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Abstract

Protein sequences are normally the most conserved elements of genomes owing to purifying selection to maintain their
functions. We document an extraordinary amount of within-species protein sequence variation in the model eukaryote
Dictyostelium discoideum stemming from triplet DNA repeats coding for long strings of single amino acids. D. discoideum has
a very large number of such strings, many of which are polyglutamine repeats, the same sequence that causes various
human neurological disorders in humans, like Huntington’s disease. We show here that D. discoideum coding repeat loci are
highly variable among individuals, making D. discoideum a candidate for the most variable proteome. The coding repeat loci
are not significantly less variable than similar non-coding triplet repeats. This pattern is consistent with these amino-acid
repeats being largely non-functional sequences evolving primarily by mutation and drift.
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Introduction

One of the strongest patterns in molecular evolution is that

DNA sites affecting amino acid sequences are relatively invariant

[1], so much so that invariance between species is used to help

identify coding sequences [2]. The same pattern holds within

species [3], except for rare loci with high amino acid variation

maintained by balancing selection. The genome of the social

amoeba Dictyostelium discoideum is unusual in having thousands of

triplet-repeat microsatellites in genes, coding for long runs of a

single amino acid [4]. Here we show that such microsatellites are

extremely variable in repeat number, leading to highly variable

genomic coding sequence. This raises evolutionary questions

about the origin and maintenance of such extensive variation, and

physiological questions about how D. discoideum protects itself

against amino acid repeats that cause disease in humans.

Microsatellites are repetitive DNA sequences with unit motifs of

1 to 6 base pairs [5,6]. The repetitive structure favors misaligned

annealing during replication, and consequent changes in the

number of repeats (slippage mutations) [7,8]. The rate of slippage

mutation is high, 1022–1025, leading to high variation which

makes microsatellites good genetic markers [9]. Most studies have

analyzed microsatellites in non-coding DNA, and find high

polymorphism levels, as expected if natural selection is weaker in

these regions [10,11]. However, coding regions also contain

microsatellites, particularly those with triplet motifs which can

change in repeat number without causing reading frame shifts that

would destroy gene function [12]. These too can show repeat

number polymorphisms [9], and in some cases large repeat

numbers cause pathology, such as Huntington’s disease [13]. The

density of microsatellites and amino acid repeats are strongly

influenced by the nucleotide composition [14,15], which might

suggest random generation by mutation and neutrality [16].

However, other recent research supports the hypothesis that these

loci are naturally selected [17–20].

In D. discoideum repeats are occur more commonly in non-coding

sequences than coding sequences, but not remarkably so (every

392 bp versus every 724) [4], suggesting that purifying selection to

get rid of coding repeats is not particularly strong. However,

coding repeats are dominated by a few amino acids, especially

asparagine and glutamine but also threonine and serine, suggest-

ing that repeats of other amino acids are often eliminated by

selection [4]. The four amino acids just mentioned are all polar

and non-hydrophobic, and may therefore loop outside of the

protein and not disrupt its internal structure. Moreover, these

repeats tend to occur in genes with low expression levels and high

rates of change at synonymous sites, suggesting that they may not

be strongly selected [21]. However, the opposite conclusion might

be drawn from the fact that long repeats of Q and N are enriched

in GO categories of protein kinases, lipid kinases, transcription
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factors, RNA helicases and messenger RNA and binding proteins

such as spliceosome components [22]. Clearly, the question of

functionality of these repeats is unresolved.

Low variability within a species is another indicator of the

intensity of purifying selection. Some variability of coding-region

microsatellites has been shown in humans [23] and in Drosophila

[24], so we sought to determine whether the large number, and

long length, of microsatellites in the coding DNA of D. discoideum

leads to extraordinary sequence diversity or whether purifying

selection maintains low diversity. We report variation data from

three sets of microsatellite loci, with length scored on an

automated sequencer after PCR amplification of the microsatellite

regions. These coding microsatellites are as variable as non-coding

microsatellites suggesting that they are not under stronger

stabilizing selection.

Results

Triplet-nucleotide Microsatellites are Abundant in Coding
Sequences of D. discoideum

Microsatellites are extremely common in the genome of the

social amoeba Dictyostelium discoideum, making up over 10% of the

overall sequence [4]. Even more strikingly, triplet-repeat micro-

satellites are very common in the coding regions. Where triplet

repeats typically make up roughly 0.1% of the coding sequence of

various plants, animals, and fungi, the percentage in D. discoideum is

about 50 times higher (Figure 1). The lengths of repeats are also

exceptional, with 3064 perfect triplet-repeat microsatellites equal-

ing or exceeding 20 repeats. The most common repeat motifs are

AAT and CAA, leading to over 2966 tracts of 20 or more tandem

iterations of the amino acids asparagine or glutamine.

Expected Heterozygosity of Microsatellites Loci is Very
High within Populations

Our attention was first directed to the problem by eight triplet-

repeat loci (Table S1, last 8 loci) we were using as putative neutral

markers for a population survey of diversity in 316 wild-collected

haploid clones (Table S2), which we later determined occurred

inside predicted coding regions. We call this the clone-rich sample.

To explore more loci, we developed a locus-rich sample, choosing 49

microsatellites, with 27 to 40 repeats in the genome sequence,

from the exons of 49 predicted genes widely distributed across all

six chromosomes (Table S3). These were genotyped for 12 clones

from 12 states in USA and also for 12 clones from a small

geographic range in Virginia (Table S4). Finally, our multiple-repeat

sample focused on three additional genes, with two goals in mind.

First, these genes were chosen as representatives of the large

fraction (18%) of D. discoideum genes with two or more amino acid

repeats [4], so that we could assay the upper end of genic

variability. Second, we chose loci that were not just predicted

genes, but confirmed genes whose phenotypic effects have been

studied. All three have effects during the starvation induced

aggregation of cells to form a multicellular fruiting body: dimA is a

transcription factor that regulates cell differentiation; yakA is a

kinase involved in cell aggregation; and atg1 is another kinase

involved in recycling non-essential cellular components during

starvation (Table S1). We genotyped 115 clones (a subset of those

in clone-rich sample, see Table S2) at two triplet-repeat sequences

in atg1 and three each in dimA and yakA. These are not the only

microsatellite repeats in these genes (Table S5), so our estimates of

total diversity at these genes will be conservative.

Gene diversity, equivalent to expected heterozygosity or the

probability that two randomly chosen alleles are different, is very

high in all of these samples (Figs 2, 3). This is not explained by

Figure 1. Triplet repeat density in D. discoideum exons. The inset shows the frequency distribution of triplet-repeat loci in exons of D.
discoideum, grouped by the number of uninterrupted repeat units. The main figure histogram compares density of such exon repeats with other taxa,
which were scored for triplet repeat of length 4 or higher in exons [39]. The D. discoideum data include all loci with 5 or more repeats and is therefore
slightly conservative.
doi:10.1371/journal.pone.0046150.g001
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differentiation of isolated subpopulations because gene diversity

values remain very high within subpopulations (Figure 4),

including even the Virginia population sampled over a 50 m

transect (Figure 2b). As expected from the fact that that longer

microsatellites tend to undergo more slippage mutations [25,26],

genes with higher average numbers of repeats had greater diversity

(linear regression for the 12 USA clones, y = 0.0093x+0.5435

p = 0.00003).

For the 50 coding loci of the repeat-rich sample, we had a

sample of 50 non-coding loci matched for genome location, repeat

motif, and repeat number. These non-coding loci did not have

significantly different gene diversity than coding loci for either the

USA sample (Fig. 2a, coding = 0.780, coding = 0.804, paired t test

p = 0.14) or for the Virginia sample (Fig. 2b, coding = 0.713,

coding = 0.730, paired t test p = 0.13).

Multiple-repeat Samples Show High Amino Acid Diversity
The three genes where we assayed multiple repeats provide

some indication of how variable entire genes can be. Figure 5

shows the extensive diversity in more detail for the the principal

triplet-repeat regions in the dimA, yakA and atg1 genes. To compare

the resulting amino acid variation with other genes, we adapted

Hedrick’s measure of amino acid expected heterozygosity [27],

which we call amino acid diversity because it is analogous to the

familiar measure of nucleotide diversity [28]. It measures the

probability, averaged across all amino acid positions in a gene, that

two amino acids drawn from different individuals will be different.

We adapt this measure to include length differences (indels) by also

scoring an amino acid position in an alignment as different when

one individual possesses an amino acid at that position and the

other does not. Figure 6 shows amino acid diversities for our three

genes, underestimated somewhat because we used only the length

differences at the assayed microsatellites, and considered all other

sites identical. Also shown are the substitution-based diversities of

the hyper-diverse human HLA-A and HLA-B loci and, for a more

typical well studied gene, the Drosophila melanogaster Adh locus.

The diversities of our three loci are not very much lower than the

highly variable human HLA loci thought to be under strong

balancing selection, and are many times higher than that of the D.

melanogaster Adh locus.

In the D. discoideum genome there are 1423 coding sequences

with at least one perfect triplet repeat that meets the minimum 26-

repeat threshold of our locus-rich sample, so these can be expected

to show the level of diversity shown in Figure 2. Furthermore,

there are an additional 1414 coding-sequences with triplet-repeat

microsatellites of 11–25 repeats, which will also likely be quite

variable.

Discussion

The extraordinary abundance and variability of amino acid

repeats are not easy to explain. If selection is operating, it ought to

limit the variation. If it is not, then neutral variation should be a

function of the product of population size and mutation rate

[29,30]. The population size of D. discoideum is not unusual for a

unicellular eukaryote, and the microsatellite slippage rate is

unusually low [31]. However D. discoideum does have an unusual

trait that could be responsible. It has an extremely AT-rich

genome – 77.6% overall and 72.5% in coding regions [4], which

possibly drives the occurrence of simple sequence repeats, as

shown in a previous comparative analysis [32]. Microsatellites

often begin as short repeats generated by chance substitutions [9],

and these will be much more abundant in a genome that

approaches a two-base code than in one where the four bases are

used more equally.

The large number and high variability of triplet repeats in D.

discoideum make it a candidate for the most variable proteome

known, but several questions remain unanswered. First, do long

amino acid repeats have any function? Microsatellite repeats do

sometimes have functional effects, but there would still remain the

question of why there is so much diversity. It is unlikely that

balancing selection acts on all these loci, as it does on diverse

human major histocompatibility complex loci [33] and plant self-

incompatibility loci [34–36], because of the extremely high cost of

selection that would be required over so many loci.

An alternative possibility is that these sequences have little effect

on the function of the protein and are not strongly selected. Most

of the repeats are of small hydrophilic amino acids [4], which

would tend to form loops on the outside of the protein rather than

disrupting internal structure. Repeat motifs coding for other

amino acids are not highly represented in the genome, presumably

because they are deleterious [4]. However, many of the amino

acid repeats are glutamine repeats, the same sequences that cause

a number of neurodegenerative diseases in humans [13], raising

the question of whether D. discoideum has some means to protect

itself against such deleterious effects. It does not splice the repeat

sequences out of the mRNA. The repeats show up in ESTs of the

full-length cDNA, and large repeats are not under-represented

(Figure S1). It is worth considering whether there might be some

novel mechanism for splicing out amino acid repeats from

proteins, but some preliminary evidence suggests it does not

occur. A western blot (courtesy of William Loomis) of D. discoideum

protein stained using an antibody that binds to polyglutamines

with 30 or more repeats shows a broad smear, suggesting (though

not proving) that there really are many proteins bearing such

repeats (Figure S2). Future work on the effects of these sequences

Figure 2. Gene diversity (expected heterozygosity) of the 50
coding triplet-repeat loci and 50 matched non-coding triplet
repeat loci in locus-rich sample. (a) 12 clones isolated from
different states of USA (b) 12 clones sampled over a 50 m transect in
Virginia.
doi:10.1371/journal.pone.0046150.g002
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might be useful for understanding and controlling human

glutamine repeat diseases.

The best evidence that these long asparagine repeats are not

strongly selected comes from the comparison of paired coding and

non-coding loci in Fig. 2. These sets were matched for repeat

motif, total length of the repeat sequence, and location in the

genome. If repeat regions in coding regions were subject to

stronger purifying selection than those in non-coding regions, they

should be less variable. They are not less variable, suggesting that

purifying selection, if present, is no stronger on the coding repeats.

Materials and Methods

Microsatellite Searches
We used the annotated genome of Dictyostelium discoideum

(http://dictybase.org/) to search for microsatellites located inside

coding regions of known genes. We identified microsatellites with

perfect repeats, and also accepted long microsatellites with one

point mutation in the repeat motif.

Clones
In the clone-rich sample we genotyped 8 microsatellite loci

(Table S1) in 316 clones (Table S2) of Dictyostelium discoideum

collected from 6 geographic locations: Japan, Massachusetts,

North Carolina, Tennessee, Texas, and Virginia. These included 5

asparagine repeats, two glutamine repeats and one lysine repeat.

In the multiple-repeat sample, 115 of these clones (Table S2) were

genotyped for 8 microsatellite loci from genes dimA, yakA and atg1

(Table S1), including five glutamine and three asparagine repeats.

In the locus-rich sample we genotyped 50 loci in coding regions

(Table S3) for 12 individuals from the USA locations (Table S4)

and 12 individuals from a 50 m transect in a Virginia population.

To compare variation with that in non-coding regions, we

genotyped the same individuals for a sample of non-coding paired

for repeat motif, repeat number (average difference 0.80 bp 6 s.d.

4.53) and location in the genome (average distance 16.52 kb 6 s.d.

14.70). All coding repeats in this sample coded for asparagine

repeats.

DNA Extraction
To obtain genomic DNA, we plated spores of each clone from

frozen stocks on SM-agar plates [37] with Klebsiella aerogenes

bacteria as a food source. Once fruiting bodies developed, which

was usually within 3–5 days, we placed 5–10 sori (cluster of spores

at the top of the fruiting bodies) in 150 mL of 5% Bio-Rad Chelex-

100 and 10 mL of 20 mg/ml proteinase K. We then ran the

samples in a PTC-100 programmable thermal controller (step1:56

C for 4 h; step 2:98.0 C for 30 min; step 3: End).

Genotyping
We amplified the microsatellite loci using fluorescently labeled

primers (Table S1 and S3) in a polymerase chain reaction (PCR)

(step1:90.0uC for 3 min; step2:90.0uC for 30 sec; step 3:60.0uC
decreasing 0.5uC every 30 min cycle; step 4:72.0uC for 30 sec;

step 5:20 cycles to step 2; step 6:90.0uC for 30 sec; step 7:50.0uC
for 30 sec; step 8:72.0uC for 30 sec; step 9:10 times to step 6; step

10:72.0uC for 10 min; step 8: end). The PCR product was cleaned

with ethanol precipitation and then prepared for analysis on an

ABI PrismH 3100 Genetic Analyzer. We scored the data using

Genotyper software (Applied Biosystems).

Sequencing
To confirm that differences in allele sizes among clones were

due to changes in the number of repeats, and not to changes in the

length of the two flanking regions, we sequenced the smallest and

the largest alleles of the microsatellites from the 3 genes with

Figure 3. Gene diversity (expected heterozygosity) of microsatellites in the multiple-repeat and clone-rich samples. White bars show
8 microsatellites genotyped in the multiple-repeat sample, from the known genes dimA, yakA and atg1. Grey bars show the 8 microsatellite loci from
the clone-rich sample of 316 clones. Error bars are 95% confidence intervals, estimated using 1000 bootstrap samples of individuals with
replacement.
doi:10.1371/journal.pone.0046150.g003

Figure 4. Average Gene diversity (expected heterozygosity) of
the 8 triplet microsatellite loci in the multiple-repeat sample,
divided by subpopulation. The error bars mark the bootstrap 95%
confidence intervals, estimated using 1000 bootstrap samples of
individuals with replacement.
doi:10.1371/journal.pone.0046150.g004
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Figure 5. The frequency distribution of genotypes of eight coding triplet repeats from the gene dimA, yakA, and atg1. These were
genotyped from a sample of 115 clones isolated from various North American locations.
doi:10.1371/journal.pone.0046150.g005

Figure 6. Amino acid diversity of the genes yakA, arg1 and dimA. The average amino acid diversity (or the average heterozygosity per amino
acid position) was calculated for D. discoideum for yakA, arg1 and dimA loci using only variation in numbers of amino acids in the assayed repeats. The
value of Drosophila Adh locus is from Kreitman [40] and Hartl [41], and values of Human HLA-A and HLA-B loci are from Hedrick [27], both based on
substitutions.
doi:10.1371/journal.pone.0046150.g006
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known phenotypic effect by amplifying them through PCR with

non-fluorescent primers, we then cleaned PCR products with

exonuclease I and shrimp alkaline phosphatase (ExoSAP-IT) to

remove unincorporated primers and nucleotides, and sent the

cleaned product with forward or reverse primers for sequencing

(SeqWright DNA Technology Services).

Data Analysis
We inferred the number of repeats by simply taking off the size

of the two flanking regions from the PCR product size and

dividing by 3 (i.e., the unit motif). Heterozygosity is the parameter

generally used to express the level of polymorphism of a genetic

locus. However observed heterozygosity cannot be calculated for

D. discoideum because it is a haploid organism. Nonetheless we can

compute the expected heterozygosity, which is the probability that

2 random alleles in the sample will be different, by considering the

frequency of each allele in the population. We did this for all 8

microsatellite loci from genes dimA, yakA and atg1 using the Genetic

Data Analysis (GDA) software [38]. To obtain a confidence

interval on our estimate of expected heterozygosity for each locus,

we performed a nonparametric bootstrap using Matlab. To do the

bootstrap, we re-sampled with replacement from our original

population to have 1,000 new populations and calculated their

expected heterozygosity. We used these 1,0000 values to generate

a distribution of expected heterozygosity scores at each locus, with

the 25th and 975th smallest values delineating the limits of the

lower and upper 95% confidence interval, respectively.

Supporting Information

Figure S1 Triplet microsatellites in cDNAs. For each

number of repeats $5, a blue diamond shows the proportion that

are covered, at least in part, in 163,182 D. discoideum expressed

sequence tags from cDNA (dictyBase 12-19-2008). Pink squares

show the fraction of non-repeat sequences in those same genes

covered by ESTs. The last point of each color represent is for all

repeat numbers greater than 50. At least two possible biases exist,

though neither affects the main point that triplet repeats are found

in cDNA. First, it is more likely that at least part of a longer repeat

will be covered. Second, location of microsatellites in genes may

affect representation in ESTs.

(TIF)

Figure S2 Western blot of D. discoideum proteins
stained using an antibody that binds to homopolymer
of .30 glutamines. Each lane shows the total extract of

proteins from 0 hour (vegetative stage), 12 and 18 hours

(developmental stages), respectively. A 1:100 dilution of the

monoclonal antibody was used. The molecular weight markers

are indicated in kDa. Courtesy of Bill Loomis.

(JPEG)

Table S1 PCR Primer pairs used in the multiple-repeat
sample (first eight loci) and the clone-rich sample (last
eight).
(PDF)

Table S2 Clones genotyped for the clone-rich sample
and the multiple-repeat sample.
(PDF)

Table S3 PCR primer pairs for the coding loci used in
the locus-rich sample.
(PDF)

Table S4 Clones in the locus-rich sample.
(PDF)

Table S5 All triplet microsatellites with $5 repeats in
genes yakA, dimA and atg1 from the reference genome
of D. discoideum AX4, including the 8 genotyped in the
multiple-repeat sample (boldface).
(PDF)
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