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Abstract

Full-duplex Infrastructure Nodes: Achieving Long Range with Half-duplex Mobiles

by

Evan Everett

One of the primary sources of inefficiency in today’s wireless networks

is the half-duplex constraint – the assumption that nodes cannot trans-

mit and receive simultaneously in the same band. The reason for this con-

straint and the hurdle to full-duplex operation is self-interference: a node’s

transmit signal appears at its own receiver with very high power, desen-

sitizing the receiver electronics and precluding the reception of a packet

from a distant node. Recent research has demonstrated that full-duplex

can indeed be feasible by employing a combination of analog and digital

self-interference cancellation mechanisms. However, two glaring limita-

tions remain. The first is that the full-duplex state-of-the-art requires at

least two antennas and extra RF resources that space-constrained mobile

devices may not be able to accommodate. The second limitation is range:

current full-duplex demonstrations have been for ranges less than 10 m.

At longer distances nodes must transmit with higher power to overcome

path loss, and the power differential between the self-interference and the

signal-of-interest becomes more that the current cancellation mechanisms

can handle. We therefore present engineering solutions for answering the

following driving questions: (a) can we leverage full-duplex in a network

consisting mostly of half-duplex mobiles? and (b) can we extend the range



of full-duplex by achieving self-interference suppression sufficient for full-

duplex to outperform half-duplex at ranges exceeding 100 m? In answer to

the first question, we propose moving the burden of full-duplexing solely

to access points (APs), enabling the AP to boost network throughput

by receiving an uplink signal from one half-duplex mobile, while simul-

taneously transmitting a downlink signal to another half-duplex mobile

in the same band. In answer to the second question we propose an AP

antenna architecture that uses a careful combination of three mechanisms

for passive suppression of self-interference: directional isolation, absorp-

tive shielding, and cross-polarization. Results from a 20 MHz OFDM

prototype demonstrate that the proposed AP architecture can achieve

90+ dB total self-interference suppression, enabling > 50% uplink rate

gains over half-duplex for ranges up to 150 m.
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Chapter 1

Introduction

Current wireless devices operate in half-duplex mode – they do not transmit and

receive simultaneously in the same band – which results in inefficient use of the

resources available for communication. In cellular systems transmission and reception

are orthogonalized in frequency (frequency division duplex), and in WiFi systems

transmission and reception are orthogonalied in time (time division duplex). In both

cases, the half-duplex constraint is a major source of wasted bandwidth. The hurdle

to full-duplex operation, where devices transmit and receive simultaneously, is self-

interference: the signal transmitted by a full-duplex node appears at its own receiver

with very high power, overwhelming the packet-of-interest due to limited dynamic

range of the receiver electronics (especially the analog-to-digital converter). Recent

results [1, 2, 3] have demonstrated the feasibility of full-duplex wireless communication

by suppressing self-interference via a combination of analog and digital cancellation,

but two glaring limitations remain in full-duplex state of the art: resources and range.

This thesis is dedicated to addressing and overcoming these limitations.

The first limitation of full-duplex is that of resources. The full-duplex state-of-

the art requires two physically separated antennas and extra RF resources for analog

cancellation at any full-duplex node. This is a problem for mobile devices, where every
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millimeter of real-estate is at a premium. In this paper we identify an opportunity

to leverage full-duplex even if the end-user devices remain half-duplex. We propose

moving the burden of full-duplexing solely to access points, enabling an access point

(AP) to boost network throughput by receiving an uplink signal from one half-duplex

mobile node, while simultaneously transmitting (over the same frequency band) a

downlink signal to another half-duplex mobile node.

The second limitation is range. Full-duplex is challenging because the

self-interference is much more powerful than the received signal from a distant node.

This large power differential is the reason that devices have remained half-duplex for

so many years. As range between devices increases, the signal-of-interest is attenu-

ated due to path loss, while the self-interference power remains the same or even gets

worse if higher transmit power is needed to overcome the path loss. Thus the power

differential that is the crux of the full-duplex challenge gets worse as range increases.

To our knowledge, all published experimental results demonstrating full-duplex feasi-

bility have been in line-of-sight conditions at less than 10 m range. In this paper, we

propose three engineering solutions for passive suppression of self-interference: direc-

tional isolation, absorptive isolation, and polarization isolation, and introduce a novel

access-point architecture for leveraging these mechanisms. Experimental evaluations

shows that the architecture enables total self-interference suppression of 90+ dB,

allowing full-duplex to outperform half-duplex even at ranges exceeding 100 m.

1.1 Full-duplex Infrastructure with Half-Duplex Mo-

biles

Our proposed scenario for leveraging full-duplex in a network with half-duplex mobiles

is shown in Figure 1.1. A full-duplex access point, AP, can receive an uplink packet
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AP

M1

M2

Upli
nk

Downlink
Self-Interference

Inter-node Interference

Figure 1.1: Full-duplex AP with half-duplex mobiles. Uplink suffers from self-
interference while downlink suffers from inter-node interference

from one half-duplex mobile node, M1, while simultaneously transmitting a downlink

packet to another node, M2. Such simultaneous uplink/downlink can boost network

throughput without increasing the bandwidth. In current 802.11 networks, M1 and

AP would contend with each other for the channel. Assuming M1 wins the contention,

M1 will transmit its uplink packet while AP defers, then at some later time AP will win

the channel and transmit its downlink packet to M2. However, if we can demonstrate

that simultaneous uplink/downlink, as shown in Figure 1.1, is feasible at the physical

layer, it will open doors to reduced contention and therefore higher overall MAC

throughput. For example it could be possible to design a MAC protocol in which the

AP does not have to contend with mobile users nodes for access to the medium: the

mobile nodes compete among each other for deciding who gets to transmit on the

uplink while the AP is transmitting on the downlink.

1.1.1 A tale of two interferences

Simultaneous uplink/downlink as shown in Figure 1.1 introduces two challenges: self-

interference on the uplink and inter-node interference on the downlink. Strategies

for suppressing self-interference have been proposed in [1, 2, 3, 4, 5, 6], but the

suppression achieved in these works is only sufficient for establishing a short-range
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(∼ 10 meters), line-of-sight full-duplex links. WiFi users expect to be able to wander

100+ meters from an outdoor AP, or several rooms away from an indoor AP, while

maintaing high-rate service. Thus, although the problem of self-interference is not

new, the problem of reaching practical ranges with full-duplex is unsolved.

In addition to the challenge of self-interference, leveraging full-duplex in the con-

text of Figure 1.1 introduces the challenge of inter-node interference. If M1 is to

transmit to AP while AP transmits to M2, then M1’s transmission can interfere with

AP’s transmission at M2. In the case of bi-directional full-duplex, as studied in the

previous works, the challenge at both receivers was self-interference, and each node

can address this problem in the same way (analog and digital cancellation, etc.).

But in the scenario of Figure 1.1 the uplink will suffer from self-interference while

the downlink will suffer from inter-node interference, and these two interferences are

very different in character. With self-interference the problem is how to communi-

cate in the presence of a high-power interference that is partially known, whereas

with inter-node interference the problem is how to communicate in the presence of

a commensurate-power interference that is unknown, i.e. the traditional interference

problem. We further elucidate how each of these challenge affect our goal of a deploy-

able system to (a) achieve long-range full-duplex and (b) leverage full-duplex gains

even with half-duplex mobile units.

1.1.2 Challenge 1: extending range in presence of

self-interference

In practice, most manufacturers do not specify a single value for communication

range, since it varies significantly from one radio environment to another. However,

numerous field trials [7, 8, 9] have demonstrated that most APs can reach 100+ meters

of range in line-of-sight, low-scattering environments, which reduces as the amount
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of attenuation increases in different non-line-of-sight indoor environments.

Till date, all full-duplex experiments have been in line-of-sight environments with

less than 10 meters of distance. The reason for such small distances can be traced to

the low transmission power used in results till date; most experiments [2, 10] use a

total 0–4 dBm (including transmit power and antenna gain) compared to 10–15 dBm

used in WiFi equipment. One could argue that practicalities of experiments in a small

lab space necessitate reducing transmit power to mimic a larger distance network.

However, size scaling by reducing powers does not apply to testing full-duplex systems

as explained below.

Consider the M1 → AP link in Figure 1.1. Under a simple path-loss model for line-

of-sight communication, where the power decay is proportional to the square of the

distance, to increase the range from 10 meters to 100 meters, M1 has to transmit with

an additional 20 dB of power to achieve the same data rate. However, while the M1

to AP distance is increasing, the distance between AP’s transmit and receive antennas

remains the same. This leads to very low signal-to-self-interference ratio (SSIR) for

theM1 → AP uplink as computed below. Assume that distances of linksM1 → AP and

AP → M2 are 100 meters each. The free space path loss is 80 dB for a 100 meter link.

To achieve a 20 dB SNR for the downlink, the AP transmits at 10 dBm assuming a

−90 dBm noise floor; we note that these numbers are largely representative of typical

WiFi hardware. Assume that the uplink mobile also transmits at 10 dBm.

The highest reported self-interference suppression is around 79 dB [5], which

means that the residual self-interference power (while transmitting to M2 in Fig-

ure 1.1) at the AP will be 10 dBm − 79 dB = −69 dBm. The signal from M1, after

traveling 100 meters will have a signal power of 10 dBm − 80 dBm = −70 dBm. This

implies that the received uplink signal will have an SSIR of −70 dBm + 69 dBm =

−1 dB, which is too low to sustain any reasonable data rate on the M1 → AP uplink.
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Thus increasing transmit power decreases SSIR at the full-duplex AP, since in-

creased transmit power means proportionally increased self-interference at the re-

ceiver. So while the AP → M2 link can be made longer with higher power, the

M1 → AP link is severely impacted due to reduced SSIR. Therefore, achieving long-

range full-duplex will require significantly more self-interference suppression than has

been achieved in the state-of-the-art. In particular, in the above 100 m example, 90

-95 dB is required to produce a 10-15 dB SNR at the uplink. Thus our design goal

will be achieving more than 90 dB of total self-interference suppression at the AP.

1.1.3 Challenge 2: inter-node interference

As mentioned earlier, full-duplex at the AP enables an uplink packet to be received

from one mobile node simultaneously with a downlink packet being transmitted to

another mobile, but as Figure 1.1 illustrates, this can leave the downlink mobile

vulnerable to interference from the uplink mobile. One approach to avoid considering

inter-node interference is to assume that all mobile nodes are also full-duplex (say in

the future WiFi iterations) and bi-directional packet exchanges are the only supported

full-duplex transmissions. That is, full-duplex is used only when both M1 and AP or

M2 and AP simultaneously have a packet for one another.

Although this approach simplifies the design by getting rid of inter-node interfer-

ence, it could severely limit the overall deployed utility of full-duplex APs. First, if

AP has a packet for M1 in its queue, but M1 has no packet for AP (or visa versa),

then full-duplex mode mode cannot be used. WiFi traffic can be highly asymmetric,

and thus the opportunities for bi-directional full-duplex packet exchanges between

two nodes may be limited. Second, till date (see Section 1.4 and also designs in this

paper), full-duplex transceivers require physically separated transmit and receive an-

tennas. However, most small form factor devices like smart-phones and tablets are
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too space-constrained to support such antenna designs. For example, despite the suc-

cess and maturity of MIMO technology, none of today’s smart-phones have multiple

antennas for MIMO support. Therefore it seems unreasonable to expect that full-

duplex technology will change the game and motivate device designers to make room

for more antennas. Future full-duplex designs may employ microwave circulators for

single-antenna full-duplex, but circulators are heavy ferrite devices that will also be

a burden for mobile devices. Thus, only leveraging full-duplex when all nodes in-

volved are full-duplex equipped will likely limit full-duplex to backhaul links between

infrastructure nodes. We therefore view the simultaneous uplink/downlink scenario

of Figure 1.1 as an important opportunity for practical use of full-duplex, and thus

make it the focus of this thesis.

1.1.4 A self-interference focus

The mechanisms and designs proposed in this thesis are primarily focused on the first

challenge: combatting self-interference at the AP. It is important to point out that

inter-node interference is dependent on the network topology, while self-interference

is not. Topology analysis in Chapter 6 shows that there are indeed frequent opportu-

nities in which inter-node interference is small enough for the benefit of simultaneous

uplink/downlink to outweigh the cost of tolerating inter-node interference by treating

it as noise. One could possibly design a MAC protocol to identify these opportuni-

ties.1 Self-interference, however will always be present regardless of network topology.

Thus it makes sense to focus the physical-layer effort on suppressing self-interference.

MAC design for exploiting full-duplex opportunities is a future work.

1At worst, the MAC would allow simultaneous uplink/downlink for a given pair of nodes only
if the inter-node interference is sufficiently small. At best, the MAC would opportunistically pair
mobile nodes with weak inter-node channels for simultaneous uplink/downlink transmissions.
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Bit-level

Signal-level

Physical-level

Coded
Suppression

Active
Suppression

Passive
Suppression

C = max
pX

I(X;Y )

y[n] = h[n] ∗ x[n]

∇× E = −jωB

Figure 1.2: Three levels at which self-interference can be suppressed.

1.2 The Case for Passive Suppression

As was emphasized in section 1.1.2, better self-interference suppression than is cur-

rently available in the state-of-art is needed to achieve long-range full-duplex links.

The question then is “from where can this extra suppression come?”. Figure 2.5

illustrates the three regimes in which self-interference can be suppressed. The top

is the bit-level, where the tools of information theory can be used to develop trans-

mission schemes that exploit the knowledge that the receiver has as to the structure

of its self-interference; we call such approaches coded suppression. The middle is the

signal-level, where the tools of analog and digital signal processing can be employed

to cancel the self-interference; we call this active suppression. The final regime is

the physical-level, where the tools of applied electromagnetics can be employed to

mitigate self-interference before it impinges on the receiver electronics; we call this

passive suppression.

Most of the prior work has been focused on active suppression (see Section 1.4).

Despite this large body of work, the performance of analog cancellation has seemed to

hit a ceiling at around 30-35 dB achieved suppression. Recent characterizations have

demonstrated that this ∼ 30 dB ceiling may be due to fundamental radio limitations

such as phase noise [11]. Only limited work has been conducted on coded suppression
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with some preliminary progress made in [12, 13, 14], but it is currently unclear whether

any significant practical gains will emerge. Passive suppression, however, has received

only a cursory treatment, but we contend that passive suppression has the potential

for large improvements. In particular, considering that we are moving the burden

of full-duplex from user devices to infrastructure nodes, the design space for passive

suppression has been opened up for us.

It is not to say that performance at the other levels has saturated, but the physical-

level certainly seems to be the regime most ripe for realizing big performance gains.

Thus passive suppression will be this thesis’ weapon for attacking self-interference

and achieving long-range full-duplex. Moreover, we want to adopt the the approach

of “prevention is better than cure” with regards to the disease of self-interference.

Rather than focusing on a better cure (i.e. improving cancellation performance),

why not do the best we can to prevent the self-interference from ever coupling onto

the receive signal? Therefore, the primary thrust of this thesis is smart utilization

of antennas at full-duplex APs so that a large amount of passive self-interference

suppression is achieved.

1.3 Main Contributions

Achieving Long Ranges : We propose an antenna design for APs to achieve signif-

icantly more self-interference suppression compared to all prior reported methods,

thus significantly boosting the SSINR of long uplinks. The antenna design uses a

careful combination of three passive suppression techniques - directional isolation,

absorptive shielding and cross-polarization, which achieves a passive self-interference

suppression of 60 dB in indoor environments and up to 70 dB in outdoor environ-

ments. When combined with an active per-subcarrier analog and digital cancellation

scheme proposed in [4, 5], we can achieve an average self-interference suppression of
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94 dB, with peak suppression near 100 dB for a 20 MHz wideband OFDM system.

These numbers are near 20 dB more than the best reported numbers in the literature

and allow us to achieve 100 meters outdoor ranges with our design.

Gains with Half-duplex Mobiles : For long-range communication links, SNR at M2

is already small. In the presence of interference by M1’s transmissions, the signal-to-

interference-plus-noise ratio (SINR) atM2 will be even smaller. The key finding is that

even though interference from M1 decreases the SINR of the AP → M2 downlink, the

total network capacity (sum of both link rates) with our AP design can be significantly

higher for many locations over the whole coverage region of a single AP. Peak gains

in sum capacity can be as high as 60% for some opportune locations of nodes M1 and

M2, but we focus on X%-percentile-area gain to measure what fraction of the coverage

area of an AP can benefit at least X% over a half-duplex AP. Under realistic path-loss

assumptions, our analysis shows that at least 80% of the area can gain X=30% over

half-duplex and almost 50% of the area has X=50% rate gain over half-duplex.

1.4 Prior Art

1.4.1 Performance of previous designs

Over the last 15 years, feasibility of full-duplex for short range communication has

been demonstrated in [1, 2, 3, 4, 5, 6, 15]. The longest-range feasibility demonstration

was 8 meters, reported in [5]. The first demonstration in [1] was shown to achieve a

range of 3 meters for line-of-sight communication with 0.1 MHz bandwidth. Recent

narrowband implementations [2, 3] have been able to reach a range of up to 6.5 meters.

More recently, a wideband 20 MHz full-duplex system with a line-of-sight range of 5

meters [6] and a 10 MHz system with range of 8 meters [5] have been demonstrated.

In contrast, we propose a design which extends the range of full-duplex by one order
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of magnitude to 100 meters for outdoor line-of-sight communication.

One reason for the limited range of the previous designs is insufficient self-interference

suppression. In [1], the primary self-interference mechanism is MIMO null-steering.

Multiple antennas are used, both at the transmitter and the receiver, to perform

beamforming such that transmit and receive vectors are spatially orthogonal. When

employed along with digital cancellation (digitally subtracting off the prediction of

the self-interference from the received samples), the total self-interference cancellation

is no greater than 60 dB. In [10], the primary self-interference suppression mechanism

is “antenna cancellation”: two transmit antennas are used, with one spaced a half-

wavelength farther from the receive antenna than other so that a null is produced at

the receive antenna. (this really just a low-complexity sub-case of the more general

beamforming approach of [1]). The authors also propose using an off-the-shelf interfer-

ence cancellation chip for analog self-interference cancellation. When combined with

digital cancellation the proposed design provides up to 75 dB of suppression. How-

ever both the analog cancellation and antenna cancellation mechanisms proposed are

inherently narrowband, and not scalable to wideband systems such WiFi. In [6, 16] a

BALUN based inversion of transmit signal is used to perform broadband cancelation

of self-interference in RF. A total suppression of 73 dB using a combination of auto-

mated RF and digital cancelation was reported in [16]. In [2, 5], an additional radio

chain is used to feed the receiver with the broadband cancellation waveform that is

the inverse of predicited self-interference signal. [5] takes advantage of higher passive

suppression by placing the receive and transmit antennas on two ends of a laptop

sized device. When employed along with digital cancellation, [2] achieves 72 dB while

[5] achieves 79 dB suppression, the best reported suppression to date. In contrast,

our proposed design achieves an average self-interference suppression of 94 dB which

is pivotal in sustaining long range full-duplex communication.
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1.4.2 Previous approaches to full-duplex infrastructure

Full-Duplex has been proposed and studied for infrastructure nodes in [17, 18, 19, 20,

21] (and references therein). In [17, 18], full-duplex communication has been studied

in the context of repeaters/signal boosters where the self-interference suppression is

driven by antenna isolation. [17] studies an architecture where the transmit and

receive antenna are separated by 5 meters. In contrast, our design has an order of

magnitude smaller antenna separation. In [19], boosters are proposed which rely only

on adaptive signal processing for canceling the self-interference. More recently, [20, 21]

study and analyze the design of full-duplex as a relay node where power control at the

full-duplex relay node is used as an approach to mitigate self-interference and improve

the end-to-end achievable rate. In contrast, our infrastructure node is designed to

support independent uplink and downlink traffic which is a reasonable scenario in a

WiFi-like network.

1.4.3 Limitations on the existing strategies for passive self-

interference suppression

Another reason for the limited range of the previous designs is that the many of them

the passive self-interference suppression mechanisms, although effective is suppressing

self-interference, hurt the far field coverage. The lowered increased suppression comes

at the cost of lowering SNR for the signal-of-interest.

In the “antenna cancellation” technique of [3], two transmit antennas are used,

one spaced a distance d away from the receive antenna, and the other spaced d+λ/2

from the receive antenna, such that the superposition of the two patterns produces

a null at the receive antenna. The problem is that since periodic nulls will occur

not just at the receive antenna but throughout the entire coverage zone, isolation

comes at the expense of coverage. In the “device-in-the-middle” approach of [5], the
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line-of-site self-interference path is attenuated by placing the transmit and receive

antennas on opposite sides of the device’s shell. Here the coverage is degraded due to

the fact that receive antenna is “blinded” to the region opposite the device, and the

same for the transmit antenna. Furthermore, a device’s conductive shell can detune

the antenna and cause spurious reflections that distort radiation patterns.

In contrast, we seek achieve passive suppression is such a way that coverage is not

degraded. The passive mechanisms of directional isolation, absorptive shielding, and

cross polarization that we propose in Chapter 2 can all be employed to either enhance

coverage or be coverage-neutral at the worst. In the AP architecture proposed in

Chapter 3 theses mechanisms are carefully leveraged to ensure that far-field coverage

is to affected.

1.5 Organization of Thesis

In Chapter 2 we introduce three electromagnetic mechanisms for passive self-interference

suppression, and in Chapter 3 a general antenna and RF architecture for full-duplex

access points is proposed for leveraging these three mechanisms. In Chapter 4, the

performance of the proposed passive suppression mechanisms is evaluated by directly

measuring the the amount of suppression achieved for different configurations. Chap-

ter 5 presents results from aWARPLab prototype that quantifies the total suppression

achieved with all mechanisms in place (both passive and active) and demonstrates

gains in uplink rate (over half-duplex) at ranges exceeding 100 m. In chapter 6 the

full-topology (both uplink and downlink) performance is evaluated via data-driven

simulations aimed at capturing the impact of inter-node interference on the downlink

as a function of the geographic location of the nodes. Chapter 7 summarizes and

concludes the thesis.



Chapter 2

Mechanisms for Passive Self-Interference

Suppression

In this chapter, we introduce three mechanisms that can be leveraged for passive

self-interference suppression at infrastructure nodes: directional isolation, absorptive

shielding, and cross-polarization. This chapter provides a general background on each

of the mechanisms: the physics for why each can provide passive self-interference

suppression is described. The specific strategy for utilizing the three mechanisms at

an access point is saved for Chapter 3.

2.1 Directional Isolation

Many commercial access points attain uniform coverage via an array of directional an-

tennas, as depicted in Figure 2.1, as opposed to a single omnidirectional antenna [22].

A directional antenna architecture provides two advantages for traditional half-duplex

access points. The first is that by selecting the antenna pointed in the direction of

the client being served,1 an AP can create a higher SNR link with that client, since

1Choosing the right antenna is usually achieved by listening for control packets (such as the
request-to-send in the uplink case, and the clear-to-send in the downlink case) on all antennas, and
comparing received power levels.
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each individual directional antenna has a higher gain than an omnidirectional an-

tenna. The second advantage is WiFi sectoring. By allocating each antenna to a

separate WiFi channel, the AP creates several orthogonal sectors. Although sector-

ing does not increase the spectral efficiency at any one AP (added capacity is from

added bandwidth), it can increase the net spectral efficiency of a network with many

APs. Sectoring directionalizes interference such that another AP that uses the same

set of channels can placed closer to the the first AP without causing interference

than would be the case if sectoring were not employed [23]. Thus sectoring improves

spectral efficiency my making the frequency-reuse pattern denser.

AP

90◦

Figure 2.1: Access point with an array of directional antennas for 360◦ coverage.

Beyond the above two conventional benefits, Figure 2.2 shows how directionality

can isolate a receive antenna from the transmit antenna’s interfering signal. If, as

in Figure 2.2(a), a single omni-directional transmit antenna is tasked with providing

downlink coverage in all directions, and a single receive antenna is providing uplink

coverage in all directions, then the transmit antenna will radiate directly onto the

receive antenna, producing severe self-interference. In contrast, if an array of direc-
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tional antennas is employed as in Figure 2.2(b), then the transmit energy is always

directed away from the receiving antennas on the AP. Similarly the receive pattern is

pointed away from the transmit antenna for uplink flows. Thus the coupling between

transmit and receive antennas could be greatly reduced with directional antennas.

TxRx
(a) Omni antennas

TxRx
(b) Directional antennas

Figure 2.2: Directional Isolation. When omnidirectional antennas are used (a), the Tx
antenna radiates directly onto the receive antenna, producing severe self-interference.
In contrast, directionality (b) prevents the Tx antenna from radiating across the Rx
antenna, suppressing self-interference.

However, just like practical filters are never perfectly rectangular, practical an-

tennas are never perfectly directional. The cones depicted in figure 2.2(b) represent

the 3dB antenna beamwidth: the span of angles for which the antenna gain is within

3dB of its max gain. Outside of the 3dB beamwidth, the gain is not zero, but de-

cays gradually. This means the transmit antenna will still have non-zero gain in the

direction of the receive antenna, and likewise the receive antenna will have non-zero

gain in the direction of the transmit antenna. Thus perfect isolation is not achieved,

and a residual self-interference signal will be indeed be present at the AP’s receive

antenna.
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2.2 Absorptive Shielding

For client devices such as smartphones or laptops, user experience is paramount and

antenna performance is secondary, but an access point can be designed from the

ground up for efficient antenna utilization. With this in mind, it is perfectly reason-

able to consider structurally shielding the access point antennas from one another for

improved full-duplex performance.

Figure 2.3: When used in conjunction with directional antennas, absorptive shield-
ing can provide self-interference isolation without obstructing the intended coverage
zones.

The idea of “device-in-the-middle” structural shielding was proposed in [5, 24].

The idea is that when placing omnidirectional antennas at opposite sides of a de-

vice’s electronics, passive isolation is achieved since the line of sight path from the

Tx antenna to the Rx antenna is strongly attenuated. The disadvantage to this ap-

proach is that the isolation comes at the expense of coverage by potentially altering

far-field antenna pattern. The transmit antenna cannot transmit efficiently to nodes

located on the hemisphere opposite the device. In short, the design in [5, 24] alters

both the near- and far-field patterns. However, when directional antennas are used

at the access-point, shielding can indeed be placed between antennas to suppress

self-interference without reducing coverage and altering far-field patterns. Figure 2.3

illustrates that when shielding can be placed between adjacent directional antennas
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to reduce the side-lobes that cause self-interference, but without obstructing the an-

tenna’s intended radiation pattern.

This leads to the question of “what sort of shielding should be placed between

the antennas to provide isolation?”. Conductors such as aluminum and copper are

commonly used to provide electromagnetic shielding. So one may be led to place

metallic sheets between antennas, but such conductive materials provide isolation

by reflecting the incident energy, as illustrated in Figure 2.4(a) which will alter the

intended coverage pattern as follows. A conductor in the near-field of an antenna

will couple with the antenna, detuning it (i.e. making it a less efficient radiator) and

unpredictably distorting the coverage pattern. Moreover, even if the conductor is in

the far-field of the antenna, it will reflect the energy back into the desired coverage

area producing an interference pattern. What is needed are materials that provide

isolation not by reflecting electromagnetic energy but by absorbing it, as illustrated

in Figure 2.4(b) Thankfully, such materials are readily available.

(a) Reflective shielding (b) Absorptive Shielding

Figure 2.4: Self-interference shielding. A metallic shield (a), provides effective shield-
ing, but distorts the radiation pattern of the transmit antenna. An absorptive shield
(b) suppresses self-interference without disturbing antenna patterns.

RF absorber material is commonly used to line anechoic chambers, reduce radar

visibility in defense equipment, and control electromagnetic interference (EMI) in

high-frequency electronics. RF absorbers work by using lossy materials to dissipate

electromagnetic energy as heat. According to [25], there are two fundamental types

of RF absorber: standing-wave absorber and free-space absorber. Standing-wave ab-
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sorber is for suppression of unwanted radiation that is coupled to a structure, such

as the walls of a waveguide or a coaxial transmission line. Free-space absorber is for

suppression of waves propagating in the “open-air”. Free-space absorber is the obvi-

ous choice for shielding an Rx antenna from a Tx antenna at a full-duplex AP, hence

in this thesis the usage of free-space absorber alone is studied. However in practical

devices, self-interference may couple from the Tx antenna to the Rx antennas not

only via free-space radiation, but also via standing waves excited along the structure

of the device. For example, in a laptop the transmit antenna may excite currents

in the laptop’s conductive shell that couple to the receive antenna. Characterizing

which coupling mechanism (free-space vs. standing-wave) dominates self-interference

in common form-factors, and designing absorber solutions based on the results may

be a fruitful area of future study.

Free-space absorbers may be further classified as either (a) resonant absorber or

(b) broadband absorber. A resonant absorber can provide huge amounts of absorp-

tion over a narrow band, but in order to suppress of a 20 MHz wideband OFDM

signal, broadband absorber is the only choice. Broadband RF absorber functions

somewhat like an “air resistor.” It is made from a polyurethane foam embedded with

carbon particles that make the material conductive but lossy (just like a they do

in a common carbon-composite resistor). The incident electric field excites currents

in the conductive carbon foam, but encounters I2R losses as the incident energy is

dissipated as heat by the carbon [25]. But making the material lossy is not sufficient

for creating an effective absorber. The design of a broadband absorber is a tradeoff

between loss and impedance match. When an electromagnetic wave encounter a step

in characteristic impedance, reflection occurs, and a lossy, carbon-loaded foam will

have much different characteristic impedance than the 377 Ω of free space. Thus a

gradient is needed to transition from free space to lossy material so that the wave can
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RF Absorber

Standing-wave Free-space

Resonant Broadband

Pyramidal Tapered loading

Figure 2.5: A Taxonomy of RF absorber materials. The blue path signifies design
choices appropriate for self-interference in full-duplex WiFi systems.

“make it” to the lossy material and be dissipated as heat.

There are two ways that this impedance gradient is realized (a) pyramidal struc-

ture and (b) tapered loading [25]. Pyramidal absorber is the kind one is accustomed

to seeing in anechoic chambers. The pyramidal cones provide a gradual transition

from air to absorber, thus producing a nice impedance gradient. Pyramidal absorber

provides higher absorption levels than its tapered loading counterpart, but the pyra-

midal structure must have thickness on the order of a wavelengths [25]. At 2.4 GHz

pyramidal absorber may need to be as thick as 1 ft., too big for practical access-

points. A tapered loading absorber is a simple slab of material, but where the lossy

carbon particles are applied in a gradient with low concentration at the interface and

high concentration at the back. The absorption performance improves with increas-

ing slab thickness, but the slab does not have to be order-of-wavelengths thick to be

effective. Thus free-space, broadband, taper loading absorber is the most reasonable

design choice for absorptive shielding for passive self-interference suppression.
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2.3 Cross-polarization

The polarization of an electromagnetic wave can be loosely defined as the direction in

which the electric field vector is oscillating [26]. In a vertical dipole antenna (assume

the z axis is vertical), electric current oscillates back and forth along the length of the

dipole producing an electric field that oscillates in the z direction as it propagates.

Hence vertical dipoles produce vertically polarized radiation. If a horizontal dipole

antenna (say in the y direction) attempts to receive this vertically polarized wave, it

will be unsuccessful. The electrons in the horizontal dipole are spatially constrained

to move only in the y direction, but the vertically varying electric field can only exert

a force on the electrons in the z direction. Hence the vertically polarized wave does

not excite any current in the horizontal dipole. One would say that the vertical and

horizontal dipoles are cross-polarized : they are orthogonal in “polarization space.”

V P HP RHCP LHCP

Figure 2.6: Four basis polarization states: vertical, linear, right hand circular, and
left hand circular.

In addition to linearly polarized radiation (such as vertical, horizontal, or any

angle in between) antennas can also produce circularly polarized radiation.1 In a

circular polarized wave, the tip of the electric field vector rotates around the axis of

propagation, as opposed to just oscillating up and down in a plane parallel to to the

axis of propagation as in the linear case. Circular polarization comes in two flavors

depending on the direction of the electric field’s rotation: right hand circular polar-

ization (RHCP) and left hand circular polarization (LHCP). Circular polarization is

1In general the polarization of a time-harmonic wave is elliptical, of which linear and circular
are special cases.
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sometimes used in mobile wireless communication because coupling between circu-

larly polarized antennas is orientation independent. Two RHCP antennas can receive

each other’s signal with no polarization loss, regardless of the rotational orientation

between the two antennas. Linearly polarized antennas must be aligned in order to

avoid polarization loss.

= 0=

(a) Orthogonal polarization pairings

=
1

2
= = =

(b) Half-power polarization pairings

= = = 1=

(c) Full-power polarization pairings

Figure 2.7: Polarization efficiency all possible combinations of basis states.

Figure 2.6 shows the four basic antenna polarizations. Most commercial antennas

are designed to produce one of these four polarizations. Polarization match factor is

the fraction of the total power of an electromagnetic wave that can be received by an

antenna of a given polarization [26]. If the transmitted wave has the same polarization

as the receive antenna, then the polarization match factor is one, and no power is

lost, as is shown in Figure 2.7(c). Conversely if the transmitted wave and received

antenna are cross-polarized, (eg. VP→HP or LHCP→RHCP), then the polarization

match factor is zero as shown in Figure 2.7(a), and zero power is transferred between

the two antennas. Figure 2.7(b) shows that any linearly polarized antenna can receive

half the power of a circularly polarized wave, and vice versa for a circular antenna

receiving a linear polarized wave. This can be explained by the fact that a circularly

polarized wave can be described mathematically as the superposition of a horizontally

polarized wave with a vertically polarized wave out of phase by 90◦. A vertically
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polarized antenna “catches” the vertical part, but not the horizontal part, and thus

receives half the power of the incident wave.

In typical wireless applications, the goal is to have a high polarization match

factor, so that the SNR for a link is a high as possible. However, mitigating self-

interference, we can turn cross-polarization around to our advantage and aim for a

low polarization match factor, so that the self-interference is passively suppressed.

TxRx
(a) Co-polarized Tx and
Rx

TxRx
(b) Cross-polarized Tx
and Rx

Figure 2.8: If the uplink and downlink antennas have the same polarization (a),
self-interference is strong, but if uplink and downlink are cross-polarized, passive
self-interference suppression is achieved.

Figure 2.8 shows how cross-polarization can be utilized for full-duplex self-interference

suppression at an infrastructure node such as an AP. By transmitting on one polar-

ization and receiving on an orthogonal polarization, the self-interference channel is

cross-polarized, and hence self-interference is passively suppressed. For instance, an

AP could transmit with horizontal polarization, and receive with vertical polarization

as depicted in Figure 2.8(a). In section 3.3 we address the issue of how mobile devices

communicate that has uplink and downlink on orthogonal polarizations. In short, in

NLOS environments, scattering leads to the uplink signal becoming depolarized by

the time it reaches the AP and the downlink signal becoming depolarized by the time

it reaches the AP, hence mobile nodes are agnostic to the polarization configuration at

the AP. In line-of-sight environments the mobiles will need to match the AP’s polar-

izations, either by using a single circularly polarized antenna (which can couple with

both H-pol uplink an V-pol downlink with 3 dB loss) or a dual-polarized antenna.
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2.4 Summary

We have introduced three mechanism for isolating the transmit and receive anten-

nas from each other for passive self-interference suppression. Directional isolation

directs transmit energy away from receive antennas, absorptive shielding converts a

large portion of the transmitted self-interference power into heat before it impinges

on the receive antenna, and cross-polarization puts the self-interference in a polariza-

tion state that is orthogonal to the receive antenna. Each of these mechanisms are

imperfect: directional antennas have side-lobes, RF absorber has leakage, and practi-

cal antenna never produce perfectly linear polarizations, hence perfect orthogonality

from cross-polarization is impossible. Moreover, all these mechanisms are vulnera-

ble to reflected self-interference. Obviously, both directional isolation and absorptive

shielding are ineffective in suppressing a wave transmitted in the intended direction,

but reflected back to a receive antenna. Reflections also change a wave’s polarization,

so that even if the transmit and receive antennas are perfectly cross-polarized, the

reflected self-interference may not be cross-polarized to the receive antenna. Nonethe-

less, it is our hope that the combination of these imperfect mechanisms will lead to

a much lower-power self-interference, such that long-range (100+ m) full-duplex can

become practical. If the reflected components of the the self-interference become

dominant, the the passive mechanisms will have done their job.

In the following chapter we discuss how the above three mechanism can be utilized

in practical access point. In Chapter 4, measure the suppression achieved by each of

the mechansims and different combinations of the mechanisms.



Chapter 3

Architecture for Full-duplex Access Points

We now present a general design strategy for single-channel full-duplex APs. While

our overall design includes both passive and active suppression mechanisms, according

to our “prevention is better than cure” approach, the architecture especially targets

passive suppression of self-interference before it hits the receive antenna.

3.1 Antenna Architecture

We propose a novel antenna architecture for an AP, shown in Figure 3.1 for passive

suppression of self-interference while providing complete 360◦ coverage to the mobile

devices. The general architecture, denoted by (N, θB), is a circular array of N direc-

tional antennas of beamwidth of θB, each of which can be used for Tx or Rx. 360◦

coverage is ensured as long as NθB > 360◦.

The goal of the proposed antenna architecture is to systematically leverage the

three passive suppression mechanism introduced in Chapter 2: (i) directional isola-

tion, (ii) absorptive shielding, and (iii) cross-polarization, as explained below.
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AP

θB

RF Absorber Dual-polarized
directional antennas

Figure 3.1: (N, θB) full-duplex AP antenna architecture, in this figure N = 6, θB = 90◦

3.1.1 Leveraging directional isolation

If two omnidirectional antennas are tasked with providing coverage in all directions

(one for uplink and one for downlink), then the transmit antenna will radiate di-

rectly onto the receive antenna, producing severe self-interference. The topology of

Figure 1.1, however, emphasizes that when the AP participates in a full-duplex trans-

mission with a pair of half-duplex mobiles, the uplink and downlink will in general

be in different directions. If this directional diversity is exploited by an array of di-

rectional antennas as in Figure 3.1, then the transmit energy is always directed away

from the receiving antenna on the AP, and similarly, the receive antennas are pointed

away from any possible transmit antenna. Thus, the self-interference is passively

suppressed from this directional isolation.

To leverage directional isolation, the access point will be equipped with N direc-

tional antennas of beamwidth1 θB. These antennas will be circularly arrayed around

the access point as shown in Figure 3.1. Increasing the directionality of the an-

1Throughout the paper when we use the term “beamwidth” we mean the 3 dB beamwidth - the
span of angels for which the gain of the antenna is within 3 dB of its maximum gain.
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tennas (i.e. decreasing θB), will improve directional isolation and lead to better

self-interference suppression, but will require more antennas at the AP to ensure

complete coverage. In general, NθB > 360◦ is required to ensure that any half-duplex

mobile in range of the access pointed has at least one AP antenna pointed in its

direction. One can achieve increasing self-interference suppression while maintaining

coverage by letting θB get smaller, and increasing the number of antennas such that

NθB > 360◦ is still satisfied. However, the size constraint of the access point puts a

lower limit on θB, and an upper limit on N . The size of the access point will not grow

linearly with decreasing θB, but quadratically, for decreasing θB not only increases the

required number of antennas, but also increases the required size of each individual

antenna, since the directivity of an antenna is proportional to its size. We want to

limit our discussion to practical AP sizes, less that 50 cm for an indoor AP and 70 cm

for outdoor AP. Therefore in our implementation experiments, we use a conservative

configuration of N = 6, θB = 90◦. In which case there is 30◦ of overlap between each

of the antenna’s pattern, so that uniform coverage is conservatively ensured.

Although NθB > 360◦ is a sufficient condition for ensuring coverage to any one

mobile node, simultaneous uplink/downlink transmissions can only be performed if

the uplink mobile and downlink mobile are in different “sectors,” since the full-duplex

state-of-the art requires separate antennas for transmit and receive. Similarly, NθB >

360◦ is not sufficient for supporting a bi-directional transmissions with a full-duplex

mobile device,1, since this would require two AP’s antennas (one for Tx and one for

RX) to be pointed at the mobile. Thus NθB > 720◦ is required for the AP to support

(a) simultaneous uplink/downlink to HD nodes located in the same sector, and (b)

bidirectional full-duplex with full-duplex equipped devices.

This architecture differs from cellular sectoring in that the N antennas are meant

1this is not the focus of this paper, since this would require, but we include the discussion for
completeness.
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to be interfaced to a single RF front end via an RF switch, as opposed to cellular sec-

toring in which N antenna is connected N independent RF front ends, each allocated

to orthogonal frequency bands.

3.1.2 Leveraging absorptive shielding

Absorptive shielding is achieved by placing RF absorber material in between each

of the antennas as shown in Figure 3.1. The absorptive material is positioned such

that the absorber obstructs the direct path between adjacent antennas without ob-

structing the coverage zone. Free-space RF absorber designed for antenna isolation is

commercially available from many vendors. The performance of the absorber affected

by its thickness in wavelengths: lower frequency requires thicker absorber to achieve

the same isolation. One absorber supplier [27] offers sheets of RF absorber ranging

in thickness from 0.25 inches to 4 inches. Only thicknesses exceeding 1 inch provide

appreciable isolation. For the 1-inch absorber, the suppression is 15 dB at 2.4GHz,

and the highest suppression is 23 dB, for the 4-inch absorber. These thinknesses are

quite reasonable even for compact access-points. If multiple antenna can be fit onto

the AP, it should not be a problem fitting absorber between them.

3.1.3 Leveraging cross-polarization

Now we we turn to the question of how cross-polarization can be leveraged within the

(N, θB) architecture. One option would be to have alternating polarizations among

the N antennas: every other antenna would be vertically polarized and the rest

horizontally polarized, such that any adjacent pair is cross-polarized. But what if

the antenna in whose sector the downlink mobile resides and the antenna in whose

sector the uplink mobile resides have the same polarization? Such an alternating-

polarization configuration would only partially leverage cross-polarization. What we
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would like is for each of the N antennas to be able to use either polarization, so

that any Tx/Rx pair can be cross-polarized. This can be accomplished by using

dual-polarized antennas at the AP.

We proposed that each of the N antennas at the AP will be dual-polarized so

that any antenna can use vertical or horizontal polarization. Each antenna will use

horizontal polarization when it is transmitting and vertical polarization when it is

receiving. In this case any pair of antennas involved in a full-duplex transmission

will be cross-polarized. A dual-polarized antenna is a single antenna with two-ports:

one port for each of two possible polarizations. The most common dual-polarized

antennas have one port for horizontal polarization and the other for vertical. Hori-

zontal/vertical dual-polarization is often realized by having one port feed the antenna

at a location that produces horizontal polarization and the other port feed the antenna

at a location that produces vertical polarization.

Uplink

M2

M1
M3

Downlink

(a) Uplink from M1 and downlink to M2

Uplink

M2

M1
M3Downlink

(b) Uplink from M1 and downlink to M3

UplinkM2

M1
M3Downlink

(c) Uplink from M2 and downlink to M3

Figure 3.2: If dual-polarized antennas are used, then any antenna can be either a
transmitter or receiver, but always with uplink/downlink cross-polarized.

Figure 3.2 illustrates the advantage of dual-polarized antennas. Consider three
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mobile nodes, each of which resides in the coverage zone of a different AP antenna.

Figure 3.2 illustrates three possible full-duplex uplink/donwlink configurations. Note

that if the antennas have only a fixed polarization, then there is no way that the

transmit and receive antennas can be cross-polarized in all three cases. For example,

if the left and right antennas are horizontally polarized and the middle is vertically

polarized, then cross-polarization can be achieved in (a) and (b) but not in (c).

However, if the antennas are dual-polarized, then the middle antenna can transmit

with horizontal polarization in (a), but receive with vertical polarization in (c). Thus

by using dual-polarized antennas, and requiting every transmission to be horizontally

polarized and every reception to be vertically polarized, Tx/Rx cross-polarization is

always ensured. The RF architecture for interfacing the transceiver electronics to

each of the N dual-polarized antennas is discussed in the following section.

The design choice of having the AP always transmit with horizontal polarization,

but receive with vertical polarization has the potential to impact the design of the

antennas at the mobile devices. We discuss the mobile design implications of cross-

polarization in Section 3.3

3.2 RF Architecture

The RF architecture for the full-duplex AP is shown in Figure 3.4. The primary

features are (i) smart antenna switching for utilizing the direction and polarization

degrees of freedom offered by the (N, θB) antenna architecture, and (ii) analog and

digital self-interference cancellation for “cleaning up” self-interference that cannot be

suppressed passively.
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Figure 3.3: RF architecture for full-duplex AP

3.2.1 Antenna switching

Since we are constraining our focus to SISO APs, we consider the case of a single

transmit path and single receive path. Dual-polarized antennas such as [28] have two

ports: one for vertical polarization (V-pol) and the other for horizontal polarization

(H-pol). An RF switch in the transmit path allows transmission on any one of the

H-pol ports of the N antennas, as seen in Figure 3.4. Similarly, an RF switch in the

receive path allows reception on any one of the V-pol ports of the N antennas. Thus

Tx and Rx will always be on orthogonal polarizations.

The switches are under software control, and higher-layer information is used to

associate each mobile in the network with one of the AP antennas, such that the

optimal antenna for each transmission is selected. Such software-controlled switching

among directional antennas at the AP has been extensively studied in works such as

[29], and is therefore not addressed in this work. We instead study the worst case of

simultaneous transmission and reception on adjacent antennas. The only difference

between our approach and that of previous work on directional switching is we allow
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simultaneous transmission and reception on separate antennas. Note, however, that

we do not allow the switches to connect both the receive chain and the transmit chain

to the same antenna. We will study the impact of this constraint in Section 5.

3.2.2 Active cancellation

For active self-interference suppression, we adopt the wideband analog and digital

cancellation mechanisms demonstrated in [4, 5]. In analog cancellation, the over-

the-air self-interference channel is estimated at the beginning of each packet from

OFDM pilots. These per-subcarrier channel estimates allow the AP to craft a wide-

band cancellation waveform that is the inverse of the predicted self-interference. The

cancellation waveform is transmitted over a wire using a dedicated cancellation (Cx)

radio and is combined with the over-the-air received signal to cancel self-interference

prior to it impinging upon the analog-to-digital converter, thus avoiding A/D quanti-

zation issues. Digital cancellation is implemented by estimating and subtracting, at

baseband, the residual self-interference left after analog cancellation.

3.3 Impact on Mobile Nodes

Leveraging directional isolation and absorptive shielding at the AP, comes for “free”

at the mobile nodes: the RF and antenna architecture at the mobiles are agnostic to

these mechanisms. Leveraging cross-polarization, however, does require us to consider

the impact at mobile devices. In the cross-polarization strategy we have proposed,

uplink to the AP is vertically polarized and downlink is horizontally polarized.
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3.3.1 Impact of cross-polarization in NLOS

Reflection of a electromagnetic wave changes its polarization. In and indoor non-

line-of-sight (NLOS) environments, multiple reflections lead to signals between nodes

becoming de-polarized : the received wave is the supper position of many randomly

polarized components. Thus for indoor applications, a single-antenna mobile with any

arbitrarily polarized antenna will be able to both receive from a horizontal polarized

antenna at the AP and transmit to a vertically polarized antenna equally well. Thus

Tx/Rx cross-polarization at the AP does not affect antenna design at the mobile,

nor does it hurt the mobile’s SNR. In indoor, NLOS conditions, leveraging cross-

polarization at the AP also comes for “free” at the mobile devices. Line-of-sight

conditions, however, offer both a challenge and an opportunity at the mobile devices.

3.3.2 Impact of cross-polarization in LOS

In line-of-sight conditions, however, Tx/Rx cross-polarization at the AP does impact

the antenna design at the mobile node. If a mobile node has only a single vertically

polarized antenna, then it will have poor SNR when receiving the AP’s downlink;

likewise a node with a single horizontally polarized antenna will have poor SNR on

the uplink. The ideal solution would be for the mobile nodes to also use dual-polarized

antennas as shown in Figure 3.4(a). Dual-polarized antennas are readily available in

form factors suitable for mobile phones [30]. In this configuration, all uplink signals

in the network would be vertically polarized, and all downlink signals horizontally

polarized. The downside to this strategy is that it requires the mobile node to be

in a stable orientation, or for the mobile device to track it’s orientation such that

effective polarization switching can be performed. For larger WiFi devices such as a

laptop, for the orientation is relatively static and predictable, and the configuration of

Figure 3.4(a) is quite feasible. For smart phones, a wealth of orientation sensors such
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as compasses and accelerometers make tracking orientation quite feasible. Just like

this sensor information was leveraged for mobile phone antenna-pattern switching in

[31], so it could be leveraged for polarization switching.

Tx Rx

HV

(a) Dual-polarized
half-duplex mobile

Tx Rx

RHCP

(b) Circularly polar-
ized HD mobile

Figure 3.4: RF Architecture at AP and mobile for leveraging polarization diversity,
and for switching among directional antennas. Corresponding single-antenna archi-
tecture at the half-duplex mobile.

The dual-polarization strategy of Figure 3.4(b) has an advantage in addition to

providing high SNR for both uplink and downlink: suppressing inter-node interfer-

ence. Since the mobile nodes transmit and receive on orthogonal polarizations, the

interference from mobile A at mobile B introduced by simultaneous transmissions is

now greatly suppressed. Thus, cross-polarization of the uplink from the downlink

affords two simultaneous benefits: suppression of self-interference at the AP, and

suppression of inter-node interference at the the downlink mobile.

However, in low-complexity devices in which the orientation problem cannot be

solved, a simpler solution is for each of the mobile nodes to use a single circularly

polarized antenna as shown in Figure 3.4(b). In this case the single antenna at the

mobile node can both transmit to the AP’s horizontally polarized uplink antenna and

receive from the AP’s vertically polarized downlink antenna, but with a 3 dB power

loss in each case since the polarization efficiency is now 1/2 (see Figure 2.7(b)). In

this configuration, the self-interference suppression benefits of cross-polarization at
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the access-point remain, but interference from node A at node B can now be very

strong, a problem we will address in the sequel.



Chapter 4

Evaluation of Passive Suppression Mechanisms

In this chapter and in Chapter 5, we seek to evaluate the ability of the proposed full-

duplex AP architecture to overcome the problem of self-interference. That is, how

well can the AP receive an uplink signal from a distant node while simultaneously

transmitting? We will perform this evaluation in two steps. In the first step, discussed

in this chapter, we will evaluate the performance of only passive suppression using

a network analyzer. The passive evaluation will also identify an (N, θB) antenna

architecture that balances the tradeoff between number of directional elements and

amount of suppression. Then in Chapter 5 will use this antenna architecture and

evaluate the complete RF architecture with analog and digital cancellation for a

20 MHz OFDM modulation.

The passive suppression measurements were performed using an Agilent N5224A

general-purpose network analyzer (PNA), in a 55×75×65 ft. open room (Martel hall)

to characterize multiple realizations of of the (N, θB) antenna architecture proposed

in Section 3.1.
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Figure 4.1: Passive suppression vs. separation angle

4.1 Suppression from Directional Isolation

To characterize the impact of directional isolation on passive self-interference suppres-

sion, two directional elements were used, a 90◦ element L-Com HG2414DP [28] and

a 60◦ element L-Com HGV-2406U [32]. For comparison against an omnidirectional

antenna the L-Com 6409 [33] was used. In each case, the antennas were mounted on

poles and separated by distances of 30cm to characterize an indoor AP and 50cm to

characterize an outdoor AP.

Figure 4.1 shows the amount of average passive separation in dB as the angle θ

shown in Figure 3.1 is varied for each directional antenna. No absorber was used and

transmit and receive antennas were both vertically polarized. The “average” is over

frequency in the 2.40 - 2.48 GHz ISM band, not over repeated trials. First observe

that the isolation between omni antennas is 23 dB for 30 cm separation and 27 dB

for 50 cm separation. This was expected since the dominant path is the direct path

between two antennas, and the observed suppression is nearly equal to free-space

path-loss.
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Second, as expected, the passive suppression of directional antennas improves as

the angle θ increases from 0◦ to 180◦. The HGV-2406U [32] 60◦ beamwidth antenna

has a small side-lobe from 90◦ to 180◦, hence the suppression flattens after 90◦ separa-

tion and even degrades at 180◦. The 60◦ beamwidth antennas do not have significant

side-lobes1 and suppression is nearly monotonic with θ.

Third, note that the directional antennas provide increased isolation, compared

to omni, even for 0◦ angular separation, since they are focusing energy outwards

perpendicular to the antennas and hence less energy is radiated laterally.

Next we zoom into one interesting angle on the plot – the 60◦ angular separation.

At 50 cm antenna separation, the 60◦ beamwidth antenna achieves a suppression of

53 dB (26 dB more than omni) and the 90◦ beamwidth antenna achieves a suppression

of 40 dB (13 dB more than omni). So from the self-interference suppression point

of view, 60◦ beamwidth is enticing. However, an angular separation of 60◦ for 60◦

beamwidth means that there will be a decreased SNR, by approximately 3 dB, in

many areas of AP coverage. The loss of 3 dB is because the 60◦/90◦ beamwidth is

3 dB beamwidth, so at edge of each sector, the antenna gain is 3dB less. Hence, we

will choose to use a (N = 6, θB = 90◦) antenna architecture, with 50 cm separation,

in several subsequent experiments.

4.2 Suppression from Absorptive Shielding

Suppression via absorptive shielding was evaluated using Eccosorb AN-79 [27] free-

space RF absorber. AN-79 is a broadband, tapered loading absorber made from

polyurethane foam impregnated with a carbon gradient. It is a 4.25 inch slab that

can be cut to fit the application. The manufacturer’s data sheet indicates that AN-79

1Higher directionality generally comes at the expense of side-lobes, hence the 90◦ antenna can
get by wit small side-lobes but the 60◦ antenna cannot.
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can provide up to 25 dB of absorption.

Table 4.1: Comparison of different combinations of passive isolation mechanisms for
50 cm antenna separation. Directional values are for 90◦ beamwidth antennas at 60◦

separation.

Configuration Avg. Suppression Minimum Maximum

Omnidirectional 27.2 dB 26. dB 28.0 dB
Directional 39.9 dB 36.5 dB 50.3 dB
Directional + Absorber 45.5 dB 41.4 dB 65.5 dB
Directional + Cross-polarization 54.5 dB 50.3 dB 64.9 dB
Directional + Absorb + Cross-pol 62.2 dB 55.8 dB 83.4 dB

Table 4.1 compares the isolation achieved for several different combinations of

isolation mechanisms. The first two rows of table Table 4.1 show that when placing

absorber between omnidirectional antennas spaced 50 cm, the isolation increases from

27 dB to 47 dB: a 20 dB improvement in self-interference suppression. However,

when the absorber was placed between directional antennas, for which the isolation

is already 40 dB without absorber, the isolation only improves by 6 dB.

This result was initially surprising: RF absorber is a passive, linear suppression

mechanism, thus the amount of absorption should not depend on the incident power.

The best explanation is that for directional antennas, the self-interference is not

near as dominated, like in omni-antennas, by the direct path between antennas. So

while the absorber can attenuate the direct path passing through the absorber, it

cannot impact the reflected path.We will show in the following section that absorptive

isolation will be most effective in outdoor applications where energy from reflective

paths between the AP antennas may be much lower.
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4.3 Suppression from Cross-polarization

In Row 3 (Directional configuration) of Table 4.1, vertical polarization mode is used

at both the receive and transmit antennas, so this serves as a baseline to measure

the impact of cross-polarization. Row 5, shows the measured suppression when the

transmit antenna instead uses the horizontal polarization mode. Cross-polarization

of the Tx and Rx antennas suppresses by an additional 15 dB. The last row shows

that when all three mechanisms are applied in tandem (for 50 cm separation, 60

degree separation angle), the average suppression is 62 dB. So in general, the three

mechanisms applied in tandem provide a total of an additional 35 dB of passive

suppression beyond the omni antennas.

4.4 Major Insights

The following two major insights can be derived from the above results.

4.4.1 Not distance, but angle and polarization have high

suppression impact

As seen in Figure 4.1, increasing the antenna separation from 30 cm to 50 cm reduces

the self-interference power by no more than 4dB. Directional separation of the an-

tennas can improve the isolation by 10-20 dB, and cross-polarization can add 10-15

dB more isolation on top of that. Thus the solution to designing access points that

are robust to full-duplex self-interference is not to make them big, but to make them

“smart.” This is encouraging that we do not need large amounts of “empty” space

for separating the antennas.
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4.4.2 Passive suppression introduces frequency selectivity
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Figure 4.2: Passive suppression vs. frequency for combinations of the three mecha-
nisms

Figure 4.2 shows us that when the self-interference is a simple line-of-sight sig-

nal between two omni antennas, the self-interference channel is nearly frequency flat.

This is because the line-of-sight path dominates the received power, and the line of

sight channel is governed by free-space path loss, which changes only slightly with

frequency. However, we also see in Figure 4.2 that when we add passive isolation mech-

anisms, the self-interference channel becomes frequency selective. Notice the channel

response for “Dir.+ Abs.+ Cross-pol” in Figure 4.2 from 2.45 GHz to 2.46 GHz. We

see that when directionality, absorber, and cross-polarization are applied in tandem,

the amplitude of the self-interference channel can change by more than 20 dB within

a 10 MHz band.

This is to be expected. All of the passive isolation mechanisms are designed to
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knock out the line-of-sight path between Tx antenna and the Rx antenna. The resid-

ual signal that does arrive at the receive antenna will likely be the superposition

of several several waves that have “gotten around” the passive suppression mecha-

nism. Since these waves will have random phases, they will add constructively at

some frequencies and destructively at others. In other words, by passively suppress-

ing the direct self-interference, we’ve essentially changed the self-interference from a

frequency-flat, line-of-sight signal to a frequency-selective multi-path signal (thank-

fully with much lower average amplitude): the residual signal that does arrive at the

receive antenna is due to multi-path reflections from surroundings. However, the de-

gree of frequency selectivity may depend on the environment. In a smaller room than

the one in which these measurements were performed, the residual self-interference

may bemore frequency selective due to closer scatters, but in an outdoor environment,

the amount of frequency selectivity introduced by the passive suppression mechanisms

may not be a great.

This frequency selectivity of the residual self-interference has an impact on the

choice of active self-interference cancellation mechanisms at the AP receiver. A WiFi

OFDM signal spans either 20 MHz or 40 MHz, and Figure 4.2 shows that the power

of the residual self-interfernce can vary by more that 20 dB over such bandwidths. In

the balun cancellation method of [6], a single amplitude and phase is applied to an

inverted version of the transmit waveform before it is added to the received signal to

cancel the self-interference. Thus the self-interference channel is being tracked with

a single amplitude and phase. Tracking a self-interference channel with the char-

acteristics observed in Figure 4.2 with a single amplitude and phase will obviously

result in poor self-interference cancellation. In the the approach of [2], the cancella-

tion waveform is crafted at baseband from the broadband per-subcarrier estimates of

the self-interference channel. Hence the broadband ODFM RF cancellation waveform
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produced from these per-subcarrier channel estimates can cancel self-interference sig-

nal that is very frequency selective. For this reason, in the full-system experiments

described in Chapter 5, we use the analog cancellation method of [2] to cancel the

the residual self-interference remaining after the passive isolation mechanisms.



Chapter 5

Physical-Layer Evaluation

The passive suppression measurements in the previous sections show that the three

proposed passive mechanisms provide excellent self-interference suppression for full-

duplex APs, but they alone are not sufficient to achieve desired long ranges. In

this section, we discuss the results of a software-defined radio implementation to

measure (a) the total suppression with all mechanisms in place, passive and active

and (b) achievable rate gains for only the uplink. We will evaluate the sum-rate gains,

of both uplink and downlink, in Chapter 6.

5.1 Evaluation Methodology

5.1.1 Prototype Wideband OFDM Full-Duplex PHY

The prototype full-duplex PHY used at the AP is a WARPLab [34] implementation

of the real-time wideband OFDM full-duplex physical layer presented in [5]. In the

WARPLab framework, waveforms are transmitted over the air in real-time using

the WARP platform [35], but are crafted and processed off-line in MATLAB. The

prototype communicates using 20 MHz, 64-subcarrier OFDM waveforms within a
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packet structure that mimics 802.11a. All experiments were performed at a center

frequency of 2.484 GHz (channel 14 of the 2.4 GHz ISM band)

5.1.2 Metrics

As discussed earlier, the purpose of the prototype evaluation is to measure the amount

of self-interference suppression achieved and measure the rate gain that full-duplex

provides on the uplink. To measure the achieved self-interference suppression, the

strength of the residual self-interference is measured using received signal strength

indication (RSSI) pilots. And to measure the rate gains, we compute achievable rates

from the error vector magnitude (EVM) of the received frames. Each of these metrics

is discussed in greater detail below.

5.1.2.1 Self-interference suppression from RSSI measurements

The method for measuring the achieved suppression is the same as described in [4],

but we mention it here for completeness. Like most commercial radios, the Maxim

MAX2829 transceiver IC [36] used on WARP provides a received signal strength

indication (RSSI) to the baseband processor. This RSSI signal allows us to measure

the power of the RF waveform incident on the receiver, since the gain of the stages

proceeding the transceiver chip are known deterministically and can be backed out of

the RSSI reading. The header of the the mobile’s packet has a small “silent period”

during which the AP transmits “suppression pilots”. During the suppression pilots,

the only signal received at the AP is its own self-interference, hence the RSSI observed

during this portion of the header allows the AP to measure the power of its self-

interference signal. To measure the achieved passive suppression, we just observe the

RSSI of the suppression pilots without employing any active suppression. To measure

the achieved suppression when analog cancellation is added, we simply observe the
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RSSI of the self-interference when the AP is employing analog cancellation. If PTx

is the known transmit power, PRSSI is the RSSI of the self-interference (measured

when the signal-of-interest is turned off), and GRX is the lumped gain of the stages

preceding the transciever in the receive chain, then the measured RF self-interference

suppression, αRF, is

αRF = PTx − (PRSSI −GRX). (5.1)

The total self-interference suppression includes digital cancellation which can-

not be inferred from the RSSI, since digital cancellation is performed post-RSSI-

measurement at baseband. To measure the suppression contributed by digital can-

cellation, we compute the difference of the squared magnitude of the digital samples

corresponding to the suppression pilots before digital cancellation to the squared mag-

nitude after cancellation to get αDig, the amount of self-interference suppression due

to digital cancellation. Now the total acheived self-interference can be computed as

αTot = αRF + αDig. (5.2)

5.1.2.2 Achievable Rate from EVM Statistics

We compare system-level performance of the full-duplex uplink to that of a half-

duplex uplink, by transmitting frames in both cases (half-duplex and full-duplex)

and measuring effective SNR from the error vector magnitude (EVM) statistics of the

received frames. EVM is the distance (in the complex plane) of the received symbol

after channel equalization and demodulation from the symbol actually transmitted.

The average EVM for over a frame i of symbols, EVM(i), can be used to measure the

effective SNR from frame i using the common conversion [37]

SNR(i) =
1

EVM(i)2
. (5.3)
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SSINRFD

Uplink

(a) Full-duplex uplink: AP transmits frames while receiving,
effective effective SSINRFD

Uplink is measured from EVM statistics

SNRHD
Uplink M

AP

(b) Half-duplex uplink: AP only receives, effective effective
SNRHD

Uplink is measured from EVM statistics

Figure 5.1: Experiment setup for evaluating performance of full-duplex uplink

As shown in Figure 5.1(a), we measure the SSINR for the full-duplex uplink at

the AP by having the AP receive frames from the uplink mobile while simultaneously

transmitting to a “dummy” downlink mobile on its nearest antenna. From the EVM

statistics for each frame, we measure the SSINRFD

Uplink
for each frame. Similarly, to

measure the SNR for half-duplex, we compute SNRHD

Uplink
from the EVM statistics of

frames received from the uplink mobiles, but without transmitting simultaneously, as

shown in Figure 5.1(b).

From these EVM-based SNR measurements, we can compute the ergodic achiev-

able rate for the mobile-to-AP uplink from the SNR measurements using Shannon’s

formula. Let i be the index for the frames transmitted, and the N be the total num-

ber of frames transmitted. The half-duplex ergodic achievable rate, RFD

Uplink
, and the

full-duplex ergodic achievable rate, RHD

Uplink
, are then computed by
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RFD

Uplink
=

1

N

N�

i=1

log
2
[1 + SSINRFD

Uplink
(i)] (5.4)

RHD

Uplink
=

1

N

N�

i=1

1

2
log

2
[1 + SNRHD

Uplink
(i)]. (5.5)

Note that in (5.5) a 1

2
pre-log factor is added due to the half-duplex constraint. This 1

2

factor assumes that in half-duplex mode the AP performs a 50/50 time-split between

the uplink and downlink. The optimal time-split is in general not 50/50, but since

in this experiment we do not incorporate a third node to receive the AP’s downlink

transmission, we assume that the SNR at the downlink mobile is the same as the

SNR for the uplink mobile, in which case the optimal time split would indeed be

50/50. Under this 50/50 time split assumption, the uplink mobile will transmit twice

as often when the AP operates in full-duplex mode as it would when the AP operates

in half-duplex. Hence, in order for the comparison to be fair in terms of expended

transmit power, the uplink mobile will transmit with twice the power (3 dB) in the

half-duplex case as in the full-duplex case.

Equations 5.4 and 5.5 remind us that the advantage of the full-duplex uplink is

that even though it will have a lower SSINR due to residual self-interference, it does

not have to share time with the downlink. Thus operating the uplink in full-duplex

mode allows the uplink mobile to transmit for twice the time duration as in the half-

duplex uplink case. Full-duplex will “win” over half-duplex if the pre-log benefit of

no longer time sharing outweighs the in-log cost of the residual self-interference.
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5.2 Indoor Full-Duplex Uplink with Directional Iso-

lation Only

Here we present performance evaluation results from a prototype indoor AP that only

employs one of the mechanisms of Chapter 2: directional isolation [38]. Characteri-

zation of the full (N, θB) architecture that leverages all three mechanisms will come

in the next section. The goal of this study is to better understand the impact of di-

rectional isolation in a full system. In particular, we wish to characterize how uplink

performance is impacted by the angle between transmitting and receiving antennas.

The characterization will supplement the suppression results in Section 4.1, in en-

abling an intelligent choice for N and θB, the number of antennas and beamwidth of

each antenna, respectively, in the (N, θB) architecture.

5.2.1 Experiment Setup

The antennas used in the experiment were standard 2.4 GHz rectangular patch an-

tennas [39]. These vertically polarized antennas have 5 dBi gain and 85◦ beamwidth.

The configuration of the antennas for the experiment is shown in Figure 5.2(a). One

antenna was used for transmission and the other for reception. The antennas were

mounted such that they pivot around a common axis. The distance from the axis

to the antennas was 18 cm. This mounting apparatus allowed control of the angle

between transmit and receive directional antennas, so that performance as a function

of the angle between the antennas could be measured. In Figure 5.2(a) the antennas

are at 30◦ separation. Figure 5.2(b) shows a front view of the prototype full-duplex

AP with the directional antennas at 45◦ separation.

The experiment was carried out in an open hallway in Duncan Hall at Rice Uni-

versity, where long-range line-of-site channels could be obtained. Figure 5.3 visualizes
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(a) 5dBi directional patch an-
tennas at the prototype full-
duplex base station

(b) Front view prototype full-
duplex base station with direc-
tional antennas mounted

Figure 5.2: Prototype full-duplex AP with directional antennas.

the experiment setup. At distances of 10 and 15 meters, we varied the angle between

the transmit and receive antennas from 30 to 180 degrees. From each of the dots

shown in Figure 5.3 the mobile transmitted 150 frames to the AP. The first 50 frames

were half-duplex transmissions: the AP was not transmitting while receiving. From

these first 50 frames we compute the half-duplex uplink rate RHD

Uplink
. During the sec-

ond 50 frames the AP transmitted to a dummy downlink mobile while it received the

frames form the uplink mobile, and the AP employed both analog cancellation and

digital cancellation to suppress the self-interference. From these full-duplex frames

we compute RFD

Uplink
, the rate achieved when both analog and digital cancellation are

employed. Finally, in the last 50 frames the AP did not employ RF cancellation,

and only canceled the self-interference digitally at baseband. From these frames we

compute the achievable rate for digital cancellation alone, RFD (Dig. Cx)

Uplink
.

To quantify the benefits of using directional antennas at the AP, we also col-

lected data for frames transmitted when using omnidirectional antennas. Changing

from directional antennas to omnidirectional antennas has two results: (1) the self-

interference at the AP will likely be stronger, since the transmit antenna will be

radiating directly onto the receive antenna, (2) the power of the received signal from
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Figure 5.3: Procedure for measuring full-duplex performance as a function of range
and angle between Tx and Rx antenna at the AP.

the mobile will be weaker, since the receive omnidirectional antenna has a smaller

gain than the directional antenna. The goal of this experiment was to characterize

the benefits of directional antennas in mitigating self-interference, not in improving

link quality. We therefore wanted to study the first effect in isolation from the sec-

ond. For this reason, we empirically determined a mobile-to-AP distance for which

the received signal strength (RSSI) at the AP with omnidirectional antennas was

nearly equal to the RSSI when directional antennas were used. We then transmitted

50 frames at each of these effective distances to measure compare full-duplex to half-

duplex in the case of omni antennas at the AP. Hence instead of taking measurements

at 10 m and 15 m, as in the directional antenna case, measurements were taken at

the “effective distances” of 7.0 m and 13.3 m.1

1Because the self-interference power will not change significantly with the angle between omni-
directional antennas, only one measurement at each of the two distances is performed, and in the
plots that follow we assume that the same values would have been measured at all angles.
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5.2.2 Results

Figure 5.4 visualizes the measured percentage uplink rate improvement full-duplex

achieves over half-duplex, assuming a 50/50 time-sharing with downlink in the half-

duplex case. The regions are colored according to percent improvement over the

half-duplex achievable rate attained at each angle and distance. The dots represent

the coordinates of the actual measurements, and the rest of the region’s coloring is ob-

tained via interpolation. Green indicates an improved rate over half-duplex: brightest

green corresponding to the ideal 100% gain (i.e. doubling of half-duplex rate). Black

corresponds to full-duplex being on-par with half-duplex and red indicates full-duplex

underperforming half-duplex. The top plot is the case of analog and digital cancella-

tion applied in tandem, the second is digital cancellation alone, and the last is when

omnidirectional antennas rather than directional antennas are used (in this case both

RF and digital cancellation are employed).

5.2.2.1 Analog + Digital Cancellation

We see in Figure 5.4(a) that full-duplex performs quite well when directionality is

exploited and both analog and digital cancellation are employed. At 10 m range

full-duplex outperforms half-duplex by more than 60% as long as the antennas are

separated by at least 45◦, and at 15 m range full-duplex outperforms half-duplex by

at least 50% for angles ranging from 90◦ to 150◦. The best performance is achieved at

(10 m, 120◦), where a near 95% improvement over half-duplex is achieved; this means

we are approaching the ideal doubling of rate that full-duplex promises. However, as

the angle between antennas gets small, performance degrades. When 45◦ separation

is approached, the gains over half-duplex are small, and in the region around (15 m,

30◦) we actually see the color fade from black to dark red: at (15 m, 30◦), full-duplex

is underperforming half-duplex. We now turn to the received signal strength values
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Figure 5.4: Percent improvement over the half-duplex achievable rate as a function of
mobile-to-AP distance and angle between antennas (a) when directional antennas are
employed and both analog and digital cancellation are performed (b) with directional
antennas and digital cancellation only, and (c) with omnidirectional antennas and
both analog and digital cancellation.
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Figure 5.5: Pre-cancellation signal to self-interference ratio (SIR) as computed from
RSSI readings

to understand why full-duplex fails in this region.

Figure 5.5 plots the pre-cancellation signal-of-interest to self-interference ratio

(SIR) as a function of the angle between antennas for each of the distances evaluated

in the experiment. The SIR values are obtained from the radios’ average RSSI read-

ings over the frames transmitted. Figure 5.5 helps us understand why full-duplex is

underperforming at small angles. At around 75◦ the pre-cancellation SIR begins to

fall off rapidly with decreasing angle due to the coupling between the Tx and Rx an-

tennas becoming stronger as the angle between them gets smaller. At (15 m, 30◦) the

self-interference is nearly 20 dB more powerful than the signal-of-interest, and in this

regime the cancellation mechanisms do not suppress the self-interference sufficiently

for full-duplex to outperform half-duplex.

5.2.2.2 Digital Cancellation Alone

Figure 5.4(b) shows that when directionality is exploited, full-duplex can achieve sig-

nificant rate improvements over half-duplex even without employing extra hardware
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for RF cancellation. At 120◦ the full-duplex rate is around 60% higher than the half-

duplex rate, and full-duplex continues to out-performs half-duplex for angles from 60◦

to 150◦ at 10 m and from 90◦ to 130◦ at 15 m. However, at 60◦ the gains over half-

duplex are marginal and as the angle get smaller the self-interference becomes too

powerful to be suppressed via digital cancellation alone, and the rate falls below the

half-duplex rate. The fact that performance degrades for smaller angles is expected,

but it is surprising that performance also degrades for large angles. At 180◦, when

the antennas are pointed in opposite directions, full-duplex actually underperforms

half-duplex when RF cancellation is not employed. Let us look to the pre-cancellation

SIR values for an explanation of this decreased performance at large angles.

We see in Figure 5.5 that SIR starts off small when the angle between the antennas

is small, and the direct coupling is strong. As the angle increases the SIR increases,

since the self-interference is becoming weaker as the antennas become more isolated.

The SIR reaches a maximum somewhere around 90−120◦, and then begins to decline

as the angle increases further. The self-interference is actually much stronger at 180◦

than 90◦. There are three possible causes for this surprising increased coupling when

the antennas are facing opposite directions. One possibility is an antenna back-lobe.

The patterns included in the antenna data sheet [39] indicate a small back-lobe, but

the back-lobe does not seem strong enough to produce the observed 10 dB swing in

SIR. Another possibility is that the increased coupling is an artifact of room-specific

reflections – that it is not direct coupling between antennas causing the lower SIR,

but a reflected component. This could partially be the case, but when performing

a pilot study in a different room, similar effects were observed. The final possibility

is that the increased self-interference at large angles is due to a near-field coupling

effect that would not be captured in the far-field antenna patterns. A future work is

to perform full-wave electromagnetic simulations to determine the exact mechanism
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causing this observed increase in self-interference when antennas are pointed away

from each other.

5.2.2.3 Omnidirectional comparison

Figure 5.4(c) shows the performance when omnidirectional antennas are employed

rather than directional antennas. With omni antennas there is obviously no angular

variation in performance. We see that the self-interference is too strong to be sup-

pressed enough for full-duplex to be preferable to half-duplex at the distances eval-

uated. The distances evaluated here are longer than those evaluated in [2, 5], where

full-duplex was shown to effective with omnidirectional antennas. This result shows

that as the distance between devices increases, and the signal-of-interest attenuates,

passive suppression is needed to attenuate the self-interference in order for full-duplex

to be effective. Comparing omni vs. directional performance at (15 m, 90◦), we see

that with directional antennas and RF + digital cancellation full-duplex outperforms

half-duplex by ∼75%, but when the directional antennas are interchanged with omni

antennas the pre-cancellation SIR shifts from a benign ∼0 dB SIR to a challenging

∼−20 dB SIR, and the full duplex achieved rate is ∼75% less that what is achieved

with half-duplex. Hence achieving passive suppression by exploiting directionality

makes a huge impact on system performance.

5.2.3 AP Architecture Implications

One of the conclusions of the passive suppression measurements of Chapter 4 was

that a 6-antenna AP, with each antenna separated by 60◦, is reasonable design choice

for leveraging directional isolation without resorting to excessive antennas. Figure 5.4

shows that using directional antennas separated 60◦ instead of omni antennas pushes

the full-duplex improvement from 0% to +70% at 10 m range, and from −40% to
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+50% at 15 m.

Therefore for ranges of 10-20 m, directional isolation alone is sufficient for enabling

full-duplex, and this is about largest line-of-sight range we could study indoors. But

even with the 60◦ directional isolation, gains start falling off after 15 m. In order to

achieve our 100 m goal in an outdoor setting, we will need to employ all of the passive

suppression mechanisms introduced in Chapter 2. This is the topic of the following

section.

5.3 Outdoor Full-Duplex Uplink at 100+ Meters

The overarching goal of the three passive suppression mechanisms introduced in Chap-

ter 2, and the (N, θB) architecture for leveraging them (Chapter 3) is that they would

enable long-range full-duplex links, when employed along with the pre-existing active

suppression mechanisms. In this section we put the mechanisms to the test, to see

whether or not the architecture achieves this goal. Here we present a performance

evaluation of a prototype outdoor full-duplex AP, receiving uplink packets from a

mobile node at ranges of 50-150 m, while transmitting a full power.

M

AP
Rx

Tx
d

Figure 5.6: Uplink test setup

5.3.1 Experiment setup

Per our conclusions in Section 4.1, we prototype a (N = 6, θB = 90◦) antenna ar-

chitecture using the HG2414DP dual-polarized 90◦ antennas with 50 cm separation.
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Since 6 antennas are used, the worst case self-interference occurs between two anten-

nas separated 60◦.

Figure 5.7: Photo of outdoor experiment setup: AP directional panel antennas with
absorber mounted between.

To evaluate the worst-case self-interference in the 6-antenna AP, the experiment

setup depicted in Figure 5.6 was used in which the receive antenna is pointed 60◦ away

from the receive antenna’s direction. This setup is shown in Figure 5.7. An average

transmit power was used at the mobile and at the AP. The AP’s directional antenna

has a gain of 14 dBi, giving an effective isotropic radiated power (EIRP) at the AP of

21 dBm. This high EIRP allows the received signal strength at a downlink mobile to

be in acceptable WiFi ranges (−80 to −60 dBm) for typical 100 to 200m outdoor path

losses of 80 to 100 dB. The uplink mobile uses 6 dBi gain omnidirectional antenna.

When comparing to a half-duplex uplink, the mobile node is allowed to transmit

with twice the transmit power (3 dB more) than in the full-duplex case, so that

the comparison to half-duplex is fair in terms of average power (assuming an equal

uplink/downlink time split).

Since the goal of the experiment was to study self-interference suppression at the

AP and its effect on the uplink rate at the AP, the AP will be transmitting at full

power on the other directional antenna in full-duplex mode and silent in half-duplex

mode. The AP was placed in a fix location, and the distance between the uplink
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mobile and the AP was varied from 50 to 150 m. At each location the mobile node

transmitted frames to the AP, and statistics were recored.

5.3.2 Total average suppression exceeding 90 dB

First we characterize total amount of self-interference suppression achieved. Fig-

ure 5.8 plots the empirical CDFs for the amount of cancellation achieved both with

and without cross-polarization at the AP. The solid blue CDF for the amount of

passive suppression achieved by directional isolation and absorptive shielding (no ac-

tive cancellation) with the AP transmitting and receiving on the same polarization.

Note that this is nearly 10 dB more suppression than was observed in the indoor

measurements, this corroborates the hypothesis that in the indoor measurements, the

absorber was not adding much contribution because reflected paths had become dom-

inant. Here is the outdoor setting, reflections are minimal, and absorptive shielding

has a big impact: enabling 60 dB passive suppression without any cross-polarization.

The dotted blue CDF is the total (passive + active) suppression achieved after analog

and digital cancellation are performed. Analog and digital cancellation add another

25 dB of active suppression for a total suppression of 86 dB on the average.

The red CDFs are the passive and total (passive + active) suppression achieved

with cross-polarization of Tx and Rx antennas at the AP. We see that cross-polarization

adds another 10 dB of passive suppression over the suppression provided by direc-

tional isolation and absorptive shielding, for 72 dB of total passive suppression from

the three mechanism. Once again, this is ∼ 10 dB better than the suppression mea-

sured indoors, due to the absorptive shielding and directional isolation being more

effective in a lower-reflection environment. When active suppression is added, the

total self-interference suppression ranges from 87 dB to 100 dB, averaging around

94 dB total suppression. Analog and digital cancellation is still able to provide 20-25
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Figure 5.8: Total self-interference suppression of 20MHz OFDM signal

dB of self-interference suppression, even after the self-interference is knocked down

by 70 dB by the passive mechanisms. Note that as the amount of suppression in-

creases, the variability of the suppression also increases. Nonetheless, for more 90%

of the frames transmitted, the total self-interference suppression was at least 90 dB

when the three passive mechanisms: directional isolation, absorptive shielding, and

cross-polarization are applied in tandem with analog and digital cancellation. To our

knowledge this is the best reported self-interference suppression to date.

5.3.3 Full-duplex rate improvements at 100+ m

In an outdoor area on a university campus, the achievable rate for the full-duplex and

half-duplex uplinks were measured as the range from of the uplink mobile to the AP

was varied from 50 to 150 meters. As expected, the encountered path loss was not

monotonic with range due to shadowing effects, hence rate-vs.-range curves are noisy

and difficult to interpret. Instead, we measured the encountered path loss for each

mobile node location so that the performance could be indexed by this meaningful,

repeatable parameter. Figure 5.9 plots the percent improvement in achievable rate
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of full-duplex uplink over the half-duplex uplink (assuming half-duplex uplink must

share time equally with the downlink).
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Figure 5.9: Percent rate improvement of FD uplink over HD uplink

We see that at 86 dB path-loss, the improvement over half-duplex is 86% when

directional isolation and absorptive shielding are applied together with analog and

digital cancellation. When cross-polarization of Tx and Rx is also employed, the gain

over half-duplex at 86 dB path loss is 96%. In Figure 5.9, a second x-axis is also

shown, which maps pathloss to effective range in a typical urban channel. With the

best design, including cross-polarization, we expect to have full-duplex gains (albeit

small) for up to 200 m. As a result, we will use 200 m range for further sum rate

analysis in Chapter ch:internode. Even without cross-polarization, our design achieves

100+ m range, thereby meeting our goal of long-range full-duplex.

Of particular note is the significant impact of cross-polarization. Figure 5.8 showed

that cross-polarization provides an extra 10 dB of total suppression, and we see

the system-level impact of this extra 10 dB in Figure 5.9. Notice that with cross-

polarization, the same gains over half-duplex can be attained at 10 dB more path loss
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with cross-polarization that without. In other words, cross-polarization allows the

full-duplex AP to handle 10 dB more path loss than it could otherwise, and 10 dB

more translates to several tens of meters (nearly 100) of added range.

5.4 PHY Evaluation Summary

We have seen that with omnidirectional antennas, i.e. no passive self-interference

suppression, analog and digital cancellation can only enable a full-duplex uplink to

outperform a comparable half-duplex uplink when the range is less than 10 m (see

Figure 5.4). When directional isolation and and absorptive shielding are employed

in an (6, 90◦) architecture, with 50 cm antenna separation, total self-interference

suppression of 85 dB is achieved, enabling the full-duplex uplinks to have > 50 %

improvement over half-duplex for path loss up to 87 dB (90 m in shadowed urban

environment). Adding cross-polarization gives total suppression of 94 dB, enabling a

full-duplex uplink to outperform half-duplex by > 50 % for range up to 150 m. Thus

the large passive suppression achieved by utilizing directional isolation, absorptive

shielding, and cross-polarization enables our goal of extending the range full-duplex

to typical Wi-Fi distances.



Chapter 6

Full Topologoy Evaluation: Impact of Inter-node

Interference

In Chapter 1, we introduced a scenario in which a full-duplex AP can network effi-

ciency by receiving an uplink signal from one node while simultaneously transmitting

to another node. For convenience, we refresh Chapter 1’s illustration of this topol-

ogy in Figure 6.1. Recall that simultaneous uplink and downlink introduces two

challenges: self-interference at the AP, and inter-node interference from the uplink

mobile at the downlink mobile. The main thrust of this thesis is addressing the first

problem: employing passive suppression mechanisms so that the uplink signal can

overcome self-interference. All previous chapters have focused on addressing self-

interference on the uplink, since the mechanisms we have proposed only assist the

uplink. In this chapter we evaluate the full network performance when inter-node

interference at the downlink is also taken into account.
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Figure 6.1: Full-duplex AP with half-duplex mobiles. Uplink suffers from self-
interference while downlink suffers from inter-node interference

6.1 Evaluation Methodology

Modeling of self-interference at the AP is driven by experiment results in Chapter 5.

To analytically capture the impact of self-interference at the AP, we assume that the

self-interference is suppressed by a constant amount. In our field trials, 90 dB or more

suppression was observed for 90% of the frames transmitted (see discussion about

Figure 5.8 in Section 5.3.2). Thus we assume that the AP faces a self-interference

floor that is 90 dB less than its transmit power.

We model attenuation of the signal-of-interest and inter-node interference using

a log-distance path loss model with path-loss exponent η [40]. To model a realistic

typical deployment, we use a reference distance of 10 m, thus the path loss model

consists of the following two parts: free space path loss for the first 10 meters and

path loss with a loss exponent η beyond 10 meters. The attenuation (in dB) of the

signal at a distance d from the transmit antenna is given by:

Lp(d) =






32 + 20 log
10
(fcd) if d ≤ 10

60 + 10η log
10
(d/10) d> 10

where fc is the carrier frequency in GHz, which we set to 2.4 GHz.

We consider an outdoor urban environment where line-of-sight to the AP is avail-
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able1, and assume that mobiles are equipped with dual-polarized antennas to match

the AP’s cross-polarization of uplink and downlink. Measurement campaigns in such

environments have shown that co-polarized signals (AP↔mobiles) encounter a path-

loss exponent of 2, while cross-polarized signals (mobile↔mobile) see a path-loss

exponent of 4, due the cross-polarization eliminating the line-of-sight [41]. Thus we

assume η = 2 for uplink and downlink and η = 4 for inter-node interference.2

To assess net performance of the topology of Figure 6.1, we compare the achievable

sum-rates of full-duplex to that of half-duplex. The sum-rate of full-duplex is given

by

RFD

sum
= RFD

Downlink
+RFD

Uplink

= log
2
(1 + SINRDownlink)

+ log
2
(1 + SSINRUplink). (6.1)

For half-duplex, the achievable sum-rate is

RHD

sum
=

1

2
log

2
(1 + SNRUplink)

+
1

2
log

2
(1 + SNRDownlink). (6.2)

To compare full-duplex with half-duplex, we assume that the uplink mobile is at

a fixed distance from the AP, while the downlink mobile is located within a circular

region of radius 200 meters from AP. The AP architecture we evaluate is the same

(6, 90◦) architecture evaluated in Section 5.3: the AP has 6 antennas each covering

a 60◦ region, and 90◦ beamwidth for each antennas ensures that the gain is uniform

1Such was the case in our experiments.
2Even without cross-polarization, the mobile-to-mobile channel will encounter higher path loss

than the mobile-to-AP channel simply because the infrastructure AP will be strategically deployed
(tower or top of a building) for unobstructed coverage, while the path between mobiles may be quite
obstructed.
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over each region. To match the parameters of the implementation Section 5.3, in the

received power calculations we assume both the AP and the mobile node transmits

with 7 dBm power, and we assume 14 dBi gain antenna gain at the AP, and 6

dBi gain at the mobile nodes. We assume that the AP chooses to communicate on

the particular directional antenna which has maximum gain in the direction of the

mobile node. The AP architecture, as described in Section 3, does not allow the

same antenna at AP to act as transmitter and receiver simultaneously. Therefore

we exclude computing the gain of full-duplex over half-duplex when both uplink and

downlink mobiles are in the same “sector”. As shown in Figure 6.3, we compute the

percentage gain of full-duplex over half-duplex only in an angular region between 30◦

and 330◦ since the uplink mobile is fixed on the positive side of the horizontal axis.
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half-duplex counterpart.
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6.2 Evaluation Results

Figure 6.3 plots the sum-rate percentage gain of full-duplex over half-duplex as a

function of the geographical location of the downlink mobile for a fixed uplink mobile

location. In Figure 6.2(a) the uplink mobile is placed 20 m from the AP at location

(x, y) = (20m, 0m), and in Figure 6.2(b) the uplink mobile is 100 m from the AP

at (100m, 0m). As expected, performance of full-duplex is poor when the downlink

mobile is close to uplink mobile, and interference from the uplink at the downlink

is strong. For example, when the uplink mobile is at (20m, 0m) and the downlink

is at (25m, 25m) full-duplex has worse performance than half-duplex: the cost of

orthogonalization is less than the cost of tolerating interference from the uplink mobile

However, we see that when the downlink mobile is separated from the uplink mobile

by a reasonable distance, full-duplex provides significant sum-rate gains over half-

duplex.

6.2.1 Peak gains

From Figure 6.3, we observe that the maximum gain achieved by our design is 63%

and 59% over half-duplex when uplink mobile is located at 20 meters and 100 meters,

respectively.

Figure 6.2(a) shows that when the uplink mobile is near to the AP, full-duplex

performance is best when the downlink mobile is far from the AP. Full-duplex is

therefore advantageous in asymmetric range scenarios in which the uplink is near to

the AP, but the downlink is far. This is because when the uplink is near the AP, the

uplink signal encounters little path loss, and the residual self-interference is far below

the signal-of-interest. Similarly, since the downlink mobile is far form the AP, it is

also far from the uplink mobile, and inter-node interference is tolerable.

Figure 6.2(a) shows that when the uplink mobile is far from the AP, full-duplex
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Table 6.1: Sum-rate Gain of Full-duplex over Half-duplex

Uplink mobile Gain of Max. Gain of
distance Ideal FD our design

20 86% 63%
40 85% 61%
60 85% 60%
80 84% 59%
100 84% 59%

performance is best when the downlink mobile is in the hemisphere opposite the uplink

mobile. Note that in the opposite asymmetric case to the one discussed earlier, when

the uplink is far and the downlink is close, the gains over half-duplex are high only if

the downlink and uplink mobiles are on opposite sides of the AP.

No matter the location of the uplink mobile, the peak gains occur when the down-

link mobile is separated as far as possible from the uplink, and inter-node interference

has the least impact. Table 6.1 shows the comparison of maximum gain achieved by

our design with that of ideal full-duplex for different uplink distances. We note that

achieving 100% gain over half-duplex is not possible even if self-interference and inter-

node interference were made zero (ideal full-duplex). This is because half-duplex

is allowed to use 3 dB more power than full-duplex so as to ensure equal average

power consumption, since node will be transmitting for twice the time in full-duplex

mode.We notice that the percentage gain gap between our design and the ideal gains

is only 20%, indicating that for an outdoor setting, our design is operating close to

the ideal full-duplex.

6.2.1.1 Percentile area gains

The second key observation from Figure 6.3 is that the average/maximum gains for

both uplink mobile distance of 20 and 100 meters are approximately the same. This
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for fixed uplink mobile distance. (b) Percentage of area where full-duplex out-
performs half-duplex by at least 30%, 40% and 50% for varying distance of uplink
mobile is shown.

implies that to a good extent the gain of full-duplex over half-duplex is insensitive to

the distance of the uplink mobile.

To understand this observation, we consider the interplay between self-interference

and inter-node interference. Consider that the downlink mobile is situated at Loca-

tion A which is at a distance of 100 meters from AP on the negative side of the

horizontal axis, as shown in Figure 6.3. The path-loss model tells us that the inter-

node interference faces a path-loss of 103 dB and 112 dB for uplink mobile distance

of 20 and 100 meters, which translates to an absolute interference power of −84 and

−93 dBm, respectively. From Figure 6.3(a), we note that the self-interference floor for

the same transmit power at AP is -83 dBm (assuming 90 dB cancelation). The self-

interference floor is higher than the inter-node interference floor (i.e. self-interference,

not inter-node interference is the aum-rate bottleneck) when the downlink mobile is at

Location A or anywhere further than that as seen in Figure 6.3(a). Also, at Location
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A or anywhere further (a reasonably large region), the inter-node interference ap-

proaches the thermal noise floor which implies that the performance of full-duplex is

non-ideal only because of the self-interference floor. Since this phenomenon is uplink

mobile distance independent (almost), the average/maximum gains too are almost

independent of uplink mobile distance.

Figure 6.3(b) shows the plot of the percentage of area in the circular region where

the gain is at least X% as the uplink-to-AP distance varys. The plot is shown for gains

of at least 30%, 40% and 50%. Fixing the percentage gain desired, the percentile area

does not change by more than 10% even when the uplink mobile is moved from 20 to

100 meters.

6.2.2 Comparisons to prior full-duplex designs

The main feature of our design surpassing prior full-duplex designs is the high overall

suppression achieved by techniques described in Section 3.
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40% and 50% as a function of achieved self-interference suppression. Uplink mobile
is fixed at 50 meters from AP.
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Figure 6.4 shows the progression in the percentage of area in the circular region

within 200 meters where the gain is at least X% more than half-duplex. We can see

the effect of higher suppression on the percentile gains. For having any percentage

gains above 30% of full-duplex over half-duplex, an overall suppression of more than

75 dB is needed. With the current state-of-the-art suppression techniques which

offers less than 79 dB suppression [5, 6, 16], not more than 24% area has 30% gain.

On the other hand, our proposed design which has reliably more than 90 dB overall

suppression has at least 50% gain in as much as 50% of the whole area, which is

appreciably better than the state-of-the-art.

6.2.3 Take-away Message: Opportunistic MAC Needed

The main take-away from the above results is that there are indeed opportunities for

simultaneous uplink/downlink to an AP in which inter-node interference is tolerable,

and given the high levels of self-interference suppression demonstrated in Chapters 4

and 5 as high as 60% gains over half-duplex can be achieved. However, performance is

highly dependent on the topology, as Figure 6.3 shows. Figure 6.3 the locations where

full-duplex under-performs half-duplex are small, but we have taken the optimistic

assumption of path-loss-exponent 2 for the signal-of-interest and 4 for inter-node

interference. In a case where the mobiles are not in line-of-sight of the AP, such

as an indoor office deployment, both inter-node interference and signal-of-interest

may encounter a path-loss-exponent of 4. In this case, topologies where internode

interference prohibits simultaneous uplink/downlink will be much more frequent.

This high variability of full-duple vs. half-duplex performance suggests that need

for a new MAC. Design of a MAC protocol decides when to have full-duplex simul-

taneous uplink/downlink and when to orthogonalize is of utmost importance in the

future work. The best solution would be an opportunistic full-duplex MAC proto-
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col. The MAC must be “opportunistic” in the sense that if the AP is preparing to

transmit receive a signal from some uplink mobile, it will “find” a downlink mobile,

who is out-of-range of the uplink mobile, to whom it can transmit while receiving the

uplink.



Chapter 7

Conclusion

There is a new opportunity to reap the benefits of full-duplex without asking mobile

devices to become “full-duplex” themselves: access points supporting simultaneous

uplink/downlink with half-duplex devices. We have presented the design of a novel

RF/antenna architecture for full-duplex access-points that achieves 90+ dB of total

self-interference suppression by leveraging three mechanisms: directional isolation,

absorptive shielding, and cross-polarization. Field tests using the new design demon-

strated high-rate full-duplex links not for ranges not on the order to 10 meters as

in the previous work, but on the order of 100 meters. Although simultaneous up-

link/downlink introduces interference between mobile devices, path loss analyses re-

vealed large geographic regions for which the benefits of simultaneous transmission

outweigh the cost of tolerating interference: the overall network capacity gain can be

as high as 60%. The obvious next step is the development of MAC protocols to iden-

tify such “full-duplex wins” scenarios and initiate simultaneous uplink and downlink

transmissions at the AP.
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