


ABSTRACT

Towards Accurate Reconstruction of Phylogenetic Networks

by

Hyun Jung Park

Since Darwin proposed that all species on the earth have evolved from a common

ancestor, evolution has played an important role in understanding biology. While the

evolutionary relationships/histories of genes are represented using trees, the genomic

evolutionary history may not be adequately captured by a tree, as some evolutionary

events, such as horizontal gene transfer (HGT), do not fit within the branches of a tree.

In this case, phylogenetic networks are more appropriate for modeling evolutionary

histories.

In this dissertation, we present computational algorithms to reconstruct phyloge-

netic networks from different types of data. Under the assumption that species have

single copies of genes, and HGT and speciation are the only events through the course

of evolution, gene sequences can be sampled one copy per species for HGT detection.

Given the alignments of the sequences, we propose systematic methods that estimate

the significance of detected HGT events under maximum parsimony (MP) and max-

imum likelihood (ML). The estimated significance aims at addressing the issue of

overestimation of both optimization criteria in the search for phylogenetic networks

and helps the search identify networks with the “right” number of HGT edges. We

study their performance on both synthetic and biological data sets. While the studies

show very promising results in identifying HGT edges, they also highlight the issues



that are challenging for each criterion.

We also develop algorithms that estimate the amount of HGT events and recon-

struct phylogenetic networks by utilizing the pairwise Subtree-Prune-Regraft (SPR)

operation from a collection of trees. The methods produce good results in general in

terms of quickly estimating the minimum number of HGT events required to reconcile

a set of trees. Further, we identify conditions under which the methods do not work

well in order to help in the development of new methods in this area.

Finally, we extend the assumption for the genetic evolutionary process and allow

for duplication and loss. Under this assumption, we analyze gene family trees of pro-

teobacterial strains using a parsimony-based approach to detect evolutionary events.

Also we discuss the current issues of parsimony-based approaches in the biological

data analysis and propose a way to retrieve significant estimates.

The evolutionary history of species is complex with various evolutionary events.

As HGT contributes largely to this complexity, accurately identifying HGT will help

untangle evolutionary histories and solve important questions. As our algorithms

identify significant HGT events in the data and reconstruct accurate phylogenetic

networks from them, they can be used to address questions arising in large-scale

biological data analyses.
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Chapter 1

Introduction

Since Darwin proposed the hypothesis that all species on the earth have evolved from

a common ancestor in his famous book On the Origin of Species by Means of Natural

Selection, placing living organisms in evolutionary relationship to others has been

a primary way to understand them. Indeed, evolutionary biology has provided im-

portant insights into the mechanisms of evolution and has helped us understand the

end-product of evolution, the organisms. In particular, as the advent of technology

enables us to study humans in this evolutionary relationship, evolutionary biology

does not stop at promoting understandings but starts answering the practical ques-

tions of finding cures for human diseases, such as inheritable genetic disorders and

cancer.

A phylogeny, the model of the relationship among evolutionary units, is tradition-

ally represented by a tree. Due to the explosion in genomic research, trees are built

often based on genetic sequences. In particular, the model of genetic evolutionary

history is referred to as a gene tree, and that of species evolutionary history as a

species tree. When it comes to the relationship between these two trees, it is natural

to expect that a gene tree is identical to the species tree. However, as multi-locus

sequence data become available for an increasing number of species, it becomes clear

that gene trees may be incongruent with each other. It naturally follows that a gene

tree cannot represent the species tree, and the true species tree can be incongruent

with a gene tree. We refer to this phenomenon as gene tree/species tree incongru-
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ence. One reason for this incongruence is that the reconstructed gene tree might be

incorrect due to random sampling and/or phylogenetic reconstruction errors. More

importantly, evolutionary events, such as lineage sorting, gene duplication and loss,

and horizontal gene transfer and hybridization, cause gene tree/species tree incongru-

ence [7]. These events are ubiquitous in certain domains of biology and play critical

roles for surviving species [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19].

When a tree cannot represent the genomic evolutionary history due to its failure

to model such events, several proposed models represent the genomic evolutionary

history by allowing for reticulation with speciation. One type of model focuses on

representing the incompatibility between genes, but does not explicitly lead to bio-

logical interpretations. This category includes Median Networks [20], Consensus Net-

works [21], and Neighbor-net [22]. On the other hand, Hybridization Networks [23],

Recombination Networks [24], and Evolutionary Phylogenetic Networks [25] attempt

to reflect the evolutionary events rather than restricting themselves to represent in-

compatibility, and to include ancestral species in the model. Readers are referred

to [26] for more detail. I focus on evolutionary phylogenetic networks, since they

have been widely used due to their direct interpretability.

1.1 Contributions of the Dissertation

This dissertation focuses on developing computational methods for reconstructing

phylogenetic networks using multi-locus data consisting of either sequences or trees.

As a phylogenetic network consists of a set of reticulation edges and the underlying

tree, the methods can also be used for detecting the reticulation events in species

evolution. In particular, methods in Chapter 3 and 4 take the species tree and the

sequence alignment as input and reconstruct phylogenetic networks by identifying the
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reticulation events from them. On the other hand, methods in Chapter 5 take the set

of gene trees for the reconstruction.

The first contribution of this dissertation is the algorithm for the reconstruction

problem under the Maximum Parsimony (MP) criterion. Given a species tree and

sequence alignments, phylogenetic networks are reconstructed by searching for poten-

tial reticulate edges under an optimization criterion and adding them to the species

tree. Under this criterion, the process usually overestimates the reticulate edges and

thus reconstructs an overly complex network. In order to avoid such overestima-

tion, our method conducts a bootstrap process for the searched reticulate edges and

adds only the significant ones. This method also discovers a lack of resolution in a

phylogenetic-based search and suggests a way to address it.

The next method addresses the same problem under the Maximum Likelihood

(ML) criterion. First, we study the behavior of the reticulations under ML. As a

reticulation event between species leaves a signal in their sequences, we identify several

graph-based properties of the event and the composition of the sequence carrying the

signal of the event that affect the strength of the signal in likelihood score. ML is

known to overfit the signal and result in overly complex networks. We systematically

evaluate the performance of two information criteria, Akaike Information Criteria

(AIC) and Bayesian Information Criteria (BIC) under ML in addressing the overfit.

Based on the simulation study, this chapter finds that the ML combined with BIC is

a reasonable method for identifying the number of reticulate events.

The next class of methods is for the same problem, but it takes gene trees as

the input, instead of gene sequence alignments. For the computational problem of

inferring phylogenetic networks with the minimum reticulations from a collection of

gene trees, we develop three algorithms. The first method infers the number of the
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reticulation events based on the observation of the binomial distribution of pairwise

distances of the trees. The second and the third methods reconstruct the phyloge-

netic network based on the aggregation of the solutions from pairwise computations.

The third method formulates the problem as an instance of the integer linear pro-

gramming (ILP) problem. Compared to the competing methods, our methods show

good performance both in speed and in the minimum number of reticulation events

inferred to reconcile the set of trees.

While they show good performance for the reconstruction problem, it is important

to note that all methods assume reticulation events to be the only cause of the gene

tree/species tree incongruence. In practice, it is possible that other evolutionary

events such as duplication and loss and/or lineage sorting occur in the species set of

interest, especially as the data become larger.

In the last chapter, we study the performance of parsimonious reconciliation in

the evolutionary history of a γ-proteobacteria data set. In this chapter, we discuss

the issues of the current parsimony-based approaches to detect the events and how

to obtain significant estimates despite these issues.

1.2 Outline of the Dissertation

Chapter 2 provides a brief review of phylogenetic trees, phylogenetic networks and

related concepts such as Subtree-Prune-Regraft (SPR) distance and Robinson-Foulds

(RF) metric. It then describes biological processes that cause species/gene tree incon-

gruence, the main concern of this dissertation. As discussed in the previous section, a

major contribution of this dissertation consists of developing methods for reconstruct-

ing phylogenetic networks under an optimality criterion. The optimization criteria for

phylogenetic networks and the overview of the current methods to infer phylogenetic



5

networks under these criteria will be elaborated on in the following sections.

Chapter 3 discusses a method that estimates the significance of the inferred retic-

ulation events under MP. In this chapter, we first briefly review the MP optimality

criterion for phylogenetic networks and show its tendency to overestimate the retic-

ulation signals. Then, we introduce a statistical framework to assess the significance

of the reticulate edges returned in the search. With our finding about the lack of

resolution in the phylogeny-based reticulation detection, we relax the significance as-

sessing formula and increase the sensitivity of the method. In the search under MP,

this method can be used as a stopping criterion of the reticulation search and show

good performance in identifying the number of potential reticulation events both on

synthetic data sets and biological data sets.

In Chapter 4, we study the behavior of reticulation events under the ML optimal-

ity criterion and evaluate the performance of the widely used information criteria,

AIC and BIC, in identifying reticulation events. First, we review the mathemati-

cal formula of the ML optimality criterion for phylogenetic networks, AIC, and BIC.

Then, we specify how the reticulate edges are searched and added on the given species

tree. With the defined search and the optimality criterion, we study the behavior of

reticulation events in tree likelihood score and network likelihood score. In the study,

we first characterize the graph-theoretic properties of the events and the composition

of the input data that cause great changes in likelihood scores. With this charac-

terization, we show, through extensive simulation studies, that a naive use of ML

and AIC in combination with ML usually leads to overestimating reticulation events;

however, BIC under ML works well as it leads to a small overestimation. We also

show that the findings from the simulation study help identify reticulation events in

practice in the following analysis of the yeast data set.
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Chapter 5 focuses on the reconstruction problem from a collection of gene trees,

rather than on sequence alignments. This chapter introduces three methods. For the

first method, we define redundancy of a network and mathematically formulate the

distribution of pairwise distances among the trees induced from the network when

the redundancy is 0. With certain assumptions, the distribution is fitted to that

of pairwise SPR distances among the input tree set and to estimate the number of

reticulation events in the set. The second method is a heuristic that reconstructs

a phylogenetic network with a minimum number of reticulate edges by combining

pairwise solutions from the input trees. In order to reconstruct the minimal networks,

it counts how many times a pairwise solution is used in the solutions and makes use

of this information in selecting solutions for the problem. However, we find that

the method is biased due to the multiplicity of solutions. In the third method, we

formalize the problem as an instance of ILP (integer linear programming) problem.

Both the simulation study and the comparison analysis show that these methods

perform well both in speed and in accuracy.

Chapter 6 deals with a biological data set for γ-proteobacteria and investigates the

performance of a parsimony-based approach with different parameter values. With

this investigation, we discuss the issues with this approach for biological data analysis

and how to strategically overcome them.

All methods presented here focus on identifying significant reticulations in the data

for reconstructing accurate phylogenetic networks. Because accurately reconstructed

phylogenetic networks can help conduct biological analyses, we discuss the advantages

and the limitations of the methods for such analysis. First, we discuss the importance

of assessing the significance of the estimates for the analysis as well as that of speed

and accuracy of the method. We also discuss another benefit of the structure of our
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methods, that as the methods characterize the problems as multi-layered and employ

external programs for the lower-layers; improving the programs at the lower-layer

can directly improve the entire process. We also discuss the limitations of the current

methods’ assumptions. In order to make it more helpful for biological analyses, we

should study the correct values for the parameters in the model with respect to the

biological data set of interest. And we also should make the model less restrictive

regarding possible evolutionary events.

B CA B CA

A B C

B CA A CA

Chapter 3 and
Chapter 4             

locus 1 locus 2
A
B
C

locus 3 locus 4
HGT only HGT + DL

Chapter 5 Chapter 6

Figure 1.1 : Overview of this dissertation. For phylogenetic network reconstruction
problem, gene sequence alignments and the reconstructed gene trees from the align-
ments are the prominent type of data. After Chapter 2 reviews important concepts
relevant to this dissertation, Chapter 3, Chapter 4, and Chapter 5 discuss methods
for reconstructing phylogenetic networks. As for input data, the methods in Chap-
ter 3 and Chapter 4 take gene sequence alignments and those in Chapter 5 take gene
trees. In developing computational methods in the chapters, we assume that HGT
is the only cause for the incongruence. In Chapter 6, we extend the assumption and
allow for duplication and loss together with HGT. Under this assumption, we run a
standard algorithm to detect evolutionary events and discuss how the detection would
help biological data analyses.
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Chapter 2

Background

In this chapter, we review concepts and definitions relevant to this dissertation. First

we introduce phylogenetic trees and discuss different types of trees and their usages.

We then discuss two metrics defined to quantify the relationship between the trees,

Robinson-Foulds (RF) metric and Subtree Prune and Regraft (SPR) distance, and

introduce the programs for calculating them. Then, we define phylogenetic networks

and their relationship to a corresponding set of trees, an important concept for the

network’s optimization criteria for the network. We also briefly summarize the bi-

ological processes that cause gene tree/species tree incongruence: Horizontal Gene

Transfer (HGT), hybridization, duplication, and loss, along with the current theo-

ries of why these processes are important for evolution. Finally, we introduce some

computational methods to detect these processes in genetic evolutionary histories.

2.1 Phylogenetic Trees

2.1.1 Trees and Phylogenetic Trees

The evolutionary history of a group of species is often depicted in the form of a tree

(in the formal sense in computer science), called a species tree. Each internal node in

the tree reflects a speciation event that splits the group into smaller subgroups, and

leaves can be thought of as representing present-day organisms. As species evolve,

their genes evolve. Since genes are also evolutionary units, the evolution of a gene is



9

a b c d

a

b

c

d

(a) A rooted tree (b) An unrooted tree

Figure 2.1 : Rooted phylogenetic tree (a) and unrooted phylogenetic tree (b) over 4 taxa
a, b, c, and d. Note that the tree in (b) does not indicate an ancestor-descendant relationship.

also represented by a tree, called a gene tree. When the gene tree includes duplicated

gene copies, it is called a gene-family tree. Species trees and gene trees are collectively

referred to as phylogenetic trees and defined as follows.

Definition 2.1. For a set of biological entities X , either species or an orthologous

group of genes in the species, a phylogenetic X -tree, or X -tree, T is an ordered pair

(T, f), where T = (V (T ), E(T )) is a connected directed graph with no cycles with

V(T) = R(T ) ∪ L(T ) ∪ I(T ), where

1. R(T ) ∈ V (G), indeg(R(T )) = 0 (R(T ) is the root of T );

2. ∀v ∈ L(T ), outdeg(v) = 0 (L(T ) is the set of leaves of T );

3. ∀v ∈ I(T ) = V (T )− L(T ), outdeg(v) ≥ 1 (I(T ) is the set of the internal nodes

of T );

4. E ⊆ V (T )× V (T ) are the tree’s edges.

The mapping f : L(T ) → X is a bijection to X . In the trees, x ≤T y and x <T y

denotes the partial order between x, y ∈ V (T ) that y is between R(T ) and x. Given

a node u ∈ V (T ), L(u) = {v : v ∈ L(T ), v ≤T u}. In this sense, L(R(T )) = L(T ).
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A phylogenetic tree can be rooted or unrooted. Tree T is rooted if there is a

distinguished node, R(T ). In a rooted phylogenetic tree, the root corresponds to the

common ancestor of all species or genes at its leaves. A rooted phylogenetic tree,

therefore, shows not only the relative relationships of species but also the direction

of evolution, from its root towards its leaves. An unrooted phylogenetic tree, on

the other hand, only shows the relationship among species. Figure 2.1(a) shows

an example of a rooted phylogenetic trees, while Figure 2.1(b) is an example of an

unrooted phylogenetic tree. In this dissertation, all trees are rooted, unless explicitly

stated otherwise.

See Figure 2.1 for examples of phylogenetic trees. For the sake of simplicity, in

this dissertation we often call T a phylogenetic tree when the mapping f is obvious

from the context.

A phylogenetic tree can also be binary or non-binary. A rooted phylogenetic tree

T is called binary if outdeg(v) = 2,∀v ∈ I(T ); otherwise, it is non-binary. If T is an

unrooted tree, then it is binary if all internal nodes have degree three. A node v with

outdeg(v) > 2 is referred to as polytomy, or a non-binary node.

It is easy to see that for a rooted, binary phylogenetic tree T on an n-element

taxon set X , there are exactly n − 1 internal nodes. The following theorem is also

well known; its proof can be found in [27].

Theorem 2.1 (Number of Binary Phylogenetic Trees). Let X be a set of n taxa.

Then, the number of binary, unrooted phylogenetic trees on X is (2n − 5)!!, and the

number of binary, rooted phylogenetic trees on X is (2n− 3)!!.

A phylogenetic tree can be represented in the Newick format [28]. In this format,

an X -tree is represented as an instance of a hierarchical clustering of the elements

in X by parentheses and commas. For example, the tree in Figure 2.1(a) is written
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in the Newick format as ((a, b), (c, d)). By adding a prefix [U ] on the Newick repre-

sentation of a random rooting of unrooted trees, it can also represent the unrooted

tree. For example, a Newick representation for the trees in Figure 2.1(b) can be

[U ] (a, (b, (c, d))).

2.1.2 The Robinson-Foulds (RF) Metric

When an internal edge in an X -tree defines a bipartition of X , the set of the nodes

under the edge and its complement, the Robinson-Foulds (RF) distance between two

X -trees is the sum of the number of bipartitions that differ between them [29]. Let

Σ(T ) be the set of all bipartitions defined by all edges in T . The RF distance between

trees T1 and T2 is defined as

|Σ(T1)− Σ(T2)| + |Σ(T2)− Σ(T1)|
2

(2.1)

Consider the pair of trees in Figure 2.2. In the figure, the internal edges e1, e2, e3, e4

in T1 and T2 correspond to the bipartition {ab|cde}, {abc|de}, {ab|cde}, {abe|cd}, re-

spectively. By Eq. (2.1), the RF distance between T1 and T2 is 1.

Day showed that the problem of calculating the distance between two trees has a

linear complexity in the number of nodes in the trees [30].

2.1.3 The Subtree Prune and Regraft (SPR) Distance

Subtree Prune and Regraft (SPR) is a tree transforming operator that transforms the

topology of a given unrooted X -tree to another unrooted X -tree. Given an X -tree

T , the transformation prunes a subtree and regrafts it back to one of its remaining

places on the tree by conserving the root of the pruned subtree. The new tree is said
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(a) T1 (b) T2

Figure 2.2 : Unrooted binary phylogenetic trees T1 and T2 on 5 taxa a, b, c, d, e and the
edges corresponding to its nontrivial bipartitions are labeled e1, e2, e3, e4.

to be obtained from T by an SPR operation.

An unrooted X -tree is reached from another unrooted X -tree by applying a

series of SPR operations [31, 32]. The SPR distance between two unrooted trees is

defined as the minimum number of SPR operations required to transform one to the

other. The problem of computing this distance is NP-hard [33]. An SPR operation

for rooted binary trees (rSPR) can be defined in a similar way, except, in order to

make the rooted SPR distance a metric, we should create a new root extending from

the original root and allow the pruned subtree to be regrafted onto the root [34].

Figure 2.3 shows an example of the rSPR operation. As the operator transforms the

tree in (a), it first creates r� by extending from r. After that, it prunes the red branch

leading to b from (a), and regrafts it onto the branch to r� to yield the tree in (b) in

this example.

Because the tree transforming SPR operation simulates an HGT event, it has

been widely used to detect HGT events on gene trees. In particular, in order to
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(a) (b)

Figure 2.3 : An rSPR operation for a rooted tree. After the original root r is extended to
r�, the operation prunes taxon b and regrafts it as the new child of r�.

computationally estimate the lower bound on the amount of HGT events, scholars

have been interested in calculating the SPR distance, defined as the minimum number

of SPR operations required to reconcile trees∗. While there are exact methods that

calculate SPR distance, using the distance for HGT detection raises issues including

computational complexity and the possibility for gross underestimation of the number

of HGT events. Computationally, the problem of computing the rooted SPR distance

between two rooted binary trees is NP-hard [34]. However, there are a number of

exact algorithms and heuristics that compute this distance. The exact algorithms

have been developed by Bordewich and Semple [34] and Wu [35], and heuristics

include LatTrans [36], EEEP [37], HorizStory [38], RIATA-HGT [39, 40]. While the

algorithms perform well in practice, a more serious issue is the possibility that the

SPR distance underestimates the number of reticulation events [41, 42]. In particular,

Baroni et al. [43] reported that the underestimation can be arbitrarily large relative

to the size of the leaf sets.

∗rSPR distance is defined in a similar way on the rooted trees
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2.2 Phylogenetic Networks

When particular biological processes such as horizontal gene transfer occur in the

species set of interest, the species’ evolution might not be best represented by a

phylogenetic tree but more appropriately by a phylogenetic network (see Section 2.3

for more detail). While the phylogenetic network model is general enough to allow

for modeling all types of reticulate evolutionary events, such as hybrid speciation,

recombination, and HGT, the semantics of the model change based on the specific

evolutionary events allowed [44]. In this thesis, we focus on HGT and adopt the

following phylogenetic network model.

Definition 2.2. A phylogenetic X -network, or X -network, N is an ordered pair

(G, f), where

1. G = (V, E) is a directed, acyclic graph (DAG) with V = {r} ∪ VL ∪ VT ∪ VN ,

where

(a) indeg(r) = 0 (r is the root of N);

(b) ∀v ∈ VL, indeg(v) = 1 and outdeg(v) = 0 (VL are the leaves of N);

(c) ∀v ∈ VT , indeg(v) = 1 and outdeg(v) ≥ 2 (VT are the tree-nodes of N);

and,

(d) ∀v ∈ VN , indeg(v) = 2 and outdeg(v) ≥ 1 (VN are the reticulation nodes

of N),

(e) and E ⊆ V × V are the network’s edges. we distinguish between reticula-

tion edges (edges whose heads are reticulation nodes) and tree-edges (edges

whose heads are tree-nodes or leaves).

2. f : VL → X is a bijection function from VL to X .
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γ can be defined for a network as follows, when it is needed. γ : EH → [0, 1],

where EH is the set of reticulation edges, is the reticulation probability associated

with reticulation edges, and satisfies γ(e1) + γ(e2) = 1 for every pair of edges e1 and

e2 that share the same reticulation node at their heads.

As the name indicates, the interpretation of γ is the probability of inheritance of a

gene from each of two potential parents and is estimated from the data [45, 46, 47, 48];

see Fig. 2.4 for an illustration.

A B C DA B C D A CB D

(a) (b) (c)

0.15
0.85

u

v

h

Figure 2.4 : Phylogenetic networks and the trees they contain. (a) A phylogenetic network
with a single reticulation node h and two reticulation edges (u, h) and (v, h) with inheritance
probabilities of 0.15 and 0.85, respectively. (b) One of the two trees contained within the
phylogenetic network. The probability of a gene in C evolving down this tree is 0.85. (c)
The other tree contained within the phylogenetic network. The probability of a gene in C
evolving down this tree is 0.15.

A phylogenetic X -tree is an X -network in which VN = ∅. While a network N

represents the evolution of a set of genomes, these genomes can be partitioned into

(non-recombining) regions R1, R2, . . . , Rk, each of which has a treelike evolutionary

history, Ti. In other words, the set T = {T1, . . . , Tk} is a subset of the set of all trees

induced by the network N . More formally, T ⊆ T (N), where T (N) is the set of all

trees obtained as follows from N :

1. For each node of indegree at least 2, remove all but one of the incoming edges;

and
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2. For each node u of indegree and outdegree 1, remove u along with its incident

edges, and add a new edge to connect u’s parent to u’s child until no such nodes

remain.

For a tree T ∈ T (N), the induction set of T , denoted by η(T ), is the set of reticulation

edges in N that are used (that is, not removed in step (1) above) to obtain tree T .

Notice that η(T ) is not necessarily unique for a given tree T , as there may be more

than one possible way of obtaining tree T [3].

Also note that for each network node v, there are exactly indeg(v) choices, and

hence, the number of induced trees is bounded by
�

v∈VN
indeg(v). For example, Fig-

ure 2.5(c) and (d) are two (and only two) trees induced by the network in Figure 2.5(a)

or (b).

a b c a b c

(a) (b)

a b c a b c

(c) (d)

Figure 2.5 : Two networks (a) and (b), and their induced trees (c) and (d). Note that
mathematically the networks of (a) and (b) are identical in the sense that they induce the
same set of trees. However, network (a) can indicate the species tree in the network, whereas
(b) is used when there is no clear species evolution. Due to their different assumptions for
the species tree, the network (a) is used to represent HGT events, and (b) is for hybridization
events (see Section 2.3 for more detail).
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It is important to mention that the current definition of phylogenetic networks

restricts f to be a bijection. It follows that a phylogenetic network cannot generate

a tree in which there are more than one copy of a gene sampled from a species, so

they do not directly account for gene duplication and loss.

2.3 Species Trees, Gene Trees and Their Incongruence

Although both species trees and gene trees take the form of phylogenetic trees, they

model conceptually different evolutionary histories: a gene tree shows the evolution-

ary history of a single gene, while a species tree shows the evolutionary history of

speciation. There are a number of biological events that cause a gene tree to differ

from its containing species tree [7]. We describe in this section hybridization and

HGT, and duplication and loss that occur at a species-level.

2.3.1 HGT and Hybridization

Reticulation events such as HGT and hybridization can differentiate a gene tree from

its containing species tree. HGT refers to the transfer of genetic material between

organisms other than vertical inheritance. HGT is believed to be rampant among bac-

teria [49], even between remotely related ones. Three common mechanisms through

which HGT occurs are [50]

• transformation: the process in which free DNA (of a dead bacterium, for in-

stance) is absorbed from the surrounding environment;

• conjugation: the transfer of genetic material from one bacterium to another

through direct physical contact; and
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a b c a b c

(a) (b)

Figure 2.6 : A horizontal gene transfer event. (a): the gene tree in red lines disagrees with
the species tree shown in pipes. Because the red gene for taxon b is transferred from c,
the reconstructed gene tree for the red gene would have the taxon b as a sibling of c. (b):
a phylogenetic network representing the HGT on the species tree. Phylogenetic networks
explicitly notate the source and the destination of the HGT event.

• transduction: the process in which a bacterial virus, commonly called a phage,

mediates the transfer from one bacterium to another.

We illustrate HGT from the phylogenetic point of view as in Figure 2.6. In the

species tree shown in pipe in Figure 2.6(a), a and b are sister taxa. Consider the

gene in red lines. Through one of the mechanisms above, the gene in species b is

transferred from c, instead of inheriting it from a common ancestor with a. As a

result, the evolutionary history of the gene does not agree with that of the species; as

the figure shows, b and c are now sister taxa rather than a and c. Note that in order

to facilitate detecting the events in the current model of the network that does not

allow for duplicated genes, the HGT should be accompanied by the prior gene loss.

Hybridization can also result in species evolution that cannot be represented by a

tree. In several groups of species, especially in plants and fish [51, 52], hybridization

can occur between two species, where they produce a new offspring that carries genetic

material from both parents. Taxon b in Figure 2.5(b) is an example of a hybrid taxon,

having both a and c as its parents.
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While both events can be summarized as the non-vertical transfer of genetic mate-

rial, HGT and hybridization differ in the amount; HGT transfers a fraction of genetic

material, whereas in hybridization, both parents contribute a similar portion of mate-

rial. This difference is implicitly reflected in the networks in Figure 2.5: the network

modeling HGT, (a), has a clear species tree that should explain a majority of genetic

inheritance, while the network modeling hybridization, (b), does not set up a species

tree. However, the difference is difficult to detect in practice. Because of this diffi-

culty, Figure 2.5(a) and (b) are sometimes considered identical at the notation level,

since they induce the same set of trees.

2.3.2 Detecting HGT

We assume that species evolution can be represented by a species tree. Since hy-

bridization does not comply with this assumption, we will exclusively deal with HGT

in this dissertation and use HGT interchangeably with reticulation. The phylogenet-

ics community has attempted to detect HGT events using different types of data.

Sequence-based HGT Detection Algorithms that take the genome sequence of

a species and detect the HGT events in the species based on the compositional char-

acteristics, such as GC content, codon usage, and di- and tetra-nucleotide frequencies

of the sequence are based on the observation that these compositional characteris-

tics are unique to each species [53, 54, 55, 56, 57]. They are usually easier to apply,

because they require only the genome of the organism under study. However, the

compositional characteristics not only differ by species, but also vary by genes or

their function. Also, it is not intuitive to interpret the signal of a compositional char-

acteristic. Because they sometimes do not agree on the HGT estimates and contradict
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each other [58, 59], it is not easy to tell which of the estimates are more significant

and which are less significant.

Tree-based HGT Detection Another approach for HGT detection uses the trees

as data and addresses the incongruences between trees. As the SPR operator sim-

ulates the HGT event, calculating the SPR distance between the species tree and a

gene tree has been widely used to estimate the lower bound on the number of HGT

events on the gene tree. Algorithms introduced in Section 2.1.3 are the examples.

With the advent of multi-locus data for an increasing number of species, the problem

of incorporating multiple gene trees has recently arisen. There are a few approaches

for the problem including ours, and they will be discussed in more detail in Chapter 5.

While phylogenetic-based approaches not only can detect HGT events but also can

identify their placement in evolution, it is true that the performance of the approaches

largely depends on the accuracy of the reconstructed gene trees and the extensiveness

of the gene sampling of the trees.

HGT Detection from Trees and Sequences In order to reduce error in the

gene tree reconstruction while maintaining the advantages of tree-based approaches,

one can use the sequence alignments in reference to the species tree. Based on the

species tree and the sequence alignments, Maximum-Parsimony (MP) and Maximum-

Likelihood (ML) optimization criteria [60, 61, 62] estimate the optimality of an HGT

event with respect to the sequence alignment. Also for each criterion, some effi-

cient search algorithms for the optimal HGT events have been proposed [63, 45]. In

Chapter 3 and Chapter 4, we study the performance of these optimization criteria

in detecting significant HGT events and propose computational methods to estimate

their statistical significance.
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2.3.3 Duplication and Loss

Gene duplication is another process responsible for the species tree/gene tree incon-

gruence. It refers to any amplification of genomic stretches containing a gene. It can

occur as an error in the process of homologous recombination, a retrotransposition

event, or a whole-genome duplication [64]. Since the duplicated copy is thought to

be less subject to selective pressure and more freely mutable, it usually works in de-

veloping genes that specify pre-existing functions (sub-functionalization) or genes of

novel functions (neo-functionalization) [65]. Also, the duplications of oncogenes are

often found in the progression of many types of cancer, including breast cancer and

cervical cancer [66].

After a gene is duplicated into two loci in the evolutionary history, their gene copies

will evolve and descend independently of each other after the duplication point. As

evolution is accompanied by loss events, it can cause the gene trees to be incongruent

with the species tree. See the species tree and gene tree in Figure 2.7, for example.

In the figure, (a) represents the species tree and (b) an incongruent gene tree. This

incongruence can happen if the gene is duplicated into the red gene and the blue gene

copy at node u; the red gene is lost at b and c, and the blue is lost at a as illustrated

in Figure 2.7(c).

Duplication and loss contribute to the gene tree-species tree incongruence in par-

ticular ways. Based on the pattern of incongruence they can make between trees,

the phylogenetics community has attempted to reconcile the trees by identifying the

underlying events. In this sense, as we review the algorithms to detect evolutionary

events, we focus on tree-based approaches, where the species tree and the gene tree

under study are fed, and the events on the gene tree are detected by reconciliation

with the species tree. Formally, a reconciliation between gene tree G and the species
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(a) the species tree (b) a gene tree (c) a potential evolutionary scenario

Figure 2.7 : Duplication and loss events that cause gene tree-species tree incongruence.
(a): the species tree of taxa a, b and c. (b): a gene tree with an incongruent evolutionary
relationship to the species tree. (c): a potential scenario where the gene takes the branching
order of the tree within the branches of the species tree.

tree S corresponds to a mapping from u ∈ V (G) to x ∈ V (S). Since the biological va-

lidity of a mapping depends on the events the model assumes, they will be explained

in detail in the following chapters.

2.3.4 Detecting Duplication and Loss (DL)

The Duplication and Loss (DL) model assumes that only duplication and loss cause

the incongruence between a gene tree G and a species tree S; a valid mapping between

the trees can be defined as a map γ : V (G) → V (S) that satisfies the following

properties:

• order-respecting : u ≤G v ⇒ γ(u) ≤S γ(v),

• leaf -label-respecting : X (u) = X (γ(u)), u ∈ L(G),

• leaf -set-respecting : L(u) ⊆ L(γ(u)).

Since an internal node u ∈ V (G) is due to a duplication event if L(γ(v)) ∪

L(γ(w)) �= ∅, where v, w are the children of u, the count of the nodes satisfying
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the condition under γ indicates the duplication cost of the mapping. Formally, with

the definition of δγ(u) that is set to 1, if the internal vertex u satisfies the condition,

and 0 otherwise, the duplication cost of γ, dc(γ) can be defined as

dc(γ) =
�

u∈V (G)

δγ(u) (2.2)

The γ with the minimum dc(γ) is obtained by Least-Common-Ancestor (LCA)-

mapping M from G to S [67]. First let’s define the common ancestors and the LCA.

A common ancestor of set A ⊆ L(G) is defined as u ∈ V (S) such that A ⊂ L(u). It

is easy to see that there can be multiple nodes in the tree can satisfy the definition.

In the set U of the common ancestors, v ∈ U , where v ≤S u,∀u ∈ U is the LCA. The

LCA of the set of nodes v, w is denoted as LCA(v, w). With the definition of LCA,

LCA-mapping M : V (G) → V (S) is defined as follows:

M(u) =






f(u) if u ∈ L(T )

LCA(M(v), M(w)) if u has children v, w.

dc(γ) corresponds to the case L(γ(v))∪L(γ(w)) �= ∅. Since minimizing L(γ(u)),∀u ∈

V (G) while satisfying the three properties for a valid mapping leads to the case

L(γ(v))∪L(γ(w)) �= ∅∀u ∈ V (G), and M makes the valid mapping while minimizing

L(γ(u)),∀u ∈ V (G), M is the most parsimonious mapping under the model, as dc(γ)

is taken as the parsimony score. Note that given γ under DL, internal nodes in G

are assigned evolutionary events, either duplication or speciation. When the rates of

gene duplication and loss are low, the γ from the parsimonious reconciliation appears

to produce a good estimate of the duplication and loss events [68, 69, 70, 71].



24

However, some genes, such as the MHC gene family or the olfactory receptor

genes, have high rates of duplication and loss, yielding cases where the parsimony-

based approach might not work well. Model-based approaches for reconciling gene

trees and species trees include those use coalescence models to describe incomplete

lineage sorting [72, 73], model the events with the birth-death process [74, 75, 76, 77]

and assume that the probability distribution for the number of duplication events is

available for each branch [78].
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Chapter 3

Phylogenetic Networks from Gene Sequence
Alignments under Maximum Parsimony (MP)

This chapter presents our method for assessing significance of the reticulate edges

returned in the reticulation search under MP under the assumption that reticulation

is the sole cause for the gene tree/species tree incongruence with the species tree

and the alignments of the gene sequences as input. Given the input, our method

estimates the significance of the returns of the search, and applies the estimation to

decide the stopping point of the search with the aim of addressing the overestimation

issue of the optimality criterion. The experiment shows that the idea produces good

performance both in the simulation study and in the biological data analysis. Note

that since the parsimony score of a gene sequence alignment does not affect that

of other gene sequence alignments, we conduct all experiments based on single gene

sequence alignments. For multi-locus data, the parsimony score computation can go

gene by gene.

3.1 Introduction

As mentioned above, phylogenetic networks have been introduced as a representation

of the species evolution. In the study of phylogenetic networks, one of the primary

researches has been on reconstructing the species evolutionary history using the phy-

logenetic network, referring to as phylogenetic network reconstruction problem. One

of the most commonly used criteria for reconstructing phylogenetic trees is maxi-
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mum parsimony (MP). Under this criterion, the phylogenetic tree that best fits a

sequence data set is one that minimizes the total number of mutations over all possi-

ble tree topologies and sequence assignments to internal nodes of the tree topologies.

There is a polynomial time algorithm for computing the parsimony length of a fixed

phylogenetic tree leaf-labeled by a set of sequences, due to [79], while solving the

MP problem (i.e., reconstructing the optimal phylogenetic tree under MP) in gen-

eral is NP-hard [80, 81]. Nonetheless, several heuristics that solve the MP problem

efficiently, and with high accuracy, in practice have been devised, such as the ones

implemented in the phylogenetic software tool PAUP∗ [82].

In the early 1990’s, Jotun Hein extended the maximum parsimony (MP) criterion

to allow for modeling the evolutionary history of a set of sequences in the presence

of recombination [83, 84]. More recently, Nakhleh et al. gave a mathematical for-

mulation of the MP criterion for phylogenetic networks [60], and later studied its

performance on biological as well as simulated data sets [61]. The main observation

behind defining MP (and other criteria) for phylogenetic networks is that a sequence

data set whose evolution involves reticulation events, such as horizontal gene transfer,

can be partitioned into smaller, non-overlapping regions each of which has a treelike

evolutionary history. Based on this observation, an optimal phylogenetic network

under the MP criterion is one that contains (induced, or displays) the set of trees that

best fit the evolutionary histories of the smaller regions. More formally, for a set S

of sequences that can be partitioned into regions S1, . . . , Sk, such that each region

has a treelike evolutionary history, the parsimony length of a phylogenetic network

N leaf-labeled by S is

PS(N, S) =
�

1≤i≤k

min
T∈T (N)

PS(T, Si), (3.1)
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where PS(T, Si) denotes the parsimony length of region Si on tree T , where T ranges

over the set T (N) of all trees contained inside network N ; see [60] for more details. At

the lowest level of atomicity, each region contains a single nucleotide, corresponding

to the scenario where each site may evolve independently of its neighboring sites. This

level of atomicity may be appropriate, for example, for analyzing single nucleotide

polymorphism (SNP) data in a population, since, depending on the rate of recombi-

nation in the genomic region under study, it may be plausible to have adjacent SNPs

“switching” evolutionary histories. However, in a phylogenetic study involving sev-

eral species, taking each region to correspond to a single site is unrealistic, and may

cause serious problems (such as adding an excessive number of reticulation events to

the network so as to fit the evolution of each single site with no homoplasy). In our

studies, and given that we seek to find whether a certain gene is horizontally trans-

ferred, we take each gene to be a single block. The minimization in Formula (3.1)

indicates that the MP tree, among all trees contained in N , is chosen for each region,

and the summation implies independence among the regions. In other words, in a

phylogenetic analysis, S1, . . . , Sk may correspond to k loci. In the discussion below,

we focus exclusively on the formulations for a single locus (or, a single region).

One of the major challenges of applying the MP criterion to phylogenetic network

evaluation and reconstruction is the computational complexity. As phylogenetic trees

are a special case of phylogenetic networks, the problem of inferring a phylogenetic

network under the MP criterion is NP-hard. Even the problem of computing the

parsimony length of a fixed phylogenetic network is NP-hard∗ [85], unlike the case of

trees, which is solvable in polynomial time [79]. Jin et al. have provided an array of

∗Nonetheless, the problem of computing the parsimony length of a fixed phylogenetic network
is fixed parameter tractable, where the parameter is the number of reticulation events (nodes of
indegree 2) in the phylogenetic network.
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algorithmic techniques that allow for inferring phylogenetic networks under the MP

criterion in a reasonable amount of time [85, 63, 62].

A potentially more serious challenge of applying the MP criterion to phyloge-

netic networks concerns the overestimation of the true amount of reticulation in the

evolutionary history of a sequence data set. Based on Formula (3.1), if N � is a phylo-

genetic network obtained by adding extra reticulation nodes to another network N ,

then PS(N �, S) ≤ PS(N, S), simply because in this case we have T (N) ⊆ T (N �)

(this is Observation 1 in [61]). In other words, under Formula (3.1), adding extra

reticulation nodes to a phylogenetic network either leaves the parsimony length un-

changed or improves it; it never makes it worse. Overestimation of the amount of

reticulation in an evolutionary history, then, is inevitable under this formulation of

the MP criterion. In particular, given a sequence alignment S of m sites, with site i

exhibiting ci states (e.g., 1 ≤ ci ≤ 4 for DNA), a phylogenetic network on which the

evolution of each site is homoplasy free can be reconstructed. That is, we can infer a

network N such that

PS(N, S) =
�

1≤i≤m

(ci − 1).

In this chapter, we focus on the horizontal gene transfer (HGT) version of the

phylogenetic network reconstruction problem, in which a species tree ST and a se-

quence alignment of a gene S are given, and a set of edges is sought whose addition

yields a network that fits the data under the MP criterion. The ad hoc solution to this

problem that was adopted in [61] was to observe the improvements in the parsimony

length as more HGT events are added, and stop the process when the improvement

is below a certain threshold. Such a solution does not provide a systematic way of

determining the “right” number of HGT edges. Further, it is not applicable in studies
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that require a large number of analyses, such as simulation studies.

In this chapter, we address this problem in a more systematic way [86]. We

propose a bootstrap method for estimating the support of an inferred HGT edge.

Given a sequence alignment S, the method generates � sequence alignments with

the same dimensions as S by sampling (with replacement) sites from S, infers HGT

edges based on the MP criterion for each sample, and finally assesses the support of

each HGT edge based on its frequency in the analysis of all samples. In addition to

assessing the support of the placement of an HGT edge, this method can be used to

determine when to stop adding such edges.

We have implemented the method in our NEPAL software tool (available publicly

at http://bioinfo.cs.rice.edu/), and studied its performance on both biological and

simulated data sets. While our studies show very promising results, they also high-

light issues that are inherently challenging when applying the maximum parsimony

criterion to detect reticulate evolution. In particular, they show that the maximum

parsimony criterion may not distinguish among a set of neighboring tree edges, as

to which one is the true donor of a horizontal gene transfer event. In this case, we

propose a relaxed version of the support formula. Further, we find that resolving non-

binary nodes in the species tree, prior to the MP analysis, may help in the accuracy

of the inferences made.

3.2 Materials and Methods

3.2.1 Maximum Parsimony of Phylogenetic Networks

A phylogenetic network is a rooted, directed, acyclic graph, leaf-labeled by a set

of taxa, coupled with a set of temporal constraints [87]. In the case of HGT, a
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phylogenetic network is obtained by adding a set of horizontal, or lateral, edges to an

underlying species tree, where those horizontal edges capture the horizontal transfer

events that may have occurred during the evolution of a certain gene under study.

More precisely, if T is a phylogenetic (species) tree, we obtain a phylogenetic network

N with a single HGT edge from tree T by selecting two edges e1 = (u1, v1) and

e2 = (u2, v2) in T , splitting each of them, so that these two edges are replaced by four

edges e�1 = (u1, x1), e��1 = (x1, v1), e�2 = (u2, x2), e��2 = (x2, v2), and finally a horizontal

edge (x1, x2) is added. For example, in Figure 3.1, an HGT edge H is added in this

fashion from edge B to edge E in the phylogenetic tree; the rectangular nodes in the

phylogenetic network correspond to the splitting points of the two original edges B

and E. It is important to note that when repeating this process to add other HGT

edges, the procedure never splits a horizontal edge.

A B

C D

E
F A B

C D

E
FH

(a) Phylogenetic tree (b) Phylogenetic network

Figure 3.1 : A phylogenetic tree (a) and a phylogenetic network obtained from it by
adding a horizontal edge H from edge B to edge E.

A tree is contained in a phylogenetic network if it can be obtained from the network

by the following two steps: (1) for every node in the network, remove all but one of

the edges incident into it (i.e., the edges whose head is the node under consideration);
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(2) for every node u with a single parent p and a single child c, remove u and the two

edges incident to it, and add a new edge from p to c (repeat this step as long as such

nodes as u exist). Given a phylogenetic network N , we denote by T (N) the set of all

trees contained inside N .

The parsimony length of a phylogenetic network N leaf-labeled by a set of se-

quences S is given by Formula (3.1) in the Background section, as formulated in [60].

The maximum parsimony problem in the context of phylogenetic networks is, for

a given sequence alignment S, to infer the phylogenetic network N that minimizes

PS(N, S). In this chapter, the reticulate evolutionary events we consider are horizon-

tal transfers on individual genes (HGT). In this context, the version of the maximum

parsimony problem that we seek to solve is to find for a given (species) tree ST and

a gene sequence data set S, a network N , obtained by augmenting ST with a set of

HGT edges, that minimizes PS(N, S).

As illustrated in Observation (1) of [61], and reviewed above, this definition of MP

on phylogenetic networks does not penalize complexity of the inferred model, instead

favoring networks with larger numbers of HGT edges. Two questions arise:

1. When should a method stop adding HGT edges under the MP criterion?

2. How supported are HGT edges that are inferred by the MP criterion?

Combined together, answering these two questions amounts to assessing the signifi-

cance of a phylogenetic network inferred by the maximum parsimony criterion. To the

best of our knowledge, neither of these two questions has been addressed in a system-

atic way. In the next section, we propose a bootstrap-based method for addressing

both questions.
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3.2.2 Inferring Well-Supported Phylogenetic Networks

Assume the HGT edge h : X → Y is inferred by the MP criterion on phylogenetic

network N and sequence data set S. To assess the significance of h we generate �

sequence alignments, S1, . . . , S�, with the same dimensions of S, by sampling (with

replacement) sites from S, and for each sequence alignment Si, we redo the calculation

of MP on N and Si, and record the set Hi of all optimal HGT edges inferred. Then,

the bootstrap-based support of h, S(h), is calculated as

S(h : X → Y ) =
|{i : 1 ≤ i ≤ �, ∃hi ∈ Hi, hi = h}|

�
× 100. (3.2)

Relaxing the Support Formula: When Ambiguity Helps Pinpointing the

exact location of an HGT edge is a very hard task in practice, which would be

expected to affect the support of inferred HGT. Indeed, our experimental results

show that the support of an HGT edge, as given by Formula (3.2), tends to be very

conservative, due to the strict requirement that hi and h must be identical (see Results

and Discussion section). From our empirical analysis of the performance of MP, we

found that the major cause behind a poor support of a correctly inferred HGT edge is

that “neighbors” of the source may be as good candidates as the source itself under the

MP criterion. We illustrate this in Figure 3.2. In the cartoon shown in Figure 3.2(a),

four HGT edges, involving edge e as the recipient, were identified individually in 100

bootstrap samples, each with the associated support (out of 100). While none of

them has good support, combined they produce a well-supported hypothesis of an

HGT involving the clade, as shown in Figure 3.2(b).

Empirically, we found that this process of introducing ambiguity in the source of

an HGT edge often involves immediate neighbor edges of the source. In other words,
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Figure 3.2 : (a) A scenario where none of four HGT edges identified individually in
100 bootstrap samples has good support (the recipient of each of the four edges is the
same node v in the species tree). (b) When combined, thus allowing for ambiguity in
pinpointing the exact source, a well-supported hypothesis of an HGT emerges.

we can refine Formula (3.2) of estimating the support of an edge h : D(X) → Y ,

where D(X) is a set of (neighboring) edges that correspond to potential sources, to

obtain

S(h : X → Y ) =
|{i : 1 ≤ i ≤ �, ∃hi = (Xi → Y ) ∈ Hi, Xi ∈ D(X)}|

�
× 100, (3.3)

where Hi is the set of all optimal HGT edges inferred in the ith bootstrap sample. In

the case when multiple best HGT edges H exist, a support value of H is computed

as maxh∈H(S(h)).

When Formula (3.3) is used on the cartoon scenario depicted in Figure 3.2(a), we

obtain an HGT edge with perfect support, whose source is ambiguous, as illustrated

with the dashed circle. It is important to note that in biological studies, a group

of species, rather than a single specific one, is often reported as the source of a

transfer event. This gives further justification for relaxing the formula. In Results and

Discussion, we demonstrate the gains obtained by this relaxed formula in analyzing
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the data of [88].

It is worth mentioning that while our analyses here always revealed ambiguity

in the source of an HGT edge, it may be the case that for other data sets there is

ambiguity in the recipient as well. In that case, Formula (3.3) can be extended by

using D(Y ) instead and treating it in a similar fashion to the way D(X) is treated.

However, we did not find this to be the case in our analyses, and do not find this

surprising. Replacing HGT edge h : X → Y by h� : X � → Y for X � ∈ D(X) result

in very local change to the topology of the resulting gene tree. On the other hand,

replacing h : X → Y by h� : X → Y � for Y � ∈ D(Y ) results in a much greater change

to the topology of the resulting gene tree (this depends on how far X and Y are in

the species tree, a measure that we call “diameter” below).

As for how big of a neighborhood D(X) (or, D(Y )) one may consider, in our

analyses we found that the immediate “neighbors” of an edge are the most relevant.

More precisely, if X is edge (u, v) in the underlying species tree, then D(X) contains

all edges emanating from either u or v, and the edge incoming into u. The reason

behind defining the neighborhood D(X) in this manner is that if an HGT edge h :

X → Y results in improvement α to the total parsimony length, then replacing h by

an edge h� : X � → Y , where X � ∈ D(X), results in an improvement to the parsimony

length that is close to α.

Stopping Criterion Using the above formulas for bootstrap-based support of an

HGT edge, we propose the following procedure for inferring a phylogenetic network

under the maximum parsimony criterion starting from a species tree ST and a se-

quence alignment S of a gene of interest:

1. Let N = ST .
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2. While true

(a) Compute the set H of HGT edges, such that for each h ∈ H, PS(N +

h, S)† is minimum over all networks obtained by adding a single HGT edge

to N .

(b) Let b = maxh∈H(S(h)) and h� = argmax
h∈H

(S(h)).

(c) if b > 70

i. Let N = N + h�.

(d) else

i. Return N .

In the above procedure, the network is initialized to the given species tree (Step 1).

Then, the set H of all HGT edges whose addition results in the optimal improvement

of the parsimony score is computed (Step 2a). If the maximum support of any edge in

H exceeds 70 (out of 100), we add the edge and continue; otherwise, we stop adding

edges (Step 2c). Hillis and Bull [89] showed that bootstrap values ≥ 70% usually

correspond to the “real” clade with very high probability, and this value has been

widely accepted as an indication of good support [90]. Below we show that the value

70, as a threshold, works well in practice for the support of HGT edges.

If more than a single locus is involved in the analysis, then we have, as discussed

above, a set of sequence alignments S1, S2, . . . , Sk, each corresponding to an indi-

vidual locus. If these loci have evolved independently, then analyzing each of them

individually, using the methodology described above, is sufficient. This may result,

for example, in an HGT edge h : X → Y that has high support based on the analysis

†We write N + h to denote the phylogenetic network resulting from adding HGT edge h to
phylogenetic network N .
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of locus i and low support based on the analysis of a different locus, j. This is not

contradictory, since the support of an HGT edge is dependent on the data, and the

support should be reported for each HGT edge and each locus independently. Now,

let us consider the case when, for example, two loci i and j are depended (e.g., they

are linked). In this case, one could concatenate the sequences from both loci and

consider the resulting “supergene” as a single locus in the analysis. This, of course,

requires determining if two loci are linked, a question whose treatment is beyond the

scope of this chapter. Nevertheless, we conjecture that analyzing each gene indepen-

dently, even when the independence assumption does not hold, may be a safe choice,

particularly if enough sites are available for each locus.

3.2.3 Data Sets

We have implemented the method described above in the NEPAL tool, which is

available publicly at http://bioinfo.cs.rice.edu/. Using species trees and sequence

alignments of genes from biological and simulated data, we studied the performance

of our method in identifying the amount of HGT as well as location of those HGT

events in the data sets.

Biological Data We studied 20 out of the 31 mitochondrial gene data sets, which

were collected from 29 diverse land plants and analyzed in [88]. These are cox2,

nad2, nad3, nad4(ex4), nad4(exons), nad5, nad6, nad7, atp1, atp8, ccmB, ccmC,

ccmFN1, cox3, nad1, rpl16, rps19, sdh4, and three introns nad2intron, nad5intron

and nad7intron. We used a species tree for the data set based on information at

NCBI

(http://www.ncbi.nih.gov) and analyzed the entire data set with both seed and
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non-seed plants together. For each gene data set, we restricted the species tree to

those species for which the gene sequence was available. We compared HGTs we have

identified with the result of Bergthorsson et al. It is important to note that in their

analyses, Bergthorsson et al. focused only on genes that were horizontally transferred

to the (mitochondrial genome of) Amborella; in other words, they did not consider

HGT events that may not have involved Amborella.

Simulated Data We used PhyloGen [91] to generate two 50-taxon species trees

ST1 and ST2 under the birth-death model. More precisely, we used the following

settings for the PhyloGen tool:

birthdeath birth=1 death=0 extant=50

generate replicates=2

For each species tree, we simulated ten DNA sequence alignments of length 1000

under the Kimura 2-Parameter model, involving HGT events, using the tool of [92].

To achieve this, we used the following settings for the tool:

nb_genes 10

diameter 1. 1.

sampling 100 100

seq_type DNA

seq_length 1000 1000

total_rho 0

total_tau 1

total_rho_prime 0

alpha_l 1.
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alpha_s 0.5

subst_model K80

subst_rates 2

We modified the tool of [92] so that it also prints the actual HGT events it simulates.

We label the 20 generated gene data sets as GS1 1, . . . , GS1 10, GS2 1, . . . , GS2 10. The

actual number of HGT events involved in each of the genes is reported in Table 3.3.2.

3.3 Results and Discussion

We have analyzed the biological and synthetic data by applying the procedure given

above, to assess the confidence of the postulated HGT edges and determine the num-

ber of HGT events by the confidence. For our experiments, we generated 100 sequence

alignments by sampling sites with replacement from the original alignment, in all cases

for the biological and simulated data analysis.

3.3.1 Biological Data

The numerical results of analyzing the 20 gene data sets of [88] are given in Table 3.1,

while the inferred phylogenetic networks with strong support for the inferred HGT

events for 13 of the gene data sets are shown in Figure 3.3 (for the other 7 data sets,

our method did not identify any HGTs). The three columns under the header [88] in

Table 3.1 correspond to the number of HGTs postulated by Bergthorsson et al., the

donor group, and support value for each postulated HGT event, as calculated by the

test of [93], respectively.

Bergthorsson et al. reported the groups of species to which the donor(s) of hori-

zontally transferred genes belong, rather than the specific donor. In particular, they
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Bergthorsson et al. [88] MP analysis

Gene #HGTs donor SH b1 b2 b3 b4 #HGTs F?

cox2 3 M <0.001 100 38 − − 1 Y

E NS Y

E NS −
nad2 2 M <0.001 100 62 − − 1 Y

E NS Y

nad4(exons) 1 M <0.001 99 98 44 − 2 Y

nad4(ex4) 1 E NS 58 − − − 0 Y

nad5 2 M <0.001 100 95 84 35 3 Y

A 0.025 Y

nad6 1 B <0.001 100 26 − − 1 Y

nad7 2 M <0.001 99 64 − − 1 Y

E NS Y

atp1 1 E 0.001 98 33 − − 1 Y

atp8 1 E 0.008 75 38 − − 1 Y

ccmB 1 E NS 39 − − − 0 Y

ccmC 1 E 0.03 68 − − − 0 Y

ccmFN1 1 E 0.004 80 86 37 − 2 Y

cox3 1 A NS 69 − − − 0 N

nad1 1 E <0.001 100 88 25 − 2 Y

rpl16 1 E NS 46 − − − 0 Y

rps19 1 E 0.003 100 61 − − 1 Y

sdh4 1 E NS 35 − − − 0 Y

nad2intron 1 M − 66 − − − 0 Y

nad5intron 1 M − 97 41 − − 1 Y

nad7intron 1 M − 100 67 − − 1 Y

Table 3.1 : Mitochondrial gene data sets and HGTs postulated by Bergthorsson et al.

and those computed by the MP analysis (NEPAL). ‘donor’ denotes the group from which
the gene was transferred (in all cases, the recipient is Amborella). ‘SH’ denotes support
of the HGT events as computed by the Shimodaira−Hasegawa (SH) test and reported by
Bergthorsson et al. (values lower than 0.05 indicate high support, and NS indicates support
is not significant). The ‘b1’, ‘b2’, ‘b3’, and ‘b4’ columns correspond to the support values
from Formula (3.3) for adding the first, second, third, and fourth HGT edges inferred by the
MP analysis. Since adding HGT edges stops once a weakly supported edge is encountered,
a ‘−’ entry under these columns indicates that adding HGT edges was stopped before. B
= Bryophyte, M = Moss, E = Eudicot, and A = Angiosperm.
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focused on four groups: Bryophytes, Moss, Eudicots, and Angiosperms. For the recip-

ient, the authors only focused on Amborella. Of the 25 HGT events that Bergthorsson

et al. postulated, 13 were supported, 9 unsupported, and 3 (the 3 intron data sets)

had no reported support.

The ‘b1’, ‘b2’, ‘b3’, and ‘b4’ columns under the MP analysis in Table 3.1 corre-

spond to the support values from Formula (3.3) for adding the first, second, third,

and fourth HGT edges inferred by the MP analysis. Since adding HGT edges stops

once a weakly supported edge is encountered, a dash entry under these columns in-

dicates that adding HGT edges was stopped before. The ‘#HGTs’ lists the number of

HGT edges inferred based on the support using the threshold value 70 (see discussion

above of the choice of this threshold). In other words, it is the count of non-dash

entries minus one in the bootstrap-value columns. The ‘F?’ column lists in each row

whether the HGT postulated by Bergthorsson et al. and reported in that row was

also found by the MP analysis. The row in gray refers to the case where the HGT

postulated by Bergthorsson et al. was found by the MP analysis, but with support

smaller than 70 (the support of the edge was 68).

Of the 13 HGTs reported in [88] with high support according to the [93] test, the

MP analysis with bootstrap supports identified 12, missing one HGT for ccmC that

has a support value of 0.03 by SH test. While the MP analysis postulated the right

HGT edge from the Eudicot group to Amborella (in the sense that the edge resulted

in the best improvement in the parsimony length), the bootstrap-based support for

this edge was 68, which is lower than the threshold of 70. It is worth mentioning that

the SH test reports the weakest support for this case compared to other cases (that

are not ‘NS’). Further, from the perspective of the parsimony length of the resulting

network, postulating the HGT edge for this gene only improves the parsimony length



41

by 6. In other words, this edge has very low support based on all three criteria:

parsimony length improvement, bootstrap-based support, and the SH test.

The three HGT edges postulated by Bergthorsson et al. for the intron data sets,

and which had no support values based on the SH test reported, were all identified

by the MP analysis. The HGT edge from the Moss group for the nad2intron gene

is not well supported, while the HGT edges for the nad5intron and nad7intron data

sets are both strongly supported.

Of the other 9 HGT events reported by the authors with no significant support

based on the SH test, the MP analysis identifies seven HGT edges, missing the other

two. The identified seven HGTs were all from the Eudictots to Amborella, and they

were in the cox2, nad2, nad4(ex4), nad7, ccmB, rpl16, and sdh4 data sets. However,

none of them is strongly supported according to the bootstrap-based analysis, which

is consistent with the SH test results.

In four data sets, the MP analysis identified HGT edges in addition to those

reported in [88]. However, none of these edges involved Amborella. One possible

explanation for why these edges were not reported in [88] is because the authors

focused only on HGT events involving Amborella. Another explanation may be the

inaccuracy of the parsimony criterion as raised in the preceding section.

Figure 3.3 shows the phylogenetic networks of 13 of the 20 biological data sets.

Each of the HGTs in the networks is marked as ‘Hi’ representing the i-th HGT

identified by the MP analysis, and labeled with a bootstrap support value. We used

the relaxed bootstrap support value, as given by Formula 3.3, in 10 out of 13 cases

for locating the clade of the source of an HGT since it is hard to identify their exact

locations. In 7 cases, clades of the source locations are identified and represented with

circles in the figure. Among these 7 cases, atp1, cox2, nad5, rps19, nad5intron, and
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nad7intron have very high bootstrap support (above 97) for the transfers to Amborella

from clades of their source locations. In cox2, all three locations inside the circle of

‘H1’ are identified as equally good sources of an HGT with perfect support. Others

show significantly improved bootstrap supports when the sources are identified as a

clade instead of an exact location. In some cases, multiple branches with individual

bootstrap values labeled are used instead of a clade for identifying more precise source

locations of the HGTs. In these cases, the relaxed bootstrap values are marked after

the joint points of the branches. Transfers identified by MP but not well supported

are not shown in the networks in Figure 3.3. Refinements, marked with solid circles,

are performed for unresolved branches in nad5, ccmFN1, nad5intron, and nad7intron,

based on MP scores. The MP scores for these four datasets are improved from 927

to 909, from 234 to 227, from 688 to 650, and from 950 to 900 with the marked

refinements.

3.3.2 Simulated Data

The numerical results of analyzing the synthetic gene data sets are given in Ta-

ble 3.3.2. The columns under the ‘true HGTs’ list the number of HGT edges added

by the tool of [92], and d1 and d2 denote the distance, in terms of the number of

branches on the species tree, between the source and recipient of each of the HGT

events simulated. When no HGT events are simulated, neither value is provided,

and when only one is simulated, only d1 is specified. The reason for computing these

values is to study the performance of the MP criterion on data sets with varying HGT

event diameters (the distance between source and recipient), as we hypothesize that

as the diameter becomes smaller, the performance of the MP analysis may become

poorer. An entry with value p∗ indicates that the diameter is p, but that the event
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is from a branch to another branch that is its descendant in the species tree. While

this seemingly contradicts temporal constraints (e.g., that the source and recipient

co-exist in time), such a scenario can be explained through extinction or incomplete

taxon sampling of taxa; see [87].

Under the ‘MP analysis’, we report the support of the inferred edges as before

(‘b1’, ‘b2’ and ‘b3’), the number of HGT edges detected (‘#HGTs’), and whether the

true ones were found (‘F1?’ and ‘F2?’), respectively. In this case, a dash entry in

the support value columns indicates that the support was not calculated since it was

determined already to stop adding HGT edges (i.e., the support for a preceding entry

was already < 70).

In this case, for each GSi j (i ∈ {1, 2} and 1 ≤ j ≤ 10), if there are m true HGTs,

we report the support value of the best m + 1 HGTs inferred by the MP analysis,

even if the bootstrap-based stopping criteria indicated stopping the addition of HGT

edges at a value smaller than m. The rows in gray refers to the cases where the

bootstrap-based approach failed to stop with the right amount of HGT.

The results show that when the number of true HGTs, as simulated in the data, is

0, the MP analysis detected no reticulation (or, HGTs) in the data, as the support for

adding the first HGT edge is < 70 in all cases with one exception of (GS1 9). For the

cases where the true number of HGTs is 1, there are only two cases where according

to the bootstrap-based support no HGTs were postulated, while the correct number

of HGTs was postulated in the other eight cases.

It is interesting to note that all cases in which the bootstrap-based method fails to

determine the right number of HGT edges have small diameter values. The bootstrap

underestimated the true number of HGTs in two cases (GS2 2 and GS2 8), inferring

incorrectly that the number of HGTs is 0. The horizontal transfer in GS2 2 and
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true HGTs MP analysis

Gene #HGTs d1 d2 #HGTs F1? F2? b1 b2 b3

GS1 2 0 − − 0 − − 15 − −
GS1 3 0 − − 0 − − 43 − −
GS1 7 0 − − 0 − − 46 − −
GS1 9 0 − − 1 − − 84 45 −
GS2 1 0 − − 0 − − 27 − −
GS2 7 0 − − 0 − − 47 − −
GS2 9 0 − − 0 − − 33 − −
GS2 2 1 2 − 0 N − 55 19 −
GS2 8 1 3* − 0 N 24 33 −
GS1 1 1 4 − 1 Y − 100 47 −
GS1 6 1 10 − 1 Y − 95 45 −
GS1 10 1 8 − 1 Y − 76 39 −
GS2 3 1 7 − 1 Y − 100 60 −
GS2 4 1 4 1 Y − 77 38 −
GS2 5 1 6 − 1 Y − 100 37 −
GS2 6 1 9 − 1 Y − 100 47 −
GS2 10 1 9 − 1 Y − 100 15 −
GS1 4 2 3* 5 2 Y Y 100 77 13

GS1 5 2 4* 7 2 Y Y 100 100 41

GS1 8 2 5* 7 2 Y Y 100 98 19

Table 3.2 : Results of the MP analysis of 20 simulated data sets. The rows are sorted by the
number of true HGTs simulated for each gene data set. The ‘d1’ and ‘d2’ columns denote
the distance, in terms of the number of branches on the species tree, between the source
and recipient of the first and second HGT events simulated, respectively. The ‘b1’, ‘b2’,
and ‘b3’ columns correspond to the support values from Formula 3.3 for adding the first,
second, and third HGT edges inferred by the MP analysis. Since adding HGT edges stops
once a weakly supported edge is encountered, a ‘−’ entry under these columns indicates
that adding HGT edges was stopped before.
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GS2 8 have diameters 2 and 3, respectively, which are the lowest values among all

the simulated data sets. The small diameter of a transfer indicates that the transfer

occurred from a branch to another that is almost its immediate sibling or descendant

in the species tree. These cases are very hard for the MP criterion to detect, since it

detects other HGT edges as yielding the best improvement to the parsimony score.

This highlights a fundamental drawback of the MP criterion which is that the HGT

edge resulting in the best improvement to the parsimony score is not necessarily

the true one. This is not surprising, since MP suffers from similar issues even for

reconstructing trees. The second HGT postulated by the MP analysis of the nad5 gene

differs from that reported in [88] for this very reason: the MP analysis identifies an

edge that improves the parsimony score more than the one reported by Bergthorsson

et al. (the one from Angiosperm to Amborella).

In the three simulated data sets with two true HGTs, the tool of [92] added one

of the two edges from a branch to one of its (not immediate) descendants, making a

very hard case for the bootstrap-based support method to detect. However, the MP

analysis correctly identifies both HGT edges, and with very high support, in all three

cases.

3.4 Conclusions

In this chapter, we revisited the maximum parsimony criterion for inferring phyloge-

netic networks. In previous studies, the criterion was shown to provide very promising

results on both biological and simulated data. However, previous work did not provide

the means to assess the significance of the number of reticulation events estimated

nor the location of the inferred events.

We proposed a systematic measure to serve as a stopping rule to the otherwise
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“overestimating-by-definition” criterion, and demonstrated their performance on 20

empirical data sets and 20 simulated data sets. From the result, it has been shown

that bootstrap measure provided very accurate results in general. Further, we found

that there are some boundary cases under which the MP criterion performs poorly.

Finally, we point out that the bootstrap-based support formula that we presented

here can be applied with any method that uses the gene sequences to infer HGT

edges, such as maximum likelihood [45].
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Figure 3.3 : HGT edges (in red) inferred by the MP criterion, with support values, in
parentheses, computed based on Formula (3.3). Ambiguity in the source is denoted by a
circle (when drawing a circle was possible) or a multi-source edge. Amborella genes are
colored in red, and core eudicot genes and moss genes are colored in blue and green, respec-
tively. Branch refinements are performed for nad5, ccmFN1, nad5intron, and nad7intron at
the places marked with solid circles.
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Chapter 4

Phylogenetic Networks from Gene Sequence
Alignments under Maximum Likelihood (ML)

In the previous chapter, we develop an algorithm that assesses the significance of

the reticulate edges under MP, and study the performance of the MP in detecting

the reticulate events. In this chapter, we study the performance of the maximum-

likelihood (ML) for the detection [94]. A maximum likelihood (ML) model has been

proposed for this case and accounts for both mutation within a genomic region and

reticulation across the regions. However, the performance of this model in terms of

inferring information about reticulate evolution and properties that affect this perfor-

mance have not been studied. In this chapter, we study the effect of the evolutionary

diameter and height of a reticulation event on its identifiability under ML. We find

both of them, particularly the diameter, have a significant effect. Further, we find that

the number of genes (which can be generalized to the concept of “non-recombining

genomic regions”) that are transferred across a reticulation edge affects its detectabil-

ity. Last but not least, a fundamental challenge with phylogenetic networks is that

they allow an arbitrary level of complexity, giving rise the model selection problem.

We investigate the performance of two information criteria, the Akaike Information

Criterion (AIC) and the Bayesian Information Criterion (BIC), for addressing this

problem. We find that BIC performs well in general for controlling the model com-

plexity and preventing ML from grossly overestimating the number of reticulation

events. As more genomic data become available, accurate models for inferring evo-
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lutionary histories that involve reticulations become essential, particularly in light

of the increasing evidence of the significant role these evolutionary events play. Our

findings establish ML as a good criterion for this task, yet highlight significant issues

that must be accounted for when interpreting results obtained under this criterion.

4.1 Introduction

In a seminal paper, Maddison proposed a likelihood framework for inferring species

trees by simultaneously accounting for evolutionary events within loci (that is, muta-

tions at the nucleotide level) and across loci (that is, gene tree incongruence) [7]. The

post-genomic era has highlighted and further stressed the need for inference under

such a framework, as analyses of different data sets have revealed varying degrees of

incongruence among gene trees; e.g., [95, 96, 97, 98, 99, 100]. All these analyses have

focused on deep coalescence as the source of gene tree incongruence.

Another source of incongruence that has long been acknowledged by biologists

and that is being increasingly revealed by phylogenomic analyses is reticulate, or,

non-treelike, evolutionary events. For example, evidence shows that bacteria may

obtain a large proportion of their genetic diversity through the acquisition of sequences

from distantly related organisms, via horizontal gene transfer (HGT) [101, 102, 103,

13, 9, 104, 105, 106]. Furthermore, evidence of widespread HGT in plants has also

emerged [14, 88, 15]. Interspecific recombination is believed to be ubiquitous among

viruses [107, 108]. Hybrid speciation is a major evolutionary mechanism in plants,

and it is also seen in groups of fish and frogs [109, 110, 111, 112, 113, 114]. Further,

hybridization is believed to play an important role in speciation and evolutionary

innovation in several groups of plant and animal species [115, 116].

When reticulate evolutionary events occur among species, the species phylogeny
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takes the shape of a network, which is a rooted, directed, acyclic graph that extends

the evolutionary tree model by incorporating non-vertical inheritance of genetic ma-

terial [44]. Jin et al. restricted the maximum likelihood framework of Maddison [7] to

the case where gene tree incongruence is exclusively due to horizontal gene transfer

(HGT) events, thus providing a maximum likelihood formulation of the problem of

inferring phylogenetic networks from sequence data. [45]

While the maximum likelihood (ML) formulation of Jin et al. showed a good per-

formance in inferring reticulations on synthetic and biological data sets [45], it is not

clear what parameters affect the performance of ML in general. We hypothesize the

diameter of the reticulate evolutionary event (e.g., the distance between the source

and donor of an HGT event) plays an important role in the detectability of such an

event. Further, as more complex networks (that is, ones with more reticulations)

necessarily fit the data better than simpler ones, it is important to address the over-

fitting issue [44]. In this chapter, we conduct simulation studies to assess the effect

of the evolutionary diameter on the identifiability of reticulation events. Further, we

investigate the performance of two commonly used information criteria for controlling

for the complexity in inferred phylogenetic networks, namely the Akaike Information

Criterion, or AIC, [117] and the Bayesian Information Criterion, or BIC, [118]. These

criteria have been used for model selection in molecular phylogenetics and their per-

formance has been assessed [119, 120]. Further, these criteria have been used in the

context of phylogenetic networks recently to distinguish between reticulation events

and incomplete lineage sorting [47, 121]. However, none of these works aimed at

studying the performance of these criteria for the problem.

Our results show that ML performs well in terms of estimating reticulation prob-

abilities, and less so in determine the location, or placement, of reticulation edges.
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They also show that the diameter, reticulation probability, and number of gene data

sets used combined have a significant effect on the performance. We find that BIC,

and to a lesser extent AIC, performs very well in terms of model selection and pre-

venting ML from grossly overestimating the amount of reticulation. Our analysis

of two biological data sets that involve more complex evolutionary scenarios also

demonstrate good performance of ML.

4.2 Methods

4.2.1 Phylogenetic Networks and Maximum Likelihood

Given a collection R1, R2, . . . , Rk of n genomic regions, and set S = {S1, S2, . . . , Sk},

where Si is the sequence alignment corresponding to region Ri, the likelihood function,

as proposed in [45], is given by

L(N, γ|S) =
�

Si∈S




�

T∈T (N)

[P(Si|T ) ·P(T |N, γ)]



 , (4.1)

where P(Si|T ) represents the tree likelihood score, and P(T |N, γ) is the probability of

observing gene tree T , given phylogenetic network N and the reticulation probability

γ. Notice that if we relax our constraint on the allowed evolutionary events, and

allow for deep coalescence for example, then the term T (N) in Eq. (4.1) is replaced

by the set T of all possible trees on set X of taxa, to obtain the original formula

proposed by Maddison[7] (in addition to the γ factor, which was not accounted for

by Maddison).

To compute the likelihood function, as given by Eq. (4.1), the term P(T |N, γ) is
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computed as

P(T |N, γ) =
�

e∈η(T )

γ(e).

The maximum likelihood framework for inferring reticulation evolutionary histo-

ries from a set S for loci amounts to identifying the phylogenetic network N (topology

and branch lengths) along with the reticulation probabilities vector γ that maximize

Eq. (4.1).

4.2.2 Information Criteria

Given a phylogenetic network N , it can be augmented into a phylogenetic network

N �, by adding further reticulation nodes and edges. By definition of the set of trees

contained within a network, we obtain the relationship T (N) ⊆ T (N �). Using this

relationship in conjunction with Eq. (4.1), we obtain L(N, γ|S) ≤ L(N ��, γ �|S), where

γ � is the reticulation probabilities associated with phylogenetic network N �. In other

words, augmenting the network results, in most cases, in a better fit of the data, and

never in a worse fit [44]. Based on this observation, a phylogenetic network inference

procedure that seeks the network that maximizes Eq. (4.1) without accounting for

network complexity (in terms of the number of reticulation nodes) would produce

unrealistic evolutionary histories with large numbers of reticulation events.

To address this issue, we explore in this chapter two information criteria, the

Akaike Information Criterion, or AIC [117] and the Bayesian Information Criterion,

or BIC [118], which are widely used for model selection problems. The AIC criterion

is defined as

AIC = 2K − 2 ln L, (4.2)

where K is the number of parameters in the model, and L is the likelihood of the
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estimated model.

BIC [118] measures the balance between goodness-of-fit and the noise based on

the following formula:

BIC = K ln n− 2 ln L, (4.3)

where K, L, and n are defined as above. When using these criteria, the model with

the smallest value is sought.

In our context, K corresponds to the number of the branches of the network, L

is given by Eq. (4.1), and n is the total number of genes in the sequence data.

Searching the phylogenetic network space

In this chapter, we are concerned with the performance of the ML criterion in terms

of the number of reticulations it estimates, rather than in terms of speed. As such,

we implemented an exhaustive search procedure that starts from an initial tree T ,

and then searches all networks obtained from T by adding a single reticulation node,

identifying an optimal network N1, then all networks obtained from N1 by adding

a single reticulation node, etc. To add a reticulation node to a network (or tree),

the procedure picks a pair of edges (u1, v1) and (u2, v2), subdivide each edge into

two edges of equal length (each of the two edges is half the length of the original

edge that was subdivided), such that we have (u1, x1), (x1, v1), (u2, x2), and (x2, v2),

and finally, it adds a horizontal edge between x1 and x2 (in either direction). It is

important to note that in this procedure, when the pair of edges is picked for adding

a reticulation node, cycles are excluded, as well as reticulation edges between two

tree edges emanating from the same node (“sibling edges”).

Using this procedure, we analyzed the species tree (which is a network with 0 retic-

ulation nodes), all networks with 1 reticulation nodes, all networks with 2 reticulation
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nodes, etc. For each number of reticulation nodes, we maintain the network with the

optimal value for the information criterion. Then, a network with k + 1 reticulation

nodes is always formed by adding a single reticulation edge to the optimal network

with k reticulation nodes. That is, the set of all networks with k+1 reticulation nodes

is not generated “from scratch” by adding k+1 reticulation nodes in all possible ways

to the initial tree T ; rather, it is generated by adding a single reticulation node, in

all possible ways, to the optimal network with k reticulation nodes. In other words,

we build the network model using forward selection with reticulation nodes as vari-

ables, rather than an exhaustive model building. Even though the feature selection

approach inherits its own issues, it has been shown to provide good results [86, 45].

For each phylogenetic network, we also need to compute the reticulation prob-

abilities γ that optimize Eq. (4.1). For this purpose, we used a grid search with

values for each reticulation probability in the set {0.05, 0.1, . . . , 0.5}. Finally, to com-

pute the probabilities P(Si|T ) in Eq. (4.1), we used the dnaml program packaged in

Phylip [122].

To put it all together, given a phylogenetic network N with h reticulation nodes,

we identify the optimal phylogenetic network N � with h + 1 reticulation nodes using

the equation

(e∗, γ∗) = argmax(e,γ)L(N �, γ|S), (4.4)

where (e, γ) range over all possible ways of adding a reticulation edge e with retic-

ulation probability γ ∈ {0.05, 0.1, . . . , 0.5} to produce phylogenetic network N � that

differs from N by a single reticulation node. Here, the vector γ of reticulation prob-

abilities includes those of phylogenetic network N and the reticulation probability γ

of the new reticulation edge e.
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Once the pair (e∗, γ∗) is identified, the phylogenetic network N � is obtained by

adding reticulation edge e∗ to N , with its reticulation probability γ∗.

Results

In this section, we investigate the effects of topological properties of reticulation evens

on the performance of an ML approach to phylogenetic network inference. Further,

we study the performance of ML in terms of estimating the reticulation probabilities

from sequence data, and then investigate how the three information criteria perform

in terms of estimating the number of reticulation events in a data set.

For the synthetic data we analyze here, we used the PhyloGen program [91] to

generate species trees under a birth-death model. Each species tree was then used to

generate gene trees with HGT events using the tool of Galtier [92]. Since Galtier’s

tool does not given information about the actual HGT events simulated, we modified

the tool so that it produces such information. We then used the Seq-gen tool [123] to

simulate the evolution of DNA sequence data sets, each of length 100 sites, down each

of the gene trees, using the K80 model with transition/transversion ratio of 2. As

we modified the experimental setup to investigate each of the questions, we describe

below the details of the remaining steps of the simulation setup that are specific to

each study.

Effect of the diameter and height of reticulation events

Consider a set S of k independent sequence alignments, each of which evolved down

a (species) tree T . That is, the evolutionary history of S is reticulation-free. Now,

consider evaluating, under maximum likelihood a hypothesis that involves a single

reticulation event along with its associated probability γ; i.e., a phylogenetic network
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N that induces the two trees, T and T �, where T � differs from T by the placement

of a subtree due to a hypothesized reticulation. Under the maximum likelihood

framework, the change in the likelihood of the model is

P(S|N, γ)−P(S|T ) = γ [P(S|T �)−P(S|T )] .

This quantity is non-negative whenever P (S|T �) ≥ P (S|T ). That is, under the max-

imum likelihood framework, if an arbitrary tree T � has a higher likelihood that the

true tree T on which the sequences evolved, the ML framework would end up inferring

reticulation events, even though the true evolutionary history is reticulation-free. The

question we investigate first is: what factors might affect the performance of ML in

this case? We hypothesize the the diameter of a reticulation event (that is, the length

of the path along the underlying species tree between the donor and host nodes) and

height (that is, the sum of the lengths of the paths from the donor and host nodes to

the farthest leaves under them, respectively) play a role in the performance of ML.

To investigate this question, we conducted the following experiment. We simulated

the evolution of 100 sequence alignments, S1, S2, . . . , S100 down the 16-taxon tree T

shown in Fig. 4.1(a), and then calculated P (Si|T �), for 1 ≤ i ≤ 100, where T � is one

of the 12 trees that differ from T by a single subtree prune and regraft (SPR) move,

with varying diameters, as shown with the arrows across the tree T in the figure.

The results show that as the diameter of a falsely postulated reticulation event

increases, the probability of the data on that tree decreases compared to the proba-

bility on the true tree. Consequently, if the ML criterion errs in inferring reticulation

events, it may introduce reticulation events between very closely related taxa. Or,

put differently, reticulation events of very low diameter that are inferred by ML may



57

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

H1(d=0.65)

H2(d=0.65)

e2
e1

e3
e4

(a) (b) (c)

Figure 4.1 : Effect of the diameter of an HGT edge on the change in the likelihood
score. The diameter of an HGT edge from node x to node y in the phylogenetic
network is measured as the length of the path between x and y in the underlying tree
(the network without the red arrows in (a)). Each of the 12 HGT edges was assessed
individually, and never in combinations in this experiment. (b) Effect of the diameter
for HGTs with different diameters but with a fixed donor node (taxon 1); these results
correspond to each of the 6 HGT edges involving taxa 1—8. The diameters of the
HGT edges vary from 0.15, for the HGT edge from taxon 1 to taxon 3, to 0.65, for
the HGT edges from taxon 1 to taxon 8, with increments of 0.1. (c) Effect of the
diameter for HGTs with different diameters but with a fixed recipient node (taxon
16); these results correspond to each of the 6 HGT edges involving taxa 9—16. The
diameters of the HGT edges vary from 0.15, for the HGT edge from taxon 14 to taxon
16, to 0.65, for the HGT edges from taxon 9 to taxon 16, with increments of 0.1. The
case of diameter=0 corresponds to scoring the likelihood of the underlying tree given
the data.

not be well supported.

It is important to note that when the host is kept fixed, while changing the

donor node to increase diameter (Fig. 4.1(c)), the effect on the decrease of the model

likelihood is more than when the donor node is kept fixed and the host node changes

(Fig. 4.1(b)). These results combined show that for short diameters where ML may

make wrong inferences, the chances are higher that the error involves the placement

of the donor node. In general, and beyond the ML framework, one may have more

confidence in inference about the recipient than the donor, since in data sets involving

bacteria for example, it is very easy to imagine that the true donor is not sampled
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in the data set given the challenges with sampling bacterial data and the very large

population size.

For our second experiment, we generated data as above, yet scored the probabili-

ties of the sequence data on trees that differ from the true underlying tree in a single

reticulation event that varies across trees in terms of its height; see Fig. 4.2. Unlike

the diameter, the height does not seem to have much of an effect on the probabilities

beyond the decrease as compared to the probability of the sequences on the true tree

(height 0).
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Figure 4.2 : Effect of the height of an HGT edge on the change in the likelihood
score. The height of an HGT edge from node x to node y in the phylogenetic network
is measured as the sum of the length of the path from x to a leaf under it in the
underlying tree (the network without the red arrows in (a)) and the length of the
path from y to a leaf under it. Each of the 10 HGT edges was assessed individually,
and never in combinations in this experiment. (b) Effect of the height for HGTs with
different heights but with the recipient taxon always being a branch connected to a
leaf node; these results correspond to each of the 5 HGT edges involving taxa 1—8.
The heights of the HGT edges vary from 0.05, for the HGT edge from taxon 1 to
taxon 4, to 0.45, for the HGT edges from taxon 1 to taxon 8, with increments of 0.1.
(c) Effect of the height for HGTs with different heights but with the donor taxon
always being a branch connected to a leaf node; these results correspond to each of
the 5 HGT edges involving taxa 9—16. The heights of the HGT edges vary from 0.05,
for the HGT edge from taxon 13 to taxon 16, to 0.45, for the HGT edges from taxon
9 to taxon 16, with increments of 0.1. The case of height=0 corresponds to scoring
the likelihood of the underlying tree given the data.
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Performance of ML in determining the placement and probability of retic-

ulation

In our second set of experiments, we set out to investigate how the ML performs

in terms of identifying the location of a reticulation edge as well as the reticulation

probability that indicates the fraction of genes that were transferred across that edge.

We considered three independent evolutionary scenarios, each involving a single retic-

ulation edge of a certain diameter, as shown in Fig. 4.3. All three reticulation edges

3

5

4

7

6

8

1

2
1

2

3

Figure 4.3 : Three evolutionary histories, each involving the underling tree (black
lines) and a single reticulation edge from the set of three reticulation edges 1, 2,
and 3. The diameters of the three reticulation edges 1, 2, 3 are 0.5, 1.0, and 1.5,
respectively.

have the same height and agree on the donor node, yet differ in terms of host node,

and consequently the diameter. Each network of the three resulting network contains

exactly two trees:

• Network N1, which is formed by adding only reticulation edge 1 to the underly-

ing tree T ; this network contains the two trees T and T1, where T1 differs from

T only by placing taxon 2 as a sister taxon of 3.

• Network N2, which is formed by adding only reticulation edge 2 to the underly-



60

ing tree T ; this network contains the two trees T and T2, where T2 differs from

T only by placing taxon 4 as a sister taxon of 3.

• Network N3, which is formed by adding only reticulation edge 3 to the underly-

ing tree T ; this network contains the two trees T and T3, where T3 differs from

T only by placing taxon 7 as a sister taxon of 3.

To answer the two questions, we generated sequence data as follows: For a reticulation

probability γ associated with the reticulation edge in network Ni, we evolved (1−γ)n

gene sequence alignments down tree T , and γn gene sequence alignments down the

tree Ti. In our experiment, we used reticulation probabilities γ ∈ {0.1, 0.3, 0.5} and

“genome size” n ∈ {10, 20, 40, 80}. For each combination of parameter values, we

generated 50 data sets and performance inference of reticulation edges and their

probabilities on all of them.

To investigate how ML performs in terms of estimating the reticulation probability,

we fixed all elements of the model and only inferring the reticulation probability. That

is, in this part, we assumed knowledge of the correct placement of the reticulation

edge, and inferred the value of its associated γ using Eq. (4.4) (in this case, the

equation identifies γ while e is known). The results are shown in Fig. 4.4.

There are several points to make. The diameter of the reticulation edge has a

great effect on the accuracy of the estimated probabilities. For the largest diameter

(d = 1.5), the ML criterion estimates the correct value of γ in almost all 50 cases,

regardless of the true value of γ. It is important to note, though, that even for this

diameter value, increasing the genome size (number of genes) reduces the variance in

the estimates.
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(a) d = 0.5 (b) d = 1.0 (b) d = 1.5

Figure 4.4 : The performance of ML for estimating the reticulation probabilities on
data simulated with a single reticulation event. The genome size corresponds to the
number of gene data sets used in the inference. Each panel contains three segments,
corresponding to three different values of true reticulation probabilities: 0.1, 0.3,
and 0.5. The reticulation probabilities γe were estimated using Eq. (4.4). The three
diameters correspond to the three networks of Fig. 4.3.

For the smallest diameter, we observe an accurate estimate of the reticulation

probability on average, yet with larger variance across the 50 data sets. In this case

as well, increasing the number of genes reduces the variance. Further, for larger values

of γ, the estimates become more accurate in general.

The data sets with medium diameter do not fit the trend very well in that show

worse performance than the other diameters and not much improvement as the num-

ber of genes increases.

For studying the performance of ML in terms of placing the postulated reticulation

edges, we used the data generated as described above along with the underlying

(species) tree, as shown in Fig. 4.3, and inferred a single reticulation edge for each

data set, by using Eq. (4.4) and the network search procedure. Suppose that network

N with a single reticulation edge was inferred from data generated down network Ni

from Fig. 4.3. Since both networks N and Ni have the same underlying (species) tree,

checking whether the inferred reticulation edge agrees in terms of placement with the
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true one is equivalent to checking whether the other tree T � (besides T ) induced by N

is identical to the tree Ti (the one induced by Ni in addition to T ). However, rather

than returning a 0/1 value, we quantify the symmetric difference between the two

sets of bipartitions induced by T � and Ti. The results are summarized in Table 4.1. A

value of 0 in the table indicates correct inference of the placement of the reticulation

edge and the larger the value in the table the worse the predicted placement.

Table 4.1 : The accuracy of the placement of the inferred reticulation edge in terms
of the symmetric difference between the true and inferred gene trees with a single
reticulation event (see text for more details). The genome size corresponds to the
number of gene data sets used in the inference. The three diameters correspond to
the three networks of Fig. 4.3.

Diameter Genome size
10 20 40 80

γ=0.1
0.5 0.6 0 0 0
1 2.3 2.6 1.2 0.3
1.5 5.6 5.7 5.6 5.5

γ=0.3
0.5 0 0 0 0
1 1.2 0.1 0 0
1.5 5.0 3.6 2.3 1.7

γ=0.5
0.5 0 0 0 0
1 0.2 0 0 0
1.5 3.0 3.2 1.5 0

The results show a very strong effect of the diameter of the true reticulation event

on the postulated placement of the inferred one. Holding the reticulation probability

and genome size constant, we observe a significant increase in the error as the diameter

increases. For example, when using 10 genes and with reticulation probability of 0.1,

the error in the placement of the reticulation event increases from 0.6 for diameter
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0.5 to 5.6 for diameter 1.5. The same trend holds across all parameter values. This

result indicates that confidence in the placement of an inferred reticulation event

based on ML decreases as the diameter of the inferred event increases. On the more

positive side, and with the exception of diameter 1.5 and reticulation probability

of 0.1, increasing then number of genes drastically improves the accuracy of the

placement. It is not surprising that for γ = 0.1, the error is high even for a large

number of genes, since in this case the signal for reticulation is very low. For example,

in the case of 10 genes, the evolutionary history of only a single gene involves the

reticulation edges; recovering this edge is very hard in this case.

These results highlight an important issue in detecting reticulations using ML. If

reticulation is a hybridization or hybrid speciation event, where a large number of

genes may be exchanged or transferred across a reticulation edge (that is, a high value

of γ), then ML would perform very well in terms of identifying the proportion of genes

that were transferred horizontally, as well as the actual location of the reticulation

(however, see Discussion section about the issue of incomplete taxon sampling). In the

case of horizontal gene transfer in prokaryotes, on the other hand, a very small number

of genes (or even a fraction of a gene) may be transferred across a reticulation edge;

in this case, not much confidence can be assigned to the placement of the reticulation

edge, especially if it has a large evolutionary diameter. However, horizontal gene

transfer in microbial evolution seems to occur more often between closely related

lineages than between distantly related ones [124].

Model selection under ML and the performance of information criteria

Now that we have explored the effect of diameter on the performance of ML in

terms of estimating the placement of reticulation edges along with their associated
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probabilities, we turn our attention to a most crucial issue with this model, as well

as with phylogenetic networks in general, namely model selection. Here, we will

investigate how ML does in estimating the correct number of reticulation edges and

how, when augmented with information criteria, it performs. Let us denote by L(i)

the highest likelihood score of all phylogenetic networks with i reticulation edges

for a given data set. The, the AIC criterion selects a phylogenetic network with i

reticulation edges over a phylogenetic network with i− 1 edges only when

(2K − 2 ln L(i− 1))− (2(K + 1)− 2 ln L(i) < 0.

Simplifying this inequality yields ln L(i)−ln L(i−1) > 1. That is, whenever a network

with i reticulation edges improves the likelihood score by at least one point, over a

phylogenetic network with i − 1 reticulations, the ith edge would be selected under

AIC, resulting in more complex network. This is equivalent to

L(i)

L(i− 1)
> e.

Similarly, for the BIC, a phylogenetic network with i reticulation edges is selected

over a phylogenetic network with i− 1 reticulation edges whenever

(K ln n− 2 ln L(i− 1))− ((K + 1) ln n− 2 ln L(i)) > 0,

which is equivalent to ln L(i)− ln L(i− 1) > ln n/2 or

L(i)

L(i− 1)
>
√

n.
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Based on these thresholds, we use 1 as the penalty term of AIC and ln n/2 as the

penalty term of BIC (since in the results we show below we explore the difference,

rather than ration, of the likelihood scores). In the experiments we now discuss, we

focus on the quantity L(i)−L(i− 1) as we add more reticulation edges, and compare

it to the AIC and BIC penalty terms.

In our first experiment, we set out to investigate how both criteria perform when

the data set has no reticulations. We used an experimental setup as above, where we

generated 50 sequence data sets based on the (species) tree of Fig. 4.3 with genome

sizes of n = {10, 20, 40, 80} genes. We then applied our search procedure to identify

the best first, second, third, and fourth reticulation edges to add, and compared the

changes in likelihood scores, L(i)−L(i− 1) to the penalty terms of both information

criteria. The results are shown in Fig. 4.5.

Figure 4.5 : The change in the likelihood scores as more reticulation edges are added.
The true number of reticulations is 0 (all sequences were generated down the tree
with no reticulations in Fig. 4.5.

As the results show, the estimated number of reticulation edges under both criteria
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is always correct (0), except for a few cases when AIC estimates a single reticulation

event. Notice that without either of the two criteria, the likelihood improvement is

positive whenever any of the four reticulation edges are added. In other words, when

no reticulations have occurred, both criteria, and particularly BIC, do a very good

job at model selection, whereas ML with no penalty term would grossly overestimate

the amount of reticulation.

We now turn our attention to the case of a single reticulation, yet with three

different diameters and three different reticulation probabilities, as shown in Fig. 4.5.

The results are shown in Fig. 4.6. The data used here is the same that we used to

obtain the results in Fig. 4.4 and Table 4.1 above.

The results highlight several issues. For a very small diameter, the change in the

likelihood score always exceeds the penalty term of AIC and is always smaller than

that of BIC, resulting in accurate estimates based on BIC and overestimates based on

AIC. As the diameter increases, to 1, BIC has a very good performance for the larger

reticulation probabilities, but underestimates for the case of γ = 0.1. However, in this

case, increasing the number of genes used to 40 or 80 gives BIC the necessary signal

to make an accurate estimation. In the case of a diameter of 0.5, BIC almost always

incorrectly predicts 0 reticulations, except when 80 genes are used and γ = 0.5.

Unlike BIC, AIC performs better at higher diameters, but that is because the

change in likelihood scores become smaller and do not exceed the penalty term.

These results, combined with those from Fig. 4.5, indicates that inspecting both

the change in the likelihood score itself, as well as the information criteria value may

be valuable in determining, for real data sets, the true number of reticulations. An im-

portant trend to notice also is that the improvement in the likelihood score decreases

when overestimated reticulations are added. Further, the reticulation probability has



67

a clear effect on the performance: the higher the probability, the higher the improve-

ment of the likelihood score becomes, especially as compared to the improvements

when overestimating. This again points to the conclusion that it is easier to detect

hybridization or hybrid speciation events, where many genes support a reticulation

edge, than horizontal gene transfer evens involving very small number of genes.

Results on biological data sets

Unlike synthetic data, where the full evolutionary history is know, biological data

sets pose several challenges, including the often unknown evolutionary history. In

this section, we analyze two data sets. The first is a 15-taxon dataset of plastids,

cyanobacteria, and proteobacteria, which is a subset of the dataset considered in [1]

and for which multiple HGT events were conjectured by the authors. For this dataset,

we obtained the species (organismal) tree which was reported in [1]. The species tree

is based on 16S rRNA and other evidence and is shown in Fig. 4.7. We analyzed

the rubisco gene rbcL of these 15 organisms. The gene dataset consists of 15 aligned

amino acid sequences, each of length 532 (the alignment is available from

http://www.life.umd.edu/labs/delwiche/alignments/rbcLgb7

-95.distrib.txt).

Based on both the AIC and BIC criteria, we infer five HGT events, which agree

with the hypotheses of Delwiche and Palmer [1] as well as the findings under both

maximum parsimony and maximum likelihood analyses of Jin et al.[125, 45]. A major

difference between this analysis and the previous computational analyses is that the

information criteria systematically determined the number of HGT edges (Fig. 4.7),

whereas in the other analyses the number was determined by an ad hoc inspection of

the trends of the maximum parsimony and maximum likelihood scores. It is important
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to mention that in this analysis, we did not infer the reticulation probabilities, but

rather set them to 0.5, since only one gene data set was used and estimating the

probabilities is not possible from such a data set.

For the second data set, we reanalyzed the yeast data set of [2], which is composed

of 106 loci, each with a single allele sampled from seven Saccharomyces species S.

cerevisiae (Scer), S. paradoxus (Spar), S. mikatae (Smik), S. kudriavzevii (Skud),

S. bayanus (Sbay), S. castellii (Scas), S. kluyveri (Sklu), and the outgroup fungus

Candida albicans (Calb). In our analysis, we focused only on the first five species,

since various studies have indicated the possibility of a hybridization within this

group. From the sequence alignments, we reconstructed the species tree (topology

and branch lengths) using the branch-and-bound algorithm in PAUP [82] through the

following command:

BEGIN PAUP;

[1] NJ;

[2] LSCORE 1/ BASEFREQ=empirical

TRATIO=estimate RATES=gamma SHAPE=estimate;

[3] SET CRITERION=like;

[4] LSET BASEFREQ=empirical TRATIO=previous

RATES=gamma SHAPE=previous;

[5] BANDB;

END;

The reconstructed species tree, which agrees in terms of topology with the one

inferred in [2], is shown Fig. 4.8.

Bloomquist and Suchard used a Bayesian framework to analyze the data set and

found that 37 of the 106 genes supported the reticulation event [126], which amounts

to a hybridization probability of 0.34. Yu used a maximum likelihood framework that
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estimates hybridization in the presence of incomplete lineage sorting [121]. When

using 106 gene tree topologies estimated under maximum parsimony, their method

estimated a hybridization probability of 0.34, which is identical to that of [126].

While the maximum likelihood framework we investigate here does not account for

incomplete lineage sorting, it still produced a hypothesis of a reticulation event that

agrees with the other studies (Fig. 4.8), with a lower estimate of the number of loci

involved in this reticulation event (it estimated that about 5 of the 106 loci were

involved in the hybridization). This further emphasizes the good performance of the

maximum likelihood framework, even on a data set for which evolutionary events

other than reticulation have been hypothesized.

Discussion

In this chapter, we studied the performance of ML for identifying reticulation events

from sequence data, based on the formulation given in Eq. (4.1). We showed through

simulation studies that the evolutionary diameter, and to a lesser extent, the height

of a reticulation edge affects the performance in terms of estimating the reticulation

probability (which reflects the proportion of genes transferred across a reticulation

edge) and postulating a placement for the reticulation edge. We showed that increas-

ing the number of genes improves the performance as well. We then investigated the

performance of two information criteria, AIC and BIC, and found that BIC in general

performs well in terms of model selection and preventing ML from overestimating the

number of reticulation edges. Both AIC and BIC produced reasonable results on two

biological data sets.

It is important to stress again that the framework, as given by Eq. (4.1), that

we investigated here assumes reticulation as the only source of heterogeneity in the
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evolution of the sequence data. However, in practice, other events may take place

and the model needs to be modified accordingly. In particular, if events such as deep

coalescence were allowed in the model, then the evolutionary history of a genomic

region may take the form of a tree that is not in the set T (N) as we defined it

above. Rather, every possible tree topology can now appear in the set T (N), and the

probability of each tree can be assessed under models such as the coalescent. Work

on accounting for both reticulation and deep coalescence simultaneously is emerging

[46, 47, 48, 121], but dealing with it is beyond the scope of this chapter.

Another issue that is of extreme significance when dealing with reticulation is

taxon sampling. As we showed above, the location of the donor node has a significant

impact on the detectability of a reticulation edge. When analyzing data sets in

practice, particularly prokaryotic data, it may easily be the case that the true donor

of the horizontally transferred is not in the data set being analyzed. Therefore, beyond

our findings here about the power of ML to infer the placement of a reticulation edge,

one has to be cautious about interpreting the placement of a computationally inferred

reticulation edge.

A third issue is that while the term reticulation encompasses all types of evolu-

tionary events that are not vertical, there is a clear distinction between, for example,

the exchange of a genomic regions through homologous recombination in bacteria

and a hybrid speciation event that gives rise to a new species in plants. The amount

of genetic material transferred across a reticulation edge in the latter case is way

much larger than that of in the former. In a phylogenomic study involving thousands

of gene families, identifying a reticulation edge that might have been used in the

transfer of a single gene might be confounded by the overwhelming vertical signal

supported by the remaining genes. Consequently, more confidence can be associated
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with inferences in cases where a large number of genes support a reticulation edge.

When gene trees are estimated with confidence, one can replace Eq. (4.1) by

L(N, γ|T ) =
�

Ti∈T

P(Ti|N, γ),

where Ti is the gene tree for gene i. In this case, a method for estimating the term

P(Ti|N, γ) is required. Yu recently devised such a method [121]. We identify com-

paring this approach to the one we used here as a future research task. Further, in

the work of [121], the authors also gave a method to account for uncertainty in the

estimated gene trees in set T , which we will explore as well.

Finally, we showed in this manuscript that if the improvement ratio in the like-

lihood score by adding a reticulation edge is beyond e and
√

n for AIC and BIC,

respectively, then adding the reticulation edge would be supported. This result can

be further pursued in two directions. First, mathematical results can be derived, for

specific models of sequence evolution, to establish analytically conditions under which

ML would support a reticulation edge, and equivalently, when AIC and BIC would

result in overestimation. Second, these results can be utilized for devising efficient

algorithmic techniques for identifying reticulation edges whose addition result in sig-

nificant improvement, as opposed to exhaustively searching the space of all possible

reticulation edges, which is infeasible for large values of n.
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(a) γ=0.1, d=0.5 (b) γ=0.1, d=1 (c) γ=0.1, d=1.5

(d) γ=0.3, d=0.5 (e) γ=0.3, d=1 (f) γ=0.3, d=1.5

(g) γ=0.5, d=0.5 (h) γ=0.5, d=1 (i) γ=0.5, d=1.5

Figure 4.6 : The change in the likelihood scores as more reticulation edges are added.
The true number of reticulations is 1, yet with three different diameters, as in Fig. 4.5.
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Figure 4.7 : Results on the rbcL gene data set. (Left) The underlying species tree,
as reported in [1], with the five predicted HGT edges posited between pairs of its
branches. (Right) The decrease in the AIC and BIC values as optimal HGT edges
are added to the species tree. The decrease in the AIC/BIC values from HGT addition
i to i + 1 corresponds to HGT edge Hi.
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Figure 4.8 : The inferred species tree for the yeast data set in [2]. The horizontal
arrow corresponds to the reticulation event inferred by our method, along with the
reticulation probability.
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Chapter 5

Phylogenetic Networks from Gene Trees by
Parsimony

So far, we have discussed the reconstruction problem with a set of sequence align-

ments as the input. As data, gene trees contain less noise and more error in general

in comparison to the gene sequence. There are a body of researches focusing on re-

constructing gene trees, either with branch lengths or without them, from various

types of data (e.g. [127, 128, 129, 82, 122]). In this chapter, we introduce the compu-

tational methods addressing the phylogenetic network problem from a collection of

the reconstructed gene trees.

5.1 Introduction

With the availability of whole-genome data from an increasingly large number of or-

ganisms, particularly prokaryotic ones, evolutionary studies are faced with a large

number of gene trees∗ in a given study. Therefore, it is imperative to develop compu-

tational techniques that simultaneously analyze a large number of trees, and combine

them into networks. Clearly, the problem is NP-hard when the SPR distance is used,

since it is NP-hard for a pair of trees. Huson and Rupp [130] proposed a method

for summarizing a collection of gene trees using cluster networks, which differ from

the phylogenetic network model we address here. Beiko and Ragan [131] discussed

∗In this context, the term “gene tree” applies to an evolutionary tree of any non-recombining
genomic region; i.e., it is not limited to trees on (protein-coding) gene regions.
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aggregating inferred HGT events from pairwise tree comparisons, and discussed three

strategies for this task; yet, they did not implement the strategies, nor did they study

their performance. Iersel et al. [5] developed the CASS method, which is an efficient

algorithm for inferring a minimal phylogenetic network that contains all the clusters

of taxa displayed by the input gene trees, but not necessarily the input gene trees

themselves. Further, Wu [4] recently introduced the PIRN algorithm for obtaining

lower and upper bounds on the amount of reticulations necessary for reconciling a set

of input gene trees. Finally, we introduced two methods for estimating the amount

of reticulation, as well as inferring a phylogenetic network, from a collection of gene

trees [3, 132]. Both of our methods are based on obtaining estimates for the set of

trees from pairwise distance calculations. Note that all methods given above operate

based on two main assumptions about the input gene trees: (1) the trees are accurate

(that is, we ignore incongruence among the trees due to error in the gene tree infer-

ence), and (2) reticulation is the only biological cause of the gene tree incongruence.

While these two assumptions may be violated in practice, we believe that they can be

used to obtain a quick analysis, after which a careful inspection of the reticulations

can follow up. In this sense, we believe that the algorithms should guarantee speed as

well as accuracy. The results show that our approaches of combining pairwise recon-

ciliations to obtain a solution for the entire set of trees, though ad hoc, showed good

performance in both senses. Therefore, these strict assumptions notwithstanding, we

believe the methods make a significant contribution.

In this chapter, we aim at inferring phylogenetic networks with the minimum

number of reticulation events that reconcile a collection of gene trees. We present

two heuristic algorithms, one that is based on the observation of a binomial distri-

bution of the pairwise distances of a collection of trees contained in a network, and
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the second is based on agglomerating pairwise solutions to obtain a global, hopefully

minimal, solution for all trees [3]. Further, we discover the bias of the second algo-

rithm resulting from the multiplicity of the pairwise solutions. In order to calculate

the unbiased solutions, we define the problem more formally and provide an integer

linear programming (ILP) solution for it [132]. It is important to mention that this

makes an improvement on the previous algorithm not only in accuracy, but also in

speed. Finally, we study the performance of the methods, and compare it to other

methods, on synthetic data sets and one biological data set. The results show that

our methods are fast in practice, and that they produce accurate estimates of the phy-

logenetic network. With the results, the simulation study also highlights conditions

under which the methods’ performances become not as good. This characterization

is particularly important, since it may help develop more accurate methods for this

problem.

The rest of the chapter is organized as follows. In Section 5.2, we give the definition

of the problems of interest and discuss the optimization criteria for the problems.

In Section 5.3, we present three heuristic algorithms that infer the number of the

reticulation events among the input gene trees. Note that the second and the third,

the ILP-based improvement to the second, infer the species tree as well as the locations

of the events. We conduct experiments to evaluate the performance of the algorithms

in Section 5.4, in which the results show that our algorithms perform better than the

competing algorithms in speed and/or accuracy. Section 5.5 concludes the chapter

with final remarks and some directions for future research.
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5.2 Background

The main focus of the chapter is to infer phylogenetic networks from a set of gene

trees under a certain set of assumptions, which will be given at the end of this

section. Under the assumptions, the true phylogenetic network should display all the

given gene trees, and likewise the gene trees should be contained in the network. As

described in the process 2.2, it is straightforward to induce the set T (N), given an

X -network N , though this computation may be expensive, since |T (N)| = O(2|VN |).

The more relevant problem in the context of inferring phylogenetic networks is that

of estimating an X -network from a subset† of its induced trees, since this amounts

to inferring the (reticulate) evolutionary history of a set of organisms.

5.2.1 Pairwise and Set-wise Reconciliation of Trees

A main problem of interest is the following [44].

Problem 5.1. (Set-wise HGT Inference)

Input: A collection of gene trees G = {GT1, . . . , GTk}, each modeling the

evolutionary history of a genomic region of a set X of taxa. ‡

Output: A phylogenetic network N with the smallest number of reticulation

nodes (a minimal network) such that G ⊆ T (N).

†It is highly unlikely for a biological data set to exhibit all trees induced by the network; in
practice, the set of trees exhibited by the different genomic regions is a small subset of all possible
trees induced by the network.

‡It is important to note that while we focus on collections of trees that have the same leaf labels,
in practice gene trees may differ in their leaf labels (e.g., due to sampling, gene duplication, gene
loss, etc.).
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Obviously, if all trees in T are identical, the problem is trivial since N would be

the tree in T . Otherwise, the problem is hard. When the input consists of exactly

two trees, we refer to this as the Pairwise HGT Inference problem.

Given that there is a very large number of X -networks N such that T ⊆ T (N),

the main issue in this domain is to define a criterion Φ and seek the X -network (or,

set of X -networks) that is optimal under Φ, given the set T of trees. A natural

parsimony criterion to define is to minimize the number of network-nodes in N . In

other words, we seek the network (or set of networks) N such that (1) T ⊆ T (N), and

(2) N has the minimum number of network-nodes among all X -networks satisfying

(1). While the “true” phylogenetic network may not necessarily be a parsimonious

one, this criterion yields plausible networks in many realistic cases (although it is easy

to show examples of cases in which this criterion results in networks with numbers of

network-nodes that are arbitrarily smaller than the true number [44]). In particular,

this criterion can be viewed as a way to estimate a lower bound on the amount of

reticulation in the data. With this criterion for the reconstruction, a solution to a

Pairwise HGT Inference problem with T = {T1, T2} is to compute the SPR

distance [32] between the two trees, denoted by dSPR(T1, T2), and take it as the

estimate of the number of network-nodes in the X -network N that induced both

trees in T .

Based on the discussion, we set the reconstruction problem to estimate an X -

network, with the minimum number of network-nodes, that induces a given set of

trees T in this chapter. This problem is NP-hard, given that is NP-hard for a pair

of trees [34].

We will now make two assumptions that we will use throughout this chapter §.

§Unlike the other two assumptions given above, these are not necessarily kept in other approaches
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First, a solution to the Pairwise HGT Inference problem is obtained by solving

for SPR(T1, T2). In other words, we will take a smallest set Ξ of Subtree Prune

and Regraft (SPR) moves that transform T1 to T2, and obtain N by adding Ξ to T1.

Second, in the Pairwise HGT Inference problem, we will assume that the first

tree is a species tree ST . In this problem, we will assume that a species tree is given,

so that the distance from each tree in G to the species tree is computed. We discuss

below a potential solution to the problem when a species tree is not given as a part

of the input.

5.3 Methods

5.3.1 M1: Fitting a Binomial Distribution of Pairwise Distances

As we show below, our investigation of simulated data sets indicates that, in practice,

one factor that may affect the hardness of the problem is the redundancy in the

network, which we define as follows.

Definition 5.1. The redundancy of an X -network N with set VN of network-nodes

is εN = (2|VN | − |T (N)|)/2|VN |.

Figure 5.1 illustrates the concept of redundancy. In a non-redundant X -network

N (εN = 0), each tree in T (N) is uniquely induced by the network, whereas in a

redundant network (εN > 0), some trees may be induced in multiple ways. An upper

bound on εN for an X -network with h network-nodes is 1− 1/2h, in which case the

network induces a single tree and, considering topology alone, none of the reticulation

events may be detectable.

Let VN = {v1, . . . , vh} be the set of all network-nodes in an X -network N , and

for each two edges incoming into a node vi ∈ VN , let one be labeled l (for left) and
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A B C D

h1

h2

A B C D

h1
h2

A B C D

h1
h2

N1 N2 N3

Figure 5.1 : Three X -networks, each with two network-nodes, yet with vary-
ing degrees of redundancy. Here, T (N1) = {T1}, T (N2) = {T1, T2}, and
T (N3) = {T1, T2, T3, T4}, where T1 = ((A, (B, C)), D), T2 = (((A, B), C), D),
T3 = (A, (B, (C, D))), and T4 = ((A, B), (C, D)). Consequently, we have εN1 =
(4− 1)/4 = 0.75, εN2 = (4− 2)/4 = 0.50, and εN3 = (4− 4)/4 = 0.

the other be labeled r (for right). Further, let T ∈ T (N) be a tree induced by the

network. A displaying vector of T , denoted by d(T ) is an element of {l, r}h, where

d(T )[i] denotes the label of the edge incoming into vi that was retained to induce the

tree T . We have the following two lemmas and ensuing theorem.

Lemma 5.1. Let N be an X -network. Then, d(T ) is unique for every tree T ∈ T (N)

iff εN = 0.

Lemma 5.2. Let D = {l, r}h. Then |{{d1, d2} : d1, d2 ∈ D, HD(d1, d2) = q}| =
�

h

q

�
2h−1, where HD(d1, d2) denotes the Hamming distance between the two binary

vectors d1 and d2.

Theorem 5.1. Let N be an X -network with h network-nodes, and assume dSPR(T1, T2) =

HD(d(T1), d(T2)) for every T1, T2 ∈ T (N). If εN = 0 then |{{T1, T2} : T1, T2 ∈

T (N), dSPR(T1, T2) = q}| =
�

h

q

�
2h−1.

Theorem 5.1 implies that when there is no redundancy in the network, and given

that we do not know the actual displaying vectors of the trees, we can use the SPR

distance as a proxy to the Hamming distance of the displaying vector, and expect a
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binomial distribution of the pairwise distances. This, in turn, naturally gives rise to

the following approach for estimating the minimum number of reticulations required

in a phylogenetic network to reconcile a set T of trees:

1. Compute all pairwise SPR distances over the set T of trees, and let Q be the

distribution of these distances.

2. Denoting by Pm the distribution
�

m

q

�
2m−1 for 1 ≤ q ≤ m, find the value m

that minimizes KL(Q|Pm), where KL is the Kullback-Leibler distance [133]

KL(g|f) =
�

q
f(q) ln f(q)

g(q) .

The way we compute the value of m in Step (2) in the above procedure is by starting

from

m = max{�log2 |T |�, max
T1,T2∈T

dSPR(T1, T2)} (5.1)

and incrementing m as long as KL(Q|Pm) decreases. The rationale behind Equa-

tion ((5.1)) is that the log2 of the number of trees in the given set is a lower bound

on the number of reticulations, and so is the maximum pairwise SPR distance over

all trees in the set.

Obviously, the conditions of Theorem 5.1 may not hold in practice. In particular,

it may be that some or all of the following issues arise when analyzing a data set:

1. It may be that for some pairs of trees T1, T2 ∈ T (N), dSPR(T1, T2) < HD(d(T1), d(T2)).

In this case, the distribution of the pairwise distances may be skewed to the left.

A potential alternative for considering the minimum number of SPR moves is

to take a stochastic approach that simulates random walks, using SPR moves,

in the tree space [134].

2. The (unknown) network N may have εN > 0. Here, the frequencies of some
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pairwise distances may be lower than the true frequencies (which are the ones

based on Pm).

3. The given set of trees T does not contain all trees induced by the (unknown)

network N . Here, not enough data points may be available for reliably estimat-

ing the true distribution Q.

Nevertheless, we show below, through extensive simulations, that this heuristic pro-

vides good estimates of the number of network-nodes required for a network to rec-

oncile a given set of trees. From the next section on, we refer to this method M1.

5.3.2 M2: Combining Pairwise Solutions

While the approach in the previous section is aimed at estimating only the minimum

number of reticulations needed in a phylogenetic network to reconcile a set of trees,

the approach we present here is aimed at estimating minimal sets of actual SPR

moves (obviously, the sizes of such sets can be taken as estimates of the amount of

reticulation). Note that both this approach and its improvement in the next section

can be taken as an upper-bound on the minimum number of reticulation nodes,

whereas the estimates of the first approach cannot necessarily be taken neither as an

upper-bound nor as a lower-bound. Actually, the result shows that that of the first

approach works usually as a lower-bound, in the sense that it usually underestimates.

The general outline of the method we propose here for estimating a set of SPR

moves to reconcile a set of trees T is simple (similar to the greedy approach for

aggregating inferred HGT events in [131]):

1. For each pair of trees in T , identify a minimal set of SPR moves that reconcile

them.
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2. Combine the set of solutions identified in Step (1).

There are two main issues that need to be addressed for this approach to work in

practice. First, for a given pair of trees, there may be multiple minimal sets of SPR

moves that reconcile them [135]. In this case, we need the pairwise SPR computa-

tion to return all, or a large number, of these minimal solutions. We make use of

the modified version of RIATA-HGT [39, 40], as implemented in PhyloNet [136], to

compute multiple minimal solutions. The second issue is two-fold: (a) Given a set of

minimal sets of SPR moves for each pair of trees, how do we find a global minimal

set of SPR moves that covers at least one minimal set for each pair? (b) Once the

(global) minimal set is computed, how do we obtain a network from it?

In the case of the horizontal gene transfer detection problem, usually a species tree

ST is given, in addition to the set of trees T . In this case, the pairwise computations

should be conducted only between ST and every tree in T , but not between pairs of

trees in T . Then, the global set of SPR moves computed by the procedure above is

posited on the tree ST . In the case where no “backbone” tree, such as ST , is given,

we propose to use each of the k trees in T as a backbone tree against each all SPR

computations are conducted, and choose the tree in T that results in the smallest

set of SPR moves.

We use this idea in the heuristic M2 below. Let ST be an (species) X -tree and

T = {T1, . . . , Tk} be a collection of (gene) X -trees. Further, let Z be the set of all

possible SPR moves that can be defined on ST (the cardinality of Z is quadratic in the

number of leaves in ST [32]). For each tree Ti ∈ T , let SPR(ST, Ti) = {S1
i
, . . . , Swi

i
}

be the set of minimal sets of SPR moves that transform ST into Ti. Our task is to

find a minimal set z ⊆ Z such that for every 1 ≤ i ≤ k, there exists 1 ≤ �i ≤ wi

such that S�i
i
⊆ z. In other words, we seek a minimal set z of SPR moves that cover
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at least one minimal “solution” for each gene tree. Clearly, each tree in T can be

obtained by applying a subset (or all) of the SPR moves in z to ST . This is a hard

problem, and we solve it heuristically, as described in the following algorithm.

ALGORITHM M2

1. For each gene tree Ti ∈ T

1.1. initialize count: c(r) = 0 for every SPR move r in Z;

1.2. for each gene tree Tj ∈ T and Tj �= Ti

1.2(a). compute SPR(Ti, Tj);

1.3. for each SPR move r, compute count c(r) = |{j|r ∈ solution s and s ∈

SPR(Ti, Tj)}|;

1.4. for each gene tree Tj ∈ T and Tj �= Ti

1.4(a). for each solution s ∈ SPR(Ti, Tj), compute count c(s) =
�

k
{c(rk)|rk ∈

s};

1.4(b). choose a solution s, ˆSPR(Ti, Tj) = {s|c(s) >= c(s�) for all s� �= s, s� ∈

SPR(Ti, Tj)};

1.5. compute the union Ri =
�

Tj∈T ,Tj �=Ti
{s|s ∈ ˆSPR(Ti, Tj)};

2. choose R = Rl such that |Rl| = mini(|Ri||1 ≤ i ≤ k) along with the corresponding

tree Tl ∈ T .

In the next section on, this method will be referred to as M2.

5.3.3 MURPAR: Combining Pairwise Solutions using ILP

In the last section, M2 heuristically derives

SPR(ST,G ) = ∪gt∈G SPR(ST, gt) (5.2)
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as an estimate of the solution of the Set-wise HGT Inference problem. An advan-

tage of this approach is that fast exact algorithms and heuristics exist for obtaining

SPR(ST, gt), as described above, and taking the union of pairwise reconciliations

is very simple computationally. Indeed, the algorithm yields good performance on

simulated data sets [3]. Nonetheless, a careful inspection of the algorithm raises some

issues that need to be resolved for accurate estimates.

First, it is possible that the optimal solutions for SPR(ST, gt) do not lead to the

optimal solution for SPR(ST,G ), and cause overestimation in a “global” estimate of

reticulations. For example, consider the HGT scenarios shown in Fig. 5.2. If we take

A B C D E F G

1

4

3
2

X

N

A B C D E F G A B C D E F G A B C D E F G A B DC E F G

GT1 GT2 GT3 GT4

Figure 5.2 : A phylogenetic network with four independent HGT scenarios. The
species tree ST in this case is the network N without the four HGT edges. The gene whose
tree is GTi (1 ≤ i ≤ 3) underwent HGT event (i), and the gene whose tree is GT4 underwent
HGT events (1) and (4). The combined effect of HGTs (1) and (4) on the gene tree topology
is the same as the combined effect of HGTs (1), (2), and (3).

the union of the four pairwise solutions computed by SPR(ST,GTi), for 1 ≤ i ≤ 4,

we obtain a set of four HGT edges: Ξ1 = {[B → C], [E → D], [F → E], [F → X]}.

However, a smallest solution for the Set-wise HGT Inference problem given the

species tree ST and the four gene trees contains three HGT edges, which is the set
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Ξ2 = {[B → C], [E → D], [F → E]}. In this case, the HGT edge [F → X] is

not needed, since its effect can be simulated by the two HGT edges [E → D] and

[F → E], once the HGT edge [B → C] is applied. However, notice that in this case,

the solution that truly reflects what happened is Ξ1, since the HGT event denoted

by [F → X] did occur, even though its effect on the topologies of gene trees can be

simulated by the other three HGT edges. In other words, while the union of pairwise

solutions may not provide a smallest global solution, it may provide a solution that

is closer to the true HGT scenarios that took place at the genomic level. Further,

under these scenarios, where a smallest solution is a proper subset of the union of

pairwise solutions, post-processing via gradual elimination of members of the union

can yield a smallest solution. However, it is not guaranteed that the smallest solution

is a subset of the union of pairwise reconciliations.

Second, SPR(ST, gt) may not be unique; in fact, the number of possible solu-

tions to the Pairwise HGT Inference problem can be exponential in the size of a

solution [135]. To account for this issue, we need to consider all solutions, or a large

number of them when obtaining all is computationally infeasible, for each pair of trees.

Without accounting for multiple solutions, methods such as M2 [3] that agglomerate

pairwise solutions would obtain biased estimates.

A third issue that requires special attention is the following: while solutions to

the Pairwise HGT Inference problem may be acyclic (that is, the inferred HGT

events, when added to the species tree, do not result in cycles), taking the union

of solutions cannot guarantee acyclicity. When this occurs, the solution is not a

phylogenetic network as given by Definition 2.2.

As mentioned above, the former method M2 [3] uses the approach given by

Eq. (5.2), but it does not address the last two issues raised above. For the first
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issue, let ST be a species tree and G = {GT1, . . . , GTk} be a collection of gene trees.

Also let Si = {si,1, si,2, . . . , si,mi} be the set of all optimal pairwise solutions on the

pair �ST,GTi�. Then, M2 counts the frequency with which each potential reticu-

lation edge appears throughout si,j, 1 ≤ i ≤ k, 1 ≤ j ≤ mi, and calculates the set

of reticulation edges such that 1) it covers at least one solution for all trees, and 2)

it maximizes its frequency value, in the assumption that the frequency reflects how

often a reticulation edge is used in each solution and maximizing the frequency would

result in a smallest set of reticulation edges.

However, with multiple solutions (e.g., obtained by using RIATA-HGT [39, 40]), a

reticulation edge occurring multiple times in si,j,∀1 ≤ j ≤ mi, contributes more to the

frequency than those occurring once. As a result, a solution would be biased towards

the edges occurring multiple times in solutions. In this section, we propose our

heuristic MURPAR (MUlti-tree Reconciliation using PAirwise Reconciliations) for

addressing these issues. With the definition of S =
�

1≤i≤k,1≤j≤mi
si,j MURPAR seeks

the smallest set S � ⊆ S that satisfies the property [∀1 ≤ i ≤ k, ∃si,j ∈ Si s.t. si,j ⊆

S �]. MURPAR solves this problem using integer linear programming (ILP). We define

binary variables as follows:

(A) Bs, ∀s ∈ S. Bs will take value 1 if SPR move s is selected as an element of S �,

and 0 otherwise.

(B) Pij, ∀1 ≤ i ≤ k,∀1 ≤ j ≤ mi. Pij will take value 1 if all SPR moves in the

optimal pairwise solution sij are selected, and 0 otherwise.

Finally, the ILP program is:

minimize
�

Bs

subject to
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– Pij =
�
∧y∈sijBy

�
,∀1 ≤ i ≤ k,∀1 ≤ j ≤ mi

– [∨1≤j≤miPij] = 1,∀1 ≤ i ≤ k

Here, ∧ and ∨ represent logical ‘and’ and logical ‘or’, respectively. All these con-

straints can be turned into linear constraints by introducing auxiliary variables as

follows:

• a = (b1 ∧ b2 ∧ · · · ∧ bp), where all variables are binary, can be turned into the

linear inequalities −1 ≤ 2b1 + 2b2 + · · · + 2bp − 2pa ≤ 2p− 1.

• (b1 ∨ b2 ∨ · · · ∨ bp) = 1, where all variables are binary, can be turned into the

linear inequality b1 + b2 + · · · + bp ≥ 1.

When a species tree ST is not given, we repeat MURPAR with GTi, 1 ≤ i ≤ k as

the species tree and choose the smallest S �
i
as S �.

As discussed above, the solution thus far may result in cyclic graphs, which are

not phylogenetic networks. To address this issue, MURPAR post-processes the results

to avoid the solutions with cycles using a straightforward cycle detection algorithm.

If a minimal solution is found to have a cycle, MURPAR skips it and inspects the

next minimal solution (minimal in terms of the number of reticulation nodes). While

all solution candidates found by MURPAR may have cycles, and thus MURPAR

returns no solution, we found through extensive simulations that this was never the

case. Similarly, it was shown in [137] and confirmed in [138] that cycles may not be

a major concern for reticulation detection algorithms when run on real data sets or

synthetic data sets that are generated under realistic models.
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5.4 Experimental Evaluation

In this section, we evaluate our algorithms in two subsections. First, we systematically

study the performance of M1 and M2 on simulated data sets. And we compare the

performance of M2 and MURPAR with another competing tool, on both simulated

data sets and a biological data set. Since M1 returns only the numbers, it is excluded

for the second experiment.

5.4.1 Experimental Setup

Data Simulations were conducted on 30- and 50-taxon phylogenies. For 30-taxon

data sets, 10 random trees were generated using PHYL-O-GEN tool [91] as “species

tree” under birth-death model, and 5 horizontal gene transfer events were simulated

between pairs of branches on the species trees using Galtier’s tool [92]. The simulation

of horizontal gene transfer were conducted individually 10 times on each species tree,

so totally 100 networks are generated from the simulation. Since Galtier’s tool does

not provide the details of simulated transfer events, we modified the tool to have it

report the simulated transfers that it added. From the set of 32 gene trees contained

in each network, 4, 8, 12, 16, 24, and 32 gene trees were randomly sampled and used

as input to the methods.

For 50-taxon data sets, the same procedure as above was applied with the two

differences: (1) the number of horizontal gene transfer events simulated was 10, so the

sampling was made over 1024 gene trees, (2) and the 30 times of sampling process was

repeated for each sample size to generate input data, so that statistically significant

results are obtained.

The second evaluation runs M2 [3], MURPAR [132] and PIRN [4] both on the

simulated data sets and on a biological data. For biological data, we used the Poacaea
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data set, which was originally sequenced by the Grass Phylogeny Group, and was

used to test both CASS [5] and PIRN [4]. Binary trees were constructed for six loci:

ITS, ndhF, phyB, rbcL, rpoC and waxy [139]. Since the gene trees had different sets of

leaves, we selected the gene trees for ndhF, phyB, rbcL, rpoC2 and ITS, and restricted

them to 14 leaves that they have in common.

Methods and Accuracy Measures All of our methods are based on solving

the Pairwise HGT Inference problem. M1 runs the exact method of Wu [35],

SPRDist, that returns the exact rSPR distance, since it only requires the rSPR dis-

tance. However, M2 and MURPAR cannot directly utilize the method, because

they require the placement of the HGT estimates. So we employ RIATA-HGT

method [39, 40], as implemented in PhyloNet [136] to solve the Pairwise HGT

Inference problem and obtain the locations of the multiple optimal HGT events.

Other pairwise inference tools including SPRIT [140] were tested as well, but results

were almost identical; therefore, all results are reported based on the pairwise solu-

tions obtained by either SPRDist or RIATA-HGT. We used the GLPK ILP Solver to

solve the ILP formulation of MURPAR.

Although we introduce CASS [5] as an algorithm for the problem, we do not use it

for comparison. As indicated by the authors in [5], while CASS computes a minimal

network N from an input set C of clusters of a set of gene trees T , it is not guaranteed

that T ⊆ T (N). More formally, if C is the set of all clusters of taxa displayed by the

trees in T , the network N computed by CASS is the minimal network that displays

all clusters in C . It is important to note that if a network N displays all clusters of

a set of trees, N does not necessarily display all the trees themselves. It is easy to

see that if N is minimal for C and N � is minimal for T (C is the set of all clusters
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of trees in T ), then the number of reticulation nodes in N is smaller than or equal

to that in N �, because the problem with C is less restrictive than that with T . An

illustration of this issue is given in Fig. 5.3.

db ca db ca d b ca db ca db ca

T1 T2 T3 N1 N2

Figure 5.3 : The difference between the formulation used by MURPAR, M2 [3],
and PIRN [4], and the one used by CASS [5]. For the input set of gene trees
T = {T1, T2, T3}, CASS computes a network with a single reticulation node (N1), since
this network displays all clusters of the gene trees. However, MURPAR, M2, and PIRN
compute minimal networks with two reticulation nodes, such as N2, since 2 is the minimum
number of reticulation nodes required in a network that displays all three gene trees.

The evaluation for the first part measures detected number of reticulations from

the methods, and detectable from the input tree set. When M1 or M2 is run on a

collection T = {T1, . . . , Tk} ⊆ T (N) induced by network N , we record the number

of reticulations that the method computed; we call this number the detected number

of reticulations. Now, if network N was generated with 5 or 10 HGTs, this does not

necessarily mean that the collection T of trees will have all trees to allow for detecting

5 or 10 HGTs, respectively. For example, consider the collection T that has only trees

whose (pairwise) SPR distance is 1. In this case, the number of detectable HGTs is 1,

and not 5 (or 10). Therefore, for each such collection T , we compute (exhaustively)

the smallest subset of HGTs in N that can reconcile all trees in T ; we call this

number the detectable number of reticulations (notice that this is not necessarily the

smallest number of reticulations needed to reconcile all trees in T ; computing this

number would be prohibitive). The accuracy of the methods is considered better
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as the difference between detectable and detected numbers of reticulations becomes

smaller.

The second part evaluates the performance by comparing their return values.

Since they all return the lower-bound of the number of nework-nodes required to

reconcile the input trees, the values can directly be used for comparison. In parsimony,

the smaller the value is, the better the corresponding approach is. In this comparison,

M1 is excluded, because its return is not by the same measure. We will refer to this

as accuracy. Besides accuracy, we also assess the run time of the methods, which

is important when they are used as a preprocessing unit for the following analysis.

We checked the results from both 30-taxon and 50-taxon data sets for the second

part, and confirm that they show the same trend. But we only visualize the result of

30-taxon data sets.

5.4.2 Results of Synthetic Data

For the first evaluation, we show the results only for the 30- and 50-taxon data

sets. Figure 5.4 shows the difference between detectable and detected numbers of the

reticulation events, of M1, while Figure 5.5 shows the accuracy value of M2.

In the case of 30 taxa, sampled trees are selected from the network that contains

(25 =) 32 trees. The simulation generates 100 networks as described, and we choose

80 of them for the first evaluation. There are 80 such networks, each of which was

sampled with sample sizes of 2, 4, 8, 12, 16, and 24. Therefore, at each point of the

x-axis in Figures 5.4(a) and 5.5(a), the result shows the distribution of the number

of reticulation events for 80 gene tree sets. Figures 5.4(b) and 5.5(b) show the results

for the sampled gene tree sets from 100 networks of 50 taxa with 10 HGTs. Each

of these networks contains up to 1024 different trees. From them, sampled gene tree
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Figure 5.4 : Performance of M1 on the 30-taxon (a) and 50-taxon (b) data sets as a
function of the sample size.

sets are chosen with sample sizes of 4, 8, 12, 16, 24, and 32. For each of the sampling

sizes and each of the networks, we sampled 30 times. Therefore, at each point of the

x-axis in Figures 5.4(b) and 5.5(b), the result is the distribution of the number of

reticulation events for 3000 different gene tree sets.

As the figures show, both methods perform very well on the 30-taxon data sets,

with the median different between detectable and detected numbers of reticulations,

for both methods, falling at zero. In the case of M1, there is an improvement in the

accuracy as the sample size increases, as is evident from the lack of outliers and the

convergence to the median value of 0. This is because, as the sample size increases,

the data points become much denser so that fitting the binomial distribution becomes

easier. Nonetheless, even for very sparse samples (sizes 4 and 8), the method still

performs very well, as shown in Figure 5.4(a). M2, on the other hand, does not show

clear improvement with increased sample size; to the contrary, more outliers emerge

as the sample size increases (Figure 5.5(a)). One reason behind this is that as the

sample size increases and the SPR move sets become larger, a more careful handling
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Figure 5.5 : Performance of M2 on the 30-taxon (a) and 50-taxon (b) data sets as a
function of the sample size.

of the union of those sets is required than we employ in our heuristics. In some sense,

this problem becomes similar to the Inclusion-Exclusion principle, where one has to

avoid double-counting.

For the 50-taxon data sets, both methods also perform well, particularly M1. Even

though both methods tend to overestimate the amount of reticulation in these cases

(as shown by the negative values in Figures 5.4(b) and 5.5(b)), the under-estimation

is very mild on average. It is worth mentioning that the results in Figure 5.5(b) come

from much smaller sampled gene tree sets (less than 4%). From the results shown in

Figures 5.5(a) and 5.5(b), sampling with size of 2, or only given a pair of gene trees,

is not sufficient to estimate true number of reticulation events. For sampling with the

sizes larger than 2, the results are very close to the true number of reticulation events

(5 in Figure 5.5(a) and 10 in Figure 5.5(b)) in most cases, having a difference of up

to 2. M2 tends to overestimate the number of reticulation events. In the worst case,

the estimated results could double the actual number of reticulation events. However,

the median of the distribution and the results for most cases have a converging trend
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when the sampling size increases.

For the second experiment, we use all 100 networks, unlike the previous exper-

iment, and assess the running times of the methods; It is important for a method

to maintain reasonable computation speed in order to be of general application for

large-scale data analysis, especially when it might be used as a preprocessing step for

the following analysis, as mentioned above. Through the experimental validation, we

record the run times of the 100 cases for the methods by sample size in Fig. 5.6. In

interpreting the figure, we focus on two properties regarding the computation speed,

the overall run time and the frequency of outliers in time.

Figure 5.6 : Running times (in sec.) of the three methods (PIRN, M2, and MURPAR).
The numbers after the ‘/’ are the numbers of gene trees in the input.
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In terms of the overall run time, it is clear that MURPAR runs fast across varying

sample sizes. Compared with M2, the gain in speed of MURPAR is mainly attributed

to the use of the ILP solver, since they share the underlying computation structure.

The figure also shows that the gap between MURPAR and PIRN closes as the number

of trees increases. However, the outliers in the case of PIRN are still much slower

than those of MURPAR and M2. This point requires further elaboration. Holding

the input size (in terms of the number of gene trees) fixed, the variance in the speed of

MURPAR is very similar, whereas that of PIRN is very large. This somehow indicates

dependence of the PIRN on the structure of the problem, and lack of dependence of

MURPAR on such a structure. It may be that the smaller the number of gene trees,

the fewer the constraints, and hence the larger the space that PIRN explores. In

the case of MURPAR, the pairwise solutions constrain the search space significantly,

giving the method gains in speed.

The numbers of reticulation nodes estimated by each of the methods are shown in

Fig. 5.7. It is worth mentioning that even though the true networks were produced

by adding 5 HGT edges, the true number of reticulations may be smaller, depending

on the size of the input, since, for example, when only 4 gene trees are sampled, some

HGT events may not be observable. Even though network N has m > 1 reticulation

nodes, this does not necessarily mean that the collection T of trees, with |T | ≥ 2

will have all trees to allow for detecting m. For example, consider the collection

T that has only a pair of trees whose SPR distance is 1. In this case, the number

of detectable HGTs is 1, and not m. However, the number of detectable HGTs is

expected to increase as more trees are given, and the results in the figure satisfy the

expectation.

As more trees are sampled as the input, a naive method for the reticulation estima-
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Figure 5.7 : Numbers of reticulations estimated by each of the three methods (PIRN, M2,
and MURPAR). The numbers after the ‘/’ are the numbers of gene trees in the input.

tion would estimate more reticulations simply because the size of the data increases.

M2 follows the expectation, in that the estimation gets larger with more trees. How-

ever, MURPAR overcomes this problem, even though it is based on the same idea.

Rather, both the estimations of PIRN and MURPAR hardly increase with the input

size. Between them, it is clear that as more trees are given, the estimate becomes

more accurate in MURPAR than in PIRN, particularly for inputs of sizes ≥ 12. Even

though the maximum difference between PIRN and MURPAR is one reticulation

event on average, this difference gets larger for larger data sets.
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5.4.3 Results of Biological Data

In order to evaluate how well the methods perform for biological data, we ran M2,

MURPAR, and PIRN on the five gene trees of the Poaceae data set (see Section 5.4.1

for details of this data set). Table 5.1 reports the estimated number of reticulations

and the amount of time taken by the methods. Notice that we also ran PIRN in

coarse mode (CoarsePIRN) on them (which is a faster, yet less accurate, version of

PIRN).

Table 5.1 : The number of estimated reticulation events and the run time (in seconds) of
the methods on the five gene trees for ndhF, phyB, rbcL, rpoC2, and ITS in the Poaceae
data set.

Approaches #Reticulations Time (sec.)
PIRN 13 2143
M2 14 16
MURPAR 14 8
CoarsePIRN 16 58

PIRN identifies the lowest estimate of the number of reticulations, but it took

the longest time to obtain the estimate. On the other hand, M2 and MURPAR

obtained estimates that are higher by just one reticulation event, two and three

orders of magnitude faster, respectively. In other words, MURPAR and M2 produce

very accurate results within very short amounts of time. Between MURPAR and

M2, the difference is negligible on this size of data. However, it is easy to see that

the difference will grow with the increase of the input data, and MURPAR will be

preferred in large-scale data analysis. For PIRN, we also ran it in coarse mode. Notice

that while PIRN in coarse mode is much faster than PIRN, and is comparable to M2

in terms of speed, the estimates it produces are higher than the other three methods.
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Considering the run times they take to work on the small input data (5 trees on 14

species), it is clear that PIRN would run the slowest in large-scale data analyses.

5.5 Discussion and Conclusions

5.5.1 Distribution of Gene Trees for Detectability

In an attempt to help in the development of new methods for the Set-wise problem,

we set out to investigate the effect of the actual sample of trees on the performance

of the methods, particularly M1, since it is sensitive to the distribution of pairwise

distances. For each actual network-node (reticulation event) in a simulated network

N , roughly half of the trees in T (N) use one parent, whereas the other half use the

other parent. We hypothesize that the detectability of a reticulation node is easy

when half of the gene trees give signal about one of its parents, while the other half

give signal about its other parent. In Figure 5.8, we plot the performance of Method

1 on the 50-taxon data sets, as a function of the deviation of the trees in a sample from

the balanced coverage of each reticulation event (written as “distribution deviation

from 1/2” on the x-axis). Clearly, there is a correlation between the deviation from a

balanced coverage of reticulation events by the trees in a sample and the estimation

trend: over-estimations occur at lower deviation from balanced coverage, followed by

correct estimation at higher deviations, and finally under-estimations occurring at the

highest deviation from balanced coverage. We do not have a clear answer to why this

is the case, but this leads to an interesting question about the effect of the balance

of trees in a set on the detectability of reticulations.
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Figure 5.8 : Inspection of over- and under-estimation of M1 as a function of the
distribution deviation from 1/2 (see text for more details). Black, blue, and red dots
represent correct, under-, and over-estimations, respectively, of the method. Left to
right, top down: sample sizes 4, 8, 12, 16, 24, and 32 (all on 50-taxon data sets).
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5.5.2 Conclusions

The increasing availability of whole-genome and multi-locus data has highlighted the

need for computational tools that enable phylogenomic analyses. One such analysis

entails comparing gene trees in a group of organisms, identifying their differences,

and using this information to elucidate the evolutionary mechanisms that acted on

the organisms during the course of their evolution. In prokaryotic organisms, it is

widely believed that horizontal gene transfer (HGT) is ubiquitous, and that it plays

an important role in genomic diversification.

Mathematically, the subtree prune and regraft, or SPR, distance between a pair

of trees has been commonly used as a proxy for a lower bound on the number of

HGT events, or reticulations. As a result, a wide array of mathematical results and

computational tools have been developed around this distance. Nonetheless, most of

these results and tools apply to a pair of trees, which is a shortcoming, particularly

for phylogenomic studies involving many trees.

In this chapter, we addressed the problem of estimating the amount of reticulation

that is detectable in a collection of gene trees, assuming all incongruence among the

trees is due to reticulate evolution (i.e., ruling out any other discord processes, such as

incomplete lineage sorting, gene duplication/loss, etc.). We provided two algorithmic

strategies for this task, both of which showed promising results in simulations.

And then, we extend M2 for accuracy and time using ILP, and introduced MUR-

PAR, a method for inferring a phylogenetic network from a collection of gene trees,

under the same assumption. While MURPAR is not guaranteed to compute a min-

imal network, it produces an upper bound on the minimum number of reticulations

required to reconcile all gene trees in the input. Performance analysis on both syn-

thetic and biological data sets shows that the MURPAR method is both accurate and
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fast. Further, MURPAR’s run time does not vary much within the same sample size,

and has fewer outliers than other methods.

The idea of employing pairwise reconciliations in reconciling a set of gene trees has

added advantages in that pairwise reconciliations can be computed in parallel or in a

distributed fashion, thus speeding up the overall computation, and improvements to

pairwise reconciliation methods will automatically translate into improvement of the

MURPAR method. Direct interpretability of the results from the direct relationship of

the solutions between Set-wise HGT Inference and Pairwise HGT Inference

is another advantage of MURPAR that it is easy to identify the dynamics between

any gene trees in the tree set from the estimates of Set-wise HGT Inference.

5.5.3 Future Work

Our main task for future research is to apply these strategies to biological data,

not only to assess the performance of the methods, but also to better understand

the reticulate evolution in biology. However, in addition to the multiplicity of gene

trees, biological data poses another serious issue for our approach to address: while

our methods are based on solving SPR distance problem, which requires the trees

to be on the same leaf set, the gene trees in practice are on different numbers of

leaves. In particular, incomplete taxon sampling and disparity in sequence coverage

for different organisms may result in “missing” genes for some organisms. Biologically,

gene duplication and loss may result in multiple or no copies of certain genes in some

organisms. Further, a horizontal gene transfer event from outside of the group of

organisms under study may give rise to genes that are present in some, but not all, of

the organisms. Figure 6.3 illustrates the heterogeneity of the gene trees in terms of

the number of gene copies. Last but not least, HGT events across genes may not be
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independent, as a single HGT event may transfer a large genomic region that contains

multiple genes, as proposed by [141]. All these issues need to be addressed in order

to facilitate phylogenomic study; otherwise, analyses would have to be restricted to a

small fraction of the genomic data, rendering their results and conclusions unreflective

of the true, global picture [142].
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Chapter 6

On the Performance of Parsimonious
Reconciliation in Detecting Duplication, Transfer

and Loss

So far, we have focused on developing computational methods that detect particu-

lar evolutionary events by identifying significant estimates. However, we have not

discussed how such computational methods can actually be used in biological data

analysis. We employ a computational method that operates under an extensive model

to determine the issues the computational method needs to address to be useful for

biological data analysis. Note that these issues are not specific to the method, but

are obstacles that must be addressed by most computational methods. We address

these issues by identifying the significance of estimates.

6.1 Background

6.1.1 Detecting Duplication, Transfer, and Loss (DTL)

Computational methods to detect evolutionary events are developed under the as-

sumption of specific evolutionary events. Section 2.3.2 introduces several methods

that detect HGT events, assuming that only HGTs occur in the data. All our meth-

ods proposed in this dissertation fall under this category. Section 2.3.4 reviews several

methods that detect duplication and loss events, assuming that only duplication and

loss are cause for incongruence. However, as the current biological data involve many
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loci from many species, the data may involve both HGT and duplication and loss.

Then, it is easy to see that an algorithm assuming only one of the events loses accuracy

in detecting events. In response to the need to take both transfer and duplication/loss

into account, the Duplication-Transfer-Loss (DTL) model has been proposed. Several

approaches, both model-based and parsimony-based approaches, have been proposed

under the model [74, 143, 144]; however, they have some difficulties for direct use

in large-scale biological data analysis, in that appropriate values of the parameters

of the models are not well-studied and they generally run slowly. Since parsimony-

based approaches require fewer parameters and run fast, we use a parsimony-based

approach for analysis.

While parsimonious reconciliations under the DTL model detect evolutionary

events by mapping gene trees to the species tree as in the DL model, they are more

difficult to calculate. Given gene tree G and the species tree S under DL, the order-

respecting property matches nodes under u ∈ V (G) only with nodes under u ∈ γ(u)

(see Section 2.3.4 for more detail) and reduce the search space for matches effectively

as the match goes from R(G) and R(S) to their leaves. However, DTL does not pro-

vide this property. As an HGT occurs between separate, but contemporary, species

for a gene, it can break the confinement of the species barrier, and the corresponding

internal edge in the gene tree does not occur along species tree edges. As a result, the

search space to map the transfer is not reduced as the reconciliation progresses, caus-

ing the computation to be demanding. Another complication of DTL reconciliation

comes from the transfers involving the incomplete sampling (or gene loss), degener-

ate transfers, and/or simultaneous transfers as in Figure 6.1. These cases complicate

the picture as genes are repeatedly transferred. However, most parsimony-based ap-

proaches disregard them (see [145], for example), even though they are biologically
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probable.

a b dc a b dc a b dc

(a) incomplete sampling/gene loss (b) degenerate transfer (c) multiple transfers

Figure 6.1 : Three examples of biologically plausible HGT events, not considered
in most of the parsimony-based approaches. In practice, they can occur in various
combinations and further complicate the picture.

A mapping γ under DTL can be used to identify the evolutionary events associated

with internal nodes of a gene tree. We denote those internal nodes representing

speciation events Σ, those representing duplication events ∆, and those representing

transfer events Θ, with respect to the γ. Additionally, we collect tree edge (u, v), u ∈

Θ, v represents the destination of the transfer Ξ. Observing that when v, w are the

children of u in G, γ(u) ≤S γ(v) and γ(u) ≤S γ(w) and assuming that at least one

of γ(v) and γ(w) is a descendant of u, γ assigns the nodes in G to Σ, ∆, or Θ by the

following logic in parsimony

1. u ∈ Σ only if γ(u) = LCA(γ(v), γ(w)) and L(γ(v)) ∩ L(γ(w)) = ∅.

2. u ∈ ∆ only if γ(u) = LCA(γ(v), γ(w)) and L(γ(v)) ∩ L(γ(w)) �= ∅.

3. u ∈ Θ if and only if (u, v) ∈ Ξ.

4. (u, v) ∈ Ξ if and only if γ(u) is incomparable to γ(v).

Since a mapping γ can produce multiple valid mappings and the corresponding

sets of {Σ, ∆, Θ} for a pair of the species tree and a gene tree, parsimony selects
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the most parsimonious mapping for the pair of the minimum |γ| calculated in the

following way

|γ| = Cd · |∆| + Ct · |Θ|, (6.1)

where Ct represents the cost for a transfer event and Cd for a duplication event.

We call the pair of a particular Ct and Cd cost scheme. Figure 6.2 shows two valid

reconciliations and the corresponding assignments of events. As it illustrates how

|γ| is calculated based on a cost scheme, it follows that parsimony of reconciliations

depends on cost scheme.

duplication

a b c
losses

a b c

transfer
loss

(a) under DL (b) under DTL

Figure 6.2 : Two reconciliations for the gene tree and the species tree given in Fig-
ure 2.6. The reconciliation shown in (a) is possible under both DL and DTL models
and that in (b) is possible only under DTL. (a) invokes 1 duplication and 3 losses,
while (b) invokes 1 transfer and 1 loss. Note that the parsimonious mapping depends
on the cost scheme. In parsimony under the cost scheme penalizing a transfer by cost
1 and a duplication by cost 2, the reconciliation of (a) requires cost 2 and that of (b)
returns cost 1, for example.
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6.2 Experimental Setup

6.2.1 Data

We analyze a biological data set composed of γ-proteobacterial strains downloaded

from eggNOG [146] on July 11th, 2011. The data set consists of 3086 gene fami-

lies on 134 γ-proteobacterial strains, including model organisms such as E. coli and

Vibrionaceae.

(a) (b)

Figure 6.3 : The reconstructed gene family trees are counted by the number of strains
(a) and the number of gene copies (b), respectively. In (b), we distinguish the trees
with different loss amounts.

eggNOG generates multiple sequence alignments for the gene families [147] and

builds trees by taking the consensus of the reconstructed maximum-likelihood trees

from the sequences and their bootstrapped duplicates [148]. From the gene family

trees downloaded from eggNOG, Figure 6.3 shows the frequency of the trees with

specific numbers of strains and gene copies, respectively. The gene trees are het-

erogeneous both in terms of the strains and the number of gene copies each species

has. However, it is important to note that the number of copies in the trees does



109

not necessarily indicate gene loss or duplication, since there are other processes that

can result in these situation. Because bacterial species are believed to undergo mas-

sive transfer events, it is likely that the sampled γ-proteobacteria data set includes

some genes transferred from out of the sample, which would yield small gene trees

without loss. Since both transfer from outside and loss can yield small gene trees, in

order to check loss and duplication in the data set distinguished especially from the

transfers from outside, we distinguished the trees by the amount of species loss from

the common ancestor in Figure 6.3 (b). If there is no transfer from outside, then we

expect a tree that contains many leaves to have few species losses and a tree with few

species to have many losses, assuming that all evolved from the same root. However,

if there are trees of few species with small losses, that have a common ancestor lower

than the root of the species tree, either a selection process selectively kills the gene

in all species outside the common ancestor in the species tree, or the gene tree has

not evolved from the root of the species tree but was transferred from outside at that

point in the species evolution, affecting only the species that developed after that

transfer. Assuming that loss generally happens only by chance, the trees of small

species with small losses are taken as a sign of transfers from outside the sample.

In order to make use of this observation in analysis, we calculate the following

measure for each tree. Given a gene family tree G of m species, we locate the common

ancestor of the species of G on the species tree. Suppose that there are l species under

the common ancestor on the species tree. If m

l
≤ 0.1, then we count this as a high

loss under the common ancestor, and if m

l
≥ 0.9, then this counts as a small loss

under the common ancestor, since l−m represents the amount of species loss on the

species tree under the common ancestor. It is important to note that l−m does not

directly indicate the number of actual loss events, as calculating the actual loss events
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should involve the detection of duplication and transfer events. In the figure, large

red bars show small numbers of gene copies, and large blue bars show a large numbers

of them, if there is no transfer from outside. The red bars for a small number of gene

copies indicate the trees in which genes are lost widespread, and they are taken as a

potential sign of loss. On the other hand, the blue bars for a large number of gene

copies, especially those with more than 134 gene copies, are taken as a potential sign

of duplication. On the other hand, the blue bars for small number of gene copies

might indicate transfers from the outside.

Besides duplication and loss, a body of research based on molecular and phyloge-

netic analyses identifies the abundance of transfer in prokaryotic evolution, including

γ-proteobacterial evolution [149, 150, 151], even though it is controversial how per-

vasive it actually is [141, 152, 153, 154].

Putting all of them together, it is clear that γ-proteobacterial evolution contains

duplication, loss, and transfer events, for which there are both model-based and

parsimony-based approaches. However, due to the lack of knowledge for parameters

in the models and their slow running time, model-based approaches are not yet suited

for large-scale data analysis. We therefore employ a parsimony-based approach, since

it requires fewer parameters and quickly analyzes large-scale data.

Tofigh et al. proposes a dynamic-programming (DP) algorithm that returns the

cost of the most parsimonious mapping based on a cost scheme [145]. While it

guarantees consideration of all possible transfer events based on a cost scheme of the

cost for duplication and transfer, several algorithms have been proposed to address

its issues [155, 156, 157, 158, 159, 160] (1) to incorporate the cost value for loss

and (2) to account for the possible time-constraint violations as a solution to the

algorithm (Readers are referred to [161] for more detail). However, more study is
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required to make the extensions beneficial for analysis. The cost for loss has not

been well-characterized for most evolutionary history until now, so do algorithms

taking this parameter into account not yet directly improve analysis. Algorithms of

the second type of extension mainly focus on restricting time-inconsistent transfers,

defined as those whose sources and destinations are within a time window on the

dated species tree. As the extensions restrict the transfers, they reduce the search

space, effectively prohibiting time-inconsistent transfers. However, given the difficulty

to obtain accurately timed species trees, it is possible that this extension, when

combined with an incorrectly timed species tree, will reduce the search space in an

incorrect way, excluding solutions of interest. To avoid this issue, we run Tofigh et

al.’s algorithm for analysis.

As the parsimony-based approach’s computation depends on the species tree and

cost scheme, we investigate the reliability of the estimated species tree and the effect

of the cost scheme on event detection. Note that the result of the investigation would

easily transmit to understanding other parsimonious reconciliation algorithms, since

most of them share the same computational structure as Tofigh et al.’s algorithm.

6.2.2 Species Tree of the γ-Proteobacterial Data Set

Since a species tree represents the evolutionary history of species, correctly estimated

species trees play a crucial role in addressing important problems for the species,

including the detection of evolutionary events.

However, no algorithm has been proposed to infer species trees under DTL. In-

stead, when it is assumed that transfers are rare in a data set compared to duplication

and loss, species tree is estimated by minimizing only duplication and loss. In this

case, a transfer would be interpreted as a duplication event, which adds false loss
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events on the species tree’s edges ranging from the source and the destination of the

transfer. However, if data set actually has few transfers, then the correct branching

order of the species tree would not be disrupted.

Assuming that transfer are rare in γ-proteobacterial evolution, the species tree

for the γ-proteobacteria data set can be estimated under DL using DupTree [6].

Figure 6.4 shows the estimated species tree. The tree is quite different from the

NCBI taxonomy, as the RF distance value between them is 57. Given that the

fully resolved tree in Figure 6.4 is composed of 132 internal edges (bipartitions),

around half of the bipartitions in each tree are not found in the other. In comparison

to the NCBI taxonomy, it is not clear which bipartitions in the estimated tree are

correct representations of speciation events. However, it is worth mentioning that

the estimated species tree has many bipartitions in common with that reconstructed

from a large set of protein families [162].

In order to reconstruct a more accurate species tree, the current estimation should

consider some issues. First, an evolutionary process involving duplication, loss, and

transfer does not necessarily happen in parsimony. This naturally motivates the

need to develop a model-based approach that can account for the non-parsimony

nature of the process. However, to be useful in analysis, developing a model-based

approach requires not only defining a model but also studying appropriate values for

the parameters, which is beyond the scope of this chapter. Secondly, it is difficult

to verify how much duplication, loss, and transfer occur in the data. We must first

determine how robust the estimated tree is against evolutionary events in order to

answer the question of what would happen if genetic transfer greatly affects the

estimate. In the next section, we explore the effect of evolutionary events on the

current species tree estimation.



113

6.2.3 The Effect of Loss and Transfer on Species Tree Estimation

We can determine the effect of evolutionary events on the current species tree esti-

mation by simulating additional evolutionary events and evaluating changes in the

species tree. These simulations will allow us to estimate the performance of the cur-

rent parsimonious reconciliation algorithm based on the species tree. Transfer and

duplication/loss evolutionary events cause gene tree-species tree incongruence at the

species level. However, duplication should be accompanied by loss in order to cause

the incongruence, and without loss, it does not skew the estimation. In this chapter,

we focus on simulating loss and transfer, not duplication. The simulation is based on

the simple hypothesis of loss and transfer: loss can happen at any node in the tree,

removing all nodes under it, and transfer can happen between any species, as long as

it does not violate the time constraint of the previous transfers.

A simulation of loss and transfer events on a gene family tree is given a percentage

value. With this value, we first determine the number of events as the ceiling of the

product of the percentage value and the number of the nodes of the tree. For example,

the number of the events for a tree of 200 nodes, either internal nodes or leaves, is

2, with 0.01 (1%) as the percentage value. With the number of events determined,

loss is simulated by (1) randomly selecting the number of non-root nodes on the

tree, whether an internal node or a leaf, (2) removing all nodes under them, and (3)

refining the tree. The tree refinement process first locates an internal edge with a

single child and then removes the edge after connecting its parent to its children,

until no such edge remains in the tree. As for the transfer simulation, the number

of SPR moves are applied to the tree, one at a time, while they are prohibited from

going to their ancestor. This guarantees that the simulated transfers do not result in

a cycle. After simulating a given percentage i of loss or transfer events on each gene
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tree, DupTree can estimate the species tree STi based on them. In order to obtain

statistical significance, the simulation process is repeated 30 times for a percentage

value to generate 30 STis. The 30 STis are compared with ST , the species tree

estimated from the original gene trees, by RF distance.

6.2.4 The Effect of the Cost Scheme on Reconciliation

In order to investigate the parsimonious detection of evolutionary events under DTL,

we use Tofigh et al.’s algorithm in this section for two reasons: as discussed in Chap-

ter 2, the extensions are not very useful without knowing their parameters, and most

of them have not been well-characterized. Secondly, since most of the parsimonious

reconciliation algorithms share the computational structure of Tofigh et al.’s algo-

rithm, we expect that observations for this algorithm can apply to other parsimonious

reconciliation algorithms.

The appropriate cost values for duplication and transfer, known as the cost scheme,

are crucial to accurately detect evolutionary events, since the computation calculates

the parsimony score based on the cost scheme. However, the cost for duplication and

transfer has neither been applied to biological data sets nor studied systematically

with simulated data sets, so it is difficult to figure out the appropriate cost scheme

for a specific data set.

We study how the cost scheme affects the performance of the algorithm by run-

ning the algorithm on the gene trees with different cost schemes. Given gene tree G

and species tree S, Tofigh et al.’s algorithm returns the cost of the most parsimonious

mapping under DTL using speciation, duplication, and transfer based on a given cost

scheme. In particular given u ∈ V (G) and x ∈ V (S), speciation and duplication

match u’s children with a node under x, and transfer matches the children with a
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node incomparable with x. Since the algorithm does not return evolutionary events,

we develop an algorithm returning the events associated with the parsimonious map-

ping. Developing such an algorithm, especially one that operates wihout losing its

dynammic programming efficiency, is not a trivial task. The algorithm should ad-

dress the issue of multiple optimal scenarios and cases where a transfer is associated

with multiple candidates for a parsimonious source. Algorithm 1 is an efficient al-

gorithm that returns the optimal set of evolutionary events under a cost scheme in

O(|V (G)| · log|V (S)|), provided that the annotations are given to each node in the

gene tree by Tofigh et al.’s algorithm.

As Tofigh et al.’s algorithm navigates all the combinations of u ∈ V (G) and x ∈

V (S) given a gene tree G and a species tree S, we first annotate the gene tree nodes

with the events it is associated with, either speciation, duplication, or transfer. In

particular when v, w are u’s children and y, z are x’s children, we specify the speciation

case where v is mapped with z and w is mapped with y as ‘Speciationvz’, and the

speciation case where v is mapped with y and w is mapped with z as ‘Speciationvy’. In

the same sense, ‘Transferv’ labels u when v is due to transfer, and ‘Transferw’ labels

u when w is due to transfer. Since the parsimonious reconciliation assumes that at

least one of the children does not involve transfer, the cases represent all possibilities.

Note that since different event assignments can yield the same optimal score, u can

carry multiple annotations. For the purpose of retrieving the sources of transfers,

two other values are maintained for (u, x), u ∈ V (G), x ∈ V (S), tFromOut[u, x] and

outSrc[u, x]. In particular, tFromOutside[u, x] ∈ {‘yes�, ‘no�} indicates the location

between two incomparable places in the tree, either x’s ancestors (‘yes�) or the sibling

of x (‘no’), where the match originates. outSrc[u, x] points to the ancestor or the

parsimonious matching of the transfer in the sibling, depending on the corresponding
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value of tFromOutside. Using the annotations and the two values for each mapping,

Algorithm 1 identifies Σ, ∆, Θ and the source of the transfers with respect to the γ.

While it is straightforward to annotate u in Tofigh et al.’s algorithm, the search

for the source of the transfers should be explained in more detail. We can up-

date outside[u, y] in Tofigh et al.’s algorithm with the minimum value from either

below[u, z], where z is the sibling of y or outside[u, x] where x is the parent of y; if

the value comes from below[u, z], tFromOutside[u, x] is set to ‘no’ and outSrc[u, y]

is set to z, and if the value comes from outside[u, x], tFromOutside[u, x] is set to

‘yes’ and outSrc[u, y] is set to x. The key observation to detect the source is that the

parsimonious mapping of (u, x) in outside comes from a sibling of an ancestor of u

on the species tree. As Algorithm 1 detects all events under u ∈ V (G), all the events

are detected by invoking Algorithm 1 with R(G) and R(S).

Even though the algorithm keeps a single node as the source of a transfer in order

to keep the correspondence between a transfer and its source, it is true that there

can be multiple candidates for the parsimonious source for a transfer. However, the

complexity of retrieving all parsimonious candidates as the source is the same as our

algorithm, since they are found as the search goes up to R(S).
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Algorithm 1: The algorithm retrieving the evolutionary events under u
Input: node u ∈ V (G), node x ∈ V (S)
Output: Σ,∆,Θ and a set of nodes SRC ⊆ V (S) detected as a src of t ∈ Θ
if u.event is notated as Duplication then

v, w ← children of u
Σd1,∆d1,Θd1, dummy=Algorithm 1(v,x,S)
Σd2,∆d2,Θd2, dummy=Algorithm 1(w,x,S)
ΣD = Σd1 + Σd2,∆D = ∆d1 + ∆d2,ΘD = Θd1 + Θd2, SRCD = {x}

else if u.event is notated as Speciationvz then
v, w ← children of u and y, z ← children of x
Σs1,∆s1,Θs1, dummy=Algorithm 1(v,z,S)
Σs2,∆s2,Θs2, dummy=Algorithm 1(w,y,S)
ΣS = Σs1 + Σs2 + {u},∆S = ∆s1 + ∆s2,ΘS = Θs1 + Θs2, SRCS = {x}

else if u.event is notated as Speciationvy then
v, w ← children of u and y, z ← children of x
Σs1,∆s1,Θs1, dummy=Algorithm 1(v,y,S)
Σs2,∆s2,Θs2, dummy=Algorithm 1(w,z,S)
ΣS = Σs1 + Σs2 + {u},∆S = ∆s1 + ∆s2,ΘS = Θs1 + Θs2, SRCS = {x}

else if u.event is notated as Transferv then
v, w ← children of u
Σt1,∆t1,Θt1, SRCt1=Algorithm 1(w,x,S)
while tFromOutside[v,x]==‘yes’ do

x = outSrc[v, x]
end
Σt2,∆t2,Θt2, dummy=Algorithm 1(v,x,S)
ΣT = Σt1 + Σt2,∆T = ∆t1 + ∆t2,ΘT = Θt1 + Θt2 + {v}, SRCT = SRCt1

else if u.event is notated as Transferw then
v, w ← children of u
Σt1,∆t1,Θt1, SRCt1=Algorithm 1(v,x,S)
while tFromOutside[w,x]==‘yes’ do

x = outSrc[w, x]
end
Σt2,∆t2,Θt2, dummy=Algorithm 1(w,x,S)
ΣT = Σt1 + Σt2,∆T = ∆t1 + ∆t2,ΘT = Θt1 + Θt2 + {w}, SRCT = SRCt1

else
if x is not a leaf then

y,z← children of x
if u.b[y] < u.b[z] then

ΣX ,∆X ,ΘX , SRCX=Algorithm 1(u,y,S)
else

ΣX ,∆X ,ΘX , SRCX=Algorithm 1(u,z,S)
end

else
SRCX={x}

end
end
return ΣD + ΣS + ΣT + ΣX ,∆D + ∆S + ∆T + ∆X ,ΘD + ΘS + ΘT + ΘX , SRCD +
SRCS + SRCT + SRCX
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6.3 Results

6.3.1 The Effect of Loss and Transfer on Species Tree Estimation

In the last section, we determined that the current species tree estimation assumes

that transfer does not affect greatly the species tree estimation. In order to estimate

the reliability of the species tree reconstructed under this assumption, we conduct a

simulation study where species trees, STis, are estimated from the gene trees on which

loss and transfer events are imposed. The STis are compared with the species tree

ST estimated in the same way from the original gene trees by RF distance, and their

average and standard deviation values are shown by bar and error bar, respectively,

in Figure 6.5. In particular, the x-axis represents the loss percentage values tested,

which are 0.01 (1%), 0.04 (4%), 0.16 (16%), 0.24 (24%), and 0.32 (32%); the y-axis

of Figure 6.5(a) plots normalized RF distances, obtained by dividing the RF distance

value by the number of internal edges in the tree. Since the number of internal edges

is the maximum number of bipartitions, the normalized RF puts the values between

0 and 1. Figure 6.5 (a) shows the average and the standard deviation values of the

normalize RF distances between ST and STis by loss percentage.

The figure from the loss simulation shows that the species tree estimation is robust

to loss events, since even at 16% of loss simulation, STis and ST do not differ greatly.

Since a loss event does not impact the remaining part of the tree, the discordance

between ST and STi comes solely from the information lost in the simulation. In

order to check the amount of information lost, Figure 6.5(b) and (c) plot the number

of the retained trees and the ratios of the remaining leaves in the trees after the



119

simulation for different loss percentage values. Considering that a substantial amount

of information is lost both in terms of the number of trees and the leaves in the data

in the simulation with 16% loss, the species tree estimation is clearly robust to loss.

While Figure 6.5(b) plots the actual number of retained trees, Figure 6.5(c) shows

the percentage values of the retained leaves. As gene tree G loses l leaves in the

simulation, the percentage value on the y-axis is |L(G)|−l

|L(G)| . Note that the percentage

values in Figure 6.5(c) widely vary, because the simulation selects internal nodes of

different heights. As the internal nodes closer to the root are selected, the set of the

retained leaves decreases, because the simulation removes all leaves under the selected

nodes.

From the simulation, we can see that when multiple gene trees are collected to

estimate the species tree, the low coverage of a single gene tree would not deteriorate

the quality of the estimation, since the estimation is robust to information loss. With

this observation, we learn that in sampling the gene trees for the estimation, the focus

should be on obtaining the correct branching order, rather than trying to include as

many gene copies as possible.

Figure 6.6 shows the result of the transfer simulation. Figure 6.6(a) uses the

normalized RF distance as the y-axis, and it plots transfer percentage values 0.01

(1%), 0.04 (4%), 0.16 (16%), 0.24 (24%), 0.32 (32%), and 0.64 (64%). In particular,

Figure 6.6 (a) shows the average and the standard deviation values of RF distances

between ST and STi by transfer percentage, and (b) shows the average and the stan-

dard deviation values of the RF distances between the original gene trees and the

corresponding trees on which a different percentage of transfer is simulated. These

figures show that the species tree estimation infers the original tree, even though the

bipartitions of the gene trees differ by 20%. However, it is true that 1% of transfer,
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which is on average 1.7 HGT events on each tree, incurs the 20% bipartition differ-

ence. The bipartition difference increases with a higher percentage value, and as the

percentage value approaches 4%, the STis become about 40% different from ST . The

species tree estimation is clearly vulnerable to transfers, especially in comparison to

the loss simulation. While it makes sense that the difference comes from the manip-

ulated branching orders of the gene trees plotted in Figure 6.6(b), it is interesting

that the changed branching orders do not proportionally transmit to the incorrect

estimation, since Figure 6.6(a) and (b) do not show the same increase pattern.

The question remains; how plausible are these values in practice? It is possible

that 1% transfer is too severe compared to what can actually happen. Also, it might

be unreasonable to believe that such a percentage of transfer happens to all trees.

However, it is not unusual that gene trees convey incorrect branching orders from noise

and/or reconstruction error, and that would skew the estimation as the simulation

does. What the transfer simulation shows is that the current species tree estimation

is very vulnerable to the branching order changes either from noise/error or from

transfer, and since the estimation is vulnerable to transfer, it is important that the

species tree estimation should account for transfer.

6.3.2 The Effect of the Cost Scheme on Reconciliation

Given species tree S and a gene tree G, Algorithm 1 can identify the internal nodes

in G associated with duplication, speciation, or transfer events under a cost scheme,

by being coupled with Tofigh et al.’s algorithm. So with a particular cost scheme,

Tofigh et al.’s algorithm and Algorithm 1 are run to detect duplication and transfer

events on each gene tree. From the detection, the ratio of the duplication and the

transfer events to the sum of the events is calculated. As the ratio values are retrieved
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across the γ-proteobacteria gene trees, Figure 6.7 plots the average and the standard

deviation of the values in bar and in error bar, respectively, by different cost schemes.

In the figure, the cost schemes are represented by (Cd/Ct), where Cd represents the

cost for duplication and Ct represents the cost for transfer.

When a cost scheme bears a higher cost for transfer and penalizes transfer more

heavily, it makes sense that more of the nodes are labeled as duplication, in order

to yield a smaller parsimony score. The same expectation holds true for a scheme

bearing a higher cost for duplication. Figure 6.7 shows that a cost scheme with a

high cost for transfer yields a high red bar, indicating that many nodes in the gene

trees are labeled as transfers; a cost scheme with a high cost for duplication yields a

high blue bar, indicating that many nodes are labeled as duplication.

In the figure, the first thing to note is that the blue and the red bars are not

symmetric across the cost schemes, where nodes tend to be labeled as duplication

more than as transfer. In particular, in the cost schemes with a high penalty for

transfer, there are fewer transfers retained than in cases with cost schemes with a

high penalty for duplication. For example, while in the estimation with (0.1/0.9), no

tree has transfer labels, an estimation with (0.9/0.1) yields some duplications. This

result might imply that duplications have more clear signs than transfers in the data

set.

Because different cost schemes yield different sets of detected events, the question

becomes which cost matrix to use. Tofigh et al. found, through simulation, that if

the true scenario is optimal under some cost scheme, (0.5/0.5) cost scheme almost

always catches the scenario as an optimal solution. Also note that using (0.5/0.5)

cost scheme makes sense in parsimony, because this cost scheme minimizes the sum

of the number of the events. However, no study has verified any of the cost schemes
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from a biological point of view, so it is still not clear which cost scheme should be

used to accurately detect evolutionary events in the γ-proteobacteria data set.

While it is not certain which cost matrix is appropriate for the data, Figure 6.8 of

the ratio values of individual trees poses another question for using the cost scheme in

the detection process. As the ratio of the events is calculated on the trees, Figure 6.8

randomly selects 10 individual gene trees and shows their duplication ratio values

without taking the average. While the number of nodes labeled as duplication is

dropped as the estimation uses a bigger cost value for duplication, Figure 6.8 shows

that the pattern is different. It implies that the gene trees have duplication/transfer

signals with different strengths. It naturally follows that in order to catch the signals

correctly, different cost schemes might be applied to the gene trees.

The results show some issues in using a parsimonious reconciliation algorithm

for biological data analysis, related to the species tree estimation under the current

assumption and the issues of the cost scheme and the uniform use of a cost scheme

on the gene trees.

6.4 Discussion

In this chapter, we studied the performance of parsimonious reconciliation under

the DTL model in detecting evolutionary events. For this study, we developed an

algorithm to retrieve the detected events in Tofigh et al.’s algorithm.

6.4.1 Conclusions

In studying the performance, we investigate the two important factors of the recon-

ciliation: the species tree estimation and the cost scheme. In the investigation of

species tree estimation, we particularly focus on the effect of loss and transfer events
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on the performance, to determine the effect of the unidentified rates of evolutionary

events on the current species tree estimation algorithm. As long as gene trees contain

accurate branching orders and collectively cover the entire species, poor coverage of

a tree would not greatly deteriorate the quality of the estimation.

On the other hand, results from the transfer simulation show that transfer events

affect the accuracy of the estimation by effectively disguising the bipartition informa-

tion of the gene trees. This finding negates the assumption of the negligible effect of

transfer on species tree estimation and calls for an algorithm that takes transfer into

account.

While identifying the species tree is an important subject of study in itself, the

accurately estimated species tree is used as the basis for other biological studies such

as the identification of evolutionary events under the DTL model, as the identification

is made in reference to the species tree. When the identification is by parsimony,

another important issue is the cost scheme, which calculates the parsimony score of

the event assignment.

Even though a simulation study supports the equal cost value for duplication

and transfer, which makes sense in parsimony, it is not clear which combination of

cost values is appropriate for biological data. Additionally, the simulation study

shows that using a cost scheme uniformly for all gene trees might lead to inaccurate

detection.

While the study brings up some issues of the parsimonious reconciliation and

the events it detects, the results give an idea of the significance of estimation. In

Figure 6.7, it is easy to suppose that the set of nodes of a gene tree estimated as a

particular event under a cost scheme are estimated as the same event under a cost

scheme that penalizes the event less. For example, in Figure 6.7, the nodes estimated
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as duplication under 0.9/0.1 (Cd=0.9) are estimated as duplication under 0.8/0.2

(Cd=0.8) and 0.7/0.3 (Cd=0.7). As 0.1/0.9 clearly is a severe cost scheme to detect

transfer, and 0.9/0.1 for duplication, 0.7/0.3 might be a good cost scheme that reflects

the signal strength of the significant duplications, in the sense that it retains most

of the nodes estimated as duplication in the most severe condition. On the other

hand, the figure shows that the most severe condition for transfer does not detect

any transfer, unlike duplication. In this case, 0.3/0.7 might be a cost scheme for

significant transfer, since γ-proteobacteria is known to have many transfers.

6.4.2 Future Work

In this chapter, we investigate some issues of parsimonious reconciliation in detecting

evolutionary events and discuss how to obtain significant estimates of these events.

Even though one can infer significant estimates and the corresponding cost scheme for

the γ-proteobacteria data using the rationale described as above, it is true that the

significance estimation is very ad hoc and data-specific. It is imperative to develop a

systematic method to obtain significant estimates under the DTL model.
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Enterobacteriales
Alteromonadales

Aeromonadales
Pasteurellales
Oceanospirillales
Pseudomonadales
Methylococcales
Legionellales

Thiotrichales
Chromatiales

sulfur-oxidizing symbionts

Cardiobacteriales
Xanthomonadales

unclassified

Figure 6.4 : Species tree of the γ-proteobacterial strains estimated by DupTree [6]
based on the γ-proteobacteria gene trees. Strains are colored by taxonomic order.
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(a) (b) (c)

Figure 6.5 : The RF distance values between ST and STi from the loss simulations.
The percentage value i is given on the x-axis and the normalized RF distance value
between STi and ST is plotted on the y-axis. (a) The average (in bars) and the
standard deviation (in error bars) of the RF distance values. While the loss simulation
decreases the number of leaves in a tree and sometimes removes all nodes of a tree, (b)
shows the number of the trees that the simulation retains to use for the estimation,
and (c) shows the percentage of retained leaves in the trees.

(a) (b)

Figure 6.6 : Results from the transfer simulations. The values on the x- and y-axis
are similar as in Figure 6.5. (a) shows the normalized RF distance values between
ST and STi, and (b) plots the average of the normalized RF distance values between
gene trees and their manipulated trees with the transfers in bars and the standard
deviation values in error bars.
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Figure 6.7 : The ratios of the duplication and transfer events across γ-proteobacteria
gene trees in average (bars) and standard deviation values (error bars) based on a
specific cost scheme. The sets of the values as cost schemes are denoted on the x-axis.
Basically, the value before the slash (Cd) refers to the cost value for duplication, and
that after the slash (Ct) refers to the cost for transfer. Schemes on the left side of
the x-axis bear high costs for transfer, and those on the right bear high costs for
duplication. With the cost schemes, the detections are conducted by Tofigh et al.’s
algorithm and Algorithm 1.

Figure 6.8 : The ratios of duplication of 10 gene trees of the γ-proteobacteria data
by different cost schemes. The ratios of the trees of different cost values is plotted by
color. Note that the ratios of the transfer of the gene trees show a complementary
pattern.
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Chapter 7

Conclusions

7.1 Discussion

The current scale of biological data clearly shows several evolutionary events as the

cause of gene tree/species tree incongruence. Because these events are rampant in

species evolution, a species tree loses its resolution to model genomic evolution, and

a better model is needed to represent it. Among several models that represent the

genomic evolutionary history, phylogenetic networks are widely used for their direct

interpretability and efficiency.

In this dissertation, we first focus on developing computational methods that re-

construct phylogenetic networks under an optimization criteria as a first step for the

large-scale data analysis. As both criteria, MP and ML, have a tendency to overes-

timate HGT events, we developed methods to suppress this tendency by estimating

the significance of the estimates and allowing only significant ones. Since MP and

ML measure optimality in a different way, we estimate the significance differently

in them. Under MP, because the parsimony score does not indicate significance of

an estimate, we developed a bootstrap-based algorithm. This algorithm not only

performs well in identifying significant HGT events, but also allows analysis to use

the estimated significance to make a sophisticated and useful interpretation of the

result. On the other hand, even though the likelihood score can directly be used to

estimate the significance, the problem is that it inherently prefers a complex model,
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usually resulting in overestimation. For ML, we study the effect of some properties

of an HGT on its identifiability and investigate the performance of two information

criteria for addressing the issue of overestimation. Our study establishes ML as a

good criterion and allows the analysis to make a better use of this criterion.

Another advantage of the methods proposed in this dissertation is their compu-

tational structure; our methods set up the problems in multiple layers such that the

problem in a lower layer is connected to a simpler computational task. Given progress

made in phylogenetic study, making use of the efficient algorithms for the pre-existing

problems can be an efficient and reasonable solution for problems at a higher layer.

In that regard, both the reticulation detection algorithms under MP and ML place an

external tree-scoring program in the lower layer, not bound by an internal module.

As a result, it is easy to switch algorithms for the module and advances in tree-

scoring programs can directly be incorporated. Further, as M1, M2, and MURPAR

in Chapter 5 make use of an external program for pairwise SPR calculation, the re-

sult shows that they perform better than their competing tools, while staying open

for improvement in pairwise SPR computation algorithms. In particular, while the

current pairwise SPR computation algorithms concern only the minimum distance, if

there is a method that returns all or most of the possible SPR solutions, no matter

the distance, then MURPAR would generate a close estimate to the global optimum,

since a part of the global minimal set of SPR moves for a set of trees should address

any pair in the set, even if it is not always the minimum for that pair. In the last

chapter, we study the performance of a parsimonious reconciliation under the DTL

model and discuss issues of reconciliation for analysis. Since significance estimation

is critical for analysis, we suggest ad hoc ways to infer the significant estimates.

In sum, we propose computational methods to estimate the significance of the
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HGT events using an efficient computational structure. Also, we demonstrate how

a computational method would contribute to biological data analysis. While this

dissertation introduces efficient computational methods for the phylogenetic network

reconstruction problem, we believe that it also bridges the gap between computational

methods for biology and the actual problems they intend to solve.

7.2 Future Directions

We present several methods to detect particular evolutionary events, and they show

good performance in both simulation studies and biological data. However, they

still need extensive validation with biological data. When a computational method

is proposed for a biological problem, it usually comes with many assumptions. For

example, besides the assumption of our methods that reticulation is the only cause

for incongruence, we also assume the independence between genetic evolution and the

minimum amount of signs a reticulate event would leave on the sequence. However,

as we found in Chapter 4, the signal strength of an event would be affected by many

factors, and a combination of these factors might break some of the computational

assumptions. A computational method should be extensively validated with various

biological data before using it for biological data analysis.

A more serious challenge lies in the assumption that all methods proposed in

this dissertation are based on the cause of the incongruence, because it is clear that

this assumption can hardly hold in practice, especially as data cover many loci on a

large set of species. As the data is collected at the species level, duplication and loss

would be dominant together with transfer over other evolutionary events. There are

a number of algorithms that attempt to detect these events under the model allowing

for both events. However, their performances are not well-studied, as to how well they



131

detect the ancient transfer events or those transfer events that span a far distance. It is

important to study their performance before conducting analysis with them in order

to make accurate interpretations from that analysis. In particular, as parsimony-

based approaches are more suited for large-scale data analysis, it is important to

study their performance in regard to the cost schemes, with which parsimony scores

are calculated. In order to obtain significant estimates without prior knowledge in

the parsimony-based approaches, one can use the estimates based on a conservative

matrix for the analysis, as we suggested in the last chapter. However, it is critical to

develop a method to determine the significance of the estimates in a more systematic

way.

The advancement of technology produces an extensive scale of biological data,

in which multiple kinds of events can occur on a large set of species; the phyloge-

netic community has developed several algorithms that either detect multiple kinds

of events or conduct a fine-grained search with constraints and significance estima-

tion. However, obtaining significant estimates for the former approaches has yet to

be determined. Because it is critical to conduct an extensive biological data analysis,

our efforts will help develop such methods in the future.



132

Bibliography

[1] C. Delwiche and J. Palmer, “Rampant horizontal transfer and duplication of

rubisco genes in eubacteria and plastids,” Mol. Biol. Evol., vol. 13, pp. 873–882,

1996.

[2] A. Rokas, B. Williams, N. King, and S. Carroll, “Genome-scale approaches to

resolving incongruence in molecular phylogenies,” Nature, vol. 425, pp. 798–804,

2003.

[3] H. Park, G. Jin, and L. Nakhleh, “Algorithmic strategies for estimating the

amount of reticulation from a collection of gene trees,” in Proceedings of the 9th

Annual International Conference on Computational Systems Biology, pp. 114–

123, 2010.

[4] Y. Wu, “Close lower and upper bounds for the minimum reticulate network of

multiple phylogenetic trees,” Bioinformatics [ISMB], vol. 26, no. 12, pp. 140–

148, 2010.

[5] L. van Iersel, S. Kelk, R. Rupp, and D. Huson, “Phylogenetic networks do not

need to be complex: using fewer reticulations to represent conflicting clusters,”

Bioinformatics [ISMB], vol. 26, pp. i124–i131, June 2010.

[6] A. Wehe, M. Bansal, J. Burleigh, and O. Eulenstein, “Duptree a program for

large-scale phylogenetic analyses using gene tree parsimony,” Bioinformatics,

vol. 24, pp. 1540–1541, 2008.



133

[7] W. Maddison, “Gene trees in species trees,” Syst. Biol., vol. 46, no. 3, pp. 523–

536, 1997.

[8] W. Doolittle, “Phylogenetic classification and the universal tree,” Science,

vol. 284, pp. 2124–2129, 1999.

[9] C. Kurland, B. Canback, and O. Berg, “Horizontal gene transfer: A critical

view,” Proc. Nat’l Acad. Sci., USA, vol. 100, no. 17, pp. 9658–9662, 2003.

[10] M. McClelland, K. E. Sanderson, S. W. Clifton, P. Latreille, S. Porwollik,

A. Sabo, R. Meyer, T. Bieri, P. Ozersky, M. McLellan, C. R. Harkins, C. Wang,

C. Nguyen, A. Berghoff, G. Elliott, S. Kohlberg, C. Strong, F. Du, J. Carter,

C. Kremizki, D. Layman, S. Leonard, H. Sun, L. Fulton, W. Nash, T. Miner,

P. Minx, K. Delehaunty, C. Fronick, V. Magrini, M. Nhan, W. Warren, L. Flo-

rea, J. Spieth, and R. K. Wilson, “Comparison of genome degradation in paraty-

phi a and typhi, human-restricted serovars of salmonella enterica that cause

typhoid,” Nature Genetics, vol. 36, pp. 1268–1274, 2004.

[11] Y. Nakamura, T. Itoh, H. Matsuda, and T. Gojobor, “Biased biological func-

tions of horizontally transferred genes in prokaryotic genomes,” Nature Genet-

ics, vol. 36, pp. 760–766, 2004.

[12] H. Ochman and I. Jones, “Evolutionary dynamics of full genome content in

Escherichia coli,” Embo J., vol. 19, no. 24, pp. 6637–6643, 2000.

[13] R. Welch, V. Burland, G. Plunkett, P. Redford, P. Roesch, D. Rasko, E. Buckles,

S. Liou, A. Boutin, and J. Hackett, “Extensive mosaic structure revealed by the

complete genome sequence of uropathogenic Escherichia coli,” Proc. Natl. Acad.

Sci. U.S.A., vol. 99, pp. 17020–17024, 2002.



134

[14] U. Bergthorsson, K. Adams, B. Thomason, and J. Palmer, “Widespread hor-

izontal transfer of mitochondrial genes in flowering plants,” Nature, vol. 424,

pp. 197–201, 2003.

[15] J. Mower, S. Stefanovic, G. Young, and J. Palmer, “Gene transfer from parasitic

to host plants,” Nature, vol. 432, pp. 165–166, 2004.

[16] M. Lynch and J. S. Conery, “The origins of genome complexity,” Science,

vol. 302, pp. 1401–1404, Nov 2003.

[17] M. Lynch and J. S. Conery, “The evolutionary fate and consequences of dupli-

cate genes,” Science, vol. 290, p. 11511155, 2000.

[18] A. Force and M. Lynch and F. B. Pickett and A. Amores and Y. N. Yan and J.

Postlethwait, “Preservation of duplicate genes by complementary, degenerative

mutations,” Genetics, vol. 151, pp. 1531–1545, Apr 1999.

[19] F. Ohno, Evolution by gene duplication. E Allen and Unwin, 1970.

[20] H. J. Bandelt, V. Macaulay, and M. Richards, “Median networks: speedy con-

struction and greedy reduction, one simulation, and two case studies from hu-

man mtdna,” Mol Phylogenet Evol, vol. 16, pp. 8–28, Jul 2000.

[21] B. Holland and V. Moulton, “Consensus networks: a method for visualizing

incompatibilities in collections of trees,” in Proceedings of the 2006 Workshop

on Algorithms in BioInformatics (WABI2006), pp. 165–176, 2006.

[22] D. Bryant and V. Moulton, “Neighbor-net: an agglomerative method for

the construction of phylogenetic networks,” Molecular Biology and Evolution,

vol. 21, pp. 255–65, Feb 2004.



135

[23] C. Semple, “Hybridization networks,” in Reconstructing Evolution: New Math-

ematical and Computational Advances, pp. 277–314, Oxford University Press,

Oxford, 2007.

[24] D. H. Huson and T. H. Kloepper, “Computing recombination networks from

binary characters,” Bioinformatics, vol. 21, pp. ii159–ii165, 2005.

[25] B. M. E. Moret, L. Nakhleh, T. Warnow, C. R. Linder, Tholse, A. Padolina,

J. Sun, and R. Timme, “Phylogenetic networks: modeling, reconstructibility,

and accuracy.,” The IEEE/ACM Transactions on Computational Biology and

Bioinformatics, vol. 1, pp. 13–23, 2004.

[26] D. H. Huson, R. Rupp, and C. Scornavacca, Phylogenetic Networks: Concepts,

Algorithms and Applications. Cambridge University Press, 2011.

[27] C. Semple and M. Steel, Phylogenetics. Oxford Lecture Series in Mathematics

and its Applications 24, Oxford University Press, 2003.

[28] J. Felsenstein, “The newick tree format,” 1986.

http://evolution.genetics.washington.edu/phylip/newicktree.html.

[29] D. Robinson and L. Foulds, “Comparison of phylogenetic trees,” Math. Bio-

sciences, vol. 53, pp. 131–147, 1981.

[30] W. H. E. Day, “Optimal algorithms for comparing trees with labeled leaves,”

Journal Of Classication, vol. 2, pp. 7–28, 1985.

[31] D. F. Robinson, “Comparison of labeled trees with valency three,” Journal of

Combinatorial Theory, vol. 11, pp. 105–119, 1971.



136

[32] B. Allen and M. Steel, “Subtree transfer operations and their induced metrics

on evolutionary trees,” Annals of Combinatorics, vol. 5, pp. 1–13, 2001.

[33] G. Hickey, F.Dehne, A.Rau-Chaplin, and C.Blouin, “SPR distance computation

for unrooted trees,” Evolutionary Bioinformatics Online, vol. 4, pp. 17–27, 2008.

[34] M. Bordewich and C. Semple, “On the computational complexity of the rooted

subtree prune and regraft distance,” Annals of Combinatorics, vol. 8, pp. 409–

423, 2004.

[35] Y. Wu, “A practical method for exact computation of subtree prune and regraft

distance,” Bioinformatics, vol. 25, no. 2, pp. 190–196, 2009.

[36] M. Hallett and J. Lagergren, “Efficient algorithms for lateral gene transfer prob-

lems,” in Proc. 5th Ann. Int’l Conf. Comput. Mol. Biol. (RECOMB01), (New

York), pp. 149–156, ACM Press, 2001.

[37] R. Beiko and N. Hamilton, “Phylogenetic identification of lateral genetic trans-

fer events,” BMC Evolutionary Biology, vol. 6, pp. 15+, 2006.

[38] D. MacLeod, R. Charlebois, F. Doolittle, and E. Bapteste, “Deduction of prob-

able events of lateral gene transfer through comparison of phylogenetic trees by

recursive consolidation and rearrangement,” BMC Evolutionary Biology, vol. 5,

2005.

[39] L. Nakhleh, D. Ruths, and L. Wang, “RIATA-HGT: A fast and accurate

heuristic for reconstrucing horizontal gene transfer,” in Proceedings of the

Eleventh International Computing and Combinatorics Conference (COCOON

05) (L. Wang, ed.), pp. 84–93, 2005. LNCS #3595.



137

[40] C. Than and L. Nakhleh, “SPR-based tree reconciliation: Non-binary trees

and multiple solutions,” in Proceedings of the Sixth Asia Pacific Bioinformatics

Conference (APBC), pp. 251–260, 2008.

[41] Y. Song and J. Hein, “Parsimonious reconstruction of sequence evolu-

tion and haplotyde blocks: finding the minimum number of recombination

events,” in Proceedings of the 2008 Workshop on Algorithms in BioInformat-

ics (WABI2008) (G. Benson and R. Page, eds.), vol. 2812 of Lecture Notes in

Bioinformatics, pp. 287–302, 2003.

[42] Y. Song and J. Hein, “Constructing minimal ancestral recombination graphs,”

J. Comput. Biol., vol. 12, pp. 147–169, 2005.

[43] M. Baroni, S. Grunewald, V. Moulton, and C. Semple, “Bounding the number

of hybridisation events for a consistent evolutionary history,” J. Math. Biol.,

vol. 51, pp. 171–182, 2005.

[44] L. Nakhleh, “Evolutionary phylogenetic networks: models and issues,” in

The Problem Solving Handbook for Computational Biology and Bioinformat-

ics (L. Heath and N. Ramakrishnan, eds.), pp. 125–158, New York: Springer,

2010.

[45] G. Jin, L. Nakhleh, S. Snir, and T. Tuller, “Maximum likelihood of phylogenetic

networks,” Bioinformatics, vol. 22, no. 21, pp. 2604–2611, 2006.

[46] C. Meng and L. S. Kubatko, “Detecting hybrid speciation in the presence of

incomplete lineage sorting using gene tree incongruence: A model,” Theor.

Popul. Biol., vol. 75, no. 1, pp. 35–45, 2009.



138

[47] L. S. Kubatko, “Identifying hybridization events in the presence of coalescence

via model selection.,” Systematic Biology, vol. 58, pp. 478–488, 2009.

[48] Y. Yu, C. Than, J. Degnan, and L. Nakhleh, “Coalescent histories on phy-

logenetic networks and detection of hybridization despite incomplete lineage

sorting,” Systematic Biology, vol. 60, no. 2, pp. 138–149, 2011.

[49] F. de la Cruz and J. Davies, “Horizontal gene transfer and the origin of species:

lessons from bacteria,” Trends Microbiol., vol. 8, pp. 128–133, 2000.

[50] P. Planet, “Reexamining microbial evolution through the lens of horizontal

transfer,” in Molecular Systematics and Evolution: Theory and Practice (R. De-

Salle, G. Giribet, and W. Wheeler, eds.), pp. 247–270, Birkhauser Verlag, 2002.

[51] J. Mallet, “Hybridization as an invasion of the genome,” TREE, vol. 20, no. 5,

pp. 229–237, 2005.

[52] M. Arnold, “Natural hybridization as an evolutionary process,” Ann. Rev. Ecol.

Syst., vol. 23, pp. 237–261, 1992.

[53] N. Sueoka, “Directional mutation pressure, mutator mutations, and dynamics

of molecular evolution,” Journal of Molecular Evolution, pp. 137–153, 1993.

[54] P. Deschavanne, A. Giron, J. Vilain, G. Fagot, and B. Fertil, “Genomic signa-

ture: characterization and classification of species assessed by chaos game rep-

resentation of sequences,” Molecular Biology and Evolution, vol. 16, pp. 1391–

1399, 1999.

[55] S. Karlin and C. Burge, “Dinucleotide relative abundance extremes: a genomic

signature,” Trends In Genetics, vol. 11, pp. 283–290, 1995.



139

[56] S. Karlin, “Global dinucleotide signatures and analysis of genomic heterogene-

ity,” Curr. Opin. Microbiol., vol. 1, p. 598610, 1998.

[57] R. Rolfe and M. Meselson, “The relative homogeneity of microbial dna,” Pro-

ceedings of the National Academy of Sciences, pp. 1039–1043, 1959.

[58] M. Ragan, “On surrogate methods for detecting lateral gene transfer,” FEMS

Microbiology letters, vol. 201, pp. 187–191, 2001.

[59] C. Dufraigne, B. Fertil, S. Lespinats, A. Giron, and P. Deschavanne, “Detec-

tion and characterization of horizontal transfers in prokaryotes using genomic

signature,” Nucleic Acids Res, vol. 33, p. e6, 2005.

[60] L. Nakhleh, G. Jin, F. Zhao, and J. Mellor-Crummey, “Reconstructing phy-

logenetic networks using maximum parsimony,” in Proceedings of the 2005

IEEE Computational Systems Bioinformatics Conference (CSB2005), pp. 93–

102, 2005.

[61] G. Jin, L. Nakhleh, S. Snir, and T. Tuller, “Inferring phylogenetic networks

by the maximum parsimony criterion: a case study,” Molecular Biology and

Evolution, vol. 24, no. 1, pp. 324–337, 2007.

[62] G. Jin, L. Nakhleh, S. Snir, and T. Tuller, “Parsimony score of phylogenetic

networks: Hardness results and a linear-time heuristic,” IEEE/ACM Transac-

tions on Computational Biology and Bioinformatics, vol. 6, no. 3, pp. 495–505,

2009.

[63] G. Jin, L. Nakhleh, S. Snir, and T. Tuller, “A new linear-time heuristic algo-

rithm for computing the parsimony score of phylogenetic networks: Theoretical



140

bounds and empirical performance,” in Proceedings of the International Sym-

posium on Bioinformatics Research and Applications (I. Mandoiu and A. Ze-

likovsky, eds.), vol. 4463 of Lecture Notes in Bioinformatics, pp. 61–72, 2007.

[64] J. Zhang, “Evolution by gene duplication: an update,” Trends in Ecology and

Evolution, vol. 18, pp. 292–298, 2003.

[65] M. Lynch and A. Force, “The probability of duplicate gene preservation by

subfunctionalization,” Genetics, vol. 154, pp. 459–473, Jan 2000.

[66] B. Vogelstein and K. W. Kinzler, The genetic basis of human cancer. McGraw-

Hill, 2002.
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