
Flexible N-Way MIMO Detector on GPU
Michael Wu, Bei Yin, Joseph R. Cavallaro

Electrical and Computer Engineering

Rice University, Houston, Texas 77005

{mbw2, by2, cavallar}@rice.edu

Abstract—This paper proposes a flexible Multiple-Input
Multiple-Output (MIMO) detector on graphics processing units
(GPU). MIMO detection is a key technology in broadband wire-
less system such as LTE, WiMAX, and 802.11n. Existing detectors
either use costly sorting for better performance or sacrifice
sorting for higher throughput. To achieve good performance
with high thoughput, our detector runs multiple search passes in
parallel, where each search pass detects the transmit stream with
a different permuted detection order. We show that this flexible
detector, including QR decomposition preprocessing, outperforms
existing GPU MIMO detectors while maintaining good bit error
rate (BER) performance. In addition, this detector can achieve
different tradeoffs between throughput and accuracy by changing
the number of parallel search passes.

I. INTRODUCTION

Multiple-Input Multiple-Output (MIMO) is a key technique

in many high throughput wireless standards such as 3GPP

LTE, WiMAX and 802.11n. However, as the received signals

contain a mixture of the transmitted signals over the air, the

destination needs to perform MIMO detection to recover the

original transmitted signals.

The optimal MIMO detection method is maximum likeli-

hood (ML) detection, which is an integer least-squares prob-

lem that can be solved with an exhaustive search. However, the

complexity of an exhaustive search is exponential. As a result,

ML detection is not suitable for practical implementations as

the destination has strict area and timing requirements. Sub-

sequently, several suboptimal algorithms have been proposed.

The reduced complexity detection algorithms can be divided

into two categories: depth-first algorithms such as depth-first

sphere detection [1], and breadth-first algorithms such as K-

best [2]. The main issue of depth-first sphere detection is that

the number of tree nodes visited vary with signal to noise

ratio (SNR). The algorithm visits a large number of nodes at

low SNR, while visits a small number of nodes at high SNR.

As a result, the throughput of this detection algorithm varies

with SNR, which is an undesirable feature for real systems.

An attractive alternative is K-best detection. This algorithm

has a fixed throughput, because it searches a fixed number of

tree nodes independent of SNR. However, a large K value is

required to achieve performance similar to exhaustive search.

In this paper, we aim to leverage the massively parallel

computational power in off-the-shelf GPUs to achieve high

throughput MIMO detection. We envision this design can be

used to accelerate simulations or an SDR platform. Compared

to ASIC and FPGA, a software implementation in these

domain is attractive since it can support a wide range of

parameters such as modulation order and MIMO configuration.

The main challenge of a K-best design is the global sort at

each step of the algorithm. This is undesirable on GPU as

sorting requires synchronization and large amount of memory

for large K value. To reduce the sorting complexity, a number

of modified sort-free algorithms have been developed. In Se-

lective Spanning with Fast Enumeration (SSFE) [3], instead of

sorting N values to find the best K values, the workload is first

partitioned into M arrays, where M is the modulation order.

Fast enumeration finds the best K/M values by finding the

best value for each sub-array without sorting each sub-array.

However, eliminating the global sort reduces the accuracy of

the detector. To recover the performance loss, we use parallel

search passes, where each search uses a different permuted

antenna detection order [4, 5]. Since each search pass performs

the same set of operations on permuted data, this algorithm

remains highly data parallel and well suited for GPU.

Our contributions are the following. We show that the

proposed design achieves different tradeoffs between through-

put and accuracy by modifying the number of parallel tree

searches. We show this design achieves higher throughput than

other GPU implementations [6, 7] while maintaining equal or

better accuracy. In addition, QR decomposition is a required

step which is omitted in other papers. In this paper, we

complete the design by implementing modified Gram-Schmidt

Orthogonalization to perform QR decomposition. We note that

our design is different from other decomposition methods such

as [8]. The existing designs focus on a single large matrix,

whereas our implementation performs QR decomposition on

many small dense matrices in parallel.

This paper is organized as follows: Section 2 gives an

overview of CUDA. Section 3 explains the MIMO system

model. Section 4 describes the proposed detection algorithm

on GPU. Section 5 presents the performance of the detector.

Finally, we conclude in section 6.

II. OVERVIEW OF CUDA

Compute Unified Device Architecture (CUDA) [9] adopted

in this work is widely used to program massive parallel

computing applications. In Nvidia Fermi architecture, a GPU

consists of multiple stream multiprocessors (SM). Each SM

consists of 32 pipelined cores and two instruction dispatch

units. During execution, each dispatch unit can issue a 32

wide single instruction multiple data (SIMD) instruction which

is executed on a group of 16 cores. CUDA device has a

large amount (> 1GB) of off-chip device memory (or global

memory). As latency to off die device memory is high, fast on-

chip resources, such as registers, shared memory and constant

2012 IEEE Workshop on Signal Processing Systems

978-0-7695-4856-2/12 $26.00 © 2012 IEEE

DOI 10.1109/SiPS.2012.59

318

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Rice University

https://core.ac.uk/display/10175612?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

memory can be used in place of off-chip global memory to

keep the computation throughput high.

In this model, if a task is executed several times, inde-

pendently, over different data, the task can be mapped into

a kernel, downloaded to a GPU and executed in parallel on

many different threads. The programmer defines this kernel

function, a set of common operations. At runtime, the kernel

spawns a large number of threads blocks, where each thread

block contains multiple threads. The execution of a kernel on

a GPU is distributed according to a grid of thread blocks with

adjustable dimensions. Each thread can select a set of data

using its own unique ID and executes the kernel function on

the set of data. Threads execute independently in this model.

However, threads within a block can synchronize through

a barrier and writing to shared memory. In contrast, thread

blocks are completely independent and can be synchronized

by terminating the kernel and writing to global memory.

During kernel execution, multiple thread blocks can be

assigned to a SM and are executed concurrently. CUDA

divides threads within a thread block into blocks of 32 threads.

These 32 threads are executed in lockstep using the same

common instruction, a WARP instruction. Each instruction

dispatch unit on a SM can issue a WARP instruction whose

operands are ready. A stall can occur for device memory reads

and instruction dependencies. To mask the stall, the instruction

dispatch unit can switch and issue an independent WARP

instruction from the same thread block or another concurrent

thread block with zero-overhead. In addition, stalls can be

minimized by using fast on-die memory resources.

Registers, shared memory, and constant memory can reduce

memory access time by reducing global memory access.

Registers and shared memory are on-chip resources. Shared

memory is slower than registers, but can be accessed by

threads within a thread block. However, shared memory on

each SM is banked 32 ways. It takes one load or store if

all threads access the same bank (broadcast) or none of the

threads accesses the same bank. Random layout with some

broadcast and some one-to-one accesses will be serialized.

III. MIMO SYSTEM MODEL

For an Nt × Nt MIMO system, the source transmits Nt

signals and the destination receives signals on Nt antennas.

The received signal, y = [y0, y1, ..., yNt−1]
T , is modeled by:

y = Hs+ n, (1)

where H = [h0,h1, ...,hNt−1] is the Nt ×Nt channel matrix.

Assume a flat fading Rayleigh fading channel, where each

element of H, hij , is an i.d.d. zero mean circulant symmet-

ric complex Gaussian (ZMCSCG) random variable with σ2
h

variance. The vector n = [n0, n1, ..., nN−1] is the additive

noise, where each element nj is a ZMCSCG random variable

with σ2
n/2 variance per dimension. Each element of s, si, is a

complex element drawn from a finite alphabet Ω with cardi-

nality M and average power Es per symbol. For example, the

constellation alphabet for QPSK is {−1− j,−1+ j, 1− j, 1+ j}
with M = 4. Given a binary vector x = [x0, x1, x2...xL−1]

T ,

where L = log2 M ·Nt, the function map(·) translates the binary

vector x onto s = [s0, s1, ..., sNt−1]
T .

We can obtain an equivalent system model in the real

domain by performing real-valued decomposition:(
R(y)

I(y)

)
=

(
R(H) −I(H)

I(H) R(H)

)(
R(s)

I(s)

)
+ ñ, (2)

We then obtain an equivalent system model through mod-

ified real value decomposition (MRVD). We permutate the

channel matrix such that the in-phase and the quadrature parts

of the same complex symbol are adjacent neighbors [10]:⎛
⎜⎜⎜⎜⎜⎜⎝

R(y0)

I(y0)
...

R(yNt−1)

I(yNt−1)

⎞
⎟⎟⎟⎟⎟⎟⎠ = H̃

⎛
⎜⎜⎜⎜⎜⎜⎝

R(s0)

I(s0)
...

R(sNt−1)

I(sNt−1)

⎞
⎟⎟⎟⎟⎟⎟⎠+

⎛
⎜⎜⎜⎜⎜⎜⎝

R(n0)

I(n0)
...

R(nNt−1)

I(nNt−1)

⎞
⎟⎟⎟⎟⎟⎟⎠ (3)

ỹ = H̃ŝ+ñ (4)

Compared to the original system model, MRVD doubles

the number of elements in each vector and doubles both

dimensions of H̃. Furthermore, each element of the equivalent

transmit vector, s̃i, is an element drawn from a smaller finite

alphabet Ω′ with cardinality Q =
√
M . For example, the real

value decomposed constellation alphabet for QPSK is {−1, 1}
and Q = 2.

Given ỹ and the channel matrix H̃, the goal of the soft-

output MIMO detector at a MIMO receiver is to compute the

logarithmic a-posteriori probability (APP) ratio, LD(xk|ỹ, H̃),

per bit. Assuming no prior knowledge of the transmitted bits,

the soft-output value per bit can be approximated with the

following equation using max-Log approximation [11].

LD(xk|ỹ, H̃) = min
x∈Xk,−1

∥∥∥ỹ − H̃s̃
∥∥∥2
2

2σ2
n

− min
x∈Xk,+1

∥∥∥ỹ − H̃s̃
∥∥∥2
2

2σ2
n

,

(5)

where Xk,−1 is the list of all binary vectors with the kth

component equal to -1, Xk,+1 is the list of all binary vectors

with the kth component equal to +1, and s̃ = map(x).

Instead of searching through the set of all possible binary

vectors to compute LD(xk|ỹ, H̃), a soft-output MIMO detector

finds a smaller set of transmit vectors, or a candidate list, L,

by excluding unlikely vectors. To compute LD(xk|y,H), the

candidate list is divided into Lk,−1 and Lk,+1, where Lk,−1 is

the list of candidates with the kth bit equal to −1 and Lk,+1

is the list of candidates with the kth bit equal to +1. The list

Lk,−1 is used to generate the hypothesis, while the list Lk,+1

is used to generate the counter-hypothesis.

LD(xk|ỹ, H̃) ≈ min
x∈Lk,−1

∥∥∥ỹ − H̃s̃
∥∥∥2
2

2σ2
n︸ ︷︷ ︸

hypothesis

− min
x∈Lk,+1

∥∥∥ỹ − H̃s̃
∥∥∥2
2

2σ2
n︸ ︷︷ ︸

counter−hypothesis

. (6)

IV. SOFT-OUTPUT N-WAY MIMO DETECTOR ON GPU

In this section, we will explain the algorithm as well as the

corresponding implementation on GPU for one MIMO de-

tection problem. The implementation consists of two kernels.

One kernel performs the QR decomposition. The other kernel

319

Algorithm 1 Modified Gram-Schmidt for kth thread

1) Input: y,H

2) Initialization:

a) s = 0 //s is in shared memory

b) Fetch y and H to construct V = [H̃|ỹ] in shared

memory

3) for step i = 0 to 2Nt − 1 do
4) if (k = i)

5) Ei,i = v∗i vi

6) s = 1/
√

Ei,i

7) end if
8) __syncthreads()

9) Vk,i = Vk,i · s
10) __syncthreads()

11) if (k >= i)

12) Ei,k+1 = v∗i vk+1

13) vk+1 = vk+1 − vi ·Ei,k+1

14) end if
15) end for

performs the candidate list search and uses the list to generate

a hypothesis and a counter-hypothesis for each transmitted

bit which are used to compute a soft-output value for each

transmitted bit.

Although the description is for one MIMO detection prob-

lem, a typical wireless system divides the available bandwidth

into many orthogonal independent subcarriers, where each is

an independent MIMO detection problem. Our implementation

performs MIMO detection on many subcarriers in parallel

using hundreds of independent thread-blocks to achieve high

performance.

A. QR decomposition

Given ỹ and H̃, we first perform QR decomposition on

H̃ to obtain an equivalent system model, where the squared

Euclidean distance of a transmit vector s̃, is:

∥∥∥ỹ − H̃s̃
∥∥∥2
2

= ‖ŷ −Rs̃‖22 . (7)

where R, an upper-triangular matrix and ŷ = QT ỹ is the

effective received vector.

We implemented Modified Gram-Schmidt Orthogonaliza-

tion to perform QR decomposition. We spawn 2Nt threads to

perform one QR decomposition. The steps of the kernel, or the

steps each thread takes, are summarized in Algorithm 1. At the

start of the kernel, the 2Nt threads fetch the complex inputs, y

and H, from device memory, performs MRVD and construct

a real-value extended matrix V = [H̃|ỹ] = [v0,v1, ...,vN]

in shared memory. We perform QR decomposition on V

which results in an extended matrix E = [R|ŷ] stored in

device memory. The QR decomposition consists of 2Nt Gram-

Schmidt iterations. The ith iteration induces zeros below the

ith element on the diagonal of V and constructs the ith

row of E. Each iteration consists of a serial and a parallel

section. Lines 4-7 are the serial section, in which the ith

thread first constructs Ei,i by computing the squared Euclidean

Kept Node

Pruned Node

antenna 1

antenna 2

antenna 3

antenna 4

...

...

... ...

...

...

......

Figure 1. An example of the search process for a 2x2 16-QAM MIMO
system

distance of vi and computes the corresponding scaling factor s.

Subsequent steps of the iteration are computed in parallel. Line

9 first computes the ith orthogonal projection using all 2Nt

threads in parallel. Lines 11-15 assign one thread per column

to the 2Nt− i+1 columns on the right of the ith column. Line

12 first constructs the remaining elements in the ith row of E

in parallel. In Line 13, thread k updates vk by subtracting the

projection of vk on to the vj from vk. After each iteration,

the variable i increases by one, effectively decreasing the row

dimension and the column dimension of the V by one. When

the number of rows remaining reaches 0, we have obtained R

and ŷ, which is stored the matrix E.

Since the dimensions of the extended matrix V are small

for typical MIMO systems, the matrix can be stored in shared

memory for efficient retrieval, reducing the number of slower

device memory accesses. Furthermore, the memory accesses

are very regular for this kernel and can be served effectively

by the shared memory. The matrix V has a row-major layout.

Since the row dimension of V is an odd number, 2Nt + 1,

and shared memory is banked 32 ways, rows of V are in

different banks. As a result, shared memory accesses by

multiple threads in line 9 do not result in memory conflicts.

In lines 12-13, threads access vi and different columns of V

in parallel. Both memory accesses do not result in memory

bank conflicts. Parallel memory accesses to vi are handled

effectively by shared memory read broadcast. Since adjacent

columns are stored in different memory banks, parallel access

to a different column of V also does not result in memory

bank conflict.

B. 1-Way MIMO Detection

The MIMO Detector consists of two steps. First, we search

for the likely candidate vector with small squared Euclidean

distance. Second, we use the candidates to compute the

hypothesis and the counter-hypothesis per transmitted bit.

The differences between the hypotheses and the counter-

hypotheses are the APP ratio per bit.

1) Candidate Search: This search algorithm searches for

candidate vectors with small Euclidean distances in a greedy

fashion to generate a small candidate list. Since R is upper

triangular, the search algorithm evaluates the transmit vector

level by level backwards from level Nt − 1. The search

algorithm can be viewed as a tree traversal where the branches

of the tree are pruned level by level until there are a few

complete paths left. Figure 1 is a complete search tree for a

2 × 2 16-QAM MIMO system. In this search algorithm, all

branches in the first two levels are kept. As a result, the first

320

Algorithm 2 The kth thread search for kth candidate

1) Input: E = [R|ŷ]
2) Initialization:

a) d = 0, Q =
√
M

b) pk = [0, 0, ..., 0, I(Ωk),R(Ωk)]

3) d = d+ (ŷNt−1 −RNt−1,Nt−1p
k
Nt−1)

2,

4) d = d+ (ŷNt−2 −RNt−2,Nt−1p
k
Nt−1

−RNt−2,Nt−2p
k
Nt−2)

2

5) for step i = Nt − 3 to 0 do
6) bi = ŷi,

7) for step j = Nt − 1 to i+ 1

8) bi = bi −Ri,j · pk
j

9) end for
// Find the best outgoing node

10) γ = bi/Ri,i

11) pk
i = round

(
1
2
(γ +Q− 1)

) · 2−Q+ 1

12) if (|pk
i | > Q− 1) pk

i =sign(pk
i) · (Q− 1)

// Update squared Euclidean distance

13) d = d+ (bi −Ri,i · pk
i)

2

14) end for

two levels of the tree are fully expanded. For the subsequent

tree levels, the search algorithm only keeps the best outgoing

path. The candidate list consists of the surviving paths at the

last level.

Given pj , the set of nodes along the path from the root

node to the jth node on level t, w<t−1>
j,k , the partial squared

Euclidean distance from jth node on level t to the kth node

on level t− 1 can be computed as,

w<t−1>
j,k = ||ŷt−1 −

t∑
i=Nt−1

Rk,ip
j
i −Rt−1,t−1sk||22, (8)

= ||bt−1(p
j
i)−Rt−1,t−1sk||22. (9)

The best connected node in level t − 1 that minimizes

w<t−1>
j,k is simply the closest constellation point in Ω′ to

γ = bt−1(p
j
i
)/Rt−1,t−1. Suppose node k is the best node, the

total squared Euclidean distance after the best node is found

at antenna level t− 1 is:

d = d+ w<t−1>
j,k . (10)

The steps of the kernel are summarized in Algorithm 2.

We spawn M threads, one thread per modulation point, to

perform the tree search. We assign the kth modulation point

in our finite alphabet, Ωk, to thread k and we initialize the

distance, d, to 0. Using the initial modulation point, each

thread first updates the distance by computing the squared

Euclidean distance using Ωk as shown in Lines 3-4. At the

end of the update, the first two levels of the tree are fully

expanded. In the subsequent levels, the search algorithm only

keeps the best outgoing path. Lines 6-9 compute the partial

squared Euclidean distance. Line 10 uses the partial Euclidean

distance to compute γ. The best node can be implemented

with a simple round function followed by a threshold function

on γ which is shown on lines 11-12. Line 13 updates the

squared Euclidean distance. This process continues until we

have reached the last tree level.

Algorithm 3 The kth thread updates kth hypothesis and

counter-hypothesis

1) bk = demod(pk), dk = d

2) __syncthreads()

3) if (k < Nt · log(M))

4) Initialization: hk = 9999, ck = 9999

5) for step j = 0 to M-1 do
6) if (kth bit of bj= 1) and (dk<hk)

7) hk = dk

8) else if (kth bit of bj= -1) and (dk<ck)

9) ck = dk

10) end if
11) end for
12) end if

RVD-
QRD

MIMO
Detection L0

Pass 0

h00 h01
h10 h11 ,

y0
y1

RVD-
QRD

MIMO
Detection L1

Pass 1
h01 h00
h11 h10 ,

y0
y1

Figure 2. Proposed Detector for a 2x2 MIMO System.

2) Hypothesis and Counter-hypothesis Generation: With

the candidate list, the detector can generate the hypothesis

and counter-hypothesis for each transmitted bit. Algorithm

3 summarizes the work required to generate the hypothesis

and counter-hypothesis per bit. Each thread demodulates pk

into a binary vector bk which is stored in shared memory.

In addition, the kth thread writes the Euclidean distance for

the kth path into dk stored in shared memory. Both steps are

shown on line 1. We use Nt · log(M) threads to generate the

hypothesis and the counter-hypothesis per bit. We assign one

thread per bit, the kth thread looks at the kth bit. The threads

look at the binary vector bj one by one. If the kth bit is equal

to 1 and the dk is smaller than the current hypothesis, the kth

hypothesis is updated. Likewise, if the kth bit is equal to 0

and the dk is smaller than the current counter-hypothesis, the

kth counter-hypothesis is updated.

To improve performance, we unroll the nested loops which

reduce the total number of instructions. To improve memory

access time, we take advantage of the fact that there are no

data dependencies between the threads. Instead of using shared

memory, we store the path history P for each thread directly

in registers. We found storing the array in registers to be faster

since operations with shared memory as an operand is known

to be slower [12]. Using registers instead of shared memory

also eliminates memory address computation.

C. N-Way Parallel MIMO Detection

An SSFE detector employs QR decomposition followed by

a single tree search described in previous section. We find an

SSFE detector can perform up to 2dB worse compared to ML

detection as shown in section V. To improve performance, we

construct a larger candidate list by performing multiple tree

searches in parallel. An instance of the proposed algorithm,

two search passes for a 2×2 MIMO 16-QAM system, is shown

321

in Fig. 2. The inputs for each pass are the same, consisting

of the channel matrix H and the received vector y. Since the

detection order affects the performance of the detector and

the optimal antenna detection order is not known, each pass

uses a different antenna detection order to generate different

candidates lists. A different antenna detection order can be

obtained by a simple circular rotation of columns of H. In

this design, we can run up to N parallel passes to generate N

parallel M length candidate lists.

In our implementation, for an input pair H and y, we spawn

2NT · N threads to perform the N QR decompositions in

parallel. For the N-way parallel search, we spawn MN threads

to perform the N parallel search passes. Threads corresponding

to an instance of the MIMO detection problem reside in the

same thread-block. In the case where the number of threads per

thread-block is not an integer of 32 (the dimension of a WARP

instruction), we pack multiple problems into the same thread-

block to improve efficiency. For example, for a 4 × 4 MIMO

16-QAM system and N = 1, the number of threads required

for QR decomposition is 8 threads and for MIMO detection

is 16 threads. We pack at least 4 QR decompositions into one

thread block and two 16-QAM detectors into one thread block

to ensure WARPs for the thread-block are fully occupied.

D. LLR Computation

After the N-way parallel search, each search generates the

hypothesis and the counter-hypothesis for each transmitted bit.

This results in N hypotheses and counter-hypotheses per bit.

We then merge N hypotheses per bit into one hypothesis

and N counter-hypotheses into one counter-hypothesis by

assigning one thread to the hypothesis and one thread to the

counter-hypothesis per bit. Since the hypothesis and counter-

hypothesis are the minimum values according to equation

6, each thread searches across N hypotheses or N counter-

hypothesis to find the minimums. The difference between the

two minimums is the soft-output value for the bit.

V. PERFORMANCE

In this section, we first compare the frame error rate (FER)

performance of our detector implementation against other

detectors. We then look at the throughput performance of

the detector and show that it is faster than other GPU based

detector implementations.

A. FER Performance

We compared the FER performance of the N-way parallel

MIMO detector against the soft-output Trellis detector [7], the

K-best detector and ML detection which is exhaustive search.

In our simulation, we first generate a random binary vector.

After modulating the binary vector into a MIMO symbol,

the symbol is passing through a random flat fading Rayleigh

channel. The detector performs QR followed by soft-output

Table I
QR DECOMPOSITION KERNEL TIME FOR 8400 MIMO SYMBOLS

N = 1 N = 2 N = 3 N = 4
2× 2 0.030ms 0.052 ms - -
4× 4 0.137ms 0.257 ms 0.399 ms 0.501 ms

Figure 3. FER Performance of 4x4 MIMO detectors in Rayleigh fading
channels

detection to generate one soft-output value per transmitted bit.

The soft output of the detector is then fed to a length 2304,

rate 1/2 WiMAX LDPC decoder, which performs up to 20

decoding iterations. For the K-best detector, we chose a large

K value of 64 for 16-QAM and 256 for 64-QAM. For N-

way parallel MIMO detector, we test different instances of

the detector from N = 1 to N = 4. The detectors use an LLR

clipping value of 8 for all the detector configurations with the

exception of N = 4 where LLR clipping is not required.

Figure 3 compares the performance of detectors for 16-

QAM and 64-QAM. The trends are similar for both plots.

The N-way parallel MIMO detector is equivalent to SSFE

when N = 1. In both cases, N = 1 performs poorly compared

to the other detectors. As we increase N , the N-way MIMO

detector improves performance of the detector since a larger

list increases the probability of finding the best hypothesis

and the counter-hypothesis per transmitted bit. For N = 2, we

outperform the soft-output Trellis detector in both cases. For

N = 3, we perform similar to the large K-best detector. For

N = 4, the N-way scheduled MIMO detector’s performance

is close to that of exhaustive search. The computational com-

plexity between these two cases is signficant–the number of

leaf nodes visited is NM for the proposed algorithm compared

to MN for exhaustive search.

B. Throughput Performance

To measure the throughput performance of our implemen-

tation, we used an NVIDIA GeForce GTX 560 Ti graphics

card (Fermi) with 448 shaders running at 1464MHz and

1280MB of GDDR5 running at 1900MHz. We used 8400

MIMO symbols, the number of MIMO symbols in a slot for

a 20MHz LTE channel. The recorded execution time of our

runs is averaged over 1000 runs. We first look at the runtime

of QR decomposition and the runtime of N-Way detection in

isolation without considering transport time. We then look at

the runtime of the entire design considering time required to

322

Table II
MIMO DETECTION KERNEL TIME FOR 8400 MIMO SYMBOLS

N = 1 N = 2 N = 3 N = 4
2× 2 16-QAM 0.0768ms/834.1Mbps 0.159ms/402.2Mbps - -
4× 4 16-QAM 0.164ms/782.5Mbps 0.332ms/386.14Mbps 0.500ms/256.2Mbps 0.665ms/192.5Mbps
2× 2 64-QAM 0.524ms/183.5Mbps 1.040ms/92.4Mbps - -
4× 4 64-QAM 0.833ms/230.7Mbps 1.658ms/115.9Mbps 2.474ms/77.7Mbps 3.297ms/58.3Mbps

Table III
TOTAL RUNTIME FOR 8400 MIMO SYMBOLS

N = 1 N = 2 N = 3 N = 4
2× 2 16-QAM 0.342ms/195.6Mbps 0.462ms/145.0Mbps - -
4× 4 16-QAM 0.739ms/181.3Mbps 1.048ms/127.8Mbps 1.349ms/99.3Mbps 1.629ms/82.3Mbps
2× 2 64-QAM 0.818ms/122.3Mbps 1.363ms/73.3Mbps - -
4× 4 64-QAM 1.457ms/137.9Mbps 2.415ms/83.2Mbps 3.390ms/59.3Mbps 4.30ms/46.7Mbps

copy data from host memory to GPU and vice versa.

An N-Way Parallel MIMO Detection requires N QR de-

compositions on an input y and H. Table I shows the results

for 2×2 and 4×4 MIMO configurations with different values

of N . To ensure the WARP instruction is fully occupied, we

pack up to 8 different QR decomposition problems in the same

thread block. We see that the QR decomposition kernel is not

the bottleneck. For example, suppose QR decomposition is the

dominate time for 4× 4 64-QAM MIMO detection, the worst

case scenario is processing 8400 MIMO symbols which takes

0.501 ms, which is equivalent to 384 Mbps.

Table II shows the results for different MIMO/Modulation

configurations with different values of N . We pack up to 4

different detection problems in the same thread block for 16-

QAM configurations. Since the number of threads required

for the MIMO detector scales linearly with N , throughput

is directly proportional to N . The bottleneck in the MIMO

detection kernel for M = 64 is the hypothesis and counter-

hypothesis generator which depends on modulation order M ,

but not the number of antennas. As a result, the runtime of

the 2× 2 64-QAM MIMO detector is not half of the 4× 4 64-

QAM MIMO detector. Since the number of bits transmitted is

halved for 2× 2, the throughput for 2× 2 64-QAM is actually

slower than for 4× 4 64-QAM.

The design in [6] is a hard decision SSFE detector which

has lower throughput and worse FER performance (as shown

in section V-A) compared to the design in [7]. As a result,

we compare the throughput performance for N = 2 to the

results in [7] since the FER performance of these two cases are

similar. For 2×2 and 4×4 64-QAM, the Trellis MIMO detector

achieved a throughput of 43.9Mbps and 12.1Mbps respectively

which is slower than the corresponding throughput for N = 2.

The number of instructions required to find the best path out

of M possible paths scales with M for [7], whereas the design

in this paper is a round and threshold function independent of

M . As a result, the new design is faster than the design in [7].

Table III shows the total runtime of the complete design

measured with CPU timer. Although this includes QR and sig-

nificant overheads such as transport time, the design remains

faster than the designs in [6, 7].

VI. CONCLUSION

In this paper, we present a high throughput GPU MIMO

detector. We propose running multiple search blocks in parallel

with different antenna detection order to scale performance.

We show that by changing the number of search passes, we

can increase or decrease accuracy to meet the requirements.

We also show that even including overhead of QR, we can

achieve a high performance detector on GPU.

ACKNOWLEDGMENTS

This work was supported in part by the National Science

Foundation under grants EECS-0925942 and CNS-0923479.

REFERENCES

[1] A. Burg, M. Borgmann, M. Wenk, M. Zellweger, W. Fichtner,
and H. Bolcskei, “VLSI Implementation of MIMO Detection
Using the Sphere Decoding Algorithm,” IEEE J. Solid-State
Circuits, vol. 40, pp. 1566–1577, July 2005.

[2] K. Wong, C. Tsui, R. Cheng, and W. Mow, “A VLSI architecture
of a K-best lattice decoding algorithm for MIMO channels,” in
IEEE Int. Symp. on Circuits and Syst., vol. 3, pp. 273–276, May
2002.

[3] M. Li, B. Bougard, E. Lopez, A. Bourdoux, D. Novo, L. Van
Der Perre, and F. Catthoor, “Selective Spanning with Fast
Enumeration: A Near Maximum-Likelihood MIMO Detector
Designed for Parallel Programmable Baseband Architectures,”
in ICC ’08. IEEE International Conference on Communications,
May 2008.

[4] M. Wu, C. Dick, Y. Sun, and J. R. Cavallaro, “Improving MIMO
Sphere Detection Through Antenna Detection Order Schedul-
ing,” in SDR ’11: Proceedings of the 2011 SDR Technical
Conference and Product Exposition, 2011.

[5] Q. Qi and C. Chakrabarti, “Parallel High Throughput Soft-
output Sphere Decoder,” in IEEE Workshop on Signal Process-
ing Systems (SiPS’10), Oct. 2010.

[6] T. Nylanden, J. Janhunen, O. Silven, and M. Juntti, “A GPU im-
plementation for two MIMO-OFDM detectors,” in 2010 Inter-
national Conference on Embedded Computer Systems (SAMOS),
pp. 293 –300, July 2010.

[7] M. Wu, Y. Sun, S. Gupta, and J. R. Cavallaro, “Implementation
of a High Throughput Soft MIMO Detector on GPU,” Journal
of Signal Processing Systems, vol. 64, pp. 123–136, 2011.

[8] A. Kerr, D. Campbell, and M. Richards, “QR decomposition on
GPUs,” in Proceedings of 2nd Workshop on GPGPU, pp. 71–
78, ACM, 2009.

[9] NVIDIA Corporation, CUDA Compute Unified Device Archi-
tecture Programming Guide, 2008.

[10] K. Amiri, C. Dick, R. Rao, and J. R. Cavallaro, “A High
Throughput Configurable SDR Detector for Multi-user MIMO
Wireless Systems,” Springer Journal of Signal Processing Sys-
tems, vol. 62, pp. 233–245, February 2011.

[11] B. Hochwald and S. ten Brink, “Achieving Near-Capacity on
a Multiple-Antenna Channel,” IEEE Tran. Commun., vol. 51,
pp. 389–399, Mar. 2003.

[12] V. Volkov and J. W. Demmel, “Benchmarking GPUs to Tune
Dense Linear Algebra,” in SC ’08: Proceedings of the 2008
ACM/IEEE conference on Supercomputing, pp. 1–11, 2008.

323

