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ABSTRACT 

NOOP 

A Mathematical Model Of 

Object-Oriented Programming 

by 

Moez A. AbdelGawad 

Computer software is ubiquitous. More than 35 x 1018 computer instructions are 

executed around the globe each second. As computers dominate more aspects of our 

lives, there is a growing need to reason more accurately about computer software. 

Most contemporary computer software is written using object-oriented ( 00) pro­

gramming languages, such as JAVA, C#, and C++. How should we mathematically 

characterize object-oriented software'? This is the question this thesis addresses by 

presenting an accurate domain-theoretic model of mainstream object-oriented pro­

gramming. 

Mainstream object-oriented languages are class-based. In such languages, the 

name of a class is part of the meaning of an object, a property often called "nom­

inality". Most mainstream 00 languages also conform to a static type discipline. 

Hence, the focus of this thesis is the construction of an accurate model of nominal, 

statically-typed 00 languages. 

In statically-typed nominal 00 languages, class names are also part of the mean­

ing of corresponding class types, and class inheritance (subclassing) is explicitly de­

clared; one class is a subclass of another only if it is declared as such. When static 



type systems are formulated to describe sets of objects, subtyping is defined so that 

subclassing is consistent with subtyping. Nevertheless, some programming languages 

(PL) theoreticians dismiss this identification as a design error because the only pub­

lished models of 00 languages exclude nominal information from objects and define 

subtyping in a way that ignores nominality. 

In nominal 00 languages, program behavior depends on the nominal information 

embedded in objects. This thesis builds a model of 00 languages called NOOP that 

includes nominal information and defines static types in accord with mainstream 00 

language designs. In NOOP, the meaning of every object includes its class name. 

Similarly, types are defined such that objects belong to a particular class type if and 

only if they are members of classes that inherit from the class corresponding to the 

class type. 

To demonstrate the utility of the model, we show that in NOOP inheritance and 

00 subtyping coincide. This work shows that mainstream 00 languages are not 

technically defective in identifying inheritance and subtyping. In models that include 

nominal information and define types that respect nominal information, this identi­

fication is mathematically correct. The folklore among 00 programming language 

researchers that "inheritance is not subtyping" is incorrect. 
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Chapter 1 

Introduction 

I think the fact that {biological] cells are software-driven machines, and that this software 

is DNA and that truly the secret of life is writing software, is pretty miraculous. 

-Dr. Craig Venter, a lead microbiologist in mapping the human genome 

(edge. org, November 2010) 

Today, around the globe, over thirty-five million trillion (35 x 1018) computer 

instructions get executed each second, and this figure has an annual growth rate of 

more than 55% [35]. Obviously, computer software is becoming ubiquitous. 

As software permeates every aspect of our lives, however, software errors and 

software bugs are becoming ubiquitous too. These could overwhelm us, if we are not 

careful. Thus, there is an ever-growing need to analyze computer software accurately. 

Most contemporary computer software is written using object-oriented program-

ming (OOP) languages. Thus, there is a natural interest in determining how we can 

properly reason and think about object-oriented software. 

How should we mathematically characterize object-oriented software? This is the 

main question we attempt to answer in this thesis. We do so by presenting a math-

ematical model of mainstream object-oriented programming. We call this model 

NOOP. 

Without a precise mathematical model of OOP, it is hard to reason about and 

discuss many of the questions related to the properties and behavior of object-oriented 

software. More importantly, the lack of a precise model of OOP makes it harder to 
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convincingly answer these questions. An imprecise model of OOP may lead us to 

make wrong conclusions about OOP and object-oriented (00) software. 

1.1 Nominal OOP 

Mainstream OOP is class-based. Classes have names. Class names are associated 

with behavioral contracts for objects. Because of this, class names play an important 

role in the way 00 developers think about programs and in the structure of type 

systems of mainstream 00 languages. These type systems have the following common 

characteristics: 

1. Nominal objects: Objects in mainstream OOP are nominal because the name 

of the class of an object is carried inside the object as part of the identity (i.e., 

the meaning) of the object. 

2. Nominal object types (class types): In statically-typed 00 languages, a class 

name is used as a type name that identifies an object type (the set of all objects 

constructed using the named class or using explicitly-declared subclasses of the 

named class). 

3. Nominal subtyping: Subclassing (i.e., inheritance) in mainstream OOP is ex­

plicitly declared between classes_, using class names. A class type subtypes 

another class type if and only if the former is an explicitly declared subclass of 

the latter. 

The type systems of mainstream 00 languages all share these characteristics. These 

type system are thus often called nominal 00 type systems. 

Earlier models of OOP, such as the well-known model Cardelli developed in [13, 

14), do not model the nominal aspects of mainstream OOP. Unlike nominal OOP, 
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objects and object types in Cardelli's model only carry information about the struc­

ture of objects. Hence, objects in Cardelli's model are structural objects, often called 

records, and object types in Cardelli's model are structural types. Further, although 

inheritance is not formalized in Cardelli's model, his paper informally equates it with 

subtyping between structural types. This view of inheritance has been rejected by 

00 software developers and most PL researchers, because structural subtyping does 

not imply any sharing of type implementations (and thus any sharing of behavior). 

00 languages based on structural objects and object types are called structural 

00 languages. Examples of such languages include STRONGTALK [8], MOBY [29], 

POLYTOIL [10], and OCAML [43]. To make a distinction between different 00 lan­

guages that have different kinds of type systems, mainstream 00 languages are thus 

sometimes called nominal 00 languages. Structural 00 languages are not common. 

For the most part, they are only used by 00 programming language (PL) researchers. 

Despite the fact that mainstream 00 languages are nominal 00 languages, most PL 

research on OOP and on 00 languages, however, assumes and builds on Cardelli's 

structural model of OOP. 

NOOP, our model of OOP, is based on a nominal view of objects and classes, 

consistent with the formulation of objects in mainstream 00 languages. In contrast to 

Cardelli's model (which we call SOOP for Structural Object Oriented Programming), 

our model includes class names in objects and defines class types in a way that respects 

the declared class hierarchy. As a result, subtyping has a fundamentally different 

interpretation in our model than it does in Cardelli's model and in more elaborate 

models based on Cardelli's work. 

Inheritance is a defining feature of object-oriented programming. As a demonstra­

tion of the utility and validity of NOOP as a more precise model of mainstream OOP, 
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we use NOOP to prove that nominal subtyping in mainstream OOP completely rec­

onciles inheritance and semantic object subtyping. This reconciliation goes against 

the common folklore among PL researchers, which asserts that. "inheritance is not 

subtyping". This folklore is based on a mathematical analysis of structural models 

of OOP (such as SOOP). The proof that NOOP completely reconciles inheritance 

and 00 subtyping underlines the importance of including the nominal aspects of 

mainstream 00 languages in models of mainstream OOP. 

1. 2 Thesis Overview 

In this thesis, we present the construction of NOOP on three steps. 

1. First, we construct a simple structural model for OOP, which we call COOP. 

2. Next, we define signatures as pieces of syntax that are similar to object type 

expressions. 

3. Finally, we use signatures to define nominal objects, and we then construct 

NOOP as a model of nominal OOP using essentially the same construction 

technique that we used to build COOP. 

After constructing NOOP and proving. that it is well-defined, we use it to define nom­

inal object types and prove that nominal subtyping completely reconciles inheritance 

and semantic subtyping. 

Thus, the remainder of this thesis is organized as follows: 

• Chapter 2, OOP: A Technical Overview, presents a more detailed overview of 

nominal typing notions in nominal OOP, and contrasts them with their coun­

terparts in structural OOP. 
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• Chapter 3, Motivation and Background, presents the motivations behind devel­

oping our research and an overview of earlier research similar to or related to 

ours. 

• Chapter 4, COOP: A Simple Structural Model of OOP, presents COOP as a 

simple structural model of OOP. COOP models objects as records. In ChaJr 

ter 4 we thus also present, in detail, a records domain constructor ( ---o ). Using 

standard domain-theoretic construction methods, we then use the records do­

main constructor and other standard domain constructors to construct COOP. 

• Chapter 5, Signatures and Nominality, defines class signatures and all necessary 

related entities. Consistency conditions and a subsigning relation are defined 

for signature closures, so that signatures have properties that agree with our 

intuitions about object types in nominal 00 languages. 

• In Chapter 6, NOOP: A Domain-Theoretic Model of Nominal OOP, we con­

struct our domain-theoretic model of mainstream OOP. In NOOP, signature 

closures, of Chapter 5, are paired with records, of Chapter 4, to define nomi­

nal objects, as models of objects in mainstream OOP. NOOP is constructed 

using a similar construction method to that used for constructing COOP. An 

additional domain-filtering step is used to guarantee that signature closures 

are paired with matching records. Finally, in this chapter also we prove that 

inheritance and subtyping are completely reconciled in mainstream OOP. 

• In Chapter 7, Discussion and Future Work, we discuss the work presented in 

this thesis in less-technical terms, and we make some general conclusions. We 

also present directions for possible future work. 
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• Finally, three appendices at the end of this thesis present ( 1) a brief overview 

of the main domain theoretic notions used in this thesis (Appendix A), (2) 

proofs of the important theorems in this thesis (Appendix B), and (3) few code 

examples that help demonstrate the notions presented in this thesis and the 

main differences between nominal 00 languages and structural 00 languages 

(Appendix C). 
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Chapter 2 

Object-Oriented Programming: 
A Technical Overview 

The beginning of wisdom is to call things by their right names. 

-Chinese Proverb 

In this introductory chapter, we present an overview of some main notions of 

mainstream OOP, and we give informal definitions for these technical notions that 

will help motivate later formal definitions. Later in the chapter, we use these informal 

technical definitions to make a clear distinction between structural OOP, a view of 

OOP that is commonly held by PL researchers, and nominal OOP, the view of OOP 

commonly held by mainstream 00 software developers. In Appendix C, we present 

a few code examples that demonstrate the concepts and notions discussed in this 

chapter. 

This chapter only assumes some familiarity with mainstream OOP and with basic 

mathematical notions (like sets and functions), but the chapter does not assume much 

familiarity with OOP research or PL research in general. 

2.1 OOP Notions and Terminology 

2.1.1 Objects, Fields and Methods 

An informal view of objects in object-oriented programming is "objects as service 

providers". In this view, an object is 'an entity that provides a service'. Objects in 
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00 software provide their respective services by providing object fields and object 

methods. A field of an object is a binding of a name to an object, while a method 

of an object is a binding of a name to a function that performs a computation (e.g., 

accessing fields of objects and/or calling their methods) when invoked on zero or more 

objects, as method arguments and returns an object as a result. The object containing 

a method is always available as an implicit argument to that method under the name 

this or self. Collectively, the fields and methods of an object are called the members 

of the object. Fields are sometimes also called instance variables. 

The set of members of a given object is fixed and finite. Member names are 

typically plain labels (alphanumeric identifiers). An object responds to a method call 

by itself calling other methods (of itself or of other objects) then returning a result 

object. Collectively, the response of an object to field accesses and method calls, 

and the logical relation between this response and the method arguments, defines 

the behavior of the object. The behavior of an object defines the service the object 

provides. 

2.1.2 Encapsulation 

Object-oriented programming is defined by two main features: encapsulation, and 

inheritance. In this section we discuss encapsulation. We will discuss inheritance in 

Section 2.1.5. 

Because an object is a service provider, the members of an object are not a collec­

tion of unrelated, independent members. Rather, members of an object collectively 

share responsibility for providing the service the object is designed to provide (i.e., 

they mutually-depend on each other in provide the service) . This mutual depen­

dency particularly pertains to the "active" component of an object, i.e., its methods. 
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In object-oriented programming, methods of an object often call one another (i.e., 

an object can recursively call its own methods). The fields of an object record the 

"state" of the object. Methods of the object can access these fields to obtain this 

information. 

An object is said to encapsulate its data because the object pairs its fields with 

methods which may access and manipulate these fields. Because fields are members 

embedded inside an object, methods of the object can access the fields of the object 

(i.e., the data the object encapsulates) in the same way as they can call other methods 

of the object (via the special variable this or self). 

The encapsulation of data (fields) with functions (methods) that process them was 

a major motivation behind the development of OOP. SMALLTALK was the language 

that popularized OOP widely. About SMALLTALK's existence, and the existence of 

OOP by implication, Alan Kay wrote [40]: 

"Smalltalk's design, and existence, is due to the insight that everything 

we can describe can be represented by the recursive composition of a 

single kind of behavioral building block that hides [i.e., encapsulates] its 

combination of state and process inside itself and can be dealt with only 

through the exchange of messages [field accesses and method calls]." 

2.1.3 Classes, Class Names and Nominality 

Many objects in an 00 program respond to the same set of field accesses and method 

calls in a similar way. These objects, thus, share similar behavior, and they provide 

the same service, only with some little variations. A class is a syntactic programming 

construct that mainstream 00 languages offer for the specification of the common 

behavior shared by some objects that provide the same service. 
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Classes are used to create (or produce, or construct) objects with common be­

havior. A class is a template from which objects that share the same behavior are 

produced. Objects produced using a certain class are called instances of that class. 

A class has a name, called a class name. A class name is typically associated 

with a behavioral contract, i.e., with a specification (formal or informal) of the service 

provided by instances of the class. 1 The association of class names with behavioral 

contracts is commonly used by mainstream 00 developers, since it enables developers 

to design their software based on the behavioral contracts of objects in their software2 . 

A class in mainstream OOP always has a special "meta-method" called an (object) 

constructor. The constructor of a class is used to form objects (instances) of the class. 

Typically, a constructor has code that initializes the fields of an object. As special 

class methods, constructors usually have the same name as the class name of the 

objects they construct. In program text, the name of the constructor, which is the 

same as the class name, ties the constructed object to its class. 

Thus, in mainstream OOP, instances of a class have the name of that class as part 

of their identity. Objects with class names embedded inside them are nominal objects. 

Nominal objects are tied to the class that created them, via class names. Having 

names as part of the meaning of objects (i.e., their identity) is called nominality. An 

00 language with nominal objects is a nominal 00 language. 

The nominality of objects in mainstream OOP implies that two objects produced 

from classes with different names are not equal objects3 . Because class names are 

1 Behavioral contracts are usually attached to classes in the form of comments, sometimes even 
in a standardized comment format like that of JAVADOC comments. 

2Via tests like the instanceof check in JAVA, and isMemberOf in SMALLTALK, etc. 
3 Mathematical equality of objects is meant here, not programmatic equality. For programmatic 

equality, where the equals() method is program-defined (e.g., in languages like JAVA), it is possible 
for a program to equate any two objects. This practice is generally regarded as a programming 
error, but programming equality has no bearing on the mathematical equality under discussion. 
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associated with behavioral contracts (or, equally, with the service that objects of 

a class provide), two objects having different class names are considered different in 

mainstream OOP because the different class names embedded inside them imply that 

the objects provide different services or, equally, that the objects satisfy, or abide by, 

different behavioral contracts. 

Informally, a class can be considered as a "cookie cutter", from which cookies (i.e., 

objects) that behave the same are molded. As being an integral part of the identity 

of objects, class names are thus "baked into" objects (i.e., into the "cookies~'). 

As explained above, nominal OOP languages have class names embedded in in­

stances of the classes. An OOP language that does not embed class names in objects 

is called a structural OOP language. 

Objects in a structural OOP language are simply records containing fields and 

methods; class names do not appear in structural objects. 

Figures C.l, C.2, and C.3, in Appendix C, present JAVA-like code for classes 

Object, Pair and few simple classes that we use to demonstrate the concepts we 

discuss in this chapter. 

2.1.3.1 Shapes, Object Interfaces and Nominal Typing 

In this thesis we call the set of names of members of an object the shape of an object. 

We believe the notion is important and intuitive enough to have a name of its own. 

It should be noted that shapes are only sets of labels. 

Given that the set of members of an object is fixed, the shape of an object is an 

invariant of objects of the same class. The shape of an object can, thus, be derived 

from the class of an object (i.e., the class used to produce the object). Given that 

the shape of all instances of a class is the same (is invariant), shapes can also be 
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associated with classes rather than just with objects. The shape of an object or of a 

class is called the shape supported by the object or the class. 

A shape that has all member names belonging to another shape, and possibly 

some more, is called a supershape of the other shape. Dually, the other shape (with 

the smaller set of member names) is called a subshape of the first (larger) one. As 

sets, a subshape is always a subset of its supershapes. 

Figure C.4, in Appendix C, presents examples for shapes. 

Objects have interfaces. An object interface4 specifies how an object is viewed 

and should be interacted with by other objects, i.e., by "the outside world" (i.e., the 

interface of an object specifies how objects can access fields and call the methods of 

the object).5 

Further, members of an object have interfaces. Member interfaces specify how an 

object member is viewed and should be interacted with by other objects. Member 

interfaces and object interfaces mutually depend on each other. 

A field interface tells the name of the field and the interface of objects that can 

be bound to the field. A method interface tells the name of the method, as well as 

the interface of objects that can be pa.Ssed to the method as arguments and also the 

interface of the result object. An object interface includes member (field and method) 

interfaces of the members of an object. 

Like the shape of an object, an object interface is an invariant of the objects of a 

class, and thus it can also be derived from the class of an object. 

In nominal OOP, class signatures express object interfaces (See Section 2.1.6 for 

4Despite some similarity, our informal notion of an object interface should not be confused with 
the more concrete, formal notion of interfaces that exists in some languages such as JAVA. 

5 The interface of an object, thus, sort of tells the "set of rules" other objects have to follow to 
interact with the object. 
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a discussion of class signatures). A significant difference between structural OOP 

and nominal OOP is that, in nominal OOP, an object interface (as expressed in class 

signatures) also includes the name of the class of the object, and the names of the 

superclasses of the class, together with interfaces of members of the class (expressed 

as member signatures) . In nominal OOP, an object interface is thus, roughly, the 

shape of objects of a class augmented with extra information, i.e., the class name, 

superclass names, and extra information on member interfaces. 

Object interfaces will the basis for the formal definition of object types and class 

signatures below. A nominal 00 language where nominal objects are also associated 

with class signatures is a nominally-typed OOP language. 

Exact Shapes and Exact Object Interfaces When we discuss inheritance, in 

Section 2.1.5, we will see that an object can be associated with more than one shape, 

and more than one object interface. For a given object, the object interface of the 

object derived from the definition of the particular class used to produce the object 

is called the exact object interface of the object. The exact shape of the object is the 

shape derived from the class of the object, which is the same as the shape derived 

from the exact interface of the object. Other shapes an object can be associated with 

are subsets (subshapes) of its exact shape. 

The exact interface of an object is the object interface that includes member 

interfaces of all members of the object (and nothing more), and member interfaces 

in the object interface are exact member interfaces, i.e., ones where field and method 

interfaces use exact object interfaces. Relative to a particular object, the exact shape 

and the exact interface are the most precise and the most specific of the multiple 

shapes and interfaces that can be associated with the object. 
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Class Names and Circular Object Interfaces Due to using class names as 

interface names, an object interface in nominal OOP (when expressed as a class 

signature) can circularly refer to itself, using its own name. Multiple object interfaces 

that are mutually-circular also easily refer to each other using their interface names. 

Circular class definitions are quite common in mainstream OOP6 • Nominal-typing 

allows the easy expression of circular object interfaces. 

In structural 00 languages, due to the lack of class names, self-references inside 

object interfaces have to be expressed by requiring some explicit means for expressing 

recursive interfaces 7. Due to requiring explicit recursion, object interfaces that have 

multiple mutually-recursive interfaces are usually notationally heavier to define, ex-

press, and manipulate in structural 00 languages than their circular counterparts in 

nominal 00 languages. The ease by which recursive typing notions can be expressed 

in nominally-typed 00 languages is one of the main advantages of nominally-typed 

OOP. According to Benjamin Pierce [56, p.253], "The fact that recursive types come 

essentially for free in nominal systems is a decided benefit". 

In structural 00 languages objects are associated with structural object interfaces, 

but not with nominal ones. 00 languages where objects interfaces include no class 

names are structumlly-typed 00 languages. 

Figures C.5 and C.6, in Appendix C, present code examples for (structural) object 

interfaces. 

6 For example, in purely 00 languages, the definition of classes Object and Boolean is usually 
circular, because class Object has a method equals() that returns values of class Boolean, and class 
Boolean inherits from class Object and it also usually has methods which take or return objects of 
class Object (e.g., also the equals() method). 

7Using, e.g., type variables and the J.l operator for self-recursive interfaces, and using the and 
operator, together with J.l and type variables, for expressing multiple mutually-recursive interfaces 
(as is done in the functional language OCAML [43], for example). 
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2.1.4 Object Types, Object Type Expressions and Signatures 

In computer programming-whether it is procedural programming, functional pro-

gramming, or object-oriented programming, or otherwise-every value has a type. 

The type of a value ensures the proper use of the value8 . A type of a value may 

disallow improper use of the value by specifying what operations are allowed for that 

value (i.e., what computations can be done using the value), and, accordingly, what 

operations are not allowed for it. In type-checked languages, the language compiler 

checks type declarations for consistent and proper use of program values. 

In OOP, every object is a value, and, accordingly, each object in OOP has at 

least one object type.9 In 00 programming language (PL) research, an object type 

is usually viewed semantically as a set of objects with similar properties and behavior. 

Given that checking the equality of behavior of objects is generally an undecidable 

problem, 00 programming languages use object interfaces and other syntactic pro­

gram features (such as inheritance) to characterize object types and to decide the 

similarity of the behavior of their objects. 

Thus, PL research, a type has two meanings: a syntactic meaning, and a semantic 

one. Given that the semantic meaning of types depends on the syntactic meaning 

of types (due to practicality considerations, i.e., the decidability of type checking), 

we first discuss the syntactic meaning of object types in 00 PLs, then we discuss 

their semantic meaning. When discussing types, usually the context is enough to 

infer which sense of the two is meant. We first discuss the meaning of object types 

in nominal OOP first, then in structural OOP. 

8 For example, using types, it is not allowed to add integers to booleans, or to strings. 
9In pure OOP, it is also the case that every value is an object. In NOOP, we model pure nominal 

00 languages, or "the pure 00 subset" of "impure" ones. 
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The syntactic meaning of 'object type' is that an object type is a syntactic ex­

pression of an object interface. Object types, in their syntactic meaning , are thus 

sometimes more accurately called object type expressions. An object type expression 

is thus a concrete expression of an object interface. 

The semantic meaning of 'object type' (which is also called the denotational mean­

ing of an object type) depends on the syntactic meaning. Semantically, an object type 

is the set of objects (in a domain of objects) denoted by a given object type expres­

sion, i.e., the set of objects that have the particular object interface expressed by this 

object type expression. 

In nominal OOP, class signatures express object interfaces. In structural OOP, 

object type expressions (which, given the structural view of objects in structural OOP, 

are the same as record type expressions) express structural object interfaces. 

Class signatures are nominal constructs (i.e., they have class names as part of their 

meaning), because they express object interfaces of nominal OOP, which have class 

names as part of their identity. Names of class signatures are usually also called type 

names. Class signatures can be automatically derived from the source code of classes. 

Type names, which are the same as interface names and class names, are thus also 

associated with the same contracts associated with the class names. Because class 

signatures (i.e., as "nominal object type expressions") are nominal notions, the set of 

objects denoted by a class signature is called a class type or, synonymously, a nominal 

object type. 

In structural OOP, on the other hand, class names are irrelevant to objects and 

are not included in their object interfaces. Thus, object type expressions in structural 

OOP are the same as record type expressions. Hence, semantically, structuml object 
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types are the same as record types (denotations of record type expressions). 10 

Given the likeness between object type expressions and how we concretely ex-

pressed object interfaces in earlier code examples, we elide presenting examples for 

structural object type expressions, referring the reader to Figures C.5 and C.6 instead. 

Exact Object Types Syntactically, as a type expression, an exact object type 

(expression) is a concrete expression of an exact object interface (See Section 2.1.3.1). 

An exact object type is a precise expression of the exact interface of the object. 

Semantically, as a set of objects, an exact object type is the set of objects denoted by 

an exact object type expression. 

2.1.5 Inheritance, Subclassing and Nominal Subtyping 

Inheritance is a defining feature of OOP. It is a syntactic notion, defined as a binary 

relation between classes in an 00 program, where a class is said to inherit (or, 

extend) another class. Inheritance is also called subclassing, where the inheriting 

class is called the subclass while the inherited class is called the superclass. The main 

practical motivation behind having inheritance, in OOP, is to simultaneously support 

software extensibility (i.e., the addition of new members to objects) while supporting 

software reuse (i.e., the reuse or overriding of existing object members). 

In relation to type inheritance, which is our main interest in this thesis11 , inher-

10Record types and record type expressions are familiar notions to functional programmers and 
to PL researchers. This familiarity caused the confusion of objects with records and is one reason 
why earlier models of OOP were structural models rather than nominal ones. 

11Usually inheritance includes code sharing, where methods code is inherited from a superclass to 
a subclass, but we ignore this aspect of inheritance in this thesis, because, in NOOP, our model 
of OOP, we more liberally model 00 languages that allow each object of a class to have its own 
implementation code for methods. All method implementations of objects of the same class are 
required to have the same method signature, however, so as to not affect the common outside 
view (the object interface expressed in a class signature) of these objects, as well as to stick to the 
behavioral contract associated with signature names. 
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itance is a binary relation between class signatures of classes. Similar to classes, a 

class signature is thus said to inherit from another class signature. 

As a relation between class signatures, inheritance means the class signature of 

the subclass shares with the class signature of the superclass all field and method 

signatures of the members in the class signature of the superclass. The shape sup­

ported by the subclass signature is thus always a supershape of the shape supported 

by the superclass signature (The subclass signature may add some new members of 

its own, together with their member signatures). The subclass signature may also 

inherit other member signatures from other superclass signatures12 . An object that 

has some class signature S can always respond to any field access or method call that 

any of the objects that have any of the supersignatures of S as their class signature 

can respond to. Under the inheritance relation, class signatures corresponding to 

classes in an 00 program form an inheritance hierarchy. 

For a subclass signature (the class signature corresponding to a subclass) and a 

superclass signature (the class signature corresponding to a superclass), signatures 

of corresponding members (i.e., members with the same name) in the two signature 

are required to match, where the exact criteria for matching of member signatures 

may differ from one 00 language to another. Typically, however, matching means 

requiring equality of member signatures (i.e., for the same member name, the member 

signature in the subclass signature is required to be exactly the same signature of the 

member with the same name in the superclass signature). 

In addition to nominality, and nominal typing, the third significant difference 

between mainstream OOP and structural OOP lies in how they differently view in­

heritance. 

12Note that this definition allows for multiple-inheritance (of class signatures). 
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In nominal 00 languages, inheritance is explicitly specified between classes (and 

thus also between class signatures and object interfaces of these classes), and it is 

specified using class names. Inheritance (subclassing), in nominal OOP, thus is a 

nominal relation. Because of it being explicitly specified, inheritance in nominal OOP 

is always an intended relation, and is never accidental. A class explicitly inheriting 

from another class is declaring, explicitly, that not only does its instances support 

the shape and the signature of the superclass, with matching member signatures, but 

that they further stick to the full behavioral contract associated with the name of 

the superclass. Further, because the inheritance relation and the subtyping relation 

between nominal object types (i.e., the inclusion relation between class types, also 

informally called the "is-A" relation) are identified in statically-typed nominal OOP 

(which we prove in Chapter 6), a nominal 00 language with nominal sub classing is 

called a nominally-subtyped 00 language. 

In structural 00 languages, though, inheritance is inaccurately interpreted as an 

(implicitly-specified) relation between structural object interfaces (or, equivalently, 

as a relation between concrete expressions of structural object interfaces, i.e., record 

type expressions). An object interface (or, its corresponding record type expression) 

in structural OOP implicitly inherits from another object interface if and only if each 

member interface in the subinterface matches with a member interface in the super­

interface. As such, inheritance is misinterpreted in structural 00 languages as being 

syntactic structural subtyping between record type expressions. Because it is not 

specified explicitly, "inheritance" in a structural 00 language can be accidental and 

unintended. Because of the lack of a connection (e.g., via class names) to behavioral 

contracts, inheritance in structural OOP, thus, may not be a reflection of a true "is-A" 
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relation 13 . 

Even though nominally-subtyped 00 languages can sometimes be less flexible 

than structurally-subtyped 00 ones (in the cases where accidental inheritance is 

useful [47]), having more control over the inheritance relation, so that it reflects true 

"is-A" relations, is why mainstream 00 developers embrace nominally-subtyped 00 

languages more than structurally-subtyped ones. Biological taxonomy, which has the 

inheritance relations humans are most familiar with, has nominal inheritance relations 

(explicitly specified via class names, based on organisms sharing behavioral contracts) 

rather than derived, implicitly-specified structural inheritance relations. 

Figure C.7, in Appendix C, presents examples for record type expressions in the 

syntactic structural subtyping ("structural inheritance") relation. 

2.1.6 Signatures, Subsigning and Substitutability 

In Chapter 5 of this thesis, we formally present the notion of class signatures in detail. 

We quickly introduce them though in this section. 

Class signatures are the formal construct we use in NOOP to model the features 

of class types in nominal OOP. Class signatures are syntactic entities that carry infor­

mation that is used for typing purposes. A signature closure "closes" a class signature 

by providing fixed, known class signature bindings for all class names referenced in a 

class signature. 

Similar to a class signature, a signature closure (as a "closed class signature") 

thus has a name, contains member signatures (i.e., field and method signatures), 

and it includes names of its supersignatures. As a nominal object type expression, a 

13Causing the familiar problem of "spurious subtyping". See [56]. 
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signature closure, not just a class signature, is the full formal expression of the notion 

of object interfaces in nominal 00 languages (see Section 2.1.3.1). 

In the context of signatures, the inheritance (i.e., subclassing) relation between 

signature closures is called subsigning. A signature closure is a subsignature of (sub­

signs) another signature closure if and only if corresponding member signatures match 

and the first class signature explicitly declares the second class signature as one its 

supersignatures (using the name of the second class signature). For the subsigning 

relation to hold, thus, not only is the structure of objects of a class important in de­

ciding the relation but also the behavior of the objects (as expressed in the contract 

associated with the signature/class name) is equally important. 

The inclusion of behavioral contracts in deciding the subsigning relation makes 

the relation a more accurate reflection of a true 'is-A' (substitutability) relationship 

than the structural syntactic subtyping relation. This makes subtyping in nominal 

OOP more semantically accurate than structural subtyping. Semantic subtyping is 

commonly expressed as the 'Liskov Substitution Principle' (LSP) familiar to many 

00 developers. The LSP states that in a computer program, S is a subtype of T, if and 

only if objects of type T may be replaced with objects of type S, without altering any of 

the main behavioral properties of that program. Via including class names associated 

with behavioral contracts in deciding the subtyping relation, the subtyping relation in 

nominal OOP is semantically precise (incorporates more behavioral properties) than 

structural subtyping found in structural 00 languages. 

Figures C.8 and C.9, in Appendix C, present examples of class signatures, and 

Figure C.ll presents pairs of signature closures in the subsigning relation. 

Class signatures and signature closures play an important role in defining and 

building our model of mainstream OOP. The embedding of signature closures in the 
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objects of our model, NOOP, makes the objects of NOOP model nominal objects 

of mainstream OOP more precisely. The "baking" of signatures into objects makes 

NOOP be a model of nominal OOP.14 

2.2 Nominal OOP versus Structural OOP 

Building on the account of OOP presented in Section 2.1, to motivate seeing why 

a model of OOP that does not include nominality is not a precise model of OOP, 

this section focuses on discussing the main technical differences between nominal fea-

tures of nominal OOP and structural features of structural OOP that were discussed 

sporadically above. 

2.2.1 The Meaning of Being an Object 

The main semantic difference between nominal OOP and structural OOP is that, 

given that the type information of an object cannot be inferred based on the structure 

of the object alone, to support run-time type-dependent operations15 , objects in a 

nominally-typed 00 language must carry their type information at run-time. An 

object, in a nominal 00 language, thus, is not only a record, but is a record paired 

with a tag that associates the object with a class that expresses the type of the object .. 

Such a difference in how objects are viewed is the first, and most fundamental 

difference between nominal OOP and structural OOP. Overlooking this difference 

causes denotational models of structural 00 languages (e.g., Cardelli's SOOP [14]) 

14In NOOP, full signatures, formalized as signature closures, have to be embedded in objects, 
rather than just signature names, because the domain of objects in NOOP, as a model, has to 
include all possible objects in all possible 00 programs. 

15Such as checking types of field assignments, checking method argument types against method 
parameter types, instanceof checks, and "type casting". 
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and denotational models of nominal 00 languages (e. g., NOOP) to be fundamentally 

different. 

2.2.2 The Semantic Value of Nominal Typing 

As explained earlier, in nominal OOP, the class of an object has a name. This name is 

also used as the name of the exact object type of the object. In structural OOP, this 

is not the case. The type of an object, in structural OOP, is only a specification of 

the members (fields and methods) of the object and of the (structural) types of these 

members. In a structural 00 language, using structural object types (record types) 

disallows accessing a field or calling a method of an object only when that object 

does not have that field or method as a member16 . In a nominal 00 languages, the 

inclusion of a class name in class types additionally disallows accessing the members of 

an object whose class does not explicitly declare that its objects stick to the behavioral 

contract associated with the class name. This stricter requirement by class types in 

nominal 00 languages is the second fundamental difference between nominally OOP 

and structural OOP. 

Nominal typing is thus useful when the structure of objects (mirrored in the struc-

ture of their record types) is not enough to express the behavioral constraints satisfied 

by the objects of the type. For reasons that have to do with the decidability of type 

checking, type expressions in type systems of practical programming languages can-

16The notion of structural typing was introduced in the simply typed A-calculus [20], and subse­
quently extended to enrichments of the A-calculus [52, 56]. Hindley-Milner type inference, which is 
widely used in functional languages to infer the types of programs, critically depends on the property 
of structural typing. Hindley-Milner type inference depends on the fact that every program value 
has a unique monotype (program values cannot belong to multiple types). Type-inference becomes 
muddled in the presence of subtyping, which is why Hindley-Milner type inference does not ac­
commodate explicit subtyping, but only accommodates structural/implicit subtyping (in purely-00 
nominal 00 languages, every value is an object, making the declared types of functions/methods 
manifest.) 
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not express all logical properties of objects in programs that a software developer may 

wish to express. These properties always hold as true for the objects. These "always 

true, but inexpressible" properties are considered as extra terms in the behavioral 

contracts of the objects in the software.17 Class names, nominality, and nominal typ­

ing, provide 00 software developers with a simple yet formal means for summarizing, 

in the class name, the behavioral contract of objects in OOP software.18 As we noted 

earlier, nominal typing allows circular object types to be expressed more lightly (See 

Section 2.1.3.1). 

2.2.3 Nominal Typing and Subtyping versus Structural Typing and Sub­

typing 

As discussed in the last section, nominal typing dictates that the name of an object 

type, in addition to its structure, is taken into consideration when making decisions 

regarding whether the type is equivalent to another object type, and whether it is a 

subtype of another object type. 

A type-checker, for a statically-typed programming language, must verify that the 

type of any expression is consistent with the type expected by the context in which 

that expression appears. For instance, in a method invocation of the form m(e), the 

inferred type of the expression e must be consistent with the declared or inferred 

type of the formal parameter of method m. This notion of consistency, called type-

compatibility, is specific to each programming language. Type compatibility involves 

17Documentation and comments accompanying software, e.g., in the style of JAVADOC comments, 
are usually viewed as an informal specification of the behavioral contracts of the software and its 
components. 

18 A behavioral contract can, for example, express that all members of a subtype of interface 
Comparable (in JAVA) are totally-ordered by the compareTo() method they inherit from interface 
Comparable. 
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checking two types for equivalence, and checking them for subtyping (i.e., one being 

a subtype of the other). 

Based on the discussion in Section 2.2.2, the main difference between the type 

systems of nominal 00 languages (with nominal typing and nominal sub typing) and 

the type systems of structural 00 languages (with structural typing and structural 

subtyping) lies in how these type systems differently answer two main questions, 

about type equivalence and type subtyping. 

The first main question the two different styles of OOP answer differently is: 

What if two objects have the same members (fields and methods) with the same 

member signatures, will the two objects then have the same type? Structural typing, 

in a structural 00 type system, says: 'Yes', unconditionally. Nominal typing, in a 

nominal 00 type system, says: 'Only if the structurally-equivalent types also have 

the same type name'. Thus, nominally-equivalent types of two nominal objects are 

always structurally-equivalent types, but not necessarily vice versa. 

The second main question the two kinds of 00 type systems answer differently is 

related to the first question, but pertains to subtyping. The question is: What if for 

two objects where the shape of the first object is a supershape of the second object 

and the first object has the same member signatures as those of the corresponding 

members in the other object, will the type of the first object be a subtype of the type of 

the second object? Again, structural subtyping says: 'Yes', unconditionally. Nominal 

subtyping says: 'Only if the type of the first object explicitly states (using the names 

of the two types) that the structurally-compatible type of the second object is one of 

its supertypes (i.e., those of the first object type)'. Thus, nominally-subtyped types 

of two nominal objects are always structurally-subtyped types, but not necessarily 

vice versa. 
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Based on how they differently answer the second question, it is thus said that in 

structural OOP subtyping happens "by chance" (i.e., is sometimes accidental), while 

in nominal OOP subtyping takes place "by choice" (i.e., is always intended). 

How nominal type systems (of nominal OOP) and structural type systems (of 

structural OOP) differ in answering these two fundamental questions is behind the 

fundamental differences between the two kinds of 00 type systems. These differences 

makes the translation of research results reached for one kind of type systems not 

immediately applicable to the other. 

2.3 Statically-typed 00 La~guages versus Dynamically-typed 

00 Languages 

Statically-typed 00 languages, where type-checking is done at program compilation 

time, define the formal notion of object types (See Section 2.1.4) based on the notion of 

object interfaces (See Section 2.1.3.1). Static type-checking is done based on object 

types. Examples of mainstream statically-typed 00 languages are JAVA [32) and 

C# [2). Our focus in this thesis is on modeling statically-typed nominal 00 languages. 

On the other hand, in dynamically-typed 00 languages (where "type-checking" is 

only done during program run-time) there is no notion of an object type. An example 

of a dynamically-typed 00 language is SMALL TALK [1). Given that dynamically­

typed languages do need to ascertain some form of type-safety (i.e., ascertain the 

proper use of objects), such languages usually define notions that are similar to 

types to use and check for consistency at run-time. For example, SMALL TALK [1] 

requires objects at run-time to conform to 'protocols'. According to how they are 

used in SMALLTALK, protocols are actually closer to structural types than they are 
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to nominal types. In particular, despite them having names, the names of protocols 

in SMALLTALK, and the nominal subclassing relation between SMALLTALK classes, 

are not relevant at run-time in deciding the conformance ("subtyping") relation. 

SMALLTALK is a nominal 00 language, but it is dynamically-typed. Because it has 

no clear notion of types in the first place, SMALLTALK is not a nominally-typed 00 

language nor is it is not a nominally-subtyped 00 language. In this thesis, we are 

not concerned about modeling non-nominal features of dynamically-typed nominal 

00 languages. 
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Chapter 3 

Motivation and Background 

I see further by standing on the shoulders of giants. 

-Isaac Newton 

Although a precise mathematical model of nominal OOP has not been developed 

before, much research on the semantics of programming languages, object-oriented 

and otherwise, has been done by the programming languages (PL) research com­

munity in the last few decades. This thesis depends on this research as a context 

in which the thesis fits, and as a source of motivation for the particular research 

presented therein. In this chapter, we present the motivations and the context for 

developing NOOP as a rigorous model of nominal OOP. 

3.1 NOOP Motivations 

Our development of NOOP has two main motivations. These are: 

1. Refocusing PL research on models and type systems relevant to mainstream 

software development. 

2. Encouraging the development of more sophisticated type systems for main­

stream OOP languages. 

We discuss each motivation in the following subsections. 
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3.1.1 Shifting PL Research View of OOP to be Nominal 

As we discussed in Chapter 2, earlier models of OOP (e.g., the model developed by 

Cardelli in 1988 [14], first presented in 1984 [13]) did not include the name of the 

class of an object as part of the meaning of the object. Objects in earlier models 

of OOP are not nominal objects, but are mere records. Cardelli [14], in fact, does 

not make use of explicit class definitions, but only has a notion of structural object 

type expressions (i.e., record type expressions). In Cardelli's model of OOP, only the 

structure of an object (specifying the interface of its members) defines the interface 

of the object to the outside world. Objects in Cardelli's model only have structural 

object interfaces. In particular, the contract associated with a class name in OOP is 

not associated with an object in Cardelli's model. Since Cardelli's framework does 

not include explicit classes, he does not have a simple way to annotate programs 

with class contracts. In 00 design, the class hierarchy reflects program behavior and 

method contracts. 

All subsequent models of OOP have been built on top of Cardelli's structural 

model. Thus, nominality has been ignored in subsequent analysis and reasoning 

about the properties of OOP. Henceforth, we will use the acronym 'SOOP' to refer 

to the structural model of OOP [14] Cardelli developed. It should be noted that 

Cardelli's decision to construct a structural model was well-motivated at the time. 

OOP was in its infancy at that time. When Cardelli did his seminal work, the domi­

nant 00 language (SMALLTALK) was dynamically-typed. The potential importance 

of nominality in 00 design and 00 type systems was not yet appreciated. 

In the ensuing twenty-five years, PL researchers have generally relied on SOOP 

and its descendants for an intuitive understanding of what 00 programs mean. The 

reliance of subsequent PL research on structural models of OOP has adversely affected 



30 

the relevance and impact of that research. To see why, one should consider that three 

essential features of mainstream OOP make crucial use of class names: namely, (1) 

circular class dependencies, (2) inheritance, and (3) generics. Even though these 

three features have counterparts in structural OOP, conclusions about the structural 

counterparts are not necessarily applicable to nominal 00 languages. 

We find some indirect support to our opinion, regarding the mismatch between 

00 PL research on semantics of OOP and mainstream 00 software development, 

among researchers in the PL research community. According to Benjamin Pierce, a 

leading researcher on type systems ([56, p. 254]): 

. . . [given the practical advantages of nominal typing], it is no surprise to 

find that nominal type systems are the norm in mainstream programming 

languages. The research literature on programming languages, on the 

other hand, is almost completely concerned with structural type systems. 

As we discuss in more detail in Section 3.1.2, this non-alignment between how OOP 

is viewed by OOP researchers, on one hand, and how OOP is viewed by mainstream 

00 software developers, on the other, could be inhibiting new developments in 00 

language design, particularly regarding the development of static type systems. Given 

the ubiquity of computer software, and the non-diminishing popularity of OOP among 

mainstream software developers, we find this schism between PL researchers and 

mainstream software developers to be no longer tenable. 

To bridge this gap, we developed NOOP as a model of nominal object-oriented 

programming that carefully pays full attention to the nominal structure and nominal 

aspects of mainstream OOP. 

By developing NOOP, as a precise mathematical model of mainstream 00 soft­

ware that takes nominal features of mainstream OOP in full consideration, we defi-
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nitely hope to refocus PL research on models and type systems relevant to mainstream 

programming languages and software development. 

3.1.2 Enabling Progress in Type Systems of Mainstream 00 Languages 

In considering putative language designs similar to JAVA and SCALA, the lack of a 

clear model for OOP has proven to be an insurmountable obstacle. These putative 

designs could not be compared in any credible intuitively accessible way. 

JAVA wildcards (also called, wildcard types) is a feature of JAVA generics that 

was added to soften the mismatch between 00 subtyping and generics [70) .1 Due 

to the lack of a clear model for OOP, the mathematical analysis of JAVA wildcards 

has proven to be unwieldy, thus inhibiting the growth of JAVA, and decreasing the 

interest of software developers in the language. 

As a demonstration of how the inclusion of wildcards in the type system of JAVA 

has inhibited the growth of JAVA, one of the reasons the addition of JAVA Closures [41) 

to the JAVA programming language was delayed, was to give time for developing 

simpler proposals of JAVA Closures. As Joshua Bloch put it, while commenting on 

proposals for Closures, JAVA has "used up its complexity budget on generics, and in 

particular, on wildcards." [41, part 5). 

JAVA wildcards also affect other parts of the JAVA type system. The current JAVA 

type system in fact rests on shaky formal foundations; the JAVA local type inference 

algorithm is broken and there is no obvious "quick fix" [67). Newer 00 languages like 

SCALA [54) and X10 [60) have retreated from wildcard types (or, 'usage-site variance 

annotations') in the absence of good models of the current JAVA type system. 

1 Having a good understanding JAVA wildcards is important for confidently using some core classes 
of JAVA, such as the Hashtable class. 
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Having a precise model of nominal OOP, such as NOOP, can help prove the type 

safety of the JAVA type system when it gets extended with other putative features, 

and thus enable the future growth of the language and its even-wider adoption. Hav­

ing a precise model of OOP can also help in developing better designs for new 00 

languages. 

3.2 Related Research 

Prior research on the semantics of OOP has been strongly influenced by research on 

the semantics of functional programming. In this section, we identify the primary PL 

research sources on which this thesis rests, then we review some of the most important 

research results on the semantics of functional programming (FP) that are relevant to 

OOP. We conclude this section by reviewing prior research on the semantics of OOP. 

3.2.1 Main PL Research Sources 

The research in this thesis rests primarily on three sources: 

• A monograph on domain theory titled "Domain Theory: An Introduction" by 

Robert Cartwright and Rebecca Parsons [19); · 

• Luca Cardelli's seminal paper on the semantics of OOP titled "The Semantics 

of Multiple Inheritance" [14); and 

• Igarashi, Pierce, and Wadler's paper on the operational semantics and type 

systems of mainstream 00 languages titled "Featherweight Java: A Minimal 

Core Calculus for Java and GJ" [36). 

Domain theory is not a readily accessible branch of theoretical computer science. The 

first source above presents one of the simplest and most accessible introductions to 
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the field. Domain theory is a branch of computer science that builds on set theory, 

order theory, and topology. It was developed by Dana Scott, Gordon Plotkin, and 

others, to provide a framework for defining the mathematical meaning (the denota­

tional semantics) of computer programming languages. The first source [19] is au 

unpublished revision and simplification of Dana Scott's tutorial monograph [64] on 

domain theory. Domain theory can be considered as "the mathematics of compu­

tation". For.more details on domain theory see Appendix A. In Section 3.2.2.1 we 

present a very brief account of the historical development of domain theory. 

In the second source, Luca Cardelli presents a domain-theoretic model of structural 

OOP (which we call SOOP) that has served as the basis for nearly all subsequent 

research on the semantics of OOP. The model of OOP we present in this thesis can 

be viewed as an updated alternative to SOOP. Our model faithfully represents the 

nominal character of mainstream 00 languages, which arose after Cardelli's work. 

The third source [36] presents the most recent major work on the semantics of 

mainstream OOP. In this paper, the authors present a small language, called Feath­

erweight Java (FJ), that has a number of core features of a mainstream 00 PL (i.e., 

JAvA). Using operational semantics, the authors prove the type safety of F J. The 

authors, then, extend F J to FGJ (Featherweight Generic Java), and revise its eval­

uation rules twice: they revise the rules first to support first-class generics, and they 

revise them next to support "erased generics". Again using operational semantics, 

the authors prove the type safety of the extended language in each case. Igarashi, 

et al [36], provide strong evidence that the core type system in JAVA with generics 

(without wildcards) is safe. 

Each of these three main sources of PL research rests broadly on core research in 

functional programming, which we briefly survey in the next section. 
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Another major source on the semantics of OOP related to this thesis is Kim 

Bruce's textbook entitled 'Foundations of Object-Oriented Languages: Types and 

Semantics' [12]. Like SOOP, Bruce's book presumes that statically-typed 00 pro­

gramming languages should have a structural semantics rather than a nominal one. 

Of course, mainstream OOP has followed a course diametrically opposed to Bruce's 

vision. Since this thesis presents a firm theoretical foundation for mainstream, nom­

inal OOP, it can be 'viewed as the antithesis of Bruce's work. 

3.2.2 PL Research on Functional Programming 

Interest in the mathematical meaning of computer software--and, thus, in the math­

ematical modeling of programming languages-has started since the advent of high­

level functional programming languages. Since the production of the pioneering work 

by McCarthy [48, 49], Strachey [69], and Landin [42] in the 1960s, computer scien­

tists have compiled a deep body of research on program semantics and proof systems 

rooted in mathematical logic, most notably the .A-calculus, the "mother of all func­

tional languages". 

3.2.2.1 Domain Theory and Denotational Semantics 

Since the semantics of programming languages is closely related to the semantics of 

logical formulas in mathematics, it is not surprising that logician Dana Scott made 

the seminal breakthrough in program semantics by defining the first algebraic models 

for the untyped lambda-calculus [61, 62]. Scott's construction showed how to view 

function spaces as computational domains, resolving the mismatch in set theory be­

tween the cardinalities of D-+ D and D. Scott imposed an 'approximation' partial 

ordering on computational domains and restricted the set-theoretic function space 
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construction to continuous functions according to the approximation orderings on 

the input and output domains. From Scott's perspective, infinite computable objects 

like functions mapping N into N and infinite trees over N are the limits of progressively 

more defined finite approximations. 

Dana Scott [63, 69, 64, 65, 33] and Gordon Plotkin [58, 68, 59, 46, 4] subsequently 

generalized the constructions used in these models to accommodate arbitrary compu­

tational domains. Plotkin played the key role in eliminating the artificial maximum 

element (T) present in Scott's lattice-based models. The work of Scott and Plotkin 

helped bring into existence the fields of domain theory and denotational semantics. 

Domain theory is so-called because it studies the mathematical space (called a 

domain) that software data, as abstract entities, occupy. In denotational semantics, 

a program phrase (expressed in abstract syntax [48]) is assigned a denotation as its 

logical meaning. This denotation is an element of a semantic domain, as formulated 

by Scott and Plotkin. Abstract syntax, which was invented and named by McCarthy, 

might more accurately be called 'algebraic syntax' since it expresses all program 

text in terms a set of free algebraic generators called constructors. A denotational 

model simply interprets these algebraic generators as semantic functions on semantic 

domains, just as a model of a first order logical language interprets each function 

symbol in the logical language as a function mapping the input domains (in the 

model) for the symbol to the output domain (in the model). 

An important property of denotational semantics is that it is compositional. Us­

ing denotational semantics, the meaning of any term C(t1 , ..• , tn) in the abstract 

syntax is simply M [C] (M [t1] , ••• , M [tn] ) where M is the meaning function. 

The value M [C] is extracted from a table (the meaning of abstract-syntax-tree prim­

itives); the other invocations of M are recursive. 
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Using these two fields, Dana Scott and Gordon Plotkin constructed multiple mod­

els of the >.-calculus (Scott's original motivation for working on the mathematical 

meaning of software though was not to find models for >.-calculus. See Stoy's book [69] 

for details). Since then, all semantic models of functional programming languages 

have been rooted in domain theory, and are based on models of the >.-calculus. 

Research on domain theory and denotational semantics continued in the 1980's. 

PL researchers later built on top of Scott and Plotkin's work, helping establish 

and enrich the two fields (See [44, 15, 46, 16, 18, 17, 37]). Jung [28] presents a 

mathematically-oriented account of the historical development of domain theory and 

denotational semantics. 

Research compiled in the last fifty years on program semantics (and on proof 

systems, such as LCF [57, 31]) has supported the development of an array of sophis­

ticated statically-typed functional languages, including ML, MIRANDA, HASKELL, 

OCAML, and F#, and the development of corresponding semantic models rooted in 

domain theory. 

As part of PL research in "the functional world", a number of proof-assistants 

(sometimes called "theorem provers") have also been developed. With the help of 

the programmer, proof-assistants can ascertain the correctness of (some) functional 

software ( CoQ [7], for example, was used to prove security properties of the Java 

Card system (http: I I coq. inria. fr). Arguably equally-important, proof assistants 

can also be used to prove pure mathematical theorems). Research supporting recent 

proof-assistants (e.g., CoQ [7], and ISABELLE [55]) was based upon and inspired by 

research supporting earlier similar tools (e.g., LCF [57, 31], and NuPRL [21]). 

Proof assistants such as COQ and ISABELLE depend on the mathematical mean­

ing (the denotations) given to constructs of functional programs to reason about the 
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correctness of these programs. Having a precise domain-theoretic model of functional 

programming was, among other factors, an important factor in allowing the devel­

opment of these tools ([7]), and in allowing better (semi-)automatic reasoning about 

functional software. 

3.2.3 PL Research on Object-Oriented Programming 

According to Cardelli [14], "the method of structuring data in 00 programming 

languages can be said to derive from biology and taxonomy". In FP, the method 

of structuring data is mathematical. The data domains of FP are inductively de­

fined, using familiar mathematical constructions from set theory (disjoint unions, 

tuples/cross-products, and functions). 

Cardelli [14] states: 

Data, in OOP, is organized in a hierarchy of classes and subclasses, and 

data at any level of the hierarchy inherits all the attributes of data higher 

up in the hierarchy. The top level of this hierarchy is usually called the 

class of all objects; every datum is an object and every datum inherits the 

basic properties of objects, e.g., the ability to tell whether two objects are 

the same or not. Functions and procedures are considered as local actions 

of objects, as opposed to global operations acting over objects. 

Explaining the widespread use of OOP among mainstream software developers, and 

emphasizing the superiority of OOP over other styles of software development, Bruce [12] 

states that 

"there is real substance behind the reasons for the increasing use of object­

oriented languages. There seem to be clear advantages for the object-
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oriented style in organizing and reusing software components. For exam-

ple, subtyping and inheritance seem to make it much easier to adapt and 

reuse existing software components." 

The intuitiveness of OOP data structuring, and the scalability advantages of using 00 

languages, have helped establish OOP as a mainstream approach/style of computer 

programming. With roughly about 60% of software developers using 00 languages 

in developing their programs, OOP is currently the dominant style of programming 

in industrial software development2 • 

3.2.3.1 Early 00 Research 

Since its inception, OOP has attracted the attention of PL researchers, although not 

at the same level as functional programming did. 

Even though OOP was invented in 1967 (in SIMULA), in the 1980s OOP was still 

in its infancy. OOP did not impact industrial practice until personal computing with 

graphical user interfaces become an important mode of computation in the mid-80's. 

At this point, OOP also attracted the attention of PL researchers. 

During this period, most 00 programming was conducted in SMALLTALK, a 

dynamically-typed language. But the dominant mainstream language, C, was statically-

typed. Computing researchers and developers anticipated that statically-typed 00 

languages would emerge, supplanting SMALLTALK, but the precise form of those Ian-

guages and their type systems was unknown. Initially, PL researchers anticipated 

building static type systems for 00 languages as extensions of the sophisticated type 

2See, for example, statistics of the TIOBE index (at http: I /www. tiobe. com/index. php/ 
content/paperinfo/tpci/index.html), and at http://www.langpop.com. 
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systems [51 J they had recently developed and refined for functional programming 

languages. 

Benjamin Pierce [56] presents an account of the development of research on the 

semantics of OOP, where he states that: 

"the first interpretation of objects in a typed .A-calculus was based on 

recursively-defined records. It was introduced by Cardelli [14] and studied 

in many variations by Kamin and Reddy [38, 39], Cook and Palsberg [22] 

and Mitchell [53]. In its typed form, this model was used quite effectively 

for the denotational semantics of untyped 00 languages. In its typed 

form, it could be used to encode individual 00 examples, but it caused 

difficulties with uniform interpretations of typed 00 languages. The most 

successful effort in this direction was carried out by Cook et al. [23, 24] ." 

Our assessment of the effectiveness of these models for untyped 00 languages (like 

SMALLTALK) is less sanguine than Pierce's evaluation, because these models do not 

accommodate class name information .in objects, precluding the definition of oper-

ations like SMALLTALK isMemberOf, akin to JAVA instanceof, and type casting 

operations. The PL research community did not think such operations were impor-

tant, but they are critical for confirming inheritance relationships and debugging code 

that relies on inheritance.3 ). 

Cook's paper [24], emphatically-titled 'Inheritance is not subtyping', is the pub­

lication that led PL researchers to the mistaken folklore that inheritance and 00 

subtyping should not be identified. Cook's research was predicated on modeling ob-

jects as records devoid of class names (following Cardelli's footsteps [14]), and on 

3In fact, it is impossible to write an informative output operation, akin to the JAVA toStringO 
method, in the absence of such an operation like instanceof, because the program cannot determine 
the class of an object! 
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Cook's modeling of recursive types (e. g., SelfType), which Cardelli had intentionally 

omitted from SOOP4 . 

During this period of early 00 research, research on functional programming was 

"the measuring rod" that set the standards for what is right and what is wrong in 

OOP research. Among PL researchers, research on FP was the ideal to be sought, and 

on whose footsteps research on OOP should follow. This ideal included the implicit 

assumption of structural typing, which is a reasonable assumption in functional pro­

gramming. In short, no one in the PL research community envisioned the critical role 

that nominality will play in OOP, both in language design and software development. 

In the 1990s, research on OOP was focused on even more encoding of 00 features 

using functional ones. In 1994, Bruce presented a paper [11] on the semantics of a 

functional object-oriented language. PL researchers wanted OOP to be formalized as 

a dialect of the typed lambda calculus using type constructions familiar to functional 

programmers. The desire to view OOP as a subset or subdiscipline of FP elimi­

nated nominal information from objects, in conflict with how 00 software developers 

conceptualize 00 data. 

After writing the above, Pierce [56] further continues that "Meanwhile, frustrated 

by the difficulties of encoding objects in A-calculi, Abadi and Cardelli introduced a 

calculus of primitive objects [3]." Abadi and Cardelli [3] thus did not map objects to 

corresponding "lower-level" functional constructs. Objects were considered a primi­

tive entity on their own. Abadi and Cardelli gave an operational semantics to their 

object calculus. The subtyping rules in their work, however, still respected structural 

subtyping, precluding the inclusion of class names in object denotations. Objects in 

Abadi and Cardelli's work [3) did not carry the class name of objects, and inheritance 

4 Cardelli states in [14, page 11] that 'recursive types are not treated in the formal semantics' 
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relation was not explicitly specified between object types. 

3.2.3.2 Recent 00 Research 

To provide a comprehensive account of structural OOP, Bruce wrote his book on 

'Foundations of Object-Oriented Languages: Types and Semantics' [12]. Bruce based 

his view of 00 subtyping on that of Cardelli [12, p. 72] .. 

In this book, Bruce further separates inheritance and subtyping by introducing 

the notion of 'matching' as a generalization of structural subtyping. Bruce's notion 

of matching did not gain credence among software developers and language designers 

because it critically relies on the absence of nominal information (class names) in 

object denotations. Given a structural view of objects, matching makes sense but 

software developers conceptualize objects as carrying class names and conforming to 

invariant behavioral contracts associated with their class names. 

Another significant foundational work that also adopted the structural view of 

OOP is that of Anthony Simons, who presented, in the Journal of Object Technol­

ogy, a series of twenty articles (in 2002-2005) on 'The Theory of Classification' [66]. 

Based on the structural view of objects, Simons also made a clear distinction between 

subclassing (inheritance) and subtyping in his articles. 

The most significant work on the operational semantics of a mainstream 00 lan­

guages is Igarashi, Pierce and Wadler's work on FJ/FGJ (as a "featherweight" version 

of JAVA), presented in [36], [56], and other earlier publications. The development of 

F J /FGJ was motivated by the need to prove the type soundness of the "erased gener­

ics" semantics used in Generic Java. We briefly discussed the main research results 

of FJ/FGJ in Section 3.2.1. 
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Disenchantment with structural OOP Despite this situation where many 00 

PL researchers have adopted a non-nominal view of objects, the proponents of func­

tional programming appear to have become disenchanted with functionalized, struc­

tural formulations of inheritance (OOP). Supporting our belief in this regard is that, 

in 2002, David MacQueen argued [45] that 00 features should not be added to 

STANDARD ML [51], despite them being already included in OCAML [43] (OCAML 

is another widely-used variant of ML). One of the reasons MacQueen [45] did not 

mention explicitly for not favoring the mixing ML with 00 features is that, if they 

were added to STANDARD ML (which,. like all functional programming languages, is 

a structurally-typed functional programming language), 00 typing features would 

have to be those of structural OOP, not ones of nominal OOP (so as to make the sup­

posed new 00 features of Standard ML mesh well with the already-structural type 

system of STANDARD ML). But then, MacQueen argued, these (structural) OOP 

features will not match with the (nominal) typing concepts mainstream 00 software 

developers are familiar with. For this reason, and for other reasons that MacQueen 

details [45], if ML became object-oriented its 00 features are likely to be unused, or 

will be cumbersome and unnatural to use. 
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Chapter 4 

COOP: A Simple Structural Model of OOP 

In this and the following two chapters we present the details of defining and con­

structing NOOP, our model of nominal OOP. First, this chapter presents COOP 

as a simple structural model of OOP. Chapter 5 then presents class signatures and 

discusses how signatures capture the nominality features of nominal OOP. By enrich­

ing COOP, Chapter 6 then uses signatures to define preNOOP. preNOOP is an 

unfiltered model of nominal OOP because it includes invalid "objects" (whose record 

components do not match their signatures). In Chapter 6, thus, preNOOP is then 

filtered by a simple projection to produce NOOP, as our mathematical model of 

mainstream OOP. 

The reasons for presenting a structural model of OOP (i.e., COOP) first, before 

presenting NOOP, are threefold. First, earlier research on structural OOP needs to 

be put on a more rigorous footing. The literature on models of structural OOP glosses 

over important technical details like constructing a domain of records, having methods 

of multiple arity, and being purely 00 (i.e., not allowing functions and non-object 

values have first-class status), which we address. Second, the construction of COOP 

is similar to but simpler than the construction ofNOOP. Understanding how COOP 

is constructed makes it easier to understand the construction of NOOP. Third, and 

most importantly, the rigorous definition of COOP alongside the definition of NOOP 

clarifies the distinction between structural OOP and nominal OOP. 

As mathematical models, COOP and NOOP are collections of domains. In 
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denotational semantics, domains (partially ordered sets with certain properties as 

defined by Scott [65] and others [58, 59, 46, 37]) are used to model computational 

constructs and notions (as explained in more detail in Appendix A). Domains of 

COOP and NOOP correspond to the set of all possible object values, and field 

values, and method values (using JAVA terminology) of structural and nominal 00 

programs. Similarly, specific subdomains of COOP and NOOP domains correspond 

to specific structural and nominal types definable in statically-typed structural and 

nominal 00 languages. COOP and NOOP, thus, give an abstract mathematical 

meaning to the most fundamental concepts of structural and nominal OOP. 

The domains of COOP1 are the solution of a reflexive domain equation. Ap-

pendix A presents a summary of the main definitions and theorems of domain theory 

presented in Dana Scott's monograph [64], as updated by Cartwright and Parsons [19]. 

In Section 4.1 of this chapter, based on the domain theory foundations recounted in 

Appendix A, we first present a new domain constructor, the records domain construe-

tor -o, that formulates records as finite functions. 

In Section 4.3 we then show how the COOP domains are constructed as the solu-

tion of the COOP domain equation. The domains of COOP are constructed using 

standard domain theoretic construction methods that make use of standard domain 

constructors as well as the records domain constructor we described in Section 4.1. 

The view of objects in COOP is a very simple one. An object in COOP is a record 

of functions mapping sequences of objects to objects. In other words, in COOP an 

object is 'a finite collection of labeled methods', where methods are functions from 

sequences of objects to objects. In COOP, we encode fields as zero-ary methods. 

1Similarly, NOOP domains are also the solution of a reflexive domain equation. We will, however, 
drop any further mention of NOOP in this chapter unless absolutely necessary. 
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Given that objects of COOP, like those of SOOP, miss nominality information, 

COOP is also a structural model of OOP. Given that it is a structural model of 

OOP, COOP closely resembles SOOP (i.e., Cardelli's model of OOP, presented 

in [13, 14]). The construction of COOP shows how to rigorously construct a model 

like Cardelli's. 

COOP, however, differs from SOOP in five respects: 

1. Unlike SOOP, but similar to many mainstream 00 languages, the COOP do-

main equation does not allow functions as first-class values (thus, COOP does 

not support function currying). Only objects are first-class values in COOP. 

2. Unlike SOOP, COOP uses the records domain constructor, --<>, to construct 

records (rather than the standard continuous functions domain constructor used 

in SOOP). The definition of--<> is presented in Section 4.1. 

3. Unlike SOOP, methods in COOP objects are multi-ary functions over objects. 2 

4. For simplicity, COOP objects have fields only modeled by (constant) 0-ary 

functions, not as a separate component in objects. Thus, names of fields and 

methods in COOP objects share the same namespace. 

5. Since we do not use COOP (nor NOOP) to prove type safety results, COOP 

does not need to have a counterpart to the W ={wrong} domain that is used 

in SOOP to detect type errors. 

When we present NOOP, in Chapter 6, we will show that COOP, and thus also 

SOOP, does not accurately capture the notion of inheritance as it has evolved in 

2Since SOOP defines a domain for a simple functional language with objects based on ML, it is 
natural to force all functions to be unary (as in ML). In this context, a multi-ary function can be 
transparently curried. 
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statically-typed nominal 00 languages (like JAVA [32], C# [2], SCALA [54], and 

XlO [60]). 

4.1 Records Domain Constructor ( -o) 

As mentioned above, COOP models objects as records. In this section, we present 

the records domain constructor, --o, which constructs domains of records, and we 

discuss its mathematical properties. The definition of this constructor makes use of 

the standard definitions from basic domain theory. We present a summary of these 

in Appendix A. 

4.1.1 Record Functions 

A record (or COOP object) can be viewed as a finite mapping from a set of labels 

(member names) to methods. Thus, we model records using record functions, which 

are explicitly finite. A record function is a finite function paired with a tag repre­

senting the input domain of the function. The tag of a record function modeling a 

record thus represents the set of labels of the record. In agreement with our earlier 

definition of shapes (for objects) in Section 2.1.3.1, we similarly call the set of labels 

of a record the shape of the record. The tag of a record function thus tells the shape 

of the record. 

Due to the finiteness of the shape of an object, and due to the flatness of the shape 

when it is formulated as an input domain to record functions, modeling objects of 

COOP as records motivates defining a new domain constructor that is similar to but 

different from conventional functional domain constructors. This domain constructor 

constructs record functions, which are explicitly finite. 3 

3 In this thesis, we do not follow Cardelli's modeling of records (in [14]) as infinite functions. 
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4.1.2 Definition of --o 

Let C be the flat domain containing all record labels (member names) plus an extra 

improper bottom label, ..i.e, that makes C be a domain (all domains must have a 

bottom element). Let V be an arbitrary domain, with approximation ordering Cv 

and bottom element ..lv, that contains the values members of records are mapped to. 

We use <S: to denote the subdomain relation (See [19, Definition 6.2]). If we use 

Ct to range over arbitrary finite subdomains of C (all domains £ 1 contain ..i.e), then 

we define the domain R = C --o V as the domain of record functions from C to V, 

where 

IRI = {..l'R} u u R(Cf, V). (4.1) 
.Ct!E.C 

Sets R(£1, V) are defined as 

(4.2) 

where tag is a function that maps the shape corresponding to a domain C 1 to a 

unique tag in a countable set of tags (whose format we leave unspecified), and where 

C 1 ~ V is the domain of strict continuous functions from C 1 into V. 4 

Thus, a record r = {h 1---+ db··· , lk 1---+ dk} is modeled by a record function 

Cardelli states that he is only interested in the function mapping a cofinite subset of labels to an 
error value, but this subset of the function space used in Cardelli's domain equation does not form 
a subdomain of the function defined in Cardelli's domain equation. So the solution to Cardelli's 
domain equation necessarily contains superfluous elements. In contrast, we use a record function 
construction (instead of a conventional function space constructor) whose elements are in one-to­
one correspondence with Cardelli's set of interest but form a domain. So our model of records is 
equivalent to Cardelli's in spirit, but our record domain excludes the 'junk' elements that technically 
exist in Cardelli's domain but Cardelli asks the reader to ignore. 

4 Since the functions in .CJ --<>-+ V are strict, the undefined element ..i.e is always mapped to ..lv. 
Moreover .C J is flat, so there is no ordering relationship between label names it and l2 in I.C J I \ {..i.e}. 
Hence the functions in .C J --<>-+ V precisely correspond to ordinary mathematical functions from 
I.CJI \{..i.e} to v. 
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r = (tag( {it,··· , lk} ), {(..L.c, ..Lv), (it, d1), · · · , (lk, dk)} ). It should be noted that -o 

does not disallow constructing the (unique) record function (tag({}), { ( ..L.c, ..Lv)}) that 

models the empty record (one with an empty set oflabels, for which 1£11 = {..L.c}). 

The approximation ordering, Cn, over elements of R is defined as follows . ..Ln 

approximates all elements of R. The bottom element ..Ln approximates all elements 

of the domain R. Elements r and r' in R with unequal tags are unrelated to one 

another. On the other hand, elements rand r' with the same tag are ordered by their 

embedded functions (which must be elements of the same function domain). 

Hence, for two non-bottom record functions r, r' in R that are defined over the 

same .Cf, where I.C1I = {..L.c, it,··· , lk}, if 

and 

where d1 , · · · , dk and d~, · · · , dk are elements in V, then we define 

(4.3) 

Theorem 4.1. Given a flat countable domain of labels .C and an arbitmry domain 

V, .C -o V is a domain. 

Proof. Direct consequence of Lemma B.l in Appendix B. D 
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4.1.3 Properties of the Records Domain Constructor ( -o) 

Because we will use the records domain constructor -o in constructing domains as 

least fixed points (lfp's) of functions over domains, as subdomains of Scott's universal 

domain U, we need to ascertain -o has the domain-theoretic properties needed so 

that it can be used inside these functions. In this section we thus proof that -o is a 

continuous function over its input domain V (i.e., that, as a function over domains, 

-o is monotonic with respect to the subdomain relation, <S, and that it preserves lubs 

of domains under the same relation). 

4.1.3.1 Domain Constructor -o is Continuous 

Theorem 4.2. -o is a continuous function on fiat domain£ and arbitrary V. 

Proof. By lemmas B.2 and B.3 in Section B.2 of Appendix B. 0 

This concludes our proof that -o constructs subdomains of Scott's universal do­

main U. Armed with -o, we now proceed to presenting the construction of COOP, 

as a simple structural model of OOP. 

4.2 COOP Domain Equation 

The domain equation that defines COOP makes use of two simple domains B and £. 

Domain B is a domain of atomic "base objects". B could be a domain that contains a 

single non-bottom value, e.g., unit or null, or the set of Boolean values {true, false}, 

the set of integers, or some more complex set of primitive values that is the union of 

Boolean values and various forms of numbers (e.g., whole numbers and floats) and 

other primitive objects, such as characters and strings, etc. 
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Domain £, is a flat countable non-empty domain of labels. Elements of £ (or, 

1£1, more accurately) are proper labels used as names of record members (fields and 

methods), or the improper "bottom label", .l.c, that is added to proper labels to make 

£, a flat domain. Elements of £, other than .l.c (proper labels) will serve as method 

names in COOP. 

The domain equation of COOP is 

0 = B + £--<) (0* ---<>-+ 0) (4.4) 

Domain 0 is a domain of simple objects, and it is the primary domain of COOP. 

Equation (4.4) states that a COOP object (an element of 0) is either (1) a base 

object (an element of domain B); or is (2) a record of methods (i.e., a finite mapping 

from labels, functioning as method names, to functions), where, in turn, methods are 

functions from sequences of objects to objects. 

4.3 COOP Construction 

The construction of domain 0, as the solution of domain equation (4.4), is done using 

standard techniques for solving recursive domain equations (we use the 'least fixed 

point (lfp) construction', which, according to Plotkin [58), is equivalent to the 'inverse 

limit' construction). 

Conceptually, the right-hand-side (RHS) of the COOP domain equation (Equa­

tion ( 4.4)) is interpreted as a function 

(4.5) 
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over domains, from a putative interpretation oi for 0 to a better approximation oi+l 

for 0. Each element in this sequence is a domain. The solution, 0, to the domain 

equation is the least upper bound (lub) of the sequence Oo, 01, .... 

Thus, the construction of 0 proceeds in iterations, numbered i + 1 fori ~ 0. We 

use the empty domain as the initial value, 0 0 , for domain 0, and for each iteration 

i + 1 we take the output domain produced by the domain constructions using the 

domains Oi, £, and B (the values for the function given by Formula (4.5)) as the 

domain oi+l introduced in iteration i + 1. 

4.3.1 A General COOP Construction Iteration 

For a general iteration i + 1 in the construction of COOP, the construction method 

thus proceeds by constructing 

using the strict continuous functions domain constructor, ---o--+, and the sequences 

domain constructor, *. Then, using the records domain constructor, --o, presented in 

Section 4.1, we construct the domain of records 

and, finally, using the coalesced sum domain constructor, +, we construct 
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4.3.2 The Solution of the COOP Domain Equation 

Given the continuity of all domain constructors used in the function defined by the 

lambda expression (4.5), and given that composition of domain constructors preserves 

continuity, the function defined by the RHS of the COOP domain equation is a 

continuous function [19, Theorem 2.10 and Corollary 2.11]. The least upper bound 

(lub) of the sequence 0 0 , 0 1 , ... of domains constructed in the construction iterations 

is the least fixed point (lfp) of the function given by Formula (4.5). According to 

standard theorems of domain theory about lfp of continuous functions, the lub of the 

domains oi (i.e., their "limit") is simply their union, and this lub is the solution of 

Equation (4.4). 

To complete the construction of COOP, we thus construct the solution 0 of the 

COOP domain equation by constructing the union of all constructed domains Oi 

, i.e., 0 will be given by the equation 
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Chapter 5 

Signatures and Nominality 

And He taught Adam the names - all of them. 

[The Glorious Qur'an 2:31] 

Class signatures are syntactic descriptions of the external interface of classes, 

and thus of the common interface of the instances of classes. Given the interface 

information class signatures contain, class signatures can be used as the basis for 

type systems that confirm that objects are used consistently and properly within a 

program. Embedding signature closures as tags inside objects of our model of nominal 

OOP (as we do in Chapter 6) makes o~jects of our model be nominal objects. 

The purpose of having signatures can be summarized by noticing that they will 

be used as "nominal object type expressions" embedded inside objects as part of the 

identity of the objects. Class signatures support the nominal typing and nominal 

subtyping features of nominal object-oriented programs. 

5.1 Signature Constructs 

For the purposes of building NOOP objects we have three signature constructs: class 

signatures, (class) signature environments, and (class) signature closures. Members 

(fields and methods) of objects also have field signatures and method signatures. 

Signatures are constructed entirely from class names and field/method names, 

using standard syntactic set constructors. We use signatures to specify the interfaces 
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of classes, fields, and methods.1 The signature for a class specifies the class name, 

the name of the signatures of the superclasses of the class, and the signatures for the 

class members. A field signature specifies the name of the field and the class name 

for field values. A method signature specifies the name of the method, a (possibly 

empty) sequence of class names describing the inputs to the method, and the class 

name class describing the output of the method. Information in class signatures is 

thus derived from the text of classes of 00 programs. This information includes the 

names and signatures of the fields and methods of the objects it describes. 

The class name inside an class signature is used as a signature name. Signature 

names are part of the identity of class signatures. Two class signatures with different 

names are different, even if they carry the same member (field/method) signatures 

information. Having signature names in class signatures as part of the identity of 

these class signatures (i.e., part of their meaning) characterizes class signatures as 

nominal constructs. 

A class signature includes names of class signatures corresponding to immediate 

superclasses of the class. The signatures referred to are called the supersignatures of 

the class signature. Conditions we present in the definition of class signatures ensure 

that member signatures inside a class signature match those in its supersignatures, 

thus agreeing with 00 inheritance. Explicitly specifying the supersignatures of a class 

signature identifies the nominal structure of the class hierarchy immediately above 

the class in question. It also agrees with the inheritance of the behavioral contract 

associated with class names, which is what is intended to be inherited in nominal 

00. 

1 As noted earlier, in the context of this thesis, JAVA interfaces are treated as (abstract) classes. 
Our notion of object and class interfaces should not be confused with interfaces of JAVA and other 
00 languages. 
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Viewed differently, signatures for classes, fields, and methods, describe the in­

tended external interface of these entities, in terms of names. A class signature 

specifies the name of a class and its immediate superclasses, and the signatures of its 

fields and methods. A field signature specifies the name of the class describing the 

associated values of the field . A method signature specifies the names of the classes 

associated with the result and the input arguments of the methods. 

A signature environment is a finite set of class signatures such that no class name 

appears as the name of two signatures. They can be viewed thus as functions from 

class/signature names to class signatures. A signature closure is a pair of a signature 

name and a minimal signature environment that includes a class signature with that 

signature name (called a "root" class signature) and that is referentially-closed over 

all class names in the root class signature. 

In the following subsections all syntactic constructs related to class signatures are 

rigorously defined. Signature environments and signature closures must be internally 

consistent to model nominal typing and nominal subtyping in OOP. Conditions of 

our inductive definitions of class signatures, signature environments and signature 

closures, ensure the defined constructs satisfy the required internal consistency prop­

erties. 

5.1.1 Class Signatures 

Class signatures are the first constructs we define. Class signatures are syntactic 

elements of a set S. If N is the set of signature names, and L, as before, is the set of 

member names, then the set S of class signatures is defined by the equation 

s = N X N* X FS* X MS* (5.1) 
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where x is the set theoretic cross product set constructor, and* is the finite-sequences 

constructor, and where 

FS = L x N 

is the set of field signatures, and 

MS =LX N* X N 

is the set of method signatures. 

The equation for 5 formally expresses the view presented above that a class signa­

ture is composed of four components: (a) a signature name, (b) a sequence of names 

of supersignatures, (c) a sequence of field signatures, and (d) a sequence of method 

signatures. 

The use of signature names (members of N) in Equation (5.1) characterizes class 

signatures as nominal constructs. The first component of a class signature ( corre­

sponding to the first occurrence of N in Equation (5.1)) denotes the signature name 

of the class signature. 

The second component of a signature, the sequence of signature names, N*, is the 

supersignature names component of the class signature. Note that the supersigna­

tures component of a class signature can be the empty sequence, implying the class 

signature which this empty sequence is a component of has no supersignatures. 

Having the names of supersignatures of a class signature explicitly included as a 

component of the class signature is an essential and critical feature in the modeling 

of nominal subtyping in nominal OOP. 

The last two components of a class signature are its field signatures (a finite se­

quence of field signatures), and its method signatures (a finite sequence of method 
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signatures). A field signature is a pair of a field name (a member of L) and a class 

signature name. Similarly, a method signature is a triple of a method name, a se-

quence of class signature names (for the method parameters), and a signature name 

for the method result.2 

In the sequel we use metavariable nm to range over members of the set N. 

Metavariables a and b are used to range over members of L, where a stands for 

field names and b stands for method names. Also, for visual clarity, we use the more 

suggestive symbol '~' for syntactic pairing of the second and third components of a 

method signature, in place of the standard ' , ' pairing symbol used elsewhere. 

Not all members of S are class signatures. To agree with our intuitions about 

describing the interfaces of classes and their objects, a member s of S is a class 

signature if its field signatures component (the third component of s) has no duplicate 

field names and its method signatures component (the fourth component of s) has 

no duplicate method names (for simplicity, thus, method overloading is not allowed 

in our modeling of nominal OOP). It should be noted that field names and method 

names are in separate name spaces and thus a field and a method in s can share the 

same name .. 

2 An astute reader may note that, in Equation (5.1), the order of elements in sequences of su­
persignature names, sequences of field signatures, and sequences of method signatures, is actually 
immaterial. Repetition of elements inside these three kinds of sequences is also not allowed. In 
Equation (5.1), * can thus be replaced in these three case by a finite sets constructor (where fiJJ(X) 
or X* can be used to denote the set of finite subsets of X). For the fourth use of *, that of signature 
names of method parameters, order does matter and repetition of signature names inside the se­
quences is allowed. Instead of using (the more-accurate) finite sets in the three other cases, we keep 
using (the more-intuitive) finite sequences, but, in Section 5.2, we then define and u..<;e an equivalence 
relation for class signatures that asserts the equivalence of signatures that have equivalent sequences 
(ignoring the order of their elements and any element repetitions) in these three components. This 
approach somewhat mimics more closely what language compilers usually do. 
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5.1.2 Signature Environments 

Signature environments are finite sets of class signatures where each signature name is 

associated with exactly one signature3 . If nm is guaranteed to be the signature name 

of some class signature in a signature environment se, we use the function-application 

notation se( nm) to refer to this particular class signature. 

Similar to class signatures, not all finite sets with unique class names are sig-

nature names. In addition to uniqueness of signature names, a finite set of class 

signatures needs to satisfy the following consistency conditions to function as a signa-

ture environments. It first should be noted that a signature environment specifies two 

relations: an immediate supersignature relation and a direct-reference (adjacency) re-

lation. The first is a subset of the second. These two relations can be represented as 

directed graphs. The consistency conditions constrain these two relations and their 

corresponding graphs. 

A finite set se of class signatures is a signature environment if and only if 

1. A class signature, with the right signature name, belongs to se for each signature 

reference (by a signature name) in each class signature of se. This is a closure 

and consistency constraint on signature environments. 

2. The graph for the supersignature relation for se must be cycle-free (i.e., an 

acyclic graph, commonly called a DAG). This well-foundedness constraint forces 

se to have at least one class signature that has no supersignatures (i.e., the se-

quence of supersignature names of such a class signature is the empty sequence). 

3 Defining signature environments as constrained sets, rather than functions from signature names 
to class signatures, is motivated by redundancy concerns similar to those that could be met in tables 
of relational databases, given that each "key" (i.e., a signature name) in a signature environment is 
mapped to a unique class signature. 
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3. The set of member (field and method) signatures of each class signature 8 in 

8e is a superset of the set of member signatures of each supersignature named 

by the supersignatures component of 8 (i.e., the set of member signatures of 

8 is a superset of the union of those sets for the supersignatures). This condi-

tion makes class signatures in 8e reflect the explicit inheritance information in 

nominal OOP, by requiring a class signature to only extend (add to) the set of 

members supported by an explicitly-specified supersignature .. By requiring the 

members of a class signature to be a superset of the members of all of its super-

signatures exact matching of member signatures is required. This requirement 

enforces an invariant sub typing rule for field and method signatures. 4 

4. The finite set of class signatures 8e is a signature environment if and only if it 

satisfies all constraints above. A finite set of class signatures that does not sat-

isfy one or more of the above constraints above is not a signature environment. 

5.1.2.1 Circularity in Signature Environments 

Even though consistency conditions for signature environments preclude a class sig­

nature from circularly naming itself as one of its own supersignatures (even indirectly 

via other class signatures), the conditions do not preclude a class signature from re-

ferring to itself via its name in the signature of a field, or that of a method parameter 

or method return value. This kind of reference is called a circular reference. 

4We enforce an invariant subtyping rule of members for the sake of simplicity, and for the sake of 
mimicking pre-generics JAVA. This constraint can be relaxed to model covariant subtyping of method 
return value signatures (which is available in mainstream 00 languages such as JAVA 5.0+ ), but 
we do not do so in this thesis. The constraint can even be further relaxed to model field signature 
covariant subtyping, as well as to model contravariance of subtyping of method parameter signatures. 
However, a relaxed constraint that allows covariance of field signatures/types, in particular, is known 
to be unsound in 00 languages with mutation (e.g., in EIFFEL [50, 26]). 
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The consistency conditions also allow for expressing mutually-dependent class 

signatures, where a signature refers to itself indirectly via other class signatures. This 

kind of indirect reference is called a mutually-circular reference. Circular references 

are indeed quite common in mainstream OOP, to allow developers to simulate real­

world entities that are circularly-dependent5 . The nominality of classes in mainstream 

OOP allows them to readily handle circular references, since they merely involve the 

use of class names. 

5.1.3 Signature Closures 

Having defined class signatures and signature environments, a (class) signature closure 

is a pair of a signature name and a signature environment. The first component of 

a signature closure, the signature name, tells which class signature in the second 

component (the signature environment) is the "root" class signature of the signature 

environment. Thus, not all pairs of signature names and signature environments are 

signature closures. Such a pair sc = ( nm, se) is a signature closure if and only if 

there is a class signature s inside se with signature name nm (i.e., nm is in the 

domain of se when se is viewed as a function, and thus se(nm) is always defined) 

and if the direct-reference (adjacency) relation corresponding to se is referentially-

closed relative to s. The class signatures then is called the "root" signature of the sc. 

Relative to the root class signature, a signature environment is thus minimal (contains 

no unnecessary class signatures). All class signatures in the signature environment of 

a signature closure are accessible via paths in the adjacency graph of the signature 

environment starting from the node corresponding to the root signature name. 

5 Check, for example, the circularity in the definitions of the core 2,000, or so, key words used to 
define the meaning of words in a dictionary. 
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The set of all signature closures is used to construct a flat domain S that is used 

in the construction of NOOP in Chapter 6. 

5.2 Signature Equality 

Checking the equality of signature constructs is needed in multiple places in our 

modeling of nominal OOP. Equality is defined on signatures as would be expected 

given their definitions above. 

5.2.1 Equality of Class Signatures 

For class signatures 51 = (nm~, [nms1], [fss1], [mss1]) and 52 = (nm2, [nms2], [fss2], [mss2]). 

we have 

where - is an equivalence relation on sequences that ignores the order and repetitions 

of elements of a sequence, and where for two field signatures (in sequences fss1 and 

fss2), fs1 = (a~, nm1) and fs2 = (a2, nm2), we have 

and similarly, for two method signatures (in sequences mss1 and mss2), ms1 = (b~, [nms1] ~ nml) 

and ms2 = (b2, [nms2] ~ nm2), we have 
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(note that sequence equality, not sequence equivalence, is used. Order and repetitions 

do matter for method parameter signatures). 

We should particularly note that the names of two class signatures have to be 

equal for the two signatures to be equal. Two class signatures that share all other 

components but have different signature names are not equal, since a signature name 

is part of its identity. 

5.2.2 Equality of Signature Environments and Signature Closures 

Two signature environments are equal if and only if they are equal as sets. 6 Two 

signature closures are equal if and only if they are equal as pairs, i.e., if they have 

equal components. Equal signature closures have the same signature name and equal 

signature environments. 

5.3 Extension of Signature Environments 

A relation between signature environments that we will need when we discuss in-

heritance in the next section (Section 5.4) is the extension relation. A signature 

environment se2 extends a signature environment se1 (written se2 ..,.. se1) if se2 binds 

the names defined in se1 to exactly the same class signatures as se1 does. Viewed as 

sets se2 would be a superset of se1 . Thus we have 

It should be noted that se2 may have extra signature names mapped to extra 

6 It should be noted that because class names (as signature names) are part of the identity of 
class signatures, the consistent renaming of all class signatures in a signature environment ("alpha­
renaming") does not produce an equivalent signature environment. Signature names are thus not 
.,,.r;,. hlP n"mP<: hPr,.nc:P nn HkP .,,.r;,. hlP n"mPc: c:;an,.tnrP n"mpc: "rP hnnnrl tn hPh .. ,dnr" 1 rnnt.r .. rt.c: 
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class signatures not in se1 . Given it is the same as the subset relation, the extension 

relation between signature environments is a partial-order relation. 

5.4 Inheritance and Subsigning 

Inheritance is a defining characteristic of object-oriented programming. Cook [23] 

defines inheritance as 'a mechanism for the definition of new program units by mod­

ifying existing ones in the presence of self-reference'. Cook has multiple notions of 

inheritance. For the purposes of this thesis, we are only interested in Cook's notion of 

type inheritance. For object types, thus, Cook's defines type inheritance as 'a mech­

anism for the definition of new class signatures by modifying existing ones, in the 

presence of "self-type" '. 

In this thesis, we define inheritance a bit differently. We define inheritance in 

nominal OOP languages as 'a mechanism by which a new class signature is defined 

by adding members to an explicitly-specified set of other class signatures'. 

In nominal OOP, inheritance (of class signatures) makes use of class names to ex­

plicitly specify the interfaces (implicitly including the informal behavioral contracts) 

a class and its instances adhere to. In our model of nominal OOP, thus, object in­

terface and contract inheritance is modeled by class signatures explicitly specifying 

their supersignatures. 

The supersignatures component of class signatures defines a syntactic ordering 

relation between signature closures. We call this relation between signature closures 

subsigning. 

A signature closure sc2 is an immediate subsignature (~Sh) of a signature closure sc1 

if the signature environment of sc2 is an extension (..,..) of the signature environment 

of sc1 and the signature name of sc1 is in the supersignature names component of the 
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root signature of sc2 , i.e., 

The subsigning relation ~ is the reflexive transitive closure of the immediate 

subsignature relation ~1 , where we use the symbol ~ to denote the subsigning relation 

between signature closures. 



Chapter 6 

NOOP: A Domain-Theoretic Model of Nominal 
Object-Oriented Programming 
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A model focuses on parts rother than the whole. It is a caricature 

which overemphasizes some features at the expense of others. A model 

is a fetish in which the importance of one key part of the object of interest 

is obsessively exaggeroted until it comes to represent the object's quintessence. 

-Physicist Prof. Emanuel Derman 

This chapter presents the construction of NOOP: a mathematical, domain­

theoretic model of nominal OOP. The construction of NOOP uses the same con-

struction method we employed for building COOP (our simple structural model of 

OOP, presented in Chapter 4). The construction of NOOP also uses the same domain 

constructors we used for constructing COOP. The algebraic structure of NOOP, 

however, is different from that of COOP. 

To model nominality, NOOP pairs appropriate signature closures with records 

of fields and methods to model objects in nominal OOP. A NOOP object contains 

two records-one for field bindings and one for method bindings-to accommodate 

separate namespaces for fields and methods. 1 

The formulation of objects in NOOP is rich enough that no base domain (like 

domain Bin the definition of COOP) is necessary. 

The construction of NOOP proceeds in two steps. First, we use a simple recursive 

domain equation to define a domain of objects containing signature information as 

1 As is the case in mainstream 00 languages such as JAVA and C#. 
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well as member bindings in separate field and method records. Second, we "filter 

out" invalid objects where the signature information is inconsistent with the member 

bindings. A simple recursive definition of objects with signature information does not 

force the signature information embedded in objects to conform with their member 

bindings. It is easy to define a projection on this raw domain that eliminates invalid 

objects. 

We define NOOP as being the model with only the domain of valid objects in 

the constructed solution of the NOOP domain equation. Hence, the solution of the 

NOOP domain equation does not define the actual NOOP domain of objects but 

constructs a larger domain of a model that we call preNOOP. We then define the 

domain of NOOP object as the image (range) of a filtering function on preNOOP 

that only retains objects with consistent signature information. A filtering function 

on domain is well-defined if its image is a subdomain of the input domain (See Defi-

nition A.20 in Appendix A). 

As constructed, NOOP presents our answer for how we should mathematically 

think of object-oriented software. We conclude this chapter by discussing and proving 

some of the fundamental properties of NOOP, then we use these results to show how 

the inclusion of nominal information completely reconciles inheritance and subtyping 

in nominal OOP. 

NOOPis a nominal model of OOP because objects include signature information 

for their visible interfaces. This information provides a framework of naturally par-

titioning NOOP into nominal types. The "exact" nominal type corresponding to a 

class C is the set of all objects tagged with the signature closure for C.2 

2In JAVA, for example, the objects in the exact type for a class C are precisely those for which 
the get Class() method returns the class object for C. 
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A cardinal principle of OOP is that objects from subclasses of C conform to the 

visible interface of C and can be used in place of objects from class C. Hence, the 

natural type associated with C consists of the objects in class C plus the objects in all 

subclasses of C. In typed nominal 00 languages, the type designated by Cis not the 

"exact" nominal type for C but the union of all the exact types for the classes D that 

are subtypes of C (including C itself). 

In NOOP, a class B inherits from class A if the signature closure for B subsigns the 

signature closure for A. 3 In contrast to other models of OOP, we prove that inheritance 

in NOOP is completely consistent with subtyping: a class B inherits from class A 

if and only if class B is a subtype of A. In other words, inheritance is subtyping, 

overturning one of the mantras of OOP research. 

6.1 NOOP Domain Equation 

The domain equation that defines preNOOP makes use of two simple domains £ 

and S, where domain £ is the same flat domain of labels as in Chapter 4, and S is 

the flat domain of signature closures (see Section 5.1.3). 

The recursive definition for preNOOP is fundamentally different from the def-

initions of other 00 domains like Cardelli's SOOP [14] because every object in 

preNOOP contains a signature closure specifying its external interface. From an in-

tuitive perspective, the signatures embedded in objects are certificates authenticating 

their interfaces. 

3Note that subsigning is defined so that the JAVA subclassing relation (prior to the addition of 
generics in JAVA 5) exactly matches the subsigning relation on the signatures of those classes. The 
same observation applies to C# (without generics) and C++ (without templates). 
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The NOOP domain equation, which defines and describes preNOOP, is 

(6.1) 

where 6 is the domain of (valid and invalid) objects of preNOOP, x is the strict 

product domain constructor, and domains £ and S are as described above. Equa­

tion (6.1) states that every object in preNOOP (and NOOP) is a triple composed 

of: ( 1) a signature closure (a member of the domain S), ( 2) a fields record (a member 

of£--<> 0), and (3) a methods record (a member of£--<> (0* --o--t 0)). 

In the next section, we present the construction of preNOOP as the solution of the 

NOOP domain equation, and we define the filtering function that maps preNOOP 

onto NOOP. 

6.2 Construction of preNOOP 

Similar to COOP, the construction of preNOOP proceeds in iterations, driven by 

the structure of the RHS of the NOOP domain equation, viewed as a continuous 

function from domains to domains. 

6.2.1 A General preNOOP Construction Iteration 

Similar to the construction of COOP, a general iteration i + 1 in the construction of 

preNOOP proceeds by forming 
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using the strict continuous functions domain constructor --o-+, and the sequences 

domain constructor *. Then, using the records domain constructor --o, we construct 

the domain of method records 

and the domain of field records 

and, finally, using the strict product domain constructor, x, we construct the domain 

of objects 

It should be noted that a non-bottom object o1 = (oscb frb mri) in 6i+l approx­

imates a non-bottom object o2 = (osc2, fr2, mr2) if and only if osc1 approximates 

osc2, fr1 approximates fr2 , and mr1 approximates mr2. Given the flatness of S, o1 

approximates o2 only if they have the same signature closure. Using domains 6i we, 

then, finally define the domain 6 of preNOOP objects as the directed closure (also 

called the ideal completion) of the infinite union of the different 6i 's: 

6 = /dealCompletion(U 6i)· 
i?:::O 

6.2.2 Ranking Finite Domain Elements 

For purpose of proving properties of preNOOP, it is useful to define a ranking notion 

on the finite elements of the preNOOP domain of objects. The solution to domain 



70 

equation (6.1) builds a sequence 00 , 01 , 02 , • · ·, of domains where Oi <S Oi+l· In 

this solution, we can assign finite objects of 6 a rank, when we note that every 

finite object in 6 is introduced in some finite iteration Oi· Every finite element o 

of 6 is constructed in some approximating domain Oi· The mnk of a finite object 

o of domain 6 is the integer index of the iteration in which the element is first 

constructed. Thus, in each Oi, the new finite elements of Oi have rank i.4 The 

only object of rank 0 is j_0 (the only element of the empty domain Oo). All finite 

non-bottom objects of domain 6 constructed after one application of the domain 

construction function (corresponding to the RHS of Equation ( 6.1)) to domain Oo 

have rank 1. The finite objects of rank 1 are objects having the form Cos, { · · · , 

liJ---+j_0 , · · ·}, {· · · , liJ---+j_M, · · ·}), in which all fields are bound to the bottom 

object j_0 , and all methods are bound to the bottom element of the methods domain 

j_M (i.e., the only element in the domain 00 --o---+ 00 ). 

A finite object constructed in some iteration of the construction method always 

has a higher rank than that of the finite objects used to construct this element (these 

objects were constructed in earlier iterations of the construction method). Thus, 

when an object o is represented by a derivation tree, whose root is the object, and 

the derivation trees representing the objects used to construct o as its subtrees, the 

depth of this tree is the rank of o. The rank of an object can thus be viewed as 

the "construction depth" of the object, i.e., the length of the longest path from 

the top of the tree representing the object to a leaf of the tree (Given the NOOP 

domain equation has no base objects, all leaves in trees representing elements of the 

preNOOP domain of objects are nodes that only represent j_0 ). 

4 All of the elements in every domain 6i are finite. Hence, the elements of U 6i form a finitary 
basis for 6. Therefore any element not in U 6i is not finite. In a Scott domain constructed from a 
finitary basis, an element is finite if and only if it is a member of the finitary basis. 
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6.3 Filtering of preNOOP to NOOP 

We define a filtering function called filter to map domain 6, the preNOOP domain 

of objects, onto the NOOP domain of valid objects. We use the symbol 0 to denote 

the domain of valid objects produced by filter. 

Definition 6.1. A finite object o in 6 is valid if it is the bottom object l_o, or if it 

is a non-bottom object ( sc, Jr, mr) such that 

• the sets of names of fields and methods (the field shape and the method shape) 

of the root class signature of sc are exactly the same as the set of names of fields 

in (i.e., the shape of) the fields record f r and the set of names of methods (i.e., 

the shape of) the methods record mr, respectively, 

• non-bottom objects bound to field names in fr have signature closures that 

subsign the signature closures for the corresponding fields in the root class of 

sc, and 

• non-bottom functions bound to method names in mr conform to the correspond­

ing method signatures in the root class of sc. By conformance, the functions 

are required take in sequences of valid objects that subsign (component-wise) 

the corresponding sequences of method parameter signatures in the root class 

of sc prepended with sc itself, and to return valid objects with signatures that 

subsign the corresponding return value signatures specified in the method sig­

natures in the root class of sc. (Note that sc must be prepended to sequences of 

method parameter signatures when checking for validity of method arguments, 

because in an application of a method in any nominal 00 language, the first 

argument is bound to a receiver object this/self whose signature closure must 

subsign sc). 
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Definition 6.2. The function filter mapping 6 into 6 is definedby the recursive 

definitions in Figure 6.1. 

fun filter(o:6):0 
match o with ((nm,se), fr, mr) 

if (sf-shp(se(nm)) != rec-shp(fr)) V 
(sm-shp(se(nm)) != rec-shp(mr)) 
return ~0 II because of non-matching shapes 

else II lazily construct closest valid object to o 
match se(nm), fr, mr with 

(_, _, [(ai, snmi) I i=1,· · · ,m], 
[(bj, mi_snmj, mo_snmj) I j=i,···n]), 

(fr-tag, {ai H oi I i=1, · · · ,m}), 
(mr-tag, {bj H mj I j=1, · · · ,n}) 
let si = se_clos(se, snmi) 
let misj = map(se_clos(se), [nm: :mi_snmj]) 

II nm is prepended to mi_snmj to handle 'this' 
let mosj = se_clos(se, mo_snmj) 
return ( (nm, se), 

(fr-tag, {ai H filter-obj-sig(si,oi) I i=1,··· ,m}) 
(mr-tag, {~ H filter-meth-sig(misj, mosj, mj) 

I j=1, ... ,n})) 

fun filter-obj-sig(ss:S, o:6):0 
match o with (s, _, _) 

if (s :S! ss) 
return filter(o) II closest valid object to o 

else 
return ~0 II because of no subsigning 

fun filter-meth-sig(in_s:S+, out_s:S, m:~):~ 
return (Ao*. let vo* = map2(filter-obj-sig, in_s, o*) 

in filter-obj-sig(out_s, m(vo*)) ) 

Figure 6.1 : Filtering preNOOP to NOOP 



In Figure 6.1, to compute shapes of signatures we have 

sf-shp((_, _, [(ai, _)I i=1, ... m], ) = {a1, ... ,am} 
sm-shp((_, _, _, [(bj, _,_)I j=1, ... ,n]) = {b1, ... ,bn} 

and to compute shapes of records we have 

rec-shp((_, { li r+ _ I i=1, ... ,k })) = {11, ... ,lk} 
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The function se_clos(se,nm) in Figure 6.1 computes a signature closure (a pair of 
a signature name and a signature environment) corresponding to signature name nm 
whose first component is nm and whose second component is the minimal subset of 
signature environment se that makes se _ clos (se, nm) a signature closure. Note that 
by the referential-closure of se, nm is guaranteed to be in the domain of se, and that 
the class signature referenced by nm in se is the root signature of se _ clos (se, nm). 
Note that to handle this/self a "curried" version of se_clos is passed to the map 
function. 
Also, in Figure 6.1 the domain s+ is the domain of non-empty sequences of signature 
closures (signature closure sequences passed to filter-meth-sig are always non­
empty because object methods are always passed in at least one object argument, 
corresponding to the value this/self). The function map2 is the two-dimensional 
version of map, which takes a binary function and two input lists as its arguments. 

Figure 6.2 : Filtering Auxiliary Definitions 

It should be noted that all functions in Figures 6.1 and 6.2 are not eager ("call­

by-value") functions but lazy ("call-by-name") functions. 

The definition of the filtering function filter in Figures 6.1 and 6.2 thus states 

that it takes an object o of 6 and returns a corresponding valid object of 0. If 

the object is invalid because of unequal shapes in the signature of o and its member 

records, filter returns the bottom object ..lo (..l0 is the closest valid object to 

an invalid object with non-equal shapes in its signature and records). Otherwise, 

o has equal signature and record shapes but may have objects bounds to its fields, 

or taken in or returned by its methods, whose signature closure does not subsign 

the corresponding signatures in the signature closure of o. In this case, filter 
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then lazily constructs and returns the closest approximating valid object too, where 

all non-bottom fields and non-bottom methods of o are guaranteed (via functions 

filter-obj-sig and filter-meth-sig, respectively) to have signatures that subsign 

the corresponding signatures in the signature closure of o. 

Function filter-obj-sig checks if1ts input object o has a signature closures that 

subsigns a required declared signature closure ss (also input to filter-obj-sig). If 

sis not a subsignature of ss, filter-obj-sig returns j_0 . If it is, the function calls 

filter on o, thereby returning the closest valid object to o. 

For methods, when filter-meth-sig is applied to a method mit returns a valid 

method that when applied to the same input o* as m (a member of 0*) returns the 

closest valid object to the output object of m that subsigns the declared out signature 

closure out_s corresponding to the sequence of valid objects closest (component-wise) 

too* that (component-wise) subsigns the declared sequence of input signature closures 

in_s prepended with the signature closure of the object enclosing m (to properly filter 

the first argument object in o*, which is passed in as a value for this/self). 

6.3.1 Filtering is a Finitary Projection 

For domain() to be well-defined as a subdomain of 6, the filtering function filter 

needs to be a finitary projection (See Section 8 in [19]). 

Theorem 6.1. fitter is a finitary projection. 

Proof. See Theorem B.1 in Section B.3. 0 

By proving that filter is a finitary projection, Theorem 6.1 proves thus that 

domain () is well-defined. 
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6.3.2 The NOOP Domain of Objects 

Given that the filtering function filter is computable its behavior on infinite objects 

is completely determined by its behavior on finite objects. 

The behavior of filter is thus completely defined by its behavior on elements of 

domains Oi. The filter function in fact can be considered as a function that maps 

domains Oi to domains Oi. Given that filter is a continuous function, the lub of 

its output domains Oi is the result of applying filter to the domain 6 (i.e., our 

sought-after domain 0) because, given continuity, we have 

0 = filter(O) = filt~r(UOi) = Ufilter(Oi) = uoi. 

Thus, 0 is defined as the union (i.e., the lub) of domains oi = filter(Oi) rather 

than as filter(O). 

6.4 Properties of NOOP 

Using the NOOP domain of objects, 0, in Section 6.4.1 we associate nominal ob­

ject types with signature closures (where nominal object types, as discussed in Sec­

tion 2.1.4, are certain subsets of 0 having similar objects). Signatures, thus, are 

associated with certain subsets of the domain 0 of NOOP. These sets of objects 

associated with signature closures are called nominal object types. In Section 6.4.2, 

we then show that class types (nomina~ object types) are subdomains of 0. 

Finally, in Section 6.5 we show how our association of class types with signature 

closures (which embody inheritance in nominal OOP) enables NOOP to completely 

reconcile inheritance with subtyping. That is, that in our model NOOP of nominal 

00 programming, the type associated with a class B is a subtype of the type associated 
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with class A if and only if the signature of class B inherits from the signature of class A. 

In other words, we show that inheritance and subtyping in mainstream OOP exactly 

coincide, and that the shibboleth "inheritance is not subtyping" among PL researchers 

is simply wrong. 

6.4.1 Semantics of Signatures 

Using notions of nominal OOP that we introduced less formally in Section 2.1.4, we 

now provide a formal definition for nominal object types (also called class types). 

Given that objects in NOOP have signatures embedded inside them, the nominal 

object type in NOOP that interprets a signature closure sc (which we denote by §[sc]) 

is simply defined by the equation 

§[sc) = {(scs, Jr, mr) E Olscs ~ sc} U {..lo} (6.2) 

In other words, the interpretation of a signature closure sc is the set of all objects 

(scs, Jr, mr) in domain 0 with a signature closure scs that subsigns sc, or the bottom 

object ..l0 . The approximation ordering of elements of §[sc) is the one inherited from 

0. 

6.4.2 Signatures Denote Subdomains of 0 

6.4.2.1 Types as Subdomains 

To prove that class signatures denote subdomains of 0 (Check Definition A.20 in 

Appendix A), we start by defining the notion of an 'exact object type' corresponding 

to a signature closure. 



77 

6.4.2.2 Exact Object Types 

The exact object type corresponding to a signature closure sc is the set of objects in 

domain 0 that have a signature closure sc, or 1_0 

§E[sc] = {(sc, fr, mr) E 0} U {_lo} (6.3) 

with the approximation ordering inherited from 0. 

Two posets are disjoint if there intersection is the empty poset (which only con­

tains the bottom element). Given the definition of exact object types in Equa­

tion (6.3), the sets §lE[sc] are disjoint posets for different sc (because of the flatness 

of S). Thus, given the definition of §[sc] in Equation (6.2), with little effort we can 

immediately see that 

§[sc] = U §lE[scs] (6.4) 
BCB~BC 

since 

U §lE[scs] - U ( {(scs, r) E 0} U {_lo}) = U ( {(scs, r) E 0}) U U ( {_lo}) 
BCB~BC BCB~BC BCB~BC BCB~BC 

U {(scs, r) E 0} U {_lo} = {(scs, r) E Olscs::;! sc} U {_lo} = §[sc]. 
BCB~BC 

6.4.2.3 Nominal Object Types are Subdomains 

We now establish that a nominal object type is a subdomain of 0 in two steps, where 

we, first, prove that each exact object type is a subdomain of 0, then, in a second 

step based on the first one, we show that a nominal object type, as a union of exact 

object types, is a subdomain of 0. 

Lemma 6.1. Exact object types are subdomains of 0. 
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Proof. Based on the definition of exact object types, properties (1), (2) and (3) of 

Definition A.20 in Appendix A are immediate. For property (4), notice that exact 

object types are closed under lubs, because all non-bottom objects in a (finite or 

infinite) chain in an exact object type bave the same signature. Hence, the lub in 0 

must have the same signature, and thus, by the definition of exact object types, the 

lub belongs to the exact object type. D 

Lemma 6.2. The union of a disjoint collection of subdomains of 0 is a subdomain 

ofO. 

Proof. Properties (1) and (2) of Definition A.20 in Appendix A are trivial to prove. 

For properties (3) and (4), notice that due to the disjointness of the members of 

the collection, any (finite or infinite) chain in the union must lie entirely (excepting 

bottom) in one exact member of the collection. Thus, the approximation and lub 

relations in the union of the collection are the same as in 0. D 

Theorem 6.2. Nominal object types a-re subdomains of 0. 

Proof. Immediate, from Lemma 6.2, Lemma 6.1, the definition of nominal object 

types as given by Equation 6.4, and noting that exact object types are disjoint posets. 

D 

6.5 Reconciling Inheritance with Subtyping 

Now we can easily see what it means for nominal 00 type systems to completely 

reconcile inheritance and subtyping: Two signature closures are in the subsigning 

relation if and only if the nominal object types (class types) denoted by the two sig­

nature closures are in the subset relation (i.e., are in the nominal subtyping relation). 
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Theorem 6.3 (Subsigning {::} Nominal Subtyping). For two signature closures sci 

and sc2 denoting non-empty class types §[sci] and §[sc2], we have 

(6.5) 

Proof. Based on Equation (6.2), the proof of this theorem is simple. 

Case: The ::::} (only if) direction: 

If sci ~ sc2, then by the definition of §[sc2] an element of §[sci] belongs to §[sc2] 

(the variable scs in Equation (6.2) is instantiated to sci)· 

While the ::::} direction in Theorem· 6.3 is important, and is trivial to prove, the 

-¢:: direction is more significant. 

Case: The -¢:: (if) direction: 

By Equation (6.2), a non-bottom object o of §[sc2] with signature closure osc has 

sc ~ sc2, and, similarly, a non-bottom object o' of §[sci] has a signature sc' such that 

sc' ~ sci. Given §[sci] ~ §[sc2], by inclusion, we also have sc' ~ sc2 for all sc' in 

objects of §[sci]· Thus, for each signature closure sc' that is a subsign of scb we have 

that sc' is a subsign of sc2. That is, we have 

By reflexivity, we have sci ~sci. Hen~e, sci ~ sc2. 0 

We should notice that nominality, where signatures are embedded into objects, 

is what makes §[sc2] being a superset of §[sci] imply that sci has sc2 as one of its 

ancestor supersignatures. The definition of§ guarantees that the set §[sc2] does not 

have elements o of 0 that have a signature closure sc unless sc ~ sc2 oro= l_o. By 



80 

set inclusion, the set §[sc1] does not have objects that are not in §[sc2] (even though, 

generally, the opposite is not true, unless sc1 = sc2). 
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Chapter 7 

Discussion and Future Work 

In this chapter, we discuss the implications of the nominal model of OOP presented 

in this thesis. We also discuss some of the limitations of the model, and we explore 

some of the possible paths for building more elaborate nominal models. 

7.1 Main Research Conclusions and Contributions 

In the preceding chapters, we have shown that mainstream 00 programming lan­

guages have straightforward denotational models that have quite a different internal 

structure than models for structural 00 programming languages. Unfortunately, 

the research literature on 00 programming languages is rife with misstatements and 

faulty intuitions such as "inheritance is not subt.yping", based on incorrectly assum­

ing that structural 00 models are representative of mainstream 00 programming 

languages. 

Our model demonstrates that in fact inheritance is completely consistent with 

subtyping in nominal 00 languages. This is not a dispute about taste or subjective 

preferences but about the fundamental mathematical and technical properties of 00 

languages. The structural models of 00 programming (like SOOP) are wrong when 

they are applied to nominal 00 languages, because they are faulty and incomplete. 

They are faulty because the meaning of class types includes object values that do not 

belong to the corresponding class types in nominal languages. They are incomplete 
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because they do not include nominal information in the object denotations so that 

fundamental operations, like type casting, cannot be defined, because they critically 

depend on missing information. 

7.1.1 Main Research Conclusions 

The main conclusions we reached based on research presented in this thesis are: 

1. Extant models of OOP do not precisely model mainstream OOP, because the 

extant models are founded on a structural view of the meaning of objects while 

mainstream 00 languages are based on a nominal view of the meaning of ob­

jects. Extant models thus can lead to making wrong conclusions about OOP. 

Incorporating nominal information is a must for any precise model of OOP. 

2. Nominal models of OOP that embed class names and signatures in objects 

readily support program operations that require nominal information, since they 

accommodate the accurate defini~ion of class types. In such models, inheritance 

and subtyping are perfectly consistent. 

3. Although nominal models incorporate specific class names in objects, it is still 

possible to define comprehensive nominal models of OOP that incorporate all 

possible object values from all possible programs. 

4. Nominal models of OOP unfeignedly reflect the properties of programs (that 

conform to the limitations of the model) written in mainstream 00 languages. 

7.1.1.1 Comparing Nominal and Structural Views of OOP 

When NOOP is put in comparison with earlier similar work, it should be noted 

that Theorem 6.3, about the complete reconciliation of inheritance and subtyping in 
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NOOP, is similar to Cardelli's 'Semantic Subtyping' theorem in Section 11 of [14]. 

Because Cardelli does not model recursive types, Cardelli was able to make the iden­

tification of an inaccurate notion of inheritance (as syntactic structural subtyping) 

and semantic subtyping, despite his model being a structural one. 

Cook's model of OOP in [23] and [24], which does model 00 recursive types like 

SelfType, does not allow making the identification of inheritance and subtyping, 

because recursive type variable names get rebound when they get inherited. The 

reason circular signatures (as the nominal counterpart of structural recursive types) 

allow making the identification of 00 .inheritance and 00 subtyping is that names 

of signatures have a fixed binding, even when they get inherited. 

~om a practical point of view, it is worthy to note that the identification of 00 

inheritance with 00 subtyping makes mainstream OOP conceptually simple, due 

to the parsimony of concepts an 00 developer has to deal with. In structural 00 

languages, not identifying inheritance and subtyping creates significant problems from 

the perspective of 00 program design. 

7.2 Incidental Research Contributions 

In the course of addressing the issue of how to accurately define the meaning of 

mainstream 00 programs, we generated some new technical machinery in the realm 

of domain theory and programming language semantics that warrants discussion. The 

two most interesting pieces of new machinery are 

1. A rigorous definition of the finite records domain constructor, -o, including 

proofs that the constructor is continuous and computable. 

2. An inductively-defined set of class signatures, which can be used to precisely to 
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tag objects with nominal information of mainstream OOP. 

7.3 NOOP Limitations 

In the remainder of this chapter, we discuss the limitations of the model presented 

in this thesis, and how they may be rectified in future work. Simple, clear models 

necessarily simplify the artifact or phenomenon being modeling. The art in developing 

a good model is wisely selecting which critical features to capture in the model. 

Structural models of 00 programming languages ignore the nominal information in 

00 programs which plays a critical role in reasoning about program behavior (because 

class names are associated with contracts and behavior) and in defining the semantics 

of type casting, class inheritance, and reflection. Without nominality, models of 00 

programming produce wrong answers to basic questions about program structure 

(e.g., subtyping) and program behavior (e.g., casts). 

To make our model accessible and amenable to intuitive reasoning, we made it as 

simple as possible. For example, we forced objects to be immutable (a choice that 

is almost universally followed in the research literature on modeling the semantics of 

00 programs) and ignored the complications of generic type systems. We also forced 

some common restrictions on the typing of inherited class members, which can be 

relaxed in some situations. We discuss these restrictions and some others in more 

detail below. We believe that all of these restrictions can be addressed at the cost of 

complicating the model. We are confident that enhanced models will have the same 

fundamental structure as the simple model presented in this thesis. 
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7.3.1 NOOP Models Immutable OOP 

While NOOP provides a more precise model of mainstream OOP, it is important to 

observe that NOOP, like most models of OOP, does not model mutation. NOOP 

is a set of possible object values; modeling mutation introduces a distinction between 

objects and the values they can assume via mutation. Ignoring mutation simplifies 

the task of modeling the data domains of programming languages. 

Except for few important places where they do interact, it is well-known among 

PL researchers that modeling mutation is largely orthogonal to modeling the typing 

properties of programming languages. For example, SOOP [13, 14] does not model 

mutation. Featherweight Java (FJ/FGJ) [36] does not model mutation either. The 

same no-mutation limitation applies to most models of OOP and FP. By focusing on 

the immutable subset of programs of nominal 00 languages, we are thus following 

the footsteps of a long tradition in the semantics of mostly-functional (i.e., with 

little mutation) languages (e.g., SCHEME and ML) and 00 languages. Further, in 

our presentation of NOOP, the few places where mutation and typing interact were 

clearly noted. 

7.3.2 Invariant Subtyping of Method Signatures 

In the definition of subsigning, we require signatures of fields and methods in a super­

signature to be exactly the same as corresponding ones inherited by a subsignature. 

As a result, NOOP forces inherited members of subclasses to have exactly the same 

types as the corresponding member in the superclass. We adopted this requirement 

for simplicity, and because exact matching of method and field types is required (with 

minor exceptions) in mainstream 00 languages like JAVA. 

At the expense of complicating the model and the proof of its properties, this rule 
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can be relaxed to allow full co-variant subtyping of inherited members as in Cardelli's 

model SOOP. This generalization breaks except for the narrowing of method output 

types (as in JAVA 5/6/7) in the presence of mutation.1 

7.3.3 NOOP is The Universe of a Model 

Strictly-speaking, NOOP is the universe of a model of nominal OOP, not a full model 

of it. A full model of for a mainstream OOP language requires a meaning function 

that maps program expressions to values in a semantic domain like NOOP. Such a 

meaning function depends on the details of the particular language being modeled. 

NOOP, which is largely independent of language, provides a universe for defining 

the meaning of a variety of nominal 00 languages. 

7.4 Directions for Future Work 

This thesis lays the foundations for building more complex models of mainstream 

OOP that address complications such as data mutation, generic types, and more 

flexible typing of inherited members. A possible future work that can be built on top 

of NOOP is to define a minimal nominal 00 language, in the spirit ofF J [36], then 

give the denotational semantics of program constructs of this language in NOOP. 

The type safety of this language can then be proven using this denotational semantics. 

Another possibility is developing a model of nominal OOP that incorporates mutable 

fields. 

Another possible future work that can be based on NOOP is to develop a model of 

1 It is well-known that a covariant subtyping rule for field types is unsound if fields are mutable. 
EIFFEL [26] is a language whose development has been affected by this unsoundness. Given that 
"write-only" fields are of no practical use, a contravariant subtyping rule for field types is of no 
practical use either. 
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generic OOP, and prove that 00 inheritance and 00 subtyping are also completely 

reconciled in generic OOP. Such a model would be a simple extension of NOOP, 

where class signatures and method signatures would be "generified" to generic class 

signatures and generic method signatures that are constructed using signature con­

structors. Such a model of generic OOP may be then used to reason about generic 

OOP features such as JAVA wildcards and polymorphic methods. 
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Appendix A 

Domain Theory 

According to Abramsky and Jung [5], domain theory is 'a mathematical theory 

that serves as a foundation for the semantics of programming languages'. Domains 

form the basis of a theory of partial information, which extends the familiar notion 

of partial function to encompass a whole spectrum of "degrees of definedness", so as 

to model incremental higher-order computation (i.e., computing with infinite data 

values). General considerations from recursion theory dictate that partial functions 

are unavoidable in any discussion of computability. Domain theory provides an ap­

propriately abstract setting in which the notion of a partial function can be lifted and 

used to give meaning to higher types, recursive types, etc. 

In this Appendix, we present the definitions of basic domain theoretic notions and 

domain constructors we use in this thesis. 

A.l Basic Notions 

Domain theory builds on set theory, order theory (the theory of partially-ordered sets, 

i.e., posets), and topology (i.e., the theory of topological spaces). It is relatively easy 

to digest the basic definitions of domain theory once the computational motivations 

behind these definitions are understood. 

Standard references on set theory include [9, 27, 34]. A standard reference on 
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order theory is [25]. Chapter 5 in [71] presents a simple introduction to fixed points 

particularly suited for mathematically-inclined programmers. 

In [30], Gierz, et al, present a detailed encyclopaedic account of domain theory that 

connects it to order theory and topology. Otherwise, literature on domain theory is 

somewhat more fractured, and its terminology is somewhat less standard than that of 

set theory and order theory. Accordingly, there is no standard formulation of domain 

theory. References to domain theory include [63, 69, 64, 65, 59, 6, 19, 33, 37, 5]. Stoy's 

book [69] is a particularly detailed account of the motivations behind domain theoretic 

definitions (even though for domains Stoy, following Scott's original formulation [63], 

uses complete lattices rather than cpos). 

In this section we present definitions of domain theory notions used in constructing 

NOOP. In the next section we focus on the definitions of the domain constructors 

used in the construction. 

Definition A.l (Partial Order). A partial order (also called a partially ordered set, 

a poset) is a pair (X, C::) consisting of a set X (called the universe of the ordering), 

and a binary relation C:: on the set X, such that 

• Vx E X, x C:: x (!;; is reflexive) 

• Vx, y E X, x C:: y 1\ y ~ x ====? x = y (C:: is antisymmetric) 

• Vx, y, z EX, x C:: y 1\ y ~ z ====? x C:: z (C:: is transitive) 

C:: is usually called 'less than or equals' in when discussing general posets, and 'ap­

proximates' in domain theory. A poset (X, C::) is usually referred to using just the 

symbol for its universe, X. We do so below. 
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Remark A.l. The ordering upon which domain theory is based is called 'the ap-

proximation ordering'. The approximation ordering is defined on computational data 

values. The approximation ordering has intuitive connections to information theory. 

A computational value that approximates a second computational value is considered 

no more informative then the second value. The approximation ordering is a qualita-

tive expression of the relative informational content of computational values (elements 

of the universe of the ordering). Computational values higher in the approximation 

ordering are more informative than ones lower in the ordering. 

Remark A.2. The least computational value is divergence (as in an "infinite loop"). 

It gives no information, and thus is the least informative computational value. Given 

that divergence gives no information, the abstract mathematical value denoting di-

vergence is called 'bottom', and is usually denoted by the symbol ..l. 

Definition A.2 (Upper bound). Given a subsetS of a poset X, an upper bound of 

S (in X) is an element x EX such that Vs E S, s!;;;;; x. 

Definition A.3 (Bounded). A subset S of a poset X is bounded in X iff S has an 

upper bound in X. 

Definition A.4 (Least Upper Bound). An upper bound of a subsetS in a poset X 

is a least upper bound (also called a lub, or LUB) of S iff it approximates all upper 

bounds of Sin X. If it exists\ the lub of Sis denoted US. 

Definition A.5 (Downward-Closed). A subsetS of a poset X is a downward-closed 

set iff all elements x of X that approximate some element in S belong to S. Thus, S 

is downward-closed iff Vx E X. ((::Is E S, x !;;;;; s) ===} x E S). 

1 A lub of a subset S may not exist, either because S has multiple upper bounds that have no 
least element (minimum) or because S has no upper bounds. 
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Definition A.6 (Chain). A countable subset S of elements si E X is a chain if 

Vi, j E N.i ::; j ----* Si ::; Sj· 

Remark A.3. Every finite chain include_s its lub (maximum element of the chain). In­

finite chains (like set N under the standard ordering) do not necessarily have maximal 

elements. 

Definition A.7 (Anti-chain). A countable subsetS of elements si E X is an anti­

chain if Vi,j E N.i # j----* si i Sj. 

Remark A.4. A fiat poset R is an anti-chain S with elements Si and an additional 

bottom element ..ln # si, such that, in R, ..ln ::; si· A fiat poset, thus, always lifts 

an anti-chain. 

Definition A.8 (Directed). A subsetS of a poset X is directed iff every finite subset 

of S is bounded in S. 

Remark A.5. Every chain is a directed· set, but not necessarily vice versa. 

Definition A.9 (Consistent). A subset S of a poset X is consistent in X iff every 

finite subset of Sis bounded in X. 

Remark A.6. In general posets, every bounded set is consistent, but not necessarily 

vice versa. Consistency requires bounds for finite subsets only, and thus is a weaker 

condition than boundedness (all subsets of a bounded set are bounded). 

Remark A.7. Because Sis a subset of X, boundedness inS implies boundedness in 

X, and thus every directed set S is a consistent set, but not necessarily vice versa. 

Directedness is a stronger condition than consistency. 

Definition A.lO (Ideal). A subsetS of a poset X is an ideal iff it is downward-closed 

and directed. 
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Definition A.ll (Lower set). A subset Sx of a poset X is a lower set of an element 

x E X iff it contains all elements of X that are less then or equal to x (and nothing 

else). Thus, for x E X, Sx is the lower set of x iff Sx = { s E Xis ~ x }. 

Definition A.12 (Principal Ideal). A subset Sx of a poset X is a principal ideal 

(determined by x) iff it is the lower set of x. 

Theorem A.l. (Principal Ideals are Ideals) A subsetS of a poset X is an ideal if it 

is a principal ideal. 

Proof. Note that, by definition and transitivity of~' a lower set of an element x E X 

is downward-closed. The lower set of xis also directed because it contains x and xis 

a bound for all its (finite) subsets. 0 

Definition A.13 (Weak Ideal). A non-empty subset Sofa poset X is a weak ideal 

iff it is downward-closed and is closed under lubs of its chains. 

Remark A.8. Every fiat poset is a weak ideal. Chains in fiat posets have two elements, 

the lower of which is always ..l. 

Definition A.14 (Finitary Basis). A poset X is a finitary basis iff its universe, lXI, 

is countable and every finite bounded subset S of X has a lub in X. 

Remark A.9. For a finitary basis X, the fact that a finite subsetS of X is bounded is 

equivalent to S having a lub. Generally, this statement is true only in one direction 

for an arbitrary poset (i.e., the trivial ~ direction, which asserts the boundedness of 

a set if it has a lub. In a finitary basis, the opposite direction is true as well). 

Definition A.15 (Complete Partial Order). A poset X is a complete partial order 

(cpo, or, sometimes, dcpo) iff every directed subsetS of X has a lub in X. 
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Theorem A.2 (Ideals over a FB form a cpo). Given a finitary basis X, the set Ix 

of ideals of X is a cpo under the subset ordering. 

Definition A.16 (Constructed Domain). Given a finitary basis X, the set Ix, of 

ideals of X, is a poset (Ix, ~) that is called the domain determined by the X or 

the ideal completion of X. Ix is, thus, called a constructed domain (i.e., one that is 

determined by the finitary basis X). 

Remark A.10. By Theorem A.2, the ideal completion of a finitary basis is a cpo. 

Definition A.17 (Finite Element of a CPO). An element d of a cpo Vis a finite 

element (or isolated or compact) iff d belongs to each directed subset S that dis a 

lub of. The set of finite elements of a cpo Vis denoted by V 0 .2 

Definition A.18 (Isomorphic Partial Orders). Two posets are isomorphic iff there 

is an order-preserving one-to-one onto function between them. 

Definition A.19 (Domain). A cpo V is a domain iff its finite elements V 0 form a 

finitary basis and V is isomorphic to the domain determined by V 0 • 

Definition A.20 (Subdomain). A domain Vis a subdomain of a domain£ iff (1) 

lVI ~ 1£1, (2) l_v = l_&, (3) Vd1,d2 E V,d1 Cv d2 {::} d1 C£ d2 (i.e., approximation 

ordering for V is the approximation ordering of£ restricted to elements of V), and 

(4) Vd1, d2, d3 E V, (d1 Uv d2 = d3 ) {::} (d1 U& d2 = d3 ) (i.e., lub relation for Vis the 

lub relation of£ restricted to elements of V). 

Remark A.11. The domain determined by V 0 is isomorphic to the domain determined 

by £ 0 n V, which must be a finitary basis. 

2 This definition is weaker than the usual definition for cpos. In the context of domains, the two 
definitions are equivalent. 
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Remark A.12. We use Scott's definition of subdomains because we define NOOP 

domains as sub domains of Scott's universal domain U. Scott [19] shows that every 

domain is isomorphic to a subdomain of U. The subdomains of U form a domain. All 

domains given in a domain equation and all recursively defined domains in the equa­

tion are elements of this space of domains (which consists of all of the subdomains of 

U). Thus, fixed-points for domains (as elements of the domain of subdomains of U) 

are defined in the same way as fixed-points of recursive definitions over the elements 

of any other domain. 

A.2 Domains of Functions · 

To model computable functions, domain theory provides functional domains, whose 

elements are particular mathematical functions mapping elements from one compu­

tational domain to another. To define functional domains, we will introduce the 

domain theoretic notions of 'approximable mappings' (AMs), 'finite-step mapping', 

and 'continuous functions'. 

Given the importance of these three notions, we only introduce them in this 

section, then we discuss them in more detail in Section A.3 when we present domain 

constructors that make use of these three notions. These domain constructors are 

used to construct the functional domains of NOOP. 

Definition A.21 (Approximable Mapping). Given two finitary basis A and B, with 

ordering relations ~A and C::: 8 , respectively, a relation fam ~ IAI x IBI is an approx­

imable mapping (AM) iff 

1. Condition 1: (l_A, .ls) E fam 

2. Condition 2: 'i/a E A.'i/bbb2 E B.((a,b2) E fam 1\ b1 C:::s b2--+ (a,b1) E fam) 
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3. Condition 3: \;/a E A.\;/bb b2 E B. ((a, b1) E fam 1\ (a,~) E fam ---+ (a, b1 Un b2) E 

fam) 

Definition A.22 (Set Image under a Relation). Given sets A, B and a relation 

r ~ A x B, the set image of a subsetS of A under r, denoted by r(S), is the set 

of all b E B related in r to some element in S. r is thus viewed as function over 

subsets of A. Thus, for a subsetS of A, we have r(S) = {bE Bl:3a E S.(a, b) E r }. 

The set image of a relation r allows viewing r as a function r : A ---+ ~(B), where 

r( a) = r( {a}) for a E A. For an element a E A, function r, thus, returns the set of 

all bE B related to a in r. 

Theorem A.3 (AMs map ideals to ideals). Given finitary basis A and B, if fam is 

an approximable mapping from A to B, and if I is an ideal in A, then fam(I), the set 

image of I under fam, is an ideal in B. 

Proof. From the definition of an ideal, and using AM Condition 2 (which guarantees 

the downward-closure of the set image), and AM Condition 3 (which guarantees that 

the set image is directed). D 

Theorem A.4 (AMs are monotonic). Given finitary basis A and B, if fam is an 

approximable mapping from A to B, and if I 1 and I2 are ideals in A such that I 1 ~ I2, 

Proof. By AM Condition 4. D 

Definition A.23 (Finite-Step Mapping). Given finitary basis A and B, an approx-

imable mapping fam is a finite-step mapping iff it is the smallest approximable map-

ping containing some finite subset of IAI x IBI. 
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Definition A.24 (Continuous Function). Given domains A and B, a function f : 

A---+ B is a continuous function iff the value off at the lub of a directed set of a's in 

A is the lub, in B, of the directed set of function values f(a). 

Remark A.l3. Continuity of a function requires the value of the function at a (non­

finite) limit point a to equal the limit of the function's values on the finite approxi-

mations to a. Continuous functions are thus said to "have no surprises at the limit". 

Remark A.14. Because of the four AM conditions, every approximable mapping 

in IAI x IBI determines a continuous function in A ---+ B, and vice versa. Check 

Cartwright and Parsons' "Domain Theory: An Introduction" [19] and other domain 

theory literature for proof and more details. 

Remark A.l5. To motivate the preceding definitions, it should be noted that continu-

ous functions capture the fact that computation is of a "finitely-based" nature. Only 

finite data values can have canonical representations inside a computing device. From 

a domain-theoretic perspective, a function can be computable only if its value "at in-

finity" (i.e., at an infinite input data value) is the one we expect by only seeing (and 

extrapolating from) the values of the function at all finite inputs that approximate 

the infinite input data value (finite inputs are all we can represent inside computers, 

and thus they are all we can compute with). See Stoy's book [69] for more details on 

motivation and intuitions behind domain theoretic definitions. 3 

Remark A.16. Approximable mappings. offer the means to accurately characterize and 

define continuous functions (which capture the finitely-based nature of computation). 

Finite-step mappings, as the "finite/representable parts" of AMs, offer the means by 

which continuous functions can be constructed from more elementary parts that can 

be represented in a computing device. 

3Via Roger's work, Dana Scott managed to connect the notion of continuous functions to the 
notion of computable functions in computability theory. See Stoy's book [69] for more details. 
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A.3 Domain Constructors 

In this section we present the domain constructors used to define COOP and NOOP. 

Since there is a one-to-one correspondence between domains and their finitary bases, 

and given that the latter are simpler, and more intuitive, we will actually be describing 

in this section how each of these "domain" constructors construct and define new 

finitary basis using other finitary basis defined earlier. 

A.3.1 Coalesced Sum ( +) 

The first domain constructor we present is the coalesced sum domain constructor, 

+. We use the expression A+ B to denote the coalesced sum of two domains A 

and B, with approximation ordering relations LA and LB, respectively. A coalesced 

sum is an domain-theoretic counterpart of the standard set-theoretic disjoint union 

operation. 

If C = A+ B then 

ICI = {_lc} U {(0, a)ia E (IAI \{_iA})} U {(1, b)lb E (IBI \{_iB})} 

where 0 and 1 are used inC to tag non-bottom elements from A and B, respectively. 

The ordering relation Lc, on elements of C, is defined, for all c1, c2 E C, by the 

predicate 

c1 Lc c2 {::} (c1 = _lc) V (c1 = (0, a1) 1\ c2 = (0, a2) 1\ a1 LA a2) 

V (c1 = (1, b1) 1\ c2 = (1, b2) 1\ b1 LB b2) (A.1) 
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A.3.2 Strict Product ( x) 

Next, we present the strict product domain constructor, x.4 We use Ax B to denote 

the strict product of two domains, A and B, with approximation ordering relations 

CA and CB, respectively. A strict product is an order-theoretic counterpart of the 

standard set-theoretic cross-product operation. 

If C = A x B then 

(A.2) 

Strictness of x means that inC, ..lc replaces all pairs (a, b) E Ax B where a = ..lA 

or b = ..lB. Similar to the definition of the coalesced sum constructor, this strictness 

is achieved in the definition above by excluding ..lA and ..lB from the input sets of 

the set-theoretic cross product. Sometimes the strict product A x B is called their 

'smash product'. 

The ordering relation Cc, on elements of C, is defined as follows. Vcb c2 E 

C, Va1, a2 E A\{..lA}, Vb1, b2 E B\{..lB} where c1 = (all b1) or c1 = ..lc, and c2 -

(a2, b2) or c2 = ..lc 

(A.3) 

4In agreement with the convention in domain theoretic literature, the symbol x is overloaded in 
this thesis: it is used to denote the strict product of ordered sets, and it is also used to denote the 
standard set-theoretic cross product (which ignores any ordering on its input sets). It should always 
be clear from context which meaning is attributed to x. 
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A.3.3 Continuous Functions (---+) 

Functional domains of NOOP are th~ domain M, whose members are strict con­

tinuous functions modeling object methods, and the domain R, whose members are 

'record functions' modeling the record component of objects. A record function is a 

function defined over a finite set of labels. Functional domains and functional domain 

constructors allow NOOP to model nominal OOP more accurately. 

Making use of the definitions of domain theoretic notions presented in Section A.2, 

for the details of the definitions of the functional domain constructors we now refer 

the reader to Chapter 3 of the Cartwright and Parsons' update [19] of Scott's [64]. 

---+ is the standard continuous functions domain constructor. 

In this thesis, we use the symbol -o--+ to denote the strict continuous functions 

domain constructor, which simply constructs a space as the continuous function space 

from domain A to domain B but where all one-step functions of the form ..lA M b 

(for b E B\ { ..l8 }) are eliminated (are mapped to the one-step function ..lA M ..lB 

which is the bottom element of the constructed function space). Strict continuous 

functions thus map ..lA only to ..l8 , thus modeling strict computable functions (i.e., 

ones which have "call-by-value" semantics). 

A notable property of functional domain constructors is that the set of continuous 

functions is itself a domain. This property has been behind much of the development 

of domain theory. 

A.3.4 Strict Finite Sequences (V*) 

For purposes of constructing the methods of NOOP, one more simple domain con­

structor is needed: the constructor of the domain of strict finite sequences. This 

constructor is used to construct the finite sequences of objects passed as arguments 
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to object methods. Sometimes the domain V* of finite sequences of elements of do­

main V is called the Kleene closure of domain V. 

The Kleene closure, V*, constructs a domain of finite sequences of elements of its 

input domain, V, including the empty sequence. It excludes sequences of V where a 

member of the sequence is ..lv. Thus, * constructs strict finite sequences. 

The Kleene closure is defined as a set of all n-tuples of elements of V (where n is 

a natural number). Thus 

IV* I= {..lv*} U U {<do,··· , di, · · · , dn-1 > ldi E (lVI \{..lv})} 
nEN 

An element a of V* approximates another element b iff a= ..lv· or the lengths of a 

and bare equal to a natural number k, and ai Cv bi for all 0::::; i < k. 
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Appendix B 

Proofs of Important Theorems 

B.l The Domain of Record Functions has an Effective Pre-

sentation 

It is straightforward to confirm that --o constructs a domain. To prove that --o 

constructs domains given an arbitrary domain V and a domain £, (with a fixed inter­

pretation as a flat domain of labels), we build an effective presentation of the finite 

elements of £, --o V, assuming an effective presentation of the finite elements of V and 

£. Since£, has a fixed interpretation, .-:..o, as a domain constructor, can be considered 

as being parametrized only by domain V. We prove that these finite elements form 

a finitary basis of the records domain. 

Given an effective presentation of£, L = [..i.e, l17 l2 , • · ·] define, for all n E N, the 

finite sequences 

where 0 < j 1 < · · · < jk, and 

2n = L: 2ii. 
0<i$k 

(B.l) 

The size k, of Ln, is the number of ones in the binary expansion of n, and thus 

k ~ log2(n + 1) with equality only when n is one less than a power of 2. k = 0 only 

when n = 0, and in this case £ 0 = [] {the empty sequence)1 . It is easy to confirm 

1The definition of Ln is patterned after a similar construction presented in Dana Scott's "Data 
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that there is a one-to-one correspondence between the set of natural numbers N and 

the set of distinct finite label sequences Ln. 

Given an effective presentation of the finite elements of D, D = [_iv, dt, d2 , · • ·], 

an effective presentation of the finite elements of Dk, the domain of (non-strict) 

sequences of length k ( k 2:: 0) of elements of D, is 

where, for k > 2, 

1rk(·) is the one-to-one k-tupling function (also called the Cantor tupling function), 

and 
1 

1r(p, q) = 2(p + q)(p + q + 1) + q = 1r2(p, q) 

is the one-to-one Cantor pairing function. 

Now, let 

where, again, k is the number of ones in the binary expansion of n, and 

The sequenceR= [r0 , r 1 , · • ·] of the finite elements of R can then be presented as 

Types as Lattices" [63]. Unlike the case in Scott's construction, n is doubled in the LHS of Equa­
tion (B.l)-i.e., the binary expansion of n is "shifted left" by one position-to guarantee ji > 0, 
and thus guarantee that lo = ..L.c is never an element of Ln. 
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r0 = ..ln., and for n, m ;::::: 0, 

T1r(n,m)+1 = (tag(Ln), f(n, m)). 

Given the decidability of the consistency ( · tv ·) and lub ( · Uv · = ·) relations 

for finite elements of V, the presentation R of the finite elements of R is effective, 

since, for record functions r and r' as defined in Section 4.1.2, under the approximation 

ordering defined by Equation 4.3, the consistency relation 

(B.2) 

is decidable (given the finiteness of records), and the lub relation 

is recursive (handling r =..ln. orr'= ..ln. in the definitions of tn and Un is obvious. 

All record functions are consistent with ..ln., and the lub of a record function r and 

..ln. is r). 

Lemma B.l ( --o constructs domains). Under Cn, elements of R form a finitary basis 

ofR. 

Proof. Given the countability of£, and of the finite elements of V, element of Rare 

countable. A consistent pair of elements r, r' E R, according to Equation (B.2), has 

a lub rUn r' defined by Equation (B.3). Given that Vis a domain, the lub dUv d' of 

all consistent pairs of finite elements d,-d' in V exists, thus the lub rUn r' also exists. 

Lemma B.l actually proves that --o is a computable function mapping flat domains 

x domains to the corresponding record domains. The presumption is that no effective 
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presentation is necessary for the flat domain because distinct indices for elements of 

.C will simply mean distinct labels li. If .C is a flat countably infinite domain (which 

implies it has an effective presentation) and V is an arbitrary domain, then .C -<> V 

is a domain with an effective presentation that is constructible from the effective 

presentations for .C and V. D 

B.2 Domain Constructor -o is Continuous 

Lemma B.2 (-<> is monotonic). For domains V and V', and a fiat domain of labels 

.C, V <S V' :::} (.C -<> V) <S (.C -<> V') 

Proof. First, we prove that -<> is monotonic with respect to the subset relation on 

the universe of its input, i.e., that lVI ~ IV'I :::} I.C-<> VI ~ I.C-<> V'l· Then, given 

that the approximation ordering on V (as a subdomain of V') is the restriction of the 

approximation ordering on V', we prove that the elements of .C -<> V (as members of 

.C -<> V') form a domain under the approximation ordering of .C -<> V', and thus that 

.C -<> V is a subdomain of .C -<> V'. 

Since lVI ~ IV'I, then {d1, .. · , dk} ~ lVI ===} {d1, .. · , dk} ~ IV'I· For arbitrary 

.c, where I.Ctl = { .. Lc, h, · · · , lk}, we thus have 

Thus, I.Ct ----o---+ VI ~ I.Ct ----o---+ V'l· Accordingly, for sets R(.C,, V) (the elements 

of .C -<> V with tag tag(.C1\{ .. Lc})) and R(.C1, V') (the elements of .C -<> V' with 

tag tag(.C1\{l_c})), as defined in Equation 4.2 of Section 4.1.2, we have R(.C,, V) ~ 
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R(£1, V'). Thus, 

Thus, 

1£ --o VI ~ 1£ --o V'l· (B.4) 

Next, since Vis a subdomain of V' when restricted to elements of V, we know: 

(i) the approximation relation on V is the approximation relation on V' restricted 

to V; (ii) consistent pairs of V are consistent pairs in V'; and (iii) lubs, in V, of 

consistent pairs of elements of V are also their lubs in V'. Thus, for di, d3 E V, 

Hence, according to the definition of the approximation, consistency and lub re-

lations for--o (Equations (4.3), (B.2) and (B.3)), the lub, in[, --o V, of a consistent 

pair of records is also their lub in[, --o V'. That is, respectively, for r, r' E 1£ --o VI, 

we have 

r ~(.C-<>V) r' ¢::> r ~(.C-<>V') r', (B.5) 

(B.6) 

and 

r u(.C-<>'D) r' = r u(.C-<>'D') r'. (B.7) 

From equations (B.4), (B.5), (B.6), (B.7), and the fact that l_n is the bottom 

element of both [, --o V and [, --o V', we can conclude using Definition 6.2 in [19] 

that 

[, --o V ~ [, --o V'. 
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In addition to being monotonic, continuity of a domain constructor asserts that 

the lub of domains it constructs using a chain of input domains is the domain it 

constructs using the lub of the chain of input domains (i.e., that, for-o, the lub V 

of a chain of input domains vi gets mapped by -o to the lub, say domain n, of the 

chain of output domains~=£ -o Vi)· 

Lemma B.3 ( -o preserves lubs.). For a chain of domains Vi, if V = UVi, ~ = 

£, -o vi, and n = £, -o v, then n = uni. 

Proof. Let Q be the lub of the chain of domains Ri = £ -o Vi (Ri's form a chain 

by the monotonicity of -o). Domain Q is thus the union of domains ~, i.e., Q = 

uni = Ui(£ -o Vi)· 

Domain Q is equal to R = £ -o V = £ -o Ui Vi because each element q in Q ( q 

is a record function) is an element of a domain £ -o Vi for some i. Given Vi is a 

subset of v = u vi, q will also appear inn. 

Similarly, a record function r in R is an element of a domain£ -o Vi for some i, 

because every finite subset of ui vi has to appear in one vi (given that vi is a chain 

of domains). Thus, by the definition of Q, r is also a member of Q. 

This proves that Q = R. 0 

Lemmas B.2 and B.3 prove that -o is computable given effective presentations for 

£and V (or, equivalently, an effective presentation for V). 

B.3 Filtering is a Finitary Projection 

In this section we prove that function filter, as defined in Section 6.3.1, is indeed 

a finitary projection, and thus that the domain 0 of valid objects (see Definition 6.1 
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in Section 6.3) defined by the filtering function is indeed a domain (i.e., a subdomain 

of Scott's universal domain U). 

To do so, we first prove a number of auxiliary properties. 

Proposition B.l. In domain 6, higher-ranked objects do not approximate lower­

ranked ones, i.e., rank(o1) < rank(o2) => o2 It o1 

Proof. By strong induction on rank of objects. 0 

Proposition B.2. In domain 6, all approximations of a valid object are valid objects. 

Proof. We outline a proof that uses induction on the rank of valid objects. Objects of 

rank 1 with non-empty member records have _1_0 as the object bound to their fields. 

Thus invalid rank 1 objects are invalid. only because of have non-matching signature 

shapes and record shapes. 

None of the objects of rank 1 approximate each other (a rank 1 object is ap­

proximated only by 1_0 and itself). The mismatch between signatures and shapes of 

invalid objects in objects of rank 1 that causes them to be invalid cannot be made 

valid (get "fixed") in objects (of higher rank) that are approximated by the invalid 

rank 1 objects (since approximation dictates that those approximated objects have 

the same signatures and shapes as the invalid ones approximating them). 

For higher ranks, objects of a higher rank that valid rank 1 objects (that have 

matching signature and record shapes) approximate but that have embedded in their 

records objects with signatures that do not subsign the signature in the corresponding 

field signature of (which is the same in ~11 these objects of ranks starting 1 and higher) 

make the approximated objects be invalid. Given that signatures form a fiat domain, 

the signature of objects embedded inside objects that approximate each other is the 

same in all objects that approximate each other, so objects that are approximated 
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by such higher-ranked invalid objects are also invalid ones. An object in 6 that is 

approximated by an invalid object is, thus, guaranteed to be an invalid object. D 

Proposition B.3. In domain 6, no two distinct valid objects that do not approximate 

each other may approximate the same invalid object. 

Proof. By strong induction on rank of objects, making use of Proposition B.l. D 

In the sequel, we use the inductively defined predicate valid (as defined by Defi­

nition 6.1 in Section 6.3) that applies to objects of 6. Note that in addition to ..L0 , 

objects with empty field and method records also provide base cases for the definition 

of valid. 

Lemma B.4 (filter returns valid object closest to input object). For an object 

o of 6, filter(o)Co 1\ valid(filter(o)) 1\ Vo' (o'~o 1\ valid(o') ===} o' ~ 

fi l ter(o)) 

Proof. By strong induction on rank of objects, noting that, for the base case, filter(o) 

diverges ("returns" ..L0 ) for the rank 0 object ..L0 , and if an object o of rank 1 is in­

valid then filter(o) also returns ..L0 (No distinct objects of rank 1 approximate 

each other). Proposition B.1 is used for the inductive case. D 

Theorem B.l. filter is a finitary projection. 

Proof. We prove that filter is a finitary projection, on four steps. D 

1. filter is a retraction: filter(filter(o)) = filter(o) 

Proof. Obvious from definition of filter, and that, by Lemma B.4, function 

filter returns a valid object (i.e., valid(filter(o))). D 
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2. filter approximates identity: filter(o) C o 

Proof. Obvious from definition of filter, and that, by Lemma B.4, filter(o) 

returns an object that approximates o (i.e., filter(o) Co). 0 

3. filter is a continuous function (i.e., is monotonic, and preserves lubs of chains2) 

Proof. By cases, where we assume o1 and o2 are two finite elements in a chain in 

0 where o1co2 , and each case show that filter(o1 ) C filter(o2 ) (monotonic­

ity), and that filter(o2 ) = U{filter(o1), filter(o2)} (lubs preserved). 

Case 1. If o1 , o2 are both valid 

(a) Monotonicity: Immediate. 

(b) LUB: o2. 

Case 2. If 01, o2 are both invalid 

(a) Monotonicity: Simple (By cases, and function filter returning closest 

valid object). 

(b) LUB: Let v1 =filter(o1), v2=filter(o2 ). Then, by Proposition B.3 

we have v2Co1 (since o1Cv2 is impossible, by Proposition B.2). Thus, 

we have v1=v2 , and thus U{filter(o2 ), filter(o1)} = filter(o2 ). 

Case 3. If o1 is valid, and o2 is invalid 

(a) Monotonicity: Simple (by function filter returning closest valid ob-

ject). 

2Preserving lubs of directed-sets could be used, but, in the context of finitarily-based domains 
(which have a countable basis), the two definitions of continuity are equivalent. 
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(b) LUB: We have o1 = filter(o1 )/\o1 C filter(o2). Thus, U{filter(o2), 

filter(o1 )} = U{filter(o2) ,o1 } = filter(o2) 

Case 4. If o1 is invalid, and o2 is valid 

Proof. Impossible, by Proposition B.2. 0 

0 

4. filter is finitary 

Proof. The condition in point 2 of Theorem 8.5 in [19] 

a(x) = {y E Ol:3x' E x.x'ax' 1\ y C x'} 

can be rewritten, for the filtering function filter, as 

filter(o) = {p E Ol:3o' E O.o' Co 1\ o' =filter( a') 1\ p Co'}. (B.8) 

Objects of domain 6 are in 1-1 correspondence with principal ideals over their 

finitary basis. The filtering function filter returns, as its output, the closest 

valid object to its input object (the object returned is a well-defined object, 

and it is a fixed point of the filtering function). Thus, given that objects are 

strong ideals in the finitary basis of 6, they are downward-closed sets. Thus, 

the condition (B.8) is true for all objects in 6. 

Thus, the projection defined by filter is a finitary projection. 0 
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Appendix C 

Code Examples 

C.l Classes 

In this appendix, we present code examples that concretely demonstrate the concepts 

and notions we discuss in this thesis. Unless otherwise noted, code examples in this 

thesis use the syntax of JAVA-like 00 languages. In the code examples it is not 

assumed that all classes inherit from a single superclass (like Object). 

First, we assume a declaration of class Object as in Figure C.l. 

class Object { 

} 

II Classes with no explicit constructors are always 
II assumed to have a default constructor that 
II initializes the fields of the object, if any. 

Boolean equals(Object o){ 
return (o is Object); 
II Equivalent to: 'o.getClass() -- Object.class' 

} 

Figure C.l : Class Object 

As demonstrated in class Object, we make use of the standard class Boolean, 

which we assume has boolean values true and false (or equivalents) as its objects, 

and that it supports standard boolean operations on boolean values. 

In the following code examples, we will make use of the declarations of classes A, 
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B, C, D and E presented in Figure C.2. These simple classes serve no purpose but to 

demonstrate the concepts and notions we present. 

class A { II no superclasses 
} 

class B extends A { 
II add no members 

} 

class C extends B { 
D foo(D d) { return d; } 

} 

class D { II no superclasses 
A bar() {return new A(); } 

} 

class E extends D { 
A meth() {return new A(); } 

} 

Figure C.2 : Classes A, B, C, D and E 

To demonstrate a more complex example, we also assume the declaration of class 

Pair presented in Figure C.3. 



class Pair extends Object { 
Object first; 

} 

Object second; 

Boolean fstEqSnd(){ 
return first.equals(second); 

} 

Boolean equalTo(Pair p){ 

} 

return first.equals(p.first) && 
second.equals(p.second); 

Boolean equals(Object p){ 
if(p instanceof Pair) 

return equalTo((Pair)p); 
return false; 

} 

Pair setFirst(Object nf){ 
return new Pair(nf, second); 

} 

Pair setSecond(Object ns){ 
return new Pair(first, ns); 

} 

Pair swap(){ 
return new Pair(second, first); 

} 

Figure Q.3 : Class Pair 

121 



122 

C.2 Shapes 

The shape of instances of class Object (in Figure C.l) is the set 

{equals} 

of member (field and method) names in class Db j ect. 
The shape of instances of classes A, B, C, D and E (in Figure C.2), respectively, are the 
sets 

{}, {}, {foo}, {bar}, {bar, meth} 

(note that the shapes of instances of A and B are the same). The shape supported by 
class Eisa supershape of the shape of class D, which in turn, is a supershape of the 
shapes of classes A and B. 
The shape of instances of class Pair (in Figure C.3) is the set 

{equals, first, second, fstEqSnd, equalTo, setFirst, 
setSecond, swap} 

of member names in class Pair. The shape of (instances of) class Pair is a supershape 
of the shape of (instances of) class Objecta. 

aNote that because class Object has no fields, all its instances are mathematically-equivalent. 
Mathematically-speaking, thus, class Object has only one instance. 

Figure C.4 : Shape Examples 



C.3 Object Interfaces/Record Types 

The structural object interface (of instances) of class Object is 

OSOI 6 object_interface MD. { 
B equals(O) 

} and pB. { ... interface of class Boolean ... } 

The object interface (of instances) of classes A, B, C, D and E, respectively, are 

ASOI 6 object_interface {} 
BSOI 6 object_interface {} 
II note that ASOI and BSOI are the same. 
DSOI 6 object_interface { 

BSOI bar() 
II Note need to include full interface. BSOI is a 11 macro 11 • 
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II BSOI is used, rather than ASOI, to make a point: Interface 
II names here are just 11 macro names 11 • The names can be changed 
II without changing the meaning of the defined interfaces. 

} 

CSOI 6 object_interface { 
DSOI f oo (DSOI) 

} 

ESDI 6 object_interface { 

} 

ASOI bar(), II BSOI, or 'object_interface {}' 
II could be used in place of ASOI 

ASOI meth() 

Figure C.5 : Object Interface/Record Type Examples 



While the object interface (of instances) of class Pair is 

PSOI 6 object_interface ~P. { 
B equals(O), 
0 first, 0 second, 
B f stEqSnd () , 
B equalTo(P), 
P setFirst(O), 
P setSecond(O), 
P swap() 

} and ~0. { ... interface of class Object ... } 
and ~B. { ... interface of class Boolean ... } 

Figure C.6: Object Interface/Record Type Examples 

C.4 Structural Subtyping 
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Figure C. 7 presents examples for structural object types in the structural subtyping 

relation. 

The following structural object types/interfaces, from Figures C.5 and C.6, are in the 
structural subtyping relation, <:. 

BSOI <: ASOI (and ASOI <: BSOI, because ASOI = BSOI) 
CSOI <: BSOI (a genuine "is-A") 
DSOI <· BSOI (unwarranted "is-A") 
ESDI <: DSOI (a genuine "is-A") 
OSOI <: BSOI (unwarranted "is-A") 
PSOI <· OSOI (a genuine "is-A") 

Figure C. 7 : Structural Subtyping Examples 

Note that pairs in structural subtyping relations could express genuine "is-A" 

relations or unwarranted accidental ones. For example, 

object_interface {} <: object_interface {} 
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which we expressed above as BSOI <: ASOI (and ASOI <: BSOI), intuitively holds 

true when in reference to objects of class B being (or "is-A", or are substitutable for) 

objects of class A. This is something the developer (of class B) intended. It is thus a 

genuine is-A relation. The same relation does not hold true, however, when in it refers 

to objects of class A being objects of class B. Viewing objects of A as objects of B may 

not have been intended by the developer of class A. It is an accidental ("spurious") 

is-A relation. It is only a result of the fact that structural subtyping does not capture 

the full intention of class developers. · 

The subtyping pairs CSOI <: BSOI, ESDI <: DSOI and PSOI <: OSOI express 

genuine is-A relations when referencing objects of classes C being B's, E's being D's, 

and Pair's being Db j ect 's, respectively. The pairs DSOI < : BSOI and OSOI < : 

BSOI express an unwarranted is-A relation when referencing objects of D being B's, 

and Object's being B's. 

C.5 Signatures and Subsigning 

Figures C.8 and C.9 present examples of class signatures, and Figure C.ll presents 

pairs of signature closures in the subsigning relation. 



The signature (of instances) of class Object is 

Obj A sig Object { 
equals: Object~Boolean 

} 

The signature of (instances of) classes A, B, C, D and E are 

A A sig A {} 
B A sig B ext A {} 
C A sig C ext B { 

foo: D~D 
} 

D A sig D { 
bar: ()~A 

} 

E A sig E ext D { 
bar: ()~A. 

meth: ()~A 
} 

Figure C.8 : Signature Examples 

While the signature (of instances) of class Pair is 

Pair A sig Pair ext Object { 
equals: Object~Boolean, 
first: Object, 

} 

second: Object, 
fstEqSnd: ()~Boolean, 

equalTo: Pair~Boolean, 
setFirst: Object~Pair, 
setSecond: Object~Pair, 
swap: ()~Pair 

Figure C.9 : Signature Examples 
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It should be noted that the syntax used to present examples of class signatures 



127 

in Figures C.8 and C.9 is different from the syntax generated by the mathematically-

oriented abstract syntax rules presented in Chapter 5. Even though equally informa-

tive, the syntax of signatures we used here is closer to the syntax of classes, which 

most mainstream 00 developers are thus familiar with. 

The signature environments and signature closures in Figure C.lO use class signatures 

presented in Figures C.8 and C.9. 

ObjectSE = { Obj, Bool } 
II where Bool is the class signature of class Boolean 

Ase = { A } 
Bse = { A, B } 
Cse = { A, B, C } 
Dse = { A, D } 
Ese = { A, D, E } 
PairSE = { Obj, Bool, Pair } 

ObjSC = (Object, ObjSE) 
Asc = (A, Ase), Esc= (B, Bse), Csc 
Dsc = (D, Dse), Esc = (E, Ese) 
PairSC = (Pair, PairS E) 

(C, Cse) 

Figure C.lO : Signature Environment and Signature Closure Examples 

Figure C.ll presents signature environments, and signature closures (from Fig-

ure C.lO) that are in the extension relation ..,.., and the subsigning (inheritance) rela-

tion ~' respectively. 



Ese <IIIII Ase (but Ase ,- Ese) 
Cse <IIIII Ese 
Ese .,.. Dse 
PairSE .,.. ObjSE 

and by rules of subsigning (See Section 5.4) 

Esc <J Asc (but Asc ~ Esc) 
Csc ~ Esc 
Esc ~ Dsc 
PairSC ~ ObjSC 
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Note that pairs in subsigning relation only express genuine "is-A" relations. In par­
ticular, unlike we had for structural subtyping (in Figure C.7), for subsigning we 
have 

• Dsc ~Esc 

(Dsc ~ Esc is unwarranted by rules of subsigning, 
since Dse ,- Ese) 

• Dsc ~ Asc 

(Dsc ~ Asc is unwarranted by rules of subsigning, since, 
even though Dse <IIIII Ase, but A ~ super _sigs(D) = ¢) 

• ObjSC ~Esc 

(ObjSC ~ Esc is unwarranted by rules of subsigning, 
since ObjSE ,- Ese) 

Figure C.ll : Extension and Subsigning Examples 

Using the class declarations presented in Section C.l, the reader is invited to 

construct more examples of signature closures in and outside the subsigning rela-

tion. Unlike structural subtyping (<:),the examples for subsigning demonstrate that 

subsigning (=nominal subtyping) fully· captures the intention of class developers. 


