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We define families of invariants for elements of the mapping class group of Σ , a

compact-orientable surface. For any characteristic subgroup H � π1(Σ), let J(H) denote

the subgroup of mapping classes that induce the identity on π1(Σ)/H . To any unitary

representation ψ of π1(Σ)/H , we associate a higher-order ρψ-invariant and a signature

2-cocycle σψ . These signature cocycles are shown to be generalizations of the Meyer

cocycle. In particular, each ρψ is a quasimorphism and each σψ is a bounded 2-cocycle

on J(H). In one of the simplest nontrivial cases, by varying ψ , we exhibit infinite fami-

lies of linearly independent quasimorphisms and signature cocycles. We show that the

ρψ restrict to homomorphisms on certain interesting subgroups. Many of these invari-

ants extend naturally to the full mapping class group and some extend to the monoid of

homology cylinders based on Σ .

1 Introduction

Suppose Σ is a compact oriented surface and M=M(Σ) is its mapping class group,

that is the group of isotopy classes of orientation preserving diffeomorphisms of Σ

that restrict to the identity on ∂Σ . This includes the (framed) pure braid groups as
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3312 T. D. Cochran et al.

one example. The mapping class group is important for several reasons. First, the

classifying space BM is essentially homotopy equivalent to the moduli space of Rie-

mann surfaces of topological type Σ . Furthermore, homeomorphisms of surfaces are

very important in low-dimensional topology, since manifolds are often understood by

decomposing them into simpler pieces. For example, any 3-manifold can be expressed

as the union of two handlebodies identified along their common boundary surface via

a homeomorphism. Similarly, recent attempts at a systematic structure for the study

of 4-manifolds view such manifolds as singular surface bundles over surfaces, called

Lefschetz fibrations (and broken Lefschetz fibrations). Monodromies associated to these

fibrations are homeomorphisms of surfaces. These decompositions reduce the study of

these complicated manifolds to the study of surface homeomorphisms. Our broad goal

is to describe and investigate many families of invariants for important subgroups of

the mapping class groups using three- and four-dimensional manifolds. Many of our

results also apply to subgroups of the monoid of homology cylinders, a recent general-

ization of M.

Our invariants are generalizations of the classical Meyer signature cocycle [46],

which we now briefly review. The Meyer signature cocycle has been defined only in the

cases that the number of components of ∂Σ is 0 or 1. Recall that there is an exact

sequence

1→ I i−→M rM−→ Sp(2g,Z)∼= Isom(H1(Σ;Z))→ 1, (1)

where rM( f) is the induced action of f on a fixed symplectic basis of H1(Σ), Isom(H1(Σ))

is the group of isometries of the intersection form on H1(Σ), and I is the Torelli group.

The latter is the subgroup of M consisting of homeomorphisms that induce the identity

on H1(Σ). Meyer defined a canonical 2-cocycle

τM : Sp(2g,Z)× Sp(2g,Z)→Z

that induces a 2-cocycle on M which we call the Meyer signature cocycle

σM :M×M (rM,rM)−−−−→ Sp(2g,Z)× Sp(2g,Z)
τM−→Z. (2)

The Meyer cocycle satisfies the following properties that we call the Meyer properties:

(1) σM is a bounded 2-cocycle (i.e., its range is bounded);
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Higher-Order Signature Cocycles 3313

(2) σM( f, g) is the signature of the total space of the Σ-bundle over the twice punctured

disk whose monodromy around the punctures is f and g, respectively;

(3) σM vanishes as a 2-cocycle on I;

Moreover, if genus(Σ)≤ 2, there is a (unique) corresponding 1-chain, called the Meyer

function,

ρM : M→Q,

such that δρM = σM in group cohomology with Q-coefficients [2, Equation (5.3); 46], and

satisfying the following additional properties:

(4) ρM is a class function (i.e., it is constant on conjugacy classes);

(5) ρM is a quasimorphism (defined below);

(6) the restriction of ρM to I is a homomorphism.

(In general, if σM is restricted to the hyperelliptic mapping class group, then such a

Meyer’s function exists with the earlier-mentioned properties since [σM] is trivial in the

second rational cohomology of the hyperelliptic mapping class group [23, 48, 49].)

The mathematics associated to Meyer’s signature cocycle is extraordinarily rich.

Meyer himself gave formulae for the signature of surface bundles over surfaces and

subsequent authors have extended these formulae to Lefschetz fibrations of 4-manifolds

and other complex varieties [24, 38]. Morita showed that σM is part of a cocycle that is

essentially equivalent to a Casson’s celebrated invariant for homology 3-spheres [51].

As another example, Gambaudo and Ghys [27] consider the case of the braid group and

use their results to study the global geometry of the Gordian metric space of knots

and to produce quasimorphisms on the group of compactly supported area-preserving

diffeomorphisms of an open two-dimensional disc [26], and more generally to study the

dynamics of surfaces [29].

Quasimorphisms have been shown, in recent years, to be quite useful. Recall

that a quasimorphism on a group J is a function ρ : J→R whose deviation from being

a homomorphism is universally bounded by a constant Dρ , that is, for all f, g∈ J

| ρ( fg)− ρ( f)− ρ(g) | ≤ Dρ.

Two such are considered equivalent if they differ by a bounded function. Quasimor-

phisms are related to bounded cohomology (defined in Section 4), bounded generation
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[5, 6] and stable commutator length [4, 37]. For example, if Q̂(J) denotes the vector space

of quasimorphisms of J, then there is an exact sequence

0→ H1(J;R)→ Q̂(J)
δ−→ H2

b (J;R)→ H2(J;R).

An excellent place to learn about these subjects is [10].

We assume throughout that Σ is a surface with at least one boundary compo-

nent, on one of which we choose a basepoint, ∗. We often denote π1(Σ, ∗), by F , a free

group, whose rank will be suppressed (but is of course determined by the genus and the

number of boundary components). Suppose H is a characteristic subgroup of F . Then

we let J = J(H) denote the subgroup of M consisting entirely of homeomorphisms that

induce the identity on π1(Σ, ∗)/H . (Warning: this definition is only accurate if ∂Σ has 1

boundary component. See Section 2 for the correct definition of J(H) in the cases that

Σ has more than one boundary component). For example, J(F )=M and J([F, F ])= I.

Another important example is H = Fk, the kth term of the lower central series of π1(Σ),

k≥ 2. In this case, J(H) is J (k), the kth generalized Johnson subgroup, which is the sub-

group of homeomorphisms that induce the identity on F/Fk. Specifically, in our notation,

J (2) is the Torelli group and J (3) is called the Johnson subgroup (normally denoted

K). The kth term of the lower central series of I is another important subgroup. Yet

another important class of examples is the mod L versions of these subgroups. In partic-

ular, if L ∈Z+ and H =⋃x∈F [F, F ]xL , then J(H) is the level L subgroup of M, sometimes

denoted Mod(L), which is the subgroup of homomorphisms that induce the identity on

H1(Σ;Z/LZ) [55, 56]. Other examples involve mixtures of the lower central and derived

subgroups of F .

Now fix a unitary representations ψ : F/H→U (H) on a separable Hilbert space

H (one possibility is just a U (n)-representation). In Section 2, we give natural exam-

ples of such representations for some of the most important examples. To H and ψ , we

associate a higher-order ρ-invariant

ρψ : J(H)→R.

In Section 3, we define the higher-order signature 2-cocycle

σψ : J(H)× J(H)→G,
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where G =Z if dim(H) <∞ and G =R if dim(H)=∞. In brief, the higher-order

ρ-invariants are defined as follows: Given f ∈ J(H), form the mapping torus Mf , which

has a torus as its boundary. From this perform “longitudinal Dehn-filling” to arrive at

the closed 3-manifold Nf . The latter is obtained by attaching a solid torus to Mf in such

a way that ∗ × S1 bounds an embedded disk in Nf . We show that, under the hypothesis

on f , there is a canonical surjection

φ f : π1(Nf )→ F/H.

Given the pair (Nf , φ f ) and a fixed auxiliary finite-dimensional unitary representa-

tion ψ , we let ρψ( f)= ρ(Nf , ψ ◦ φ f ), where the latter is the real-valued ρ-invariant of

Atiyah et al. [3]. In the infinite-dimensional case, we restrict to representations of the

form

ψ : F/H→ Γ
�r→U (�(2)(Γ )),

for a countable discrete Γ , where �r is the left-regular representation of Γ on the

Hilbert space �(2)(Γ ). In this case, we set ρψ( f)= ρ(Nf , ψ ◦ φ f ), the Cheeger–Gromov

von Neumann ρ-invariant associated to (Nf , ψ ◦ φ f ) [12] (this is also called the

�(2) − ρ-invariant associated to ψ ◦ φ f ). These have the advantage that they are canon-

ically associated to H and hence enjoy better properties.

We establish that each of the ρψ and σψ possess all of the Meyer properties

Theorem 1.1. For any H and ψ as mentioned earlier,

(0) With real coefficients, δρψ = σψ (Proposition 4.1);

(1) ρψ is a class function on J(H) (Lemma 2.3);

(2) ρψ is a quasimorphism on J(H) (Proposition 4.6);

(3) σψ is a bounded 2-cocycle on J(H) (Theorem 4.4, Corollary 4.5);

(4) if Σ has one boundary component, then σψ( f, g) is the difference between a twisted

signature and the ordinary signature of the total space of theΣ-bundle over the twice

punctured disk whose monodromy around the punctures is f and g, respectively

(Corollary 3.8);

(5) if ψ is finite-dimensional, then [σψ ] ∈ ker(H2(J(H);Z)→ H2(J(H);R)) (Corollary 4.3);
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3316 T. D. Cochran et al.

(6) σψ vanishes identically as a 2-cocycle on C (H) ∩ I (Corollary 4.9), where C (H)� J(H)

is the subgroup consisting of those classes that induce the identity map

id= f∗ :
H

[H, H ]
→ H

[H, H ]
.

(see Definition 4.7 for the definition of C (H) when ∂Σ is disconnected).

(7) the restriction of ρψ to C (H) ∩ I is a homomorphism (Corollary 4.10), �

Moreover, in analogy to the exact sequence (1):

Theorem 4.11. If Σ has one boundary component, then there is an exact sequence

1→ C (H)
i−→ J(H)

rψ−→ Isom(H1(Σ;Z[F/H ])), (3)

and a 2-cocycle τψ on the the image of rψ such that

σψ = r∗ψ(τψ)− nσM,

where n= dim(H) (n= 1 if dim(H)=∞) and Isom(H1(Σ;Z[F/H ])) is the group of auto-

morphisms of H1(Σ;Z[F/H ]) (as a Z[F/H ]-module) that preserve the intersection form

with Z[F/H ]-coefficients [47]. �

The higher-order ρ-invariants and signature 2-cocycles give a vast supply of

invariants for subgroups of the mapping class group. In fact, they yield maps

ρ : Rep(F/H,U (n))→ Q̂(J(H)),

and

σ : Rep(F/H,U (n))→ H2
b (J(H);R).

In certain cases, there is an interesting interpretation of ρψ as a twisted signa-

ture defect of a Lefschetz fibration [25](or more generally of singular Σ-bundles over the

2-disk ):
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Proposition 5.2. Suppose that D1, . . . , Dn are positive Dehn twists along null-

homologous circles in Σ . Then, for any unitary representation ψ of F/[F, F ]≡ H1(Σ;Z),

ρψ(Dn ◦ · · · ◦ D1)= σ(Y, ψ)− σ(Y),

where Y is the Lefschetz fibration over the 2-disk with generic fiber Σ and with n singu-

lar fibers whose monodromies are D1, . . . , Dn. �

Calculation of these invariants is, in general, difficult, as can be seen in [27, 36].

However, we include, in Section 5, calculations in one of the simplest nonclassical cases.

Set H = [F, F ], choose a symplectic basis for H1(Σ;Z) and define

ψω : F/H ∼= H1(Σ;Z)∼=Z2g π−→ S1 ≡U (1),

where, for each i = 1, . . . ,2g, π(xi)=ω. Then, for each such ω, we have the higher-order

ρ-invariant ρω = ρψω defined on any subgroup of the Torelli group, I = J([F, F ]). Specifi-

cally, let J (3)=Kg⊂ I be the Johnson subgroup.

Theorem 5.4. For g≥ 2, {ρω} spans an infinitely generated subspace of Q̂(Kg). �

Previous constructions of quasimorphisms have used pure group theory,

Seiberg–Witten theory, and quantum cohomology. Our construction is of a quite dif-

ferent flavor.

In addition,

Theorem 5.5. For g≥ 2, {σω = δ(ρω)} spans an infinitely generated subspace of

H2
b (Kg;R), the second bounded cohomology of Kg. �

It was recently shown in Bestvina and Fujiwara [5] that almost every subgroup of

the mapping class group has infinite dimensional H2
b (−;R). In contrast, all the bounded

cohomology groups of any amenable group vanish.

The subgroups on which the higher-order ρ-invariants are homomorphisms

promise to be very interesting. In particular, if H = Fk, then the groups {C ([Fk, Fk])},
homeomorphisms that induce the identity on Fk/[Fk, Fk] (and F/Fk), constitute a new

and interesting filtration of the Torelli group. It was not known until recently whether
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3318 T. D. Cochran et al.

or not C ([F2, F2]) was nonzero, but it is now known that its intersection with each John-

son subgroup is nonzero; so C ([F2, F2]) is highly nontrivial [13].

We indicate a possible method of calculation that relies on previous work in

link theory. There are various ways to map a punctured disk into Σ , and corresponding

to these are ways to map the pure braid group into the Torelli group of Σ [41]. Let

Θ be such a map. Then with some restrictions (see Proposition 7.1), the higher-order

ρ-invariants of Θ(β) can be calculated in terms of the higher-order ρ-invariants of the

zero-framed surgery on the link obtained as the closure of the braid β. Such ρ-invariants

of links have been studied extensively by the authors and others, although only a few

calculations have been made for closures of pure braids [15, 31, 33]. The recent thesis of

Bohn may provide some tools for calculations in the general case [7].

In Section 8, we generalize our work to the monoid of homology cylinders based

on Σ , denoted C and to the group, H, of homology cobordism classes of homology

cylinders (defined in Section 8). These enlargements of M have been widely considered

recently [28, 52, 60].

2 Definition of the Higher-order ρ-invariants

In this section, we will define the higher-order ρ-invariant

ρψ : J(H)→R,

associated to H and ψ . Of course, this serves to define such a function on any subgroup

of J(H). Basic properties of these invariants will be addressed in later sections.

2.1 The subgroups J(H)⊂M

Suppose that Σ is a connected, oriented compact surface with m+ 1 boundary com-

ponents where m≥ 0. Choose a basepoint, ∗, on one of the boundary components, and

basepoints z1, . . . , zm, on the other boundary components. Also choose directed arcs, δi,

in Σ from ∗ to zi. Recall that we are given H , a characteristic subgroup of π1(Σ, ∗), and

ψ : π1(Σ)/H→U (H), a unitary representation on a separable Hilbert space H.

Definition 2.1. Let J = J(H) be the normal subgroup of M of mapping classes [ f ] that

satisfy

(1) f induces the identity map on π1(Σ)/H ;
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(2) the homotopy classes [ f(δi)δ̄i] lie in H for 1≤ i ≤m. (Here δ̄i is the arc δ̄i

backwards.) �

If m= 0, then the second condition is vacuous. It is easy to check that the definition of

J(H) is independent of the choices of ∗, zi, and δi. For example, if H = [F, F ] then J(H)

is the Torelli group. The presence of condition (2) may be unfamiliar to the reader since

much of the literature deals with the case of a surface with a single boundary component

(m= 0). However, this is the “right” definition, even for the Torelli group (i.e., agrees with

the definition of the Torelli group in Johnson [35, p. 114]).

2.2 The associated 3-manifolds

To define the ρ-invariants, we first associate (in a standard fashion) to any f ∈ J(H) a

closed oriented 3-manifold, Nf , and a canonical epimorphism φ f : π1(Nf )→ π1(Σ)/H .

We begin by recalling some notation. For any f ∈M, we can form the mapping

torus of f , Mf =Σ × [0,1]/(x,0)∼ ( f(x),1), a compact oriented 3-manifold (possibly

with boundary). The formation of Mf is shown schematically by the first two pictures

on the left-hand side of Figure 1. In the schematic representation, the vertical inter-

val represents Σ , and the horizontal “interval” represents [0,1]. The oriented homeo-

morphism type of Mf depends only on the conjugacy class of f . More precisely, if g

and f are conjugate, then Mg and Mf are orientation-preserving homeomorphic rela-

tive to (Σ × {0}) ∪ ∂Mf . It follows that for any f, g, Mfg
∼=Mgf . Each of the boundary

components of Mf has a canonical identification with S1 × S1, where S1 × {1} is one of

the components of ∂Σ , t= {∗} × S1 is the circle {∗} × [0,1]/∼ and ti = {zi} × S1 is the cir-

cle {zi} × [0,1]/∼. Note that Mf−1 =−Mf via an orientation-preserving homeomorphism

fixing (Σ × {0}) and inducing (x, t)→ (x,−t) on each of the boundary tori. Figure 1 is a

Fig. 1. Mf and N f .
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representation of the case that Σ has one circle boundary component (which appears as

an S0 in our schematic). Thus the top and bottom circles in the middle part of Figure 1

represent the single boundary torus. If we attach solid tori to each of the boundary com-

ponents of Mf in such a way that 2-disks are attached to the circles {∗} × S1 and each

{zi} × S1, we denote this closed manifold by Nf . It is shown schematically on the right-

hand side of Figure 1, where the solid torus is shaded. This is the same as forming the

quotient space Mf � Nf wherein, for each x∈ ∂Σ , {x} × S1 is identified to a single point.

Given f , the 3-manifolds Mf and Nf are unique up to orientation-preserving homeomor-

phisms (relative ∂Mf in the first case) that induce the identity on π1.

Moreover, we have

π1(Mf , ∗)∼= 〈π1(Σ), t|txt−1 = f∗(x), x∈ π1(Σ)〉,

with respect to the canonical map j∗ : π1(Σ × {0})→ π1(Mf ). The subgroup H is normal

in π1(Mf ) and

π1(Mf )/H ∼= 〈π1(Σ), t|txt−1 = x, H〉 ∼=Z× π1(Σ)/H , (4)

since f induces the identity modulo H . Since Nf is obtained from Mf by adding two

cells along {t, t1, . . . , tm}, and then adding three cells,

π1(Nf )∼= 〈π1(Σ), t|t= 1, δiti δ̄i = 1,1≤ i ≤m, x= f∗(x), x∈ π1(Σ)〉. (5)

The image of the rectangle δi × [0,1] ↪→Σ × [0,1]/∼ =Mf shows that t is based homo-

topic to δiti f(δ̄i). Then, using part 2 of Definition 2.1, we have f(δi)δ̄i = hi; so

δiti δ̄i = δiti f(δ̄i) f(δi)δ̄i ∼ thi.

Thus, modulo H , the relations x= f∗(x) are trivial, and the relations δiti δ̄i are a conse-

quence of the relation t= 1. Hence,

π1(Nf )/H ∼= 〈π1(Σ) | H〉 ∼= π1(Σ)/H. (6)

Thus, we see that there is a unique homomorphism

φ f : π1(Nf )→ π1(Σ)/H ,
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such that the composition

π1(Σ)
j∗→ π1(Mf )→ π1(Nf )

φ f→ π1(Σ)/H

is the canonical quotient map.

2.3 The invariants

Now, given any fixed unitary representation ψ : π1(Σ)/H→U (n), we get a canonical rep-

resentation

ψ f : π1(Nf )→ π1(Σ)/H
ψ→U (n).

To any such pair (Nf , ψ f ), Atiyah et al. [3] associated a real-valued invariant ρ(Nf , ψ f ),

defined as a difference between the η invariant of Nf and a twisted η-invariant. These

η invariants are Riemannian spectral invariants associated to the signature operator,

but the difference, ρ(Nf , ψ f ), was shown to be an invariant of the oriented homeomor-

phism type of (Nf , ψ f ). We call this the higher-order ρ-invariant of f corresponding to

ψ , denoted ρψ( f).

Similarly, given any auxiliary φ : π1(Σ)/H→ Γ (for any countable discrete group

Γ ), one can compose with the left-regular representation of Γ on the Hilbert space

�(2)(Γ ), giving the representation

ψ f : π1(Nf )→ π1(Σ)/H
φ→ Γ →U (�(2)(Γ )).

To any such a pair (Nf , ψ f ), Cheeger and Gromov [12] associated a real number,

ρ(Nf , ψ f ), called the von Neumann ρ-invariant. Once again this was defined as the dif-

ference between the η invariant of Nf and the von Neumann η-invariant associated to

the Γ -cover of Nf . A summary of the basic properties of the ρ-invariants is given in

Appendix. As previously mentioned, the von Neumann ρ-invariants have recently been

extremely influential in the study of knots and links [18].

In summary we have the following:,

Definition 2.2. The higher-order ρ-invariant of f ∈ J(H) corresponding to ψ , denoted

ρψ( f), is ρ(Nf , ψ f ) as mentioned earlier. Sometimes this will be abbreviated as ρ( f) if ψ

is clear from the context. �
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Lemma 2.3. For any H and ψ , ρψ : J(H)→R is a class function on J(H). Moreover, if

f ∈ J(H) and g∈M, then ρψ(g−1 fg)= ρψ( f). �

Proof. Since J(H) is a normal subgroup of M, g−1 fg∈ J(H). Then, as observed in

Section 2.2, Mf
∼=Mg−1 fg, so ρψ(g−1 fg)= ρψ( f). �

Example 2.4. If H is the commutator subgroup, then π1(Σ)/H ∼= H1(Σ)∼=Zβ1(Σ) and

J(H) is the Torelli group. Given complex numbers of norm 1, ωi, 1≤ i ≤ β1(Σ), we can

define ψω : Zr→U (1)≡ S1 by sending (0, . . . ,1, . . . ,0) to ωi. Therefore, varying the ωi

yields a function

ρ : (S1 × · · · × S1)× J(H)→R,

where the m-torus should be viewed as the representation space Rep(Zβ1(Σ),U (1)). In

addition the left-regular representation:

�r : π1(Σ)/H =Zβ1(Σ) ↪→U (�(2)(Zβ1(Σ))),

gives a single function

ρ(2) : J(H)→R.

It is known that this function is merely the integral over the n-torus of the function

ρ mentioned earlier [18, Section 5]. Furthermore, suppose Σ is the 2-disk, D2, with m

open subdisks deleted. Then, for any f ∈ J(H), Mf is homeomorphic to the exterior, D2 ×
S1 \ β̂ f of the closure of an m-component pure braid β f . The condition f ∈ I translates

into the condition that the pairwise linking numbers of the components of β̂ f are zero

(because the homology classes of the [ f(δi)δ̄i] encode the linking numbers of β̂ f ). Upon

adding a solid torus to Mf that caps off the boundary torus ∂D2 × S1, one arrives at the

exterior, S3 \ β̂ f . Nf is obtained from this by adding m additional solid tori (so-called

Dehn fillings) in such a way that the longitudes of the components of β̂ f bound disks.

The result is usually called the zero-framed surgery on the link β̂ f in S3, denoted here

by S(β̂ f ). The map ψω is equivalent to assigning a complex number of norm 1 to each

(meridian) of the link β̂ f . Therefore, ρ earlier-mentioned yields

ρ : (S1 × · · · × S1)× PB0
m→Z,
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where PB0
m denotes the group of pure braids on m strings with zero linking numbers.

This function was (essentially) previously defined by Levine [39] for all links (not just

links that are the closures of pure braids) where it was shown that ρ takes only integral

values in this case (see also [14, 61]). For example, if K is a fixed knot, then the function

ρK : S1→Z

is precisely the Levine–Tristram signature function of the knot K and is given by the

ordinary signature of the Hermitian matrix

(1− ω)V − (1− ω̄)Vt,

where V is a Seifert matrix for the knot. Therefore, for knots and more generally for

boundary links, this function is straightforward to compute. Even here, however, the

values are interesting as can be evidenced by Gambaudo and Ghys [27] and recent

papers addressing the values of this function for torus knots [8, 21, 36]. For general

links, including the closures of pure braids, there is also a formula for this function in

terms of bounding surfaces but there are almost no computations in the literature [14].

It is significant that the integral of this function is often much simpler than the function

itself, as evidenced for torus knots. �

3 Definition of the Higher-order Signature Cocycles

In this section, we define the higher-order signature 2-cocycles

σψ : J(H)× J(H)→G,

where G =Z in the finite-dimensional case and G =R in the �(2) case. First we describe a

4-manifold V = V( f, g) and a closely related 4-manifold W=W( f, g), whose boundary is

the disjoint union Nf � Ng � −Nfg. Then we show that the unitary representations extend

over π1(V) and π1(W). We define σ( f, g) to be a certain twisted signature defect of W( f, g)

corresponding to ψ . We later show that, in the important case that ∂Σ is connected, the

signature defects of W( f, g) and V( f, g) agree so that either may be used as the definition

of σψ .

Consider the 4-manifold Mf × [0,1] as shown schematically on the left-hand side

of Figure 2. Let V( f, g) denote the union of Mf × [0,1] and Mg × [0,1] identified along
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Fig. 2. V( f, g).

copies of (Σ × A)× {1} in Mf × {1} and Mg × {1} where A is a small interval about 1
2 in

[0,1]/∼, so that

Σ × A ↪→Σ × [0,1] � Σ × [0,1]

∼ ≡Mf ,

(and we have a similar copy Σ × A ↪→Mg). This is shown on the right-hand side of

Figure 2. Notice that ∂V( f, g) contains copies of Mf
∼=Mf × {0} and Mg

∼=Mg × {0} (on

the “inside”), and also a copy of Mfg (on the “outside”).

There is an important alternative description of V( f, g). Let D be the closed ori-

ented 2-disk with two open subdisks deleted. This may be seen as a horizontal slice of

V( f, g) on the right-hand side of Figure 2. Given f, g∈ J(H), we have a unique homomor-

phism Φ : π1(D)= 〈t1, t2〉→ J such that Φ(t1)= f and Φ(t2)= g. This induces a unique

(isomorphism class of) Σ-bundle over D. Since the bundle may be assumed to be a

product over an arc A that bisects D, it decomposes as the union of Mf × [0,1] and

Mg × [0,1], intersecting along A×Σ . Hence one sees that the total space of this bun-

dle is identifiable with V( f, g) defined earlier. In these terms, the boundary of V( f, g) is

Mf � Mg � −Mfg ∪ (∂Σ × D).

Now recall that

Nf =Mf

⋃
∂Σ×S1

∂Σ × D2,

where ∂Σ × D2 is a disjoint union of b solid tori where b is the number of boundary

components of Σ . Choose a small collar of ∂Σ in Σ , [0, ε]× ∂Σ ↪→Σ . This induces

Af = [0, ε]× ∂Σ × S1 ↪→Mf ,
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a collar of ∂Mf . Now form the 4-manifold

W( f, g)≡ V( f, g)
⋃

Af×{0}
[0, ε]× ∂Σ × D2

⋃
Ag×{0}

[0, ε]× ∂Σ × D2, (7)

as shown schematically in Figure 3. Then ∂(W( f, g))= Nf � Ng � −Nfg where the first

two components are on the “inside”, and the third is on the “outside” of the schematic

representation. One can see a decomposition of W( f, g) by bisecting the figure using a

vertical plane, so that

W( f, g)∼= (N( f)× [0,1]) ∪Σ×A (Ng × [0,1]).

Using either point of view, the fundamental group of V( f, g) has a presentation:

〈π1(Σ), t, s|txt−1 = f∗(x), sxs−1 = g∗(x), x∈ π1(Σ)〉,

with respect to the canonical map j∗ : π1(Σ)→ π1(V( f, g)). The subgroup H is normal in

π1(V( f, g)) and π1(V( f, g))/H has a presentation

〈π1(Σ), t , s| txt−1 = x, sxs−1 = x, H, x∈ π1(Σ)〉,

since f and g induce the identity modulo H . But the addition of (7) to V( f, g) has the

effect on π1 of killing the t, s as well as ti, si (as in Section 2.2). If we kill these elements,

Fig. 3. W( f, g).
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then we see that j induces an isomorphism

j∗ : π1(Σ)/H→ π1(V( f, g))/〈H, t, tis, si〉 ∼= π1(W( f, g)),

where we need the same analysis as was used for Equation (6). Therefore, ψ f and ψg

extend uniquely to

ψ̃ : π1(V( f, g))� π1(W( f, g))→U (H).

In summary, for any f, g∈ J(H), ∂W( f, g)= Nf � Ng � −Nfg in such a way that

for any unitary representation ψ : π1(Σ)/H→U (H), there is a coefficient system, ψ̃ , on

π1(W( f, g)) whose restriction to the boundary components is ψ f , ψg, and ψ fg, respec-

tively. Similar statements hold for V( f, g)⊂W( f, g)whose boundary is Mf � Mg � −Mfg ∪
(∂Σ × D).

Recall that given ψ̃ : π1(W)→U (n), where W is a compact, connected, orientable

4-manifold W, one defines the twisted homology of W as follows. Let W̃ denote the uni-

versal cover of W and consider a free left Z[π1(W)] chain complex, C∗(W̃), for W̃. Note

ψ̃ : π1(W)→U (n)⊂Aut Cn,

endows Cn with the structure of a right Z[π1(W)]-module. Then set

C∗(W; ψ̃)≡Cn⊗ψ̃ C∗(W̃),

and

H∗(W; ψ̃)≡ H∗(C∗(W; ψ̃)).

The usual intersection form on H2(W;C) generalizes to a hermitian form on H2(W; ψ̃)
[40, p. 91]. The twisted signature σ(W; ψ̃) is defined to be the ordinary signature of this

hermitian form over C. This signature takes values in Z.

Similarly, given ψ̃ : π1(W)→ Γ
�r→U (�(2)(Γ )), the �(2)-homology and the von Neu-

mann signature, σ 2
Γ (W; ψ̃), are defined (first defined by Atiyah in the case that W is

closed [1], see [18, Section 5; 45]). This signature takes values in R. In Appendix, we will

assemble, for the reader’s convenience, the definition and basic properties of the von

Neumann signature.
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Definition 3.1. Given H and a unitary representation ψ : F/H→U (H) as already men-

tioned, we define, in case H has dimension n,

σψ : J(H)× J(H)→Z,

by

σψ( f, g)= σ(W( f, g); ψ̃)− nσ(W( f, g))

and, in case H has dimension∞, we define

σψ : J(H)× J(H)→R,

by

σψ( f, g)= σ (2)Γ (W( f, g); ψ̃)− σ(W( f, g)),

where W( f, g) is as defined in Equation (7) and σ(W( f, g)) is the signature of the ordinary

intersection form on H2(W( f, g);C). �

Remark 3.2. In the first case, it might be more natural to use the definition

σψ( f, g)= σ(W; ψ̃)
n

− σ(W),

since then it is parallel to the �(2) case, being an “average twisted signature” minus an

ordinary signature. But this leads to rational values of the signature, rather than integer

values; so this explains our preference. �

Proposition 3.3. The following hold for σψ .

(1) σψ( f, g)= σψ(g, f);

(2) σψ( f−1, g−1)=−σψ( f, g);

(3) σψ( f, g)= 0 if f = 1 or g= 1 or fg= 1. �

Proof. By Definition 3.1, σψ( f, g) is the twisted signature defect of the 4-manifold

W( f, g), which has boundary Nf � Ng � (−Nfg), and σψ(g, f) is the twisted signature

defect of the 4-manifold W(g, f), which has boundary Nf � Ng � (−Ngf ). But, as pre-

viously observed, Nfg= Ngf . Thus ∂W( f, g)= ∂W(g, f). Form the closed 4-manifold

 at R
ice U

niversity on February 7, 2013
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


3328 T. D. Cochran et al.

W̄( f, g)=W( f, g) ∪ −W(g, f). Since both the twisted signature and the ordinary sig-

nature are additive for manifolds glued along entire components of their bound-

aries, and since both signatures change sign upon changing orientation, the signature

defect of W̄ is

σψ( f, g)− σψ(g, f).

But by Atiyah’s L(2)-signature theorem [1], the signature defect for a closed 4-manifold is

zero. It follows that σψ( f, g)= σψ(g, f). The second property follows similarly by noting

that

∂(−W( f, g))=−Nf � −Ng � Nfg= Nf−1 � Ng−1 � −Ng−1 f−1 = ∂W( f−1, g−1),

since Ng−1 f−1 = Nf−1g−1 . The third property follows similarly upon noting that since id−1 =
id, −Nid

∼= Nid, so

∂(−W( f, id))=−Nf � −Nid � Nf = Nf � Nid � −Nf
∼= ∂(W( f, id).

Thus 2σψ( f, id)= 0. The other results follow similarly. �

We postpone the proof that σψ satisfies the cocyle condition until Section 4,

although it can be established using the ideas of the proof of Proposition 3.3.

We now observe that these signature cochains are intimately related to the

higher-order ρ-invariants.

Proposition 3.4. For each ψ ,

σψ( f, g)=−ρψ( fg)+ ρψ( f)+ ρψ(g),

where ρψ( f) is the higher-order ρ-invariant of f corresponding to ψ as in

Definition 2.2. �

Proof. Since

∂(W( f, g), ψ̃)= (Nf , ψ f ) � (Ng, ψg) � (−Nfg, ψ fg),

the proof follows immediately from our definition and the following results of Atiyah–

Patodi–Singer (in the finite-dimensional case) and Ramachandran (in the �(2) case)(see

also [45]).
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Theorem 3.5 ([3, 57]). Given a compact, smooth, orientable 4-manifold W and an

extension ψ̃ : π1(W)→U (n) of ψ , then

ρ(∂W, ψ)= σ(W, ψ̃)− nσ(W),

where ψ is the restriction of ψ̃ , σ(W, ψ̃) is the signature of the twisted intersection form

on H2(W; ψ̃), and σ(W) is the signature of the ordinary intersection form on H2(W;C).
Similarly given φ̃ : π1(W)→ Γ

ρ(∂W, �r ◦ φ)= σ (2)Γ (W, �r ◦ φ̃)− σ(W). �
�

One elementary consequence is:

Corollary 3.6. ρψ(id)= 0. �

Proof. Merely apply Proposition 3.4 with f = g= id and then apply part 3 of Proposi-

tion 3.3. �

The following result is useful.

Proposition 3.7. If ∂Σ is connected, for any H , ψ , f , and g, the twisted and untwisted

signatures of V( f, g) and W( f, g) are equal. �

Corollary 3.8. If ∂Σ is connected, then σψ( f, g) is the difference between the twisted

signature and the ordinary signature of V( f, g), which is the total space of the Σ-bundle

over the twice punctured disk whose monodromy around the punctures is f and g,

respectively. �

Proof of Proposition 3.7. Recall that W=W( f, g) is obtained from V = V( f, g) by

adjoining a disjoint union of two thickened solid tori along a disjoint union of two

thickened tori (one for ∂Mf and one for ∂Mg). Since a solid torus is obtained from its

boundary by adjoining a single 2-handle and then a 3-handle, the passage from V to W

may be accomplished by adding two 2-handles and then two 3-handles. Let W̄ denote

the union of V and these 2-cells. We will show that H2(V)∼= H2(W̄) with either twisted
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or untwisted coefficients. It suffices to show that

H1(S
1 � S1)

i∗−→ H1(V) (8)

is injective, where S1 � S1 are the attaching circles s and t of the two-cells . Since V
π∗→ D

is a fibration, where D is the 2-disk with two open subdisks deleted, D→ S1 ∨ S1 is a

deformation retraction and the map

H1(S
1 � S1)

i∗−→ H1(V)
π∗−→ H1(D)→ H1(S

1 ∨ S1)

is the identity map. Note that the coefficient system ψ is trivial on S1 � S1; so

H1(S
1 � S1)∼= H1(S

1 ∨ S1),

with twisted or untwisted coefficients. Thus i∗ is injective. The addition of 3-handles will

not change the signature since their attaching spheres are homology classes carried by

the boundary of W̄. This shows that the twisted and untwisted signatures of W and V

agree. �

4 Higher-order Signature Cocycles and Group Cohomology

In this section, we observe that each σψ is a bounded 2-cocycle in the group cohomology

of J(H), and, with R-coefficients, σψ is the coboundary of ρψ .

We review the definition of group cohomology with coefficents in a trivial mod-

ule. If G is a group and A is an abelian group (viewed as a trivial G-module), set

G p=G × · · · × G and define the group of A-valued p-cochains to be

C p(G; A)= {ρ : G p→ A}.

Define δ : C p(G; A)→ C p+1(G; A) by

δρ( f0, . . . , fp)= ρ( f1, . . . , fp)+
p∑

i=1

(−1)iρ( f0, . . . , fi−1 fi, . . . , fp)+ (−1)p+1ρ( f0, . . . , fp−1).

(9)

Then, H p(G; A), the cohomology of G with coefficients in A is defined to be the homol-

ogy of the complex {C ∗(G; A), δ} [9]. A cochain with values in A⊂R is called a bounded
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cochain if its range is bounded as a subset of R. The bounded cochains form a subcom-

plex C ∗b(G;R)⊂ C ∗(G;R). The homology of this (co)-chain complex is called the bounded

cohomology of G.

In the following, A is the trivial module trivial module where A=Z if ψ is finite-

dimensional and A=R if ψ is infinite-dimensional.

Proposition 4.1. Under the map i2
# : C 2(J; A)→ C 2(J;R)

i2
#(σψ)= δR(ρψ).

The subscript R is to emphasize that we are speaking of cohomology with real coeffi-

cients (since ρ is real-valued). Thus, if ψ is infinite-dimensional, σψ is a 2-coboundary,

while if ψ is finite-dimensional, σψ may not be a coboundary (with Z coefficients). �

Proof. By Equation (9),

(δRρψ)( f, g)= ρψ(g)− ρψ( fg)+ ρψ( f).

The latter equals σψ( f, g) by Proposition 3.4. �

Corollary 4.2. The function σψ = σ :J × J→ A given by ( f, g)→ σψ( f, g) is a 2-cocycle of

J with values in A. �

Proof. The map i3
# : C 3(J; A)→ C 3(J;R) is injective. Thus it suffices to show that i3

# ◦
δA(σψ)= 0. By naturality and Proposition 4.1,

i3
# ◦ δA(σψ)= δR ◦ i2

#(σψ)= δRδR(ρψ)= 0.

This corollary can also be proved directly from the definition of σψ , using additivity

properties of the signature. �

Corollary 4.3. If ψ is a finite-dimensional representation, then the signature cocycle σψ

represents an element in the kernel of

H2(J;Z)→ H2(J;R). �
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Theorem 4.4. For any n-dimensional representation ψ ,

|σψ( f, g)| ≤ 2nβ1(Σ).

In the infinite-dimensional case,

|σψ( f, g)| ≤ 2β1(Σ). �

Corollary 4.5. For any ψ , σψ is a bounded 2-cocycle and hence represents an element in

the kernel of

H2
b (J;R)→ H2(J;R). �

Proof of Corollary 4.5. By Corollary 4.2 and Theorem 4.4, σψ is a bounded 2-cocycle. By

Corollary 4.3, it vanishes in H2(J;R). �

Proof of Theorem 4.4. Recall the description of W=W( f, g) of Figure 3. By contract-

ing along the thickenings, we see that, up to homotopy equivalence, W� Nf ∪Σ Ng. Thus

we have the following Mayer–Vietoris sequence, which we consider with various coeffi-

cients:

H2(Nf )⊕ H2(Ng)
(i∗+ j∗)−→ H2(W)

∂∗−→ H1(Σ)
(i∗, j∗)−→ H1(Nf )⊕ H1(Ng). (10)

Since the intersection form on W with any coefficients is identically zero on i∗(H2(∂W)),

it descends to a form on the quotient module

H2(W)/i∗(H2(∂W)),

and our various signatures are equal to the appropriate signature of this induced form.

First, consider the case that ψ is an n-dimensional representation. By definition

σψ( f, g)= σ(W( f, g); ψ̃)− nσ(W( f, g)).

By our earlier remark,

|σ(W; ψ̃)| ≤ rankC(H2(W; ψ̃)/i∗(H2(∂W; ψ̃))).
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Considering (10) with Cn-coefficients twisted by ψ̃ , we see that

rankC(H2(W; ψ̃)/i∗(H2(∂W; ψ̃)))≤ rankC(image ∂∗)≤ rankC H1(Σ; ψ̃).

Since Σ has a cell decomposition with one zero cell and β1(Σ) one cells

rankC H1(Σ; ψ̃)≤ rankCC1(Σ; ψ̃)= rankC(C
n⊗ψ̃ (Z[π1(W)]β1(Σ)))=nβ1(Σ).

Hence we have shown that

|σψ( f, g)| ≤ 2nβ1(Σ).

Taking ψ to be a trivial one-dimensional representation,

|σ(W( f, g))| ≤ β1(Σ).

This finishes the proof in the case of a finite-dimensional representation.

Now suppose ψ is an infinite-dimensional representation. Thus ψ̃ : π1(W)→
F/H ≡ Γ �r→U (�(2)(Γ )) and by definition

σψ( f, g)= σ (2)Γ (W; ψ̃)− σ(W),

and σ (2)Γ (W) is equal to the von Neumann signature of the induced form on

H2(W;UΓ )/i∗(H2(∂W;UΓ )).

Since the von Neumann dimension is additive on short exact sequences (see this and

other properties in [44, Lemma 8.27, Assumption 6.2, Theorem 6.7]),

|σ (2)Γ (W)| ≤ dim(2)
Γ (H2(W;UΓ )/i∗(H2(∂W;UΓ ))).

Considering the sequence (10) with UΓ -coefficients, we see that

dim(2)
Γ (H2(W;UΓ )/i∗(H2(∂W;UΓ )))≤ dim(2)

Γ (image ∂∗)≤ dim(2)
Γ H1(Σ;UΓ ).
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Furthermore

dim(2)
Γ H1(Σ;UΓ )≤ dim(2)

Γ C1(Σ;UΓ )= dim(2)
Γ (UΓ )β1(Σ) = β1(Σ).

Hence we have shown that

|σψ( f, g)| ≤ 2β1(Σ). �

4.1 Higher-order ρ-invariants as quasimorphisms

We show that each of the higher-order ρ-invariants is a quasimorphism. In Section 5, we

will show that even the very simplest family of such higher-order ρ-invariants spans an

infinite-dimensional subspace of the the vector space, Q̂(J (3)), of all quasimorphisms

of J (3) (recall J (3) is the Johnson subgroup K), and that the set of their coboundaries,

{δ(ρω)} spans an infinitely generated subspace of H2
b (K;R), the second bounded coho-

mology of K.

Proposition 4.6. Each of the higher-order ρ-invariants, ρψ : J(H)→R is a

quasimorphism. �

Proof. Suppose ρ = ρψ : J(H)→R is a higher-order ρ-invariant. Then, by

Proposition 3.4, for each f, g

| ρ( fg)− ρ( f)− ρ(g) | = |σψ( f, g) |,

where σ is the signature cocycle from Section 3. By Theorem 4.4, the latter is bounded

independent of f and g. �

4.2 Subgroups on which the higher-order signature cocycles vanish

By examining the proof of Theorem 4.4, we can draw more precise conclusions in certain

cases.

Definition 4.7. Let C (H)� J(H) denote the subgroup consisting of those classes [ f ]

such that

(1) f induces the identity map on H/[H, H ]; and

(2) the homotopy classes [ f(δi)δ̄i] lie in [H, H ] for 1≤ i ≤m (compare Section 2.1). �
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Theorem 4.8.

(1) If either of f or g lies in C (H) then the twisted signature of W( f, g) vanishes—that is

in the finite case, σ(W( f, g); ψ̃)= 0; in the infinite case, σ (2)Γ (W( f, g), ψ)= 0.

(2) If either of f or g lies in I, then the ordinary signature of W( f, g) vanishes. �

Before proving Theorem 4.8, we point out some of its interesting corollaries.

Corollary 4.9. The signature defect σψ vanishes identically as a 2-cocycle on

C(H) ∩ I. �

Proof of Corollary 4.9. Recall that if dim(H)=n, then

σψ( f, g)= σ(W( f, g); ψ̃)− nσ(W( f, g))

and, in case dim(H)=∞

σψ( f, g)= σ (2)Γ (W( f, g); ψ̃)− σ(W( f, g)).

If f ∈ C (H) then, by Theorem 4.8, the twisted signature σ(W( f, g); ψ̃)= 0 or

σ
(2)
Γ (W( f, g); ψ̃)= 0 as the case may be. If f ∈ I then by Theorem 4.8, σ(W( f, g))= 0

(Meyer’s cocycle vanishes). Thus, if f ∈ C(H) ∩ I then σψ( f, g)= 0. �

Then, as an immediate consequence of Corollary 4.9 and Proposition 3.4.

Corollary 4.10. The restriction of ρψ to any subgroup of C(H) ∩ I is a

homomorphism. �

Proof of Theorem 4.8. First note that part 2 of Theorem 4.8 is actually a special case

of part 1. For taking H = F , note that C (F )= I so it will follow from part 1 that the

signature twisted by ψ is zero. But in this case, F/H = 0; so the representation ψ is

necessarily trivial and so the twisted signature is equal to the ordinary signature. Thus

we need only show part 1.

First we show that the condition that f induces the identity map on H/[H, H ]

is identical to the condition that it induces the identity on H1(Σ;Z[F/H ]). Recall

that, whenever an epimorphism φ : π1(Σ)→ π1(Σ)/H induces a coefficient system, the
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homology module H1(Σ;Z[F/H ]) can be identified with the equivariant homology—that

is, the homology of the regular F/H-covering space of Σ corresponding to the kernel of

φ, viewed as a module over Z[F/H ]. Since this covering space has π1 equal to H , we have

an identification

H1(Σ;Z[F/H ])∼= kerφ

[kerφ,kerφ]
= H

[H, H ]
.

(This also follows from Shapiro’s lemma [9, p. 73].) Hence f induces the identity map on

H1(Σ;Z[F/H ]) if and only if it induces the identity map on H/[H, H ].

We now consider the proof of part 1 of the theorem in the finite-dimensional

case. The proof of part 1 in the �(2) case is identical, with UΓ -coefficients replacing Cn
ψ-

coefficients.

We show that if f induces the identity map on H1(Σ;Z[F/H ]) then it induces the

identity on H1(Σ;ψ). Let Σ̃ denote the universal cover of Σ . Then, by definition,

H1(Σ;ψ)= H1(C
n⊗ZF C∗(Σ̃)).

But since the coefficient system factors through F/H , we have

H1(Σ;ψ)∼= H1(C
n⊗C[F/H ] (C[F/H ]⊗ZF C∗(Σ̃)))= H1(D∗ ⊗C[F/H ] Cn),

where D∗ =C[F/H ]⊗ZF C∗(Σ̃). Note that, by definition,

H1(D∗)= H1(Σ;C[F/H ]).

Now consider the following commutative diagram. We claim that the map (id⊗ i)∗ in the

upper row is surjective.

Cn⊗ H1(D∗) H1(C
n⊗ D∗) H1(Σ;ψ)

Cn⊗ H1(D∗) H1(C
n⊗ D∗) H1(Σ;ψ)

�

id⊗ f∗

�(id⊗i)∗ �∼=

�

f∗

�(id⊗i)∗ �∼=

.

Once having shown this claim, our hypothesis that f∗ induces the identity on H1(D∗)

implies that the left-hand vertical map, id⊗ f∗, in the diagram is the identity, and hence

that the right-hand vertical map, f∗, is the identity on H1(Σ;ψ). To show that (id⊗ i)∗
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is surjective, we may assume that Σ is complex with one zero cell and a number of one

cells . Lift this to an equivariant cell structure for Σ̃ . Thus D2 = 0. Consider ∂1 : D1→ D0.

Then there is an exact sequence

0→ H1(D∗)= ker ∂1
i−→ D1

∂1−→ image ∂1→ 0.

Since tensoring with Cn over C[F/H ] is right exact, we have an exact sequence

Cn⊗ H1(D∗)
i⊗id−→Cn⊗ D1

id⊗∂1−→ im ∂1 ⊗ Cn.

Since D2 = 0, H1(C
n⊗ D∗)= ker(id⊗ ∂1). Thus

Cn⊗ H1(D∗)
(id⊗i)∗−→ H1(C

n⊗ D∗)

is surjective. This completes the proof that f induces the identity on H1(Σ;ψ).
Next we show that if f induces the identity on H1(Σ;ψ) then the twisted signa-

ture σ(W( f, g), ψ) vanishes. Following the proof of Theorem 4.4, we see that, in order to

show that σ(W( f, g), ψ) vanishes, it suffices to show that

rankC(image ∂∗)= 0,

where ∂∗ is from the Mayer–Vietoris sequence (10) using Cn-coefficients. Therefore it is

sufficient to show that the composition

H1(Σ;ψ) i∗−→ H1(Mf ;ψ) j∗−→ H1(Nf ;ψ) (11)

is injective. There exists a Wang exact sequence for twisted homology (arising from the

Serre spectral sequence for the twisted homology of the fibration Mf→ S1)

H1(Σ;ψ) f∗−id−→ H1(Σ;ψ) i∗−→ H1(Mf ;ψ),

which, since f induces the identity on H1(Σ;ψ), shows that i∗ is a monomorphism.

Recall that Nf is obtained from Mf by adjoining a disjoint union of solid tori,

∂Σ × D2, along a disjoint union of tori, ∂Σ × S1. Since a solid torus is obtained from its

boundary by adjoining a single 2-handle and then a 3-handle, Nf is obtained from Mf by
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adding a number of 2-handles and then a number of 3-handles. Let N̄ f denote the union

of Mf and these 2-cells. We will show that the kernel of

H1(Mf ;ψ) j∗−→ H1(N̄ f ;ψ)

is H1(S1;ψ), where S1 = t=∗ × S1. Consider the exact sequence:

H1(�S1;ψ) k∗−→ H1(Mf ;ψ) j∗−→ H1(N̄ f ;ψ). (12)

Since Nf is obtained from Mf by adding two-cells along {t, t1, . . . , tm}, these circles con-

stitute the �S1 in the exact sequence. Note that the coefficient system is trivial on this

subspace. Therefore the loops (based at ∗) {t, δiti δ̄i} represent the images of the genera-

tors of H1(�S1;ψ) under k∗. Recall from Section 2.2 that there are based homotopies

t∼ δiti f(δ̄i)∼ (δiti δ̄i)δi f(δ̄i)∼ (δiti δ̄i)hi.

where, by the second hypothesis of Definition 4.7, ( f(δi)δ̄i)
−1 = hi for some hi ∈ [H, H ].

Further note that any element of [H, H ] represents the zero element in H1(Mf ;Z[F/H ]).

Thus the image of k∗ (hence the kernel of j∗) is generated by the image of t. Now, to

finish the proof that j∗ of sequence (11) is injective, we need only show that the image

of i∗ from sequence (11) has trivial intersection with the image of k∗ (H1(S1;ψ)=< t>).

Suppose that α is a class in the intersection. If π : Mf→ S1 is the fibration then

H1(S
1;ψ) k∗−→ H1(Mf ;ψ) π∗−→ H1(S

1;ψ)

is the identity. Hence π∗(α)= α. But clearly the map

H1(Σ;ψ) i∗−→ H1(Mf ;ψ) π∗−→ H1(S
1;ψ)

is the zero map. Thus α = π∗(α)= 0 as claimed. This concludes the proof of

Theorem 4.8. �

As a further consequence of Theorem 4.8, we derive an exact sequence that gen-

eralizes the exact sequence (1). Since H is characteristic, any f ∈M induces a group
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automorphism

f∗ :
H

[H, H ]
→ H

[H, H ]
.

But the abelian group H/[H, H ] may be endowed with the structure of a right (or left)

Z[F/H ]-module via the action of F on H by conjugation. This module, as we observed

in the first paragraph of the proof of Theorem 4.8, may be identified with the twisted

homology module H1(Σ;Z[F/H ]). If f ∈ J(H), then f∗ is a module automorphism since,

for any w ∈ F and any h∈ H , there exists some k∈ H such that f(w)=wk. Hence

f(w∗h)= f(w−1hw)= f(w)−1 f(h) f(w)= k−1w−1 f(h)wk≡w−1 f(h)w=w∗ f(h),

where the ≡means modulo [H, H ]. Moreover, since f is an orientation-preserving home-

omorphism, f∗ is not an arbitrary automorphism. There exists an Z[F/H ]-valued inter-

section form

λH : H1(Σ;Z[F/H ])× H1(Σ;Z[F/H ])→Z[F/H ],

which f∗ preserves [47]. Let Isom(H1(Σ;Z[F/H ])) denote the group of module automor-

phisms of H1(Σ;Z[F/H ]) that preserve λH .

Theorem 4.11. If Σ has one boundary component, then there is an exact sequence

1→ C (H)
i−→ J(H)

rψ−→ Isom(H1(Σ;Z[F/H ])), (13)

and a 2-cocycle τψ on the image of rψ such that

σψ = r∗ψ(τψ)− nσM,

if dim(H)=n, and if dim(H)=∞,

σψ = r∗ψ(τψ)− σM,

where σM is Meyer’s cocycle restricted to J(H). �

Remark 4.12. Note that if H = F , then the exact sequence (13) reduces precisely to the

exact sequence (1). �
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Proof. The sequence is exact almost by definition. Let σ t
ψ denote the twisted signature

2-cochain on J(H) given by

σ t
ψ( f, g)= σ(V( f, g); ψ̃)= σψ( f, g)+ nσ(V( f, g)),

if dim(H)=n, and, in case dim(H)=∞

σ t
ψ( f, g)= σ (2)Γ (V( f, g); ψ̃)= σψ( f, g)+ σ(V( f, g)).

Here we have used that ∂Σ is connected to apply Proposition 3.7 and Corollary 3.8 to

employ V( f, g) instead of W( f, g). This 2-cochain is a 2-cocycle on J(H) since it is the

sum of two 2-cocycles. We claim that σ t
ψ descends to give a well-defined 2-cocycle

σ̃ t
ψ :

J(H)

C (H)
× J(H)

C (H)
→G,

(where G =Z or G =R according as the representation is finite or infinite-dimensional).

Suppose f, g∈ J(H) and h∈ C (H). Since σ t
ψ is a cocyle,

δ(σ t
ψ)( f, g,h)= σ t

ψ(g,h)+−σ t
ψ( fg,h)+ σ t

ψ( f, gh)− σ t
ψ( f, g)= 0.

By Theorem 4.8, σ t
ψ(g,h)= 0= σ t

ψ( fg,h). Thus

σ t
ψ( f, gh)= σ t

ψ( f, g).

Hence the value of σ t
ψ is independent of the coset representative of g in J(H)/C (H).

The same holds for the other variable f . Thus σ t
ψ descends to a well-defined 2-cocycle,

denoted τψ , on the image of rψ such that r∗ψ(τψ)= σ t
ψ . Moreover, using Proposition 3.7,

σ(V( f, g))= σ(W( f, g))= σM( f, g) (the Meyer cocycle),

r∗ψ(τψ)− nσM = σ t
ψ − nσM = σψ,

if dim(H)=n, whereas, if dim(H)=∞, then

r∗ψ(τψ)− σM = σψ. �
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5 Examples and Calculations

In this section, we perform calculations in one of the simplest nonclassical cases in

order to exhibit the complexity of the higher-order signature cocycles and ρ-invariants.

Specifically, let Σ =Σg,1 where g≥ 2 and H = [F, F ] so J(H)= I. For any norm 1

complex number ω, we can define a higher-order ρ-invariant ρω = ρψω as follows. Choose

ψω : F/H→U (1) as the composition

F/H ∼= H1(Σ;Z)∼=Z2g π−→ S1 ≡U (1),

where π sends every element of a fixed basis to ω. To be more precise, let xi and yi be the

curves on the surface Σg,1 as indicated in Figure 4. These generate π1(Σg,1, �).

For each ω ∈C such that ‖ω‖ = 1, let ψω : H1(Σg,1)→U (1) be the representation

that sends each xj and yj to ω. Define ρω( f) := ρ( f, ψω ◦ π) for any f ∈ I(Σg,1).

We introduce some examples in Kg on which we can calculate ρω. For each m≥ 1

and n≥ 0, let α and β(m,n) be the curves on Σg,1 as indicated in Figure 5, where 2m and

2n are the number of times β(m,n) passes over the “first 1-handle” and “third 1-handle”,

respectively. (In the figure, if you ignore the ellipses, n=m= 3.) Even though the figure

shows a genus 2 surface, the reader should imagine that the other 2g− 4-handles of

Σ are adjoined, say, on the left-hand side of the figure. They will play no role in the

computations to come, since the homeomorphisms we consider will be supported in

the genus two subsurface pictured in Figure 5. Thus the following computations suffice

for any g≥ 2. In Proposition 7.1, this paradigm (about the equality of the ρ-invariants

computed from a subsurface with those computed from the super-surface) is formal-

ized. For our convenience, we will often write drop the m and n from the notation

Fig. 4. The curves xi and yi generate the fundamental group of the punctured surface Σg,1.
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Fig. 5. The curves α and β.

and write β instead of β(m,n). Let x= x1, y= y1, z= x2, and w= y2. Then, up to conju-

gation and a choice of orientation, α and β represent the homotopy classes [z, w] and

[znw−1, x−my−1][x−1, y], respectively. Since α and β are bounding curves (either by direct

observation or by observing that they are null-homologous simple closed curves), we

have that Dα, Dβ ∈J (3)=Kg, where Dα and Dβ are the Dehn twists about α and β, respec-

tively. For each m≥ 1, n≥ 0 and N ∈Z, define f(m,n,N) := (Dα ◦ Dβ(m,n))
N+1 ∈Kg.

Lemma 5.1. Let m≥ 1, n, N ≥ 0, G(m,n)(t)= (t(n−1) − 1)(t−(m+1) − 1) and ω ∈C have norm

1 with ω �= 1. Then ρω( f(m,n,N))+ 2(N + 1) is equal to the signature of the 2N × 2N hermi-

tian matrix

C (m,n,N)(ω) :=
(

A G(m,n)(ω)BT

G(m,n)(ω)B A

)
, (14)
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where

A=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 · · · 0 0

−1 2 −1

0 −1 2
...

. . .

0 2 −1

0 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(15)

is the N × N matrix with a 2 in all the diagonal entries and a −1 in all the super- and

sub-diagonal entries, and

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 · · · 0 0

1 −1 0

0 1 −1
...

. . .

0 −1 0

0 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(16)

is the N × N matrix with a −1 in all the diagonal entries and a 1 in all the sub-diagonal

entries. �

Proof. First, we claim that Nid
∼= #2gS1 × S2 where id :Σg,1→Σg,1 and that the inclu-

sion map Σg,1 × {0}→ Nid induces an isomorphism on π1(−, �). To see this, first observe

that Nid = ∂(Σ × D2). Then note that since Σ may be built from a single 0-handle and

2g 1-handles, Σ × D2 may be built from a 4-ball and 2g (four-dimensional) 1-handles.

Any such (orientable) manifold is homeomorphic to �2gS1 × B3 (here � denotes boundary

connected sum).

Fix the integers N,n, m, let f = f(m,n,N) and consider the following set of 2N + 2

curves in Σ × [0,1]⊂ Nid

S = {β × {2i/(2N + 2)}, α × {(2i + 1)/(2N + 2)} | 0≤ i ≤ N}.

Let X be the 4-manifold obtained by attaching 2N + 2 2-handles to Nid × I along the

curves in S × {1} ⊂ Nid × {1}, each with +1 framing. Then ∂X = N̄id � Nf . This statement

is well-known [43, proof of Theorem 2; 59, p. 277]. For the reader who is unfamiliar with

it, note that it suffices to show that adding a single 2-handle with +1-framing yields a
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new “top” boundary component that still fibers over the circle but whose monodromy is

altered by a Dehn twist along the attaching circle of the handle. In turn, to prove this

latter fact, it suffices to prove it for the product fibration of an annulus over S1 (since

the handles are added along a thickened annulus).

Since the curves α and β are null-homologous inΣ , the 2-handles are attached to

circles that are null-homologous in Nid. Thus, using Equation (5), the inclusion map i1 :

Nid→ X induces an isomorphism on H1(−;Z). It follows that the inclusion map i1 : Nf→
X induces an isomorphism on H1(−;Z). Hence we can extend ψω ◦ π : Nf→U (1) to Φ :

π1(X)→U (1) in the obvious way so that Φ|Nid =ψω ◦ π . Recall that Nid is the boundary of

the boundary-connected-sum of 2g copies of S1 × B3, denoted E , wherein the inclusion

map induces an isomorphism on π1(−). Let W= X ∪ Ē . Since the inclusion map Nid→ E

induces an isomorphism on π1(−), we can extend Φ : π1(X)→U (1) to Φ : π1(W)→U (1).

Thus,

ρω( f)= σ(W,CΦ)− σ0(W), (17)

where σ(W,CΦ) is the twisted signature of W (twisted by Φ) and σ0(W) is the ordinary

signature of W.

We first consider H2(W). Since each curve, α and β, bounds a punctured torus in

Σ , H2(W)∼=Z2N+2; it is generated by the tori obtained by capping off these punctured tori

by disks that are the cores of the attached 2-handles. Note that the tori are all disjointly

embedded and they have self-intersection +1. Thus σ0(W)= 2N + 2.

Next we consider H2(W;CΦ). Let Y1 be the 4-manifold obtained attaching two

2-handles to E along β × {0} and α × {1/(2N)} ⊂ Nid = ∂E . We claim that H2(Y1;CΦ)= 0.

This involves a calculation using Fox calculus. Since H2(E;CΦ)= 0, H2(Y1;CΦ)= 0 if and

only if β × {0} and α × {1/(2N)} are linearly independent in H1(E;CΦ). Since H1(E;CΦ)⊂
H1(E, �;CΦ), it suffices to consider β × {0} and α × {1/(2N)} in H1(E, �;CΦ). We denote

x1, y1, x2, y2 by x, y, z, w, respectively, and view these as the generators of π1(E). Let �̃

be a lift of � to the universal cover of E and x̃, ỹ, z̃, w̃ be lifts of x, y, z, w starting at

�̃, respectively. Then H1(E, �;CΦ)∼=C4 is generated by {x= x̃⊗ 1,y= ỹ⊗ 1, z= z̃⊗ 1,w=
w̃ ⊗ 1}.

Let γ be a path on Σ that goes “straight” from � to the “top” intersection of

α and β. We will use γ along with “straight line” paths in the [0,1] direction of Σ ×
[0,1]⊂ Nid to base the curves in S. Orient α and β so that the arrows on their rightmost

vertical segments are pointing upward. With these conventions, α= z−1[z, w]z and β =
[y, x−1][(yxm)−1, znw−1] in π1(E). We calculate the Fox derivatives of α and β with respect
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to x, y, z, w.

∂α

∂x
= ∂α
∂y
= 0,

∂α

∂z
=wz−1(w−1 − 1),

∂α

∂w
= 1− wz−1w−1,

∂β

∂x
= yx−1(y−1 − 1)+ [y, x−1]x−m(y−1znw−1y− 1)(1+ · · · + xm−1),

∂β

∂y
= 1− yx−1y−1 + [y, x−1]x−my−1(znw−1 − 1),

∂β

∂z
= [y, x−1]x−my−1(1− znw−1yxmwz−n)(1+ z+ · · · + zn−1),

∂β

∂w
= [y, x−1]x−my−1znw−1(yxm − 1).

Setting x= y= z=w=ω, we can write α and β as elements of H1(E, �;CΦ).

α=(ω−1 − 1)z+ (1− ω−1)w,

β =((ω−1 − 1)+ ω−m(ωn−1 − 1)(1+ ω + · · · + ωm−1))x+ (1− ω−1 + ω−(m+1)(ωn−1 − 1))y

+ ((ω−m−1 − 1)(1+ ω + · · · + ωn−1))z+ (ωn−m−2(ωm+1 − 1))w.

Since ω �= 1, α �= 0. We now show that β is not a multiple of α, which will com-

plete the proof that H2(Y1;CΦ)= 0. Suppose β = λα, then we have the following system

of equations.

(1− ω)(ω−1 − 1)= (ωn−1 − 1)(ω−m − 1), (18)

ω−1 − 1=ω−(m+1)(ωn−1 − 1), (19)

(ω−(m+1) − 1)(ωn− 1)= λ(ω−1 − 1)(ω − 1), (20)

ωn−m−2(ωm+1 − 1)= λ(1− ω−1). (21)

Taking the norm of both sides of (19), we see that ‖ω−1 − 1‖ = ‖ωn−1 − 1‖. Since ω−1 and

ωn−1 are on the unit circle, this implies that ωn−1 =ω−1 or ωn−1 =ω.
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We first consider the case that ωn−1 =ω−1. In this case, ωn= 1; so using

Equation (20), we see that λ(ω−1 − 1)(ω − 1)= 0. Since ω �= 1, we have that λ= 0. By

Equation (21), ωm+1 = 1. However, this cannot happen since substituting ωn= 1 and

ωm+1 = 1 in Equation (18) gives −(ω − 1)(ω−1 − 1)= (ω−1 − 1)(ω − 1).

We now consider the case that ωn−1 =ω. Substituting this into Equation (19)

and multiplying both sides by ω gives (1− ω)=ω−m(ω − 1). Since ω �= 1, we must have

that ω−m =−1. With the substitutions ωn−1 =ω and ω−m =−1, Equation (18) becomes

(1− ω)(ω−1 − 1)=−2(ω − 1). However, this would imply that ω−1 = 3, which cannot hap-

pen since ω is on the unit circle. This completes the proof that α and β are linearly

independent and hence H2(Y1;CΦ)= 0.

Now we return to our calculation of H2(W;CΦ). Let U be the region in Figure 6

enclosed by the dashed lines. A picture of the attaching curves (when N = 3) in U × I is

shown in Figure 7. The attaching curves outside U × I are “parallel” to the original α

or β.

Fig. 6. The region U in Σ .
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Fig. 7. Attaching curves when N = 3.

Slide the handle attached along

α × {(2N + 1)/(2N + 2)},

over the handle attached along α × {(2N − 1)/(2N + 2)} and call the resulting attach-

ing curve α∗N . Then slide the handle attached along β × {(2N)/(2N + 2)} over the

handle attached along β × {(2N − 2)/(2N + 2)} and call the resulting attaching curve

β∗N . Continue this; for i from 1 to N − 1, slide the handle attached along α ×
{(2N − 2i + 1)/(2N + 2)} (respectively β × {(2N − 2i)/(2N + 2)}) over the handle attached

along α × {(2N − 2i − 1)/(2N + 2)} (respectively β × {(2N − 2i − 2)/(2N + 2)}) and call the

resulting attaching curve α∗N−i (respectively β∗N−i). A local picture of the new attaching

curves is shown in Figure 8.

Note that each α∗i (respectively β∗i ), oriented as described, bounds an obvious

oriented embedded disk Dα,i (respectively Dβ,i) in Y1 for 1≤ i ≤ N. For each 1≤ i ≤ N, let

Fα,i (respectively Fβ,i) be the oriented embedded 2-sphere obtained by gluing the core of

the 2-handle attached along α∗i (respectively β∗i ) to Dα,i (respectively Dβ,i) so that the

orientation of Fα,i (respectively Fβ,i) agrees with the orientation on Dα,i (respectively

Dβ,i). Therefore H2(W;CΦ)∼=C2N and has as an ordered basis Fα,1, . . . , Fα,N, Fβ,1, . . . , Fβ,N .
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Fig. 8. Attaching curves after handle slides when N = 3.

Using this basis, it is straightforward to check that the intersection form on H2(W;CΦ)

is given by the matrix in Equation (14). For example, consider Fα,1 · Fβ,1. After mak-

ing the surfaces transverse, there are four intersection points (two positive and two

negative). Taking into account the weightings from π1(W), we see that the equivariant

intersection number is −1+ znw−1 − znw−1x−my−1 + znw−1x−my−1wzn∈Z[π1(W)]. There-

fore, Fα,1 · Fβ,1 =−1+ ωn−1 − ω(n−1)−(m+1) + ω−(m+1) =−G(m,n)(ω). �

We interrupt our discussion to point out an interesting connection to signatures

of Lefschetz fibrations:

Proposition 5.2. Given Σg,m, suppose that D1, . . . , Dn are positive Dehn twists along

null-homologous circles. Then, for any unitary representation ψ of F/[F, F ]≡ H1(Σ;Z),

ρψ(Dn ◦ · · · ◦ D1)= σ(Y, ψ)− σ(Y),
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where Y is the Lefschetz fibration over the 2-disk with generic fiber Σ and with n singu-

lar fibers whose monodromies are D1, . . . , Dn. �

Proof. Note that the construction of the 4-manifold W in the preceding proof

will produce, in this greater generality, a null-bordism for NDn◦···◦D1 . Thus by

Theorem 3.5,

ρψ(Dn ◦ · · · ◦ D1)= σ(W, ψ)− σ(W).

Then it is only necessary to identify W with Y. For this it is known that W is obtained

from E ∼=Σ × D2, by adding two handles along separating curves. For details see, for

example, [30, Section 8.2]. �

Lemma 5.3. Let r ≥ 2 and N0 ≥ 0 be integers. Then

signature(C (r−1,r+1,2N0)(ω))=
⎧⎨
⎩4N0 if ωr = 1

0 if ωr =±i
. �

Proof. Let m= r − 1 and n= r + 1 and N = 2N0. Since ‖ω‖ = 1, we have G(m,n)(ω)=
‖ωr − 1‖2. So when ωr = 1, G(m,n)(ω)= 0; so C (r−1,r+1,2N0)(ω)) is a block sum of two copies

of A. It is easily shown that A has signature N = 2N0 (or note that A= B∗B); so

signature(C (r−1,r+1,2N0)(ω))= 2N = 4N0.

We now consider the case when ωr =±i. In this case, G(m,n)(ω)= 2. By adding

rows/columns 1 through N to rows/columns N + 1 through 2N, respectively, we see that

C (m,n,N)(ω) is congruent to the following matrix:

(
A A+ 2BT

A+ 2B 2A+ 2BT + 2B

)
=
(

A A+ 2BT

A+ 2B 0

)
. (22)

Let C ′ be the matrix in Equation (22). We will show that C ′ is nonsingular whenever N

is even. Since C ′ has a half block of zeros in the lower right corner, it follows that it has

signature 0 which will complete the proof.
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First note that det(C ′)=−det(A+ 2B)2 so it suffices to show that det(A+ 2B) �= 0.

We will prove det(A+ 2B)= 1 by induction on even N.

A+ 2B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0 0

−1 0 1

0 −1 0
...

. . .

0 0 1

0 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

N×N

.

When N = 2, det(A+ 2B)= 1. Suppose det(A+ 2BN×N)= 1 for some even N. We expand

the determinant twice (first along the first column and then along the first row)

to get the inductive formula: det(A+ 2B(N+2)×(N+2))= det(A+ 2BN×N). Hence det(A+
2B(N+2)×(N+2))= 1. �

For k≥ 1, let ωk := e2πi/4k
and set ρk := ρωk. We will show that the set of ρk gener-

ates an infinitely generated subset of Q̂(J (3)).

Theorem 5.4. For g≥ 2, {ρk} is a linearly independent subset of Q̂(J (3)). �

Proof. To prove this, we must show that no nontrivial linear combination of the ρk is a

bounded function. Let k1, . . . ,kl be an increasing sequence of l positive integers. Suppose

that
l∑

i=1

aiρki = δ,

where ai �= 0, |δ(g)| ≤M for all g∈J (3), where M is a constant. Consider f(m,n,N) = (Dα ◦
Dβ(m,n))

N+1, as defined in the paragraph directly preceding Lemma 5.1. Since

ω4 j

k =
⎧⎨
⎩i if j = k− 1

1 if j ≥ k
,

by Lemmas 5.1 and 5.3,

ρk( f(4 j−1,4 j+1,2N0))=
⎧⎨
⎩−2(2N0 + 1) if j = k− 1

−2 if j ≥ k
.
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Therefore, when j = k1 − 1, we have

M≥ |δ( f(4k1−1−1,4k1−1+1,2N0))|

=
∣∣∣∣∣

l∑
i=1

aiρki ( f(4k1−1−1,4k1−1+1,2N0)

∣∣∣∣∣
=
∣∣∣∣∣a12(2N0 + 1)+

l∑
i=2

2ai

∣∣∣∣∣ .

Dividing by 2|a1|, we see that |(2N0 + 1)+∑l
i=2 2ai| ≤M/(2|a1|). However, since all the ai

and M are fixed and N0 can be chosen to be arbitrarily large, this is a contradiction. �

Note that in the previous proof, β depends on the linear combination. We

have actually shown that any particular nontrivial linear combination of the ρk is an

unbounded function on the cyclic subgroup generated by Dα ◦ Dβ , for suitably chosen β.

Theorem 5.5. For g≥ 2, {δ(ρk)} is a linearly independent subset of H2
b (J (3);R), the sec-

ond bounded cohomology of J (3). �

Proof. Recall the key exact sequence:

0→ H1(J (3);R)→ Q̂(J (3)) δ−→ H2
b (J (3);R)→ H2(J (3);R).

From this we deduce that we must show that no nontrivial linear combination of the ρk

is equal to a homomorphism plus a bounded function. As already mentioned, suppose

that

l∑
i=1

aiρki = φ + δ,

where ai �= 0, φ is a homomorphism and δ is a bounded function.

Lemma 5.6. Let D denote Dα or Dβ for any α, β. For each k, {ρk(DM) | M ∈Z} is a

bounded set. �
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First we will show that Lemma 5.6 implies Theorem 5.5. It follows directly from

the lemma that
l∑

i=1

aiρki (D
M)

is a bounded set (only M is varying here). On the other hand,

φ(DM)+ δ(DM)=Mφ(D)+ δ(DM)

is an unbounded set unless φ(D)= 0. Therefore we may assume that φ(Dα)= 0 and

φ(Dβ)= 0 and hence, since φ is a homomorphism, that φ vanishes on the subgroup gen-

erated by Dα and Dβ . It would follow that, on the subgroup generated by Dα and Dβ ,

l∑
i=1

aiρki = δ,

which is a bounded function. In particular, it is a bounded function on the cyclic sub-

group generated by Dα ◦ Dβ . However, after choosing β suitably, this contradicts the

proof of Theorem 5.4.

Proof of Lemma 5.6. In brief, we can follow the proof of Lemma 5.1 and just ignore the

β curves (respectively the α curves). Specifically let f = DN+1
α . Consider the set of N + 1

curves in Σ × [0,1]⊂ Nid

Sα = {α × {(2i + 1)/(2N + 2)} | 0≤ i ≤ N}.

Let X be the 4-manifold obtained by attaching N + 1 2-handles to Nid × I along the

curves in Sα × {1} ⊂ Nid × {1}, each with +1 framing. Then ∂X = N̄id � Nf . Let W= X ∪ Ē ,

where E is the boundary connected sum of 2g copies of S1 × B3. Just as in the proof of

Lemma 5.1, the coefficient system extends to W; so

ρω( f)= σ(W,CΦ)− σ0(W). (23)

As already mentioned, σ0(W)= N + 1. Now we consider H2(W;CΦ). Since, in the proof

of Lemma 5.1, we only slid α curves over other α curves, we see that a matrix for the

twisted intersection form on W is given by ignoring, in the matrix of (14), the rows and
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columns corresponding to the β curves. Thus the twisted intersection form on W is given

by the matrix A whose signature is just its ordinary signature, which is N. Hence

ρω(D
N+1
α )= N − (N + 1)=−1,

for any ω of norm 1 (ω �= 1). The proof for the Dβ is the same. This completes the proof of

Lemma 5.6. �
�

The proofs above indicate that the same will hold for any subgroup of Kg con-

taining two Dehn twists on sufficiently different bounding curves.

6 More on the ρ and σ -invariants as Elements of Group Cohomology

The question arises as to whether or not, for a fixed H � F ≡ π1(Σ), the higher-order

ρ-invariants (as ψ varies) lift to classes in H1(J(H);R); and whether or not the higher-

order signature 2-cocycles yield nonzero classes in H2(J(H);Z). At this time, we are

only able to comment on these questions in the cases where the unitary representation

is finite-dimensional. So, for the remainder of this section, we assume that ψ : F/H→
U (n) is a finite-dimensional unitary representation. In this case, [σψ ] ∈ H2(J(H);Z) by

Corollary 4.3. The first question we address is: For which H and ψ are these classes

nonzero? We abbreviate J(H) by J. Note that, in this case, by Proposition 3.4:

Lemma 6.1. If ψ is a finite-dimensional representation then the reduction of ρψ mod

Z is a homomorphism ρ̄ψ : J→R/Z and hence represents a class, denoted [ρ̄] in H1

(J;R/Z). �

Therefore the second question we address is: For which H and ψ are these

classes nonzero, and when do they lift to H1(J;R)? It is enlightening to consider the

following subgroup:

Definition 6.2. Let B(H)� J(H) denote the normal subgroup consisting of those

classes f ∈ J(H) for which the pair (Nf , φ f : π1(Nf )→ F/H) is the boundary of some

(W, φ̃ f : π1(W)→ F/H), where W is a compact, oriented 4-manifold. �

The important observation is that ρψ is integer-valued when restricted to B(H),

by Theorem 3.5. Hence ρ̄ : J→R/Z is zero when restricted to B(H) and so ρ̄ descends
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to a well-defined homomorphism on J/B (we abbreviate B(H) by B) denoted ˜̄ρ. Consider

the following commutative diagram. The rows are pieces of Bockstein exact sequences.

H1(J/B;R) H1(J/B;R/Z) H2(J/B;Z) H2(J/B;R)

H1(J;R) H1(J;R/Z) H2(J;Z) H2(J;R)

�̃p

�
π1

�
π2

�̃β

�
π3

�̃j

�p �β �j∗
.

We have [ρ̄]= π2([ ˜̄ρ]) as observed earlier. It is not difficult to check that β([ρ̄])= [δ(ρ)]= [σ ]

as expected. Now, using the diagram, we come to our first useful observation.

Lemma 6.3. The torsion classes [σψ ] lie in the image of the map:

π3 : H2(J/B;Z)→ H2(J;Z). �

Now let K(F/H,1) denote an Eilenberg–Maclane space of type (F/H,1) and let

Ω3(K(F/H,1)) denote the oriented bordism group [22, p. 216]. Furthermore, observe that

there is a well-defined map:

ηH : J(H)→Ω3(K(F/H,1))∼= H3(F/H ;Z),

given by ηH ( f)= (φ f )∗([Nf ]), the image of the fundamental class of Nf under the map

induced by φ f . This was considered by Morita and Heap in the case that H is a term of

the lower central series [32, 50]. In particular, the proof of Heap [32, Theorem 4] is very

general and shows that our ηH is a homomorphism. Note that B(H) is (by definition) the

kernel of ηH so

ηH : J/B ↪→ H3(F/H ;Z)

is a monomorphism.

Proposition 6.4. If H3(F/H ;Z) is torsion-free (e.g., if H is a term of the lower central

series of F [34, Corollary 6.5]) and ψ is a finite-dimensional representation, then the

signature cocycles are null-homologous, that is [σψ ]= 0. �

 at R
ice U

niversity on February 7, 2013
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


Higher-Order Signature Cocycles 3355

Proof. If H3(F/H ;Z) is torsion-free, then J/B is a torsion-free abelian group. Thus

H2(J/B;Z) is torsion-free; so j̃ is injective. It follows that β̃ is the zero map. Thus

σ = β ◦ π2([ ˜̄ρ])= π3 ◦ β̃([ ˜̄ρ])= 0. �

Proposition 6.5. If H3(F/H ;Z) is finitely generated and free abelian (e.g., if H is a term

of the lower central series of F ) and ψ is a finite-dimensional representation, then the

classes [ρ̄] ∈ H1(J;R/Z) lift to H1(J;R) and form a (finitely generated) subgroup of the

image of

π1 : H1(J/B;R)→ H1(J;R). �

Proof. By the proof of Proposition 6.4, β̃ = 0 and β([ρ̄])= 0 so any [ρ̄] lifts to H1(J;R)
and lies in the image of π1. If H3(F/H ;Z) is finitely generated, then so are J/B and

H1(J/B;R). �

Remark 6.6. If H = [F, F ] and J = I, then B =K and

ηH : J/B ↪→ H3(Z
2g)∼=

3∧
(Z2g)

is identifiable with the Johnson homomorphism (see, e.g., [32, Theorem 16]). It is also

known that the map π1 given earlier is an isomorphism in this case, since [I, I] is the

radical of J [35]. Hence

H1(I;R/Z)⊂
3∧
((R/Z)2g)

with known image (corresponding to the known image of ηH ). It would be interesting to

know if our ρ̄ψ in this case span the entire group H1(I;R/Z). �

7 Further Methods of Calculation and Relations with Links

Suppose ∂Σ is connected and Σ ′ ⊂Σ is a connected compact sub-surface with pos-

sibly multiple boundary components. Then the inclusion i induces a homomorphism

θ :M(Σ ′)→M(Σ), extending by the identity. We assume that one boundary component

of Σ ′ intersects ∂Σ at the base point. We also assume that, except at the basepoint,

each boundary component of Σ ′ either coincides with a boundary component of Σ or

is disjoint from ∂Σ . Suppose H ′ is a characteristic subgroup of F ′ = π1(Σ
′) and H is a

characteristic subgroup of F = π1(Σ) such that i∗(H ′)⊂ H . Fix a unitary representation
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ψ : F/H→U (H) as always. Then there is an induced unitary representation

ψ ′ : π1(Σ
′)/H ′

i∗→ F/H→U (H).

If g∈ J(H ′) then one can easily check that θ(g) ∈ J(H). Therefore there are induced rep-

resentations on π1(Nθ(g)) and π1(Ng) that factor through ψ and ψ ′. Hence both ρψ(θ(g))

and ρψ ′(g) are defined. The following is then not surprising.

Proposition 7.1. Given ψ , Σ ′, and g as mentioned earlier, if i∗ : H1(Σ
′;Z)→ H1(Σ;Z) is

injective then

ρψ(θ(g))= ρψ ′(g). �

Proof. The proof is very similar to the proof of Theorem 4.8. In analogy to the proof of

Theorem 4.4, we will define a certain 4-manifold W and show that

∂W= Nid × {0} � N ′g × {0} � −Nθ(g).

Here we mean id :Σ→Σ . A superscript prime will denote objects associated to the sub-

surface Σ ′. Before defining W, certain remarks will be helpful.

In this proof, it is convenient to take the definition of the mapping torus of f

(any f ) to be the quotient Σ × [−1,1]/∼ where (x,−1)∼ ( f(x),1). Recall that we have

described the transition from Mf to Nf in terms of Dehn fillings. In this proof, it is

convenient to consider the alternative definition wherein Nf is obtained as a quotient

space of Mf wherein, for each point x∈ ∂Σ , the circle x× S1 is pinched to single point.

Let (Mf )p≡ Nf denote such a pinching operation. Similarly we let (Σ × [−ε, ε])p denote

the quotient space of Σ × [−ε, ε] obtained by pinching each x× [−ε, ε] to a point (say x×
{0}). Observe that there is a homeomorphic copy of (Σ × [−ε, ε])p embedded in Σ × [−ε, ε]
obtained using a collar on ∂Σ . Since there is a copy of Σ × [−ε, ε] embedded in Mf (for

any f ), there is a copy of (Σ × [−ε, ε])p embedded in Nf .

By the same argument, there is a copy of (Σ ′ × [−ε, ε])p embedded in N ′g. We claim

that there is also a copy of (Σ ′ × [−ε, ε])p embedded in Nid. Indeed, for any f , certainly

there is a copy of Σ ′ × [−ε, ε] embedded in Mf , so there is a copy of Σ ′ × [−ε, ε]/∼ in

Nf , where ∼ denotes that we have pinched only those circles corresponding to points

x∈ ∂Σ ′ ∩ ∂Σ . This is not the same as (Σ ′ × [−ε, ε])p. However, there is a copy of the latter

embedded in Σ ′ × [−ε, ε]/∼ (and hence in Nf ).
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Armed with these observations, we define the cobordism W as the union of Nid ×
[0,1] and N ′g × [0,1] identified along the earlier-mentioned copies of (Σ ′ × [−ε, ε])p:

(Σ ′ × [−ε, ε])p ↪→ Nid × {1} and (Σ ′ × [−ε, ε])p ↪→ N ′g × {1}.

Clearly ∂W= Nid × {0} � N ′g × {0} � Y, and we claim that Y∼= Nθ(g). To see this note that Y

is the union of

Nid \ (Σ ′ × [−ε, ε])p ∪ N ′g \ (Σ ′ × [−ε, ε])p,

along their common boundaries. But Nθ(g) has an identical decomposition. For, one may

obtain a copy of Mθ(g) by starting with Mid, then deleting the product Σ ′ × [−ε, ε] and

replacing it with the “twisted product”

(Σ ′ × [−ε,0] ∪Σ ′ × [0, ε])/∼ ,

where (x,0)∼ (g(x),0). The latter is homeomorphic to the twisted product obtained from

M′g by deleting a product Σ ′ × [−ε, ε]. After taking into account the relevant pinching,

this shows that Y∼= Nθ(g).

The representations on Nid and N ′g extend to π1(W). Hence by Theorem 3.5

ρψ(id)+ ρψ ′(g)− ρψ(θ(g))

is the signature defect of W. But consider the Mayer–Vietoris sequence as in the proofs

of Theorems 4.4 and 4.8:

H2(Nid × [0,1])⊕ H2(N
′
g × [0,1])

(i2
∗+ j2

∗ )−→ H2(W)
∂∗−→ H1(Σ

′)
(i1
∗ , j

1
∗ )−→ H1(Nid)⊕ H1(N

′
g).

We claim that i1
∗ is injective with any coefficients. Since π1(Nid)∼= π1(Σ), H1(Nid)∼=

H1(π1(Σ)) with any coefficients. Thus it suffices to consider the map on first homology

induced by i :Σ ′ ↪→Σ . Since Σ ′ and Σ deformation retract to 1-complexes, the hypothe-

sis that this map induces a monomorphism on H1(−;Z) is equivalent to saying that, up

to homotopy equivalence, (Σ,Σ ′) is a one-dimensional relative CW-complex. It follows

that H2(Σ;Σ ′) is zero with any coefficients and so i∗ is injective on H1 with any coeffi-

cients. Hence H2(W) is supported by ∂W; so the twisted and ordinary signatures vanish

for W. Since, by Corollary 3.6, ρψ(id)= 0 the desired result follows. �
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Proposition 7.1 and Example 2.4 may be used to calculate certain ρ-invariants

in terms of well-studied invariants of links of circles in S3. In particular, let Σ ′ = Dn be

the closed oriented 2-disk with n open subdisks deleted. Let M(Dn) denote the group

of isotopy classes of orientation-preserving homeomorphisms of Dn that are the iden-

tity on ∂Dn. It is known that M(Dn) is isomorphic to the group of n-string framed pure

braids, P F (n)∼=Zn⊕ P (n) [53, 54]. Here P (n) is the usual group of n-string pure braids.

Any embedding of Dn into Σ defines a homomorphism θ : M(Dn)→M(Σ). Suppose

i∗ : H1(Dn;Z)→ H1(Σ;Z) is injective. Then Proposition 7.1 shows that the ρ-invariants

associated to Σ are equal to ρ-invariants associated to Dn, and Example 2.4 indicates

how the latter are equal to certain ρ-invariants of the zero-framed surgery on the link

obtained as the closure of the associated pure braid. The latter have been well studied

in recent years by knot theorists.

8 Extension of the ρ-invariants to Homology Cylinders

The monoid of homology cylinders may be considered to be an enlargement of the map-

ping class group of Σ . In many cases, the higher-order ρ-invariants and signature cocy-

cles extend to this monoid. We will focus attention of the case that ∂Σ is connected and

H is one of the terms of the lower central series of π1(Σ).

We recall the definition, following Levine [41].

Definition 8.1. A homology cylinder over Σ , denoted C , is a compact, oriented

3-manifold C equipped with two embeddings i+, i− :Σ→ ∂C satisfying that

(1) i+ is orientation-preserving and i− is orientation-reversing;

(2) ∂C = i+(Σ) ∪ i−(Σ) and i+(Σ) ∩ i−(Σ)= i+(∂Σ)= i−(∂Σ);

(3) i+|∂Σ = i−|∂Σ ;

(4) i+, i− : H∗Σ→ H∗C are isomorphisms. �

Example 8.2. For any mapping class f , (C , i+, i−)= (Σ × I, Id× 1, f × 0)/∼ gives a

homology cylinder, where ∼ means that we identify (x, t) to (x,0) for each t∈ [0,1] and

x∈ ∂Σ . �

The set C of orientation-preserving diffeomorphism classes of homology cylin-

ders over Σ is a monoid (by concatenation), denoted C, with the identity element

 at R
ice U

niversity on February 7, 2013
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


Higher-Order Signature Cocycles 3359

1C := (Σ × I, Id× 1, Id× 0). Example 8.2, shows how to define a map I→ C that is an

injective map of monoids.

For any C ∈ C then there is an associated closed oriented manifold NC obtained

by identifying the two copies of Σ . If C̄ is the homology cylinder obtained by reversing

the roles of + and − then NC̄ =−NC . If C lies in the image of f ∈ I as in Example 8.2

then NC
∼= Nf . Given H � π1(Σ), we say that C induces the identity modulo H if, for all

x∈ π1(Σ), i+∗ (x)= i−∗ (xh) for some h∈ H . We then say C ∈ C (H). Thus, for example, C(F2)

is the analog of the Torelli group. Then we have

π1(NC )= π1(C )/〈i+∗ (x)= i−∗ (x) for all x∈ π1(Σ)〉.

For example, if H = F2 and C ∈ C (H), then H1(NC )∼=Z2g coming from H1(Σ).

Consider the case H = Fn, where F = π1(Σ) and assume C ∈ C (Fn). By Stallings’

Theorem [62, Theorem 5.1], i± induce isomorphisms

F/Fn
i+n−→ π1(C )/(π1(C ))n

i−n←− F/Fn.

Moreover, since C ∈ C (H), i+n ◦ (i−n )−1 is the identity on F/Fn. Then we have

π1(NC )/(π1(NC ))n∼= π1(C )/〈i+∗ (x)= i−∗ (x),∀x∈ F, (π1(C ))n〉
∼= π1(C )/〈i−∗ (x)i−∗ (hx)= i−∗ (x),∀x∈ F, (π1(C ))n〉
∼= π1(C )/〈i−∗ (h)= 1,hx ∈ Fn, (π1(C ))n〉
∼= π1(C )/(π1(C ))n.

Thus, for C ∈ C (Fn), there is a unique epimorphism

φC : π1(NC )→ F/Fn,

that is the composition of

π1(NC )� π1(NC )/(π1(NC ))n
∼=−→ π1(C )/(π1(C ))n

(i+n )
−1

−−−→ F/Fn. (24)

Therefore, given a fixed unitary representation ψ : F/Fn→U , we can define ρψ(C )=
ρ(NC , ψ ◦ φC ). In the infinite-dimensional case, we will denote this invariant ρn(C ) (using
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the left-regular representation of F/Fn). Moreover, the restriction to C(Fn) is not neces-

sary, since we can extend ρn to all of C by

Definition 8.3. If C ∈ C then ρn(C ) is ρ(NC , ψC ), where ψC is the composition

π1(NC )� π1(NC )/(π1(NC ))
r
n

�r−→U (�(2)(π1(NC )/(π1(NC ))
r
n),

and Gr
n denotes the nth term of the rational lower central series [62]. �

We also consider a quotient of C, the group, H, of homology cobordism classes

of homology cylinders, wherein C is homology cobordant to D if there is a compact,

oriented 4-manifold V whose boundary is NC̄◦D such that the natural inclusions C ↪→ V

and D ↪→ V induce isomorphisms on homology (for the details of this definition, we refer

the reader to [41, 42]). The composition I→ C→H is a monomorphism of groups. We

will denote the group of homology cobordism classes of homology cylinders that induce

the identity modulo Fn by H(Fn).

We will now show that the ρn of Definition 8.3 are homology cobordism invari-

ants and hence descend to H (again by Stallings theorem [62]).

Theorem 8.4. The invariant ρn : C (F2)→R descends to a well-defined function

ρn :H(F2)→R. �

Proof. Let C and D be homology cylinders that induce the identity modulo F2 and

assume C and D are homology cobordant. The first step in the proof is to deduce that

the closed manifolds NC and ND are homology cobordant.

Since C and D are homology cobordant, there is a 4-manifold V with ∂V = NC̄◦D
so that the inclusions of C and D into V induce isomorphisms on all homology groups.

Let W denote the 4-manifold obtained by identifying NC̄ × [0,1] and ND × [0,1]

along a product neighborhood of Σ in NC̄ × {1} and ND × {1}. The boundary of W decom-

poses as ∂W= NC̄ � ND � −NC̄◦D. Now let E =W
⋃
−NC̄◦D

−V and observe ∂E =−NC � ND.

We claim that E is the desired homology cobordism between NC and ND. It suffices

to show that H∗(E, NC )= 0 since then, by symmetry, H∗(E, ND)= 0. Clearly H0(E, NC )=
H4(E, NC )= 0. By assumption the inclusion-induced map i+∗ : H1(Σ)→ H1(NC ) is an iso-

morphism. Moreover, each of the inclusions, namely of Σ into C , D, NC , ND, NC̄◦D,

respectively, and subsequently into V , W, and E , induces an isomorphism on H1. Hence
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H1(E, NC )= H1(E, ND)= 0. By duality and the universal coefficient theorem, we have

H3(E, NC )∼= H1(E, ND)∼=Hom(H1(E, ND),Z)= 0.

Similarly, H2(E, NC ) is torsion-free. Thus to show that H2(E, NC )= 0, it now suffices to

show that χ(E, NC )= 0.

By the long exact sequence for the pair (E, NC ),

χ(E, NC )= χ(E)− χ(NC )= χ(E)= χ(W)+ χ(V)− χ(NC̄◦D)= χ(W)+ χ(V),

since the Euler characteristic of a closed oriented 3-manifold is zero. But W is homotopy

equivalent to NC ∪Σ ND, hence

χ(W)= χ(NC )+ χ(ND)− χ(Σ)= 2g− 1;

and, since H∗(Σ)∼= H∗(C )∼= H∗(V), χ(V)= 1− 2g. Thus χ(E, NC )= 0.

This completes the first step of the proof, namely that E is a homology cobordism

between NC and ND.

The second step of the proof is to show that the ρn are, loosely speaking, invari-

ants of homology cobordism of 3-manifolds. Suppose that NC and ND are homology

cobordant via the 4-manifold E from above. Let Γ = π1(NC ), Δ= π1(ND), G = π1(E) and

γ : NC → E and δ : ND→ E denote the inclusion maps. We have the following commu-

tative diagram, where the maps on the bottom row are isomorphisms by Stallings’

Theorem [62, Theorem 7.3]:

π1(NC ) π1(E) π1(ND)

π1(NC )

π1(NC )rn

π1(E)

π1(E)rn

π1(ND)

π1(ND)rn

U (H)

�i∗

�π �π �π

�i∗

�
����r

�j
n
∗
∼=

��r
�

��� �r

�i
n
∗
∼=

Therefore, by Theorem 3.5,

ρn(D)− ρn(C )= σ (2)(E, ψ)− σ(E).
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Since H∗(E, NC ;Z)= 0,

H2(E;Z)→ H2(E, ∂E;Z)

is the zero map and so σ(E)= 0. Additionally, letting Γ = π1(E)/π1(E)rn, since

H2(E, NC ;Z)= 0 and Γ is a poly-(torsion-free-abelian group), it follows from

[16, Corollary 2.8] that H2(E, NC ;Z[Γ ]) is a Z[Γ ]-torsion module, implying that

H2(E, NC ;KΓ )= 0. Thus

H2(E;KΓ ) ∂∗→ H2(E, ∂E;KΓ )

is the zero map (see the Appendix for definitions and more detail for KΓ ). Hence

H2(∂E;KΓ )→ H2(E;KΓ )

is surjective. By property (1) of Proposition A.1, σ (2)(E, ψ)= 0. Thus ρn(C )= ρn(D). �

The discussion of Section 3 extends to homology cylinders so that we can define

signature cocycles for homology cylinders. Namely, given C and D ∈ C(Fn) we can form a

4-manifold W(C , D) (analogous to W( f, g)) defined as

W(C , D)= NC × [0,1]
⋃
Ā×Σ

ND × [0,1],

where Ā is the arc A with added collars on its boundary. Then

∂W(C , D)= NC � ND � −NC D.

Moreover, the fundamental group of a homology cylinder is a product modulo any term

of the lower central series. With this in mind, we can define a signature 2-cocycle

on H(Fn) that extends that which we already defined on J(Fn) in the second part of

Definition 3.1.

Definition 8.5. Given Σ and n, we define a function σ (2)n : H(Fn)×H(Fn)→R by

σ (2)n (C , D)= σ (2)(W(C , D), ψ̃n)− σ(W(C , D)). �

Then it follows immediately from Theorem 3.5 that
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Proposition 8.6. For each n and C , D ∈H(Fn),

σ (2)n (C , D)= ρn(C )+ ρn(D)− ρn(C D).

where ρn is as in Definition 8.3. �

Our main result, Theorem 4.4, continues to hold and so

Corollary 8.7. For any n, σ (2)n is a bounded 2-cocycle on H(Fn). �

Proposition 8.8. For any n≥ 2, ρn is a real-valued quasimorphism on C(Fn) and

H(Fn). �

Note that one can define quasimorphisms and cocyles on the monoid C(Fn).

We claim that these invariants are quite rich, as indicated by the following

theorems. We should clarify that, while ρn can be defined on all of H(F2), it is only a

quasimorphism when restricted to H(Fm) for m≥n.

Theorem 8.9. Suppose Σ has genus g≥ 1 and nonempty boundary. Then, for any n≥ 2

(1) The image of ρn :H(Fn)→R is dense.

(2) The image of ρn :H(Fn)→R is infinitely generated. �

Theorem 8.10. Suppose Σ has genus g≥ 1 and nonempty boundary. Then, for any m≥
2, {ρn}∞n=2 is a linearly independent subset of the real vector space of all functions { f :

H(Fm)→R} modulo the subspace of bounded functions. �

We have learned that, for the case n= 2, a result identical to Theorem 8.9

appeared in the (unpublished) thesis of T. Sakasai. These results parallel [31, Section 5]

where essentially the same results were proved for von Neumann ρ-invariants associ-

ated to the torsion-free derived series, rather than the lower central series. Before prov-

ing these theorems, we need to introduce a technique for modifying a homology cylinder

in such a way that the value of ρn changes in a predictable manner.
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8.1 Altering homology cylinders by infection

Suppose C is a homology cylinder, η is a null-homologous oriented simple closed curve

in the interior of C , and K is an oriented knot in S3. We describe a procedure for altering

C to a new homology cylinder, C (η, K), called infecting C along η using K [19, Section 3;

31, p. 406]. Let N(η) and N(K) denote tubular neighborhoods of η in C and K in S3

respectively, and let μK , �K , μη, �η denote the meridians and longitudes of K and η.

Define

C (η, K)= (C − N(η)) ∪ f (S
3 − N(K)), (25)

where f : ∂(S3 − N(K))→ ∂(C − N(η) is defined by f(μK)= �−1
η and f(�K)=μη. Since we

have formed C (η, K) by excising N(η) and replacing it with S3 − N(K), both of which

have the homology of a circle, C (η, K) remains a homology cylinder. Indeed, we may

think of the solid torus N(η) as the exterior of the trivial knot, U , in S3. Then, since there

is a degree one map relative boundary from S3 − K to S3 −U , there is a degree one map

relative boundary C (η, K)→ C . We leave it to the reader to check that if C ∈ C(Fn) then

C (η, K) ∈ C(Fn).

The process of infecting a homology cylinder using a knot K alters its

ρ-invariants by an additive factor equal to the average of the classical Levine–Tristram

signatures of K. Recall that if K ↪→ S3 and V is a Seifert matrix for K then, for any com-

plex number ω of norm 1, (1− ω)V + (1− ω̄)VT is a hermitian matrix whose signature

is called the Levine–Tristram ω-signature of K. The average of these integers, which is

the integral over the circle, is denoted ρ0(K) ∈R. The following proof closely follows [31,

Theorem 5.8] where the same theorem is proved for von Neumann ρ-invariants associ-

ated to the torsion-free derived series.

Proposition 8.11. Let C (η, K) be as defined above and let G = π1(NC ). If, for some n≥ 1,

η ∈Gn−1 but no power of η lies in Gn, then

ρi(C (η, K))− ρi(C )=
⎧⎨
⎩0 2≤ i ≤n− 1;
ρ0(K) i ≥n,

where ρ0(K) is the integral of the classical Levine–Tristram signature function of K. �

Proof of Proposition 8.11. We construct a cobordism, W, relating NC (η,K) to NC as fol-

lows. Let MK denote the zero framed Dehn surgery on S3 along the knot K. Recall that
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this is defined as

MK = S3 − N(K) ∪g (S
1 × D2),

where g is an orientation-reversing diffeomorphism of the torus that identifies {1} × ∂D2

with �K . The we define

W= (NC × [0,1]) ∪h MK × [0,1], (26)

where h identifies the solid torus N(η)× {1}with the solid torus S1 × D2 × {0} ⊂MK × {0},
as indicated schematically in Figure 9 (N(η)× {1} is dashed).

It follows that

∂W= NC � −NC (η,K) � MK .

Let E = π1(W), and Γi = E/Ei and consider the coefficient system

ψ : E
φ→ Γi

�r→U (�(2)(Γ )i),

where φ is the canonical projection and �r is the left-regular representation. Then, by

Theorem 3.5,

ρ(NC , ψ)− ρ(NC (η,K), ψ)+ ρ(MK , ψ)= σ (2)(W, ψ)− σ(W). (27)

We claim that the right-hand side of (27) is zero. In fact this is a direct consequence of

[17, Lemma 2.4]; so we will not repeat the proof. The basic idea is to show, using the

Mayer–Vietoris sequence with KΓi-coefficients associated to (26), that H2(∂W;KΓi)→
H2(W;KΓi) is surjective and then apply property (1) of Proposition A.1.

Fig. 9. The 4-manifold W with ∂W= NC � −NC (η,K) � MK .

 at R
ice U

niversity on February 7, 2013
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


3366 T. D. Cochran et al.

Let P = π1(NC (η,K)) and recall G = π1(NC ). We claim that the inclusion maps

NC (η,K) ↪→W and NC × {0} ↪→W induce isomorphisms

P/Pi
∼= E/Ei = Γi and G/Gi

∼= E/Ei = Γi (28)

for each i. To see the first, note that W deformation retracts to W̄= NC × {0} ∪ NC (η,K).

Moreover W̄= NC (η,K) ∪ N(η)× {1}. Therefore W̄ can be obtained from NC (η,K) by adding

a single two-cell and then a single three-cell. The two-cell is added along �K . But recall

that, for a knot exterior, the lower central series stabilizes at the commutator subgroup.

Thus �K ∈ π1(S3 − N(K))i for all i and so �K ∈ Pi for all i. This implies the first isomor-

phism of (28). For the second inclusion, note that by the Seifert–Van Kampen theorem,

E = π1(W)∼=G ∗Z π1(MK),

where η is identified with μK . The abelianization map π1(MK)→Z induces a retraction r

G→ E ∼=G ∗Z π1(MK)
r→G ∗Z Z∼=G,

whose kernel is the normal closure of the commutator subgroup π1(S3 − K)2 ∼= π1(S3 −
K)i. Thus E/Ei

∼=G/Gi establishing the second isomorphism of (28).

Therefore, by (24) and property (2) of Proposition A.1,

ρ(NC , ψ)= ρi(C ) and ρ(NC (η,K), ψ)= ρi(C (η, K)).

Hence (27) becomes

ρi(C (η, K))− ρi(C )= ρ(MK , ψ). (29)

It remains only to analyze ρ(MK , ψ). Recall that π1(MK) is normally generated

by the meridian μK , which is identified with η under the infection process. Since, by

hypothesis, η ∈Gn−1, μK ∈ En−1 and so ψ(π1(MK))= 0 if i ≤n− 1. Thus, by property (3) of

Proposition A.1, ρ(MK , ψ)= 0. Thus (29) establishes Proposition 8.11 in the case i ≤n− 1.

Now suppose i ≥n and i ≥ 2. Since π1(S3 − K)2 ∼= π1(S3 − K)i, we have ψ(π1(S3 −
K)2)= 0. Thus the restriction of ψ to π1(MK) factors through its abelianization, Z= 〈μk〉.
Hence it suffices to show that ψ(μK)=ψ(η) is of infinite order in Γi. Since i ≥n, there is a

surjection Γi→ Γn= E/En
∼=G/Gn (using (28)). So it suffices to show that no proper power
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of η lies in Gn. But this was our hypothesis. Therefore, by property (4) of Proposition A.1,

ρ(MK , ψ)= ρ0(MK), the integral over the circle of the Levine–Tristram signatures of K.

This completes the proof of Proposition 8.11. �

Now that we can create homology cylinders with varied ρn, we can easily prove

Theorems 8.9 and 8.10.

Proof of Theorem 8.9. For fixed n≥ 2, let C ∈ C(Fn) be the identity homology cylinder.

Then

π1(C )/π1(C )i ∼= π1(NC )/π1(NC )i ∼= F/Fi

for every i where F = π1(Σ) is a nonabelian free group. Since Fn−1/Fn is known to be a

nontrivial free abelian group, there exists some null-homologous simple closed curve

η ∈ C , which lies in π1(NC )n−1 but no power of which lies in π1(NC )n. Therefore, by

Proposition 8.11, for any knot K,

ρn(C (η, K))= ρ0(K).

Hence, it suffices to show that

{ρ0(K) | K ↪→ S3}

is dense in R and is an infinitely generated group. Both of these were shown explicitly

in [31, Theorem 5.11] using [11, Section 2; 19, Proposition 2.6]. �

Proof of Theorem 8.10. Suppose that r1ρi1 + · · · + rkρik is a function bounded by D > 0,

where ri are nonzero real numbers and the i j are increasing with j. We shall reach

a contradiction. Let C ∈ C(Fm) be the identity homology cylinder and let F = π1(NC ).

Let n= ik≥ 2. As in the proof of Theorem 8.9, there is a curve η ∈ C such that η ∈ Fn−1

but no power of which lies in Fn. Consider C (η, K) for any K with |ρ0(K)|> D (e.g.,

let K be the connected sum of a large number of right-handed trefoil knots). For any

i ≤n− 1, η ∈ π1(NC )i so, by Proposition 8.11, ρi(C (η, K))= 0 and |ρn(C (η, K))|> D. This is

a contradiction. �

In [60], Sakasai defined an exact sequence analogous to our (13):

1→ Sn
i−→H(Fn)

rn−→ Isom(H1(Σ;Z[F/Fn])). (30)

It follows from Theorem 4.8 that

 at R
ice U

niversity on February 7, 2013
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


3368 T. D. Cochran et al.

Proposition 8.12. The restriction of ρn :H(F2)→R to Sn is a homomorphism. �
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Appendix. Definition and Basic Properties of the Von Neuman Signature and Von

Neumann ρ-invariants

Given a closed, oriented 3-manifold M, a discrete group Γ , and a representation φ :

π1(M)→ Γ , the von Neumann ρ-invariant, ρ(M, φ) ∈R, was defined by Cheeger and

Gromov [12]. It is defined by choosing a Riemannian metric on M and taking the differ-

ence between the η-invariant of M and the von Neumann η invariant of the Γ -covering

space associated to φ. However, we prefer an equivalent definition of ρ, as a signa-

ture defect. Suppose (M, φ)= ∂(W, ψ) for some compact, oriented 4-manifold W and

ψ : π1(W)→ Γ (meaning φ =ψ ◦ i∗), then it is known that ρ(M, φ)= σ (2)Γ (W, ψ)− σ(W),

where σ (2)Γ (W, ψ) is the L(2)-signature (von Neumann signature) of the Γ -covering space

of W associated to ψ . We recall below the definition of the L2-signature of a four-

dimensional manifold. For more information on L2-signature and ρ-invariants, see [18,

Section 5; 20, Section 2; 31, Section 3; 45].

Let Γ be a countable discrete group. Let NΓ be the group von Neumann algebra

of Γ , a subalgebra of the bounded linear operators on �(2)(Γ ), and let UΓ be the algebra

of unbounded operators affiliated to NΓ [58]. Let hW,Γ be the equivariant intersection

form on H2(W) with UΓ -coefficients, which is defined as the composition

H2(W;UΓ )→ H2(W, ∂W;UΓ ) PD−→ H2(W;UΓ ) κ−→ H2(W;UΓ )∗, (A.1)

where H2(W;UΓ )∗ =HomUΓ (H2(W;UΓ ),UΓ ). Since UΓ is a von Neumann regular ring

(and is endowed with an involution), the modules H2(W;UΓ ) are finitely generated pro-

jective right UΓ -modules. UΓ is endowed with an involution with respect to which

hW,Γ ∈Hermn(UΓ ) (a Hermitian matrix). Then σ (2)Γ : Hermn(UΓ )→R is defined by

σ
(2)
Γ (h)= trΓ (p+(h))− trΓ (p−(h))
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for any h∈Hermn(UΓ ) where trΓ is the von Neumann trace and p± are the characteristic

functions on the positive and negative reals. Here the trace is equal to the UΓ -dimension

[58]. Thus we define σ (2)(W, Γ )= σ (2)Γ (hW,Γ ). It is known that σ (2)Γ descends to the Witt

group of Hermitian forms on finitely generated projective UΓ -modules (see, e.g., [18,

Corollary 5.7]).

Suppose that Γ is a poly-(torsion-free-abelian) group. In particular, Γ is torsion-

free and amenable. In this case, the von Neumann signature can be defined without

the use of UΓ . For it is then known that ZΓ is an Ore domain and embeds in its clas-

sical right ring of quotients KΓ , which is a division ring. Moreover, the map from

ZΓ to UΓ factors as ZΓ →KΓ → UΓ making UΓ into a KΓ − UΓ -bi-module. Since

any module over a skew field is free, UΓ is a flat KΓ -module. Hence, H2(W;UΓ )∼=
H2(W;KΓ )⊗KΓ UΓ . In particular, H2(W;KΓ )= 0 if and only if H2(W;UΓ )=0. In this

case, σ (2)Γ can be thought of as a homomorphism from L0(K(Γ )) to R. Aside from the

definition, the properties that we use in this paper are:

Proposition A.1.

(1) If (M, φ)= ∂(W, ψ) for some compact, 4-manifold W and

H2(W;UΓ )/Image(H2(∂W;UΓ ))

is a finitely generated free UΓ -module containing a free summand of half rank on

which the equivariant intersection form vanishes, then σ
(2)
Γ (W, ψ) vanishes. If Γ is

poly-torsion-free abelian, then the same holds with KΓ -coefficients.

(2) If φ factors through φ′ : π1(M)→ Γ ′ where Γ ′ is a subgroup of Γ , then ρ(M, φ′)=
ρ(M, φ).

(3) If φ is trivial (the zero map), then ρ(M, φ)= 0.

(4) If M=MK is the zero-surgery on a knot K and φ : π1(M)→Z is the abelianization,

then ρ(M, φ) is denoted ρ0(K) and is equal to the integral over the circle of the

Levine–Tristram signature function of K [19, Proposition 5.1]. Thus ρ0(K) is the aver-

age of the classical signatures of K.

(5) The von Neumann signature satisfies Novikov additivity, that is if W1 and W2 inter-

sect along a common boundary component, then σ
(2)
Γ (W1 ∪W2)= σ (2)Γ (W1)+ σ (2)Γ (W2)

[18, Lemma 5.9]. �
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