based on a nominal view of the meaning of ob­

jects. Extant models thus can lead to making wrong conclusions about OOP.

Incorporating nominal information is a must for any precise model of OOP.

2. Nominal models of OOP that embed class names and signatures in objects

readily support program operations that require nominal information, since they

accommodate the accurate defini~ion of class types. In such models, inheritance

and subtyping are perfectly consistent.

3. Although nominal models incorporate specific class names in objects, it is still

possible to define comprehensive nominal models of OOP that incorporate all

possible object values from all possible programs.

4. Nominal models of OOP unfeignedly reflect the properties of programs (that

conform to the limitations of the model) written in mainstream 00 languages.

7.1.1.1 Comparing Nominal and Structural Views of OOP

When NOOP is put in comparison with earlier similar work, it should be noted

that Theorem 6.3, about the complete reconciliation of inheritance and subtyping in

83

NOOP, is similar to Cardelli's 'Semantic Subtyping' theorem in Section 11 of [14].

Because Cardelli does not model recursive types, Cardelli was able to make the iden­

tification of an inaccurate notion of inheritance (as syntactic structural subtyping)

and semantic subtyping, despite his model being a structural one.

Cook's model of OOP in [23] and [24], which does model 00 recursive types like

SelfType, does not allow making the identification of inheritance and subtyping,

because recursive type variable names get rebound when they get inherited. The

reason circular signatures (as the nominal counterpart of structural recursive types)

allow making the identification of 00 .inheritance and 00 subtyping is that names

of signatures have a fixed binding, even when they get inherited.

~om a practical point of view, it is worthy to note that the identification of 00

inheritance with 00 subtyping makes mainstream OOP conceptually simple, due

to the parsimony of concepts an 00 developer has to deal with. In structural 00

languages, not identifying inheritance and subtyping creates significant problems from

the perspective of 00 program design.

7.2 Incidental Research Contributions

In the course of addressing the issue of how to accurately define the meaning of

mainstream 00 programs, we generated some new technical machinery in the realm

of domain theory and programming language semantics that warrants discussion. The

two most interesting pieces of new machinery are

1. A rigorous definition of the finite records domain constructor, -o, including

proofs that the constructor is continuous and computable.

2. An inductively-defined set of class signatures, which can be used to precisely to

84

tag objects with nominal information of mainstream OOP.

7.3 NOOP Limitations

In the remainder of this chapter, we discuss the limitations of the model presented

in this thesis, and how they may be rectified in future work. Simple, clear models

necessarily simplify the artifact or phenomenon being modeling. The art in developing

a good model is wisely selecting which critical features to capture in the model.

Structural models of 00 programming languages ignore the nominal information in

00 programs which plays a critical role in reasoning about program behavior (because

class names are associated with contracts and behavior) and in defining the semantics

of type casting, class inheritance, and reflection. Without nominality, models of 00

programming produce wrong answers to basic questions about program structure

(e.g., subtyping) and program behavior (e.g., casts).

To make our model accessible and amenable to intuitive reasoning, we made it as

simple as possible. For example, we forced objects to be immutable (a choice that

is almost universally followed in the research literature on modeling the semantics of

00 programs) and ignored the complications of generic type systems. We also forced

some common restrictions on the typing of inherited class members, which can be

relaxed in some situations. We discuss these restrictions and some others in more

detail below. We believe that all of these restrictions can be addressed at the cost of

complicating the model. We are confident that enhanced models will have the same

fundamental structure as the simple model presented in this thesis.

85

7.3.1 NOOP Models Immutable OOP

While NOOP provides a more precise model of mainstream OOP, it is important to

observe that NOOP, like most models of OOP, does not model mutation. NOOP

is a set of possible object values; modeling mutation introduces a distinction between

objects and the values they can assume via mutation. Ignoring mutation simplifies

the task of modeling the data domains of programming languages.

Except for few important places where they do interact, it is well-known among

PL researchers that modeling mutation is largely orthogonal to modeling the typing

properties of programming languages. For example, SOOP [13, 14] does not model

mutation. Featherweight Java (FJ/FGJ) [36] does not model mutation either. The

same no-mutation limitation applies to most models of OOP and FP. By focusing on

the immutable subset of programs of nominal 00 languages, we are thus following

the footsteps of a long tradition in the semantics of mostly-functional (i.e., with

little mutation) languages (e.g., SCHEME and ML) and 00 languages. Further, in

our presentation of NOOP, the few places where mutation and typing interact were

clearly noted.

7.3.2 Invariant Subtyping of Method Signatures

In the definition of subsigning, we require signatures of fields and methods in a super­

signature to be exactly the same as corresponding ones inherited by a subsignature.

As a result, NOOP forces inherited members of subclasses to have exactly the same

types as the corresponding member in the superclass. We adopted this requirement

for simplicity, and because exact matching of method and field types is required (with

minor exceptions) in mainstream 00 languages like JAVA.

At the expense of complicating the model and the proof of its properties, this rule

86

can be relaxed to allow full co-variant subtyping of inherited members as in Cardelli's

model SOOP. This generalization breaks except for the narrowing of method output

types (as in JAVA 5/6/7) in the presence of mutation.1

7.3.3 NOOP is The Universe of a Model

Strictly-speaking, NOOP is the universe of a model of nominal OOP, not a full model

of it. A full model of for a mainstream OOP language requires a meaning function

that maps program expressions to values in a semantic domain like NOOP. Such a

meaning function depends on the details of the particular language being modeled.

NOOP, which is largely independent of language, provides a universe for defining

the meaning of a variety of nominal 00 languages.

7.4 Directions for Future Work

This thesis lays the foundations for building more complex models of mainstream

OOP that address complications such as data mutation, generic types, and more

flexible typing of inherited members. A possible future work that can be built on top

of NOOP is to define a minimal nominal 00 language, in the spirit ofF J [36], then

give the denotational semantics of program constructs of this language in NOOP.

The type safety of this language can then be proven using this denotational semantics.

Another possibility is developing a model of nominal OOP that incorporates mutable

fields.

Another possible future work that can be based on NOOP is to develop a model of

1 It is well-known that a covariant subtyping rule for field types is unsound if fields are mutable.
EIFFEL [26] is a language whose development has been affected by this unsoundness. Given that
"write-only" fields are of no practical use, a contravariant subtyping rule for field types is of no
practical use either.

87

generic OOP, and prove that 00 inheritance and 00 subtyping are also completely

reconciled in generic OOP. Such a model would be a simple extension of NOOP,

where class signatures and method signatures would be "generified" to generic class

signatures and generic method signatures that are constructed using signature con­

structors. Such a model of generic OOP may be then used to reason about generic

OOP features such as JAVA wildcards and polymorphic methods.

88

Bibliography

[1] ANSI Smalltalk Standard. 1998.

[2] C# language specification, version 3.0. http:/ /msdn.microsoft.com/vcsharp,

2007.

[3] Martin Abadi and Luca Cardelli. A Theory of Objects. Springer-Verlag, 1996.

[4] Martin Abadi, Benjamin C. Pierce, and Gordon D. Plotkin. Faithful ideal models

for recursive polymorphic types. In IEEE Symposium on Logic in Computer

Science, 1989.

[5] Samson Abramsky and Achim Jung. Domain theory. In Dov M. Gabbay

S. Abramsky and T. S. E. Maibaum, editors, Handbook for Logic in Computer

Science, volume 3. Clarendon Press, 1994.

[6] Lloyd Allison. A Practical Introduction to Denotational Semantics. Cambridge

University Press, 1986.

[7] Yves Bertot and Pierre Casteran. Interactive Theorem Proving and Program

Development Coq'Art: The Calculus of Inductive Constructions. Springer, 2004.

[8] G. Bracha and D. Griswold. Strongtalk: typechecking smalltalk in a production

environment. In OOPSLA '93, pages 215-230, 1993.

[9] Joseph Breuer. Introduction to the Theory of Sets. Dover Publications, 2006

(first published 1958).

89

[10] K. Bruce, A. Schuett, R. van Gent, and A. Fiech. PolyTOIL: A type-safe poly­

morphic object-oriented language. ACM Transactions on Progmmming Lan­

guages and Systems, 25(2):225-290, 2003.

[11] Kim B. Bruce. A paradigmatic object-oriented programming languages: Design,

static typing and semantics. Journal of Functional Progmmming, (4(2)), April

1994.

[12] Kim B. Bruce. Foundations of Object-Oriented Languages: Types and Semantics.

MIT Press, 2002.

[13] Luca Cardelli. A semantics of multiple inheritance. In Proc. of the interna­

tional symposium on Semantics of data types, volume 173, pages 51-67. Springer­

Verlag, 1984.

[14] Luca Cardelli. A semantics of multiple inheritance. Information and Computa­

tion, 76:138-164, 1988.

[15] Robert Cartwright. Types as intervals. In Proceedings of the 12th ACM SIGACT­

SIGPLAN symposium on Principles of progmmming languages, POPL '85, pages

22-36. ACM, 1985.

[16] Robert Cartwright and Alan Demers. The topology of program termination.

pages 296-308, 1988.

[17] Robert Cartwright and Jim Donahue. Lazy data domains, 1992. Earlier version

under title 'The Semantics of Lazy Evaluation' appeared in Proceedings of the

1982 ACM Conference on LISP and Functional Programming.

90

[18] Robert Cartwright and Matthias Felleisen. Observable sequentiality and full

abstraction. In Conference Record 19th ACM Symposium on Principles of Pro­

gramming Languages, pages 328-342. ACM, 1992.

[19] Robert Cartwright and Rebecca Parsons. Domain theory: An introduction, 1988.

Monograph.

[20] Alonzo Church. A formulation of the simple theory of types. JSL, 5, 1940.

[21] Robert L. et al Constable. Implementing Mathematics with the NuPRL Proof

Development System. Prentice Hall, Englewood Cliffs, NJ, 1986.

[22] William Cook and Jens Palsberg. A denotational semantics of inheritance and

its correctness. In ACM Symposium on Object-Oriented Programming, Systems,

Languages and Applications (OOPSLA), pages 433-444, 1989.

[23] William R. Cook. A Denotational Semantics of Inheritance. PhD thesis, Brown

University, 1989.

[24] William R. Cook, Walter L. Hill, and Peter S. Cannin. Inheritance is not sub­

typing. In POPL '90 Proceedings, 1990.

[25] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge

University Press, first edition, 1990.

[26] ECMA-367. Eiffel: Analysis, design and programming language. Standard

ECMA-367, June 2006.

[27] Herbert B. Enderton. Elements of.Set Theory. Academic Press, New York, 1977.

91

[28] Marcelo Fiore, Achim Jung, Eugenio Maggi, Peter O'Hearn, Jon Riecke,

Giuseppe Rosolini, and Ian Stark. Domains and denotational semantics: History,

accomplishments and open problems, Jan 1996.

[29] K. Fisher and J. Reppy. The design of a class mechanism for Moby. In PLDI,

1999.

[30] G. Gierz, K. H. Hofmann, K. Keiinel, J.D. Lawson, M. W. Mislove, and D. S.

Scott. Continuous Lattices and Domains, volume 93 of ENCYCLOPEDIA OF

MATHEMATICS AND ITS APPLICATIONS. Cambridge University Press,

2003.

[31] Michael J. Gordon and Christopher P. Milner, Arthur J. annd Wadsworth. Ed­

inburgh LCF: A Mechanized Logic of Computation. Springer-Verlag, 1978.

[32] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language

Specification. Addison-Wesley, 2005.

[33] C. A. Gunter and Dana S. Scott. Handbook of Theoretical Computer Science,

chapter Semantic Domains. 1990.

[34] Paul R. Halmos. Naive Set Theory. D. Van Nostrand Company, Inc., 1960.

[35] Martin Hilbert and Priscila Lopez. The world's technological capacity to store,

communicate, and compute information. ScienceXpress, February 2011.

[36] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java:

A minimal core calculus for Java and GJ. ACM Transactions on Programming

Languages and Systems, 23(3):396-450, May 2001.

[37] Gilles Kahn and Gordon D. Plotkin. Concrete domains, May 1993.

92

[38] Samuel N. Kamin. Inheritance in smalltalk-80: A denotational definition. In

ACM Symposium on Principles of Programming Languages (POPL), San Diego,

California, pages 80-87, 1988.

[39] Samuel N. Kamin and Uday S. Reddy. Two semantic models of object-oriented

languages. In Carl A. Gunter and John C. Mitchell, editors, Theoretical Aspects

of Object-Oriented Programming: Types, Semantics and Language Design, pages

464-495. MIT Press, 1994.

[40] Alan C. Kay. The early history of smalltalk. ACM SIGPLAN Notices, 28, March

1993.

[41] Klaus Kreft and Angelika Langer. Understanding the closures debate: Does Java

need closures? three proposals compared. Java World, June 2008.

[42] Peter J. Landin. The next 700 programming languages. Communications of the

ACM, 9:157-166, 1966.

[43] X. Leroy, D. Doligez, J. Garrigue, D. Remy, and J. Vouillon. The Objective

Caml system. Available at http:/ /caml.inria.fr/.

[44] D. B. MacQueen and Ravi Sethi. A semantic model of types for applicative

languages. In Proceedings of the 1982 ACM symposium on LISP and functional

programming, LFP '82, pages 243-252. ACM, 1982.

[45] David B. MacQueen. Should ML be object-oriented? Formal Aspects of Com­

puting, 13:214-232, 2002.

[46] David B. MacQueen, Gordon D. Plotkin, and R. Sethi. An ideal model for

recursive polymorphic types. Information and Control, 71:95-130, 1986.

93

[47] Donna Malayeri and Jonathan Aldrich. Is structural subtyping useful? an em­

pirical study. In ESOP, 2009.

[48] John McCarthy. A basis for a mathematical theory of computation. Computer

Programming and Formal Systems, pages 33-70, 1963.

[49] John McCarthy. Towards a mathematical science of computation. Science, 1996.

[50] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, 1995.

[51] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard

ML (Revised). MIT Press, 1997.

[52] Robin Milner. A theory of type polymorphism in programming. Journal of

Computer and System Sciences, 17:348-375, 1978.

[53] John C. Mitchell. Toward a typed foundation for method specialization and

inheritance. In ACM Symposium on Principles of Programming Languages

{POPL), San Francisco, California, pages 109-124, 1990.

[54] Martin Odersky. The scala language specification, version 2.7. http:/ /www.scala­

lang.org, 2009.

[55] Lawrence C Paulson. The foundation of a generic theorem prover. Journal of

Automated Reasoning, 5(3):363-397, 1989.

[56] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

[57] Gordon D. Plotkin. LCF considered as a programming language. Theoretical

Computer Science, 5:223-255, 1977.

94

[58] Gordon D. Plotkin. 'JI'W as a universal domain. Journal of Computer and System

Sciences, 17:209-236, 1978.

[59] Gordon D. Plotkin. Domains. Lecture notes in advanced domain theory, 1983.

[60] Vijay Saraswat, Bard Bloom, Igor Peshansky, Olivier Tardieu, and David Grove.

X10 Language Specification: Version 2.2, May 2011.

[61] Dana S. Scott. Outline of a mathematical theory of computation. In 4th Annual

Princeton Conference on Informa~ion Sciences and Systems, 1970.

[62] Dana S. Scott. The lattice of flow diagrams. In E. Engeler, editor, Sympo­

sium on Semantics of Algorithmic Languages, volume 188 of Lecture Notes in

Mathematics, pages 311-366. Springer-Verlag, 1971.

[63] Dana S. Scott. Data types as lattices. SIAM Journal of Computing, 5(3):522-

587, 1976.

[64] Dana S. Scott. Lectures on a mathematical theory of computation. Technical

Monograph PRG-19, Oxford University Computing Laboratory, May 1981.

[65] Dana S. Scott. Domains for denotational semantics. Technical report, Computer

Science Department, Carnegie Mellon University, 1983.

[66] Anthony J. H. Simons. The theory of classification, part 1: Perspectives on type

compatibility. Journal of Object Technology, 1(1):55-61, May-June 2002.

[67] Dan Smith and Robert Cartwright. Java type inference is broken: Can we fix

it? OOPSLA, pages 505-524, 2008.

[68] M. B. Smyth and Gordon D. Plotkin. The category-theoretic solution of recursive

domain equations. SIAM Journal of Computing, 11:761-783, 1982.

95

[69) Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Pro­

gramming Language Theory. MIT Press, 1977.

[70) Mads Torgersen, Christian Plesner Hansen, Erik Ernst, Peter von der Ahe, Gilad

Bracha, and Neal Gafter. Adding wildcards to the Java programming language.

In SAC, 2004.

[71] Franklyn Turbak, David Gifford, and with Mark A. Sheldon. Design Concepts

in Programming Languages. MIT Press, 2008.

96

Appendix A

Domain Theory

According to Abramsky and Jung [5], domain theory is 'a mathematical theory

that serves as a foundation for the semantics of programming languages'. Domains

form the basis of a theory of partial information, which extends the familiar notion

of partial function to encompass a whole spectrum of "degrees of definedness", so as

to model incremental higher-order computation (i.e., computing with infinite data

values). General considerations from recursion theory dictate that partial functions

are unavoidable in any discussion of computability. Domain theory provides an ap­

propriately abstract setting in which the notion of a partial function can be lifted and

used to give meaning to higher types, recursive types, etc.

In this Appendix, we present the definitions of basic domain theoretic notions and

domain constructors we use in this thesis.

A.l Basic Notions

Domain theory builds on set theory, order theory (the theory of partially-ordered sets,

i.e., posets), and topology (i.e., the theory of topological spaces). It is relatively easy

to digest the basic definitions of domain theory once the computational motivations

behind these definitions are understood.

Standard references on set theory include [9, 27, 34]. A standard reference on

97

order theory is [25]. Chapter 5 in [71] presents a simple introduction to fixed points

particularly suited for mathematically-inclined programmers.

In [30], Gierz, et al, present a detailed encyclopaedic account of domain theory that

connects it to order theory and topology. Otherwise, literature on domain theory is

somewhat more fractured, and its terminology is somewhat less standard than that of

set theory and order theory. Accordingly, there is no standard formulation of domain

theory. References to domain theory include [63, 69, 64, 65, 59, 6, 19, 33, 37, 5]. Stoy's

book [69] is a particularly detailed account of the motivations behind domain theoretic

definitions (even though for domains Stoy, following Scott's original formulation [63],

uses complete lattices rather than cpos).

In this section we present definitions of domain theory notions used in constructing

NOOP. In the next section we focus on the definitions of the domain constructors

used in the construction.

Definition A.l (Partial Order). A partial order (also called a partially ordered set,

a poset) is a pair (X, C::) consisting of a set X (called the universe of the ordering),

and a binary relation C:: on the set X, such that

• Vx E X, x C:: x (!;; is reflexive)

• Vx, y E X, x C:: y 1\ y ~ x ====? x = y (C:: is antisymmetric)

• Vx, y, z EX, x C:: y 1\ y ~ z ====? x C:: z (C:: is transitive)

C:: is usually called 'less than or equals' in when discussing general posets, and 'ap­

proximates' in domain theory. A poset (X, C::) is usually referred to using just the

symbol for its universe, X. We do so below.

98

Remark A.l. The ordering upon which domain theory is based is called 'the ap-

proximation ordering'. The approximation ordering is defined on computational data

values. The approximation ordering has intuitive connections to information theory.

A computational value that approximates a second computational value is considered

no more informative then the second value. The approximation ordering is a qualita-

tive expression of the relative informational content of computational values (elements

of the universe of the ordering). Computational values higher in the approximation

ordering are more informative than ones lower in the ordering.

Remark A.2. The least computational value is divergence (as in an "infinite loop").

It gives no information, and thus is the least informative computational value. Given

that divergence gives no information, the abstract mathematical value denoting di-

vergence is called 'bottom', and is usually denoted by the symbol ..l.

Definition A.2 (Upper bound). Given a subsetS of a poset X, an upper bound of

S (in X) is an element x EX such that Vs E S, s!;;;;; x.

Definition A.3 (Bounded). A subset S of a poset X is bounded in X iff S has an

upper bound in X.

Definition A.4 (Least Upper Bound). An upper bound of a subsetS in a poset X

is a least upper bound (also called a lub, or LUB) of S iff it approximates all upper

bounds of Sin X. If it exists\ the lub of Sis denoted US.

Definition A.5 (Downward-Closed). A subsetS of a poset X is a downward-closed

set iff all elements x of X that approximate some element in S belong to S. Thus, S

is downward-closed iff Vx E X. ((::Is E S, x !;;;;; s) ===} x E S).

1 A lub of a subset S may not exist, either because S has multiple upper bounds that have no
least element (minimum) or because S has no upper bounds.

99

Definition A.6 (Chain). A countable subset S of elements si E X is a chain if

Vi, j E N.i ::; j ----* Si ::; Sj·

Remark A.3. Every finite chain include_s its lub (maximum element of the chain). In­

finite chains (like set N under the standard ordering) do not necessarily have maximal

elements.

Definition A.7 (Anti-chain). A countable subsetS of elements si E X is an anti­

chain if Vi,j E N.i # j----* si i Sj.

Remark A.4. A fiat poset R is an anti-chain S with elements Si and an additional

bottom element ..ln # si, such that, in R, ..ln ::; si· A fiat poset, thus, always lifts

an anti-chain.

Definition A.8 (Directed). A subsetS of a poset X is directed iff every finite subset

of S is bounded in S.

Remark A.5. Every chain is a directed· set, but not necessarily vice versa.

Definition A.9 (Consistent). A subset S of a poset X is consistent in X iff every

finite subset of Sis bounded in X.

Remark A.6. In general posets, every bounded set is consistent, but not necessarily

vice versa. Consistency requires bounds for finite subsets only, and thus is a weaker

condition than boundedness (all subsets of a bounded set are bounded).

Remark A.7. Because Sis a subset of X, boundedness inS implies boundedness in

X, and thus every directed set S is a consistent set, but not necessarily vice versa.

Directedness is a stronger condition than consistency.

Definition A.lO (Ideal). A subsetS of a poset X is an ideal iff it is downward-closed

and directed.

100

Definition A.ll (Lower set). A subset Sx of a poset X is a lower set of an element

x E X iff it contains all elements of X that are less then or equal to x (and nothing

else). Thus, for x E X, Sx is the lower set of x iff Sx = { s E Xis ~ x }.

Definition A.12 (Principal Ideal). A subset Sx of a poset X is a principal ideal

(determined by x) iff it is the lower set of x.

Theorem A.l. (Principal Ideals are Ideals) A subsetS of a poset X is an ideal if it

is a principal ideal.

Proof. Note that, by definition and transitivity of~' a lower set of an element x E X

is downward-closed. The lower set of xis also directed because it contains x and xis

a bound for all its (finite) subsets. 0

Definition A.13 (Weak Ideal). A non-empty subset Sofa poset X is a weak ideal

iff it is downward-closed and is closed under lubs of its chains.

Remark A.8. Every fiat poset is a weak ideal. Chains in fiat posets have two elements,

the lower of which is always ..l.

Definition A.14 (Finitary Basis). A poset X is a finitary basis iff its universe, lXI,

is countable and every finite bounded subset S of X has a lub in X.

Remark A.9. For a finitary basis X, the fact that a finite subsetS of X is bounded is

equivalent to S having a lub. Generally, this statement is true only in one direction

for an arbitrary poset (i.e., the trivial ~ direction, which asserts the boundedness of

a set if it has a lub. In a finitary basis, the opposite direction is true as well).

Definition A.15 (Complete Partial Order). A poset X is a complete partial order

(cpo, or, sometimes, dcpo) iff every directed subsetS of X has a lub in X.

101

Theorem A.2 (Ideals over a FB form a cpo). Given a finitary basis X, the set Ix

of ideals of X is a cpo under the subset ordering.

Definition A.16 (Constructed Domain). Given a finitary basis X, the set Ix, of

ideals of X, is a poset (Ix, ~) that is called the domain determined by the X or

the ideal completion of X. Ix is, thus, called a constructed domain (i.e., one that is

determined by the finitary basis X).

Remark A.10. By Theorem A.2, the ideal completion of a finitary basis is a cpo.

Definition A.17 (Finite Element of a CPO). An element d of a cpo Vis a finite

element (or isolated or compact) iff d belongs to each directed subset S that dis a

lub of. The set of finite elements of a cpo Vis denoted by V 0 .2

Definition A.18 (Isomorphic Partial Orders). Two posets are isomorphic iff there

is an order-preserving one-to-one onto function between them.

Definition A.19 (Domain). A cpo V is a domain iff its finite elements V 0 form a

finitary basis and V is isomorphic to the domain determined by V 0 •

Definition A.20 (Subdomain). A domain Vis a subdomain of a domain£ iff (1)

lVI ~ 1£1, (2) l_v = l_&, (3) Vd1,d2 E V,d1 Cv d2 {::} d1 C£ d2 (i.e., approximation

ordering for V is the approximation ordering of£ restricted to elements of V), and

(4) Vd1, d2, d3 E V, (d1 Uv d2 = d3) {::} (d1 U& d2 = d3) (i.e., lub relation for Vis the

lub relation of£ restricted to elements of V).

Remark A.11. The domain determined by V 0 is isomorphic to the domain determined

by £ 0 n V, which must be a finitary basis.

2 This definition is weaker than the usual definition for cpos. In the context of domains, the two
definitions are equivalent.

102

Remark A.12. We use Scott's definition of subdomains because we define NOOP

domains as sub domains of Scott's universal domain U. Scott [19] shows that every

domain is isomorphic to a subdomain of U. The subdomains of U form a domain. All

domains given in a domain equation and all recursively defined domains in the equa­

tion are elements of this space of domains (which consists of all of the subdomains of

U). Thus, fixed-points for domains (as elements of the domain of subdomains of U)

are defined in the same way as fixed-points of recursive definitions over the elements

of any other domain.

A.2 Domains of Functions ·

To model computable functions, domain theory provides functional domains, whose

elements are particular mathematical functions mapping elements from one compu­

tational domain to another. To define functional domains, we will introduce the

domain theoretic notions of 'approximable mappings' (AMs), 'finite-step mapping',

and 'continuous functions'.

Given the importance of these three notions, we only introduce them in this

section, then we discuss them in more detail in Section A.3 when we present domain

constructors that make use of these three notions. These domain constructors are

used to construct the functional domains of NOOP.

Definition A.21 (Approximable Mapping). Given two finitary basis A and B, with

ordering relations ~A and C::: 8 , respectively, a relation fam ~ IAI x IBI is an approx­

imable mapping (AM) iff

1. Condition 1: (l_A, .ls) E fam

2. Condition 2: 'i/a E A.'i/bbb2 E B.((a,b2) E fam 1\ b1 C:::s b2--+ (a,b1) E fam)

103

3. Condition 3: \;/a E A.\;/bb b2 E B. ((a, b1) E fam 1\ (a,~) E fam ---+ (a, b1 Un b2) E

fam)

Definition A.22 (Set Image under a Relation). Given sets A, B and a relation

r ~ A x B, the set image of a subsetS of A under r, denoted by r(S), is the set

of all b E B related in r to some element in S. r is thus viewed as function over

subsets of A. Thus, for a subsetS of A, we have r(S) = {bE Bl:3a E S.(a, b) E r }.

The set image of a relation r allows viewing r as a function r : A ---+ ~(B), where

r(a) = r({a}) for a E A. For an element a E A, function r, thus, returns the set of

all bE B related to a in r.

Theorem A.3 (AMs map ideals to ideals). Given finitary basis A and B, if fam is

an approximable mapping from A to B, and if I is an ideal in A, then fam(I), the set

image of I under fam, is an ideal in B.

Proof. From the definition of an ideal, and using AM Condition 2 (which guarantees

the downward-closure of the set image), and AM Condition 3 (which guarantees that

the set image is directed). D

Theorem A.4 (AMs are monotonic). Given finitary basis A and B, if fam is an

approximable mapping from A to B, and if I 1 and I2 are ideals in A such that I 1 ~ I2,

Proof. By AM Condition 4. D

Definition A.23 (Finite-Step Mapping). Given finitary basis A and B, an approx-

imable mapping fam is a finite-step mapping iff it is the smallest approximable map-

ping containing some finite subset of IAI x IBI.

104

Definition A.24 (Continuous Function). Given domains A and B, a function f :

A---+ B is a continuous function iff the value off at the lub of a directed set of a's in

A is the lub, in B, of the directed set of function values f(a).

Remark A.l3. Continuity of a function requires the value of the function at a (non­

finite) limit point a to equal the limit of the function's values on the finite approxi-

mations to a. Continuous functions are thus said to "have no surprises at the limit".

Remark A.14. Because of the four AM conditions, every approximable mapping

in IAI x IBI determines a continuous function in A ---+ B, and vice versa. Check

Cartwright and Parsons' "Domain Theory: An Introduction" [19] and other domain

theory literature for proof and more details.

Remark A.l5. To motivate the preceding definitions, it should be noted that continu-

ous functions capture the fact that computation is of a "finitely-based" nature. Only

finite data values can have canonical representations inside a computing device. From

a domain-theoretic perspective, a function can be computable only if its value "at in-

finity" (i.e., at an infinite input data value) is the one we expect by only seeing (and

extrapolating from) the values of the function at all finite inputs that approximate

the infinite input data value (finite inputs are all we can represent inside computers,

and thus they are all we can compute with). See Stoy's book [69] for more details on

motivation and intuitions behind domain theoretic definitions. 3

Remark A.16. Approximable mappings. offer the means to accurately characterize and

define continuous functions (which capture the finitely-based nature of computation).

Finite-step mappings, as the "finite/representable parts" of AMs, offer the means by

which continuous functions can be constructed from more elementary parts that can

be represented in a computing device.

3Via Roger's work, Dana Scott managed to connect the notion of continuous functions to the
notion of computable functions in computability theory. See Stoy's book [69] for more details.

105

A.3 Domain Constructors

In this section we present the domain constructors used to define COOP and NOOP.

Since there is a one-to-one correspondence between domains and their finitary bases,

and given that the latter are simpler, and more intuitive, we will actually be describing

in this section how each of these "domain" constructors construct and define new

finitary basis using other finitary basis defined earlier.

A.3.1 Coalesced Sum (+)

The first domain constructor we present is the coalesced sum domain constructor,

+. We use the expression A+ B to denote the coalesced sum of two domains A

and B, with approximation ordering relations LA and LB, respectively. A coalesced

sum is an domain-theoretic counterpart of the standard set-theoretic disjoint union

operation.

If C = A+ B then

ICI = {_lc} U {(0, a)ia E (IAI \{_iA})} U {(1, b)lb E (IBI \{_iB})}

where 0 and 1 are used inC to tag non-bottom elements from A and B, respectively.

The ordering relation Lc, on elements of C, is defined, for all c1, c2 E C, by the

predicate

c1 Lc c2 {::} (c1 = _lc) V (c1 = (0, a1) 1\ c2 = (0, a2) 1\ a1 LA a2)

V (c1 = (1, b1) 1\ c2 = (1, b2) 1\ b1 LB b2) (A.1)

106

A.3.2 Strict Product (x)

Next, we present the strict product domain constructor, x.4 We use Ax B to denote

the strict product of two domains, A and B, with approximation ordering relations

CA and CB, respectively. A strict product is an order-theoretic counterpart of the

standard set-theoretic cross-product operation.

If C = A x B then

(A.2)

Strictness of x means that inC, ..lc replaces all pairs (a, b) E Ax B where a = ..lA

or b = ..lB. Similar to the definition of the coalesced sum constructor, this strictness

is achieved in the definition above by excluding ..lA and ..lB from the input sets of

the set-theoretic cross product. Sometimes the strict product A x B is called their

'smash product'.

The ordering relation Cc, on elements of C, is defined as follows. Vcb c2 E

C, Va1, a2 E A\{..lA}, Vb1, b2 E B\{..lB} where c1 = (all b1) or c1 = ..lc, and c2 -

(a2, b2) or c2 = ..lc

(A.3)

4In agreement with the convention in domain theoretic literature, the symbol x is overloaded in
this thesis: it is used to denote the strict product of ordered sets, and it is also used to denote the
standard set-theoretic cross product (which ignores any ordering on its input sets). It should always
be clear from context which meaning is attributed to x.

107

A.3.3 Continuous Functions (---+)

Functional domains of NOOP are th~ domain M, whose members are strict con­

tinuous functions modeling object methods, and the domain R, whose members are

'record functions' modeling the record component of objects. A record function is a

function defined over a finite set of labels. Functional domains and functional domain

constructors allow NOOP to model nominal OOP more accurately.

Making use of the definitions of domain theoretic notions presented in Section A.2,

for the details of the definitions of the functional domain constructors we now refer

the reader to Chapter 3 of the Cartwright and Parsons' update [19] of Scott's [64].

---+ is the standard continuous functions domain constructor.

In this thesis, we use the symbol -o--+ to denote the strict continuous functions

domain constructor, which simply constructs a space as the continuous function space

from domain A to domain B but where all one-step functions of the form ..lA M b

(for b E B\ { ..l8 }) are eliminated (are mapped to the one-step function ..lA M ..lB

which is the bottom element of the constructed function space). Strict continuous

functions thus map ..lA only to ..l8 , thus modeling strict computable functions (i.e.,

ones which have "call-by-value" semantics).

A notable property of functional domain constructors is that the set of continuous

functions is itself a domain. This property has been behind much of the development

of domain theory.

A.3.4 Strict Finite Sequences (V*)

For purposes of constructing the methods of NOOP, one more simple domain con­

structor is needed: the constructor of the domain of strict finite sequences. This

constructor is used to construct the finite sequences of objects passed as arguments

108

to object methods. Sometimes the domain V* of finite sequences of elements of do­

main V is called the Kleene closure of domain V.

The Kleene closure, V*, constructs a domain of finite sequences of elements of its

input domain, V, including the empty sequence. It excludes sequences of V where a

member of the sequence is ..lv. Thus, * constructs strict finite sequences.

The Kleene closure is defined as a set of all n-tuples of elements of V (where n is

a natural number). Thus

IV* I= {..lv*} U U {<do,··· , di, · · · , dn-1 > ldi E (lVI \{..lv})}
nEN

An element a of V* approximates another element b iff a= ..lv· or the lengths of a

and bare equal to a natural number k, and ai Cv bi for all 0::::; i < k.

109

Appendix B

Proofs of Important Theorems

B.l The Domain of Record Functions has an Effective Pre-

sentation

It is straightforward to confirm that --o constructs a domain. To prove that --o

constructs domains given an arbitrary domain V and a domain £, (with a fixed inter­

pretation as a flat domain of labels), we build an effective presentation of the finite

elements of £, --o V, assuming an effective presentation of the finite elements of V and

£. Since£, has a fixed interpretation, .-:..o, as a domain constructor, can be considered

as being parametrized only by domain V. We prove that these finite elements form

a finitary basis of the records domain.

Given an effective presentation of£, L = [..i.e, l17 l2 , • · ·] define, for all n E N, the

finite sequences

where 0 < j 1 < · · · < jk, and

2n = L: 2ii.
0<i$k

(B.l)

The size k, of Ln, is the number of ones in the binary expansion of n, and thus

k ~ log2(n + 1) with equality only when n is one less than a power of 2. k = 0 only

when n = 0, and in this case £ 0 = [] {the empty sequence)1 . It is easy to confirm

1The definition of Ln is patterned after a similar construction presented in Dana Scott's "Data

110

that there is a one-to-one correspondence between the set of natural numbers N and

the set of distinct finite label sequences Ln.

Given an effective presentation of the finite elements of D, D = [_iv, dt, d2 , · • ·],

an effective presentation of the finite elements of Dk, the domain of (non-strict)

sequences of length k (k 2:: 0) of elements of D, is

where, for k > 2,

1rk(·) is the one-to-one k-tupling function (also called the Cantor tupling function),

and
1

1r(p, q) = 2(p + q)(p + q + 1) + q = 1r2(p, q)

is the one-to-one Cantor pairing function.

Now, let

where, again, k is the number of ones in the binary expansion of n, and

The sequenceR= [r0 , r 1 , · • ·] of the finite elements of R can then be presented as

Types as Lattices" [63]. Unlike the case in Scott's construction, n is doubled in the LHS of Equa­
tion (B.l)-i.e., the binary expansion of n is "shifted left" by one position-to guarantee ji > 0,
and thus guarantee that lo = ..L.c is never an element of Ln.

111

r0 = ..ln., and for n, m ;::::: 0,

T1r(n,m)+1 = (tag(Ln), f(n, m)).

Given the decidability of the consistency (· tv ·) and lub (· Uv · = ·) relations

for finite elements of V, the presentation R of the finite elements of R is effective,

since, for record functions r and r' as defined in Section 4.1.2, under the approximation

ordering defined by Equation 4.3, the consistency relation

(B.2)

is decidable (given the finiteness of records), and the lub relation

is recursive (handling r =..ln. orr'= ..ln. in the definitions of tn and Un is obvious.

All record functions are consistent with ..ln., and the lub of a record function r and

..ln. is r).

Lemma B.l (--o constructs domains). Under Cn, elements of R form a finitary basis

ofR.

Proof. Given the countability of£, and of the finite elements of V, element of Rare

countable. A consistent pair of elements r, r' E R, according to Equation (B.2), has

a lub rUn r' defined by Equation (B.3). Given that Vis a domain, the lub dUv d' of

all consistent pairs of finite elements d,-d' in V exists, thus the lub rUn r' also exists.

Lemma B.l actually proves that --o is a computable function mapping flat domains

x domains to the corresponding record domains. The presumption is that no effective

112

presentation is necessary for the flat domain because distinct indices for elements of

.C will simply mean distinct labels li. If .C is a flat countably infinite domain (which

implies it has an effective presentation) and V is an arbitrary domain, then .C -<> V

is a domain with an effective presentation that is constructible from the effective

presentations for .C and V. D

B.2 Domain Constructor -o is Continuous

Lemma B.2 (-<> is monotonic). For domains V and V', and a fiat domain of labels

.C, V <S V' :::} (.C -<> V) <S (.C -<> V')

Proof. First, we prove that -<> is monotonic with respect to the subset relation on

the universe of its input, i.e., that lVI ~ IV'I :::} I.C-<> VI ~ I.C-<> V'l· Then, given

that the approximation ordering on V (as a subdomain of V') is the restriction of the

approximation ordering on V', we prove that the elements of .C -<> V (as members of

.C -<> V') form a domain under the approximation ordering of .C -<> V', and thus that

.C -<> V is a subdomain of .C -<> V'.

Since lVI ~ IV'I, then {d1, .. · , dk} ~ lVI ===} {d1, .. · , dk} ~ IV'I· For arbitrary

.c, where I.Ctl = { .. Lc, h, · · · , lk}, we thus have

Thus, I.Ct ----o---+ VI ~ I.Ct ----o---+ V'l· Accordingly, for sets R(.C,, V) (the elements

of .C -<> V with tag tag(.C1\{ .. Lc})) and R(.C1, V') (the elements of .C -<> V' with

tag tag(.C1\{l_c})), as defined in Equation 4.2 of Section 4.1.2, we have R(.C,, V) ~

113

R(£1, V'). Thus,

Thus,

1£ --o VI ~ 1£ --o V'l· (B.4)

Next, since Vis a subdomain of V' when restricted to elements of V, we know:

(i) the approximation relation on V is the approximation relation on V' restricted

to V; (ii) consistent pairs of V are consistent pairs in V'; and (iii) lubs, in V, of

consistent pairs of elements of V are also their lubs in V'. Thus, for di, d3 E V,

Hence, according to the definition of the approximation, consistency and lub re-

lations for--o (Equations (4.3), (B.2) and (B.3)), the lub, in[, --o V, of a consistent

pair of records is also their lub in[, --o V'. That is, respectively, for r, r' E 1£ --o VI,

we have

r ~(.C-<>V) r' ¢::> r ~(.C-<>V') r', (B.5)

(B.6)

and

r u(.C-<>'D) r' = r u(.C-<>'D') r'. (B.7)

From equations (B.4), (B.5), (B.6), (B.7), and the fact that l_n is the bottom

element of both [, --o V and [, --o V', we can conclude using Definition 6.2 in [19]

that

[, --o V ~ [, --o V'.

114

0

In addition to being monotonic, continuity of a domain constructor asserts that

the lub of domains it constructs using a chain of input domains is the domain it

constructs using the lub of the chain of input domains (i.e., that, for-o, the lub V

of a chain of input domains vi gets mapped by -o to the lub, say domain n, of the

chain of output domains~=£ -o Vi)·

Lemma B.3 (-o preserves lubs.). For a chain of domains Vi, if V = UVi, ~ =

£, -o vi, and n = £, -o v, then n = uni.

Proof. Let Q be the lub of the chain of domains Ri = £ -o Vi (Ri's form a chain

by the monotonicity of -o). Domain Q is thus the union of domains ~, i.e., Q =

uni = Ui(£ -o Vi)·

Domain Q is equal to R = £ -o V = £ -o Ui Vi because each element q in Q (q

is a record function) is an element of a domain £ -o Vi for some i. Given Vi is a

subset of v = u vi, q will also appear inn.

Similarly, a record function r in R is an element of a domain£ -o Vi for some i,

because every finite subset of ui vi has to appear in one vi (given that vi is a chain

of domains). Thus, by the definition of Q, r is also a member of Q.

This proves that Q = R. 0

Lemmas B.2 and B.3 prove that -o is computable given effective presentations for

£and V (or, equivalently, an effective presentation for V).

B.3 Filtering is a Finitary Projection

In this section we prove that function filter, as defined in Section 6.3.1, is indeed

a finitary projection, and thus that the domain 0 of valid objects (see Definition 6.1

115

in Section 6.3) defined by the filtering function is indeed a domain (i.e., a subdomain

of Scott's universal domain U).

To do so, we first prove a number of auxiliary properties.

Proposition B.l. In domain 6, higher-ranked objects do not approximate lower­

ranked ones, i.e., rank(o1) < rank(o2) => o2 It o1

Proof. By strong induction on rank of objects. 0

Proposition B.2. In domain 6, all approximations of a valid object are valid objects.

Proof. We outline a proof that uses induction on the rank of valid objects. Objects of

rank 1 with non-empty member records have _1_0 as the object bound to their fields.

Thus invalid rank 1 objects are invalid. only because of have non-matching signature

shapes and record shapes.

None of the objects of rank 1 approximate each other (a rank 1 object is ap­

proximated only by 1_0 and itself). The mismatch between signatures and shapes of

invalid objects in objects of rank 1 that causes them to be invalid cannot be made

valid (get "fixed") in objects (of higher rank) that are approximated by the invalid

rank 1 objects (since approximation dictates that those approximated objects have

the same signatures and shapes as the invalid ones approximating them).

For higher ranks, objects of a higher rank that valid rank 1 objects (that have

matching signature and record shapes) approximate but that have embedded in their

records objects with signatures that do not subsign the signature in the corresponding

field signature of (which is the same in ~11 these objects of ranks starting 1 and higher)

make the approximated objects be invalid. Given that signatures form a fiat domain,

the signature of objects embedded inside objects that approximate each other is the

same in all objects that approximate each other, so objects that are approximated

116

by such higher-ranked invalid objects are also invalid ones. An object in 6 that is

approximated by an invalid object is, thus, guaranteed to be an invalid object. D

Proposition B.3. In domain 6, no two distinct valid objects that do not approximate

each other may approximate the same invalid object.

Proof. By strong induction on rank of objects, making use of Proposition B.l. D

In the sequel, we use the inductively defined predicate valid (as defined by Defi­

nition 6.1 in Section 6.3) that applies to objects of 6. Note that in addition to ..L0 ,

objects with empty field and method records also provide base cases for the definition

of valid.

Lemma B.4 (filter returns valid object closest to input object). For an object

o of 6, filter(o)Co 1\ valid(filter(o)) 1\ Vo' (o'~o 1\ valid(o') ===} o' ~

fi l ter(o))

Proof. By strong induction on rank of objects, noting that, for the base case, filter(o)

diverges ("returns" ..L0) for the rank 0 object ..L0 , and if an object o of rank 1 is in­

valid then filter(o) also returns ..L0 (No distinct objects of rank 1 approximate

each other). Proposition B.1 is used for the inductive case. D

Theorem B.l. filter is a finitary projection.

Proof. We prove that filter is a finitary projection, on four steps. D

1. filter is a retraction: filter(filter(o)) = filter(o)

Proof. Obvious from definition of filter, and that, by Lemma B.4, function

filter returns a valid object (i.e., valid(filter(o))). D

117

2. filter approximates identity: filter(o) C o

Proof. Obvious from definition of filter, and that, by Lemma B.4, filter(o)

returns an object that approximates o (i.e., filter(o) Co). 0

3. filter is a continuous function (i.e., is monotonic, and preserves lubs of chains2)

Proof. By cases, where we assume o1 and o2 are two finite elements in a chain in

0 where o1co2 , and each case show that filter(o1) C filter(o2) (monotonic­

ity), and that filter(o2) = U{filter(o1), filter(o2)} (lubs preserved).

Case 1. If o1 , o2 are both valid

(a) Monotonicity: Immediate.

(b) LUB: o2.

Case 2. If 01, o2 are both invalid

(a) Monotonicity: Simple (By cases, and function filter returning closest

valid object).

(b) LUB: Let v1 =filter(o1), v2=filter(o2). Then, by Proposition B.3

we have v2Co1 (since o1Cv2 is impossible, by Proposition B.2). Thus,

we have v1=v2 , and thus U{filter(o2), filter(o1)} = filter(o2).

Case 3. If o1 is valid, and o2 is invalid

(a) Monotonicity: Simple (by function filter returning closest valid ob-

ject).

2Preserving lubs of directed-sets could be used, but, in the context of finitarily-based domains
(which have a countable basis), the two definitions of continuity are equivalent.

118

(b) LUB: We have o1 = filter(o1)/\o1 C filter(o2). Thus, U{filter(o2),

filter(o1)} = U{filter(o2) ,o1 } = filter(o2)

Case 4. If o1 is invalid, and o2 is valid

Proof. Impossible, by Proposition B.2. 0

0

4. filter is finitary

Proof. The condition in point 2 of Theorem 8.5 in [19]

a(x) = {y E Ol:3x' E x.x'ax' 1\ y C x'}

can be rewritten, for the filtering function filter, as

filter(o) = {p E Ol:3o' E O.o' Co 1\ o' =filter(a') 1\ p Co'}. (B.8)

Objects of domain 6 are in 1-1 correspondence with principal ideals over their

finitary basis. The filtering function filter returns, as its output, the closest

valid object to its input object (the object returned is a well-defined object,

and it is a fixed point of the filtering function). Thus, given that objects are

strong ideals in the finitary basis of 6, they are downward-closed sets. Thus,

the condition (B.8) is true for all objects in 6.

Thus, the projection defined by filter is a finitary projection. 0

119

Appendix C

Code Examples

C.l Classes

In this appendix, we present code examples that concretely demonstrate the concepts

and notions we discuss in this thesis. Unless otherwise noted, code examples in this

thesis use the syntax of JAVA-like 00 languages. In the code examples it is not

assumed that all classes inherit from a single superclass (like Object).

First, we assume a declaration of class Object as in Figure C.l.

class Object {

}

II Classes with no explicit constructors are always
II assumed to have a default constructor that
II initializes the fields of the object, if any.

Boolean equals(Object o){
return (o is Object);
II Equivalent to: 'o.getClass() -- Object.class'

}

Figure C.l : Class Object

As demonstrated in class Object, we make use of the standard class Boolean,

which we assume has boolean values true and false (or equivalents) as its objects,

and that it supports standard boolean operations on boolean values.

In the following code examples, we will make use of the declarations of classes A,

120

B, C, D and E presented in Figure C.2. These simple classes serve no purpose but to

demonstrate the concepts and notions we present.

class A { II no superclasses
}

class B extends A {
II add no members

}

class C extends B {
D foo(D d) { return d; }

}

class D { II no superclasses
A bar() {return new A(); }

}

class E extends D {
A meth() {return new A(); }

}

Figure C.2 : Classes A, B, C, D and E

To demonstrate a more complex example, we also assume the declaration of class

Pair presented in Figure C.3.

class Pair extends Object {
Object first;

}

Object second;

Boolean fstEqSnd(){
return first.equals(second);

}

Boolean equalTo(Pair p){

}

return first.equals(p.first) &&
second.equals(p.second);

Boolean equals(Object p){
if(p instanceof Pair)

return equalTo((Pair)p);
return false;

}

Pair setFirst(Object nf){
return new Pair(nf, second);

}

Pair setSecond(Object ns){
return new Pair(first, ns);

}

Pair swap(){
return new Pair(second, first);

}

Figure Q.3 : Class Pair

121

122

C.2 Shapes

The shape of instances of class Object (in Figure C.l) is the set

{equals}

of member (field and method) names in class Db j ect.
The shape of instances of classes A, B, C, D and E (in Figure C.2), respectively, are the
sets

{}, {}, {foo}, {bar}, {bar, meth}

(note that the shapes of instances of A and B are the same). The shape supported by
class Eisa supershape of the shape of class D, which in turn, is a supershape of the
shapes of classes A and B.
The shape of instances of class Pair (in Figure C.3) is the set

{equals, first, second, fstEqSnd, equalTo, setFirst,
setSecond, swap}

of member names in class Pair. The shape of (instances of) class Pair is a supershape
of the shape of (instances of) class Objecta.

aNote that because class Object has no fields, all its instances are mathematically-equivalent.
Mathematically-speaking, thus, class Object has only one instance.

Figure C.4 : Shape Examples

C.3 Object Interfaces/Record Types

The structural object interface (of instances) of class Object is

OSOI 6 object_interface MD. {
B equals(O)

} and pB. { ... interface of class Boolean ... }

The object interface (of instances) of classes A, B, C, D and E, respectively, are

ASOI 6 object_interface {}
BSOI 6 object_interface {}
II note that ASOI and BSOI are the same.
DSOI 6 object_interface {

BSOI bar()
II Note need to include full interface. BSOI is a 11 macro 11 •

123

II BSOI is used, rather than ASOI, to make a point: Interface
II names here are just 11 macro names 11 • The names can be changed
II without changing the meaning of the defined interfaces.

}

CSOI 6 object_interface {
DSOI f oo (DSOI)

}

ESDI 6 object_interface {

}

ASOI bar(), II BSOI, or 'object_interface {}'
II could be used in place of ASOI

ASOI meth()

Figure C.5 : Object Interface/Record Type Examples

While the object interface (of instances) of class Pair is

PSOI 6 object_interface ~P. {
B equals(O),
0 first, 0 second,
B f stEqSnd () ,
B equalTo(P),
P setFirst(O),
P setSecond(O),
P swap()

} and ~0. { ... interface of class Object ... }
and ~B. { ... interface of class Boolean ... }

Figure C.6: Object Interface/Record Type Examples

C.4 Structural Subtyping

124

Figure C. 7 presents examples for structural object types in the structural subtyping

relation.

The following structural object types/interfaces, from Figures C.5 and C.6, are in the
structural subtyping relation, <:.

BSOI <: ASOI (and ASOI <: BSOI, because ASOI = BSOI)
CSOI <: BSOI (a genuine "is-A")
DSOI <· BSOI (unwarranted "is-A")
ESDI <: DSOI (a genuine "is-A")
OSOI <: BSOI (unwarranted "is-A")
PSOI <· OSOI (a genuine "is-A")

Figure C. 7 : Structural Subtyping Examples

Note that pairs in structural subtyping relations could express genuine "is-A"

relations or unwarranted accidental ones. For example,

object_interface {} <: object_interface {}

125

which we expressed above as BSOI <: ASOI (and ASOI <: BSOI), intuitively holds

true when in reference to objects of class B being (or "is-A", or are substitutable for)

objects of class A. This is something the developer (of class B) intended. It is thus a

genuine is-A relation. The same relation does not hold true, however, when in it refers

to objects of class A being objects of class B. Viewing objects of A as objects of B may

not have been intended by the developer of class A. It is an accidental ("spurious")

is-A relation. It is only a result of the fact that structural subtyping does not capture

the full intention of class developers. ·

The subtyping pairs CSOI <: BSOI, ESDI <: DSOI and PSOI <: OSOI express

genuine is-A relations when referencing objects of classes C being B's, E's being D's,

and Pair's being Db j ect 's, respectively. The pairs DSOI < : BSOI and OSOI < :

BSOI express an unwarranted is-A relation when referencing objects of D being B's,

and Object's being B's.

C.5 Signatures and Subsigning

Figures C.8 and C.9 present examples of class signatures, and Figure C.ll presents

pairs of signature closures in the subsigning relation.

The signature (of instances) of class Object is

Obj A sig Object {
equals: Object~Boolean

}

The signature of (instances of) classes A, B, C, D and E are

A A sig A {}
B A sig B ext A {}
C A sig C ext B {

foo: D~D
}

D A sig D {
bar: ()~A

}

E A sig E ext D {
bar: ()~A.

meth: ()~A
}

Figure C.8 : Signature Examples

While the signature (of instances) of class Pair is

Pair A sig Pair ext Object {
equals: Object~Boolean,
first: Object,

}

second: Object,
fstEqSnd: ()~Boolean,

equalTo: Pair~Boolean,
setFirst: Object~Pair,
setSecond: Object~Pair,
swap: ()~Pair

Figure C.9 : Signature Examples

126

It should be noted that the syntax used to present examples of class signatures

127

in Figures C.8 and C.9 is different from the syntax generated by the mathematically-

oriented abstract syntax rules presented in Chapter 5. Even though equally informa-

tive, the syntax of signatures we used here is closer to the syntax of classes, which

most mainstream 00 developers are thus familiar with.

The signature environments and signature closures in Figure C.lO use class signatures

presented in Figures C.8 and C.9.

ObjectSE = { Obj, Bool }
II where Bool is the class signature of class Boolean

Ase = { A }
Bse = { A, B }
Cse = { A, B, C }
Dse = { A, D }
Ese = { A, D, E }
PairSE = { Obj, Bool, Pair }

ObjSC = (Object, ObjSE)
Asc = (A, Ase), Esc= (B, Bse), Csc
Dsc = (D, Dse), Esc = (E, Ese)
PairSC = (Pair, PairS E)

(C, Cse)

Figure C.lO : Signature Environment and Signature Closure Examples

Figure C.ll presents signature environments, and signature closures (from Fig-

ure C.lO) that are in the extension relation ..,.., and the subsigning (inheritance) rela-

tion ~' respectively.

Ese <IIIII Ase (but Ase ,- Ese)
Cse <IIIII Ese
Ese .,.. Dse
PairSE .,.. ObjSE

and by rules of subsigning (See Section 5.4)

Esc <J Asc (but Asc ~ Esc)
Csc ~ Esc
Esc ~ Dsc
PairSC ~ ObjSC

128

Note that pairs in subsigning relation only express genuine "is-A" relations. In par­
ticular, unlike we had for structural subtyping (in Figure C.7), for subsigning we
have

• Dsc ~Esc

(Dsc ~ Esc is unwarranted by rules of subsigning,
since Dse ,- Ese)

• Dsc ~ Asc

(Dsc ~ Asc is unwarranted by rules of subsigning, since,
even though Dse <IIIII Ase, but A ~ super _sigs(D) = ¢)

• ObjSC ~Esc

(ObjSC ~ Esc is unwarranted by rules of subsigning,
since ObjSE ,- Ese)

Figure C.ll : Extension and Subsigning Examples

Using the class declarations presented in Section C.l, the reader is invited to

construct more examples of signature closures in and outside the subsigning rela-

tion. Unlike structural subtyping (<:),the examples for subsigning demonstrate that

subsigning (=nominal subtyping) fully· captures the intention of class developers.

