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Abstract. A study of ion equilibration in annular regions of ultracold strontium plasmas is reported. Plas-
mas are formed by photoionizing laser-cooled atoms with a pulsed dye laser. The experimental probe is
spatially-resolved absorption spectroscopy using the 2S1/2−2P1/2 transition of the Sr+ ion. The kinetic
energy of the ions is calculated from the Doppler broadening of the spectrum, and it displays clear oscil-
lations during the first microsecond after plasma formation. The oscillations, which are a characteristic of
strong coulomb coupling, are fit with a simple phenomenological model incorporating damping and density
variation in the plasma.

PACS. 52.35.-g Waves, oscillations, and instabilities in plasmas and intense beams – 32.80.Fb Photoion-
ization of atoms and ions – 32.80.Pj Optical cooling of atoms; trapping

1 Introduction

In plasmas formed by photoionizing laser-cooled atoms [1],
the ions have relatively low kinetic energy immediately
after formation. However, their spatial distribution is un-
correlated and has a higher Coulombic potential energy
than in thermodynamic equilibrium. As ions move to
lower their potential energy, and spatial correlations de-
velop, their kinetic energy increases. This phenomenon is
called disorder induced heating and it was first predicted
in [2] and observed experimentally in [3]. If the ions are
initially uncorrelated and the ions interact through the
screened Coulomb interaction, U(r) = e2 exp(−r/λD)/r,
where λD =

√
ε0kBTe/nee2 is the electron Debye screen-

ing length, then the equilibrium temperature is given as [2]

Ti =
2
3

e2

4πε0akB

∣
∣
∣
∣Ũ(κ, Γi) +

κ(ni, Te)
2

∣
∣
∣
∣ . (1)

Here, Te is the electron temperature, ne � ni is the density
of electrons and ions respectively, a = (3/4πni )1/3 is the
inter particle distance, κ = a/λD, and Γi = e2/4πε0akBTi

is the coulomb coupling parameter for the ions. Ũ , the
excess potential energy per particle in units of e2/4πε0a,
is tabulated in [4] using a molecular dynamics simulation.
Equation (1) was confirmed experimentally in [5].

It was also shown in [5] that the kinetic energy of the
ions undergoes damped oscillation during equilibration.
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Such oscillations of strongly coupled plasmas had previ-
ously been seen in computer simulations [6–10]. Physically
one expects oscillations to occur at the ion plasma fre-
quency, ωpi =

√
nie2/miε0, where mi is ion mass. For a

typical density of 1016 m−3, 2π/ωpi � 600 ns.
Initially, the evolution of the kinetic energy of all the

ions is synchronized in time, but there is no long range
spatial coherence to the motion because the ions are mov-
ing in random directions. Although we must be cautious in
ascribing the oscillation to an ion collective mode, we can
gain intuition from the dispersion relation for electrostatic
wave propagation in a two component plasma [11],

1 − ω2
pe

ω2 − k2v2
e

− ω2
pi

ω2 − k2v2
i

= 0, (2)

where, k = 2π/λ is the wave vector and ve,i �√
kBTe,i/me,i are the electron or ion thermal velocities.

Assuming that ω � ωpe and Te � Ti, which results in the
approximation vi � ω/k � ve, the dispersion relation
implies,

ω = ωpi

√
k2λ2

D

1 + k2λ2
D

. (3)

Ion oscillations are on a length scale of approximately an
inter particle distance. If we were to assign a wave vector
to the ion motion observed here, it would be k � 2π/a �
1/λD and in this regime, ω = ωpi.

The ion-density varies over space and consequently,
ωpi varies with position. This causes the oscillations to
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Fig. 1. (Color online) Spatially-resolved absorption imaging.
The plasma-image is divided into three annular regions such
that each contains an equal number of ions. An experimental
optical depth is shown to the right.

dephase, which complicates their study. To circumvent
this problem, we divide the analysis of the plasma into
concentric cylinders-each having the same number of ions
and less density variation than the entire cloud. In the an-
nular regions, plasma oscillations are prominent and easier
to analyze.

2 Creating and absorption-imaging Sr plasma

To produce ultracold neutral plasma, Sr atoms are cooled
in a magneto-optical trap (MOT) [12] on the 1S0−1P1

dipole allowed transition at 461 nm. Roughly 2×108 atoms
are trapped at a temperature of about 10 mK. The atom
density has a Gaussian distribution over space, n(r) =
n0 exp

(−r2/2σ2
)
, with σ � 10−3 m and peak density,

n0 � 1016 m−3 [3]. The MOT is then turned off, and a
laser resonant with the cooling transition illuminates the
cloud for 1 µs to increase the population in the 1P1 level.
The atoms in the 1P1 state are photoionized with a 10 ns
pulse from a dye laser whose wavelength is tuned to an
energy Ee above the ionization continuum. Because of the
small electron-to-ion mass ratio, nearly all the energy of
the photon above the ionization threshold is transferred
to the electron kinetic energy [1]. Ee/kB can be as low as
100 mK which is the bandwidth of laser.

We probe the plasma using absorption imaging on
the 422 nm 2S1/2–2P1/2 transition in the ions [3]. As
shown in Figure 1, the laser passes through the trap-
ping region and falls on an intensified CCD camera. The
optical depth of the medium is given by OD(x, y) =
ln(Ibackground/Iplasma), where Iplasma and Ibackground are
the intensity of the transmitted laser when the plasma
is present and when it is not. The optical depth can be
related to physical quantities through

OD(x, y) =

∞∫

−∞
ni(r)α (ν, r) dz, (4)

where α(ν, r) is the absorption cross-section of the ions
at a probe laser frequency ν. The cross-section varies
with position because the kinetic energy, which produces
Doppler broadening, varies. From this point onwards we
drop the subscript i, and all quantities refer to ion prop-
erties unless otherwise specified.
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Fig. 2. (Color online) Spectra of the three annular regions.
The lines show Voigt fits to the spectra. The above image was
taken at 192 ns after photoionization, for n0 = 9.5 × 1014 m−3

and initial electron kinetic energy, Ee/kB = 55.5 K.

To study oscillations, we divide the plasma image into
three annular regions of equal number of ions (Fig. 1).
If ρ denotes the radial coordinate in a cylindrical sys-
tem, then this division gives us three regions given by
(ρ1, ρ2) = (0, 0.9σ), (0.9σ, 1.48σ), (1.48σ,∞). We will call
these regions as region 1, region 2 and region 3 respec-
tively. We can sum the OD over the region to get the
absorption spectrum Sreg(ν) for each region as

Sreg(ν) ≡
∫

Areg

OD(x, y)dxdy =
∫

Vreg

n(r)α (ν, r) d3r (5)

where, the spatial integration is over each annular region,
Areg. Typical spectra of the three annular regions are
shown in Figure 2. Note that the spectrum of the center
region is widest and that of the outermost is narrowest.
This happens because the width of the spectrum is a mea-
sure of kinetic energy of the plasma, and disorder induced
heating increases with ion density. The area of each curve
is approximately equal because

∫
Sreg(ν)dν ∝ Nreg is the

same for all the regions, where Nreg is the number of ions
in each region.

To quantitatively analyze the spectra, we introduce
a full expression for the absorption cross-section, α. The
natural linewidth of the transition, γ0 = 2π × 20.21 ×
106 s−1, and the laser linewidth, γlaser = 2π × (5 ± 2) ×
106 s−1, set a minimum width to the spectrum. Ion motion
along the direction of the laser beam contributes Doppler
broadening. A convolution of these effects yields

Sreg(ν) =
3∗λ2

2π

γ0

γeff

∞∫

−∞
ds

1

1 +
[

2(ν−s)
γeff /2π

]2

×
∫

Vreg

d3r n(r)√
2πσD[Tthermal(r)]

exp

{

− [s − ν0 − δν(z)]2

2σ2
D[Tthermal(r)]

}

.

(6)

The factor 3∗ accounts for the laser and ion polariza-
tion [13]. In our case, 3∗ = 1 due to the random align-
ment of ions and linear polarization of the laser. Here,
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λ = 422 nm is the transition wavelength, γeff = γ0 +
γlaser and ν0 is the resonance frequency of the tran-
sition. The exponential Doppler term describes broad-
ening due to random motion and directed plasma
expansion. Whether the system has reached local ther-
mal equilibrium or not, we characterize the kinetic en-
ergy arising from random motion by a temperature
Tthermal that may vary with position, and a Doppler width
σD[Tthermal(r)] = (1/λ)

√
kBTthermal(r)/m . Directed ex-

pansion of the plasma [3,14–18] is driven by the kinetic
energy of the electrons, which exerts a radial pressure on
the ions. The expansion velocity as a function of time and
position, including effects of adiabatic electron cooling,
is given in [14,16,19]. The Doppler shift of the resonant
frequency due to the expansion velocity of ions is given
by [17]

δν(z) =
vz

λ
=

zkBTet

mi(σ2 + kBTet2

m )λ
. (7)

Here, vz is the local average velocity along the laser di-
rection, which only arises from radial expansion, z is the
distance from the center of the cloud along the direction
of the laser, and t is the time since photoionization. The
second term in parenthesis in equation (7) accounts for
electron cooling and is small for the data discussed here.

The integral over volume in equation (6) complicates
the expression. Fortunately, we can simplify it as

Sreg(ν) =
3∗λ2

2π

γ0

γeff

Nreg√
2πσ̃D,reg

∞∫

−∞
ds

1

1 +
[

2(ν−s)
γeff /2π

]2

× exp

[

− (s − ν0)2

2σ̃2
D,reg

]

, (8)

where σ̃D,reg = (1/λ)
√

kBTeff ,reg/m, with Teff ,reg being
an effective ion temperature of the region parameteriz-
ing all Doppler broadening from random motion and ex-
pansion. This approximation is possible because the ki-
netic energy distribution during the expansion stays close
to Gaussian, even though the velocities do not represent
random motion in thermal equilibrium. Numerical simula-
tions testing the accuracy of this approximation are shown
in Figure 3, and they are explained in detail in the follow-
ing section. Fits of the data to this simple Voigt profile
are shown in Figure 2.

3 Phenomenological descriptions
of the effective temperature

The main quantity we extract from each spectrum is
Teff ,reg . It clearly describes Doppler broadening, but how
do we relate it to underlying physical parameters of the
plasma? For each annular region and over a wide range
of conditions of local thermal equilibrium (LTE), numer-
ical calculations of the full integral (Eq. (6)), show that
Teff ,reg can be related to the average of the kinetic energy
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Fig. 3. (Color online) Numerical simulation showing that for
annular regions and local thermal equilibrium given by equa-
tion (1), the spatial integral of the density times the Doppler
profile in equation (6) can be replaced by a simple Gaussian
with an effective temperature given by equation (9). Notice
that as t increases, so does the Doppler width. The analysis
takes the electronic screening effects into consideration and
this specific result is for n0 = 9 × 1015 m−3 and Te = 30 K.
In the figure, the continuous line is the density average of
Doppler profile, and the dashed line is the approximated Gaus-
sian curve. (In the above figure, the analysis for the whole vol-
ume, 0 < ρ < ∞, was presented in [17] and it is shown here
just for comparison.)

from random motion, kB × 〈Tthermal(r)〉reg, by

Teff ,reg = 〈Tthermal(r)〉reg

[
C + (t/texp)

2
]
. (9)

This was demonstrated for analysis of the entire plasma
in [17]. Here we extend the treatment to annular regions.

By the time the kinetic energy due to expansion be-
comes significant, the oscillations have largely damped out
and the plasma has reached LTE. This allows us to define

texp =
σ

Te

√
mi 〈Tthermal(r)〉

kB
(10)

as the characteristic time in which ions develop enough
radial expansion velocity so that the Doppler broaden-
ing due to expansion is equal to the thermal Doppler
broadening. The average is taken after LTE is reached,
so one can think of KB 〈Tthermal(r)〉 as a measure of ki-
netic energy coming from disorder-induced heating given
by equation (1). For numerical checks of equation (9),
however, we will let Tthermal(r) take various forms. For
global thermal equilibrium of the ions (Tthermal(r) = con-
stant), equation (9) results from a trivial analytic evalu-
ation of equation (6) and C = 1. If we assume LTE at
a temperature given by equation (1)1, for peak densities

1 For a given peak density, n0, and electron temperature, Te,
we can solve equation (1) by iterative method and obtain a
distribution of the ionic temperature Ti.
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Fig. 4. Variation of the effective temperature, Teff ,reg with
delay time for n0 = 1.5 × 1015 m−3 and initial electron kinetic
energy, Ee/kB = 55.5 K. The marker points are the raw data
and the continuous curve is the fit of the effective ion temper-
ature of different regions to the oscillation function (Eq. (12)).
For this data, χ2

ν = 1.5 with 56 degrees of freedom.

of 1014–5 × 1016 m−3 and initial electron temperatures
of 1–1000K, the values of C are 0.94 ± 0.04, 0.98 ± 0.01,
0.98 ± 0.02 and 0.94 ± 0.04 for whole volume, region 1,
region 2 and region 3 respectively. The result of the nu-
merical simulation is shown in Figure 3. This is the sit-
uation we expect in our system for data presented here
and times after the oscillations have damped. When the
system is not in LTE, we will still assume the form of
equation (9) and these values of C in our analysis, but
we can only claim an approximate quantitative relation-
ship of Teff ,reg to underlying physical parameters. Perhaps
more detailed simulations [14] can remove this limitation.

Figure 4 shows the ion effective temperature at differ-
ent delay times and for different regions. There is a clear
indication of temperature oscillations in early delay times.
The oscillation period is smallest in the innermost region
and largest in the outermost region. This is because the
time scale is equal to 2π/ωpi(r) and ωpi(r) ∝ √

ni(r).
Also, the equilibration temperature of the ions after oscil-
lations damp is highest for the innermost region and low-
est for the outermost region. This can be explained from
the fact that the LTE temperature (Ti) is proportional to
e2/4πε0akB and a(r) ∝ [ni(r)]

−1/3.
We can gain much insight into kinetic energy oscilla-

tions with a a phenomenological model for Tthermal(r),
which we use to describe kinetic energy due to oscilla-
tions and thermal motions. If we assume each ion’s ve-
locity varies as v0 sin ωpit [9,10], where, ωpi is the local
ion plasma frequency, then Tthermal ∝ v2 = v2

0 sin2 ωpit.
If we allow for damping of the oscillations by a damping
parameter ζ, and equilibration at Ti from equation (1),
then,

Tthermal(r, t) = Ti(r)
[
1 − cos(2ωpit)e−ζωpit

]
. (11)
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Fig. 5. These fits show the fits of the ion temperature of dif-
ferent regions to the oscillation function (Eq. (12)) when only
region 1 and region 2 are fitted. The χ2

ν is very close to unity
and it indicates that the fitting-function is actually a good rep-
resentation of our experimental data. For this data, χ2

ν = 1.2
with 36 degrees of freedom.

We average equation (11) over the volume of the region
and assume the effect of expansion is well-described by
equation (9) at all times to obtain the model effective
temperature as

Teff ,reg(t) =

ρ2∫

ρ1

dρ

∞∫

−∞
dz 2πρ

n0e
−r2/2σ2

i

Nreg
Ti(r)

×
{
1 − cos [2ωpi(r)t] e−ζωpi(r)t

}
[

C +
(

t

texp

)2
]

, (12)

where we have used cylindrical coordinates with ρ1 and ρ2

indicating the cylindrical boundary of the annular regions
and r2 = ρ2 + z2. It should be noted here that the locally
equilibrated temperature, Ti(r) is a function of position
because in equation (1) the density is a function of posi-
tion. Also, the expansion time texp in the above expression
is a constant of the plasma and is independent of the re-
gional boundaries. A numerical verification of this fact is
given in [20].

To fit the spatial and temporal variation of the ion ki-
netic energy to equation (12), as shown in Figure 5, we
varied n0, Te, σ and ζ. Variation of σ is equivalent to
variation of texp, since we use equation (10) for texp and
use equation (1) to set 〈Tthermal(r)〉 = 〈Ti(r)〉. The aver-
age is over the entire plasma. All the parameters except
ζ were the same for all regions. The fitting was done by
the method of least squares, in which the reduced χ2 is
minimized. Initially we fit all three annular regions. An
example is shown in Figure 4. The quantities, n0, σ, and
to some extent Te, are also controlled experimentally. We
will compare the fit results with values determined inde-
pendently to check the phenomenological model. In total,
eight different sets of data were fit, each having experi-
mentally set values of Ee/kB varying from 16.5K to 84K
and n0 between 1.5 × 1015 and 9.5 × 1015 m−3.

The one-sigma errors of the optimal parameters from
the fits were on the order of 10% of the parameter’s value.
Ideally, the value of χ2

ν should be equal to 1 for a good
fit but the value of χ2

ν averaged 1.5 for a typical number
of degrees of freedom of about 90 which is unreasonably
high.
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ones. Statistical uncertainties are typically smaller than the
size of the symbols. There is a systematic uncertainty of ±5K
in the calculated Te due to calibration of the dye laser wave-
length. (The density values in the legend are calculated from
the ion-image.)

This discrepancy led us to closely examine the fits and
we found that the fitted Teff ,reg in region 3 is systemati-
cally lower than the experimental Teff ,reg for all the data
sets, and the residuals in region 3 contribute the most to
the high values of χ2

ν . One explanation might be that the
outer region is not perfectly neutral because high energy
electrons have escaped from this region [1]. The theoret-
ical model that we use assumes neutrality of the plasma.
A shortage of electrons would imply less screening and a
higher ion temperature after equilibrium. When we omit-
ted the outer region from the fit as shown in Figure 5,
χ2

ν averaged 1.2 which is more reasonable. This suggests
that our fitting-function is a good representation of our
experimental data in regions 1 and 2, but neglects essen-
tial physics important in region 3. All following results are
from the fitting of region 1 and 2 only.

We also note that even fitting just regions 1 and 2,
the parameters are strongly overdetermined. Most impor-
tantly, the oscillation frequency and equilibrium temper-
ature are both determined by the density, and they both
fit quite well.

To check systematics, we compare quantities obtained
from the fitting (n0, Te and σ) with their values obtained
from other independent techniques. For example, the ini-
tial electron temperature can be calculated using the for-
mula

3
2
kBTe = Ee = hνlaser − ΦIP , (13)

where, νlaser is the frequency of the photoionizing laser,
and ΦIP = 4.819 × 10−19 J is the ionization potential of
the 1P1 level of strontium. Figure 6 shows a comparison
of the fitted and the calculated Te. As can be seen from
the figure, the values of fitted Te are higher than the cal-
culated ones. This happens because electrons heat above
the temperature given by equation (13) due to three-body
recombination [16], disorder-induced heating [21] and con-
tinuum lowering [22]. Our analysis gives us good method
to measure this heating, which can be a subject of future
study.
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The size and peak density of the plasma can also be
calculated directly from the plasma image. Since we image
along only one axis, the information for the third dimen-
sion can not be very well determined. This puts a conser-
vative errorbar of 20% on our size values, and 60% on the
peak density. Conditions are stable during the experiment,
so these represent systematic uncertainty, not random er-
ror. Comparisons between values of σ taken from the os-
cillation fit (Eq. (12)) and values calculated directly from
the plasma image are shown in Figure 7 and they agree
reasonably well in light of the errorbars discussed above. A
similar plot for n0 (Fig. 8) shows that the values obtained
from the fit significantly exceed the values obtained di-
rectly from the image. Investigating this discrepancy will
be the subject of future study.

In our oscillation model, we also account for the
damping of the oscillation. We don’t know the exact
cause of this damping but it might relate to ion-ion and
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Fig. 10. Plots of damping parameter, ζ, versus the calculated
peak density. Fits values of ζ are close to unity, in agreement
with simulations [23]. The electron energy calculated from the
ionizing laser frequency is shown in the legend.

ion-electron collisions or simply the scrambling of the
oscillatory motion as ions move in the liquid-like
medium [3,6].

Dephasing due to density variation within each region
is not the main cause of apparent damping, as seen clearly
in Figure 9. The dashed curve in the figure is a plot ne-
glecting damping (ζ = 0) and it does not fit the data well.
The continuous curve takes damping into account. The
damping was also observed in [6,7,23] where, a hybrid
molecular dynamics approach was used to model equili-
brating, strongly-coupled plasmas.

A plot of the damping parameter, ζ versus the calcu-
lated n0 in Figure 10 shows that ζ has values around 1.
The value of ζ is also observed to be 1 in the simulations
of [23]. Although, we also see a slight increase in the damp-
ing parameter with high density and low initial electron
energy.

4 Conclusions

To summarize, we have successfully shown the presence
of kinetic energy oscillations in ultracold plasmas with

frequency equal to the ion plasma frequency. Oscillations
were previously seen in [5]. Here, we have provided details
of a spatially-resolved analysis that increases their visibil-
ity. We also fit a phenomenological model to the effective
temperature that accounts for density inhomogeneity and
damping. This gives us deeper insight into the spatial and
temporal dependence of the kinetic energy oscillations.

We thank the Office of Fusion Energy Sciences of the Depart-
ment of Energy, National Science Foundation (Grant #PHY-
0355069), Research Corporation, Alfred P. Sloan Foundation,
and David and Lucile Packard Foundation for funding this re-
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