
Parallel Nonbinary LDPC Decoding on GPU
Guohui Wang, Hao Shen, Bei Yin, Michael Wu, Yang Sun, and Joseph R. Cavallaro

Department of Electrical and Computer Engineering
Rice University, Houston, Texas 77005

Email: {wgh, hs9, by2, mbw2, ysun, cavallar}@rice.edu

Abstract—Nonbinary Low-Density Parity-Check (LDPC) codes
are a class of error-correcting codes constructed over the Galois
field GF (q) for q > 2. As extensions of binary LDPC codes,
nonbinary LDPC codes can provide better error-correcting
performance when the code length is short or moderate, but
at a cost of higher decoding complexity. This paper proposes a
massively parallel implementation of a nonbinary LDPC decod-
ing accelerator based on a graphics processing unit (GPU) to
achieve both great flexibility and scalability. The implementation
maps the Min-Max decoding algorithm to GPU’s massively
parallel architecture. We highlight the methodology to partition
the decoding task to a heterogeneous platform consisting of the
CPU and GPU. The experimental results show that our GPU-
based implementation can achieve high throughput while still
providing great flexibility and scalability.

Index Terms—GPU, OpenCL, nonbinary LDPC, error correct-
ing codes, parallel architecture.

I. INTRODUCTION

Binary Low-Density Parity-Check (LDPC) codes have been
proven to approach the Shannon limit performance for very
long code lengths [1]. It is shown that nonbinary LDPC codes
constructed over the Galois field GF (q) (q > 2) can improve
the performance for short and moderate code lengths [2].

However, the performance gain of nonbinary LDPC codes is
achieved at the expense of an increase in decoding complexity.
Since the introduction of nonbinary LDPC codes, many efforts
have been made to improve the nonbinary LDPC decoding
performance. On one hand, many researchers are looking for
encoding solutions to construct nonbinary LDPC codes with
some good properties. On the other hand, many decoding
algorithms and architectures have been proposed to reduce the
complexity of nonbinary LDPC decoding algorithms [3, 4].
However, these implementations are usually designed for a
specific code type or for a fixed codeword length, so they
suffer from poor flexibility and scalability.

The demand for new codes and novel low-complexity
decoding algorithms for nonbinary LDPC codes requires a
huge amount of extensive simulations. The high complexity
of nonbinary LDPC decoding algorithms indicates that the
CPU-based simulation will be extremely slow in higher order
GF (q) fields, especially when people study the error floor
property of the codes. A graphics processing unit (GPU) can
provide massively parallel computation threads with a many-
core architecture, which can accelerate the simulations of the
LDPC decoding over GF (q). Many GPU-based implementa-
tions have been proposed for binary LDPC decoding [5, 6].
However, due to the drastically increased complexity of the

decoding algorithms at higher order fields, the implementation
of nonbinary LDPC decoding on GPU is still very challenging.

In this paper, we present a GPU implementation of a
nonbinary LDPC decoder. This paper is organized as follows.
In section II, we briefly review the decoding algorithms for
nonbinary LDPC codes. Section III introduces the OpenCL
programming model. Then, the details concerning our parallel
implementation of a nonbinary LDPC decoder are described in
Section IV. Section V shows experimental results and Section
VI concludes the paper.

II. NONBINARY LDPC DECODING ALGORITHMS

A. Nonbinary LDPC Codes and Decoding Algorithm Review

A nonbinary LDPC code can be defined by a parity-check
matrix H, which is a q-ary sparse matrix with M rows and
N columns, whose elements are defined in the Galois field
consisting of q elements (GF (q) = {0, 1, . . . , q− 1}). Matrix
H can be represented by a Tanner graph. Each row in H
corresponds to a check node in the Tanner graph, and each
column in H corresponds to a variable node in the Tanner
graph. Let M(n) denote the set of check nodes connected to
variable node n. Let N(m) denote the set of variable nodes
connected to check node m. The row weight for a check node
is denoted by dc.

The belief propagation (BP) decoding algorithm can be
extended to the GF (q) field to decode nonbinary LDPC
codes [2]. To reduce complexity, approximate algorithms
have been proposed such as the extended min-sum (EMS)
algorithm, the Min-Max algorithm [3, 7, 8] and iterative
soft (hard) reliability-based majority logic decodable (ISRB-
MLGD (IHRB-MLGD)) algorithms [4]. Among these al-
gorithms, the EMS algorithm and the Min-Max algorithm
have similar BER performance, but the Min-Max algorithm
has lower complexity. The ISRB-MLGD (IHRB-MLGD) al-
gorithm significantly simplifies the check node processing
so it is efficient for VLSI implementations. However, the
ISRB-MLGD and IHRB-MLGD algorithms suffer from BER
performance loss. Therefore, taking into account the error-
correcting performance and the decoding complexity, the Min-
Max algorithm is the best choice for a GPU implementation.
Moreover, we can easily extend the Min-Max computation
kernel to support other algorithms such as the EMS algorithm,
so the decoder also has great flexibility.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Rice University

https://core.ac.uk/display/10178322?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Algorithm 1 Min-Max decoding algorithm [3]

Initialization:
Ln(a) = ln(Pr(cn = sn|channel)/Pr(cn = a|channel));
Qm,n(a) = Ln(a);

Iterations:
Check node processing
Rm,n(a) = min

(an′)n′∈N(m)∈Λ(a)
(max
n′∈N(m)\{n}

Qm,n′)(an′));

Λ(a) ≡ {an′ |hmna+
∑

n′∈N(m)\{n}
hmn′an′ = 0};

Variable node processing
Q′m,n(a) = Ln(a) +

∑
m′∈M(n)\{m}

Rm′,n(a);

Q′mn = min
a∈GF (q)

Q′m,n(a);

Qm,n(a) = Q′m,n(a)−Q′m,n;

Tentative decoding:
L̃n(a) = Ln(a) +

∑
m∈M(n)

Rm,n(a);

cn = argmin
a∈GF (q)

(L̃n(a)).

If the check equation is satisfied or the max iteration number is
reached, terminate the decoding; Otherwise, go back to iterations.

B. The Min-Max Decoding Algorithm

Let us first review the Min-Max decoding algorithm [3].
Denote Ln(a) and L̃n(a) as the a priori information and
the a posteriori information of variable node n concerning a
symbol a in GF (q), respectively. Let Rm,n(a) and Qm,n(a)
denote the check node message and variable node message
concerning a symbol a. Assume that xn is the n-th symbol
in a received codeword and sn is the most likely symbol for
xn. The Min-Max algorithm is shown in Algorithm 1. The
check node processing contains most of the computations of
the Min-Max algorithm, which has a complexity of O(dc · q2)
for each check node. As is shown in Fig 1, Ln(a) and L̃n(a)
can be represented by 2-D a×n arrays; Rm,n(a) and Qm,n(a)
can be represented by 3-D a×m×n arrays. Due to the special
2-D and 3-D structure, the way to arrange these arrays in the
memory will significantly affect performance. We will further
discuss this in Section IV-E.

III. THE OPENCL PROGRAMMING MODEL

The goal of this work is to implement a highly parallel
and flexible decoder that supports different code types, var-
ious code lengths and can run on different devices such as
CPUs and GPUs. Therefore, we choose the Open Compute
Language (OpenCL) programming model to implement a
parallel nonbinary LDPC decoder. The OpenCL model is
widely used to program heterogeneous platforms consisting of
CPUs, GPUs and other devices [9]. For a massively parallel
program developed for a GPU, data-parallel processing is
exploited with the OpenCL by executing in parallel threads.
The OpenCL model employs the Single Instruction Multiple
Threads (SIMT) programming model. If a task is executed
several times independently over different data, it can be

q

N

M

Rmn(a) or Qmn(a)

4 2 7 3

3

3 1 5 4

6 2 6

4 3 7 1

H =H =

. . . LN-3(0) LN-1(0)LN-4(0) LN-2(0)L3(0)

L0(q-1)

L1(0) L2(0)L0(0)q

LN-1(q-1). . .

q

N

M

. . .

. . .
Rmn(a) or Qmn(a)

N

Fig. 1. Data structure of Ln, L̃n(a), Rm,n(a) and Qm,n(a).

mapped into a kernel, and executed in parallel on many
threads.

The execution of a kernel on a GPU is distributed according
to a grid of work groups with adjustable dimensions. The
number of work items per work group has to be programmed
according to the number of registers available on the GPU, in
order to guarantee that enough registers and local memories
are allocated to each thread at compile time. All work items
inside the same work group can share data through a shared
local memory mechanism. Synchronizations across work items
in a work group are necessary to guarantee the correctness of
the parallel accesses to a shared local memory.

IV. PARALLEL IMPLEMENTATION OF NONBINARY LDPC
DECODER AND DESIGN SPACE EXPLORATION

A. Complexity Analysis of Nonbinary LDPC Decoding

Given the properties of the algorithm, a GPU-based het-
erogeneous platform is very suitable to implement nonbinary
LDPC decoding algorithms. To decode a binary LDPC code,
more than hundreds of codewords are usually decoded simul-
taneously to fully utilize the GPU’s computation resources to
push the limit of decoding throughput [5, 6]. However, multi-
codeword decoding suffers from long latency which prevent
the GPU implementation from real-time applications. Being
extended to higher GF (q) fields, the computation kernels
of nonbinary LDPC codes become more complex compared
to the ones in the binary case (O(dc · q2) vs. O(dc) for
check node processing; assume dc is the number of non-
zero elements connected to a check node in matrix H).
The Min-Max kernel is more capable of providing enough
computations to keep all the compute units busy. Moreover, the
nonbinary LDPC decoding algorithm has a higher computation
to memory access ratio. The higher this ratio is, the less time
overhead is spent on the data transfer. These features make the
nonbinary LDPC decoding algorithms a good candidate for a
GPU implementation.

TABLE I
BREAKDOWN OF RUN TIME OF THE MIN-MAX ALGORITHM ON CPU.

Block name Time Percentage
Init LLR 0.353 ms 0.08%

CNP 431.336 ms 91.64%
VNP 30.462 ms 6.43%

Tentative dec 0.876 ms 1.86%

We measure the run time of major blocks in the Min-Max
algorithm by running a serial C reference code on a CPU. The

Host CPU

GPU

Init channel LLR
Init LLR kernel

CNP

VNP

Norm V-node msg

Tentative decoding
Finish decoding

Iterative decoding

i < max_iter

Done

Kernel

Kernel

Kernel

Kernel

Kernel

Write buffer

Device RAM

𝐿𝑛

𝑄𝑚𝑛

𝑅𝑚𝑛

𝐿𝑛

rec_sym

dec_sym Read buffer

CPU functions

GPU kernels

GPU memory objects

i = max_iter

Fig. 2. Kernel partitioning and program flow.

profiling results in Table I show that check node processing
(CNP) and variable node processing (VNP) occupy most of
the processing time (91.64% and 6.43%, respectively).

B. Mapping Algorithm onto Parallel Architecture

By carefully analyzing the Min-Max decoding algorithm,
we develop a work flow of the iterative decoding process, as is
shown in Figure 2, including the CPU-GPU task partitioning,
kernel launching and memory transfer operations. The main
program is running on a host CPU, which handles the OpenCL
context initialization, the kernel scheduling and synchroniza-
tion, the control of decoding iterations, memory management
and so on. To reduce the memory transfer overhead between
CPU and GPU, we put most of the computations on the GPU
and keep all the intermediate messages in the device memory.
Therefore, we only need two memory transfers: one is to
transfer the received symbol data into the device RAM of
GPU in the beginning, and the other is to get the decoded
symbols back at the end of the decoding process.

It is worth mentioning that the proposed work flow repre-
sents a general architecture which can be used to implement
different nonbinary LDPC decoding algorithms, including the
Min-Max algorithm. Only some small changes are needed in
the CNP kernel to support other algorithms.

We partition the decoding algorithm into five OpenCL
kernels, which are listed in Table II. The method to distribute
the tasks into work groups and to fully explore the parallelism
is important for a high performance OpenCL implementation.

TABLE II
MAPPING KEY ALGORITHM BLOCKS ONTO OPENCL KERNEL.

Function # of # work items Total # of
workgroups per group work items

Init LLR N q N × q
CNP M q M × q
VNP N q N × q

Norm VNP msg N dc N × dc
Tentative dec dM/32e 32 M

As examples, Figure 3 shows the details of mapping CNP
and VNP kernels onto GPU’s parallel architecture. Since all
the messages are vectors in the nonbinary field, we can spawn
q work items (“thread” in CUDA) per work group (“thread
block” in CUDA) to compute each CNP or VNP message, so
that these q work items can have exactly the same computation
path and memory access pattern. This could help the compiler

M
work

groups

N work groups

q work
items

q work
items

(a) check node processing

(b) variable node processing

Fig. 3. Mapping CNP and VNP to OpenCL kernels.

combine operations for work items into SIMT instructions to
take advantage of GPU’s parallel architecture.

To further increase the parallelism in a work group to fully
utilize a compute unit, we can keep the total number of work
items unchanged, but assign the work groups in a different
way. For example, to launch a CNP kernel, we still spawn
M×q work items in total. But we can assign C ·q work items
for each work group and use dM/Ce work groups (assume C
is a chosen integer).

C. GPU Implementation of Nonbinary Arithmetic

Nonbinary arithmetic is necessary for a nonbinary LDPC
decoder. Addition and subtraction in GF (q) can be im-
plemented by XOR operations. However, multiplication and
division are non-trivial to implement. We can use look-up
tables (LUT) to implement the nonbinary multiplication and
division. Two LUTs holding expq and logq values are used,
each of which contains q elements. For instance, a multipli-
cation can be calculated as follows: a × b = expq[logq[a] +
logq[b])%(q − 1)]. The division can be computed in a similar
way: a/b = expq[(logq[a]− logq[b] + q− 1)%(q− 1)]. Since
these two LUTs are used frequently by all the work items, we
propose to put them into the shared local memory to enable
quick memory access. Since q ranges from 2 to 256, the LUTs
can be easily fit into local memory and can be efficiently
loaded into the local memory in parallel.

D. Efficient Data Structures

Since matrix H of an LDPC code is sparse, we can reduce
the storage requirement and enable fast memory access by
using compressed representations shown in Figure 4. Similar
to the method used in our previous work, horizontal and
vertical compression of matrix H generates very efficient data
structures [6]. By utilizing the vector data type in OpenCL
as is shown in the figure, we can further increase the effi-
ciency of the compressed representations. Since Rmn(a) and
Qmn(a) messages also have sparse structures, they can also
be compressed in a similar way.

E. Accelerate The Forward-backward Algorithm in CNP

The original Min-Max algorithm has a complexity of
O(qdc) in the check node processing (CNP). As is shown

Efficient Data Structures

27

cl_short2 row_in_col[N][dc];
 row_in_col [col][index].s[0]= row number;
 row_in_col [col][index].s[1]= H[row][col];

row_in_col

col_in_row

cl_short2 col_in_row[M][dv];
 col_in_row[row][index].s[0]= col number;
 col_in_row[row][index].s[1]= H[row][col];

• Enable fast index;

• Significantly reduce the memory requirements

Fig. 4. Efficient representation of H matrix.

F0(0)

F0(1)

...

F0(q-2)

F0(q-1)

q threads
h0, n0 h0, n1 h0,n2 h0, n3

Forward computation

Backward computation

F1(0)

F1(1)

...

F1(q-2)

F1(q-1)

F2(0)

F2(1)

...

F2(q-2)

F2(q-1)

F3(0)

F3(1)

...

F3(q-2)

F3(q-1)

Barrier local memory sync

(a) Forward-backward algorithm (for one check node)

(b) Use local memory to speedup the FBA algorithm

Fig. 5. Forward-backward algorithm and GPU implementation.

in Algorithm 2, a forward-backward algorithm (FBA) is able
to reduce the complexity to O(dc · q2) [3]. Let N(m) =
{n0, n1, · · · , n(dc−1)} be the set of variable nodes connected
to check node m.

Algorithm 2 Forward-backward Algorithm (FBA) [3]

For check node m, compute forward metrics
F0(a) = Qm,n0(h

−1
m,n0

a);
Fi(a) = min

a′+hm,ni
·a′′=a

(max(Fi−1(a
′), Qm,ni(a

′′)));

Backward metrics
B(dc−1)(a) = Qm,n(dc−1)

(h−1
m,n(dc−1)

a);
Bi(a) = min

a′+hm,ni
·a′′=a

(max(Bi+1(a
′), Qm,ni(a

′′)));

Check node message computation
Rm,n0(a) = B1(hm,n0a);
Rm,n(dc−1)

(a) = F(dc−2)(hm,n(dc−1)
a);

Rm,ni(a) = min
a′+a′′=a

(max(Fi−1(hm,ni−1a
′), Bi+1(hm,ni+1a

′′))).

Figure 5-(a) shows how the forward-backward algorithm is
mapped to a OpenCL implementation. Computations for one
check node are shown. All the q work items in a work group
still follow the same execution path, which is very efficient
for GPU implementation. Figure 5-(b) shows details of a
trellis structure of the forward computing steps. The forward
messages Fi(a) (for a ∈ GF (q) and i = 0, 1, · · · , dc − 1)

q

q work
items

R0,0(q-1)

. . .

. . .

. . .

R0,0(0) R0,1(0) R0,N-1(0)

RM-1,0(0) RM-1,1(0) RM-1,N-1(0)

R1,0(0) R1,1(0) R1,N-1(0)

(a) Rmn(a) is stored in a 3-D array, in [M, N, q] format.

RM-1,N-1(0)

R0,1(0)

RM-1,0(0)

RM-1,0(0) RM-1,1(0) RM-1,N-1(0)

R1,0(0) R1,1(0) R1,N-1(0)

(b) Rmn(a) is stored in a 3-D array, in [N,q,M] format.

. . .

. . .

. . .

R0,0(0) R0,0(1) R0,0(q-1)

R0,1(0) R0,1(1) R0,1(q-1)

R0,N-1(0) R0,N-1(1) R0,N-1(q-1)

. . .

. . .
R0,0(1)

R0,N-1(q-1). . .
R0,N-1(1)

q work
items

R1,0(0)

M

q

N

M

N

RM-1,0(q-1)

R1,0(q-1)

. . .
. . .

RM-1,0(q-1)

. . .

Fig. 6. Coalescing memory access by adjusting the data structure.

at stage i always need to read Fi−1(a) messages from stage
i−1 after interleaving them. This interleaving operation causes
significant performance degradation due to the access conflicts
in the global memory. To solve this problem, we propose to
put the forward messages Fi(a) into on-chip local memory
of GPU. Since the trellis in Figure 5-(b) is traversed by work
items in the same work group, Fi(a) can be shared by all
work items. At first, all q work items work in parallel to
initialize F0(a) and then update Fi(a) in parallel for each
stage i. A local memory barrier synchronization operation bar-
rier(CLK LOCAL MEM FENCE) is performed after each
stage to keep work items synchronized. The backward mes-
sages can be computed in a similar way. The amount of local
memory required for Fi(a) and Bi(a) is 2 ·sizeof(cl float) ·
q · dc. For example, 1.5KB of local memory is required for
a (3, 6)-regular GF (32) code. Experimental results show that
this optimization gives us 2× speedup.

F. Coalescing Global Memory Accesses

The data structures stored in the global memory should be
carefully designed due to the long latency of global memory
accesses. If global memory accesses can not be grouped in a
coalesced way by the compiler, they will be compiled into
multiple instructions and will significantly hurt the overall
performance.

Rmn(a) and Qmn(a) are stored in the global memory and
they have complicated 3-D structures. Figure 6 shows two
alternative ways to store Rmn(a). If we define a 3-D array
A in a format [A,B,C], then an entry [x, y, z] of A can be
accessed as A[z · A · B + y · A + x]. The original format of
[M,N, q] shown in 6-(a) is the most straightforward way to
arrange a 3-D array of Rmn(a). However, for q work items
to access {R0,0(0), R0,0(1), · · · , R0,0(q − 1)} in parallel, the
data are loaded from memory locations far away from each
other. This results in multiple memory access instructions and

increases the memory access time. In contrast, if we arrange
Rmn(a) in the format of [N, q,M] depicted in Figure 6-(b),
q work items always access Rmn(a) data stored contiguously.
By doing so, coalesced memory access is enabled, and we
observed a 4 ∼ 5× speedup in our experiments.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

We implemented the proposed architecture using OpenCL.
This implementation is flexible and can be easily configured
by adjusting parameters to support different code types, code
lengths, and various devices such as CPUs and GPUs. The
implementation is evaluated on two CPU platforms: an Intel
i7-640LM dual-core CPU running at 2.93GHz and an AMD
Phenom II X4-940 quad-core CPU running at 2.9GHz. We
also ran our experiments on an NVIDIA GTX470 GPU with
448 stream processors running at 1.215GHz and with 1280MB
of GDDR5 device memory. The corresponding OpenCL SDK
is installed for each platform. We use a 1/2 (620, 310) (3, 6)-
regular GF(32) LDPC code, which is widely used in related
research and shows good error-correcting performance [7].
OpenCL events and functions such as clFinish(), clWait-
ForEvents(), and clGetEventProfilingInfo() are used to mea-
sure the run time.

B. Experimental Results and Discussion

Experimental results are shown in Table III. On the i7
CPU, the OpenCL implementation shows a 2.47× speedup
compared to a serial C reference program. On the AMD X4-
940 CPU, the OpenCL accelerated version results in a 6.67×
speedup over the C reference code. When executing on the
NVIDIA GTX-470 GPU, we achieve 693.5 Kbps throughput
for 10 iterations; if early termination is enabled, the throughput
can be further improved to 1260 Kbps.

Compared to the 50∼100 Mbps throughput achieved by
the GPU-based binary LDPC decoders reported in previous
work, the throughput measured in this experiment justifies the
following complexity analysis. The complexity of the CNP
in a binary case is O(dc), while the one in a nonbinary
case is O(dc · q2). Additionally, the nonbinary arithmetic uses
2 ∼ 3 computations and 3 table look-up operations, which
again adds at least 2 ∼ 3× non-trivial overhead. The overall
time complexity of the nonbinary decoder can be estimated to
be 2q2 ∼ 3q2 higher than the binary case. Taking the code
used in this paper as an example, q is equal to 32, so we
can expect a 2000 ∼ 3000× increase in complexity when
comparing a nonbinary decoder to a binary one. However,
thanks to the massive parallelism in the decoding algorithm
and our optimizations, the gap between the binary and the
nonbinary implementation is reduced to around 50×.

It is worth mentioning that we choose a short code
(620, 310) on purpose since the nonbinary codes show per-
formance gain over the binary codes for short codewords.
Researcher are more interested in short codewords and higher
GF fields, so accelerating the decoders supporting short codes
and high GF fields such as GF (32) are of great importance

TABLE III
EXPERIMENTAL RESULTS. (MAX # OF ITERATIONS=10).
Processor Program Time Throughput

Intel i7-640LM Serial C code 410.5 ms 7.55 Kbps
(Intel OpenCL SDK 2012) OpenCL 172 ms 18.7 Kbps

AMD X4-940 Serial C code 563 ms 5.46 Kbps
(AMD APP SDK v2.7) OpenCL 82.3 ms 36.57 Kbps

NVIDIA GTX-470 OpenCL 4.47 ms 693.5 Kbps
(NVIDIA SDK v4.2) OpenCL 2.46 ms 1260 Kbps*

* GPU implementation with early termination, EbN0 = 3.0, SER=2.1 ×
10−5, FER=3.3× 10−3 (SER: symbol error rate; FER: frame error rate).

for nonbinary LDPC codes research [2, 3, 7]. However, we can
always achieve higher throughput by decoding a longer code
in lower GF fields such as GF (4), GF (8) and GF (16) with
a small row weight dc, if a higher throughput is the goal. For
example, the projected throughput of a (8000, 4000) GF (16)
code is around 20 Mbps (@10 iterations) on a GTX-470 GPU
based on the complexity analysis and our results in Table III.

VI. CONCLUSION

This paper presents a novel parallel implementation of non-
binary LDPC decoder on GPU. Due to its inherently massive
parallelism, a nonbinary LDPC decoder is more suitable for
a GPU implementation than for binary LDPC codes. We
demonstrate our method to take full advantage of the GPU’s
compute power to accelerate the nonbinary LDPC decoding
algorithms. The experimental results show that the proposed
GPU-based implementation of the nonbinary LDPC decoder
can achieve great performance, flexibility, and scalability.

ACKNOWLEDGMENTS
This work was supported by the US National Science Foundation

under grants EECS-1232274, EECS-0925942 and CNS-0923479.

REFERENCES

[1] R. Gallager, “Low-density parity-check codes,” IRE Transactions
on Information Theory, vol. 8, no. 1, pp. 21 –28, 1962.

[2] M. Davey and D. MacKay, “Low-density parity check codes over
GF(q),” IEEE Communications Letters, vol. 2, no. 6, pp. 165 –
167, June 1998.

[3] V. Savin, “Min-Max decoding for non binary LDPC codes,” in
IEEE International Symposium on Information Theory, 2008.,
July 2008, pp. 960 –964.

[4] X. Zhang, F. Cai, and S. Lin, “Low-complexity reliability-based
message-passing decoder architectures for non-binary LDPC
codes,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 20, no. 11, pp. 1938 –1950, Nov. 2012.

[5] G. Falcao, L. Sousa, and V. Silva, “Massively LDPC decoding
on multicore architectures,” IEEE Transactions on Parallel and
Distributed Systems, vol. 22, no. 2, pp. 309 –322, 2011.

[6] G. Wang, M. Wu, Y. Sun, and J. R. Cavallaro, “GPGPU accel-
erated scalable parallel decoding of LDPC codes,” in the 45th
Asilomar Conference on Signals, Systems and Computers, Nov.
2011, pp. 2053 –2057.

[7] J. Lin, J. Sha, Z. Wang, and L. Li, “Efficient decoder design
for nonbinary quasicyclic LDPC codes,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 57, no. 5, pp. 1071
–1082, May 2010.

[8] Y.-L. Ueng, C.-Y. Leong, C.-J. Yang, C.-C. Cheng, K.-H. Liao,
and S.-W. Chen, “An efficient layered decoding architecture for
nonbinary QC-LDPC codes,” IEEE Transactions on Circuits and
Systems I, vol. 59, no. 2, pp. 385 –398, Feb. 2012.

[9] Khronos OpenCL Working Group, The OpenCL Specification.
[Online]. Available: http://www.khronos.org/opencl

